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ABSTRACT 

 

Mountainous islands of the Pacific Rim (such as New Zealand) purportedly deliver 

up to 40% of the suspended sediment load and up to 35% of the riverine particulate 

organic carbon (POC) load to the world’s oceans. On the east coast of New 

Zealand’s North Island, the Waipaoa River drains a steep, 2205 km2 catchment 

located on the active collisional East Coast Continental Margin. It has an annual 

suspended sediment load of 15 Tg (15 x 1012 g), making up ~7% of New Zealand’s 

total yield to the Pacific Ocean, and a mean annual POC discharge to the Pacific 

Ocean of 86.7 Gg (86.7 x 109 g). The annual loss of OC to the floodplain is ~9% of 

this annual POC discharge (~7.8 Gg). 

 

A range of analyses (including organic carbon content (%OC), stable carbon 

isotopes (δ13C), radiocarbon (14C), carbon to nitrogen ratios (C/N)a and carbon 

loadings (OC:SA)) were performed on correlative sediments from a transect of 7 

cores from depositional sites located on the Waipaoa River floodplain and adjacent 

continental shelf and slope. Results were used to determine biogeochemical 

characteristics of organic carbon (OC) at a range of depositional sites during its 

transfer from terrestrial source to marine sink, and how large floods impact OC 

transfer to the marine environment. 

 

The high temporal variability in OC content (0.2 to 3.5%) and different source 

signatures (δ13C of –26.7 to –20.6‰) of Waipaoa River floodplain deposits 

prevented the establishment of a clear benchmark signature for flood deposits that 

may be recognisable in the marine sedimentary record. The high spatial and 

temporal variability of floodplain sediment OC, combined with the areal extent of 

floodplains within the catchment, indicates the appreciable modulating effect the 

floodplain has on OC transfers to the ocean. Since extensive stopbanks were 

constructed on the main floodplain since the 1940’s, sequestration of OC in 

floodplain sediments has reduced by about half,  increasing the overall efficiency of 

the Waipaoa River  in  transferring terrestrial OC directly to the marine 

environment. 
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Flood layers are preserved in the marine sedimentary record. Continental shelf 

sediments indicate that during Cyclone Bola (March 1988, a rainfall event with a 

>100 year return period), the extreme river discharge produced a hyperpycnal 

(negatively buoyant) plume, preserved as a ~10 cm thick layer on the inner shelf and 

a ~1 cm thick layer on the mid-shelf. The flood layer contains a significant amount 

of terrestrially-sourced OC (up to 86% of total OC in >25 µm fraction) which 

subsequently was rapidly buried by normal marine deposits (in which ~60% of OC 

in >25 µm fraction is terrestrial), thereby preserving its strong terrestrial source 

signature. 

 

As sediments are physically and biologically processed at various depositional sites 

across the continental shelf and slope, they lose some of their modern terrestrial 

OC, and the concurrent addition of marine sourced OC results in the sediments 

gaining a stronger marine biogeochemical signature (δ13C values increasing from –

26.2‰ for floodplain sediments to –21.6‰ for upper continental slope sediments). 

 

Carbon loading (OC:SA) and 14C data revealed the contributions of kerogen, 

modern terrestrial OC and modern marine OC to the total OC of continental shelf 

and slope surface sediments. Sediments retain about 40% of their terrestrial OC 

following transport to the continental slope, of which a significant amount consists 

of kerogen.  Because of high erosion rates within the catchment, kerogen associated 

with the particles escapes oxidation, and therefore makes up a large part of the POC 

flux. Kerogen is preserved across the margin to the mid-slope, where only 8% of the 

bulk sediment OC consists of modern terrestrial OC, 58% is modern marine OC 

and 34% is kerogen. Biomarker analyses of surface samples also support findings 

that terrestrial OC is being transferred across the continental margin, with plant 

sterols, long chain alcohols and long chain fatty acids (biomarkers indicative of 

vascular plants) persisting as far offshore as the mid-continental slope. 

 

Results  presented verify and add  to the understanding of OC transfers and 

transformations at a range of depositional sites from terrestrial source to marine 

sink. This study provides the first quantitative assessment of land to ocean OC 

transfers from New Zealand. These findings, together with information on sediment 
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budgets and depositional rates of OC in terrestrial and marine depositional 

environments, could provide a vital step toward establishing global OC budgets for 

small mountainous island environments. 
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Frontispiece: Digital terrain model and swath bathymetry of the Waipaoa 
Sedimentary System and surrounds, on the east coast of New Zealand’s North 

Island. Illustrated is the Waipaoa River basin, continental shelf (red) and dissected 
continental slope (yellow/green), leading to the Hikurangi Trough (blue). 

(Image courtesy of National Institute of Water and Atmospheric Research (NIWA). 
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“If we knew what it was we were doing, 
it would not be called research, would it?” 

(Albert Einstein) 
 

CHAPTER 1: INTRODUCTION 

 

1.1 RESEARCH CONTEXT 

This study investigates the land to ocean transfer of erosion-related organic carbon 

(OC) within the Waipaoa Sedimentary System (WSS) on the East Coast of New 

Zealand’s North Island (Frontispiece). It examines the biogeochemical 

characteristics of OC at a range of depositional sites during its transport from 

terrestrial source to marine sink, and how large floods impact OC transfer to the 

marine environment. 

 

The WSS is ideal for investigating the transfer and transformations of OC along the 

transport pathway from the terrestrial to the marine environment, as it is a generally 

well-characterised watershed, with erosion and sedimentary sequences and processes 

having been established both on land and offshore (e.g. Foster & Carter 1997; 

Trustrum et al. 1999; Gomez et al. 2001). It is a mountainous catchment draining an 

active collisional margin, consequently having high sediment and nutrient fluxes to 

the ocean. In addition, the Waipaoa River periodically generates hyperpycnal 

plumes, possibly transporting large amounts of sediment across the continental shelf 

(Hicks et al. 2004a) and potentially playing an important role in the offshore 

transport of terrigenous OC. 

 

A conceptual model has been developed (Figure 1.1) to highlight the environments 

and processes under investigation in this study, and how they fit within the overall 

OC cycle. 
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Figure 1.1: Conceptual model of sediment and organic carbon transfers within the 
Waipaoa Sedimentary System. 

 
The conceptual model illustrates an earth surface profile, in which vegetation and 

topsoil are dominated by modern labile OC (i.e. soil turnover times up to several 

decades (Tate et al. 1995)), and are underlain by subsoil and bedrock with 

progressively more ancient and refractory OC. In the New Zealand landscape, sheet 

and rill erosion processes are often minor contributors to sediment yield. However 

because they strip the uppermost soil and vegetation layers, with high OC contents, 

they can be significant contributors to OC exports. Shallow landsliding processes 

are greater contributors to sediment yields, but the lower OC content of eroded 

subsoils dilutes their contribution to OC exports. While the dominance of gully 

erosion in some New Zealand landscapes contributes greatly to sediment yields, 

particularly at low and moderate river flows, the generally low and dominantly 

refractory OC of these bedrock sources results in relatively small contributions to 

OC exports. 

 

In the WSS, the short steep river drains a mountainous watershed. The development 

of stopbanks in the lower Waipaoa River has reduced the frequency of bankfull 

discharge from the natural situation, so bankfull discharge is generally only exceeded 

during very large events, and floodplain sediment and OC sequestration only tends 

to occur at such times, when landsliding is often a greater contributor to sediment 

generation. Contrastingly, the majority of river flows are below bankfull discharge, 

and the gully-dominated sediments containing ancient refractory OC are transported 

directly offshore to the continental shelf and slope. This conceptual model of 
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sediment and OC generation, transfer and sequestration is used to frame the 

research issues addressed by this study. 

 

This study aims to alleviate current deficiencies in a key area of global research, 

namely: how riverine sediment inputs to the ocean (including floods and resulting 

hyperpycnal flows) influence the transfer and sequestration of terrigenous OC in the 

ocean; the fate of terrestrial OC following its discharge to the ocean (by resolving 

the portion of terrestrial OC being preserved in marine sediments); and 

identification of the biogeochemical processes acting on OC at various depositional 

sites along the transport pathway. The following three sections discuss the global 

and national context of these research deficiencies as they relate to the conceptual 

model outlined above. 

 

 

1.2 GLOBAL OVERVIEW 

The marine carbon (C) pool is by far the largest within the global C cycle (Figure 

1.2) containing an estimated 38 000 Pg C (1 Pg = 1015 g), with the geologic pool 

(comprising coal, oil and gas) being the second largest at 5000 Pg C. The terrestrial 

C pool, including both soil and vegetation components, is the third largest – 

estimated to be ~2860 Pg in total, made up of 1550 Pg of soil organic carbon 

(SOC), 750 Pg of soil inorganic carbon (SIC) and 560 Pg of vegetation C (IPCC 

1995). Recent research has suggested the SOC pool could in fact be as high as 2344 

Pg, if previously unaccounted for OC stored at depths down to 3 m is taken into 

account (Jobbagy & Jackson 2000). The atmospheric C pool (760 Pg) is comparable 

to SIC and is increasing at a rate of ~3.2 Pg C y-1 (Lal 2003) due to increased CO2 

emissions since the mid-twentieth century. 
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Figure 1.2: The global carbon cycle, showing reservoirs (in Pg C) and fluxes (in Pg 
C y-1) as annual averages. Diagram from IPCC (1995) with additions from Lal 
(2003). Note absence of riverine and shallow marine OC fluxes, hence their 

emphasis in this study. 
 

Biological processes both on land and in the ocean strongly affect the highly 

dynamic global C cycle on all time scales. In both settings, oxygenic photosynthesis 

is responsible for most of the production of organic matter (OM) and at the 

biochemical level, the processes that result in Net Primary Production (NPP) (i.e. 

the amount of photosynthetically fixed C available to the first heterotrophic level in 

an ecosystem) are very similar. Linking biogeochemical and ecological processes, 

NPP is a major determinant of C sinks both on land and in the ocean. In terrestrial 

systems, even fairly small increases in NPP can result in substantial C storage in 

plants and soils, however even large increases in ocean NPP will not result in 

substantial C storage due to the rapid turnover of oceanic plant biomass (Field et al. 

1998). 

 

Rivers are the major link between the terrestrial and marine pools, with the annual 

movement of C, rather than the amount stored in various reservoirs, being of key 

importance to the global C cycle (Schlesinger 1997). The mainly fluvial transport of 

C from land to ocean occurs in three forms: particulate organic carbon (POC) 

consisting of woody debris, leaf litter and soil organic matter; dissolved organic 
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carbon (DOC), formed by the decomposition of C in soil and leaf litter and from 

autochthonous release of organic compounds within the river network; and 

dissolved inorganic carbon (DIC) which is largely in the form of HCO3‾, CO32‾ 

and dissolved CO2. Collectively POC and DOC are called total organic carbon 

(TOC), with recent estimates suggesting DOC and POC comprise ~60% and ~40% 

of riverine TOC discharges respectively (Hedges et al. 1997). However, these 

estimates are based on studies from continental landmasses, whereas more recent 

studies suggest that POC provides the greatest proportion of TOC from 

mountainous rivers draining collisional margins (Scott et al. In Press). 

 

While the transport and fate of terrestrial OC can potentially impact strongly on the 

global C cycle, they remain largely unknown and poorly quantified. As illustrated by 

Figure 1.2, the riverine flux of C from land to ocean was not factored into the global 

C cycle at the time of the IPCC 1995 Climate Change Report. The importance of 

this flux has since been recognised, and a number of studies over about the last 

decade have estimated annual global discharges of POC from rivers to the oceans, 

as summarised in Table 1.1. 

 

Table 1.1: Estimated annual global discharges of POC. 

Authors Annual POC flux 
(Pg C y-1) 

McKee et al. (2004) 0.250 
Probst (2002) 0.200 
Chen et al. (2001) 0.240 
Meybeck & Vörösmarty (1999) 0.195 
Ittekot (1998) 0.231 
Hedges et al. (1997) 0.150 
Ludwig et al. (1996) 0.170 
Lal (1995) 0.085 
Meybeck (1993) 0.170 
Sarmiento & Sundquist (1992) 0.250 

 

These global POC estimates vary by a factor of three, with values ranging from 

0.085–0.250 Pg C y-1. This variability may at least partially be accounted for by the 

different methods used to calculate POC, e.g. by extrapolating data from selected 

rivers or using empirical relationships between observed OC fluxes and river basin 

characteristics, then scaled up to the global level. Clearly there is a need for more 
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detailed POC measurements to more accurately determine terrestrial OC fluxes at 

the catchment scale, which will in turn allow more accurate global POC flux 

estimates to be made. This is particularly relevant to small mountainous catchments 

with a high sediment yield (Figure 1.3). For example, New Zealand’s three East 

Coast rivers that drain the Raukumara peninsula contribute ~0.3% of the global 

sediment supply to the ocean (Hicks et al. 2004a). 

 

 

Figure 1.3: Sediment plume during storm event, Waipaoa River, 7 August 2002. 
(Photo: D. Peacock, 2002). 

 

 

1.3 SEDIMENT & OC GENERATION, TRANSFER AND SEQUESTRATION 

The global export of OC is tightly linked to the total flux of continental sediment to 

the oceans. Accordingly, a number of recent studies (Milliman & Syvitski 1992; 

Milliman 1995; Milliman et al. 1999; Lyons et al. 2002; Farnsworth & Milliman 

2003) have emphasised the contribution of mountainous oceanic islands to global 

land to ocean sediment and OC fluxes. It has been suggested that although these 

islands make up only ~3% of the continental landmass, the short steep rivers, highly 

variable rainfalls and potentially high erosion rates combine to enable the rapid 

transport of water and sediment from the islands, resulting in them contributing up 

to 33% of the total annual sediment yield to the world’s oceans (Milliman & Syvitski 
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1992). It has more recently been estimated that mountainous islands of the Pacific 

Rim may contribute up to 40% of the global land to ocean sediment flux 

(Farnsworth & Milliman 2003) and 35% of the POC flux (Lyons et al. 2002). These 

global figures are estimates, made from limited OC measurements and using average 

sediment yields to determine POC yields. New Zealand is one of the Pacific Rim’s 

mountainous islands exporting a disproportionate amount of sediment to the ocean 

– it constitutes ~0.2% of the global land area, yet contributes ~1% of the global 

suspended sediment flux to the ocean. This study will improve on previous 

estimates, by making sequential land to ocean OC measurements that will allow 

more robust scaling-up to the national level by applying these findings to other 

catchments with similar characteristics.  

 

Depending on the type of erosion processes, soil can make a large contribution to 

the eroded material lost from a landscape, and by association, can lead to substantial 

OC losses. It was suggested by Lal (1995) that globally, 5.7 Pg of C is displaced 

annually by soil erosion, and of that, 70% (3.99 Pg) is redeposited within terrestrial 

ecosystems and 20% (1.14 Pg) is lost as CO2 from decomposition. This breakdown 

suggests that globally, only 10% (0.57 Pg) of the erosion-derived OC is ultimately 

transported to the oceans. However, in the case of mountainous islands, where 

rivers generally have steep gradients, short courses and small floodplains, there is 

likely to be less opportunity for redeposition, as the rivers more efficiently transport 

sediment to the ocean, particularly during floods (Gomez et al. 2003).  Thus the 

percentage of terrigenous OC lost during transport to the ocean from mountainous 

islands requires further investigation. 

 

When severe erosion removes the underlying parent material as well as soil, 

sedimentary rocks can contribute a large quantity of ancient refractory OC. These 

sedimentary rocks are estimated to contain 107 Pg of OC (Hedges & Keil 1995) with 

>95% of the total organic matter in most rocks consisting of kerogen (i.e. insoluble 

OC in sedimentary rocks). The fate of this ancient OC in river systems is of great 

importance to the global C cycle, as it plays a role in moderating global atmospheric 

CO2 and O2 levels over geologic timeframes (Hedges 1992; Petsch et al. 2000). 

Being very insoluble and unreactive, kerogen is slowly oxidised through the 
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weathering of bedrock following exposure at the earth’s surface, and may 

subsequently be replaced with more modern OC as it is transported to the ocean 

(Blair et al. 2003). 

 

Because the transfer and fate of terrestrial OC are largely controlled by the transport 

of sedimentary particles, erosion and deposition processes occurring within a 

sedimentary system will strongly influence its OC transfers and transformations. It is 

understood that in basins with stable land use patterns, streamflow events of 

moderate magnitude and frequency are more important than large magnitude, low 

frequency flood events (Hicks et al. 2000). This was confirmed for New Zealand’s 

Waipaoa River basin by Trustrum et al. (1999) using magnitude-frequency analyses, 

where it was found that frequent low magnitude events play a greater role in 

sediment generation and transfer than the large, less common storms, and it was 

calculated that 86% of the sediment load is transported by events with return 

periods less than 10 years. This was attributed to the relatively low contributions to 

catchment sediment yield by landsliding, compared to the frequent generation of 

sediment from gully erosion during lower magnitude events (Trustrum et al. 1999). 

In contrast, where erosion thresholds are higher and mass movement dominates, it 

is expected that low frequency, high magnitude events play the major role in 

sediment generation and transfer. One such example is New Zealand’s Tutira 

catchment, where landsliding accounts for the majority of the sediment mobilised 

during large magnitude events (Page et al. 1994b). Another example is north 

California’s Eel River, where ~50% of the annual sediment load is discharged 

during a 1–2 week winter period, and on longer time scales sediment transport is 

dominated by large floods with recurrence intervals in the order of decades 

(Leithold & Blair 2001). 

 

Much research into the role of terrestrial POC fluxes in the global C cycle has been 

carried out on large, low gradient rivers, such as the Amazon (Hedges et al. 1986, 

1994; Richey et al. 1990), Yangtze (Milliman et al. 1984) and Paraná (Depetris & 

Kempe 1993), where floodplain sedimentation results in the storage of a large 

portion of terrestrial sediment and POC, and hence have a strong influence on 

riverine inputs to the ocean. Because the flux of riverine POC is moderated by 
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transfers in and out of storage, it can be greatly influenced by large floodplains and 

deltas, where there is potential for greater processing of the OC as it is transported 

through the system, and before deposition in the marine environment. Probst 

(2002) suggested that of the OC transported by such rivers, about two thirds may be 

oxidised and released to the atmosphere (as CO2) during its transport, as well as in 

the coastal and estuarine zones, and following its discharge to the ocean. Again, this 

part of the global C cycle has not yet been well quantified. 

 

Recent studies by Leithold and Blair (2001) and Blair et al. (2003) into the fate of 

terrestrial OC have used a “source-to-sink” approach, following the evolution of 

terrestrial OC from the erosion of bedrock (source) through to deposition on the 

continental slope (sink) within the Eel Sedimentary System in northern California. 

Due to earlier indications that most of the OC in continental margin sediments is 

sorbed to clay-sized mineral grain surfaces, they focussed their research on those 

fine sediments. The clay fraction (<4 µm) was isolated and used to track changes in 

the OC loading (ratio of OC to surface area (OC:SA)) of those particles to 

determine how watershed processes contributed to the amount and composition of 

OC being transported through the system and buried in ocean sediments (Blair et al. 

2003). 

 

Sediments on the Eel shelf were found to have retained their terrestrial OC 

signature, with a significant fraction consisting of bedrock-derived kerogen that had 

escaped oxidation. It was suggested that this preservation of ancient OC results 

from high uplift rates, mass wasting of the bedrock and rapid transfer and burial in 

the marine environment. Collectively, these factors emphasise that watershed 

processes have a vital role in determining the amount and character of OC being 

sequestered on continental margins (Leithold & Blair 2001). To further follow the 

evolution of OC from bedrock to seabed through the Eel Sedimentary System, Blair 

et al. (2003) used a multi-tracer approach (14C/12C and δ13C) to sequentially track 

changes in OC loadings from various sources as clay-sized particles were transferred 

through the system. Their findings indicate that OC in the Eel Sedimentary System 

gets progressively younger in terms of 14C age as first terrestrial and then marine OC 

are added to the bedrock OC during transport through the system. The isotopic 
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composition and OC:SA of the clay-sized particles allowed contributions from 

kerogen, terrestrial and marine OC sources to be determined. While modern OC 

was added to the particles during contact with surficial terrestrial and marine 

productivity, at least 50% of the kerogen OC was found to survive transport 

through the Eel Sedimentary System and reach the continental slope (Blair et al. 

2003). This is in contrast to deltaic systems such as the Amazon, where up to 70% 

of the terrestrial OC is lost from particles on discharge to the marine environment 

(Aller et al. 1996; Keil et al. 1997). 

 

 

1.4 NEW ZEALAND 

Recently, the impact of erosion on the transfer of terrestrial OC has become of 

increasing interest and importance, particularly in response to New Zealand ratifying 

the Kyoto Protocol and the associated future prospect of possible full national C 

accounting. Tate et al. (2000) and Trotter et al. (2004) tested the hypothesis that the 

loss of C from indigenous forest and soils is balanced by the uptake of C by planted 

forests and scrub, effectively meaning New Zealand has carbon-neutral terrestrial 

ecosystems. Landsliding was assumed to be the major erosion process resulting in 

loss of SOC to the coast, and OC losses were based on regional sediment yield data 

at the national scale, using an average SOC content of 1.89%. Different erosion 

processes were then considered, to help in quantifying scaling errors resulting from 

national scale calculations. For this purpose, previously calculated sediment budgets 

for the North Island’s Waipaoa and Tutira catchments (Page et al. 1994a, 1994b; 

Trustrum et al. 1998, 1999) were used to quantify sediment contributions from 

different erosion processes, such as gully, shallow landslide and sheet erosion. 

Average OC contents for a variety of disturbed and undisturbed (but deforested) 

soil profiles were used to estimate the amount of SOC removed by each erosion 

process (Tate et al. 2000). 

 

The impact of erosion on New Zealand’s C budget is significant, as reported by 

Page et al. (2004). Soil is a major C store, containing 4640 ± 120 Tg C to a depth of 

1 m (Tate et al. 2005) and highly erodible sedimentary rocks at deeper depths 

potentially contain additional large stores of ancient OC. It is estimated that ~209 
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Tg of suspended sediment is lost from New Zealand’s landscape and delivered to 

the ocean each year (Hicks et al. 2002) and by association, a potentially significant 

amount of OC is also lost from the landscape. Having ratified the Kyoto Protocol, 

and anticipating a possible future need for quantification of anthropogenic erosion-

related OC losses, New Zealand has been developing a national terrestrial C budget, 

in which the annual sequestration of eroded SOC is estimated for land and marine 

environments and lost to the atmosphere as CO2. The proportion of these fluxes 

that is anthropogenic is also being investigated (Trustrum et al. 2002). 

 

New Zealand’s first assessment of the national terrestrial C balance, at various 

spatial scales, was reported by Tate et al. (2000). Results suggested that although 

some of the country’s ecosystems are C sinks, overall New Zealand is a net source 

of C, with an estimated 3–11 Tg of soil C (generated by erosion of the landscape) 

being lost to the coast each year. If landsliding was considered to be the main 

sediment source, annual C losses from erosion would be ~3 Tg C, while if all 

erosion processes are factored in, annual C losses of up to ~11 Tg C are possible 

(Tate et al. 2000). To reduce the large uncertainty in this initial estimate, further 

work has since been carried out to assess the extent of New Zealand’s erosion-

related C losses at the national scale, and the annual loss of soil C to the ocean is 

now thought to be ~4 Tg C (Hicks et al. 2004b) to 3±1 Tg C (Scott et al. In Press). 

Given that land use change can increase erosion rates by more than an order of 

magnitude (Page & Trustrum 1997), the provocative hypothesis is that 

anthropogenic influences have changed New Zealand’s OC export dramatically. 

However, the proportion of this OC loss that is anthropogenically induced, and the 

extent of OC processing and CO2 emissions during transfer from terrestrial source 

to marine sink, is still not well defined. More needs to be known about the transfer 

of OC from New Zealand’s landscape to the ocean, and the geochemical processes 

involved along the transport pathway and following deposition on the continental 

shelf and slope. 

 

The effect of historical land use change is another significant uncertainty in New 

Zealand’s national terrestrial OC budget. By refining previous work, Tate et al. 

(2003) tested the hypothesis that recent land use changes in New Zealand have 
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resulted in an overall loss of SOC. Afforestation and reforestation of grazing land 

over the past 15 years have been the major land use changes resulting in large 

vegetation C sinks (6–9 Tg C y-1), however it has been suggested that these changes 

in land use may in fact lead to mineral soil losses of 0.7 ± 0.3 Tg C y-1 for the 1990–

2000 period (Tate et al. 2003). The contribution of soil erosion was not factored in 

to these effects of land use changes on the terrestrial OC budget, and it remains a 

potentially large uncertainty. 

 

In New Zealand, a major source of erosion-related SOC losses is landslide-prone 

soft rock hill country. A recent study by Page et al. (2004) provides vital insight into 

erosion-related losses from a steepland catchment. SOC fluxes from landslide and 

sheetwash erosion were calculated for the Tutira catchment in New Zealand’s North 

Island for the 114-year period of European pastoral farming, where a lake acts as an 

efficient trap for sediments and nutrients within the catchment. These sediments 

contain a high resolution record of storm-induced erosion of the soft-rock hill 

country. By linking estimated erosion rates with soil and sediment OC contents, a 

mass balance approach was used to calculate erosion-related OC losses and gains. 

 

When scaled up to the national level, the gross loss of ~0.94 Mg C ha-1 y-1 from 

erosion-prone terrain at Tutira equates to a national gross loss of 2.5 Tg C y-1 from 

similar terrain, of which 2.1 Tg C y-1 is associated with pastoral farming (Page et al. 

2004). It was concluded that improved management and changing land use to 

reduce erosion rates of New Zealand’s landslide-prone soft rock hill country would 

significantly lower OC losses and associated CO2 emissions. 

 

Recent work by Hicks et al. (2004a) has illustrated that the high suspended sediment 

loads of rivers draining New Zealand’s East Coast Continental Margin (ECCM) can 

result in the generation of negatively buoyant (hyperpycnal) plumes, which are likely 

to make an important contribution to marine sediment transport across the 

continental shelf. It was calculated that the Waipaoa River suspended sediment 

concentration exceeds the 40 000 mg L-1 threshold for hyperpycnal flows 

approximately once every 40 years, in contrast to the return period of ≥10 years 
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suggested by Foster and Carter (1997). The impact of hyperpycnal plumes on WSS 

terrestrial OC fluxes to the ocean has not previously been investigated. 

 

 

1.5 RESEARCH QUESTIONS 

It is apparent that there are significant gaps in the research of land to ocean OC 

transfers at both catchment and global scales, with the erosion-related transfer of 

OC from its terrestrial source to marine sink being a poorly quantified link in global 

C budgets. In particular, the biogeochemical processes acting at various depositional 

sites as OC is transported to the open ocean, and the proportion of terrigenous OC 

that is preserved in ocean sediments are not well understood or quantified. 

 

This study will assist in refining New Zealand’s national erosion-related C budget, 

by identifying and quantifying transformations in sediment-associated OC along the 

transport pathway from terrestrial source to marine sink. This study makes the first 

field measurements of OC characteristics of continental shelf and slope sediments 

of the ECCM, enabling a critical assessment of previously predicted OC budgets. 

 

Sediments from the floodplain, continental shelf and slope depositional 

environments of the North Island’s Waipaoa Sedimentary System (see Chapter 2) 

will be used to determine whether OC is lost or preserved as erosion-related 

sediment is transferred to the marine environment. In addition, the proportion of 

terrigenous OC in marine sediments will be determined using carbon isotopes and 

selected biomarkers, to establish whether terrigenous OC is replaced by marine OC 

along the transport pathway. The impacts that land-based floods have on the marine 

sediment and OC record will also be investigated. 

 

For the purposes of this study, these issues can be defined by the following research 

questions: 

• How do flood events impact the transfer & fate of terrestrial OC in the 

marine environment? 

• Is OC lost or preserved as it moves along the transport pathway from source 

to sink? 
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• What changes in biogeochemical signature occur at various OC depositional 

sites along the system?  

This work is also fundamental to the construction of accurate C budgets, which will 

contribute to global budgets that are currently deficient in direct measurements. The 

work will assist in identifying land to ocean riverine OC fluxes that control global C 

fluxes. 

 

This thesis is organised methodically, following the sediment transport route 

through the Waipaoa Sedimentary System (WSS) from source to sink. In Chapter 2 

the components of the WSS are characterised, starting with the uplands and 

progressing through the catchment to the floodplain, continental shelf and slope, 

while in Chapter 3 the methodological and analytical techniques used in this study 

are described. Chapter 4 sets out to characterise Waipaoa River floodplain 

sediments and establish a benchmark signature for erosion-related sediment and 

flood sequences, to assist with their recognition offshore. It also illustrates the 

influence of floodplain morphology and river dynamics on modulating OC transfers 

to the ocean. The biogeochemical characteristics of continental shelf and slope 

sediments are investigated in Chapter 5, to identify the relative role of individual 

flood layers and high frequency, low magnitude river discharges (ambient 

conditions). Then, the questions of (a) how flood events in the river catchment 

impact the transfer and fate of terrestrial OC to the marine environment and (b) 

how the marine environment influences the OC signature, are addressed. In 

Chapter 6, the transfer of sediment and OC across the Poverty Bay continental 

shelf and slope is tracked, to determine whether OC is lost or preserved as sediment 

moves along the transport pathway from terrestrial source to marine sink. Changes 

in the biogeochemical signature occurring at various OC depositional sites along the 

source to sink system are also investigated. In the concluding Chapter 7, results 

from this study are used to develop a conceptual model of OC transfers and 

transformations for the WSS and offer implications for the global C budget. 
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 “Life is made up of marble and mud.” 
(Nathaniel Hawthorne) 

 

CHAPTER 2: WAIPAOA SEDIMENTARY SYSTEM 

 

2.1 INTRODUCTION 

Located on the East Coast of New Zealand’s North Island (Frontispiece & Figure 

2.1), the Waipaoa Sedimentary System (WSS) has been much studied since the mid-

1990s. Largely prompted by the impact of Cyclone Bola in March 1988, research has 

mainly focussed on terrestrial hillslope erosion processes, as they are the largest 

source of sediment within the catchment (e.g. DeRose et al. 1998; Page et al. 1999, 

2000; Trustrum et al. 1999; Reid & Page 2002; Betts et al. 2003; Gomez et al. 2003). 

Downstream impacts of such active erosion on the Waipaoa River floodplain have 

also been studied (Peacock 1998) and using historical flood records, the floodplain 

stratigraphy has been well established (Gomez et al. 1998, 1999). The regional 

tectonic framework on land was investigated by Berryman et al. (2000), who 

identified a succession of river terrace remnants in order to establish the importance 

of tectonic and climatic controls on landscape change. As downcutting occurs at up 

to four times the rate of tectonic uplift in some reaches, fluvial terrace formation is 

believed to be primarily controlled by climate fluctuations. Eden et al. (2001) 

identified a number of regionally characterised tephra layers within the Waipaoa 

catchment, and using these in conjunction with pollen and charcoal analyses from 

both terrestrial and marine cores, Wilmshurst et al. (1999) developed a record of 

Holocene vegetation change in the Gisborne region. Suspended sediment yields of 

the Waipaoa River have been studied by Hicks et al. (2000, 2002) which have 

assisted in linking watershed processes to offshore sedimentation (e.g. Gomez et al. 

(2004a). 
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Figure 2.1: Location map of the onshore catchment and offshore setting of the 
Waipaoa Sedimentary System. (Figures courtesy of Landcare Research and NIWA). 
 

The offshore environment of the WSS has also received growing interest, following 

a “source-to-sink” approach to sediment transfer. Foster and Carter (1997) 

investigated the dispersal and deposition of riverine sediments on the continental 

shelf, and inferred an increase in modern shelf sedimentation rates in response to 

increased erosion in the catchment. Carter et al. (2002) used a giant piston core from 

a deep slope basin off Hawkes Bay, to determine how terrigenous fluxes from the 

eastern North Island had changed over the last 15 000 years, and confirmed the role 

of the continental shelf and slope in effectively trapping terrigenous sediment. 

Orpin (2004) documented Holocene hemipelagic sedimentation on the Poverty 

slope, the seaward extension of the Waipaoa dispersal system, and suggested it is an 
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important sink for riverine sediment that should be included in a margin-wide 

sediment budget. Research culminated in setting up the “source-to-sink” NZ-US 

MARGINS Programme, jointly funded by the US National Science Foundation 

(NSF) and New Zealand’s Foundation for Research, Science and Technology 

(FRST). 

 

Organic carbon (OC) fluxes within the WSS have also recently been investigated. 

Gomez et al. (2003) determined the particulate organic carbon (POC) yield of the 

Waipaoa River, and used δ13C and C/N values to identify the OC sources and 

influence of different erosion processes. Gomez et al. (2004b) used a single core to 

study the OC in a suite of Waipaoa River floodplain sediments deposited since 

1853, and determine whether geochemical variations could be attributed to 

historical variations in sediment sources. The signatures of large-scale environmental 

processes are also well preserved within both the terrestrial and marine sedimentary 

records of the WSS. Gomez et al. (2004a) used textural variations within the high-

resolution floodplain and continental shelf records from the WSS, along with a 

continental slope sedimentary record from Hawkes Bay, to illustrate long-term 

changes in terrestrial erosion processes and sediment supply, resulting from changes 

in regional climate patterns, particularly the El Niño–Southern Oscillation. 

 

The WSS has been chosen as one of two key global sites for the US NSF initiated 

MARGINS Source-to-Sink (S2S) program (Kuehl et. al 2003). The program will use 

a systems approach to examine coupled land and ocean environments, to 

understand the fundamental processes shaping the earth’s surface through the 

transfer of sediment from terrestrial sources to marine sinks, and thereby improve 

the ability to predict associated environmental impacts. The S2S program aims to 

address three fundamental questions: 

• What processes control the rate of sediment and solute production in a 

dispersal system?  

• How does transport through the system alter the magnitude, grain size, and 

delivery rate to sediment sinks?  

• How is variability of sediment production, transport, and accumulation in a 

dispersal system preserved by the stratigraphic record? 
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The WSS is globally significant in that it represents a relatively simple setting to 

model the modulation of forcing signals (climatic, eustatic, tectonic and human) 

across a near-complete spectrum of sedimentary environments, and offers an 

opportunity to attempt closure of a sediment budget through time and space (Kuehl 

et. al 2003). The combination of these factors and the findings of this study will also 

assist in closing a carbon (C) budget for the WSS, and determine the fate of 

terrestrial OC as it is transferred to the marine environment. 

 

 

2.2 TECTONIC AND GEOLOGICAL SETTING 

The Gisborne-East Coast region is positioned within a zone of active deformation 

associated with the Hikurangi subduction margin, where oblique collision is 

subducting the Pacific Plate beneath the Australian Plate. Offshore evidence of the 

plate boundary is indicated by the 3300 m-deep Hikurangi Trough, approximately 

90 km southeast of the Raukumara Peninsula (e.g. Lewis et al. (1998)) (Figure 2.1). 

Such active tectonism has resulted in uplift of up to 4 mm y-1 in the region (Ota et 

al. 1992), with the middle reaches of the Waipaoa catchment being uplifted at a rate 

of 0.5–1.1 mm y-1 (Berryman et al. 2000). 

 

The Gisborne-East Coast geology is defined by 3 structural divisions: the East Coast 

Allochthon (Cretaceous-Paleocene); a Neogene (Miocene-Pliocene) sequence; and 

the Motu Block of Jurassic to early Cretaceous greywacke (Moore & Mazengarb 

1992). The Waipaoa River catchment is underlain by the first two divisions, while 

the early Cretaceous greywacke of the Raukumara Range and its younger Cretaceous 

cover sequence lie just beyond the northwest boundary of the catchment.  

 

Dominated by a maritime climate, the Waipaoa River catchment has a mean 

precipitation ranging from ~1000 mm y-1 at the coast to >2500 mm y-1 in the 

headwaters, and the area also periodically experiences cyclonic and localised storms, 

particularly in the March–May period. During Cyclone Bola (6–9 March 1988), the 

East Coast’s largest historical storm, the four-day rainfall was 300 mm at the coast 

and 900 mm inland (Page et al. 2001). 
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2.3 ENVIRONMENTS 

The following suite of environments is the pathway followed by erosion-related 

sediment and OC – from areas of generation, during transfer and in storage. 

 

2.3.1 Uplands 

2.3.1.1 Geology 

Dominating the upland geology, the internally complex East Coast Allochthon 

contains a series of sheets separated by thrust faults or bentonitic melange zones. 

Having been extensively displaced from their original depositional site, the rocks 

consist of crushed and sheared argillites, mudstones and sandstones (Mazengarb & 

Speden 2000). In the lower Waipaoa River catchment, the East Coast Allochthon is 

overlain by a thick sequence of moderately indurated Miocene-Pliocene sandstone, 

mudstone, alternating sandstone and mudstone, and minor limestone (Mazengarb & 

Speden 2000). 

 

2.3.1.2 Soils 

Soils of the Waipaoa River catchment uplands have formed through the weathering 

of fine-grained sedimentary rocks, mantled in places by rhyolitic tephras. Soil 

sequences are related to the topography, underlying rock, presence/thickness of 

tephra, and rainfall, which are poorly defined and described for much of the 

steeplands and higher terraces (Eden & Trustrum 1994). Because of deforestation 

and subsequent erosion, soils on steeplands of the catchment are shallow (10’s of 

cm deep) with low organic matter (OM) contents and water-holding capacities (Page 

et al. 2000). Landsliding on steep hillslopes removes the topsoil and some weathered 

bedrock, resulting in shallow and young (<100 years) soils in these areas as they 

slowly redevelop over time. In some less steep forested areas, however, soil profiles 

~1–2 m deep have developed (Reid & Page 2002). 

 

2.3.1.3 Erosion Processes 

Erosion rates within the Waipaoa River catchment are naturally high, due to the 

weak and highly deformed rocks, active tectonism, steep slopes, and periodic 

intense rainstorms. However, the severity of erosion has increased dramatically since 

the arrival of European settlers in the late 1820s, and subsequent deforestation from 
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1880–1920. Reforestation with Pinus radiata began in the Waipaoa River catchment 

headwaters in the 1960’s, targeting areas of severe and extremely eroding land, in an 

attempt to stabilise soils on the hillslopes. The aim was to reduce the suspended 

sediment discharge, and to a much lesser extent, the bedload discharge (which is 1% 

of the suspended sediment discharge) (Peacock 1988). Only ~6% of the basin now 

remains under indigenous forest and scrub, with ~20% planted in exotic forest and 

~70% in pasture (Page et al. 2001). 

 

The range of erosion processes active within the Waipaoa catchment include gully 

(activated by the smaller, frequent rain events), landslide (only activated during the 

infrequent, higher magnitude rainstorms), earthflow, sheet, streambank, and tunnel 

gully (Page et al. 2000). Gullies contribute more than 50% of the river suspended 

sediment load; landslides contribute 10–19% (increasing with storm size); sheet 

erosion contributes ~10%; and the balance is from earthflow, streambank, tunnel 

gully, and riverbeds, roads etc. (Page et al. 2000). As landslides are only triggered by 

large storms, they make a significant contribution to overbank sedimentation during 

flood events. Discharges below bankfull are responsible for transporting 76% of the 

suspended sediment, so most of the gully-derived sediment is transported to the 

coast (Page et al. 2000).  

 

2.3.2 River and Floodplain 

2.3.2.1 Soils 

Soils of the floodplains, tidal flats and beachlands were divided into four classes by 

Pullar (1962), according to their parent material, age and texture of sediment and 

flooding/drainage: 

• Recent soils from alluvium (87.7%), on floodplains where periodic flooding 

occurs. 

• Yellow-brown pumice soils (5.5%), derived from rhyolitic tephra deposited 

on beach lands. 

• Yellow-brown sands (4.5%), formed near the coast through accumulation of 

sandy materials and shell fragments. 

• Saline gley soils (2.3%), found on tidal flats that are often flooded with 

seawater. 
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The recent soils can be split into three groups of increasing age – the Waipaoa, 

Matawhero and Waihirere series. Being close to the river, Waipaoa soils have 

developed since 1932, as a result of rapidly accumulating deposits on the Gisborne 

plains. They have poorly developed structures and very low C and nitrogen levels, 

due to the sediment source (rock) and short flood return intervals limiting the build 

up of OM. Matawhero soils (20–300 yr BP) are found on higher parts of the 

modern floodplain that are only periodically flooded. They are deep, friable and 

well-drained soils with higher OM contents than the Waipaoa soils. The widely 

distributed Waihirere soils (300–1820 yr BP) are in areas that have been free of 

flooding for a long time. They are friable, well developed and highly fertile for most 

crops, making them the best all-purpose soils on the Gisborne Plains (Pullar 1962). 

 

The soil at McPhail’s bend (32 km from the river mouth) (see Figure 3.1) is the 

Waipaoa silt loam, a soil widely used for beef and fat-lamb production, and 

extensive cropping. The soil is slightly alkaline, contains high amounts of calcium 

but low amounts of magnesium, and is dominated by smectite clays, causing 

shrinking and swelling with changing soil moisture contents (Molloy 1993). The 

weakly developed structure means the Waipaoa silt loam does not drain well, there 

are few crevices for grass roots to penetrate, and the sandier types are prone to 

drying out in summer. The Waipaoa silt loam also tends to be infested by Bermuda 

Grass (Cynodon dactylon), an exotic weed species that has established as a result of 

rhizomes being transported in flood sediments (Pullar 1962). 

 

2.3.2.2 Sedimentation and Storage 

The 2205-km2 WSS has a specific sediment yield of 6800 t km-2 y-1 and is drained by 

the Waipaoa River into Poverty Bay. The Waipaoa River is New Zealand’s second 

largest river in terms of sediment supply, annually delivering ~15 Tg of sediment to 

the marine environment (Figure 2.2), with the bedload yield being ~1% of the 

suspended load. Surpassed only by the extremely muddy Waiapu River (~35 Tg y-1), 

the Waipaoa contributes 7% of New Zealand’s total suspended sediment yield to 

the Pacific Ocean, and makes up ~0.1% of the global suspended sediment discharge 

(Hicks & Shankar 2003). 
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Figure 2.2: Annual suspended sediment yields (in t km-2 y-1) from New Zealand 
rivers. (From Hicks & Shankar (2003)). 

 

The Waipaoa is dominantly a gravel bed river, with a gravel-sand transition 

occurring approximately 8 km from the mouth, and a change in morphology from a 

braided system in the upper 12 km to a single thread channel bordered by a well-

defined floodplain in the middle and lower reaches (Rosser 1997). Approximately 32 

km from the mouth, McPhail’s bend (Figure 2.3) is a 2.5 km long meander bend 

(0.5-km2 area) of the Waipaoa River floodplain that has remained under pasture 

since colonisation, unlike other areas further downstream which have been 

cultivated.  
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Figure 2.3: McPhail’s bend, indicating changes in planform geometry since 1868. 
The core site of Gomez et al. (1998; 1999; 2003; 2004b) is marked by the + and the 

core site for this study by the x. 
 

The geometry of McPhail’s bend has undergone dramatic changes in response to 

deforestation in the upper catchment in the late 19th and early 20th centuries (Figure 

2.3). Since 1920 it has become more stable, as a result of the river reaching a new 

equilibrium following deforestation. Tree plantings and other bank protection works 

have also been carried out since 1920 (Peacock 1998). Up until 1948, 1 m high 

stopbanks existed around McPhail’s bend, but they fell into disrepair following the 

1953 emplacement of a floodway across the neck of the bend. Now bordered by 2 

m high stopbanks, the floodway has decreased the volume of flow across the bend 

and reduced the width of the active floodplain (Gomez et al. 1998). 

 

While the mean annual flood at Kanakanaia (drainage area of 1582 km2) (Figure 2.1) 

is 1070 m3 s-1, a river discharge in excess of 1700 m3 s-1 is necessary before 

McPhail’s bend is inundated by floodwaters (a return period of ~4 years). When 

discharge at McPhail’s bend exceeds 1800 m3 s-1, active overbank flow occurs across 

the bend, and suspended sediment is advectively transported from the channel to 

the floodplain (Gomez et al. 1998). 
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2.3.2.3 Stratigraphy 

Previous studies (Gomez et al. 1998, 1999) have established a detailed floodplain 

stratigraphy for McPhail’s bend. Flood deposits have been correlated to historic 

hydrologic records and survey data for the 1948–1995 period to calculate the rates 

of vertical accretion for individual flood events in the Waipaoa River (recurrence 

intervals typically 5–60 years). Gomez et al. (1998) identified seven recent (1948–

1996) flood events within the floodplain stratigraphy, preserved as 0.1–0.3 m thick 

fining-up sequences of horizontally bedded overbank sediments, and estimated 

vertical accretion rates for six of them. Though most floods were fairly short-lived, 

lasting 6–20 hours, the vertical accretion rates at McPhail’s bend were generally high 

(14–18 mm h-1), except for the Cyclone Bola flood of March 1988, with a rate of 

only 6 mm h-1. Gomez et al. (1998) suggested that this much lower accretion rate 

was not the result of limited sediment input, but rather the prolonged high flow 

velocities that prevented deposition of suspended sediments on the floodplain. 

 

In concert with the vertical floodplain accretion was in-channel deposition, causing 

extreme changes in the channel cross section. Both factors acted to stabilise the 

planform geometry, while the gradual increase in channel depth and reduction in 

bankfull channel width resulted in a constant channel capacity (Gomez et al. 1998).   

 

McPhail’s bend is well suited as a site at which to study the terrestrial OC 

characteristics of the WSS. With the floodplain stratigraphy already well established, 

the OC associated with the overbank sediments will be characterised, allowing 

comparisons to be made with the sediments that have escaped floodplain deposition 

and been transported to the marine environment. 

 

2.3.3 Continental Shelf and Slope 

2.3.3.1 Shelf Environment 

The Poverty Bay continental shelf and slope are located on the tectonically active 

northern Hikurangi margin of New Zealand (e.g. Lewis et al. (1998)). The shelf 

terminates ~22–26 km from shore, in ~140–170 m water depth, and is enclosed at 

its seaward limit by the Lachlan and Ariel structural ridges (Figure 2.4), rising from 

50–70 m depth to break the sea surface at Penguin and Ariel rocks (Foster & Carter 
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1997; Lewis et al. 1999; Barnes et al. 2002). Synclinal deformation and subsidence of 

1.5–2 mm y-1 on the middle shelf basin has trapped >35 m of sediment since the 

last glacial maximum (Foster & Carter 1997). 

 

 

Figure 2.4: Bathymetry, morphology and sediment thickness (red isopachs) of the 
Waipaoa Sedimentary System continental shelf and slope. 

(Based on figure from Foster and Carter (1997)) 
 

Poverty Bay is 10 km-wide and south-eastward facing, opening onto the continental 

shelf, which is bordered by Mahia Peninsula to the southwest and Monowai Rocks 

to the northeast. Beyond Poverty Bay, sediment particle size declines with distance 

offshore. Inner shelf sediments are sand-dominated and a “mud blanket” extends to 

the edge of the shelf, except near the anticlines on the outer shelf, where 

outcropping Neogene rocks are surrounded by gravely and sandy sediments, and 

between the Lachlan Ridge and Ariel Bank, where fine sediments cover the sea floor 

(Foster & Carter 1997). Orpin (2004) indicated that ~140 km2 of terrigenous mud is 

present seaward of the Lachlan and Ariel Anticlines, thus extending the terrigenous 

sediment basin suggested by Foster and Carter (1997). 
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With the Waipaoa River’s high suspended sediment load, the Poverty Bay marine 

environment is dominated by large inputs of mud-dominated terrigenous sediment 

(silt and clay). Most of the time, the Waipaoa River mud component is contained in 

a buoyant or hypopycnal plume, which moves around the south coast of the bay in 

an anticlockwise fashion, and out to the open shelf. Anecdotal evidence of a fluid 

mud deposit on the inner shelf after Cyclone Bola in March 1988 is consistent with 

deposition from a hyperpycnal plume (Foster & Carter 1997), though such a deposit 

has not yet been identified in the shelf sedimentary record offshore from the 

Waipaoa River. It is thought that when the Waipaoa River suspended sediment 

concentration exceeds ~40 000 mg l-1, outflows from the river mouth are likely to 

change from being hypopycnal to hyperpycnal (Hicks et al. 2004a). This issue is 

addressed further in chapter 5, due to the identification of a flood layer preserved in 

inner shelf sediments. 

 

Recent modelling by Hicks et al. (2004a) indicates that the high suspended sediment 

loads of rivers draining New Zealand’s East Coast Continental Margin (ECCM) 

could result in the generation of negatively buoyant (hyperpycnal) plumes, which 

may make an important contribution to marine sediment transport trajectories 

across the continental shelf. It was calculated that the Waipaoa River suspended 

sediment concentration exceeds the 40 000 mg L-1 threshold for hyperpycnal flows 

approximately once every 40 years, in contrast to the return period of ≥10 years 

suggested by Foster and Carter (1997). 

 

Research by Orpin et al. (2003) suggests a change has occurred in sedimentation 

patterns on the Poverty Bay shelf since the sediment load of the modern Waipaoa 

River has dramatically increased with the onset of accelerated erosion rates within 

the catchment. During the Holocene, when the Waipaoa River was presumably less 

muddy, the highest accumulation rates were at the subsiding mid-shelf basin, 

whereas the modern sediment accumulation rate at the mid-shelf is only half that on 

the outer shelf. In addition, an increasing frequency of cross-shelf flows may be 

increasing the sediment flux to the slope (Orpin et al. 2003). 
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For this study, four cores (U2303, U2304, U2305 and U2306) were collected from a 

transect (27–113 m water depth) across the continental shelf (see Chapter 3).  

 

2.3.3.2 Shelf Circulation 

Ocean circulation in Poverty Bay is not greatly influenced by tides and shelf 

currents, but is responsive to wind forcing, particularly when wind speeds exceed 4 

m s-1 (Stephens et al. 2001). Circulation on the Poverty Bay shelf is dominated by 

the north-east flowing Wairarapa Coastal Current (WCC) (Carter & Gomez In 

Review).  

 

2.3.4 Continental Slope 

2.3.4.1 Slope Environment 

The Poverty slope is dominated by the structurally complex Poverty re-entrant, a 

large indentation that probably originated as a giant landslide scar (Lewis et al. 1998, 

2004), and has been modified by ongoing structural deformation, canyon incision, 

and eustatic sea level changes. Terrigenous sediment has been dispersed beyond the 

continental shelf since the mid-Holocene, with the majority of terrigenous sediment 

being trapped in shelf and upper slope basins. Sedimentation on the mid-slope has 

occurred at a rate of ~0.6 mm y-1, with sediment accumulating in two mid-slope 

basins – the Paritu trough (~900 km2) and a lower slope basin (~12 km2) (Orpin 

2004). 

 

Cores W697 (1198 m water depth) and W698 (1428 m) were collected for this study 

from an upper slope feeder canyon and a mid-slope platform, respectively, on the 

Poverty slope (A Orpin 2005, pers. comm.). 

 

2.3.4.2 Slope Circulation 

Ocean circulation on the continental slope is dominated by the East Cape Current 

(ECC), opposing the WCC on the shelf. It is nominally positioned seaward of the 

1000 m isobath, although there is evidence that it extends almost to the shelf break 

at ~150 m (Stanton et al. 1997; Chiswell & Roemmich 1998) off Tolaga Bay. The 

regional bathymetry and Poverty Bay re-entrant may influence the ECC’s passage 

across the Waipaoa margin; as the subtropical inflow rounds the East Cape, the flow 
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is split – part produces the East Cape Eddy, and the remainder moves southwest as 

the ECC, which interacts with the Wairarapa Eddy (Carter & Gomez In Review). 

 

2.3.5 Carbon Fluxes 

Globally, rivers transport ~0.15 Pg (~0.15 x 1015 g) of POC from the continents to 

the oceans each year, but it still remains a mystery that only a small fraction of the 

OC preserved in marine sediments appears to be terrestrially derived (Hedges et al. 

1997). Recent studies suggest destruction of the terrestrial OC following discharge 

to the ocean (Hedges et al. 1997). This study seeks to address this issue. 

 

With >40% of New Zealand’s landscape comprised of soft-rock hill country (Tate 

et al. 2000) similar to that of the Waipaoa catchment, research within the WSS is 

critical for contributing to national-scale C budget research. The dominance of gully 

erosion in the Waipaoa catchment indicates it contributes ~50% of the suspended 

sediment yield to the coast, whereas the low OC content of the bedrock source 

suggests it only accounts for up to 5% of the total OC loss from this catchment. In 

contrast, sheet erosion generates only ~10% of the suspended sediment yield, but is 

mainly composed of carbon-rich topsoil, so it could account for up to ~50% of the 

OC losses. Shallow landslides (15% of suspended sediment yield) accounted for 

~25% of OC loss, again contributing largely carbon-rich sediments, while 

earthflows, tunnel gullies, bank erosion and vegetation inputs generated the 

remaining 20% of OC losses from the catchment (Tate et al. 2000). 

 
Table 2.1: Summary of erosion processes operating in the Waipaoa catchment, and 
their contributions to suspended sediment yield and carbon loss. Contributions are 
based on initial estimates by Tate et al. (2000), in which only the upper 1 m of gully 
areas were considered. 

 

Erosion Process Contribution to 
suspended 

sediment yield (%) 

Contribution to 
catchment carbon 

loss (%) 

Gully erosion >50 2–5 
Sheet erosion ~10 50 
Shallow landslides 15 25 
Earthflows, tunnel gullies, bank 
erosion etc. 

~15–25 20 
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Whether the transfer of OC from terrestrial ecosystems to the ocean represents a 

major OC loss depends on the fate of the associated sediment once it has reached 

the marine environment (Tate et al. 2000). To determine the production, storage 

and output of POC from the Waipaoa River basin, Gomez et al. (2003) estimated 

POC yield as a percentage of the suspended sediment discharge by combining some 

measured OC contents of suspended sediment samples with sediment rating curves 

for two sites within the catchment. They also used a sequence of dated overbank 

sediments from McPhail’s bend to represent suspended sediment transported at 

high flows and assess floodplain OC sequestration. Carbon isotope compositions 

(δ13C) and carbon to nitrogen ratios (C/N) were used to help determine the 

influence of different erosion processes and OC sources. 

 

In the Waipaoa River catchment, the dominance of gully erosion under all flow 

conditions is reflected in both suspended sediment and POC yields across the 

complete range of flows (when the whole profile is considered, not just the top 1 

m). POC content rapidly declines with increasing discharge and suspended sediment 

concentrations, then stabilises at a value similar to the bedrock OC content, 

suggesting the POC source is mainly from gully erosion of sedimentary rocks, with a 

smaller contribution from landsliding during extreme events (Gomez et al. 2003). 

The mean annual POC yield at Kanakanaia was calculated to be 86.7 Gg (86.7 x 109 

g), with the annual loss to storage (i.e. floodplain deposition) being ~4% (3.6 Gg). 

An estimated discharge from the Waipaoa River basin (2205 km2) to the Pacific 

Ocean of ~130 Gg C y-1 indicates that the Waipaoa River is very efficient at 

transporting OC from the landscape to the ocean (Gomez et al. 2003). 

 

Based on the work of Gomez et al. (2003), floodplain sediments from a single site 

were used by Gomez et al. (2004b) to analyse the OC content and isotopic signature 

of sediments deposited on McPhail’s bend between 1850 and 2002. They were then 

able to trace the sediment sources and determine the cause of variations over the 

historical record. The impact of deforestation in the Waipaoa catchment was 

evident in the floodplain sediments as a ~50% increase in OC content in post-1927 

sediments. This estimate was based on preservation of the landsliding signature, and 
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more positive δ13C signatures than for suspended sediments from low to 

intermediate magnitude flood events. 

 

In support of findings by Gomez et al. (2003) that Waipaoa River POC is 

dominantly sourced from gully erosion of sedimentary rocks, an old 14C date (4031 

± 40 BP) determined for floodplain sediments by Gomez et al. (2004b) suggests that 

organic material associated with Waipaoa River suspended sediments is dominantly 

composed of refractory OC (derived from weathered sedimentary rocks) and mixed 

with some younger material within the catchment. 

 

The new work of this study will extend and enhance previous investigations of the 

WSS, by determining the fate of terrestrial OC as it is transferred from the uplands 

and floodplains of the watershed to the Poverty Bay continental shelf and slope. 
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“It is common sense to take a method and try it. 
If it fails, admit it frankly and try another. 

But above all, try something.” 
(Franklin D. Roosevelt) 

 

CHAPTER 3: METHODS 

 

This chapter provides a description of sample collection, the procedures used to 

partition them into physically separated size fractions and the methods used to 

characterise the fractions chemically and radiochemically. In addition, some quality 

assurance testing was carried out, and this is also described. 

 

3.1 SAMPLING STRATEGY 

The methods used in this study were selected as being the most appropriate for 

determining the quantities and biogeochemical characteristics of organic carbon 

(OC) associated with the floodplain and marine sediments collected from the 

Waipaoa Sedimentary System (WSS). By determining the characteristics of OC at 

different depositional sites within the WSS, inferences can then be made as to the 

sources of OC and the transformations it may experience as it is being transported 

from terrestrial source to marine sink. 

 

While a number of sediment cores from the WSS have previously been studied for 

other purposes, the following seven discussed within this chapter were collected 

specifically for this study, and had not been analysed previously. 

 

A sediment core was collected from the Waipaoa River floodplain at McPhail’s 

bend, a meander bend 32 km from the river mouth (Figure 3.1). A detailed 

stratigraphy had previously been established for this part of the floodplain at a 

nearby site by Gomez et al. (1998, 1999) allowing some correlations to be made. 

 

A transect of 6 multi-cores was collected from across the Poverty Bay continental 

shelf and slope, ranging from 27 m to 1428 m water depth (Figure 3.1). The mid-

shelf core (U2305) was collected from the locus of shelf sediment deposition, with 

an estimated 45 m thickness of postglacial mud (e.g. Foster & Carter 1997; Gomez 
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et al. 2004a). The location is similar to that of the 16-m Calypso piston core, MD97-

2122 for which a sedimentary record (including particle size, tephra, geochemistry 

etc.) had previously been developed (Gomez et al. 2004a). 

 

 

Figure 3.1: Location map indicating positions of the McPhail’s bend floodplain 
core (MB) and shelf/slope multi-cores (U2303–W699). 

The shelf break is at ~150 m water depth. 
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3.2 SAMPLE COLLECTION 

3.2.1 Floodplain Sediments 

A 6.87 m core (75 mm diameter) was collected from McPhail’s bend in February 

2002, using a truck-mounted drilling rig equipped with a model B-40 Mobile Drill 

with a hollow stem auger. Preliminary stratigraphic descriptions were carried out in 

the field, and the cores were chilled to ~4°C within a few hours of collection. Unit 

thicknesses were corrected for core compaction (average ~20%) and on returning to 

the laboratory, cores were split in half lengthwise, allowing more thorough 

descriptions (Appendix A) and magnetic susceptibility measurements (Appendix B). 

Half of each core was frozen until prepared for chemical and physical analyses, 

while the remaining half was frozen and retained as an archive (see 3.10.3) The 

sampling interval of the core was irregular, and was determined largely by flood 

layer thickness. Flood deposits were differentiated on the basis of colour and 

texture, and a range of identifiable flood events was sampled, with sediment taken 

from near the centre of each layer to minimise the effects of any post-depositional 

oxidation or soil formation. 

 

 

Figure 3.2: View of the Waipaoa River floodplain and overbank deposition after 
Cyclone Bola, March 1988, looking downstream ~35 km from the river mouth. 

McPhail’s bend is marked. (Photo: N. Trustrum, 1988). 

McPhail’s bend 
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3.2.2 Marine Sediments 

Multi-cores from the Poverty Bay continental shelf and slope were collected from 

RV Tangaroa on NIWA voyages TAN0103 (March 2001) and TAN0106 (May 2001) 

following standard methodologies (Black et al. 2002). Multi-cores were used because 

they preserve the sediment-water interface well, which was vital for the investigation 

of contemporary processes occurring in the marine environment. After their 

collection, the cores (~35–50 cm in length) were promptly sectioned into 1-cm 

horizontal intervals and frozen. Three of the multi-cores (U2303, U2305 and W697) 

were initially sampled at ~6-cm intervals to obtain broad down-core trends, then 

later sampled at ~3-cm or smaller intervals, for greater detail. The surface sediment 

(0–1 cm interval) of all the cores was analysed to determine biogeochemical trends 

across the continental shelf and slope transect. 

 

 

Figure 3.3: Multi-core sampler onboard RV Tangaroa. 
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3.3 LABORATORY METHODS 

3.3.1 Protocols and techniques 

The methods used for this research were based on and closely follow those 

developed by Leithold and Hope (1999), Leithold and Blair (2001), Blair et al. (2003) 

and Leithold et al. (2005). Their laboratory protocols and techniques have 

previously been scrutinised and tested, and are consequently robust and 

internationally respected. By following these stringent procedures, the results from 

this research can be critically compared with data from the international literature. 

Use of comparable procedures also allows international correlations to be made 

with other sedimentary systems such as the Eel River System. 

 

Initially, a limited number of samples were sent to two laboratories for analysis: to 

Otago University for %OC, %H and %N elemental analyses, and to the Institute of 

Geological and Nuclear Sciences (GNS) in Wellington for %OC and %N along 

with δ13C and δ15N isotopic analyses. At a later stage, a limited number of samples 

were also taken to North Carolina State University (NCSU) and analysed for %OC, 

%N and δ13C. After returning from NCSU, it was decided to complete the analyses 

at the National Institute of Water and Atmospheric Research (NIWA) laboratory in 

Wellington, as the equipment there was very similar to that used at NCSU, which 

had so far provided the most reliable data. However, the opportunity eventually 

arose to take the remaining samples to NCSU and carry out all remaining analyses 

there. Hence all the data reported here were generated at NCSU. A comparison of 

the data analysed at the various laboratories is presented in Section 3.10.2. 

 

Equipment Cleanliness 

Before use, all laboratory glassware was washed with detergent and rinsed 

thoroughly with deionised (DI) water. All openings were then covered with foil, and 

the glassware was annealed at 510°C for 6 hours. Metal ware was also washed, 

rinsed and annealed in this way. Equipment that could not go into the muffle 

furnace (e.g., sieves, vial caps, plastic ware, etc.) was washed with detergent and 

rinsed with DI water, then rinsed in sequence with methanol, acetone, methanol and 

DI water again, covered in foil and dried at a lower temperature (E Leithold 2003, 

pers. comm.). 
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Sample Drying 

To reduce the risk of OC loss during preparation, samples were freeze-dried rather 

than oven-dried. However, when HCl solution was added to samples to remove 

carbonate, the freeze dryer could not be used and these samples were dried under 

vacuum. To do so, the samples (in their small pre-weighed glass beakers) were 

covered with a watch glass and placed in a glass desiccator. Vacuum grease was used 

to seal the desiccator; a trap (a flask sitting in a dewar containing a propanol/dry ice 

mixture) was placed between the desiccator and pump, and a strong vacuum 

established. The system was run until samples were completely dry (approximately 

48 hours) (E Leithold 2003, pers. comm.). 

 

 

Figure 3.4: Vacuum drying set-up for drying samples following the removal of 
carbonate. 

 

 

3.4 PARTICLE SIZE SEPARATIONS 

Sieving >25 µm Fractions 

Approximately 5 g of bulk sediment was suspended in a small volume of distilled 

water (~100 ml), sonicated for 5 minutes (with passive cooling) and then washed 

through a 25 µm stainless steel sieve. Grains larger than 25 µm were retained on the 

sieve, while the fine silt (4-25 µm) and clay (< 4 µm) fractions were washed into a 

1000 ml cylinder (Leithold et al. 2005). 
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Settling Fine Silt and Clay Fractions 

When all the fine silt and clay had been washed through the 25 µm sieve, 5 ml of 

0.002M sodium hexametaphosphate solution (Calgon) was added to prevent 

flocculation of the particles, and the total volume of fluid recorded. The cylinder 

contents were well stirred, then two 20 ml aliquots of suspended sediment 

transferred to a centrifuge tube, as a subsample of all particles finer than 25 µm. The 

cylinder was covered with foil and left to rest. Two hours later, a subsample of 

particles finer than 4 µm was collected from 10 cm depth and transferred to 

centrifuge bottles. Samples were centrifuged at 2500 rpm until the supernatant was 

clear (30–45 minutes). Five ml of the supernatant was then pipetted into a pre-

weighed beaker and dried, allowing correction of the sample weight for remaining 

dispersant. Residual supernatant was decanted from the centrifuge bottles, and the 

bottles and wet sediment weighed, covered and then placed in the freezer. They 

were later freeze dried, and re-weighed (Leithold et al. 2005). 

 

 

Figure 3.5: Sediment settling method used to collect clay (<4 µm) fractions. 



 

 - 38 - 

3.5 LASER PARTICLE SIZE ANALYSES 

Ideally, all samples would have been separated into size fractions using the sieving 

and settling methods outlined above, to provide particle size data as well as 

individual size fractions for elemental and isotopic analyses. However, time 

limitations did not permit all of the floodplain core samples to be separated into size 

fractions, thus the suite of 28 bulk samples from the floodplain core was analysed 

for particle size at the School of Chemical and Physical Sciences, Victoria University 

of Wellington (VUW). The 11 marine samples from core U2303 that had been 

separated into the 3 size fractions (<4 µm, 4-25 µm, >25 µm) were also analysed, to 

allow some comparison of data between the two methods. Analyses were performed 

on a Malvern Mastersizer 2000, using the principle of laser light scattering to 

determine the particle size of the sample suspended in water, with samples being 

sonicated for 2 minutes before measurement. 

 

Table 3.1: Comparison of sieve/pipette and laser particle size determination 
methods for samples from core U2303. 

 

 Laser Method Sieving Method 

Depth % >25 µµµµm % <4 µµµµm % <25 µµµµm % >25 µµµµm % <4 µµµµm % <25 µµµµm 

0-1 cm 85.48 5.49 14.52 91.38 2.42 8.62 

6-7 cm 87.83 4.85 12.17 92.32 2.58 7.68 

12-13 cm 70.22 10.90 29.78 58.66 13.50 41.34 

14-15 cm 14.07 26.84 85.93 28.81 19.43 71.19 

16-17 cm 21.37 22.20 78.63 17.01 20.60 82.99 

18-19 cm 9.88 35.28 90.12 4.90 51.15 95.10 

20-21 cm 31.20 25.99 68.80 30.89 31.99 69.11 

22-23 cm 13.45 32.84 86.55 63.55 11.95 36.45 

24-25 cm 86.15 4.87 13.85 91.70 1.91 8.30 

30-31 cm 84.76 5.29 15.24 84.94 4.15 15.06 

33-34 cm 84.06 6.25 15.94 83.22 4.25 16.78 
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Figure 3.6: Comparison of sieving and laser particle size determination methods for 
samples from core U2303. 

 

Overall, results from the two methods of particle-size determination were generally 

comparable (Table 3.1 and Figure 3.6) for the samples from core U2303, producing 

very similar down-core trends. Hence it was decided the Malvern Mastersizer 2000 

would provide acceptable particle-size data (% clay) for the floodplain samples that 

were not separated using sieve and settling techniques. 

 

Additional particle size data were obtained for the top 9 cm of core U2305 at a later 

stage, to allow a more detailed examination of changes in particle size following the 

interpretation of initial data. These additional particle size analyses were carried out 

at the NIWA laboratory in Wellington, using a Sedigraph 5100 particle size analyser 

with a precision of ~±0.1 φ (Carter et al. 2002). 

 

 

3.6 CARBONATE REMOVAL 

Standard methodologies (Leithold & Hope 1999; Leithold & Blair 2001; Blair et al. 

2003) use the vapour of 12M HCl to remove inorganic C from samples. However, it 
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became evident that this was not removing all of the carbonate from the samples 

used in this study, so 4M HCl in solution was added; a series of acidification tests 

were run to determine the optimum length of time for liquid acid treatment required 

to remove all the carbonate from the samples. 

 

The OC content of two samples was determined before any acidification, as well as 

following acidification with 4M HCl for 2, 4 and 6 days. The results are summarised 

in the following graph: 

 

Figure 3.7: Sample %OC with increasing time in 4M HCl. 

 

From these results it is evident that adding liquid 4M HCl to the samples for more 

than 2 days is sufficient to dissolve the carbonate component. Thus 4 days was 

adopted as the standard length of time to ensure the complete removal of carbonate 

from all samples. 

 

Accordingly, for this study inorganic C was removed by placing dry samples in small 

glass beakers, weighing them, and adding ~5 ml of 4M HCl to each. They were then 

placed in a glass desiccator, the air was removed with a vacuum pump, and the 

samples treated for about 96 hours. Samples were then vacuum dried, with a glass 

trap submerged in a propanol/dry ice mixture to freeze and collect the HCl. The dry 
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samples were weighed once again to correct for weight gain due to the formation of 

chloride salts. They were transferred to glass vials and stored in a freezer, in large 

jars with desiccant at the bottom, until required for analyses  (E Leithold 2003, pers. 

comm.). 

 

 

3.7 DISPERSANT PREPARATION 

Because electrostatic forces tend to cause clays to flocculate, it was necessary to add 

a dispersant before extracting a representative clay fraction. To make up the 

dispersant, 20 g of sodium hexametaphosphate powder was completely dissolved in 

100 ml of warm, deionised water. When cool, the solution was filtered through a 

combusted glass fibre filter into a glass bottle with a glass stopper. Hexane (50 ml) 

was added, and the bottle shaken for at least 2 hours. The solution was then poured 

into a glass separatory funnel to separate the sodium hexametaphosphate solution 

from the hexane – the dispersant was stored in a glass bottle, and the hexane 

discarded (following methods outlined by Leithold et al. 2005). 

 

 

3.8 DENSITY SEPARATIONS 

A number of bulk sediment samples had visible quantities of particulate organic 

matter (e.g., roots and plant matter) incorporated with the sediment, so a solution of 

sodium polytungstate (SPT) with a density of 1.9 g ml-1 was used to separate the 

‘light’ fraction from the sediment, based on their density differences. To make up 

the density medium, 140 g of SPT powder was dissolved in 100 ml of DI water, and 

1 ml of the solution weighed to check that the density was correct (weight ~1.9 g). 

More SPT powder or water was added to increase or decrease the density as 

necessary. To remove any undissolved impurities, the solution was filtered through a 

combusted glass fibre filter under vacuum, 50 ml of hexane added, and the mixture 

put on a shaker for about 2 hours. It was then poured into a separatory funnel, the 

SPT solution decanted, and the hexane discarded. 

 

To separate the ‘light’ fraction (e.g. roots and plant matter) from the sediment of 

selected bulk samples, a few grams of the sample was placed in a 10-ml conical glass 
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centrifuge tube, ~8 ml of SPT (1.9 g ml-1) solution added, and the tube shaken 

vigorously to mix. It was then centrifuged at 3000 rpm for 30 minutes, so the light 

fraction floated to the top of the SPT solution, and the sediment remained at the 

bottom of the tube. The light fraction was poured onto a combusted glass fibre 

filter, and rinsed thoroughly with DI water while under vacuum, to remove the SPT. 

It was then washed off the filter into a glass beaker, and freeze-dried before being 

analysed for %OC and δ13C independently of the sediment (Leithold et al. 2005). 

 

 

3.9 ANALYTICAL METHODS 

3.9.1 Carbon and Nitrogen Contents and Stable Isotopes 

At NCSU, samples were analysed for their OC and nitrogen contents using a Carlo 

Erba 1108 CHNS analyser in May 2002, and a Carlo Erba FlashEA 1112 CHNS 

analyser (Figure 3.8) in September 2003. The relative precision was 2%. The CO2 

produced from oxidation of the OC was trapped cryogenically (Blair & Carter 1992) 

and 13C values determined on a Finnigan MAT Delta E isotope ratio mass 

spectrometer, from which δ13C values were calculated; the absolute precision was 

0.2‰. 

 

Following convention (e.g. Craig 1953) the ratios of 12C to 13C are reported as the 

per-mil difference between the ratio of the sample and the ratio of the international 

PDB standard, where: 

 δ13C (‰) = (13C/12C)sample – 1 x 1000 

    (13C/12C)PDB 

 
Terrestrial C3 plants (e.g. trees, shrubs and temperate zone grasses) are depleted in 

13C, with characteristic δ13C values being between about –24‰ and –28‰, while 

marine phytoplankton typically have δ13C values of about –18‰ to –24‰. 

Terrestrial C4 plants (e.g. tropical grasses and maize) are enriched in 13C relative to 

both marine plankton and C3 terrestrial plants, with δ13C values characteristically 

being around –10‰ to –15‰. These differences in δ13C signatures make it possible 

to determine the source of OC associated with the sediments (Leithold & Hope 

1999). 
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Figure 3.8: Carlo Erba FlashEA 1112 CHNS analyser, NCSU. 

 

3.9.2 Particle Surface Area 

In preparation for surface area (SA) analysis, subsamples were rinsed several times 

with distilled water to remove any dispersant, before being freeze-dried and then 

heated in air for 12 hours at 350°C to remove the organic fraction. Samples were 

analysed for SA using a Beckman Coulter SA 3600 analyser at NCSU (Figure 3.9). 

They were degassed at 150°C for 45 minutes and the SA measured using the multi-

point BET method (Branauer et al. 1938). 

 

 

Figure 3.9: Beckman Coulter SA 3600 analyser, NCSU. 



 

 - 44 - 

3.9.3 Organic Carbon Loading 

OC concentrations were normalised to the SA of the sample to reduce the influence 

of particle size. The OC loadings (OC:SA) were calculated in mg C m-2. 

 

3.9.4 Magnetic Susceptibility 

Magnetic susceptibility measures the ‘magnetisability’ of a 2–3 cm3 volume of 

sample, indicating the presence of iron-containing minerals. It is the ratio of a 

sample’s degree of magnetisation to the strength of the magnetic field with which it 

is brought into contact. The down-core magnetic susceptibility profile of the 

floodplain sediments (Appendix B) was measured to allow correlation with that of a 

previously collected floodplain core (Gomez et al. 1999) with flood layers expected 

to show as peaks in the profile. Magnetic susceptibility was measured in the 

laboratory using a Bartington MS2 Magnetic Susceptibility System fitted with an 

MS2E/1 surface-scanning sensor. In preparation for measurement, the core was 

split in half length-wise, and each half tightly covered with plastic film. The core and 

sensor were left to reach room temperature before starting measurements, which 

were carried out at 20-mm intervals, using the 0.1 scale and CGS units. The 

purpose-designed “Multisus” software allowed measurements to be recorded and 

stored on file, and compensations to be made for factors such as instrumental drift. 

 

3.9.5 Thermal Analyses 

Thermal analyses were conducted on two marine sediment samples, as a trial to 

determine whether it would be a suitable procedure for determining differences in 

the character of OC. The two samples were both clay fractions, from the 1–2 cm 

section of core U2305 and 0–1 cm section of core W697. Before analysis, carbonate 

was removed with HCl, in the same way as those samples prepared for elemental 

and isotopic analyses. 

 

A SDT Q600 was used, concurrently performing differential scanning calorimetry 

(DSC), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). It 

measures the heat flow and weight changes over a temperature range, which can be 

associated with transitions and reactions in materials. The starting temperature was 
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30°C and samples were heated (in alumina pans) at a rate of 20°C/minute, to a final 

temperature of 600°C. (TA Instruments 2002) 

 

3.9.6 Lead-210 and Caesium-137 Analyses 

210Pb geochronology is commonly used to calculate marine sediment accumulation 

rates, as 210Pb is a naturally occurring radioisotope that permanently adsorbs onto 

fine-grained particles in the water column. This is referred to as ‘‘unsupported’’ 

210Pb and can be detected on marine sediments if they have been deposited less than 

4 to 5 half-lives previously (t½ = 22.3 y) (Crockett & Nittrouer 2004). 137Cs is an 

anthropogenic radioisotope that was introduced into the global environment during 

atmospheric testing of atomic weapons, which began in ~1954 and reached a peak 

between 1962 and 1964. Thus the presence of 137Cs also can be used to indicate 

sediment deposition after 1954 (Crockett & Nittrouer 2004). Together, the 

radioisotope data allow calculation of modern (last 100 years) sedimentation rates 

on the continental shelf and slope (after Appleby & Oldfield 1992). 

 

210Pb and 137Cs data for the Poverty Bay shelf cores U2303, U2304, U2305, U2306 

were measured by S. Kuehl and T. Kniskern, Virginia Institute of Marine Sciences, 

Virginia, USA, while for cores W697 and W699 the 210Pb data were provided by C. 

Alexander, Skidaway Institute of Oceanography, Georgia, USA.  

 

3.9.7 Biomarker Analyses 

Biomarkers are organic compounds formed by specific living organisms that can be 

preserved and later recognised in sediments (Canuel & Zimmerman 1999) thus 

allowing the sources and transport of OM to be determined. Biomarkers have been 

used in a number of studies to differentiate between terrestrial and marine OC 

sources and to trace the transport and fate of terrestrial OM in the marine 

environment (Schubert & Stein 1996; Bianchi et al. 1997, 2002; Fahl & Stein 1997; 

Goni et al. 1998; Amo & Minagawa 2003). The distinctive biomarkers of terrestrial 

and marine OM provide useful tools for determining relative contributions of 

organic matter sources in marine sediments. 
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Subsamples of the most recent (2002) floodplain sediment and the bulk surface 

samples from the 6 shelf/slope cores were analysed for biomarkers in the laboratory 

of Dr E. Canuel at the Virginia Institute of Marine Sciences, Virginia, USA. Details 

of the preparatory and analytical procedures can be found in Canuel and 

Zimmerman (1999) and Canuel (2001). The samples were analysed for a number of 

biomarkers including plant sterols, long-chain alcohols, long-chain fatty acids, short-

chain saturated fatty acids, diatom sterols and dinoflagellate sterols. 

 

3.9.8 Carbon-14 Analyses 

Surface samples from the Poverty Bay shelf/slope cores U2303, U2305, U2306 and 

W697 were selected for 14C analyses. This involved the acidified bulk samples being 

run on the Carlo Erba FlashEA 1112 CHNS elemental analyser (at NCSU) and the 

CO2 being collected and analysed for 14C analysis by accelerator mass spectrometry 

at the National Ocean Sciences AMS facility (NOSAMS), Massachusetts, USA. 

 

At the 14C laboratory, the CO2 is reduced to graphite using a catalyst (Fe) in the 

presence of excess hydrogen. The graphite was pressed into a target, which is 

analysed on the accelerator along with standards and process blanks. Instantaneous 

ratios of 14C to 13C and 12C are recorded and converted to a radiocarbon age, using a 

radiocarbon half-life of 5568 years (NOSAMS 1999). Ages are expressed in 

radiocarbon years. 

 

14C contents are reported as fraction modern, relative to the National Bureau of 

Standards and Technology (NBS) Oxalic Acid I standard (Olsson 1970). Modern is 

defined as 95% of the radiocarbon concentration (in A.D. 1950) of the NBS 

standard normalized to a δ13C of –19‰ (Olsson 1970). Corrections for natural 

fractionations are made by normalising the δ13C values of the samples to –25‰, and 

further corrections are made for procedural blank contributions. The relative 

precisions for the fraction modern and 14C ages were 12% and 2% respectively for 

the NBS-22 hydrocarbon standard (Blair et al. 2003). 
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3.10 ADDITIONAL TESTS 

3.10.1 NCSU Elemental Analyser Comparisons 

Between the two visits to the NCSU laboratory (May 2002 and September 2003) a 

new Elemental Analyser was installed – a Carlo Erba FlashEA 1112 CHNS analyser 

replaced the Carlo Erba 1108 CHNS analyser. It was therefore necessary to run a 

series of tests to ensure results from the two instruments would be comparable. 

Samples that had been run on the original 1108 CHNS analyser were re-run on the 

FlashEA 1112 CHNS analyser, which also had the capacity to run larger samples (an 

advantage when samples have very low OC contents). 

 

Table 3.2: Comparison of analyses using Carlo Erba 1108 CHNS analyser and 

Carlo Erba FlashEA 1112 CHNS analyser (µmoles C = %OC * mg sample * 0.833). 
 

Sample Analyser Boat size µµµµmoles C %OC %N δδδδ13C 

W697 6-7 cm <25 µm 1108 Small ? 0.70 0.08 -22.67 

 1112 Small 23 0.66 0.09 -22.87 

 1112 Large 75 0.69 0.09 -22.84 

       

W697 6-7 cm <4 µm 1108 Small ? 1.03 0.12 -22.22 

 1112 Small 32 1.01 0.14 -22.65 

 1112 Large 107 1.03 0.14 -22.42 

       

W697 27-28 cm >25 µm 1108 Small ? 0.43 0.04 -23.76 

 1112 Small 15 0.41 0.05 -24.21 

 1112 Large 132 0.43 0.04 -23.64 

 

Results (Table 3.2) indicate there is relatively little variation in %OC, %N and δ13C 

values between the two analysers.  Both small (~50 mg) and large (~300 mg) 

samples were run on the FlashEA 1112 CHNS to determine whether the sample 

size influenced results. The %OC and %N values were within 0.03% and 0.01% 

respectively, and the δ13C values were well within acceptable limits for the finer 

samples (<25 µm and <4 µm), while the greatest difference was 0.6‰ for the >25 

µm sample. This is not unexpected, as coarser samples often tend to be more 

heterogeneous in nature, and therefore more variation is likely between repeated 

analyses. Differences between the two analysers did not appear to be significant 

either, and it was decided valid comparisons could be made of results from the two 

instruments. 
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3.10.2 Inter-laboratory Comparisons 

Though all data interpreted in this study was generated at NCSU, a range of analyses 

were carried out at Otago University, GNS, NCSU and NIWA, as outlined in 

section 3.3.1. The following graphs present all data collected during the course of 

this study, allowing the comparison of data analysed at the various laboratories for 

the floodplain core and marine cores U2303, U2305 and W697. All data used in 

these graphs is ‘raw’ (i.e. marine data is uncorrected for salt content), only represents 

the bulk samples, and has been averaged where there were multiple analyses on a 

single sample. 

 

 
Figure 3.10: Inter-laboratory comparisons of %OC, δ13C and (C/N)a for the 

floodplain core. 
 

Analyses for floodplain sediment OC concentrations show little variation between 

the laboratories at NCSU, GNS and Otago University. (Figure 3.10A). 

Contrastingly, there is considerable inter-laboratory variation in the δ13C values 

(Figure 3.10B). Those measured at GNS are a lot more variable than those 

determined at NCSU, with only limited similarity in down-core trends for the two. 

Some of these differences may be due to the analyses being carried out on bulk 

samples, which can be strongly influenced by inhomogeneity. Differences in the 

down-core (C/N)a trends suggest a strong influence by the detection of nitrogen 

(N), as the %OC values were quite comparable (Figure 3.10C). As the N content in 
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the samples was very low, it proved difficult to detect in some cases, particularly at 

the GNS and Otago laboratories, which show marked differences in down-core 

(C/N)a values. 

 

 
Figure 3.11: Inter-laboratory comparisons of %OC, δ13C and (C/N)a for core 

U2303. Note: the legend for Graph C is the same as that for Graph A. 
 

The inter-laboratory comparisons for core U2303 (Figure 3.11) illustrate varying 

amounts of divergence. The down-core trends of %OC (Figure 3.11A) are generally 

similar, while the δ13C values show reasonable variation (Figure 3.11B). Once more, 

the (C/N)a values show a great deal of variation, with basically no similar down-

core trends (Figure 3.11C), again being strongly influenced by some N detection 

difficulties at the GNS and Otago laboratories. 
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Figure 3.12: Inter-laboratory comparisons of %OC, δ13C and (C/N)a for core 

U2305. 
 

For core U2305, both %OC and δ13C values show some inter-laboratory variation, 

though they generally exhibit similar down-core trends (Figures 3.12A and 3.12B). 

Once again the (C/N)a analyses carried out at Otago University and GNS show the 

greatest down-core variation (Figure 3.12C) while NCSU analyses are much more 

consistent. 

 

 
Figure 3.13: Inter-laboratory comparisons of %OC, δ13C and (C/N)a for core 

W697. 
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While the down-core %OC trends for core W697 (Figure 3.13A) are similar for the 

3 laboratories, with %OC generally decreasing with depth, the values show some 

variation. Once again the δ13C values differ between laboratories (Figure 3.13B), 

with the values from GNS showing more variation that those from NCSU. The 

down-core trends in (C/N)a values (Figure 3.13C) are quite similar for the NCSU 

and GNS laboratories, but the Otago results vary greatly. Once more this was most 

likely due to the low levels of N in the samples causing detection difficulties. 

 

These comparisons illustrate various discrepancies between analyses performed by 

the different laboratories. However, measurements performed at the NCSU 

laboratory could be considered to be more rigorous and reliable due to several 

factors. Firstly, the issue of complete carbonate removal had been addressed 

(Section 3.6) thus any possible influence of carbonate had been eliminated, and 

secondly the majority of samples had been separated into size fractions and as a 

result were much more homogeneous in nature. Thirdly, the NCSU elemental 

analyser did not have difficulty detecting low levels of N in the samples, and 

fourthly, I carried out all of the analyses at NCSU myself thus providing a consistent 

level of rigour and avoiding any inter-operator error. These factors support the 

earlier statement that only data generated at NCSU was interpreted for this study. 

 

3.10.3 Effects of Sample Storage on Organic Carbon 

When the floodplain core was collected, it was refrigerated within a few hours of 

collection, but not frozen until about 2-3 months later. As a consequence, it was 

decided analyses should be carried out to determine whether the different storage 

conditions affected the organic contents and therefore could cause spurious results 

when analysed. To test the different storage conditions, short cores (~700 mm) 

were collected from the floodplain and split, with one half frozen and the other half 

refrigerated as soon as possible after collection. After 2-3 months of storage, 

samples were analysed at the National Institute of Water and Atmospheric Research 

(NIWA) in Wellington. 
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Table 3.3: Comparison of floodplain sample analyses following storage in 
refrigerator and freezer. 

 

Sample Depth Sediment Type 
Refrigerated 

%OC        δδδδ13C 

Frozen 

%OC        δδδδ13C 

200 mm Silt 0.53 -24.62 0.38 -25.21 

300 mm Coarse Sand 0.22 -25.99 0.30 -26.11 

380 mm (i) Silt 0.28 -26.23 0.28 -28.13 

380 mm (ii) Silt 0.23 -23.69 0.23 -25.58 

380 mm (iii) Silt 0.23 -24.04 0.27 -26.22 

380 mm (iv) Silt 0.21 -23.99 0.27 -26.06 

500 mm (i) Coarse Sand 0.29 -18.27 0.23 -26.79 

500 mm (ii) Coarse Sand 0.24 -26.58 0.22 -26.12 

500 mm (iii) Coarse Sand 0.23 -26.21 0.21 -26.23 

500 mm (iv) Coarse Sand 0.22 -26.08 0.19 -26.61 

600 mm Silty Clay 0.67 -25.31 0.70 -25.11 

 

These results (Table 3.3) indicate that the frozen samples tended to have slightly 

lighter δ13C values, though the differences were small and consistent. The greatest 

variation appeared to be due to sample heterogeneity, particularly in the coarser 

samples. Because of time constraints, and the inability to collect a replacement 

floodplain core, it was decided to continue with the original core, as there were no 

strong trends that could be explained by storage effects.  
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“Rivers know this: there is no hurry. 
We shall get there some day.” 
Pooh's Little Instruction Book. 

 
CHAPTER 4: WAIPAOA RIVER FLOODPLAIN 

 

4.1 INTRODUCTION 

To recognise terrestrially sourced sediment and organic carbon (OC) in the marine 

environment and identify biogeochemical changes that OC has undergone as a 

result of the transfer, it is necessary to establish its characteristics prior to discharge 

to the ocean. This chapter investigates characteristics of the Waipaoa River 

floodplain sediments, to establish a benchmark signature for erosion-related 

sediment and flood sequences and thereby support the recognition of flood layers 

within the marine environment. The influence of floodplain morphology and river 

dynamics on modulating OC transfers is also addressed in this chapter. A core of 

floodplain sediments was used as a proxy of suspended sediments, due to the lack of 

available samples over a range of river flows, and the limited timeframe of this 

study. 

 

The amount and character of suspended sediment and particulate organic carbon 

(POC) discharged by a river to the ocean may be strongly influenced by exchanges 

between the river and its floodplain (Meade 1996), and such interactions will also 

determine whether a floodplain acts as an OC source or sink. A large amount of 

research into the role of terrestrial POC fluxes in the global carbon (C) cycle has 

been carried out on large, low-gradient rivers in continental settings (Milliman et al. 

1984; Hedges et al. 1986, 1994; Richey et al. 1990; Depetris & Kempe 1993). In 

such settings, large floodplains and deltas offer potential for processing of the OC 

as it is transported through the system, storing a large portion of sediment and POC 

and therefore influencing riverine inputs to the ocean.  

 

More recently, studies have emphasised the importance of mountainous oceanic 

islands in global land to ocean sediment and POC fluxes (Milliman & Syvitski 1992; 

Milliman 1995; Milliman et al. 1999; Lyons et al. 2002; Farnsworth & Milliman 

2003). Though small in landmass, the mountainous islands of the Pacific Rim may 
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contribute up to 40% of the global land to ocean sediment flux (Farnsworth & 

Milliman 2003) and up to 35% of the global POC flux (Lyons et al. 2002). The 

tectonic instability of these mountainous islands (including New Zealand), 

combined with the very erodible sediments and high rainfall, means that short, steep 

rivers enable the rapid transport of water and sediment from land to ocean, hence 

the residence time of materials in these river systems is likely to be short in 

comparison to the large river systems. 

 

Mountainous river floodplains are generally ephemeral in nature, with their 

morphology controlled by event-specific magnitude-frequency distributions of river 

discharge and sediment load. In the upper parts of steep river basins, floodplains are 

closely coupled to hillslopes, tend to be small in areal extent, and are formed by 

point bar deposition, channel dynamics and overbank sedimentation. Event-driven 

river channel and bank erosion causes constant changes of floodplain morphology, 

and where there is active river downcutting, more permanent floodplain terraces can 

be preserved. In the lower reaches of mountainous catchments, rivers have larger 

meander loops and correspondingly larger floodplain areas. In comparison, large 

continental rivers have much lower gradients and extensive floodplains, allowing 

more OC processing both during overbank deposition associated with flood events 

and during transport to the marine environment. 

 

McPhail’s bend study site & methodological approach 

Previous studies (Gomez et al. 1998, 1999) have established a detailed floodplain 

stratigraphy for the Waipaoa River at McPhail’s bend over the last ~150 years 

(Figure 4.1). Sediment cores suggest that overbank sedimentation sequestered 5% of 

the total suspended sediment load over an 11-year period (1979–1990) but increased 

to 16% during events exceeding bankfull stage (Gomez et al. 1999). Expanding on 

that work, Gomez et al. (2003) estimated the flux of POC from the Waipaoa River 

to the Pacific Ocean to be ~130 Mg C y-1, with annual floodplain storage being 

~4% (3.6 Mg C y-1). This suggests that the Waipaoa River is very efficient at 

transporting terrestrial OC from land to ocean, with only a small percentage being 

stored on the floodplain during this period. However, as McPhail’s bend is not 

representative of all the floodplain areas contained within the Waipaoa River basin, 
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and research to date (Gomez et al. 2004b) is based on one core only, the influence 

of floodplains on OC fluxes requires further investigation. 

 
Figure 4.1: 1948–1988 flood layers at McPhail’s bend (from Gomez et al. (1999)). 

 

Sediments of the Waipaoa River floodplain provide a record of sediment 

transported during large flood events over the historical period. With the mean 

discharge being 34.7 m3 s-1 (Hicks et al. 2000) and overbank deposition only 

occurring on McPhail’s bend when discharge exceeds 1800 m3 s-1 (i.e. 49 times the 

mean flow), the floodplain sediments only represent suspended sediments 

transported at high discharges (Gomez et al. 1998). The floodplain record contains a 

mixture of landslide-derived sediments (which make a greater contribution to the 

sediment supply at high river discharges), and sheet wash and gully-derived 

sediments, which are transported over a range of flows (Reid & Page 2002). 

 

It is widely recognised that deposition patterns across the floodplain can be spatially 

highly variable – generally flood deposits are thicker nearer the river channel, and 

this was illustrated by Gomez et al. (2004b) for McPhail’s bend during the flood 

event of August 2002 (Figure 4.2). Individual flood layers will vary in thickness and 



 

- 56 - 

character across the floodplain, thus using just one core of 40 mm diameter to 

represent a 0.5-km2 area has limitations. 

 

 

Figure 4.2: Aerial photograph of McPhail’s bend, superimposed with isopachs of 
flood sediment thickness (in cm) deposited by the August 2002 storm event. 

The core site of Gomez et al. (1998; 1999; 2003; 2004b) is marked by the + and the 

core site for this study by the X. 
 

The McPhail’s bend site, 32 km from the Waipaoa River mouth, was chosen for 

studying the floodplain record, as a detailed stratigraphy has previously been 

established and flood layers related to historic hydrologic records (Gomez et al. 

1998, 1999). While the core for this study was collected within approximately 400 m 

of that studied by Gomez et al. (1998, 1999) (Figure 4.2), spatial variability of 

sediment layers across the floodplain resulted in different representations of flood 

events, such as the thickness and particle size of the deposits. Furthermore, several 

flood layers identified by Gomez et al. (1998) are not present in the core used for 

this study, and similarly new flood layers were identified. 
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Down-core magnetic susceptibility measurements (Appendix B) were made to assist 

the stratigraphic comparison between the two cores, though good correlation 

between the cores proved problematic due to the spatial variation in floodplain 

deposition. However, by comparing descriptions and photographic records, it was 

possible to base the stratigraphy of the core collected for this study on that 

developed by Gomez et al. (1998, 1999). 

 

The preparation and analytical methodologies used here differ to those used by 

Gomez et al. (1998; 1999; 2003; 2004b). A more stringent approach was taken (see 

Chapter 3) in order to reduce any loss of OC during sample processing and to allow 

correlations to be made with data from the international literature for other 

sedimentary systems such as the Eel River System, where the same procedures have 

been used. Unit thicknesses were corrected for core compaction, and each sample to 

be analysed was collected from the centre of its flood layer, to minimise any possible 

influence of post-depositional soil formation, oxidation etc. 

 

This section of the study aims firstly to establish a benchmark signature of terrestrial 

OC within a stratigraphic floodplain sequence, to allow its characterisation following 

transportation to the marine environment by the Waipaoa River during storm 

events, and secondly to determine how the floodplain modulates OC transfers from 

land to ocean. It should be noted that this study does not investigate the role of 

bank erosion with respect to the recycling of floodplain sediment and OC back into 

the river. While it is likely to have been an important process in terms of how the 

floodplain modulated OC transfers prior to the construction of stop banks, the 

amount of bank erosion has since been reduced (M Hicks 2005, pers. comm.). 
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Flood layers were identified on the basis of their physical characteristics, the 

stratigraphic record developed by Gomez et al. (1998, 1999) and an extensive flood 

record. Particle size analyses of the 27 floodplain sediment layers show a reasonable 

amount of variation in clay content, illustrated as % of sediment finer than 4 µm 

(Figure 4.3A). There is no clear relationship between clay content and flood 

discharge, with all but two of the samples containing <25% clay. The March 1996 

flood (discharge of 2030 m3 s-1) deposited sediment at the study site that is 100% 

clay, while the February 1932 flood had a similar discharge of 2308 m3 s-1 yet is 

represented by one of the coarsest sediments, containing only 3.6% clay. 

 

The %OC of floodplain sediments at McPhail’s bend is generally low (~0.2–0.8 %) 

except for the two samples at 7 cm and 573 cm, with values of 2.6% and 3.5% 

respectively (Figure 4.3B). This is due to the sample at 7 cm containing plant 

material and the flood layer at 573 cm containing charcoal fragments. There is no 

apparent correlation between the %OC of these sediments and the river discharge. 

The OC content of sediments is strongly controlled by the particle size, as illustrated 

by the graph of clay content and %OC (Figure 4.4).  

 
Figure 4.4: Relationship between clay content and %OC for the bulk floodplain 

sediments from McPhail’s bend. 
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The above graph (Figure 4.4) illustrates the influence of particle size (and therefore 

surface area (SA)) on the OC content of floodplain sediments from McPhail’s bend, 

with the finer sediments clearly having greater amounts of associated OC. Due to 

time constraints, the floodplain samples were not separated into the three size 

fractions, hence %OC analyses were not carried out for the individual clay fractions. 

 

Samples from the top 300 cm of the floodplain core show a slight trend of an 

increasingly heavy (less negative) δ13C signature with time (Figure 4.3C) such that 

the more recent flood events have heavier δ13C values. While the 4 samples with the 

lightest (most negative) δ13C signatures were associated with the 1996, March 1988, 

1932 and 1906 flood events, there is no apparent relationship between river 

discharge and δ13C signature. 

 

Samples from the top 300 cm of the floodplain core also show a general trend of 

increasing (C/N)a with time (Figure 4.3D), with more recent flood events having 

higher (C/N)a values. The highest (C/N)a values were measured in sediments 

deposited during the 1906, 1932, March 1988 and 1996 flood events, but there does 

not appear to be a relationship between river discharge and (C/N)a values. There is 

no apparent relationship between %OC or δ13C and (C/N)a within the floodplain 

sediments – for example, the March 1996 flood layer has a high %OC, heavy δ13C 

and moderate (C/N)a, while the July 1906 flood layer has a high %OC, light δ13C 

and high (C/N)a. 

 

A probable change from pointbar to overbank sedimentation between the July 1906 

and February 1932 floods is in keeping with the previously documented river 

planform changes since 1868 (Figure 2.3). The location of this core on McPhail’s 

bend is likely to have been approximately within the 1868 channel and then as the 

channel gradually shifted, deposition at the same site would have changed from 

pointbar to overbank. 

 

Due to the amount of variation and lack of trends, it is hard to assign characteristic 

particle size, %OC, δ13C and (C/N)a values to flood events as a function of river 
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discharge. While the 1996 and 1932 flood events had similar discharges of 2030 m3 

s-1 and 2308 m3 s-1 respectively, their clay contents were 100% and 3.5% and OC 

contents 2.6% and 0.24% respectively. The δ13C signatures also varied greatly, being 

–20.6‰ for the 1996 flood and –26.2‰ for the 1932 event. The only property that 

was comparable was the (C/N)a value, which was 12.95 for both events. 

 

 

4.3 DISCUSSION 

4.3.1 Findings from this study 

Particle Size, %OC, δ13C and C:N Variations 

The observed variation in floodplain sediment particle size may be due to the 

different flood events transporting sediment from the different rock types, 

associated with a range of erosion processes. In the Waipaoa catchment, gully 

erosion dominates on the finer bedrock, whereas landslides dominate on slightly 

coarser bedrock, but generally do not erode the bedrock, just the topsoil and 

regolith. On McPhail’s Bend, the largest of the flood events, Cyclone Bola (March 

1988) is represented by a coarse sediment layer (only 4.3% clay), reflecting the 

significance of landsliding as a sediment source, which is in keeping with the 

findings of Reid and Page (2002). However, there is no consistent relationship 

between particle size (% clay) and river discharge, preventing the use of particle size 

as a reliable indicator of erosion process or sediment source. It may well be that 

particle size of overbank sediments is controlled by other river dynamics, such as 

the floodplain morphology and its influence on flow velocity. 

 

The low OC content (generally <0.8%) of the floodplain alluvium is probably a 

reflection of its derivation from regolith and soils developed on weathered 

sedimentary rocks lacking in organic matter, most likely in response to the removal 

of native forest that began in the upper Waipaoa catchment in the late 19th century. 

Gomez et al. (2003) determined the average OC content of weathered bedrock and 

gully-sourced material to be ~0.3% and 0.4% respectively and being the dominant 

source of floodplain sediment, the generally low OC contents of floodplain 

sediments at McPhail’s bend are in keeping with the source material. Although 

landsliding displaces both organic-rich soil and vegetation during the large flood 
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events (e.g. Cyclone Bola, March 1988), the amount displaced is a small proportion 

of the total volume of sediment mobilised, so the contribution from the deeper soil 

profile outweighs that of the topsoil (Gomez & Trustrum 2005). There is also very 

little time between floods to allow much soil development or accumulation of 

organic matter and topsoil – basically these floodplain deposits are raw sediment 

with incipient A horizons. 

 

Another explanation for the low %OC of McPhail’s bend floodplain sediments is 

the stabilisation of POC content with high river flows, as suggested by Gomez et al. 

(2003). They found that when the Waipaoa River discharge exceeds about 5 times 

the mean flow (~174 m3 s-1), the POC content stabilises at a low value of ~0.6%, 

markedly lower than during low to intermediate flows (as represented by OC 

concentrations of suspended sediments during low to intermediate flows). 

 

While biogeochemical changes following deposition may result in some variation in 

δ13C values of flood layers (though this hasn’t been thoroughly investigated), δ13C 

variations are likely to be largely driven by sediment and plant sources, with erosion 

processes largely determining what material is transported during flood events. For 

example, deep gully erosion dominantly transports bedrock material, containing 

ancient refractory OC with a lighter (more negative) δ13C signature. Contrastingly, 

shallower forms of erosion dominantly transport topsoil, containing younger and 

more labile OC, often in the form of plant material.  

 

The trend of a slightly heavier δ13C signature with time in the top 300 cm of the 

floodplain core (Figure 4.3C) may be due to an increasing presence of C4 plants 

within the catchment, having an average δ13C value of about –14 to –13‰, whereas 

the average δ13C value of C3 plants is generally in the range of –27 to –26‰ 

(Kendall et al. 2001). The 1996 flood sample has the heaviest value of –20.6‰ and 

also contained many fine roots, which when extracted and analysed separately 

yielded a δ13C of –14.5‰. This provides strong evidence for the presence of C4 

plant matter, likely to be either Bermuda grass (Cynodon dactylon) rhizomes (see 

Chapter 2) or maize roots, transported in the flood sediments. Small areas of maize 
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are grown on floodplains upstream of McPhail’s bend and are a potential source of 

C4 plant matter during flood events that are large enough to inundate the crop. The 

exact source of Bermuda grass is unknown, but its presence in flood sediments has 

been noted by Pullar (1962). Thus the trend in the upper 300 cm may represent an 

increased presence of either Bermuda grass or maize crops within the Waipaoa 

River catchment. It is also possible that the large range of δ13C values of flood 

sediments at McPhail’s bend represents a mixing of both C3 and C4 plant detritus 

with the eroded sediments. 

 

The influence of C4 plants illustrates potential problems that may result when 

relating terrestrial δ13C values to marine sediments, which have integrated signals 

from a whole catchment. In this study, the terrestrial δ13C end member was 

estimated to be –28.0‰ (see Chapter 5) due to the relatively small contribution the 

C4 plants make to the terrestrial OC sources. Contrastingly, in a catchment with a 

significant C4 plant presence, a truer end member value would be less negative 

(heavier) and it would be necessary to analyse all dominant sediment and plant 

sources within the catchment to get a true indication of the combined terrestrial end 

member, as was done by Blair et al. (2003). 

 

The range of (C/N)a values within the floodplain sediments is most likely associated 

with variations in the content of fresh organic matter. For example, raw organic 

matter has a higher (C/N)a ratio than decomposed organic matter or soil, due to the 

ratio lowering as organic matter decomposes. While there is no apparent 

relationship between %OC or δ13C and (C/N)a within the floodplain sediments, 

some of the sediments with higher %OC are associated with elevated (C/N)a 

values, probably due to the presence of relatively fresh plant material (e.g. July 

1906). 
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4.3.2 Comparison with previous McPhail’s bend studies 

It is important to compare the results from this study with other McPhail’s bend 

studies (e.g. Gomez et al. 1998; 1999; 2003; 2004b) to illustrate how the floodplain 

behaves as a modulator of terrestrial sediment and OC prior to its discharge to the 

marine environment. 
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Figure 4.5: Comparison of OC contents for the two McPhail’s bend cores analysed 
by (A) Gomez et al. (2004b) and (B) this study. 

 

The down-core values and trends in this study differ from those of Gomez et al. 

(2003 and 2004b). As with the %OC values (Figure 4.5) the δ13C values and C/N 

ratios also vary, with all of these variations most likely due to the different 

stratigraphies recorded in the two cores. In this study, δ13C trends suggest an 

increasing influence of C4 plants (see 4.3.1) which was not identified in the core 
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analysed by Gomez et al. (2003, 2004b). Downcore trends identified by Gomez et 

al. (2003, 2004b) and Gomez and Trustrum (2005) relating OC and δ13C to 

deforestation and changing erosion processes are also not identifiable in this study. 

 

These differences may be due to one or more of four factors. Firstly, the sample 

selection used for this study differed from those used by Gomez et al. (2003 & 

2004b) by using complete bulk samples rather than the fine-medium silt fraction. By 

analysing bulk samples of varying particle size (i.e. this study), the amount of down-

core %OC variation would probably be greater than that revealed by using only the 

fine-medium silt fraction (i.e. Gomez et al. 2004b), as the particle size has a strong 

influence on the %OC of bulk samples (Figure 4.4). This issue may have been 

overcome if each of the bulk floodplain samples had been separated into size 

fractions as was done for the marine samples, allowing characteristics for each of 

the size fractions to be established. Secondly, as previously mentioned, the 

preparation and analytical techniques for this study were very stringent, to reduce 

any possible loss of OC from the samples during their preparation. Thirdly, because 

different laboratories were used to analyse the sediments there are likely to be 

discrepancies between the results, as was found when conducting inter-laboratory 

comparisons (see 3.10.2). A fourth factor is spatial variability across the floodplain. 

The two cores were from sites only ~400 m apart, but (as measured at McPhail’s 

bend following the August 2002 storm) the thickness of flood sediments deposited 

on McPhail’s bend varies greatly across the floodplain (Figure 4.2). This is in turn 

reflected in the different vertical stratigraphic records represented by the two cores. 

 

4.3.3 Role of the floodplain in modulating OC transfers 

The extent of differences between the two McPhail’s bend cores, outlined above, 

demonstrates the extent to which erosion processes can influence the floodplain 

stratigraphy and in turn influence sediment and OC transfers from land to ocean. 

Changes in river morphology and flood dynamics account for the large spatial 

variability in flood layer thickness, particle size and associated geochemical 

characteristics. The extent to which the magnitudes and characteristics of different 

flood events can influence the distribution of sediment and associated OC is 
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illustrated by comparing the sediment thicknesses for a moderate (2002) and a high 

magnitude (March 1988) flood event at the two sites on McPhail’s bend. 

 

In the large magnitude event of March 1988 (Cyclone Bola), sediment thicknesses 

were generally less at the site of Gomez et al. (2003, 2004b) because either the flow 

velocity across that part of the floodplain was too high to permit deposition 

(Gomez et al. 1998), or sediments deposited during earlier stages of the flood were 

subsequently scoured by the high flows (N Trustrum 2005, pers. comm.). By 

comparison, the core used for this study exhibits a thicker flood layer for this same 

flood event. Contrastingly, during the moderate magnitude event of August 2002, 

the reverse trend occurred, with greater thicknesses of sediment accumulating at the 

site of Gomez et al. (2003, 2004b) than at the site used for this study (Figure 4.2). 

Similarly, sediments at the different sites also show differing particle size 

characteristics and associated OC contents (Figure 4.5). These spatial and temporal 

variations in floodplain sediment and OC sequestration illustrate the role the 

floodplain can play in modulating OC transfers to the ocean. 

 

 

4.4 CONCLUSIONS 

Understanding the complex relationships between river behaviour and depositional 

processes is important for determining the extent to which the floodplain acts as a 

modulator of terrestrial sediment and OC before it is discharged to the marine 

environment. However, it is apparent that floodplain deposits within the Waipaoa 

River system show great variation and thus prevent the establishment of a clear 

benchmark signature for flood events that would be easily recognisable in the 

marine sedimentary record. 

 

Whilst the influence of river reaches such as McPhail’s bend appear to be relatively 

small in modulating OC transfers within the Waipaoa River system (i.e. total OC 

sequestration only ~4% (Gomez et al. 2003)), there are significant floodplain areas 

within the Waipaoa River tributaries that overbank more frequently than the main 

stem at McPhail’s bend, and therefore offer more opportunities for OC 

sequestration and modulation. Also, McPhail’s bend does not represent the large 
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areas of the lower Waipaoa floodplain system, where prior to stopbank construction 

(late 1940’s), overbank deposition and associated OC sequestration and modulation 

may have been more extensive. Taking these factors into consideration, 

transmission losses of OC to the floodplain are ~10% (Gomez & Trustrum 2005). 

Therefore, when all of the floodplain areas in the entire Waipaoa catchment are 

taken into consideration and coupled with the large spatial and temporal distribution 

of floodplain OC, they could play a role in modulating OC transfers to the ocean. 
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“Neither juggernaut man nor crawling thing 
Can bring a mountain weeping to its knees quicker than the rain 
That demure leveller ocean-blessed cloud-sent maker of plains.” 

Hone Tuwhare. 
 

CHAPTER 5: USING TERRESTRIAL ORGANIC CARBON TO 
ASSIST IN FLOOD IDENTIFICATION ON THE CONTINENTAL 
SHELF & SLOPE 
 

5.1 INTRODUCTION 

Terrestrial organic carbon (OC) is an important constituent of riverine particulate 

matter, thus its distribution on continental margins is closely linked to the dispersal 

of riverine sediment (Leithold & Hope 1999). Rivers draining small mountainous 

watersheds, such as the Waipaoa Sedimentary System (WSS), have recently come 

under increased scrutiny (Milliman & Syvitski 1992; Milliman 1995; Milliman et al. 

1999; Lyons et al. 2002; Farnsworth & Milliman 2003) as they often transport large 

amounts of suspended sediment. Such point sources, together with the ocean 

circulation, influence sediment and associated OC dispersal and deposition in the 

marine environment. 

 

During floods, it is common for high input rivers to generate positively buoyant 

(hypopycnal) sediment plumes at the mouth. Less commonly, and under particular 

conditions, rivers may form negatively buoyant (hyperpycnal) plumes that can result 

in the transport of riverine sediment beyond the continental shelf to depositional 

sites further offshore (Johnson et al. 2001; Parsons et al. 2001). The critical 

suspended sediment concentration required to produce a hyperpycnal plume in 

temperate latitudes is estimated to be ~40 000 mg L-1 in marine environments 

(Mulder & Syvitski 1995). However, it has been suggested that under some 

conditions, hyperpycnal flows may form when river suspended sediment 

concentrations are much less, even as low as ~5000 mg L-1 (Parsons et al. 2001). 

Hence many small mountainous rivers may in fact generate hyperpycnal flows on a 

more regular basis.  

 

Hicks et al. (2004a) calculated that if the suspended sediment concentration 

threshold for hyperpycnal flows was 40 000 mg L-1, the Waipaoa River would 

generate such a flow once every ~40 years. While being cautious of uncertainties, 
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they also calculated that if the threshold was reduced to 20 000 mg L-1, an average of 

3–4 events would occur each year, and a threshold of 5000 mg L-1 would generally 

result in hyperpycnal flows forming monthly. Thus potentially, hyperpycnal flows 

from the Waipaoa River could be an important factor in transporting sediment 

across the shelf. Furthermore, their signature could be apparent in the depositional 

record (Hicks et al. 2004a) so long as they have not been disturbed by storm-wave 

or current action. However, it is currently thought that hypopycnal plumes are the 

normal dispersal mechanism for Waipaoa sediment on the continental shelf, and 

that mid-water plumes are unlikely to form because of the well-mixed structure of 

shelf waters (Carter & Gomez In Review). 

 

While recent studies have investigated the influence of hyperpycnal plumes on the 

dispersal and distribution of riverine sediment (Parsons et al. 2001; Warwick & 

Milliman 2003; Dadson et al. 2003; Dadson et al. 2004; Hicks et al. 2004a) their 

influence on the transfer and fate of terrestrial OC across the continental shelf and 

beyond has not yet been well investigated. The consequential rapid transfer, 

deposition and burial of terrestrial OC in the marine environment could potentially 

result in those flood deposits and associated OC retaining a stronger terrestrial 

signature than non-flood sediments and allow the sequestration of large amounts of 

terrestrially sourced OC. 

 

By looking at the down-core characteristics of three multi-cores from a range of 

water depths across the continental shelf and slope offshore from the WSS, 

perturbations in sediment supply within the WSS may be traceable given the caveat 

of post flood reworking (see Figure 2.1). If individual flood layers can be identified, 

it would allow comparisons of the OC characteristics in flood and non-flood 

sediments to be made, and so help address the questions of how flood events in the 

river catchment affect the transfer and fate of terrestrial OC through the marine 

environment, and how this environment influences the OC signature. 
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5.2 RESULTS 

5.2.1 Sediment Accumulation Rates 

210Pb data from the 3 multi-cores were used with varying success to determine 

modern accumulation rates on the continental shelf and slope (see also 3.9.6 and 

Appendix D). The results for core U2303 are presented in Figure 5.1. 

 

 
Figure 5.1: Excess 210Pb activity for the inner shelf core (U2303). 

(Uncertainty limits are standard errors). 
 

In addition to the activities for most of the core being near the detection limit for 

210Pb (0.1 dpmg-1), the measurement of inner shelf sedimentation rates was 

influenced by a clay-rich layer at 13–23 cm depth being sandwiched between coarser 

sediments. The 210Pb data were corrected for the difference in particle size by 

normalising the excess activity to the clay content of each sample (excess activity 

divided by % clay in sample), and plotting the result against core depth to reveal the 

comparative sedimentation rates (Figure 5.2). 
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Figure 5.2: Core U2303 excess 210Pb activity corrected for clay content, indicating 

varying down-core sediment accumulation rates. 
 

The normalised data suggest fairly consistent sediment accumulation prior to 

deposition of the flood layer and rapid deposition of the clay-rich layer at 13–23 cm 

depth, possibly the result of a river flood (Figure 5.2). It also indicates that following 

deposition of the layer, sedimentation returned to a steady accumulation rate. 137Cs 

data and flood layer identification suggest that the sedimentation rate increased 

following deposition of the flood layer (see 5.3.1).  

 

A complication is the presence of 137Cs in the base sample at 34 cm depth, 

suggesting it was deposited since ~1955, which conflicts with the 210Pb data. If the 

210Pb sedimentation rates are used, the sample at 13 cm depth yields an age of ~50 

years (deposited in ~1951) and the sample at 34 cm depth yields an age of ~82 years 

(deposited in ~1919). However, using 137Cs as an indicator of a 1955 age for the 

base of the core, it can be estimated that 24 cm of sediment (i.e. 34 cm less the 

rapidly deposited flood layer) accumulated over 46 years, giving an average 

sedimentation rate of at least 0.52 cm y-1. Accordingly, 137Cs was used for 

determining the sedimentation rate for core U2303 but the 210Pb data were useful 

supporting evidence for identifying the flood layer at 13–23 cm depth. 

 

A most plausible reason for the discrepancy is that 210Pb results document the 

periodic erosion of sediment from the sea floor by waves. Gorman et al. (2003) 
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showed that the mean wave height for this part of the East coast is 1.57 m, and the 

mean period 7.37 s. Using linear wave theory to get orbital velocities, the oscillating 

flow generated by such a wave will disturb very fine sand in water depths of around 

27 m and lead to periods of erosion interrupting the deposition (L Carter 2005, pers. 

comm.). This is also supported by the coarseness of the sediment above and below 

the flood layer, indicating that wave action has winnowed out fine silt and clay, 

leaving only coarse silt and sand lag. Given uncertainties of 210Pb, the mean 

sedimentation rate from the 137Cs time horizon is used. 

 

Accumulation rates for the mid-shelf and upper slope cores were more easily 

determined through the use of 210Pb analyses, as there were no large down-core 

particle size changes and 210Pb activities were higher due to the sediments being 

finer. Sediment accumulation rates for the three multi-cores are summarised in 

Table 5.1. 

 

Table 5.1: Modern accumulation rates for continental shelf and slope sediments. 
Note: U2305 rate calculated from presence of 137Cs, while those for U2305 and 

W697 are from 210Pb analyses. (Refer to Appendix D). 
 

Core 
Average 

Accumulation 
Rates 

U2303: Inner Shelf, 27 m >0.52 cm y-1 

U2305: Mid-shelf, 56 m 0.42 cm y-1 

W697: Upper Slope, 1198 m 0.13 cm y-1 

 

Variations in sedimentation rates across the shelf and slope are likely to be due to a 

number of factors such as sediment supply, shelf bathymetry, water depth and 

ocean currents. The higher rate at the inner shelf site most likely reflects its 

proximity to the muddy Waipaoa River and its location at the mouth of Poverty Bay 

means it is not directly affected by the Wairarapa Coastal Current (WCC) or the 

East Cape Current (ECC). However, due to the relatively shallow water depth, 

sedimentation on the inner shelf may not be continuous, with the possible influence 

of wave base disturbance, as discussed above. The mid-shelf site of core U2305 is 

near a synclinal basin, where sediment preferentially accumulates. The deeper water 
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also contributes to a higher sedimentation rate than on the inner shelf. The 

markedly lower sedimentation rate on the upper slope is most likely related to its 

distance from the river mouth. Here, there is a reduced sediment input, and the 

presence of the ECC transports sediments in a predominantly south west direction. 

Using these accumulation rates, the following rough ages have been assigned to 

possible flood layers within the shelf and slope cores (rough because the use of 

mean sedimentation rates masks variability relating to periods of either high or 

instantaneous deposition and/or phases of erosion).  

 

Table 5.2: Approximate ages of flood layers within continental shelf sediments. 
 

Core 
Flood Layer 

Depth 
Approximate 

Age 

U2303: Inner Shelf, 27 m 13–23 cm ~1951 (210Pb) 

U2303: Inner Shelf, 27 m 13–23 cm ~1980 (137Cs) 

U2305: Mid-shelf, 56 m 7 cm ~1984 (210Pb) 

U2305: Mid-shelf, 56 m 13 cm ~1970 (210Pb) 

U2305: Mid-shelf, 56 m 25 cm ~1941 (210Pb) 

 

 

5.2.2 Down-core Trends 

The following three figures present results for the down-core physical and chemical 

analyses carried out on the three multi-cores from the continental shelf and slope. 

The analyses included particle size, OC content (%OC), stable carbon isotope 

signature (δ13C) and atomic carbon to nitrogen ratios ((C/N)a). 
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Inner shelf sediments (U2303) contain the 10 cm thick light grey clay-rich layer 

between dark grey silt and mud. Contacts between the layers are very sharp, with no 

evidence of bioturbation. As much as 95% of the sediment in the clay-rich layer is 

finer than 25 µm, compared to less than 16% in the sediments above and below. 

The clay-rich layer is finest in the middle, i.e. the the top half fines downwards and 

bottom half fines upwards (Figure 5.3A). 

 

Bulk samples show increased %OC in the clay-rich layer, but when individual size 

fractions were analysed, the highest OC contents in that layer were found in the 

coarse silt fraction (>25 µm) and were greatest in the middle of the layer (Figure 

5.3B). The clay fraction (<4 µm) has little variation in %OC with depth. 

 

For all size fractions, δ13C values of the clay-rich layer are lighter (more negative) 

than those of most samples above and below, with values peaking in the centre of 

the layer. Again, the greatest variation is in the coarse silt fraction (>25 µm), and the 

clay fraction does not show an obvious trend (Figure 5.3C). 

 

The inner shelf clay-rich layer is strongly defined by (C/N)a of the coarse silt 

fraction (>25 µm), with values being markedly higher (up to ~23) than in the 

sediments above and below (~8) (Figure 5.3D). The bulk samples also show 

increased ratios in the 13–23 cm layer, though not as markedly as in the coarse silt 

fraction. The 4–25 µm fractions show a slight increase in (C/N)a values within the 

13–23 cm layer, with values similar to the bulk samples, while the <4 µm fraction 

shows very little down-core variation. Lower (C/N)a values in the non-flood 

sediments may be the result of microbial processing during the transport and 

accumulation of sediments in the marine environment (Leithold & Blair 2001) or 

due to different sediment sources of the flood and non-flood sediments. 

 

Such down-core trends suggest that the clay-rich layer at 13–23 cm depth on the 

inner shelf represents the rapid deposition and preservation of a large flood event, 

possibly the result of a hyperpycnal flow emanating from the Waipaoa River. 
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With increased water depth across the continental shelf, the sediments of the mid-

shelf core (U2305) are finer than that of U2303, with at least 43% of particles in all 

of the bulk samples being finer than 25 µm (Figure 5.4A). There are two thin layers 

at 13 cm and 25 cm depth that are a little more clay-rich, with ~30% and 28% of 

each sample, respectively, being finer than 4 µm. 

 

While the OC content of the coarse silt fraction (>25 µm) of mid-shelf sediments is 

generally low (<0.3%) it shows two peaks at 13 and 25 cm depths (Figure 5.4B). 

The bulk samples, 4–25 µm and <4 µm fractions have little down-core variation, 

and the <4 µm fraction shows a slight trend of decreasing OC content with depth. 

 

Again, the greatest down-core variation in δ13C values for core U2305 is in the >25 

µm fraction, with the difference between the lightest and heaviest values being 

1.4‰ (Figure 5.4C). Values for the bulk samples, 4–25 µm and <4 µm fractions are 

generally heavier (less negative) than the >25 µm fraction, and do not show as much 

down-core variation. 

 

Mid-shelf (C/N)a ratios are highest in the >25 µm fraction (Figure 5.4D) at 13 cm 

and 25 cm depth, where values are 18.4 and 18.7 respectively. These values suggest 

an increased input of plant debris and soil carbon (Leithold & Hope 1999). Bulk 

samples and finer fractions do not show much down-core variation and (C/N)a 

values do not exceed 12.4.  

 

The two clay-rich layers at 13 and 25 cm depth in core U2305 have similar textural 

and geochemical characteristics to the flood layer preserved in core U2303, but can 

not be readily identified in hand specimen or x-radiographs. At this mid-shelf site, 

evidence of any flood events within the WSS is likely to be a lot more subtle than on 

the inner shelf. 

 

Additional particle size data were obtained for the top 9 cm of core U2305 (see 

section 3.5) for a more detailed examination of changes in particle size content and 
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to facilitate the identification of the inner shelf flood layer (U2303, 13–23 cm) if it 

extended to and was preserved on the mid-shelf.  

 

 
Figure 5.5: Particle size trend for the top 9 cm of the mid-shelf core (U2305). 

Age of the clay-rich layer is estimated from average sedimentation rates, using 137Cs. 
 

 
It is evident that there is a clay-rich layer at 7 cm depth, where the sand content 

drops to 11% and the clay reaches 38% (Figure 5.5). This is comparable to the clay 

contents of samples at 13 and 25 cm depth, which were identified as likely flood 

events (Figure 5.4), thus the layer at 7 cm may also represent a flood deposit. 210Pb 

data, combined with historical records suggest it was most likely associated with 

Cyclone Bola in March 1988. 
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Due to an increase in distance from terrestrial source, the sediment in the upper 

slope core (W697) is markedly finer than that of U2305, with at least 70% of the 

sediment in all samples being <25 µm and ~25–30% being <4 µm (Figure 5.6A). 

One thin clay-rich layer is present at 27–28 cm depth, with 88% of the sample <25 

µm and 32% <4 µm. 

 

%OC values of upper slope sediments are markedly higher in the <4 µm fraction 

than the 4–25 µm and >25 µm fractions, but there are no obvious peaks or trends 

(Figure 5.6B). There is very little down-core variation in δ13C values in the bulk 

samples, <4 µm and 4–25 µm size fractions for the upper slope core, with values 

not varying more than 1.0‰ within each fraction. The >25 µm fraction has the 

lightest δ13C values and also shows the greatest down-core variation (Figure 5.6C). 

 

Small amounts of particulate OC can have quite marked effects on (C/N)a values, 

and as in the shelf cores, the >25 µm fractions of the upper slope sediments have 

the highest (C/N)a values (~12–16) and show the greatest down-core variations 

(Figure 5.6D). The finer fractions and bulk samples show very little down-core 

variation, with all (C/N)a values being within the range of 9–11. 

 

Possible flood deposits from the Waipaoa River were not observed on the upper 

slope. This may in fact be due to the sampling interval being too coarse to identify 

discrete flood layers at this site, where the sedimentation rate is as low 0.13 cm y-1. 
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5.2.3 Clay Fraction Surface Areas and Carbon Loading 

To eliminate the influence of particle size variations, the specific surface area (SA) 

of clay particles was measured (see section 3.9.2) and the %OC normalised to the 

SA, to determine the carbon loading (OC:SA). Down-core trends in clay fraction SA 

and OC:SA for the three marine multi-cores are presented in Figure 5.7. 

 

 

Figure 5.7: Down-core trends in (A) surface area and (B) carbon loading for the 
inner shelf (U2303), mid-shelf (U2305) and upper slope (W697) clay fractions. 

 

The inner shelf core (U2303) clay fraction surface areas delineate the 13–23 cm clay-

rich (flood) layer well, with clay particle surface areas being lower than in the 

sediments above and below. This possibly reflects clay particles in the flood layer 

being coarser than those in the sediments above and below, or having different 

mineralogy. Reasons for this are unclear, but may be due to factors such as source, 

with more severe erosion during floods eroding different clay-bearing sediments, 
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and hydraulic sorting of the clay particles during transport from the river to the 

shelf. Interestingly, this trend was not evident in the Eel Shelf sediments studied by 

Leithold et al. (2005), where there was found to be no difference between the 

surface areas of clays in flood and non-flood layers. When the OC content is 

normalised to the SA (OC:SA) for the <4 µm fraction, there is not such a marked 

trend, though the highest OC:SA value (0.38) is in the middle of the flood layer, at 

19 cm depth. This differs to findings of Leithold and Blair (2001) for the Eel Shelf, 

in which clay particles in flood sediments had lower OC:SA values than those in 

non-flood sediments, which was attributed to the loss of terrestrial OC from 

particles as they entered the marine environment, and the reloading of marine OC 

during gradual sedimentation (Leithold & Blair 2001). The reason for the higher 

OC:SA of flood layer clays on the Poverty Bay shelf may be due to the markedly 

higher OC content and smaller surface areas of terrestrially-derived flood sediments 

compared to non-flood marine sediments, resulting in high OC:SA values for those 

flood layer clays. 

 

Similar to the inner shelf flood layer, clay particles in the thin clay-rich layer at 25 cm 

depth on the mid-shelf (U2305) have the smallest SA of the clay fractions for that 

core, again reflecting the presence of larger clay particles. The other layer at 13 cm 

depth does not have a particularly small SA, but does have one of the lowest OC:SA 

values within the core. This more resembles data of Leithold and Blair (2001) and 

Leithold et al. (2005). 

 

The clay fractions of samples in core U2305 generally show a decrease in SA with 

depth, ranging from ~30–23 m2 g-1. Leithold et al. (2005) observed a similar trend in 

Eel shelf sediments, and found it could not be attributed to a change in particle size 

or clay mineralogy. Rather, it was considered likely to be due to iron diagenetic 

processes, in particular, a down-core production of pyrite and loss of ferrihydrite, 

which have a higher SA. 

 

In accord with a general sediment fining across the shelf and slope, the clay 

fractions of upper slope sediments (core W697) have higher SA values (up to ~36.7 

m2 g-1) than the shelf cores, and similarly show a general decrease with core depth. 
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OC:SA values show little down-core variation, but are higher than in other cores, 

with values between ~0.40–0.55 mg C m-2. 

 

5.2.4 Organic Carbon Sources 

Simple mass balance calculations can be used to estimate the relative proportions of 

terrestrial and marine OC, but first, terrestrial and marine end-member values must 

be established. The mass balance method used in this study follows that used by 

Blair et al. (2003). The δ13C signature of the marine end-member was determined by 

plotting the %OC values of surface marine samples against the %OC multiplied by 

their corresponding δ13C (%OC∗δ13C), for bulk samples and clay fractions. The 

plots reveal a linear relationship with slope δm, providing the isotopic signature of 

modern marine OC being added to the particles (Figure 5.8). δm values are –22.3‰ 

and –19.1‰ for the bulk samples and clay fractions respectively. Ideally these two 

end-member values would have been applied to their respective sediment fractions, 

but for this study it was decided to use the mean value of –21.0‰ as the marine OC 

end-member in subsequent mass balance calculations. 

 

 

Figure 5.8: Determination of marine OC isotopic signature from bulk samples and 
clay fractions of shelf and slope sediments. 

 

The δ13C signature of the terrestrial end-member was similarly determined, using 

data for a series of bulk suspended sediment samples collected from three sites 

within the Waipaoa River catchment (Kanakanaia, Te Arai and Omapere) during 

ambient conditions. The %OC values were similarly plotted against %OC∗δ13C for 

the samples from each site, with the slope (δt) indicating the isotopic signature of 
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modern terrestrial OC being added to the particles. δt at Kanakanaia and Te Arai is 

–27.7‰, and at Omapere is –28.5‰ (Figure 5.9). From these results, a mean of –

28.0‰ was subsequently used as the terrestrial OC end-member isotopic signature. 

 

 

Figure 5.9: Determination of terrestrial OC isotopic signature, from suspended 
sediment samples collected at the Kanakanaia, Te Arai and Omapere sites. 

 

Using derived terrestrial and marine end-member values, and assuming no temporal 

change, mass balances were estimated to define relative contributions of terrestrial 

and marine OC to the shelf and slope sediments. The terrestrial fraction of the total 

%OC for each size fraction of the shelf and slope cores has been plotted (Figure 

5.10) to illustrate the greater input of terrestrial OC associated with flood sediments. 
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The pulse of terrestrial OC associated with the 13–23 cm clay-rich layer within the 

inner shelf sediments (core U2303) is well defined by the 4–25 µm and >25 µm 

fractions (Figure 5.10A). In both cases, the greatest proportion of terrestrial OC is 

in the 19 cm sample, i.e. in the middle of the clay-rich layer. The <4 µm fraction 

does not show much down-core variation in the contribution from terrestrial OC, 

ranging from 44% to 62% of the total OC content. These trends suggest that the 

source, and therefore biogeochemical characteristic of clay-sized particles on the 

inner shelf, does not vary greatly between flood and non flood conditions, and the 

greatest influx of terrestrial OC during flood events is through the transfer of coarse 

(i.e. >25 µm) partially decomposed plant matter. 

 

The character of the three flood deposits at 7 cm, 13 cm and 25 cm core depth on 

the mid-shelf (U2305) is confirmed by peaks in the terrestrial OC fraction for all 

size fractions at those depths (Figure 5.10B). The terrestrial contribution to the total 

OC is less on the mid-shelf than the inner shelf, for all size fractions. This probably 

reflects increased distance from point source resulting in enhanced replacement of 

some terrestrial OC by marine OC – a process that is facilitated by lower rates of 

burial (0.42 vs 0.52 cm y-1). 

 

The upper slope core (W697) has yet smaller contributions from terrestrial OC 

sources, with it making up less than half of the total %OC in most samples (Figure 

5.10C). The coarse silt fraction (>25 µm) again has the greatest contribution from 

terrestrial OC, with peaks at 19 cm and 37 cm, while the bulk samples and fine 

fractions show relatively little down-core variation. 
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5.3 DISCUSSION 

From the evidence presented (clay content, %OC, (C/N)a & δ13C), it is apparent 

that a flood event is preserved in the inner shelf stratigraphy. It occurred after 1955. 

Three thin flood layers are also present in the mid-shelf stratigraphy, estimated to 

have been deposited in about 1941 and 1970 and 1988, while no obvious flood 

layers have been identified on the upper continental slope. Evidence for 

hyperpycnal flows, the likely transport mechanism of large flood deposits, has not 

been identified beyond the mid-shelf within the transect of cores examined for this 

study. It is possible that either the hyperpycnal flows peter out about mid-shelf, or 

more likely, that they follow topographic lows, and the cores were taken outside of a 

favoured hyperpycnal pathway.  

 

5.3.1 Identification of flood layers 

Inner continental shelf 

Several characteristics suggest that the 10 cm thick clay-rich layer preserved on the 

inner shelf (core U2303) is a flood deposit: 

(i) The layer is sharply defined by its pale grey colour and markedly higher clay 

content (up to 95%) than surrounding sediments (Figure 5.3A). Such a particle size 

characteristic has previously been attributed to the rapid accumulation of flocculated 

sediment following a flood (Drake 1999). However, unlike the Mediterranean 

hyperpycnal deposits identified by Mulder et al. (2001), which are composed of a 

coarsening-upward unit capped by a fining-upward unit, the flood layer in U2303 

contains a slight fining-upward unit overlaid by a coarsening-upward unit, i.e. the 

flood layer is finest in the middle. This may be attributable to either current and/or 

wave-induced mixing of the flood layer following deposition (see section 5.2.1). 

(ii) Coarse silt (>25 µm) δ13C values are dominated by terrestrial sources (~–27‰), 

whereas non-flood sediments have values of ~–25‰. Mass balance calculations 

indicate a greater contribution from terrestrial OC within the clay-rich layer, 

particularly in the coarsest size fraction, which contained a significant amount of 

terrestrial plant material. 

(iii) The large amount of coarse OC (>25 µm) in a layer that is finer grained than 

surrounding sediments, and the preservation of immature plant material in the clay-

rich layer, indicates rapid emplacement and burial. 



 

- 88 - 

(iv) 210Pb data confirm that deposition of the layer was rapid (i.e. a near-vertical 

210Pb profile). 

 

Collectively, these trends indicate a rapid input of terrestrial sediment and coarse 

OC, as may be expected from a large flood event. The uppermost position of the 

layer and an estimated emplacement date of 1980 suggest it most likely resulted 

from Cyclone Bola in March 1988, a record storm in which the Waipaoa River 

delivered about three times its annual suspended sediment load in 6 days, inundating 

the continental shelf with mud (Foster & Carter 1997). Anecdotal evidence suggests 

the mud was probably emplaced as a hyperpycnal flow, although the complex grain 

size distribution is not totally consistent with hyperpycnites, reflecting post-

depositional reworking. 

 

By using the age limit provided by 137Cs at the base of core U2303, and assigning the 

flood layer to Cyclone Bola in 1988, it can be illustrated that the sedimentation rate 

was markedly higher following Cyclone Bola than it was previously. With the 23–34 

cm section of the core being constrained by ages of 1988 and 1955, 11 cm of 

sediment was deposited in the 33 year period, giving a sedimentation rate of ~0.3 

cm y-1. Similarly, the upper 13 cm of the core was deposited between 1988 and 

2001, yielding a higher sedimentation rate of ~1 cm y-1. Such an increase in 

sedimentation supports the finding of Trustrum et al. (1999) and Hicks et al. (2000) 

that the Waipaoa River suspended sediment load remained elevated for several years 

following Cyclone Bola. This was due to the remobilisation of sediment held in 

temporary storage sites (e.g. debris tails, colluvial footslopes and unstable river 

banks). 

 

Further evidence for the identification of the flood layer is provided by its 

biogeochemical similarity to sediment also deposited on the floodplain during 

Cyclone Bola (Table 5.3). 
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Table 5.3: Comparison of %OC, δ13C and (C/N)a for bulk samples and clay 
fractions of flood sediments (shaded boxes) and non-flood sediments (no shading) 

within the floodplain and shelf cores. 
 

 
Year of 

deposition 
Bulk 
%OC 

Bulk   

δδδδ13C 

Bulk 
(C/N)a 

<4 µµµµm 
%OC 

<4 µµµµm 

δδδδ13C 

<4 µµµµm 
(C/N)a 

Floodplain 1988 (Bola) 0.49 -25.09 12.6 1.32 -26.23 10.6 

U2303 19 cm 1988 (Bola) 0.96 -25.65 11.9 0.96 -25.09 9.4 

U2305 13 cm ~1970 0.63 -24.78 10.8 0.97 -24.52 9.4 

U2305 25 cm ~1941 0.78 -25.01 12.2 0.91 -24.56 10.6 

U2303 31 cm Post-1954 0.17 -25.29 8.1 0.84 -25.33 8.6 

U2305 28 cm ~1934 0.50 -24.45 9.6 0.95 -24.22 10.4 

 

When comparing bulk samples from the Cyclone Bola layers on the floodplain and 

in core U2303 (19 cm), it is apparent that the marine sample has higher %OC and 

slightly lighter δ13C, while in the clay fractions it is the floodplain sample that has 

the higher %OC and lighter δ13C. This probably reflects the greater input of coarse 

particulate OC to the bulk samples. If this is the case, it supports the value of using 

clay sized particles rather than bulk samples for determining the nature and history 

of the OC (this study; Blair et al. 2003). Though the coarse silt fractions can contain 

reasonable proportions of the particulate OC associated with both floodplain and 

marine samples, the characteristics of that size fraction have not been investigated in 

any detail for this study. 

 

A SPOT image taken 18 days after Cyclone Bola (Figure 5.11) outlines the Waipaoa 

plume, which has moved anticlockwise around the coast and across the entrance of 

Poverty Bay due to a gyre within Poverty Bay (L Carter 2005, pers. comm.). It also 

depicts wisps of suspended sediment extending directly offshore, before being 

entrained and eventually merging within a northeastward turbid flow, the seaward 

boundary of which is 5 km offshore (Carter & Gomez In Review). This image 

illustrates the influence of waves and offshore currents in the resuspension and 

redistribution of flood sediments, at least in shallow coastal waters. 
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Figure 5.11: SPOT image of Poverty Bay, taken 18 days after Cyclone Bola 
(from Carter & Gomez (In Review)). 

 

Foster and Carter (1997) reported anecdotal observations that Cyclone Bola resulted 

in a fluid mud layer up to ~2 m deep being deposited onto the continental shelf, yet 

in core U2303 only 10 cm of the flood layer remains. Although a certain amount of 

compaction cannot be ruled out, the fact that such a small proportion of the layer 

remains also potentially provides further evidence for the erosion and reworking of 

sediments through wave action, or remobilisation of the fluid mud off the shelf. The 

much finer layer (~1 cm) preserved on the mid-shelf (U2305) also suggests that the 

probable Bola hyperpycnal flow may have petered out as it moved offshore from 

the river mouth, or most bypassed the shelf into Poverty Bay re-entrant. Wright et 

al. (1986) suggested that hyperpycnal plumes might be more confined than 

hypopycnal plumes, which can expel sediment great distances within extensive 

surface plumes (see data in Carter & Gomez (In Review)). 

 



 

- 91 - 

Mid continental shelf 

The layers at 7 cm, 13 cm and 25 cm depth on the mid-shelf (core U2305) have 

some characteristics similar to that on the inner shelf. The layers are finer than the 

rest of the core and the %OC of the bulk sample is greatest at these depths. Bulk 

samples also have stronger terrestrial (more negative) δ13C signatures than the non-

flood sediments, e.g. for core U2303 the flood layer has a value of –25.65‰, 

compared to –25.29‰ for the non-flood sediment, and for U2305 the layers at 13 

and 25 cm have δ13C values of –24.78‰ and –25.01‰ respectively, compared to 

the non-flood value of –24.45‰ (Refer Table 5.3 and Figures 5.3 & 5.4). 

 

The (C/N)a values of bulk samples show good differentiation between the flood 

and non-flood sediments, with the Cyclone Bola floodplain deposit and flood layers 

in cores U2303 and U2305 having values between 10.8 and 12.6, while non-flood 

samples from cores U2303 and U2305 have lower (C/N)a values of 8.1 and 9.6 

respectively. The higher values are probably associated with the increased input of 

plant material during the flood. These trends suggest the clay-rich layer in U2303 

and the fine-grained layers in U2305 represent increased inputs of terrestrial 

sediment and plant matter. The higher (C/N)a values of the bulk samples, 

compared to those of the clay fractions, suggest that organic matter intimately 

associated with the clay particles may be protected from decomposition, compared 

to the particulate organic matter found to be most prevalent in the >25 µm fraction 

of flood deposits. 

 

Upper continental slope 

There is little evidence for flood deposits on the upper continental slope (W697). 

However, several comments are pertinent. The graphs of %OC and δ13C (Figure 

5.6) show fewer perturbations than those of the mid-shelf cores (i.e. the variations 

are moderated as the sediment is transported across the shelf to the upper slope and 

deposited more slowly). %OC is higher in the <4 µm fraction (due to the greater SA 

available for OC adherence) than the 4–25 µm and >25 µm fractions, but there are 

no obvious peaks or trends in any of the 3 size fractions. The sediment at 17–18 cm 

depth has %OC and δ13C values that are slightly more terrestrial in character than 
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the remaining samples, though to a much lesser extent than for the clay-rich layers 

in cores U2303 and U2305. 

 

Although a Cyclone Bola flood layer has been identified on the inner shelf (U2303, 

13–23 cm) and mid-shelf (U2305, 7 cm) it has not proved possible to trace it onto 

the continental slope. This may be due to several factors: Firstly, any flood-derived 

fluid mud layers may be channelled off the continental shelf by gullies, thus 

bypassing the upper slope core site, as is the case with the Eel Canyon (Mullenbach 

et al. 2004). Secondly, being further from source, flood discharges are likely to run 

out of energy and the flood layer peter out before reaching the slope. Thirdly, the 

upper slope site is in the pathway of the East Cape Current, which may prevent 

some burial and preservation of flood deposits. And fourthly, sedimentation on the 

continental slope can be highly variable, due to the nature of canyon incision, mass 

movement and other slope processes. 

 

 

5.4 CONCLUSIONS 

Continental margins are important reservoirs in the global carbon cycle, especially 

those with large riverine inputs (Mackenzie et al. 1998) such as shelves of small 

mountainous river systems (Milliman & Syvitski 1992; Ludwig et al. 1996; Leithold 

& Hope 1999; Lyons et al. 2002). 

 

Situated on the active collisional East Coast Continental Margin, the Waipaoa River 

delivers an average ~15 Mt y-1 of suspended sediment. Most is dispersed by 

hypopycnal flows, but intermittently by hyperpycnal flows also. In March 1988, 

extreme flood river discharge associated with Cyclone Bola most likely produced a 

hyperpycnal plume, which is recorded as a ~10 cm thick layer at 13–23 cm depth on 

the inner shelf and a ~1 cm thick layer at 7 cm depth on the mid-shelf.  

 

The flood layer deposited rapidly and was also quickly buried by marine sediments. 

Accordingly the associated OC has an isotopic signature characteristic of its 

terrestrial source. By comparison, OC associated with sediments above and below 

the flood layer have a less dominant terrestrial signature, due to more time spent in 
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the seabed surface mixed layer and greater exposure to local organic productivity 

(Leithold & Hope 1999). 

 

While flood events such as Cyclone Bola have a large impact on sediment transport 

and deposition, the highly erodible rock types and active gullies of the WSS result in 

the river having a high suspended sediment load under all conditions. Therefore, the 

ambient conditions are also important as they contribute a far greater proportion of 

the sediments to the marine environment in the longer timeframes than the 

infrequent large events such as Cyclone Bola. However, the amount of terrestrial 

OC that is transported offshore in a single large event has been shown to be 

significant, and if future climate changes result in more frequent storm events, more 

terrestrial OC will be transferred and buried offshore. 
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“An ocean refuses no river.” 
Sheila Chandra. 

 
CHAPTER 6: TRANSFORMATION OF ORGANIC CARBON 
SIGNATURE ACROSS THE CONTINENTAL SHELF & SLOPE 
 
6.1 INTRODUCTION 

It has been mooted that continental margins, particularly those dominated by large 

rivers, are the greatest storage sites of particulate organic carbon (POC), with an 

estimated 80–85% of global carbon (C) burial currently occurring in continental 

margins, mainly in river-dominated ocean margin environments (Berner 1982; 

Hedges & Keil 1995). But as expressed in Chapter 5, the continental shelves 

offshore from small mountainous river systems are also important reservoirs of 

organic carbon (OC). They are dynamic regions that receive inputs of both 

terrestrially and marine sourced OC, with rivers providing the major conduits for 

the transfer of terrestrial OC to marine sediments (McKee 2003). However, the 

long-standing issue still remains as to why a large amount of terrestrial OC is 

exported at continental margins yet is not easily recognisable in the marine 

environment. 

 

While the transport of terrestrial OC from land to ocean has been well studied (e.g. 

Milliman et al. 1984; Schubert & Stein 1996; Hedges et al. 1997; Keil et al. 1997; 

Leithold & Hope 1999; Schlünz & Schneider 2000; Bauer et al. 2001; Leithold & 

Blair 2001; McKee 2003; Blair et al. 2003; Leithold et al. 2005), its fate at river-

dominated continental margins remains inadequately understood, due to OC 

sources at the land-ocean interface being poorly quantified and controls on 

depositional processes (remineralisation, export, burial) and relative fluxes being 

poorly understood and constrained (McKee 2003). It has been estimated that up to 

430 x 1012 g C yr-1 of terrestrial OC are transported to the world’s oceans, though as 

little as ~10% is subsequently buried in marine sediments (Schlünz & Schneider 

2000). 

 

This chapter integrates results from Chapters 4 and 5, which indicate that some 

flood events emanating from the Waipaoa River can be identified within the 

continental shelf sediments (Chapter 5). The transport of large quantities of 



 

- 95 - 

terrestrial sediment and associated OC to the shelf and slope make the Waipaoa 

Sedimentary System (WSS) an ideal location for studying the transformation of 

terrestrial OC once discharged to the marine environment. Using a transect of cores 

across the Poverty Bay continental shelf and slope to track the transfer of sediment 

and OC (see Chapter 3), this section of the study addresses two important research 

questions: 

• Is terrestrial OC lost or preserved as sediment is transported from its source 

to its marine sink? 

• What changes in biogeochemical signatures occur at various OC depositional 

sites along the source to sink system that identify contributions from marine 

sources? 

 

 

6.2 RESULTS 

6.2.1 Offshore Trends 

To determine changing OC characteristics at various depositional sites, correlative 

sediments from the floodplain, shelf and slope were analysed for %OC, δ13C, 

(C/N)a and OC:SA. The floodplain sample was collected straight after its 

deposition in August 2002, while the shelf and slope samples represent the 1 cm 

surface layer of the 6 cores collected from a range of water depths. Results are 

presented in Figure 6.1. 
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The surface transect generally shows an increasing OC content with increasing 

water depth (Figure 6.1A). Clay fractions have greater OC contents than the bulk 

samples, with highest values (1.51%) on the mid-shelf (56 m water depth) and then 

decreasing slightly to 1.36% on the mid-slope (1428 m). The bulk samples show a 

steady increase in OC content, from 0.32% on the inner shelf (27 m) to 1.19% on 

the mid-slope (1428 m). 

 

δ13C values display a consistent change with increasing water depth, becoming 

heavier (less negative) with distance across the continental shelf and slope (Figure 

6.1B). Values for the bulk sediment samples and clay fractions are similar, ranging 

from –25.1‰ on the floodplain to –21.9‰ on the mid-slope (1428 m) for the bulk 

samples, and –26.2‰ to –21.6‰ for the clay fractions. The isotopic signatures for 

bulk samples and clay fractions become more similar with distance offshore, most 

likely reflecting a fining and homogenisation of sediment as it is transported further 

across the continental shelf and slope. 

 

(C/N)a and OC:SA values were calculated for the transect samples (bulk samples 

and clay fractions) to further assist the identification of changing OC characteristics 

across the margin. Results are presented in Figure 6.2. 
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(C/N)a values for both bulk surface samples and their clay fractions show a 

decrease with distance across the continental shelf and slope (Figure 6.2A). The bulk 

samples have the greatest variation, ranging from 14.5 to 9.1, while clay fraction 

values vary between 10.6 and 8.2. 

 

The trends in %OC are largely influenced by particle size, i.e. much of the offshore 

trend of increasing %OC is due to the fining of the sediments. This particle size 

effect was attenuated by using the OC:SA. Loadings were calculated for both the 

bulk samples and clay fractions of the transect surface samples; although not 

consistent, both show an increase with distance across the shelf and slope (Figure 

6.2B). Values for the clay fractions (0.29–0.53 m2 g-1) are generally greater than 

those for the bulk samples (0.22–0.42 m2 g-1). 

 

6.2.2 Organic Carbon Source Determination 

As outlined in Chapter 5, simple mass balance calculations were used to estimate the 

relative proportions of terrestrial and marine OC in the shelf and slope sediments 

from the WSS, using δ13C values of –28‰ and –21‰ for the terrestrial and marine 

end-members, respectively. Figure 6.3 illustrates the riverine and marine proportions 

of the total %OC for both the bulk surface samples and their clay fractions. It 

indicates that as the %OC increases with water depth and distance offshore, so does 

the proportion of marine OC, as determined by mass balance calculations. 

Relatively, the clay fractions show a more rapid increase in the proportion of marine 

OC than the bulk sediments. 
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6.2.3 Carbon-14 Analyses 

The use of δ13C alone as an OC provenance indicator can be problematic due to 

overlapping signatures of potential OC sources, whereas using multiple carbon 

isotopes allows more specific tracing of the OC (Raymond & Bauer 2001). Thus 14C 

was used as a second tracer to help distinguish and determine the varying 

contributions from terrestrial and marine OC sources. 14C has also proved a useful 

tracer in ocean margin sediments for determining the contributions made by both 

young and old sources of terrestrial OC (Bauer et al. 2001; Blair et al. 2003) thus 

making it possible to determine whether old terrestrial OC (e.g. kerogen from 

bedrock) is lost, or replaced by more modern OC from terrestrial or marine sources 

(or both) as the sediment passes through the WSS. 

 

Because of its age (typically >105 years), kerogen contains no detectable 14C, thus 

the measurement of 14C in samples can be used as an estimate of the amount of 

kerogen in a sample. Some end-member 14C values have been determined for the 

WSS, though have not yet been well constrained. The bedrock has a ∆14C value of -

1000 (fraction modern = 0), while plant C and modern marine C values are 

estimated to be about the same as the atmosphere, which is ~ +40‰ (fraction 

modern = ~1.04) (N Blair 2005, pers. comm.). 

 

The four WSS shelf and slope samples analysed for 14C for this study were bulk 

surface samples from the shelf and upper slope core sites (Figure 3.1). In 

conjunction with the δ13C data, the ∆14C values were used to determine the 

contributions of ancient terrestrial OC (dominantly kerogen), modern terrestrial OC 

and modern marine OC to the total carbon content of shelf and slope surface 

sediment samples (Figure 6.5). 
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Once again, the trend of increasing %OC with water depth (Figure 6.5A) is largely 

influenced by the offshore fining of sediment. This particle size effect is attenuated 

by using OC:SA values rather than %OC, and a truer indication of the relative OC 

sources is obtained. Offshore trends are not so obvious in the OC:SA graph (Figure 

6.5B), but it indicates that the marine fraction consistently increases, with loadings 

rising from 0.05 on the inner shelf to 0.25 on the upper slope. This is further 

evidence that marine OC is being added to the particles as they are deposited across 

the shelf and slope. From the mid-shelf to the upper slope, the modern terrestrial 

loadings decrease slightly, from 0.11 (56 m) to 0.07 (113 m) to 0.04 (1198 m). This 

would suggest that some modern terrestrial OC is being lost as particles deposit 

from the mid-shelf to the upper slope. 

 

The small differences in OC:SA measurements between the mid-shelf (56 m), outer 

shelf (113 m) and upper slope (1198 m) (Figure 6.5B) suggest there is negligible loss 

of kerogen from the system, at least offshore from the mid-shelf. 

 

The modern terrestrial components of sediment OC decrease offshore, while the 

modern marine component increases and there is no loss of kerogen beyond the 

mid-shelf (Figure 6.5B). The kerogen content is markedly higher on the inner shelf 

(70.3%) than at the other three sites (28.8% at the mid-shelf, 32.9% on outer shelf 

and 33.5% on upper slope). This may be because it is closest to the source of 

kerogen-rich bedrock within the WSS. 

 

6.2.4 Biomarkers 

Biomarkers are organic compounds with a chemical structure that has been formed 

by living organisms and is sufficiently stable to be recognised in materials such as 

suspended particles, sediments, and petroleum. Biomarkers include stable carbon 

and nitrogen isotopes, lignin oxidation products, and lipid biomarker compounds 

(Canuel & Zimmerman 1999). For this study, three classes of lipid biomarker 

compounds were used (sterols, fatty acids and alcohols), alongside bulk parameters 

(%OC, δ13C, (C/N)a) to determine the relative inputs from terrestrial and marine 

OC sources (see Chapter 3). In order to reduce the effects of particle size 

differences while determining the importance of different sources relative to 
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sediment OC, biomarker analyses were normalised to total OC content (E. Canuel 

2004, pers. comm.). 

 

For biomarker analyses of WSS sediments, the plant sterols used included 24-

methylcholest-5-en-3b-ol (campesterol), 24-ethylcholesta-5,22-dien-3b-ol 

(stigmasterol) and 24-ethylcholest-5-en-3b-ol (Figure 6.6). They are the dominant 

sterols in higher plants, however they are not exclusive to plants and can occur in 

some species of algae and phytoplankton. 

 

 
Figure 6.6: Concentrations of plant sterols normalised to sediment OC. 

 

As illustrated in Figure 6.6, the concentration of plant sterols was highest in the 

floodplain sediment, having more than twice the concentration of any of the marine 

surface samples. This is not unexpected, given the abundance of vascular plants in 

the floodplain environment. The lower concentrations in marine sediments indicate 

a much smaller contribution of organic matter from vascular plants, and also 

possibly a small contribution from algae and/or phytoplankton. The highest 

concentration observed in the marine surface sediments, on the mid-shelf (56 m), 

may suggest preferential accumulation of terrestrially sourced sediment on the mid-

shelf, as was indicated by the higher accumulation rate reported in Chapter 5. 
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Long-chain alcohols are another good biomarker of vascular plants, occurring in 

plant waxes. Figure 6.7 illustrates the concentrations of long-chain (C22-C28) alcohols 

normalised to sediment OC, for the transect of WSS sediments. 

 

 
Figure 6.7: Concentrations of long-chain (C22-C28) alcohols normalised to sediment 

OC. 
 

Similar to the plant sterol trends, Figure 6.7 illustrates an abundance of vascular 

plant organic matter within the floodplain sediment, and lower levels within the 

continental shelf and slope surface sediments. Of the marine surface samples, the 

upper slope site (1198 m) has the greatest concentration of terrestrially derived OC, 

though once again the mid-shelf site (56 m) also shows elevated concentrations. The 

high concentration on the upper slope may in fact indicate that some externally 

sourced sediment is being transported from outside the WSS by the East Cape 

Current (ECC), and is not actually representing the offshore transport of sediment 

within the WSS. 

 

The presence of dinoflagellate sterols within sediments indicates OC contributions 

from marine phytoplankton. Results are presented in Figure 6.8.  
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Figure 6.8: Concentrations of dinoflagellate sterols normalised to sediment OC. 

 

As expected, only the marine WSS sediments contain OC that is sourced from 

phytoplankton. The greatest concentration is on the mid-shelf (56 m), again where 

the accumulation rate is highest, and offshore from there concentrations decrease 

with distance. Once again, this trend might result from the increased influence of 

ocean currents on the outer shelf and slope. 

 

Derived from marine algae, diatom sterols were used as an indicator of the marine-

sourced OC within the WSS sediments. Results are presented in Figure 6.9. 

 
Figure 6.9: Concentrations of diatom sterols normalised to sediment OC. 
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Concentrations of the diatom sterols show a fair amount of variation within the 

WSS transect of floodplain and surface marine sediments, with no obvious trend 

(Figure 6.9). The concentration is greatest on the mid-shelf (56 m), most likely 

associated with the higher accumulation rate, while the floodplain and inner-mid 

shelf (36 m) sediments exhibit the lowest concentrations. 

 

To assess the relative importance of terrestrial plant and marine algal contributions 

to sediment OC, the ratio of plant-to-diatom sterols was calculated (Figure 6.10).  

 

 
Figure 6.10: Ratio of plant-to-diatom sterols. 

 

The highest ratio (12.7) was measured in the floodplain sample (Figure 6.10), while 

offshore samples all had ratios of between 1.3 and 1.9, though there is not a simple 

offshore change in the ratio. These ratios indicate that terrestrially sourced OC is 

present within sediments right across the continental shelf and slope.  

 

Occurring in the waxes of vascular plants, long-chain (C22–C32) fatty acids are a 

good terrestrial biomarker, and were determined for the WSS transect (Figure 6.11).  
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Figure 6.11: Concentrations of long-chain (C22-C32) fatty acids normalised to 

sediment OC. 
 

The long-chain fatty acids decrease in concentration across the continental margin. 

That they persist to the mid-slope (1428 m) indicates that terrestrially sourced OC is 

carried and deposited at these distal sites (Figure 6.11). 

 

While long-chain fatty acids are almost exclusively terrestrial in origin, short-chain 

saturated fatty acids are commonly related to a marine source. However, short-chain 

fatty acids are also found in lacustrine/freshwater environments, so they cannot be 

used alone to distinguish between aquatic and marine inputs. 
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Figure 6.12: Concentrations of short-chain (C12-C16) saturated fatty acids 

normalised to sediment OC. 
 

Results suggest an irregular decrease in short-chain fatty acids across the WSS 

transect (Figure 6.12) except for slightly elevated concentrations on the mid-shelf 

(56 m) and mid-slope (1428 m). 

 

The ratio of terrestrial to aquatic fatty acids, normalised to sediment OC, was 

calculated as the ratio of long-chain (plant) fatty acids to short-chain (algal/bacterial) 

fatty acids. A ratio of less than one signifies the dominance of aquatic organic 

matter; a ratio of one signifies equal contributions of fatty acids from both 

terrigenous and aquatic sources; and a ratio greater than one indicates a dominance 

of terrigenous organic matter. Trends for sediments analysed from the WSS are 

illustrated in Figure 6.13. 
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Figure 6.13: Ratio of terrestrial-to-aquatic fatty acids normalised to sediment OC. 

 

The resultant graph (Figure 6.13) illustrates a dominance of terrestrially sourced OC 

in the floodplain and upper continental slope (1198 m) sediments, while aquatic 

organic matter dominates in all other offshore surface samples.  

 

While likely spatial variation and possible effects from differences in the 

susceptibility of these biomarkers to degradation need to be considered, the 

combination of trends illustrated by the range of biomarkers can be used to make 

some inferences about the changes in OC composition within the WSS. Several of 

the biomarkers indicate a general increase in marine-sourced OC and a concomitant 

decrease in terrestrially sourced OC with distance from the Waipaoa River across 

the continental shelf and slope. Although it does decrease offshore, the biomarker 

analyses also indicate that the terrestrial OC persists out to the mid-slope, with 

several of the biomarkers suggesting preferential accumulation on the outer shelf 

and upper slope. 
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6.3 DISCUSSION 

The results of this study indicate that with increasing distance offshore from the 

Waipaoa River, sediments generally exhibit increased %OC, heavier δ13C values, a 

decrease in (C/N)a values and an increase in OC:SA. The δ13C mass balances 

suggest that the proportion of marine-sourced OC increases at the expense of 

terrestrially sourced OC, and the 14C mass balances highlight the persistence of 

kerogen across the shelf and slope and confirm at least some replacement of 

modern terrestrial OC by modern marine OC. 

 

It has been hypothesised that continental shelves are the sites of active exchange 

between terrestrial and marine OC sorbed to mineral grains (Leithold & Hope 

1999). This study has found that the concentration o
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as soils, lowland storage sites, the river, water column and surface marine sediments. 

This also results in the POC having a bimodal age distribution (modern and ancient) 

which has been suggested by Blair et al. (2004) to be typical for short, steep, high 

sediment yield systems. 

 

This study has established that the kerogen content on the inner shelf is more than 

double that on the mid-shelf, outer shelf and upper slope. This suggests the 

proximity of the inner shelf to the kerogen-dominated sediment source, with the 

dominance of kerogen also resulting in a relatively small fraction of modern 

terrestrial OC on the inner shelf. Kerogen prevalence, in conjunction with lower 

%OC and OC:SA values indicate that inner shelf sediment is derived more from 

gully-eroded bedrock than surface-wash material and soils, which contain greater 

quantities of modern terrestrial OC. 

 

It may also reflect the differences in hydraulic conditions influencing the transport 

and deposition of OC on the shelf. As kerogen is denser than modern plant 

material, it is likely to remain in the shallower and more turbulent zones, whereas 

the light plant material will be easily winnowed out. As the shelf sediments become 

finer with distance offshore, the proportion of kerogen changes very little, reflecting 

its persistence as sediments are transported across the shelf to the upper slope.  

 

A further explanation for the high kerogen content is that the inner shelf retains 

flood deposits better than other shelf and slope sites where the flood signal 

becomes progressively weaker (see Chapter 5).  

 

The 14C mass balances and some biomarkers show increased kerogen contents on 

the outer shelf and upper slope. The reason for this is unclear, but may be due to 

the preferential accumulation of kerogen-rich sediments at these locations due to 

the influence of ocean currents. It appears that the ECC may be transporting 

terrestrially dominated sediment to the upper slope site (W697) from outside the 

WSS, also illustrated by some of the biomarker trends (L Carter 2005, pers. comm.). 

Carter & Gomez (In Review) illustrate that suspended sediment discharged by the 

Waipaoa River generally moves anticlockwise around Poverty Bay before emerging 
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onto the continental shelf, from where it is moved along the inner-mid shelf to the 

northeast by the Wairarapa Coastal Current (reinforced by the flood tide and 

occasional direct wind stress). The seaward edge of the northeast plume is entrained 

by the ECC, which facilitates transport towards the shelf edge. Furthermore, 

Stephens et al. (2001) indicates an across-shelf benthic flow which may shift 

sediment to the shelf and slope. Finally, hyperpycnal flows are a further mechanism 

for transporting the kerogen-rich sediments as far as the outer shelf and upper 

slope. 

 

Biomarkers as indicators 

For this study, three classes of lipid biomarker compounds were used (sterols, fatty 

acids and alcohols) alongside bulk parameters (%OC, δ13C, (C/N)a) to determine 

the relative inputs from terrestrial and marine OC sources. For the most part, sterols 

and long-chain alcohols are relatively stable, and within the fatty acids (FA) group, 

stability increases with increasing chain length (i.e. long-chain FA are more stable 

than short-chain FA) (E Canuel 2005, pers. comm.). It has also been established that 

on a molecular basis, fatty acids exhibit the widest range in degradation, and that 

rates for individual compounds can generally be related to their biological source 

(Canuel & Martens 1996). Fatty acids derived from phytoplankton had higher 

degradation rates than the long chain fatty acids derived from vascular plants, while 

bacterial fatty acids showed the most variability, possibly due to their production 

within the sediments. Such source-related trends were found to be less apparent for 

the sterols (Canuel & Martens 1996). This study confirms the resistance of the 

terrestrially-sourced biomarkers (plant sterols, long chain alcohols and long-chain 

fatty acids) with their preservation at depositional sites across the continental shelf 

and slope. The use of biomarkers in combination with other techniques has also 

greatly strengthened their value for this study. 

 

The biomarker analyses of surface samples from the WSS transect illustrate three 

main points. Firstly, they support δ13C and ∆14C findings that terrestrial OC is being 

transferred across the continental margin. This is well illustrated by the findings that 

plant sterols, long chain alcohols and long chain fatty acids (biomarkers indicative of 

vascular plants), were present at each of the shelf and slope sites, persisting as far as 
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the mid-slope. In support of these findings, the ratio of plant-to-diatom sterols also 

indicate that terrestrial OC is present in sediments right across the continental shelf 

and slope.  

 

Secondly, biomarkers suggest some preferential accumulation on the mid-shelf. This 

was illustrated by the concentrations of plant sterols, long chain alcohols, 

dinosterols, diatom sterols and short chain fatty acids being markedly higher in the 

mid-shelf surface sediment than other transect sites. The increased concentrations 

of plant sterols and long chain alcohols is most likely due to the higher 

sedimentation rate at this site, resulting in a greater input of terrestrially derived 

sediment which would also favour better preservation of terrestrial OC due to rapid 

burial. Plant sterols can also occur in some species of phytoplankton, and with the 

dinosterols, diatom sterols and short chain fatty acids all indicative of marine 

sourced OC, the increased concentrations of all of these biomarkers on the mid-

shelf suggest that input from phytoplankton is greatest at this site, which again may 

be due to the influence of ocean currents. 

 

Thirdly, biomarkers suggest the introduction of sediment and associated OC from 

the north via the ECC. This was illustrated by both the increased concentration of 

long chain alcohols and a high ratio of terrestrial to aquatic fatty acids on the upper 

continental slope, which lies under the path of the ECC. 

 

While likely spatial variation and possible differences in the susceptibility of the 

biomarkers to degradation need to be considered, the combination of trends 

illustrated by the biomarkers support the interpretations from %OC, (C/N)a, 

OC:SA, δ13C and ∆14C measurements across the continental margin. 

 

OC Transformations 

The exchange of OC within the marine environment is prompted by a combination 

of physical, biological and chemical processes. The introduction of marine OC may 

proceed via the incorporation of water borne debris into the sediment matrix, 

followed by its partial reprocessing by infauna and microbes. The newly exposed 

terrestrial OC associated with the sediment is vulnerable to enzymatic attack, 
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photolytic oxidation, and desorption, in a way similar to the loss of POC from soils 

as a result of agricultural tillage (Blair et al. 2004), thus resulting in the loss of 

modern terrestrial OC. 

 

If the sediment particles remain in the water column and/or seabed surface mixed 

layer for a sufficient (yet undetermined) length of time, they can potentially lose 

more of their terrestrial OC than if they are buried quickly. The rapidly deposited 

and buried flood layer on the inner shelf illustrates this well, with its strong 

terrestrial signature having been preserved between sediments which are 

characteristically marine. As discussed, the surface sediments at the inner shelf site 

indicate that generally the deposition of modern terrestrial OC is low. Average 

accumulation rates presented in Chapter 5 (Table 5.1) decrease with distance across 

the shelf and slope, and in conjunction with biogeochemical process occurring in 

the water column and seabed surface mixed layer, are likely to influence the 

preservation or loss of terrestrial OC in the marine environment. It has already been 

demonstrated that the rapid accumulation and burial of sediment on the inner shelf 

resulted in the preservation of terrestrially-sourced OC, while slower sediment 

accumulation on the upper slope (0.13 cm y-1) gives greater opportunity for the 

processing of OC whilst sediment is in the water column and seabed surface mixed 

layer, and has resulted in the replacement of some terrestrial OC with marine OC 

(Blair et al. 2004; McKee et al. 2004; Leithold et al. 2005). 

 

The addition of marine-sourced OC will also be influenced by its supply and 

availability, such as through plankton productivity. Carter et al. (2002) suggested that 

both the ECC and Wairarapa Eddy improve local nutrient levels and production, 

with the ECC transporting upwelled water from the East Cape and the Wairarapa 

Eddy possibly being a zone of elevated plankton productivity. This is also indicated 

by the increased concentration of dinoflagellate sterols and diatom sterols beyond 

the mid shelf. The greater influences these currents have on the continental slope 

are likely to be another reason for the greater input of marine OC with distance 

across the continental shelf and slope. 
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6.4 CONCLUSIONS 

By investigating the biogeochemical characteristics of individual size fractions in 

addition to bulk sediments, it has been possible to track the changes in OC sources 

as sediment is transported to depositional sites offshore from the Waipaoa River. 

This study has determined that: 

(i) Very little kerogen is lost from the WSS sediments following their 

discharge to the marine environment, and it remains essentially unaltered, 

being preserved as far offshore as the mid-slope. 

(ii) Sediments lose some of their terrestrially sourced OC as they are 

processed at various depositional sites across the continental shelf and 

slope. 

(iii) There is a concurrent addition of marine sourced OC to the particles, 

such that the sediments gain a stronger marine biogeochemical signature 

with distance. 

 

Thus it is suggested that New Zealand’s East Cape Continental Margin (ECCM) is 

typical of those dominated by large river systems, receiving considerable inputs of 

both terrestrially and marine sourced OC, and resulting in the storage of reasonable 

amounts of OC in continental shelf and slope sediments. However, the issue of 

terrestrial OC not being recognisable in the marine environment has not been 

experienced in the WSS, with evidence that while some terrestrially sourced OC is 

lost, a reasonable proportion is preserved as far offshore as the mid-slope. 
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 “It is a good morning exercise for a research scientist 
to discard a pet hypothesis every day before breakfast. 

It keeps him young.” 
Konrad Lorenz. 

 
CHAPTER 7: ORGANIC CARBON TRANSFORMATIONS AND 
CONCEPTUAL MODELLING 
 

7.1 INTRODUCTION 

It has recently been estimated that mountainous Pacific Rim islands may contribute 

up to 40% of the global land to ocean sediment flux (Farnsworth & Milliman 2003) 

and 35% of the POC flux (Lyons et al. 2002). New Zealand’s Waipaoa River is 

representative of those draining small mountainous catchments, with a high annual 

POC yield (~86.7 Kt), of which ~4–9% is sequestered on the floodplain (Gomez et 

al. 2003; Gomez & Trustrum 2005). This illustrates that the Waipaoa River is very 

efficient at transporting terrestrial POC to the ocean. 

 

In this chapter, evidence presented in the earlier chapters for the transfer and 

preservation of terrestrial OC from terrestrial source to marine sink, and the 

biogeochemical changes it undergoes in depositional environments from the 

floodplain to the continental slope, is used to provide a conceptual framework 

linking some of the key processes. 

 

 

7.2 KEY FINDINGS 

While one of the aims of this study was to establish a benchmark biogeochemical 

signature for river flood events, the variable signatures of overbank deposits on the 

Waipaoa River floodplain has prevented such a signature being determined (see 

Chapter 4). However, both terrestrial and marine end-member δ13C signatures have 

been estimated (–28‰ and –21‰ respectively), and used in mass balance equations 

to define the relative contributions of terrestrial and marine OC in shelf and slope 

sediments (see Chapter 5). 

 

Previous studies (Gomez et al. 2003) established that the McPhail’s bend section of 

the Waipaoa River floodplain plays a minor role in the modulation of OC transfers 
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within the Waipaoa Sedimentary System (WSS), with total OC sequestration only 

~4% of the estimated riverine POC flux. However, if all of the floodplain areas in 

the entire Waipaoa catchment were considered, they would have a greater 

modulating effect on OC transfers to the ocean. 

 

Investigations of WSS marine sediments indicate that during Cyclone Bola the 

extreme river discharge is likely to have produced a hyperpycnal plume, part of 

which is preserved as a ~10 cm thick layer on the inner shelf and a ~1 cm thick 

layer on the mid-shelf (Figures 5.3 and 5.4). The flood layer contains a significant 

amount of terrestrial OC (up to 86% of OC in >25 µm fraction) which was 

subsequently buried by normal marine deposits (in which ~60% of OC in >25 µm 

fraction is terrestrial), thereby preserving its strong terrestrial flood signature. 

However, the importance of ambient conditions (high frequency/low magnitude 

events, i.e. river discharge <1800 m3s-1 at McPhail’s bend) to sediment and OC 

accumulation in the marine environment over long timeframes (months to years) is 

also apparent. Over such timeframes, flood events could potentially dominate 

sediment and OC sequestration on the inner shelf, while ambient conditions 

dominate seaward of the mid-shelf. 

 

Carbon loading (OC:SA) and 14C data have revealed the contributions of kerogen, 

modern terrestrial OC and modern marine OC to the total OC of shelf and slope 

surface sediments. It has been established that there is very little kerogen lost from 

the WSS sediments following their discharge to the ocean, and it is preserved across 

the margin to the mid-slope. It is also apparent that as the sediments are physically 

and biologically processed at various depositional sites across the continental shelf 

and slope, they lose some of their modern terrestrial OC and the concurrent 

addition of marine-sourced OC results in the sediments gaining a stronger marine 

biogeochemical signature. Thus, on the mid-slope only 8% of the bulk sediment OC 

consists of modern terrestrial OC, 58% is modern marine OC and 34% is kerogen 

(see Chapter 6 and Figure 7.2). 

 

Results from this study verify and add considerably to understanding the OC 

transfers and transformations from source to sink as originally postulated in Chapter 
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1 (Figure 1.1). The processes that control OC input and its subsequent 

transformation through the WSS are complex, as they reflect the different 

biophysical processes affecting the floodplain, continental shelf and slope as 

summarised in Figure 7.1. 
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Floodplain processes 

Flood events within the Waipaoa River system vary due to the variety of sediment 

and OC sources and plant matter contents, thus exacerbating the establishment of a 

benchmark signature for flood deposits that is easily recognisable in the marine 

sedimentary record. Complex relationships between river behaviour and 

depositional processes determine the extent to which the floodplain acts as a 

modulator of terrestrial sediment and OC before it is discharged to the marine 

environment. While previous studies (Gomez et al. 2003, 2004b; Gomez & 

Trustrum 2005) of selected floodplain reaches show that the Waipaoa River is an 

effective conduit of terrestrial OC to the marine environment, consideration of all 

the floodplain areas in the entire Waipaoa catchment, and the high variability in 

sediment OC content (~0.2–3.5%) indicate that they may have an appreciable 

modulating effect on OC transfers to the ocean (see Chapter 4). This is especially so 

during large magnitude flood events, when greater amounts of terrestrial sediment 

(~16%) and associated OC (~10%) are sequestered on the floodplain (Gomez & 

Trustrum 2005). 

 

Continental shelf and slope processing of terrestrial OC 

Following discharge to the marine environment, the physical and biological 

reworking of terrestrial sediment has a large impact on diagenetic reactions that 

occur in surface sediments, and therefore on the composition of materials buried in 

the continental shelf and slope environments (McKee et al. 2004). The processes 

responsible for the transfer of sediment and OC across the continental shelf and 

slope are driven by a combination of both large river flood events and ambient river 

discharge conditions, as well as the margin circulation. The amount of terrestrial OC 

preserved offshore in a single large flood event (such as Cyclone Bola) can be 

significant (as discussed above), and  if such a layer is rapidly deposited and buried 

by ambient marine sediments, its terrestrial geochemical signature can be well 

preserved (e.g. a bulk sample δ13C of ~–25.7‰ compared to non-flood δ13C values 

of ~–24.8‰). During ambient conditions (river discharge <1800 m3s-1 at McPhail’s 

bend), the slower transfer of sediments across the margin results in particles losing 

some of their terrestrially sourced OC while gaining some marine sourced OC (see 

Chapter 6). Thus the sediments have a stronger marine biogeochemical signature 
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with distance as they are processed at various depositional sites across the 

continental shelf and slope (Figure 7.2). 

 

The influence of currents offshore from the WSS, particularly the East Cape 

Current (ECC), is manifested in the occurrence of sediments with a stronger 

terrestrial signature being present on the upper slope site, inferred as having been 

transported southwards from northern fluvial sources by the ECC (Figure 7.2). 

There does not appear to be such a strong influence on sediment and OC transport 

by the Wairarapa Coastal Current (WCC). 

 

 

7.3 CONCEPTUAL MODELS 

Biogeochemical Processes affecting OC transformations 

As rivers are the foremost link between the terrestrial and marine C pools, it is the 

movement of C, rather than the amount being stored in reservoirs, which is of key 

importance to the global C cycle (Schlesinger 1997). This thesis has investigated the 

biogeochemical signature of sediment-associated OC to determine how it changes 

as particles move through the WSS from their terrestrial source to their marine sink. 

Changes occur primarily in bioactive reservoirs, where older material is degraded 

and new organic matter added as a result of contact with surficial terrestrial and 

marine productivity (Blair et al. 2004). It is the relative fluxes of material through 

and around these reservoirs, and the residence times within them that control and 

influence OC character. Thus the bypassing or rapid transfer through reservoirs 

results in minimal biogeochemical alteration of the OC, while lengthy processing 

within a reservoir results in greater alteration of the biogeochemical signature. 

 

Blair et al. (2004) predicted that material buried on the continental shelf off active 

margins is characteristically a simple mixture of OC derived from kerogen, modern 

terrestrial and modern marine sources. This study has confirmed that this is the case 

for the WSS (Figure 7.2), with a particularly high kerogen component being present 

on the inner shelf. Very little kerogen is lost from the sediments following their 

discharge to the marine environment, and it remains essentially unaltered out to the 
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mid-slope as highlighted by the 14C mass balances which also confirm there is some 

replacement of modern terrestrial OC by modern marine OC. 

 

 

Figure 7.2: Diagrammatic model of OC transfers and transformations across the 
depositional environments of the WSS. Proportions of modern terrestrial OC, 

modern marine OC and kerogen are indicated, as determined by 14C mass balances. 
Together with biomarker trends, these illustrate that kerogen is preserved across the 
depositional environments, and that there is also some replacement of modern 

terrestrial OC by modern marine OC.  
 

 

Findings from this study indicate two prominent similarities between the WSS and 

north California’s Eel River system as described by Leithold and Blair (2001) and 

Blair et al. (2003). Firstly, deep erosion of bedrock means that ≥50% of OC 

delivered to both shelves consists of kerogen. The rapid transfer of sediment and 
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associated OC to the marine environment results in little time for diagenetic 

alteration in various depositional reservoirs, therefore the kerogen is transported 

through the system and ~50% of it is reburied on the continental slope. Secondly, 

as particles are transported across the continental shelf and slope, some modern 

terrestrial OC is lost and marine OC is added, such that in both the WSS and Eel 

River System, slope sediment OC is dominated by modern marine OC and kerogen 

(Figure 7.2). 

 

The addition of marine OC to sediment particles is likely the result of both direct 

addition of particulate detritus derived from modern primary production, and the 

microbial colonisation of particles (Blair et al. 2004). Such biological processes 

occurring in the marine environment are modelled in Figure 7.3.  

 

 

Figure 7.3: Diagrammatic model of OC processing in the surface mixed layer of the 
seabed, as particles are transported across the shelf and slope. The surface mixed 
layer compartments are: RDOM, readily decomposed organic matter; LRDOM, 
least readily decomposable organic matter; MBIO, marine biomass; SOM, stabilised 

organic matter; ROM, recalcitrant organic matter (including kerogen). 
Figure based on the Roth C model and adapted from Parshotam et al. (1995).  
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Variation in the contribution of terrestrial and marine inputs to the sediment, and 

the relative contribution from each to the readily decomposed organic matter 

(RDOM) and resistant organic matter (ROM) depends on factors including (a) the 

frequency and magnitude of storm events and (b) the location across the 

depositional environment. 

 

Upon discharge to the marine environment, the processing of particles and 

associated OC (of both terrestrial and marine origin) occurs in the seabed surface 

mixed layer, during transport across the shelf and slope. Based on an existing 

terrestrial model for the processing of soil OC (Parshotam et al. 1995), Figure 7.3 

provides a schematic representation of the stages of processing that may occur in 

the seabed surface mixed layer. It illustrates possible steps of OC processing, and 

the likely CO2 emissions associated with each step, as it proceeds through the cycle. 

It also raises the possibility of methane being produced as a result of the OC being 

buried rather than oxidised. If particles spend insufficient time in the surface mixed 

layer, there is less opportunity for the processing of OC, and the terrestrial signature 

is likely to be retained (e.g. the inner-shelf flood layer). 

 

 

7.4 GLOBAL SIGNIFICANCE AND FUTURE DIRECTIONS 

This study has extended the state of knowledge of New Zealand’s land to ocean OC 

fluxes. Previous studies have broadly estimated the amounts of OC lost from New 

Zealand’s landscape (Tate et al. 2000; Hicks et al. 2004b; Scott et al. In Press) but 

this work has extended investigations to the marine environment, thus providing 

new knowledge on the amounts of terrestrial OC preserved in the marine 

environment, the modes of emplacement and new knowledge about the 

biogeochemical transformations from terrestrial source to marine sink.  

 

This study addresses the significance of small mountainous river systems in the 

processing of OC, as compared to larger river systems in continental settings, with 

the transfer and fate of terrestrial OC being largely controlled by erosional, transport 

and depositional processes characterising the respective river systems. In large, low-

gradient rivers with vast floodplains (e.g. Amazon, Yangtze, Fly and Paraná), there 
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are extensive opportunities for the storage and processing of large portions of 

terrestrial OC in the floodplain and delta (Blair et al. 2004), therefore they have a 

strong modulating influence on riverine inputs to the ocean. In such systems, 

sediments have been found to rapidly lose a large portion (~70%) of their terrestrial 

OC on discharge to the ocean, which is gradually replaced with marine OC (see 

Blair et al. (2004) and references therein). Contrastingly, short and steep 

mountainous systems deliver eroded sediment and OC straight to the river channel 

and then it is rapidly transferred to the marine environment. There are few 

opportunities for extensive storage and processing of the OC prior to delivery to the 

ocean, thus the original terrestrial OC signal is preserved to a large extent in the 

marine environment. This is well illustrated by continental slope sediments offshore 

from the WSS retaining about 50% of their terrestrial OC, of which ~80% consists 

of kerogen (Figure 7.2).  

 

Associated with the greater processing (and oxidation) of terrestrial OC in large 

continental rivers is the considerable opportunity for related CO2 production. In 

contrast, short steep mountainous catchments such as the WSS offer little 

opportunity for oxidation of bedrock OC during transport from source to sink, 

potentially burying greater proportions of terrestrial OC offshore. Associated with 

this OC burial is the potential for greater methane production, and the trapping of 

methane in sediments. Such occurrence of methane-rich deposits was demonstrated 

by Lewis and Marshall (1996), who identified methane seeps on the continental 

slope off East Cape, and suggested they were likely to be indicators of 

sedimentological and tectonic processes at convergent margins.  

 

Given that previous estimates of annual global discharges of POC from rivers to the 

oceans varies by a factor of three (see Table 1.1) and that mountainous oceanic 

islands such as New Zealand could contribute up to 40% of this global figure (see 

Chapter 1), results from this study could be combined with volumetric 

measurements of well constrained and dated sedimentary deposits to determine the 

amount of this terrestrial POC that is sequestered in such margin environments over 

the last ~100 years.  
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This study provides the first quantitative assessment of land to ocean OC transfers 

from New Zealand, and in conjunction with sediment budgets, is a vital step toward 

global OC budgets for small mountainous island environments. It has also identified 

the preservation of large river flood events on New Zealand’s continental shelf as a 

mechanism for the preservation of significant amounts of terrestrially sourced OC 

following its discharge to the marine environment. 

 

Future directions 

While this study has advanced New Zealand’s knowledge of OC cycling from 

terrestrial source to marine sink, it has revealed several areas where targeted research 

is required to place land to ocean OC budgets for small mountainous islands in the 

global context: 

• A more comprehensive investigation and definition of floodplain 

sedimentation and therefore OC characteristics, to constrain the high 

variability in that environment and link to sediment and source variability, 

and floodplain processes. An alternative approach of using suspended 

sediments sampled form the water column rather than floodplain sediments 

could be used to overcome the issue of floodplain variability. 

• Further evaluation of flood event deposits preserved within the marine 

sediments, in particular 14C data and calculation of mass balance equations 

for the down-core samples from the inner shelf cores. This would help to 

better quantify the rates and pathways of OC in the marine environment, and 

contributions from the terrestrial biosphere. Such an evaluation would 

require more detailed sampling of the slower accumulating slope sediments 

and deeper sampling on the shelf, to account for the different sedimentation 

rates. 

• Determine the processes that occur in bioactive reservoirs, and their 

influence on the OC signature across the source to sink continuum. 

• Combine the findings of this study with sediment budgets to develop OC 

budgets for the East Cape Continental Margin (ECCM) – New Zealand’s 

highest input margin, in order to better define national and global OC 

budgets. 
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• Determine the contribution of terrestrial and marine organic detritus to the 

production of CO2 and CH4 in the marine environment, to establish the 

origin of vast CH4 reserves in deep abyssal regions of New Zealand’s east 

coast. 
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Appendix A 

APPENDIX A: CORE DESCRIPTIONS 
(I) WAIPAOA RIVER FLOODPLAIN (MCPHAIL’S BEND) 
 
Collected: 12th February 2002 
GPS:  2937625, 6284666 
NZMS:  Y17/376846 
 
Section 1 0–280 mm  
0–67 mm   

10YR 4/2 (dark greyish brown) topsoil. Many fine roots. Friable consistence. 
Indistinct lower boundary.  
67–147 mm  

Overall 10YR 6/2 (light brownish grey) mixture of silt through to sand. Generally 
coarsening upward. Loose consistence. Sharp lower boundary. 
147–153 mm  

Sloping and indistinct layer of 2.5Y 6/4 (light yellowish brown) silty clay. 
153–160 mm  

Sloping and indistinct layer of fine sand. 
160–166 mm  

Sloping and indistinct layer of 2.5Y 6/4 (light yellowish brown) silty clay. 
166–172 mm 

Sloping and indistinct layer of fine sand. 
172–199 mm 

Sloping layer of 2.5Y 6/4 (light yellowish brown) silty clay. 
199–205 mm 

Layer of 10YR 5/1 (grey) sand (up to 2 mm). Loose consistence. Sharp lower 
boundary. 
205–211 mm 

Layer of 2.5Y 6/4 (light yellowish brown) silty clay – indistinct amongst coarser 
sediments. Possibly is just the finest upper part of the unit below. Friable 
consistence. Indistinct lower boundary.   
211–258 mm 

Overall 10YR 6/2 (light brownish grey) mixture of silt through to sand. Appears to 
coarsen upward. Loose consistence. Distinct lower boundary.   
258–280 mm 

Layer of 2.5Y 6/4 (light yellowish brown) silty clay. No apparent layering. Firm 
consistence.  (Cyclone Bola fines)  
   
Section 2 280–600 mm  
280–300 mm 

Continued from above – 2.5Y 6/4 (light yellowish brown) silt. No apparent layering. 
Firm consistence. Sharp lower boundary. (Cyclone Bola fines) 
300–570 mm 

Overall 10YR 5/1 (grey) coarse sand (<~ 3 mm). Very loose consistence. No 
apparent layering. Mixture of lithologies. Sharp lower boundary. (Cyclone Bola sand 
deposit) 
570–600 mm 

2.5Y 5/2 (greyish brown) clay-rich sediment. Firm consistence. Some iron staining. 
(Buried soil?). 
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Section 3 600–1010 mm  
600–668 mm 

2.5Y 5/2 (greyish brown) clay with some streaky/patchy iron staining – 5YR 4/6 
(yellowish red). Firm consistence. Indistinct lower boundary. 
668–832 mm 

2.5Y 5/2 (greyish brown) silty clay with some streaky/patchy iron staining – 5YR 
4/6 (yellowish red). Firm consistence. Indistinct lower boundary. 
832–1010 mm 

2.5Y 5/2 (greyish brown) clay with some streaky/patchy iron staining – 5YR 4/6 
(yellowish red). Possibly some very faint layering? Firm consistence.  
 
Section 4 1010–1300 mm  
1010–1088 mm 

Continued from above – 2.5Y 5/2 (greyish brown) clay with some streaky/patchy 
iron staining – 5YR 4/6 (yellowish red). Few small patches of grit and/or pumice. 
Few fine roots at top of section. Possibly some very faint layering? Firm 
consistence. Faint/indistinct lower boundary. 
1088–1215 mm 

Overall 2.5Y 5/2 (greyish brown) silty clay with some streaky iron staining – 5YR 
4/6 (yellowish red). Firm consistence. Indistinct lower boundary. 
1215–1300 mm 

2.5Y 5/2 (greyish brown) clay with some iron staining – 5YR 4/6 (yellowish red). 
Firm consistence. (Buried soil?). 
 
Section 5 1300–1620 mm  
1300–1355 mm 

2.5Y 5/4 (light olive brown) silt with some faint iron staining. Firm consistence. 
Gradational indistinct lower boundary. 
1355–1432 mm 

2.5Y 5/4 (light olive brown) fine sand with some iron staining and faint layering. 
Loose consistence. Indistinct lower boundary. (Possibly ~1960 floods) 
1432–1620 mm 

2.5Y 5/4 (light olive brown) silty clay with some faint iron staining. Firm 
consistence.  
 
Section 6 1620–1920 mm  
1620–1764 mm 

2.5Y 5/4 (light olive brown) silty clay with some faint iron staining. Firm 
consistence. Faint lower boundary. 
1764–1800 mm 

2.5Y 5/4 (light olive brown) clay with some 5YR 4/6 (yellowish red) iron staining. 
Firm consistence. Faint lower boundary. (Possibly top of a flood deposit?) 
1800–1920 mm 

2.5Y 5/4 (light olive brown) silty sand with some 5YR 4/6 (yellowish red) iron 
staining, mostly in the finer sediments. Very faint layering. Firm consistence. 
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Section 7 1920–2220 mm  
1920–1962 mm 

2.5Y 5/4 (light olive brown) silt/fine sand with some 5YR 4/6 (yellowish red) iron 
staining, mostly in the finer sediments. Very faint layering. Firm consistence. 
Indistinct lower boundary. 
1962–2124 mm 

Overall 2.5Y 4/4 (olive brown) silty clay. Some faint iron staining. No apparent 
layering. Firm consistence. Faint lower boundary. (Possibly top of a flood deposit?) 
2124–2220 mm 

2.5Y 4/4 (olive brown) silty sand with some very faint iron staining. Very faint 
layering. Firm consistence.  
 
Section 8 2220–2520 mm  
2220–2520 mm 

2.5Y 4/4 (olive brown) silty sand. No apparent layering. Firm consistence.  
 
Section 9 2520–2820 mm  
2520–2720 mm 

2.5Y 4/4 (olive brown) silty sand. No apparent layering. Firm consistence. Faint 
lower boundary. 
2720–2748 mm 

2.5Y 4/4 (olive brown) clay layer with patches of 5YR 4/6 (yellowish red) iron 
staining. Firm consistence. Indistinct lower boundary. (Buried soil?). 
2748–2820 mm 

2.5Y 4/4 (olive brown) silty sand with some 5YR 4/6 (yellowish red) iron staining. 
Firm consistence. 
 
Section 10 2820–3130 mm  
2820–2864 mm 

2.5Y 4/4 (olive brown) silty sand with some 5YR 4/6 (yellowish red) iron staining. 
Appears to contain some dark flecks of organic matter or charcoal in lower 20 mm. 
Firm consistence. Indistinct lower boundary. 
2864–2947 mm 

2.5Y 4/4 (olive brown) silty sand. Very faint layering. Firm consistence. Indistinct 
lower boundary. 
2947–2958 mm 

2.5Y 4/4 (olive brown) silty sand. Appears to contain some dark flecks of organic 
matter or charcoal. Firm consistence. Indistinct lower boundary. 
2958–3096 mm 

2.5Y 4/4 (olive brown) silty sand. Very faint layering. Firm consistence. Indistinct 
lower boundary. 
3096–3130 mm 

2.5Y 4/4 (olive brown) silty clay with patches of 5YR 4/6 (yellowish red) iron 
staining. Firm consistence. (Buried soil?). 
  
Section 11 3130–3600 mm  
3130–3264 mm 

2.5Y 4/4 (olive brown) silt. No apparent layering. Firm consistence. Indistinct lower 
boundary. 
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3264–3600 mm 

2.5Y 4/4 (olive brown) silty clay with some 5YR 4/6 (yellowish red) iron staining. 
Firm consistence.  
  
Section 12 3600–3890 mm 
3600–3610 mm  

2.5Y 4/4 (olive brown) silty clay with some 5YR 4/6 (yellowish red) iron staining. 
Firm consistence. Indistinct lower boundary. 
3610–3890 mm 

2.5Y 4/4 (olive brown) silt. No apparent layering. Firm consistence. 
 
Section 13 3890–4190 mm 
3890–4065 mm 

Continuation of interval above – 2.5Y 4/4 (olive brown) silt. Some faint iron 
staining in lower 70 mm. No apparent layering. Firm consistence. Sharp lower 
boundary. 
4065–4190 mm 

Overall colour of 5Y 4/2 (olive grey) sand (<~3 mm) of mixed lithologies. Very 
loose consistence. No apparent layering. Very similar to 20-290 mm layer in section 
2. (NB: Some sample lost from bottom because of very loose consistence). (Possibly 
1932 flood?) 
 
Section 14 4190–4520 mm 
4190–4520 mm 

Overall colour of 2.5Y 4/4 (olive brown) silty sand, with some layering and faint 
layers of pale coloured pumice grains, up to ~2 mm in size. One piece of 
wood/charcoal (10 x 2 mm) 10 mm from top of section. Firm to loose consistence 
(pumice layers are looser than silt). 
 
Section 15 4520–4820 mm 
4520–4820 mm 

2.5Y 4/4 (olive brown) sandy silt, with few fine pumice grains throughout (mostly 
near top). Firm consistence. (NB: Finer than section 14). 
 
Section 16 4820–5190 mm 
4820–5098 mm 

2.5Y 4/4 (olive brown) silt with very few pumice grains. Sediment appears to get 
finer with depth. Some iron staining. Firm consistence. Gradual and indistinct lower 
boundary. 
5098–5190 mm 

2.5Y 4/4 (olive brown) silty clay with some iron staining. Firm consistence. 
 
Section 17   5190–5510 mm 
5190–5228 mm 

2.5Y 4/4 (olive brown) silty clay with some 5YR 4/6 (yellowish red) streaks of iron 
staining. Firm consistence. Sharp lower boundary, accentuated by iron staining. 
5228–5260 mm 

2.5Y 6/4 (light yellowish brown) clay, with a patch (7 x 18 mm) of iron staining. 
Firm consistence. Sharp lower boundary, marked by iron staining. 
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5260–5330 mm 

2.5Y 4/4 (olive brown) silty clay with some 5YR 4/6 (yellowish red) streaks of iron 
staining. Firm consistence. Faint lower boundary. 
5330–5362 mm 

2.5Y 6/4 (light yellowish brown) clay, with some iron staining. Firm consistence. 
Gradational lower boundary. 
5362–5407 mm 

2.5Y 4/4 (olive brown) silty clay with some 5YR 4/6 (yellowish red) streaks of iron 
staining. Firm consistence. Distinct lower boundary. 
5407–5510 mm 

Predominantly 2.5Y 4/4 (olive brown) medium sand. Some fine pumice grains. 
Loose consistence.  (Possibly represents change from point-bar to overbank 
deposition) 
 
Section 18   5510–5830 mm 
5510–5521 mm 

Predominantly 2.5Y 4/4 (olive brown) medium sand. Some fine pumice grains. 
Loose consistence. Distinct lower boundary. 
5521–5675 mm 

Predominantly 2.5Y 5/4 (light olive brown) silty sediment. Some faint layering, with 
some containing fine pumice grains. Firm consistence. Sharp wavy lower boundary. 
5675–5691 mm 

Wavy layer of medium sand, predominantly 2.5Y 4/2 (dark greyish brown) in 
colour. Loose consistence. Distinct wavy lower boundary. 
5691–5755 mm 

Predominantly 2.5Y 4/0 (dark grey) clay-rich sediment (buried soil?) with black 
flecks of charcoal/organic matter throughout. Layer of 7.5YR 4/4 (brown) iron 
staining near base. Firm consistence. Distinct lower boundary. (Probably 1906 
flood) 
5755–5830 mm 

Predominantly 2.5Y 4/2 (dark greyish brown) medium sand. Some fine pumice 
grains. Loose consistence.  
 
Section 19 5830–6230 mm 
5830–6230 mm 

Predominantly 2.5Y 4/2 (dark greyish brown) medium sand. Some fine pumice 
grains. Loose consistence. Slight coarsening of sand with depth. 
 
Section 20 6230–6560 mm 
6230–6354 mm 

Predominantly 2.5Y 4/2 (dark greyish brown) medium sand. Some fine pumice 
grains. Loose consistence. Slight coarsening of sand with depth. Distinct sloping 
lower boundary. 
6354–6560 mm 

Predominantly 2.5Y 5/2 (greyish brown) fine sand. No apparent layering. Firm 
consistence. 
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Section 21 6560–6870 mm 
6560–6630 mm 

Predominantly 2.5Y 5/2 (greyish brown) fine sand. No apparent layering. Loose 
consistence. Gradational lower boundary. 
6630–6690 mm 

Predominantly 2.5Y 5/2 (greyish brown) medium pumiceous sand. No apparent 
layering. Loose consistence. Sloping indistinct lower boundary. 
6690–6870 mm 

Predominantly 2.5Y 3/2 (very dark greyish brown) coarse sand, grit and pebbles (up 
to ~15 x 15 mm). Mixed lithologies. Very loose consistence. 
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(II) MARINE MULTI-CORES 
 
U2303 (Inner shelf) 
Collected: 25th March 2001 
Location: 38° 45.015 S, 178° 01.996 E  
Water depth: 27.2 m 
0–13 cm: Brown sandy mud. 
13–22 cm: Grey mud, darkening downwards. 
22–34 cm: Grey-brown sandy-mud. 
 
U2304 (Inner-mid shelf) 
Collected: 25th March 2001 
Location: 38° 46.163 S, 178° 05.889 E  
Water depth: 36.4 m 
0–6 cm: Brown muddy sand. 
6–16 cm: Light grey sandy mud. 
16–19 cm: Dark grey sandy mud. 
19–26 cm: Brown muddy sand. 
26–33 cm: Light grey sandy mud. 
 
U2305 (Mid-shelf mud belt) 
Collected: 25th March 2001 
Location: 38° 48.690 S, 178° 10.185 E 
Water depth: 56.4 m 
0–3 cm: Brown sandy mud. 
3–34 cm: Dark grey mud. 
 
U2306 (Outer shelf) 
Collected: 25th March 2001 
Location: 38° 55.076 S, 178° 12.615 E 
Water depth: 113.2 m 
0–4 cm: Disturbed sediment. 
4–47 cm: Olive grey sandy mud. 
 
W697 (Upper slope feeder canyon) 
Collected: 12th May 2001 
Location: 38° 55.48 S, 178° 20.02 E 
Water depth: 1198 m 
0–50 cm: Mud. 
 
W699 (Mid-slope platform) 
Collected: 13th May 2001 
Location: 39° 3.62 S, 178° 33.90 E 
Water depth: 1428 m 
0–51 cm: Massive unconsolidated mud, some sandy units. 
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APPENDIX B: MAGNETIC SUSCEPTIBILITY MEASUREMENTS FOR 

WAIPAOA RIVER FLOODPLAIN (MCPHAIL’S BEND) CORE 
 
Sensor Type: Bartington MS2E1 
Range: 0.1 
Units: CGS 
Alignment: Core axis 
Interval: 2 cm 
 

Original Depth 
(cm) 

Corrected 
Depth (cm) 

Magnetic 
Susceptibility 

(cgs) 

1 13 19.9 

3 40 15.7 

5 67 26.4 

7 93 30.1 

9 120 45.0 

11 147 31.7 

13 173 16.1 

15 200 12.3 

17 226 51.8 

19 253 26.6 

21 280 8.3 

23 300 13.0 

25 320 7.3 

27 340 7.6 

29 360 9.0 

31 380 7.8 

33 400 9.5 

35 420 13.1 

37 440 11.9 

39 460 8.7 

41 480 5.0 

43 500 10.8 

45 520 8.5 

47 540 14.5 

49 560 50.3 

51 580 65.5 

53 600 5.0 

55 627 12.5 

57 654 14.9 

59 682 13.1 

61 709 11.4 
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63 736 11.2 

65 764 13.0 

67 791 12.6 

69 818 11.9 

71 846 11.9 

73 873 14.2 

75 901 9.0 

77 928 9.8 

79 955 8.8 

81 983 8.9 

83 1010 6.9 

85 1034 10.7 

87 1058 11.0 

89 1082 11.3 

91 1106 10.4 

93 1130 9.1 

95 1155 10.1 

97 1179 9.7 

99 1203 10.4 

101 1227 8.1 

103 1252 6.4 

105 1276 7.4 

107 1300 1.9 

109 1328 13.1 

111 1356 16.0 

113 1383 17.9 

115 1411 15.4 

117 1439 15.3 

119 1467 14.4 

121 1495 16.8 

123 1523 16.0 

125 1550 16.2 

127 1578 16.7 

129 1606 15.7 

131 1632 7.6 

133 1656 12.8 

135 1680 12.8 

137 1704 14.5 

139 1728 15.2 

141 1752 15.7 

143 1776 14.3 

145 1800 30.4 



Appendix B 

147 1824 37.2 

149 1848 52.9 

151 1872 55.7 

153 1896 44.4 

155 1920 29.7 

157 1944 44.8 

159 1968 18.6 

161 1992 18.7 

163 2016 21.0 

165 2040 18.8 

167 2064 16.0 

169 2088 17.7 

171 2112 19.2 

173 2136 22.1 

175 2160 21.0 

177 2184 20.0 

179 2208 22.3 

181 2235 21.0 

183 2265 22.1 

185 2295 26.8 

187 2325 19.8 

189 2355 16.2 

191 2385 22.9 

193 2415 20.4 

195 2445 24.5 

197 2475 35.0 

199 2505 21.6 

201 2531 15.4 

203 2553 22.2 

205 2575 26.5 

207 2597 24.6 

209 2620 20.9 

211 2642 19.7 

213 2664 20.6 

215 2686 27.2 

217 2709 24.1 

219 2731 16.9 

221 2753 18.7 

223 2775 20.6 

225 2798 22.9 

227 2820 13.6 

229 2842 18.4 
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231 2864 16.6 

233 2886 18.3 

235 2909 17.6 

237 2931 17.6 

239 2953 18.7 

241 2975 30.2 

243 2997 20.1 

245 3019 21.8 

247 3041 19.7 

249 3064 21.0 

251 3086 19.9 

253 3108 19.7 

255 3130 13.9 

257 3175 22.2 

259 3220 23.1 

261 3264 22.2 

263 3309 24.2 

265 3354 25.0 

267 3399 23.1 

269 3443 24.0 

271 3488 24.6 

273 3533 26.8 

275 3577 24.0 

277 3596 24.5 

279 3616 27.9 

281 3636 26.5 

283 3655 33.8 

285 3675 31.3 

287 3694 35.0 

289 3714 43.4 

291 3733 36.8 

293 3753 38.2 

295 3773 40.8 

297 3792 38.3 

299 3812 37.9 

301 3831 39.1 

303 3851 30.1 

305 3871 34.1 

307 3890 32.2 

309 3915 24.4 

311 3940 29.0 

313 3965 19.6 
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315 3990 21.2 

317 4015 66.1 

319 4040 130.9 

321 4065 310.4 

323 4090 281.1 

325 4115 36.3 

327 4140 63.7 

329 4165 14.4 

331 4190 15.3 

333 4218 35.3 

335 4245 31.6 

337 4273 31.2 

339 4300 43.5 

341 4328 30.2 

343 4355 29.5 

345 4383 36.6 

347 4410 39.1 

349 4438 46.1 

351 4465 67.3 

353 4493 37.9 

355 4520 34.8 

357 4547 40.5 

359 4575 56.6 

361 4602 55.6 

363 4629 48.9 

365 4656 47.7 

367 4684 24.2 

369 4711 47.7 

371 4738 41.8 

373 4765 28.5 

375 4793 37.1 

377 4820 35.1 

379 4843 29.0 

381 4866 28.2 

383 4889 28.3 

385 4913 30.8 

387 4936 24.8 

389 4959 23.7 

391 4982 23.3 

393 5005 21.3 

395 5028 19.7 

397 5051 17.2 
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399 5074 15.2 

401 5098 16.0 

403 5121 16.3 

405 5144 17.9 

407 5167 18.4 

409 5190 12.4 

411 5216 17.5 

413 5241 18.3 

415 5267 19.4 

417 5292 18.1 

419 5318 18.4 

421 5344 20.2 

423 5369 23.4 

425 5395 22.5 

427 5420 96.1 

429 5446 99.2 

431 5472 71.8 

433 5497 73.1 

435 5521 43.3 

437 5542 27.4 

439 5564 31.1 

441 5585 33.0 

443 5606 22.5 

445 5628 19.0 

447 5649 24.9 

449 5670 126.3 

451 5691 113.5 

453 5713 16.0 

455 5734 18.6 

457 5756 67.8 

459 5777 81.6 

461 5798 805.8 

463 5820 322.4 

465 5843 704.2 

467 5869 33.2 

469 5895 51.7 

471 5920 41.6 

473 5946 89.7 

475 5972 15.4 

477 5998 15.7 

479 6023 13.4 

481 6049 13.2 
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483 6075 27.6 

485 6101 16.2 

487 6127 21.3 

489 6153 21.9 

491 6178 19.3 

493 6204 23.6 

495 6230 6.9 

497 6257 19.7 

499 6285 37.5 

501 6312 23.0 

503 6340 42.5 

505 6367 150.9 

507 6395 25.2 

509 6422 25.4 

511 6450 52.6 

513 6477 34.2 

515 6505 180.6 

517 6532 36.3 

519 6560 71.8 

521 6580 44.6 

523 6600 39.7 

525 6620 12.7 

527 6640 12.1 

529 6660 9.4 

531 6680 9.7 

533 6700 67.6 

535 6720 6.8 

537 6740 7.3 

539 6760 10.5 

541 6780 7.3 

543 6800 13.0 

545 6820 14.5 

547 6840 17.9 

549 6860 7.9 
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Graphs of magnetic susceptibility for McPhail’s bend floodplain core. 

(Same data, on different x-axis scales). 



A
pp

en
di

x 
C

 
 

A
P

P
E

N
D

IX
 C

: 
S

U
M

M
A

R
Y

 D
A

T
A
 

(I
) 

W
A

IP
A

O
A

 R
IV

E
R

 F
L

O
O

D
P

L
A

IN
 (

M
C

P
H

A
IL

’S
 B

E
N

D
) 

D
ep

th
 

B
u

lk
 

%
O

C
 

B
u

lk
 δ δδδ

13
C

 
B

u
lk

 
(C

/
N

)a
 

B
u

lk
 

O
C

:S
A

 
<

4 
µ µµµ

m
 

%
O

C
 

<
4 

µ µµµ
m

 
(C

/
N

)a
 

<
4 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 S
A

 
<

4 
µ µµµ

m
 

O
C

:S
A

 

L
ig

h
t 

F
ra

ct
io

n
 

%
O

C
 

L
ig

h
t 

F
ra

ct
io

n
 

δ δδδ
13

C
 

L
ig

h
t 

F
ra

ct
io

n
 

(C
/

N
)a

 

2
0
0
2
 F
lo
o
d
 

0
.7
6
 

-2
6
.7
4
1
 

1
1
.7
9
 

 
1
.3
0
 

1
0
.4
9
 

-2
6
.1
9
6
 

3
0
.2
1
5
 

0
.4
3
 

3
0
.8
2
0
 

-2
7
.7
4
4
 

2
2
.1
1
 

4
-5
 c
m
 

2
.6
1
 

-2
0
.5
5
7
 

1
2
.9
5
 

 
 

 
 

 
 

 
 

 

1
4
-1
5
 c
m
 

0
.3
4
 

-2
3
.6
1
2
 

1
1
.4
5
 

 
 

 
 

 
 

1
6
.8
6
0
 

-2
0
.4
7
0
 

2
1
.6
6
 

1
7
-1
8
 c
m
 

0
.3
6
 

-2
4
.6
6
5
 

1
5
.2
5
 

 
 

 
 

 
 

 
 

 

2
2
-2
3
 c
m
 

0
.4
9
 

-2
5
.0
8
6
 

1
2
.6
1
 

0
.4
3
 

1
.3
2
 

1
0
.6
0
 

-2
6
.2
2
9
 

3
7
.8
1
5
 

0
.3
5
 

1
8
.5
6
0
 

-2
2
.5
1
8
 

2
5
.0
3
 

3
5
-3
6
 c
m
 

0
.2
9
 

-2
6
.2
2
4
 

1
4
.8
7
 

 
 

 
 

 
 

 
 

 

5
5
-5
6
 c
m
 

0
.7
6
 

-2
3
.8
3
2
 

1
2
.3
2
 

 
 

 
 

 
 

1
9
.5
5
0
 

-2
3
.1
8
2
 

2
2
.4
1
 

6
6
-6
7
 c
m
 

0
.7
2
 

-2
4
.5
6
3
 

1
2
.2
1
 

 
 

 
 

 
 

 
 

 

9
7
-9
8
 c
m
 

0
.6
2
 

-2
4
.4
7
5
 

1
1
.7
1
 

 
 

 
 

 
 

 
 

 

1
1
3
-1
1
4
 c
m
 

0
.2
8
 

-2
3
.6
0
1
 

1
1
.1
6
 

 
 

 
 

 
 

3
.9
2
1
 

-2
3
.7
7
6
 

 

1
2
6
-1
2
7
 c
m
 

0
.6
0
 

-2
4
.1
5
8
 

1
1
.1
6
 

 
 

 
 

 
 

 
 

 

1
4
2
-1
4
3
 c
m
 

0
.5
8
 

-2
4
.5
5
2
 

1
0
.7
4
 

 
 

 
 

 
 

 
 

 

1
5
1
-1
5
2
 c
m
 

0
.4
7
 

-2
2
.9
7
2
 

1
1
.3
7
 

 
 

 
 

 
 

 
 

 

1
6
4
-1
6
5
 c
m
 

0
.7
1
 

-2
3
.8
1
5
 

1
2
.2
0
 

 
 

 
 

 
 

1
2
.5
0
0
 

-2
4
.4
0
1
 

2
8
.2
6
 

1
8
9
-1
9
0
 c
m
 

0
.3
9
 

-2
4
.9
5
4
 

1
2
.7
8
 

 
 

 
 

 
 

 
 

 

2
1
3
-2
1
4
 c
m
 

0
.2
3
 

-2
5
.1
2
9
 

1
0
.2
6
 

 
 

 
 

 
 

 
 

 

2
1
8
-2
1
9
 c
m
 

0
.6
2
 

2
5
.2
1
3
 

1
0
.9
3
 

 
 

 
 

 
 

 
 

 

2
4
2
-2
4
3
 c
m
 

0
.2
1
 

-2
5
.0
9
2
 

9
.0
0
 

 
 

 
 

 
 

 
 

 

2
6
5
-2
6
6
 c
m
 

0
.6
8
 

-2
4
.3
9
1
 

1
0
.1
3
 

 
 

 
 

 
 

 
 

 

2
9
8
-2
9
9
 c
m
 

0
.2
6
 

-2
4
.9
8
8
 

9
.3
9
 

 
 

 
 

 
 

1
1
.5
2
0
 

-2
4
.7
5
6
 

2
1
.0
5
 

3
2
3
-3
2
4
 c
m
 

0
.2
4
 

-2
6
.2
1
1
 

1
2
.9
5
 

 
 

 
 

 
 

 
 

 

3
4
2
-3
4
3
 c
m
 

0
.3
6
 

-2
5
.4
4
3
 

1
2
.1
2
 

 
 

 
 

 
 

 
 

 

3
9
2
-3
9
3
 c
m
 

0
.3
7
 

-2
5
.4
7
0
 

1
0
.5
4
 

 
 

 
 

 
 

 
 

 



A
pp

en
di

x 
C

 
 

4
1
2
-4
1
3
 c
m
 

0
.6
3
 

-2
5
.4
6
6
 

1
0
.6
7
 

 
 

 
 

 
 

 
 

 

4
2
8
-4
2
9
 c
m
 

0
.2
0
 

-2
5
.8
4
9
 

1
0
.1
2
 

 
 

 
 

 
 

 
 

 

4
4
2
-4
4
3
 c
m
 

0
.1
9
 

-2
5
.7
6
7
 

9
.0
5
 

 
 

 
 

 
 

 
 

 

4
5
4
-4
5
5
 c
m
 

3
.4
9
 

-2
6
.7
0
8
 

1
9
.2
9
 

 
 

 
 

 
 

2
4
.6
4
0
 

-2
6
.4
5
3
 

2
7
.4
6
 

4
7
8
-4
7
9
 c
m
 

0
.2
7
 

-2
6
.2
3
8
 

1
4
.7
2
 

 
 

 
 

 
 

 
 

 

   (I
I)

 
U

23
03

 

D
ep

th
 

(c
m

) 
B

u
lk

 
O

C
 

B
u

lk
 

δ δδδ
13

C
 

B
u

lk
 

(C
/

N
)a

 
B

u
lk

 
S
A

 
B

u
lk

 
O

C
:S

A
 >

25
 µ µµµ

m
 

O
C

 

>
25

 u
m

 
(C

/
N

)a
 

>
 2

5 

µ µµµ
m

 

δ δδδ
13

C
 

4-
25

 µ µµµ
m

 
O

C
 

4-
25

 

µ µµµ
m

 
(C

/
N

)a
 

4-
25

 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
O

C
 

<
4
 µ  µ µ µ

m
 

(C
/

N
)a

 <
4 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
S
A

 
<

4 
µ µµµ

m
 

O
C

:S
A

 

0
-1
 

0
.3
2
 
-2
4
.7
9
4
 
1
4
.5
4
 
1
0
.1
4
 
0
.3
2
 

0
.1
3
 

8
.3
1
 
-2
5
.2
0
6
 
0
.3
8
 

9
.2
9
 
-2
4
.6
7
7
 
1
.0
9
 

1
0
.4
4
 
-2
4
.0
7
2
 
3
2
.8
0
 
0
.3
3
 

6
-7
 

0
.1
7
 
-2
5
.2
7
0
 
7
.2
0
 

 
 

0
.1
3
 

9
.2
1
 
-2
5
.0
4
2
 
0
.2
6
 

8
.3
3
 
-2
5
.0
5
0
 
0
.8
9
 

8
.1
2
 
-2
5
.2
1
0
 
3
6
.5
5
 
0
.2
4
 

1
2
-1
3
 

0
.3
4
 
-2
5
.0
1
6
 
1
0
.1
8
 

 
 

0
.2
8
 

1
3
.0
8
 
-2
5
.8
4
5
 
0
.6
8
 

1
2
.7
1
 
-2
5
.2
4
8
 
1
.0
3
 

1
0
.0
8
 
-2
4
.6
0
8
 
2
9
.1
1
 
0
.3
6
 

1
4
-1
5
 

0
.8
7
 
-2
5
.3
4
4
 
1
2
.7
5
 

 
 

1
.1
3
 

1
7
.4
8
 
-2
6
.3
0
2
 
0
.6
9
 

1
1
.6
9
 
-2
4
.9
3
6
 
0
.8
7
 

9
.5
9
 
-2
4
.6
8
8
 
2
5
.9
3
 
0
.3
4
 

1
6
-1
7
 

0
.7
8
 
-2
5
.3
9
2
 
1
2
.4
6
 

 
 

1
.5
7
 

1
9
.4
9
 
-2
5
.9
9
3
 
0
.6
0
 

1
1
.0
3
 
-2
5
.1
9
5
 
0
.7
9
 

1
0
.0
1
 
-2
4
.9
3
3
 
2
6
.8
0
 
0
.3
0
 

1
8
-1
9
 

0
.9
6
 
-2
5
.6
5
0
 
1
1
.8
6
 

 
 

3
.3
5
 

2
2
.6
2
 
-2
7
.0
3
8
 
0
.8
1
 

1
2
.7
8
 
-2
5
.9
1
5
 
0
.9
6
 

9
.3
6
 
-2
5
.0
8
6
 
2
5
.5
9
 
0
.3
8
 

2
0
-2
1
 

0
.7
5
 
-2
5
.5
5
3
 
1
2
.0
2
 

 
 

0
.6
7
 

1
7
.8
7
 
-2
6
.7
2
5
 
0
.8
3
 

1
2
.2
3
 
-2
5
.7
1
1
 
0
.7
4
 

9
.6
6
 
-2
5
.1
1
9
 
2
6
.0
0
 
0
.2
8
 

2
2
-2
3
 

0
.3
9
 
-2
5
.4
9
0
 
1
0
.7
2
 

 
 

0
.1
3
 

8
.8
8
 
-2
5
.9
1
2
 
0
.4
7
 

1
1
.5
0
 
-2
5
.3
6
6
 
0
.8
0
 

9
.5
6
 
-2
5
.1
3
2
 
2
6
.3
6
 
0
.3
0
 

2
4
-2
5
 

0
.1
8
 
-2
5
.3
1
2
 
8
.4
0
 

 
 

0
.1
2
 

8
.4
0
 
-2
5
.3
2
2
 
0
.3
4
 

9
.1
8
 
-2
5
.1
2
7
 
0
.9
1
 

1
1
.5
7
 
-2
5
.1
1
5
 
3
6
.0
0
 
0
.2
5
 

3
0
-3
1
 

0
.1
7
 
-2
5
.2
9
0
 
8
.1
0
 

 
 

0
.1
6
 

1
1
.9
3
 
-2
5
.1
6
8
 
0
.1
9
 

7
.7
0
 
-2
5
.8
9
1
 
0
.8
4
 

8
.5
8
 
-2
5
.3
3
2
 
3
4
.9
7
 
0
.2
4
 

3
3
-3
4
 

0
.2
4
 
-2
5
.2
2
4
 
1
0
.7
8
 

 
 

0
.1
2
 

8
.3
6
 
-2
5
.3
4
6
 
0
.4
2
 

1
0
.8
0
 
-2
5
.3
3
8
 
0
.6
8
 

8
.8
2
 
-2
5
.0
3
8
 
3
1
.3
8
 
0
.2
2
 

 



A
pp

en
di

x 
C

 
 

(I
II

) 
U

23
04

 

D
ep

th
 

(c
m

) 
B

u
lk

 
O

C
 

B
u

lk
 

δ δδδ
13

C
 

B
u

lk
 

(C
/

N
)a

 
B

u
lk

 
S
A

 
B

u
lk

 
O

C
:S

A
 >

25
 µ µµµ

m
 

O
C

 

>
25

 u
m

 
(C

/
N

)a
 

>
 2

5 

µ µµµ
m

 

δ δδδ
13

C
 

4-
25

 µ µµµ
m

 
O

C
 

4-
25

 

µ µµµ
m

 
(C

/
N

)a
 

4-
25

 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
O

C
 

<
4
 µ  µ µ µ

m
 

(C
/

N
)a

 <
4 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
S
A

 
<

4 
µ µµµ

m
 

O
C

:S
A

 

0
-1
 

0
.2
3
 
-2
4
.5
5
0
 
1
0
.6
2
 
1
0
.2
4
 
0
.2
2
 

0
.1
2
 

7
.1
2
 
-2
4
.6
7
8
 
0
.6
7
 

1
0
.5
3
 
-2
4
.4
6
0
 
1
.1
1
 

7
.9
2
 
-2
3
.4
5
1
 
3
8
.7
5
 
0
.2
9
 

1
-2
 

0
.2
0
 
-2
4
.7
8
4
 
9
.5
1
 

 
  

0
.1
1
 

7
.2
8
 
-2
4
.9
5
4
 
0
.9
8
 

1
2
.2
7
 
-2
5
.3
1
2
 
1
.0
6
 

9
.5
8
 
-2
4
.1
9
4
 
3
4
.0
5
 
0
.3
1
 

   (I
V

) 
U

23
05

 

D
ep

th
 

(c
m

) 
B

u
lk

 
O

C
 

B
u

lk
 

δ δδδ
13

C
 

B
u

lk
 

(C
/

N
)a

 
B

u
lk

 
S
A

 
B

u
lk

 
O

C
:S

A
 >

25
 µ µµµ

m
 

O
C

 

>
25

 u
m

 
(C

/
N

)a
 

>
 2

5 

µ µµµ
m

 

δ δδδ
13

C
 

4-
25

 µ µµµ
m

 
O

C
 

4-
25

 

µ µµµ
m

 
(C

/
N

)a
 

4-
25

 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
O

C
 

<
4
 µ  µ µ µ

m
 

(C
/

N
)a

 <
4 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
S
A

 
<

4 
µ µµµ

m
 

O
C

:S
A

 

1
-2
 

0
.5
8
 
-2
3
.9
0
1
 
1
0
.1
5
 
1
3
.8
7
 
0
.4
2
 

0
.2
3
 

1
0
.8
1
 
-2
4
.5
1
0
 
0
.5
3
 

1
0
.0
7
 
-2
3
.8
4
5
 
1
.5
1
 

9
.9
8
 
-2
3
.4
4
6
 
3
0
.3
1
 
0
.5
0
 

3
-4
 

0
.5
4
 
-2
4
.0
4
0
 
9
.4
1
 

 
  

0
.3
6
 

1
4
.2
5
 
-2
5
.0
5
5
 
0
.4
8
 

9
.6
1
 
-2
4
.1
7
9
 
1
.2
5
 

8
.6
6
 
-2
3
.6
9
0
 
3
1
.0
2
 
0
.4
0
 

6
-7
 

0
.6
7
 
-2
4
.5
4
4
 
1
0
.6
1
 

 
  

0
.3
4
 

1
4
.1
8
 
-2
5
.3
8
2
 
0
.4
5
 

1
0
.8
4
 
-2
4
.6
1
5
 
1
.3
1
 

9
.7
2
 
-2
4
.1
7
3
 
2
8
.3
5
 
0
.4
6
 

1
2
-1
3
 

0
.6
3
 
-2
4
.7
8
0
 
1
0
.8
4
 

  
  

0
.5
7
 

1
8
.3
6
 
-2
5
.8
5
4
 
0
.4
8
 

9
.7
6
 
-2
4
.7
6
3
 
0
.9
7
 

9
.3
8
 
-2
4
.5
2
0
 
2
8
.1
8
 
0
.3
4
 

1
8
-1
9
 

0
.5
8
 
-2
4
.3
3
6
 
1
1
.3
9
 

 
  

0
.2
0
 

1
2
.5
8
 
-2
5
.1
5
3
 
0
.4
9
 

1
0
.9
9
 
-2
4
.3
1
4
 
1
.0
5
 

9
.5
9
 
-2
3
.7
9
6
 
2
6
.0
9
 
0
.4
0
 

2
4
-2
5
 

0
.7
8
 
-2
5
.0
1
1
 
1
2
.1
8
 

  
  

0
.7
4
 

1
8
.6
7
 
-2
5
.6
0
0
 
0
.4
4
 

1
0
.8
6
 
-2
4
.9
6
6
 
0
.9
1
 

1
0
.6
4
 
-2
4
.5
6
4
 
2
2
.3
8
 
0
.4
1
 

2
7
-2
8
 

0
.5
0
 
-2
4
.4
5
0
 
9
.5
5
 

 
  

0
.2
7
 

1
4
.1
5
 
-2
4
.4
9
1
 
0
.3
3
 

1
0
.4
4
 
-2
4
.7
9
3
 
0
.9
5
 

1
0
.3
7
 
-2
4
.2
2
0
 
2
7
.5
8
 
0
.3
4
 

3
3
-3
4
 

0
.5
7
 
-2
4
.3
3
9
 
1
2
.3
6
 

 
  

0
.1
8
 

1
2
.2
9
 
-2
5
.0
1
4
 
0
.5
5
 

1
1
.9
7
 
-2
4
.5
3
2
 
1
.0
3
 

9
.2
5
 
-2
3
.6
8
5
 
2
3
.8
0
 
0
.4
3
 

 



A
pp

en
di

x 
C

 
 

(V
) 

U
23

06
 

D
ep

th
 

(c
m

) 
B

u
lk

 
O

C
 

B
u

lk
 

δ δδδ
13

C
 

B
u

lk
 

(C
/

N
)a

 
B

u
lk

 
S
A

 
B

u
lk

 
O

C
:S

A
 >

25
 µ µµµ

m
 

O
C

 

>
25

 u
m

 
(C

/
N

)a
 

>
 2

5 

µ µµµ
m

 

δ δδδ
13

C
 

4-
25

 µ µµµ
m

 
O

C
 

4-
25

 

µ µµµ
m

 
(C

/
N

)a
 

4-
25

 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
O

C
 

<
4
 µ  µ µ µ

m
 

(C
/

N
)a

 <
4 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
S
A

 
<

4 
µ µµµ

m
 

O
C

:S
A

 

0
-1
 

0
.2
3
 
-2
4
.5
5
0
 
1
0
.6
2
 
1
0
.2
4
 
0
.2
2
 

0
.1
2
 

7
.1
2
 
-2
4
.6
7
8
 
0
.6
7
 

1
0
.5
3
 
-2
4
.4
6
0
 
1
.1
1
 

7
.9
2
 
-2
3
.4
5
1
 
3
8
.7
5
 
0
.2
9
 

1
-2
 

0
.2
0
 
-2
4
.7
8
4
 
9
.5
1
 

 
  

0
.1
1
 

7
.2
8
 
-2
4
.9
5
4
 
0
.9
8
 

1
2
.2
7
 
-2
5
.3
1
2
 
1
.0
6
 

9
.5
8
 
-2
4
.1
9
4
 
3
4
.0
5
 
0
.3
1
 

   (V
I)

 
W

69
7 

D
ep

th
 

(c
m

) 
B

u
lk

 
O

C
 

B
u

lk
 

δ δδδ
13

C
 

B
u

lk
 

(C
/

N
)a

 
B

u
lk

 
S
A

 
B

u
lk

 
O

C
:S

A
 >

25
 µ µµµ

m
 

O
C

 

>
25

 u
m

 
(C

/
N

)a
 

>
 2

5 

µ µµµ
m

 

δ δδδ
13

C
 

4-
25

 µ µµµ
m

 
O

C
 

4-
25

 

µ µµµ
m

 
(C

/
N

)a
 

4-
25

 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
O

C
 

<
4
 µ  µ µ µ

m
 

(C
/

N
)a

 <
4 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
S
A

 
<

4 
µ µµµ

m
 

O
C

:S
A

 

0
-1
 

1
.0
4
 
-2
2
.9
1
9
 
9
.8
5
 
2
4
.4
3
1
 
0
.4
2
 

0
.7
7
 

1
2
.2
0
 
-2
4
.1
6
9
 
0
.6
2
 

9
.2
7
 
-2
2
.9
8
7
 
1
.4
6
 

9
.2
5
 
-2
2
.5
2
6
 
3
6
.6
7
 
0
.4
0
 

6
-7
 

0
.8
0
 
-2
2
.8
4
0
 
9
.3
1
 

 
 

0
.5
8
 

1
4
.5
6
 
-2
4
.3
2
5
 
0
.4
9
 

1
0
.1
3
 
-2
3
.0
0
3
 
1
.3
3
 

9
.6
6
 
-2
2
.2
2
0
 
3
1
.5
7
 
0
.4
2
 

1
2
-1
3
 

0
.9
0
 
-2
2
.9
7
8
 
1
0
.4
9
 

 
 

0
.5
7
 

1
5
.9
3
 
-2
4
.6
3
9
 
0
.5
5
 

1
0
.1
5
 
-2
3
.3
5
8
 
1
.3
4
 

9
.5
0
 
-2
2
.6
3
3
 
3
2
.1
1
 
0
.4
2
 

1
8
-1
9
 

0
.7
7
 
-2
2
.7
3
5
 
1
0
.2
5
 

 
 

0
.4
7
 

1
5
.8
2
 
-2
4
.7
2
9
 
0
.3
7
 

9
.4
2
 
-2
2
.9
9
0
 
1
.4
4
 

1
0
.6
6
 
-2
2
.6
7
8
 
2
6
.9
8
 
0
.5
3
 

2
4
-2
5
 

0
.8
0
 
-2
2
.3
9
1
 
9
.8
3
 

 
 

0
.5
4
 

1
2
.1
5
 
-2
3
.5
6
2
 
0
.4
8
 

9
.5
1
 
-2
3
.0
9
8
 
1
.3
3
 

9
.3
7
 
-2
2
.0
8
2
 
2
7
.2
7
 
0
.4
9
 

2
7
-2
8
 

0
.7
1
 
-2
2
.2
6
0
 
9
.0
4
 

 
 

0
.4
8
 

1
3
.9
0
 
-2
3
.7
6
0
 
0
.4
2
 

9
.5
9
 
-2
2
.4
0
0
 
1
.2
9
 

9
.8
7
 
-2
1
.8
4
0
 
2
8
.8
6
 
0
.4
5
 

3
0
-3
1
 

1
.0
0
 
-2
2
.4
1
5
 
9
.6
5
 

 
 

0
.5
3
 

1
3
.1
1
 
-2
3
.9
3
5
 
0
.4
8
 

9
.2
9
 
-2
2
.9
1
7
 
1
.2
7
 

8
.8
9
 
-2
2
.0
9
9
 
3
0
.5
3
 
0
.4
1
 

3
6
-3
7
 

0
.6
5
 
-2
2
.4
7
2
 
9
.9
6
 

 
 

0
.4
0
 

1
1
.9
9
 
-2
4
.4
9
2
 
0
.5
5
 

9
.7
1
 
-2
2
.8
7
9
 
1
.2
5
 

8
.5
9
 
-2
1
.9
8
5
 
2
7
.0
0
 
0
.4
6
 

4
2
-4
3
 

0
.7
0
 
-2
2
.6
0
2
 
9
.7
0
 

 
 

0
.3
7
 

1
5
.9
4
 
-2
2
.4
3
3
 
0
.5
0
 

1
0
.2
2
 
-2
2
.5
2
5
 
1
.3
5
 

1
0
.1
1
 
-2
2
.1
9
0
 
3
3
.1
0
 
0
.4
1
 

4
8
-4
9
 

0
.7
8
 
-2
2
.6
2
3
 
1
0
.2
3
 

 
 

0
.4
7
 

1
3
.8
8
 
-2
4
.3
3
0
 
0
.4
2
 

9
.6
1
 
-2
2
.9
5
8
 
1
.4
2
 

9
.4
9
 
-2
2
.3
3
7
 
2
5
.6
7
 
0
.5
5
 

 



A
pp

en
di

x 
C

 
 

(V
II

) 
W

69
9 

D
ep

th
 

(c
m

) 
B

u
lk

 
O

C
 

B
u

lk
 

δ δδδ
13

C
 

B
u

lk
 

(C
/

N
)a

 
B

u
lk

 
S
A

 
B

u
lk

 
O

C
:S

A
 >

25
 µ µµµ

m
 

O
C

 

>
25

 u
m

 
(C

/
N

)a
 

>
 2

5 

µ µµµ
m

 

δ δδδ
13

C
 

4-
25

 µ µµµ
m

 
O

C
 

4-
25

 

µ µµµ
m

 
(C

/
N

)a
 

4-
25

 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
O

C
 

<
4
 µ  µ µ µ

m
 

(C
/

N
)a

 <
4 

µ µµµ
m

 

δ δδδ
13

C
 

<
4 

µ µµµ
m

 
S
A

 
<

4 
µ µµµ

m
 

O
C

:S
A

 

0
-1
 

1
.1
9
 
-2
1
.8
7
4
 
9
.1
0
 
2
5
.3
6
4
 
0
.4
7
 

1
.0
4
 

1
0
.6
2
 
-2
2
.5
5
7
 
0
.7
7
 

9
.3
6
 
-2
2
.3
6
3
 
1
.3
6
 

8
.1
7
 
-2
1
.6
0
0
 
2
5
.3
6
 
0
.5
3
 

1
-2
 

0
.8
5
 
-2
1
.7
8
3
 
8
.8
8
 

 
  

1
.0
4
 

9
.5
6
 
-2
2
.1
0
8
 
0
.7
8
 

8
.9
5
 
-2
2
.2
0
2
 
1
.3
2
 

8
.2
4
 
-2
1
.5
5
1
 
4
0
.3
7
 
0
.3
2
 

  



A
pp

en
di

x 
D

 

A
P
P
E
N
D
IX
 D
: 

2
10
P
b
 G
R
A
P
H
S
 

(I
) 

C
O
N
T
IN
E
N
T
A
L
 S
H
E
L
F
 

D
at
a 
p
ro
v
id
ed
 b
y 
S
. 
K
u
eh
l 
an
d
 T
. 
K
n
is
k
er
n
, 
V
ir
gi
n
ia
 I
n
st
it
u
te
 o
f 
M
ar
in
e 
S
ci
en
ce
s,
 U
S
A
. 

 

0
.1

1
1

0

U
2
3
0
4

5
0

4
0

3
0

2
0

1
00

Depth (cm)

0
.1

1
1

0

U
2
3
0

5

5
0

4
0

3
0

2
0

1
00

0
.1

1
1

0

U
2
3
0

6

5
0

4
0

3
0

2
0

1
00

E
x

ce
ss

 2
1
0
P

b
 A

ct
iv

it
y
 (

d
p

m
 g

-1
) 

0
.4

2
 c

m
y
-1

0
.9

3
 c

m
y

-1

 



A
pp

en
di

x 
D

 

(I
I)

 
C
O
N
T
IN
E
N
T
A
L
 S
L
O
P
E
 

D
at
a 
p
ro
v
id
ed
 b
y 
C
. 
A
le
x
an
d
er
, 
S
k
id
aw
ay
 I
n
st
it
u
te
 o
f 
O
ce
an
o
gr
ap
h
y,
 U
S
A
. 

 

 


	Brackley Title Page.doc
	Abstract etc.pdf
	Chapter 1.pdf
	Chapter 2.pdf
	Chapter 3.pdf
	Chapter 4.pdf
	Chapter 5.pdf
	Chapter 6.pdf
	Chapter 7.pdf
	References.pdf
	Appendix A.pdf
	Appendix B.pdf
	Appendix C.pdf
	Appendix D.pdf

