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Abstract

The subject is introduced by considering the treatment of oscillators in
Mathematics from the simple Poincaré oscillator, a single variable dynam-
ical process defined on a circle, to the oscillatory dynamics of systems of
differential equations. Some models of real oscillator systems are consid-
ered. Noise processes are included in the dynamics of the system. Cou-
pling between oscillators is investigated both in terms of analytical sys-
tems and as coupled oscillator models.

It is seen that driven oscillators can be used as a model of 2 coupled
oscillators in 2 and 3 dimensions due to the dependence of the dynamics
on the phase difference of the oscillators. This means that the dynamics are
easily able to be modelled by a 1D or 2D map. The analysis of N coupled
oscillator systems is also described.

The human cardiovascular system is studied as an example of a cou-
pled oscillator system. The heart oscillator system is described by a sys-
tem of delay differential equations and the dynamics characterised. The
mechanics of the coupling with the respiration is described.

In particular the model of the heart oscillator includes the barorecep-
tor reflex with time delay whereby the aortic fluid pressure influences the
heart rate and the peripheral resistance. Respiration is modelled as forcing
the heart oscillator system.

Locking zones caused by respiratory sinus arrhythmia (RSA), the syn-
chronisation of the heart with respiration, are found by plotting the rota-
tion number against respiration frequency. These are seen to be relatively
narrow for typical physiological parameters and only occur for low ratios
of heart rate to respiration frequency. Plots of the diastolic pressure and



heart interval in terms of respiration phase parameterised by respiration
frequency illustrate the dynamics of synchronisation in the human cardio-
vascular system.
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Chapter 1

Introduction

Coupling between oscillators was first studied by Huygens in 1673 who
noticed that pendulum clocks in the same room became synchronised. In
1889 Henri Poincaré laid the foundations of dynamical systems theory in
his study of the stability of the solar system. His work was an entry in
a contest to commemorate the 60th birthday of King Oscar II of Sweden.
Poincaré uncovered the significance of the homoclinic points at the cross-
ing of the unstable and stable manifolds and also introduced the Poincaré
map. Coupled and synchronised oscillators are significant in electronics
also. The ubiquitous phase-locked loop is an example. The dynamics of a
phase-locked loop can be highly nonlinear and are not fully understood.
For example chaotic dynamics and locking region hysteresis are possible.
Commonly only a simplified linear model of the dynamics is used.

Coupled oscillators also occur in biological systems. One early use of
mathematics to model biological systems was Van der Pol’s use in 1928
of a driven Van der Pol oscillator to explain some normal, and patholog-
ical, rhythms of the heart. However Van der Pol devised his differential
equation to model an electronic oscillator based on the triode valve. In
the human cardiovascular system coupling between respiration and the
heart results in synchronisation at a fixed m

n
ratio for some respiration

frequencies. This results in the heart rate being entrained by the respi-
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CHAPTER 1. INTRODUCTION 2

ration so over a zone of respiration frequencies the heart rate maintains
the fixed ratio. This process of entrainment is common to all systems of
coupled oscillators. The zones, which correspond to the rational numbers,
are known as Arnold Tongues after V.I. Arnold who discovered them in
1963. While the dynamics are quite simple at low coupling, consisting
of zones of synchronisation the boundaries of which are a tangent bifur-
cation, interspersed with quasiperiodic regions where the frequencies are
incommensurate, at higher coupling chaotic behaviour is possible with a
more elaborate bifurcation structure.

Arnold Tongues are generic to coupled oscillators and there is a range
of literature on their theory and the results of mathematical modelling.
There is less literature on their occurence in biological systems and so what
follows explains the results of modelling the human cardiovascular sys-
tem using Matlab and the DDE23 differential delay equation solver. The
locking zones found in the model should be comparable to physiological
data. The dynamics of cardiovascular synchronisation and the mechanics
of synchronisation in the human cardiovascular system are explored.



Chapter 2

Oscillators in Mathematics

2.1 Introduction

A fundamental characteristic of oscillators is a repeating sequence of states.
The progression of states is measured by the phase of the oscillator. For a
map xi+1 = f(xi) an order n fixed point exists when xi+n = xi where f is a
C1 homeomorphism. The iteration i indicates the progression of the phase
wrt the initial point. As a dynamical system defined by a vector field on
a differential manifold, an oscillator is a piecewise continuous diffeomor-
phism f(θ) on T 1 or S1 which has the range [0 . . . 1) or [0 . . . 2π). What
are the possible dynamics of a single dimensional dynamical system? The
dynamics could tend to an equilibrium point or they must tend in one
direction for all time. So for an oscillator the vector field on R1 must be
piecewise continuous, periodic in θ, and there must be a constant term so
that an equilibrium point is not possible.

2.2 Relaxation Oscillators

The integrate-and-fire relaxation oscillator explicitly models episodic be-
haviour and is commonly used in modelling biological systems (A.A. Brailove

3



CHAPTER 2. OSCILLATORS IN MATHEMATICS 4

[1]). Most generally the integrate-and-fire oscillator is described by a quan-
tity x(t) which increases dynamically according to a charging process. At a
fixed upper threshold the process changes to a discharge to a lower thresh-
old level where the cycle repeats itself. It is a useful simplification to as-
sume that the discharge process occurs instantaneously. C.S. Peskin [2]
described the dynamics of the charging process by dx

dt
= S0 − γx which

can also model the charging of a capacitor through a resistor by a con-
stant voltage source S0

γ
. Mirollo and Strogatz [3] formalised the idea of the

state variable x(t). The state of the oscillator is completely determined by
the single variable x which increases monotonically in time, from a lower
threshold of zero to an upper threshold of one, at which point the oscil-
lator fires and x is instantly reset to zero. The phase of the oscillator φ, is
related to the state variable by x = f(φ). The function f(φ) is defined such
that dφ

dt
= const = ν, the free running frequency of the oscillator in cycles

per second. The phase is defined to be zero when the state x is zero. A fur-
ther assumption is that f(φ) is concave downwards as it is for the voltage
vs time curve of the example of the resistor and charging capacitor. For
the example of the resistor and capacitor x(t) = S0

γ
(1− e−γt). The function

f(φ) = x is found by substituting φ = νt so that f(φ) = 1−e−
φγ
ν

1−e−
γ
ν

, where the
denominator is found from the upper threshold of x(t) = 1 at t = 1

ν
.

2.3 Poincaré Oscillator

Wanzhen, Glass, and Shrier [4] describe a 2D system of differential equa-
tions which is called the Poincaré oscillator as probably the simplest stable
limit cycle oscillator, which has been considered many times as a model of
biological oscillations. Radial coordinates are natural, so

dφ

dt
= 1

T0
, (2.1)

dr

dt
= kr(1− r), (2.2)
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where the two variables r and φ represent the distance from the origin,
and the angle or phase, respectively. Any value of r except 0 evolves to
r = 1. Evidently r = 0 is an unstable equilibrium point. φ increases at a
constant rate and is evaluated modulo 1. φ is not defined at the origin and
is a phase singularity there.

What is the effect of an external perturbation on the trajectory? r de-
cays back to r = 1, depending on k, and φ is displaced to a new phase
φ′. Wanzhen et al. consider as a perturbation a horizontal translation of
magnitude b. This causes a shift of variables (r0, φ0) to (r′, φ′) where

φ′ = 1
2π

cos−1
(
b+r0 cos(2πφ0)

r′

)
, (2.3)

r′ =
√
r2
0 + b2 + 2r0b cos(2πφ0). (2.4)

Two cases can be distingushed depending on the winding number of the
resetting. The winding number is the relative change in phase of φ′ while
φ0 changes in phase from 0 to 1. Thus for type 1 or ’weak’ resetting φ′ goes
through the equivalent change of phase as φ0, and for type 0 or ’strong’
resetting, the change in phase of φ′ is zero. The type of the resetting is syn-
onomous with the winding number. Geometrically the two cases can be
distinguished by whether or not the original r = 1 trajectory is displaced
past the phase singularity at the origin. Wanzhen et al. further consider
the effect of multiple pulse resetting and naturally find a dependance on
k, b, and δ, the time between the reset pulses.

The model is compared with experimental results of stimulation of
chicken heart cell aggregates and good agreement is found but it is noted
that this does not mean that the Poincaré oscillator represents an accurate
model of the cardiac preparation but that it captures the essential topolog-
ical properties of biological oscillators such as the heart cell aggregate.

Further understanding of the effect of phase resetting on an oscillator
can be found through the notion of isochrons. An isochron is a line or sur-
face in the phase space of the system from which the trajectories evolve
to equal phase. In the case of the Poincaré oscillator system it can be seen
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that depending on k the trajectories of points in the phase plane lying on
an isochron will converge to the same phase on the limit cycle r = 1 as
time progresses. If the change in phase dφ

dt
does not depend on r then the

isochron is aligned with the component of the phase line in r. The curva-
ture of the isochron reflects the change in magnitude of the θ component
with r. In the case of the Poincaré oscillator it can be the seen that the
isochrons are radial lines.

Clearly the isochrons converge at the phase singularity at the origin
where the phase is undefined. Evidently the phase of points near the ori-
gin can exhibit large changes in response to relatively small perturbations.
A.T. Winfree [5] terms the phaseless manifold of the singularity where the
phase is undefined a ’black hole’. In biological systems this can be a re-
gion of phase space rather than a point. Winfree gives an example of the
construction of isochrons for limit cycle attractor systems with polar sym-
metry, that is dφ

dt
depending only on r, which generalize the Poincaré os-

cillator of Wanzhen et al. Let dφ
dt

= A(r) with the unit of time chosen so
that at the radius of the limit cycle attractor A(r0) = 1, and dr

dt
= B(r) with

B(r0) = 0 and dB
dr

< 0 at r0. The isochrons must have polar symmetry so
ϕ = g(φ, r) = φ − f(r), that is the difference in phase of the isochron at
state (φ, r) from φ depends only on r . The rate of change of the isochron ϕ
at the state (φ, r) must then be the same as φ on the limit cycle, that is 1, so

dϕ

dt
≡ 1 =

dφ

dt
− df(r)

dr

dr

dt
, (2.5)

and
df

dr
=

dφ
dt
− 1

dr
dt

. (2.6)

f(r) is obtained by integrating this equation and thus g(φ, r).
For example, consider the system:

dr

dt
= 5(1− r)(r − 1

2
)r, (2.7)

dφ

dt
= 1 + ε(1− r). (2.8)
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Solution is via partial fractions, the identities, d ln(x)
dx

= 1
x
,

d ln( 1
x
)

dx
= −1

x
, |x| >

0, and simplifying radicals, so

r(t) =
−2+ 1

2
Ce

5
2 t± 1

2
(C2e5t−4Ce

5
2 t)

1
2

Ce
5
2 t−4

, (2.9)

φ(t) =
∫
εr(t)dt+ t+ εt+D, (2.10)

ϕ = φ− 2ε
5

ln(2− 1
r
). (2.11)

Note that r = 1 is a stable attractor, r = 1
2
, is an unstable periodic solution,

and r = 0, is a fixed point, so the region r < 1
2

is attracted to r = 0, and the
region r > 1

2
is attracted to r = 1. See fig 2.1. A phase space consisting of

a periodic attractor and an attracting fixed point occurs often in biological
systems. An external signal shifts the system between the two states.

2.4 Classical Oscillators

One classical oscillator is the damped pendulum:

d2θ

dt2
+ δ

dθ

dt
+ sin(θ) = 0. (2.12)

Naturally the solution of (2.12) is periodic in θ consisting of fixed points on
the θ axis at θ = 2nπ. The phase lines spiral into a fixed point depending
on the value of the damping δ. If δ = 0 the phase lines orbit a fixed point
or monotonically increase in θ, in a narrow range of dθ

dt
. In this case the

system is conservative and the phase lines are the solution of the equation
∇φ = 0, where φ is a scalar function.

The well known double well Duffing equation:

d2x

dt2
+ δ

dx

dt
+ x3 − x = 0, (2.13)

is a specialization of a larger class of equations given by (2.14), usually
referred as Duffing equations:

d2x

dt2
+ δ

dx

dt
+

dP (x)

dx
= 0, (2.14)
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Figure 2.1: nonisochronous oscillator with oscillator annihilation in phase
plane
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where P (x) is the equation for a potential energy field. In Physics, work
equals force times distance, which explains the use of dP (x)

dx
. It can be

seen in the case of (2.12) that the potential function is − cos(θ), and the
minimums of potential energy are at 2nπ. In the case of (2.13) P (x) =

x4 − 1
2
x2 + δ, so the −x2 term causes a peak in the middle of the x4 term

leaving two wells. If the potential function − cos(θ) is approximated by
its first 3 terms, −1 + 1

2
θ2 − 1

24
θ4 then this is the negative of the potential

function of the double well Duffing equation and a single potential well
exists on the peak of the −θ4 term.

B. van der Pol [6] devised the Van der Pol oscillator to model an elec-
tronic oscillator, using a parallel inductor and capacitor as the resonator,
inductively coupled to a triode valve as the amplifier. In contrast to the
Duffing oscillator which has a proportionate damping term δ, the damp-
ing in the Van der Pol oscillator is dependent on the amplitude, so that a
limit cycle attractor exists in the phase plane. This is the effect of introduc-
ing a nonlinearity in the transfer curve of the amplifier so that i = αv−γv3,
where i is current and v is voltage, compared to the linear model of the
amplifier i = αv for a linear oscillator. The Van der Pol equation is:

d2v

dt2
− α(1− v2)

dv

dt
+ ω2v = 0. (2.15)

If the parameter ε = α
ω
� 1, then the solution is a free sinusoidal-like oscil-

lation, if ε � 1 (heavily damped) then the solution is like a relaxation os-
cillation. The relaxation oscillator solution is significant. Compared to the
state variable of the ordinary relaxation oscillator it is continuous whereas
the ordinary oscillator has a simple unparametrisable discontinuity at the
threshold.

Van der Pol observed that for small values of v the damping term is
-ve so that the amplitude of the oscillation increases and the sign of the
damping changes to limit the amplitude of the oscillation. This suggested
to try as a solution a cosinusoid with a slowly varying amplitude,

v = a(τ) cos(τ), (2.16)
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with τ = ωt, where slowly is taken as meaning that during one cycle the
percentage amplitude change is small, that is 1

a
da
dτ
� 1. As the nonlinearity

is assumed small the solution will nearly be sinusoidal so higher harmon-
ics can be neglected. Also neglecting higher derivatives of a(τ), and using
da
dτ
� a to neglect terms with coefficients in da

dτ
, substituting (2.16) into

(2.15) gives,
da2

dτ
− ε(a2 − 1

4
a4) = 0, (2.17)

which results in,

v =
2 cos(τ)√

1 + e−ε(τ−τ0)
. (2.18)

The observation that at small v the damping term is -ve and so the oscil-
lation amplitude must increase shows that a small amount of noise will
cause the oscillator to converge to a limit cycle of amplitude equal to 2.

An extension of the Van der Pol oscillator is the Bonhöffer-van der Pol
equation. This is a simplified model of the Hodgkin-Huxley system for
the firing of a squid neuron, devised by FitzHugh and Nagumo [7], [8].
They reduced the Hodgkin-Huxley equation (four-dimensional) to a two
dimensional system called the BVP equation or FitzHugh-Nagumo model
by extracting the excitability of the dynamics in the Hodgkin-Huxley equa-
tion. The system is:

C
dv

dt
= −i− g(v),

L
di

dt
= v − ri+ E. (2.19)

This can be seen as an extension of the Van der Pol oscillator by substitu-
tion, giving:

d2v

dt2
+

(
r

L
+

1

C
.
dg(v)

dv

)
.
dv

dt
+
v + r.g(v) + E

LC
= 0. (2.20)

For a +ve cubic nonlinearity g(v) the damping is comparable to the stan-
dard Van der Pol oscillator. The potential well is a -ve quartic as for the
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truncated version of the simple pendulum and can be seen to have a peri-
odic attractor at a root of v+r.g(v)+E

LC
. The effect of the E bias term is a linear

term in the potential well which skews the minimum to one side of the
well corresponding to the characteristic of the biological system where the
trajectories of the periodic orbits are squeezed closer to the fixed point for
part of the orbit.

2.5 Oscillating Systems

Oscillators, that is periodic attractors, also occur in higher dimensional
systems. They are represented by a stable limit cycle in the phase space of
an autonomous dissipative dynamical system.

Theorem 2.5.1. A bounded orbit of an autonomous flow, that is a trajectory that
evolves entirely as a time independent function of its own state variables, either
has a Lyapunov exponent equal to zero or else it has an equilibrium point in its
ω-limit set.

Proof. If the latter is not the case let f be a piecewise continuous system,
then 0 < b < |f(Ft(v))| < B, ∀t, for some positive bounds b and B, where
Ft(v) is the solution of the system f with initial condition v at time t. If
r(n) is the expansion in the direction of f(v) after n time units (n steps of
the t = 1 map), then

0 6 lim
n→∞

1

n
ln b 6 lim

n→∞

1

n
ln r(n) 6 lim

n→∞

1

n
lnB 6 0.

Therefore the Lyapunov exponent in the direction tangent to the orbit is
zero.

The phase corresponds to motion along a limit cycle, that is in the di-
rection in which neither expansion or contraction of the phase volume oc-
curs, therefore the phase of oscillations and this direction in phase space,
corresponds to the zero Lyapunov exponent. It is natural for phase to be
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proportional to time, and increasing by 2π for each period T0 of the limit
cycle, so the dynamics of the phase on the limit cycle can be described as,

dφ

dt
= ω0, (2.21)

where ω0 = 2π
T0

. The correspondence of phase to the zero Lyanpunov expo-
nent shows why it is amenable to small external actions. Whereas pertur-
bations in amplitude relax to the stable limit cycle value, perturbations in
phase accumulate.

2.6 Measurement of Oscillator Phase

Oscillators can also be defined in chaotic systems, that is systems with
a Lyapunov exponent greater than zero. In this case as the trajectory is
bounded there must be a Lyapunov exponent equal to zero also. The state
of the oscillation phenomenon is measured by the phase of the oscillator.
The phase variable is defined in the direction of the zero Lyapunov expo-
nent corresponding to shifts along the flow, as a piecewise linear function
of time so that an increment of 2π occurs at each return to a Poincaré secant
surface:

φP (t) = 2π
t− tn

tn+1 − tn
+ 2πn, tn 6 t < tn+1, (2.22)

where tn is the time of the n-th crossing of the secant surface. Periodic os-
cillations would correspond to a fixed point of the Poincaré map. Pikovsky
et al.[9] give two other methods to define the phase.

I. It often happens that the strange attractor can be projected onto a
plane and the projection revolves around a centre point which can be taken
as an origin from which the angle between a vector to the point of the
trajectory, and a line in the plane taken to be the reference zero phase, is
the instantaneous phase φ(t).

II. Taking any oscillatory observable s(t) of a chaotic system the so-
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called analytic signal ζ(t) ( D. Gabor[10]) can be constructed:

ζ(t) = s(t) + isH(t) = A(t)eiφ(t), (2.23)

where sH(t) is the Hilbert transform (HT) of s(t),

sH(t) = π−1P.V.

∫ ∞

−∞

s(τ)

τ − t
dτ, (2.24)

(where P.V. means the Cauchy principal value). The instantaneous am-
plitude A(t), and the instantaneous phase φ(t) are then unambiguously
defined from (2.23). From (2.24) the Hilbert transform sH(t) of s(t) may be
considered to be the convolution of the functions s(t) and 1

πt
. Hence the

Fourier transform SH(jω) of sH(t) is the product of the Fourier transform
S(jω) of s(t) and of 1

πt
, (−j, as an odd function gives a purely imaginary

transform). For physically relevant frequencies ω > 0, SH(jω) = −jS(jω);
i.e. SH(jω) is S(jω) shifted in phase by a constant π

2
phase lag.

For example consider a Rössler system:

ẋ = −ωy − z,

ẏ = ωx+ ay,

ż = .4 + z(x− 8.5). (2.25)

The motion of the chaotic attractor of this system is such that orbits contin-
ually circulate around the z axis. Elimination of x from (2.25) shows that
the system is oscillatory with frequency ω.

ÿ − aẏ + ω2y = −ωz

Changing x and y into polar coordinates r = (x2 + y2)
1
2 , φP = arcsin(y

r
)

and taking the phase as φP corresponds to a projection of the phase space
onto the x-y plane with (0, 0) as the origin of the attractor. This gives an
average velocity of rotation i.e. the average return time to a Poincaré sur-
face, corresponding to the main peak in the power spectrum (Rosenblum
et al.,[11]).
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The three methods give practically coinciding results for these exam-
ples (A.S. Pikovsky et al.,[9]). The growth of phase of a chaotic system can-
not generally be expected to be uniform. It can be seen that the Poincaré
return times (the instantaneous period) depend on the intersection of a
chaotic amplitude with the Poincaré surface. Considering the Poincaré
map the dynamics can be represented as (A.S. Pikovsky et al.,[9]):

An+1 = T (An),

dφ

dt
= ω(An) ≡ ω0 + F (An). (2.26)

The amplitude A is given by the coordinates on the Poincaré section sur-
face, and the transformation T defines the Poincaré map, as An+1 is a func-
tion of An. The return time also depends on An so the instantaneous fre-
quency ω = 2π

(tn+1−tn)
can be stated in terms of the average frequency ω0

and a term representing the effect of the chaotic amplitude F (An). This
can be treated stochastically, but is deterministic. While T might be diffi-
cult to determine for a particular system it can be studied analytically by
using a prototype chaotic map such as the logistic map or the tent map.
F might be approximated by Gaussian noise but a chaotic signal will not
necessarily have these statistics. As the An express the chaotic nature of
the phase F can also be taken to be δAn, where δ is a small proportionality
constant.

The dynamics of the phase are generally diffusive so for large t it is
expected that

〈(φ(t)− φ(0)− ω0t)
2
〉
∼ DP t

where the diffusion constant DP determines the phase coherence of the
chaotic oscillations. This is the mean square of the deviation of the phase
from the mean (= ω0t) at time t that is to say the variance at time t. 〈. . . 〉 =

limN→∞
1
N

ΣN−1
i=0 (φi(t) − φi(0) − ω0t)

2 is the ensemble average. Roughly
speaking the diffusion constant is proportional to the width of the spec-
tral peak of the chaotic attractor J.D. Farmer [12], i.e. Q '

√
ω1ω2

(ω2−ω1)
where

ω1, ω2 are the -3dB points of the power spectral peak, so Dp ∼ 1
Q

.
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The Rössler attractor with ω = 1 and a = .15 givesDP < 10−4 so the
peak is very sharp and the attractor can be called phase coherent,[9].

2.7 Noise in Oscillators

The effect of noise can be analysed by adding a noise term ξ(t) to the os-
cillator. Effectively a free-running oscillator is now driven by the noise
term. The noise can be modelled as a Markov process, that is an ideal
point process, a process without after effect. This has the advantage that
Markov theory can be used to solve first passage time problems so this
type of problem is the most significant for an oscillator as it represents the
situation where an oscillator might jump a cycle.

For the theory of Markov processes to be applied the noise events must
be independent. The noise events are said to be independent when they
are uncorrelated. The correlation between noise events is given by the
correlation time τcorr of the noise signal. This is the time τ where the
autocorrelation of the noise signal becomes insignificant compared with
τ = 0. The autocorrelation of a signal is the quantity C(τ) = 〈φ(t)φ(t +

τ)〉 ≡ limN→∞
1
N

ΣN
i=0φi(t)φi(t + τ), which is the ensemble average. If φ(t)

is stationary, that is its statistical parameters are independent of t, then
C(τ) = limT→∞

1
T

∫ T
0
φ(t)φ(t + τ)dt the time average. In the current ap-

plication the theory of Markov processes is applicable where τcorr � 1
εω0

.
This implies that the correlation time τcorr of the random process is much
less than relaxation time of the dynamical process controlling the noise as
εω0 is the first order linear term of the damping of a nonlinear oscillator
or the damping coefficient of a linear oscillator. Effectively this means
that the noise events are independent where the relaxation time of the
noise process is much greater than the correlation time of the noise pro-
cess. If the correlation time is much longer than the relaxation time then
the noise dynamical process is ineffective as the transient response has
decayed within the duration of the noise event. The lack of after effect



CHAPTER 2. OSCILLATORS IN MATHEMATICS 16

justifies the use of Markov theory. The random process ξ(t) is taken to
be delta correlated, that is τcorr = 0. It is described by correlation func-
tions ks(t1, ....ts) = Ks(x)δ(t1 − t2)...δ(t1 − ts)(s = 2, 3, ...). Ks(x), where
x(t) = x at time t, are the s order intensity coefficients,see R.L. Stratonovich
[13]. A stationary Gaussian delta-correlated process with zero mean has
k2(t1, t2) = K2δ(t1 − t2) and only K2 is nonzero. Taking the noise to be
Gaussian δ-correlated such that 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′), 〈ξ(t)〉 = 0 allows
a detailed description of the effect. ξ(t) is a totally uncorrelated signal and
the power spectrum is a constant (= 2D) corresponding to white noise, as
shown by the Wiener-Khinchin relation. Therefore for a 1D oscillator,

dφ

dt
= ω0 + ξ(t). (2.27)

The oscillator noise process can be viewed dynamically as the over-
damped motion of a particle in a potential field, in this case ∂P

∂x
= −ω2

0φ,
reflecting that the effect of the noise is altered due to the potential field
force as a function of the phase of the oscillator, and because τcorr � 1

εω0
,

the acceleration being negligible as the particle is assumed massless, the
particle motion is forced by the external force ξ(t). The correspondence
is that the impulsive frequency noise causes jumps in phase. This can be
justified by understanding that as the Lyapunov exponent along the oscil-
lator trajectory is 0, then phase perturbations accumulate so this is like a
first order dynamical process with a long relaxation time. As the the quan-
tity ξ(t) is stochastic it is called a Langevin force and the equation (2.27) a
Langevin equation.

In Physics the principle of equipartition of energy assigns an energy
due to thermal fluctuations of 1

2
kT in each dimension. This is equated to

the kinetic energy of the particle 1
2
m < v2 >, where < v2 > denotes the

ensemble average velocity. For a small mass m the thermal velocity vth =
√
< v2 > =

√
kT
m

may be observable. The thermal motion of a particle is
known as Brownian motion.
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The prototype Langevin equation is:

u̇ = −βu+ A(t) +K(r, t), (2.28)

where u is velocity, β is damping, A(t) is the force due to noise, and K(r, t)

other forces affecting the noise process, including energy fields and exter-
nal forcing functions. The Langevin equation (2.28) without a potential
field is then:

v̇ + γv = ξ(t), (2.29)

with < ξ(t)ξ(t′) >= 2γ2Dδ(t − t′). The autocorrelation is solved for by
multiplying (2.29) by v(t′), where t′ = t+ τ , as the mean of v(t) is zero. By
integrating factor then,

〈v(t)v(t′)〉 = γDe−γ|t−t
′|, (2.30)

for large t, t′. Let the particle displacement be x(t), (v = ẋ). Then the
mean-square value of the displacement at time t is given by:

< (x(t)− x0)
2 >=< [

∫ t

0

v(t1)dt1]
2 >=<

∫ t

0

v(t1)dt1

∫ t

0

v(t2)dt2 >,

=

∫ t

0

∫ t

0

< v(t1)v(t2) > dt1dt2. (2.31)

Further,
∫ t

0

∫ t
0

e−γ|t1−t2|dt1dt2 = 2
γ
t− 2

γ2 (1− e−γt), therefore for large t, t′:

< (x(t)− x0)
2 >= 2Dt, (2.32)

(H. Risken,[14]).
Alternatively as acceleration is neglected,

< v(t)v(t′) >≈ 1

γ2
< ξ(t)ξ(t′) >= 2Dδ(t− t′), (2.33)

leading to the same result. This justifies the interpretation of D as a diffu-
sion constant.

In a physical system the diffusion constant is a coefficient of transport
for a second order spatial derivative ∂2P

∂x2 giving the evolution in time ∂P
∂t

of
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the concentration of particles wrt x in a concentration gradient. In the cur-
rent application it is the net effect of a number of random noise impulses
on the phase probability distribution with time. The second order spatial
derivative is the result of determining the net transport f(x, t) at a plane x
from the difference in transports at x±∆x. Generally the Langevin equa-
tion (2.28) needs to be solved to find φ(u; ∆u) the transition probability that
u changes by ∆u in time ∆t. This is carried out from stochastic principles
and the transition probability substituted in the Fokker-Planck equation
which expresses the dynamics of the statistics of a Markov process.

Beginning with the Chapman-Kolmogorov equation:

W (u, t+ ∆t) =

∫
W (u−∆u, t)φ(u−∆u; ∆u)d(∆u), (2.34)

where W (u, t) is the distribution of velocity u (≡ frequency dθ
dt

) at time t
and φ(u; ∆u) is the transition probability that u changes by ∆u in time
∆t derived from a Langevin equation. This supposes that the system pa-
rameters are stable over ∆t, so can be treated as constants, that is u can
be treated as a constant in calculating the acceleration, but the noise force
term A(t) fluctuates appreciably. That is to say a Markov process as the
transition probability is independent of the dynamics of the system. For
the Fokker-Planck equation the transition probability is found from the
Langevin equation as ∆u = −βu∆t+B(∆t), where B(∆t) =

∫ t+∆t

t
A(ξ)dξ

is the net acceleration a Brownian particle undergoes in time ∆t. Physi-
cally the distribution must tend to the Maxwellian temperature distribu-
tion of an ideal gas, as time goes to infinity, so

w(B(∆t)) → (
1

4πq∆t
)

3
2 exp(−|B(∆t))|2

4q∆t
), (t→∞), (2.35)

where q = βkT
m

.
The following lemma is useful.

Lemma 2.7.1. Let

R =

∫ t

0

φ(ξ)A(ξ)dξ, (2.36)
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then the probability distribution of R is given by:

w(R) =
1

(4πq
∫ t

0
φ2(ξ)dξ)

3
2

exp(
−|R|2

4q
∫ t

0
φ2(ξ)dξ

). (2.37)

This is derived from the requirement for the distribution to be the
Maxwellian temperature distribution as t→∞, see Chandrasekhar [15].

So from the Langevin equation (2.28),

φ(u; ∆u) =
1

(4πq∆t)
3
2

exp(−|∆u+ βu∆t|2

4q∆t
), (2.38)

as the Langevin equation relates the change in velocity and the velocity
expressed in the relaxation term, to the acceleration due to noise in the
form required by the lemma (2.7.1). Clearly if the velocity is u at t = 0 then
it is so with probability 1, and the lemma (2.7.1) is applied over t = ∆t.

In the case of simple Brownian motion of the phase without a potential
field (ω = 0), φ(∆u) = φ(−∆u). Expanding W and φ in (2.34) in Taylor
series around t and u leads to:

W (u, t) +
∂W

∂t
∆t = W (u, t)

∫ ∞

−∞
φ(∆u)d∆u+

∂W

∂u

∫ ∞

−∞
∆uφ(∆u)d∆u,

+
∂2W

∂u2

∫ ∞

−∞

∆2

2
φ(∆u)d∆u, (2.39)

which is the Fokker-Planck equation.
∫∞
−∞ φ(∆u)d∆u = 1 and the first

order spatial term vanishes because the transition probability φ is even,
leading to ∂W

∂t
= D ∂2W

∂u2 , where D = q
β2 , which gives D = kT

mβ
in physical

systems. With initial conditionW (u, t;u0) → δ(u−u0), (t→ 0), the solution
is:

W (u, t;u0) =
1

(4πDt)
1
2

e
−|u−u0|

2

4Dt , (2.40)

which says that the initial probability given by a delta function diffuses
with a Gaussian distribution.
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From the Langevin equation (2.28) u − u0e
−βt = e−βt

∫ t
0

eβξA(ξ)dξ. So
taking φ(ξ) = eβ(ξ−t) therefore from lemma (2.7.1),

W (u, t;u0) =
1

(4πDt)
1
2

exp(
−|u− u0|2

4Dt
), D =

q

β2
. (2.41)

The distribution of x can be obtained in the same manner,

x−x0 =

∫ t

0

u(ξ)dξ ⇒ x−x0 =

∫ t

0

{u0e
−βη + e−βη

∫ η

0

eβξA(ξ)dξ}dη. (2.42)

This leads to the form:

x− x0 − β−1u0(1− e−βt) =

∫ t

0

φ(ξ)A(ξ)dξ, (2.43)

where φ(ξ) = β−1(1− eβ(ξ−t)). Applying lemma (2.7.1),

W (x, t;x0, u0) = [
mβ2

2πkT [2βt− 3 + 4e−βt − e−2βt
]
1
2 exp(−mβ

2|x− x0 − u0(1− e−βt)/β|2

2kT [2βt− 3 + 4e−βt − e−2βt]
),

(2.44)
or

W (x, t;x0) ' (4πDt)−
1
2 exp(−|x− x0|2

4Dt
), (t� β−1) ⇒ 〈(x−x0)

2〉 = 2Dt, (D =
kT

mβ
).

(2.45)
For the case where ∆t � τcorr � β−1 the Langevin equation is not

necessary as the noise dynamics are ineffective, and the method can be
directly applied to the phase space x independent of the velocity u. There-
fore,

W (x, t+ ∆t) =

∫
W (x−∆x, t)φ(∆x)d(∆x). (2.46)

The transition probability is given by:

φ(∆x) =
1

(4πD∆t)
1
2

exp(− |∆x|
4D∆t

), D =
q

β2
=
kT

mβ
, (2.47)

as this is derived from above with τcorr � β−1 and t = ∆t � τcorr. There-
fore ∂W

∂t
= D∇2

xW . For β � 1 the Langevin equation is heavily damped
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and the acceleration can be ignored which is equivalent to the previous
case.

For oscillator noise the frequency of the oscillator has a noise term
added. The probability distribution of the phase over time is required. The
effect of the frequency on the phase noise can be modelled as the potential
field term of a linear oscillator ω2x not to be confused with the actual de-
terministic dynamics of the oscillator. It is seen that where the effect of the
noise causes a phase deviation > ±π this causes a 2π phase jump and the
noise process is now effective in the adjacent oscillator cycle. So the force
term due to the potential field is added to the noise dynamics to express
this effect. Mathematically the potential force field term cancels out the
damping so that the acceleration becomes effective so the equation is now
that of a damped forced linear oscillator.

The Langevin equation therefore has the potential force field termK(x, t) =

ω2x added and is analysed as an overdamped second order equation. Write

∂u

∂t
= −βu+ A(t)− ω2x⇒ ∂2x

∂t2
+ β

∂x

∂t
+ ω2x = A(t). (2.48)

The homogeneous equation has for solution x = a1 exp(µ1t) + a2 exp(µ2t)

where µi are the roots of µ2 + βµ + ω2 = 0. Proceeding using variation of
parameters, a1 and a2 are functions of time which satisfy:

exp(µ1t)(
da1

dt
) + exp(µ2t)(

da2

dt
) = 0, (2.49)

and
µ1 exp(µ1t)(

da1

dt
) + µ2 exp(µ2t)(

da2

dt
) = A(t). (2.50)

Thus the solutions are

x+
1

µ1 − µ2

[(x0µ2 − u0) exp(µ1t)− (x0µ1 − u0) exp(µ2t)] =

∫ t

0

A(ξ)ψ(ξ)dξ,

(2.51)
and

u+
1

µ1 − µ2

[µ1(x0µ2−u0) exp(µ1t)−µ2(x0µ2−u0) exp(µ2t)] =

∫ t

0

A(ξ)φ(ξ)dξ,

(2.52)
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where
ψ(ξ) =

1

µ1 − µ2

[exp[µ1(t− ξ)]− exp[µ2(t− ξ)]], (2.53)

and
φ(ξ) =

1

µ1 − µ2

[µ1 exp[µ1(t− ξ)]− µ2 exp[µ2(t− ξ)]]. (2.54)

The lemma (2.7.1) is extended for 2 random variables corresponding to
x and u, see Chandrasekhar [15]. This allows the distribution functions
W (x, t;x0, u0),W (u, t;x0, u0), andW (x, u, t;x0, u0) to be determined in terms
of the integrals,

∫ t
0
ψ2(ξ)dξ,

∫ t
0
φ(ξ)dξ, and

∫ t
0
φ(ξ)ψ(ξ)dξ. The over damped

case corresponds to β1 = (1
4

2 − ω2) 1
2

real, giving for example:

W (x, t;x0, u0) = [
1

4πD
∫ t

0
ψ2(ξ)dξ

]
1
2×

exp

−(x− x0e
−β1

2 [cosh(1
2
β1t) + β

β1
sinh(1

2
β1t)]− 2x0

β1
e−

β1
2 sinh(1

2
β1t))

2

2β
ω2D{1− e−β1(2β2

β2
1

sinh2(1
2
β1t) + β

β1
sinh(β1t) + 1)}

 .

(2.55)



Chapter 3

Coupled Oscillators

3.1 Introduction

Consider the system:

ẍ+ c2x = (c2 − 1) sin(t). (3.1)

This is an undamped oscillator driven by a periodic forcing function. The
system is nonautonomous but can be made autonomous by introducing
an additional dependent variable θ for t. The phase space is now R3 rather
than R2. As θ is the argument of a periodic function it can be considered to
lie in the interval [0, 2π). Let y = ẋ. With initial conditions x(0) = 0, y(0) =

2c+ 1, θ(0) = 0, the solution of the system is:

x(t) = sin(t) + sin(ct),

y(t) = cos(t) + c cos(ct),

θ(t) = t mod 2π.

The phase space is the infinite slab R2 × [0, 2π). As 0 is identical with
2π the θ component can be seen to map onto a circle so that a trajectory
that reaches 2π in the θ component continues on from θ = 0. x and y

are also periodic. There are two cases. If 1 and c are commensurate, that

23
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is c is rational, then the trajectory is a periodic orbit. If c is p
q

then for
t = q · 2nπ, ct = p · 2nπ and the trajectory has period q. The trajectory lies
on a torus, the exact path depending on the initial conditions. As p turns
through the torus are made for q rotations of the torus, the rotation number
of the trajectory is defined to be p

q
. As the x and y variables of the equations

given describe an ellipse they can be expressed in radial co-ordinates.
Let φ be the angle of the turn around the torus, that is in the latitudinal

direction. If 1 and c are incommensurate then c is irrational. The orbit of
the trajectory is then called quasi-periodic and is dense on the torus as the
trajectory never returns to the initial conditions. The surface of the torus
is 2 dimensional. The Poincaré-Bendixson theorem gives the possible in-
variant sets for a bounded flow in 2 dimensional space. These include
equilibrium point, limit cycle, and saddle point with homoclinic orbit. So
the dynamics of two oscillators correspond to uniform flow in a rectangle,
that is periodic in the plane R2. As the flow is defined on a rectangle, it
can be mapped onto a T 2 torus. Consider a Poincaré section of the torus at
any angle θ in the longitude of the torus at time t. Assuming the flow on
the torus has no fixed points this section defines a Poincaré map. Let φ(t)

of the trajectory be φn and θ + 2π at time t′ defines φn+1 as φ(t′).

3.2 Nonisochronous driven oscillator

3.2.1 Introduction

For an oscillator system driven by a fixed frequency signal, let τ be the
period of the driving function in units of the intrinsic period of the oscilla-
tor system (≡ p

q
in the example). As the section of a torus is topologically

equivalent to a circle the map:

φn+1 = f(φn, τ), (3.2)
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is known as a circle map. Expressing the map as:

φn+1 = g(φn) + τ, (3.3)

makes the effect of the driving function explicit, τ corresponds to the forc-
ing period in units of phase of the nominal frequency of the oscillator. For
a periodically forced system the Poincaré map is identical to a time−T
map and this allows τ to be defined in terms of the driven system so that
the map is autonomous. The map:

φn+1 = φn + τ + b sin(2πφn), (3.4)

known as the sine map, has been proposed as a prototype for periodi-
cally forced nonlinear oscillators [16]. Trignometrically the multiplication
of two sine waves gives sum and difference terms. The sum term is dis-
carded as it is periodic and synchronous with the difference term when
the frequencies are rationally related and so averages out, and as the two
solutions are superimposed it does not affect the synchronisation, which
leaves the requisite function of phase difference driving synchronisation.
The multiplication can be viewed as an elementary nonlinearity justifying
the sine map as a generic prototype map.

An example of E. M. Zaslavsky [16] requires high dissipation to exhibit
a sine map. He presents a perturbed nonlinear oscillator system with a
stable limit cycle using action I , and angle ϑ variables. Let,

İ = −γ(I − I0) + εq(I, ϑ)f(t), ϑ̇ = ω(I), (3.5)

where ε is the perturbation parameter, γ is the dissipation parameter, I0
is the action which corresponds to the stable limit cycle if ε = 0 and f(t)

is f(t) = Σnδ(t − nT ). Suppose that q(I, ϑ) = I0 cos(ϑ), ω(I) = ω0[1 +

α (I−I0)
I0

]. Integrating and obtaining the mapping between two consecutive
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δ-pulses, gives:

yn+1 = e−Γ(yn + ε cos(2πxn)), (3.6)

xn+1 = {xn +
Ω

2π
+ (

αΩ

2πΓ
)(1− e−Γ)yn

+(
K

Γ
)(1− e−Γ) cos(2πxn)} mod 1, (3.7)

where y = (I−I0)
I0

, x = ϑ
2π
, Ω = ω0T, Γ = γT , and K = αεΩ

2π
. If Γ � 1,

the auxilary variable yn dynamics are nulled and only the xn angle variable
is effective. The oscillator is then isochronous. The xi map is now:

xn+1 ≈ {xn +
Ω

2π
+
K

Γ
cos(2πxn)} mod 1. (3.8)

The use of the sine map as a prototype map can be justified by consid-
ering the state variables of the oscillator in radial coordinates r, θ. The forc-
ing will perturb both r and θ. But assuming the system is isochronous, vec-
tor addition of the components of sinusoidal forcing leads to the sin(2πφn)

dependence of the change in phase of the oscillator for each rotation of the
forcing, or in the case just considered a cosine map, where the perturbation
is vertically orientated as opposed to horizontally orientated for the sine
map. So the Poincaré plot of a forced Poincaré (2D) oscillator will be a 1D
circle map. For a non-chaotic system a perturbation of amplitude will have
little effect anyway as the -ve Lyapunov exponent causes the amplitude to
quickly converge to the limit cycle.

As the trajectories do not fold, for small b the map (3.4) is 1-1 and in-
vertible of topological degree 1. Clearly for b = 0, there is no coupling and
as the measure of the rational numbers is zero it is improbable that a peri-
odic orbit will exist. Where 0 < b < 1

2π
the oscillator system is forced in a

simple manner by the driving function. V.I.Arnold [17] in 1963, described
a plot of the phase locking zones as a function of b and τ . These show a
characteristic structure of zero width at rational values of τ on the b = 0

horizontal axis, and widening as b increases, and are known as Arnold
tongues. The dynamics of the regions between the tongues are quasiperi-
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odic. For b > 1
2π

the map is no longer one-to-one and invertible, and the
simple Arnold tongue structure is destroyed.

3.2.2 Weak Coupling

Perez and Glass [18] analyse the sine map numerically. The Arnold tongue
structures for b < 1

2π
can be found by considering the effect on the fixed

points of the sine map of changing the period τ of the driving function.
It is seen that τ shifts the sine map up and down in the φn+1 vsφn plot.
At a critical value of τ dependent on the coupling the sine map will be
tangent to the φn+1 = φn line. This is a tangent bifurcation point and
corresponds to the edge of an Arnold tongue. As τ is decreased the bifur-
cation point divides into an unstable fixed point and a stable fixed point.
These fixed points correspond to synchronisation of the oscillator with the
driving function and the phase of the synchronisation corresponds to the
phase of the fixed point in the sine map. As τ decreases further another
tangent bifurcation of the sine map occurs coinciding with the opposite
edge of the Arnolds tongue and desynchronisation.

3.2.3 Quasiperiodic behaviour

For the quasiperiodic behaviour between the tongues analysis is more dif-
ficult. V. I. Arnold [17] proved the existence of quasiperiodic solutions
on the torus. Denjoy’s Theorem states that if a C2 orientation preserving
diffeomorphism of the circle has the irrational rotation number µ then it
is topologically equivalent to a rotation of the circle by 2πµ. There are
counterexamples for C1 diffeomorphisms. Arnold proved that where a
diffeomorphism A : y 7→ y + 2πµ+ a(y) of the circle with rotation number
µ where µ is irrational, and where a(y) is a 2π periodic analytic function,
then this diffeomorphism is analytically equivalent to a rotation by 2πµ.

Let = be the rotation by angle 2πµ, and H the desired diffeomorphism
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converting the rotation into A, then:

S1 A−→ S1

H ↑ ↑ H that is H · = = A ·H.

S1 =−→ S1

LetH(z) = z+h(z), h(z+2π) = h(z) then h(z+2πµ)−h(z) = a(z+h(z)),
by operating H on S1 and the rotation z + 2πµ of S1, and equating 2πµ +

a(z + h(z)) with the difference. Approximately h(z + 2πµ) − h(z) = a(z)

as A differs only a little from a rotation so a(z) is small and h(z) must be at
least as small, so the h(z) difference in the a(z) argument is expressed in a
2nd order term. Solve this equation by expanding the known function a,
and h in a Fourier series:

a(z) = Σake
ikz, h(z) = Σhke

ikz, (3.9)

equating coefficients⇒ hk =
ak

(e2πikµ − 1)
, h(z) exists (converges) as Arnold

proved that although the denominator (e2πikµ − 1) might be quite small
as every irrational number µ admits rational approximations p

q
with er-

ror |µ − p
q
| < 1

q2
for arbitarily large q, he found that |µ − p

q
| ≥ K

|q|2+σ held
also for appropriate K, σ > 0 and for any integers p, q 6= 0. This leads to
|e2πikµ − 1| ≥ K

2|k|1+σ , |K| > 0, so that arbitrarily small denominators exist
only on a set of measure 0. Thus contrary to notions of structural stability,
quasiperiodic solutions with irrational rotation numbers are preponderant
for small ε.

3.2.4 Structure of Arnolds tongues

For the circle map f(φn, τ), define the rotation number σ. Let ∆φi =

f(φi, τ)− φi. Then the rotation number is:

σ = lim
N→∞

sup
1

N

N∑
i=1

∆φi. (3.10)
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A fixed point of period N exists if φN = φ0(mod1);φi 6= φ0, for i =

1, 2, . . . , N−1, where the φi are generated by iterating the circle map f(φi, τ).
For a cycle of period N there is a phase locking in the ratio N : M where
M = φN − φ0, and σ = M

N
. The stability of the cycle is given by the con-

dition
∏N−1

i=0 |
(
∂f
∂φi

)
φi

| < 1. If an extremum of f is on a cycle the cycle

is superstable. The locus of superstable cycles on the b vs τ diagram are
called the skeletons of the phase-locking zones as this corresponds to a
boundary of a phase locking zone.

Let g(φi) of a circle map have a winding number of one. Then g(φi +

j) = g(φi) + j where j is an integer. This leads to a translational symme-
try for the Arnolds tongues. If there is N : M phase locking for a given
value of τ then for τ́ = τ + p where p is an integer there is N : (M + pM )
phase locking. Further if g(x) is odd and if there is stable N : M phase
locking for an initial condition x0 and τ = p+ ε then there will also be sta-
ble N : ((2p + 1)N −M) phase locking for an initial condition of −x0 and
τ́ = p + 1 − ε. If the Poincaré map is monotonic (b < 1

2π
) then the rotation

number is a monotonic function of τ , independent of the initial condition
and piecewise constant on the rationals. Therefore Arnolds tongues corre-
sponding to all the rationals exist.

What is the structure of the Arnolds tongues for b < 1
2π

? The Arnolds
tongues of order n form a Farey sequence of order n. This is defined as
the reduced fraction a

b
: 0 ≤ a

b
≤ 1, 1 ≤ b ≤ n. The sequence Fn may

be generated inductively from Fn−1 by repeating the fractions in sequence
and inserting a+a′

b+b′
between a

b
and a′

b′
if (b+b′) ≤ n. Geometrically each frac-

tion is the terminal point of a line to the origin that does not cross another
point in a box of size n, as in figure(3.1). For two fractions a

b
, c
d

in sequence
ac− bd = 1. The geometry can be used to prove number theories about the
approximation of irrational numbers with rational numbers which are at
the base of Arnold’s proof of the existence of quasiperiodic solutions such
as the following theorem.

Theorem 3.2.1. For any irrational number µ, there exist arbitrarily accurate ra-
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tional approximations whose error is less than the reciprocical value of the square
of the denominator,

|µ− p

q
| < 1

q2
. (3.11)

Proof. Let ek and ek−1 lie on different sides of y = µx where ei is a rational
number pi

qi
. Let e−1 = (1, 0), e0 = (0, 1). Construct ek+1 = ek−1+ak ·ek, where

ak is a positive integer so that ek+1 is on the same side of y = µx as ek−1.
∃ai > 0 as ei is based at the origin and has a gradient 6= µ so based on ei−1 it
does not cross y = µx as the error of ei−1 is greater than the error of ei, and
ai is chosen to minimise the error with µx. The parallelogram spanned by
ek+1, ek has oriented area ek+1 × ek = (−1)k inductively as e0 × e−1 = −1.
Taking the difference between two successive fractions pk

qk
− pk+1

qk+1
= (−1)k

qkqk+1

implies |µ − p
q
| < 1

q2
as y = µx lies between two successive fractions and

qk+1 > qk.

The fraction pk

qk
can be expressed as a continued fraction a0+

1

a1 +
1

a2 +
1

...+
1

ak−1

.

Further, for any ε > 0, there exists C > 0 such that for any integers
p, q > 0, |µ− p

q
| < C

|q|2+ε . See V.I. Arnold [19].

3.2.5 Strong coupling

What is the effect of the Poincaré map being non-monotonic, (b > 1
2π

)? For
b > 1

2π
each Arnold tongue structure for b < 1

2π
divides into two branches

which can intersect. Dynamics include bistability, period doubling bifur-
cations, and chaos. If g(xi) is of degree (winding number) 1 with a single
minimum xmin and maximum xmax in the interval. Let xi = Hi(τ) where
Hi(τ) is the ith iteration of g(xi) + τ from x0 = xmax. As g(xi) is of degree
1, so that g(xi − 1) = g(xi) − 1, Hq(j) − Hq(j − 1) = q. There will be a



CHAPTER 3. COUPLED OSCILLATORS 31

•

•

•

•

•

• •

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • ••

•

•

•

0 1 2 3 4 5

q0

1

2

3

4

5

p

y=µx

ei

ei+1
ei-1

e2

Figure 3.1: construction of a Farey sequence
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superstable cycle for each value of τ for which x0 mod 1 = Hq(τ) mod 1.
Since Hq(τ) mod 1 = x0 mod 1 at least q times as τ varies from j − 1 to j
there are at least q superstable cycles occuring at q different values of τ ,
with q different rotation numbers. Similarly for xmin. Therefore there ex-
ist at least 2 values of τ corresponding to boundaries of a locking region
for each rational rotation number. For the sine map the locking regions
overlap and there is bistability where the boundaries of different locking
regions intersect as τ varies.

For the sine map also sucessive curves of period doubling bifurcations
are found as b increases, leading to chaotic dynamics as the sequence of
period doubling bifurcations accumulates at a limit point. This same bifur-
cation structure appears to be duplicated as a continuation of each Arnold
tongue in the region b < 1

2π
, as b increases. The regions overlap so multi-

ple ratios are possible for some ranges of the parameters of coupling and
detuning τ .

An example of P. Coullet et al.[20] shows the applicability of the sine
map to a second order nonautonomous system where the coupling is strong
so that the map is no longer a diffeomorphism, and also the use of maps
on an annulus for analysing the perturbations of limit cycles of nonlinear
systems. Consider the second order nonautonomous equation:

ẍ+ (x2 − σ)ẋ+ ω2
1x+ x3 + λ cos(ω2t) = 0. (3.12)

This describes a forced van der Pol-Duffing type oscillator. The (x, ẋ) plane
is mapped onto itself by the flow of the equation over 2π

ω2
units of time to

give a Poincaré map. Some values of σ and λ show folding of the annulus
region containing the limit cycle under the effect of the time t = 2π

ω2
map

given by the system.
Consider an injective mapping from the annulus onto itself which mod-

els the folding phenomenon. Let the annulus A be bounded by r = 1 and
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A
A´

Figure 3.2: annulus region containing oscillator limit cycle and effect of
mapping showing horseshoe formation, indicating chaotic dynamics
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r = 1
3
. Set ρ = r − 2

3
. The injective map T on A is defined by:

T : θ′ = θ + ϕ+ ε sin(pθ) + βρ mod 2π, (3.13)

ρ′ = α[ρ+ sin(pθ)], (3.14)

where p is an integer, ϕ a given angle, and α < 1
4
, β = (q−1)

p
+ ε, 0 < q < 1.

When α→ 0, T reduces to a map of the circle onto itself:

T̃ : θ′ = θ + ϕ+ ε sin(pθ) mod 2π. (3.15)

When ε < 1
p
, T̃ is a diffeomorphism of the circle, and T (A) does not reveal

any folding. When ε > 1
p
, T̃ is a noninvertible map and T (A) shows the

folding phenomenon.

3.3 Dynamics of phase locking

3.3.1 Deterministic isochronous oscillators

What are the dynamics of the phase locking? Pikovsky et al.[21] consider
an autonomous dissapative dynamic system with a stable limit cycle in its
phase space. The phase φ is defined as corresponding to motion along the
direction of the limit cycle. This is the direction of the zero Lyapunov ex-
ponent, motion transverse to the limit cycle corresponding to the negative
Lyapunov exponents. The phase of the oscillation can be defined away
from the limit cycle. Isochronic surfaces of constant phase may depend
on the displacement from the limit cycle. If there is no dependence on
displacement then the surfaces intersect the limit cycle at π

2
. This is the

simple phase model of coupled oscillators where the state variables con-
sist simply of the phases of the oscillators. If there is a dependence then
φ = φ(θ, A) is a function of the displacement A, and θ is a radial angle co-
ordinate geometrically related to the limit cycle. As the relaxation times of
perturbations in amplitude are finite whereas the Lyapunov exponent of
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the phase is zero, the dynamics of the phase can be expressed in a single
equation:

dφ

dt
= ω0 + εQ(φ, ϕ), (3.16)

where ω0 is the free running frequency of the oscillator, ε is a small pa-
rameter coupling the driving force to the oscillator phase, ϕ is the phase
of the driving function, and Q is 2π periodic in both φ and ϕ expressing
the effect of the driving function on the oscillator. Taking Q modulo 2π in
both parameters describes dynamics on a torus. The Poincaré map in ϕ is
a circle map φn+1 = φn + εF (φn), and F is periodic in 2π.

The phenomenon of n : m synchronisation is defined in terms of a fixed
relationship between the phases of the oscillator and the driving function,
or as phase locking. In the case of 1 : 1 synchronisation the phases would
be locked when the phases of the oscillators coincide exactly, that is φ = ϕ

but more generally a constant phase difference is possible so that φ = ϕ+

constant. In both cases the phase of the oscillator is rotating uniformly
with the frequency of the driving function. Inspection of (3.16) shows that
both these cases where dφ

dt
= ω (ω is the forcing frequency), require the

driving function Q to be a function of the phase difference as the phase
locking condition requires that the difference in phases is a constant, so
that Q(φ, ϕ) ≡ q(φ − ϕ). Therefore let ψ = φ − ϕ, the phase difference so
that equation (3.16) becomes:

dψ

dt
= ω0 − ω + εq(ψ). (3.17)

This equation has an equilibrium point if the frequency mismatch (detun-
ing) is small enough (ω0 is the nominal frequency of the oscillator not the
driven frequency), so εqmin < ω − ω0 < εqmax, to determine the synchroni-
sation region in the (ω, ε) plane. In the synchronisation region the phase
difference remains constant ψ = δ depending on the detuning of the oscil-
lator and δ = q−1((ω − ω0)/ε).

In general Q(φ, ϕ) is not a function of the phase difference ψ and the
phase φ of the oscillator does not rotate uniformly with the frequency of
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the driving function. Even where the frequencies are rationally related
the phase difference is not a constant but fluctuates in a bounded man-
ner. Therefore phase locking is defined to occur when the phase difference
lies between bounds so that |φ − ϕ − δ| < constant. For general n : m

synchronisation the phase difference is taken to be nφ − mϕ. A weaker
condition is frequency locking. The rotation number corresponds to the
ratio between the observed frequency Ω and the frequency of the external
force ω so, σ = Ω

ω
. If σ is rational Ω = m

n
ω and this corresponds to m : n

synchronisation. This definition is useful if the progression of phase is not
uniform as Ω =< φ̇ > the average of the instantaneous frequency φ̇.

If the phase is not well defined, synchronisation can be characterised
by means which do not depend explicitly on phase. The mean frequency
of a chaotic oscillation can be calculated simply using a Poincaré surface
by ω = limt→∞ 2πNt

t
, where Nt is the number of crossings of the Poincaré

surface in time t. The method can be simply applied to a time series and
in the most elementary case Nt can be found by counting the maxima of
x(t). The phase of a chaotic oscillator can be considered to be uniformly
distributed across an ensemble of N systems. The ensemble average of
an observable u can be taken so U(t) = 1

N

∑N
1 ui. The non-coherent con-

tributions cancel so their amplitude decreases at a rate N− 1
2 . If the sys-

tems are driven coherently by an external force the oscillations become
apparent in U(t) as they are coherent. The ensemble average can also
be related to the time dependent probablity distribution function of am-
plitude W (u, t − t0) = W (u, t + T − t0) when the system is forced peri-
odically. The ensemble average in the limit N → ∞ can be expressed as
U(t−t0) =

∫
uW (u, t−t0)du. The variance of the oscillations V = (U − Ū)2

serves as a measure of phase synchronisation where the bar means in the
limit t → ∞, or over the interval t = T where the probability distribution
is periodic.

Another indirect aspect of the phase dynamics is the frequency spec-
trum of the observable u(t). If the phase of a chaotic system is locked
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by a periodic force then the signal becomes highly correlated, so u(t) and
u(t+T ) differ only by the chaotic amplitude as the phases are similar. The
autocorrelation function C(τ) =< u(t)u(t + τ) > has a periodic nature re-
vealed as τ → ∞, with maxima at τ = nT . Thus the power spectrum
shows peaks at the frequency of the driving force Ω and its harmonics
which are not present if the system is not synchronised. Therefore the in-
tensity of the power spectrum is used to indicate synchronisation. This is
calculated via the Wiener lemma

S = lim
t→∞

1

t

∫ t

0

C2(τ)dτ.

A resonance peak in the curve of S vs Ω shows the phase synchronisation.

3.3.2 Example of forced oscillator

Pikovsky et al. [21] consider a periodically forced weakly non-linear oscil-
lator as an example. Let,

ẍ− αẋ+ γx2ẋ+ ω2x = φ cos Ωt. (3.18)

This is the forced Van der Pol oscillator. Notice that in comparison to the
unforced equation the solution can vary in phase as well as amplitude
and therefore quadrature amplitude terms in cos Ωt and sin Ωt are needed.
Therefore substitute as the solution x = a(t)eiΩt, the complex exponential
representation, where the amplitude a(t) is complex and the actual solu-
tion is Re(a(t)eiΩt). Therefore iΩȧ + (−Ω2 − iαΩ + iγΩ|a|2 + ω2)a− φ = 0,
using ȧ � a to neglect terms in ẋ and ẍ, ((γ|a2| − α) ≈ 0 near the limit
cycle), and using |x|2 instead of x2 so,

ȧ = −iνa+ αa− γ|a|2a− iε, (3.19)

where ν = Ω2−ω2

Ω
, the normalised detuning, and ε = φ

Ω
. This is the vari-

ational equation for Van der Pol oscillator obtained by transforming the
coordinate system, to be relative to the forcing frequency and averaging
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the oscillating terms. So the fixed points represent synchronisation to the
driving oscillator, and the dynamics are 2D as the driving oscillator per-
turbs the amplitude as well as the phase of the Van der Pol oscillator.

Figures (3.3) and (3.4) show solutions of the Van der Pol variational
equation for two sets of parameters. The vector field is shown by the ar-
rows and the solutions from a range of initial conditions by the solid lines.
Inspecting the 1-D complex phase plane of a, for small forcing (ε < .6) and
starting from the synchronous state (v = 0), a saddle point shown with an
× on figure (3.3) and a stable fixed point shown with an ◦ lie on a closed
orbit enclosing an unstable focus near the origin. So the solution is a con-
stant amplitude sine wave at frequency Ω. As ν is increased the saddle
point and the stable fixed point move closer together along the orbit. The
amplitude and the phase of the sine wave given by the vector to the fixed
point change, equivalently the phase difference ψ is increasing. The sad-
dle point and the fixed point cancel as synchronisation is broken. a moves
around a closed orbit, equivalently the phase difference increases mono-
tonically with slow periodic 2π jumps. The sine wave shows changing
phase with some modulation of amplitude as |a| does not vary greatly.

For large ε the loss of synchronisation is via the Andronov-Hopf bifur-
cation. For ν ≈ 0 the phase plane contains a stable fixed point focus so a
is a constant. As ν increases the fixed point becomes a focus so that the
trajectories encircle the fixed point as they converge to it (see figure (3.4)).
A limit cycle develops and a moves around the limit cycle. Now the phase
difference ψ is oscillating but the synchronisation is maintained so there is
amplitude and phase modulation of the frequency Ω sine wave.

The synchronisation is broken when the limit cycle encloses the origin
and the phase difference ψ now has 2π jumps. The phase and amplitude
modulation of the frequency Ω sine wave depends on the symmetry of the
limit cycle around the origin and the movement of a around the limit cycle.
Holmes and Rand[22] describe the bifurcation set for the averaged Van der
Pol equation in terms of the (ν, ε) plane, and describe the 2D planar phase
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Figure 3.3: forced Van der Pol oscillator phase plane in locking region
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Figure 3.4: forced Van der Pol oscillator near boundary of locking region
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plots in regions of the bifurcation parameter plane.

3.3.3 Chaotic oscillators

For a chaotic oscillator there is a Lyanupov exponent > 0. In the most
general case where the system is nonisochronous the phase depends on
the amplitude of the oscillation. The effect of a driving function is to add
further dimensions to an autonomous system. Generalising the Poincaré
map construction for a chaotic oscillator the dynamics can be represented
as:

An+1 = T (An, ϕn), (3.20)
dφ

dt
= ω(An, φ, ϕ), (3.21)

dϕ

dt
= Ω, (3.22)

in the case of periodic forcing, where ϕn is a simple function of the driving
frequency Ω and the return time for An. If the forcing amplitude is small
and proportional to ε then:

dφ

dt
= ω0 + εG(An, φ, ϕ) + F (An), (3.23)

so this is similar to a driven periodic oscillator with a noisy chaotic term
added. Analogous to the construction for a chaotic oscillator (2.26), if T is
a perturbed chaotic map then this can express the effect on the phase of the
effect of the driving function on the amplitude of the oscillator, through F ,
and G reduces to a simple dependence on φ and ϕ.

A.S.Pikovsky et al. [9] give two examples of periodically driven chaotic
oscillators. A Rössler attractor driven by E cos(Ωt) is found to have clear
phase-locking regions in the form of Arnold tongues, dependent on the
amplitude E and the frequency of the external force Ω, at the fundamental
resonance Ω ≈ ω0 and at the resonances Ω ≈ 2ω0 and 2Ω ≈ ω0. It is
noted that there appears to be no threshold of synchronisation and this
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is attributed to the high phase coherence of the Rössler system meaning
that the chaotic noise term is small. For a Lorenz system phase-locking is
found only at the main resonance Ω ≈ ω0 and only for sufficiently large
amplitudes of external force. This is explained by a relatively large chaotic
noise term.

The effect of noise is to diminish the phase-locked structures. This can
be analysed by adding a noise term ξ(t) to (3.16). For a system with a
periodic forcing function,

dψ

dt
= ω0 − ω + εq(ψ) + ξ(t).

The noise is then driving the dynamics of the phase difference. The dy-
namics can be considered as that of an overdamped particle in a potential
field as in (2.7),

V (ψ) = (ω − ω0)ψ − ε

∫ ψ

q(x)dx.

The particle moves down a potential gradient corresponding to the effect
of the difference in the frequencies of the two oscillators therefore and ψ

increases influenced by the noise. Often q(ψ) = − sin(ψ) and the effect is
that the particle is in equilibrium at local minima corresponding to syn-
chronisation. The particle will return to the minimum under the influence
of the potential field as it is displaced by noise but the amplitude of the
noise can be such that the particle is displaced to an adjacent minimum
and this is seen as phase slips of 2π in the synchronisation. Quantitatively
the effect of the Langevin equation dψ

dt
= ω0 − ω − ε sin(ψ) + ξ(t), can be

found stochastically through the Fokker-Planck equation, but direct solu-
tion of the Langevin equation is simpler when boundary conditions on the
phase are not involved.
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3.4 Perturbed Nonisochronous Oscillator

3.4.1 Introduction

The general case of a coupled oscillator pair includes asymmetric coupling
so that the dynamics of the phase difference are no longer autonomous
but driven by higher dimensional dynamics. Clearly this could include
an exponential transient, oscillation, chaos, or noise. A. Shilnikov et al.
[23] overview the current understanding of the synchronisation of an os-
cillator in the plane. The use of 2D Poincaré maps in analysing coupled
oscillator dynamics, and the disappearance of the saddle node bifurcation
at the edge of an Arnold tongue are discussed. It is seen that the Poincaré-
Bendixson theorem defines the possible dynamics in a plane and coupled
with a driving oscillator defines a 3D system, and this motivates the sys-
tem under consideration.

3.4.2 Planar dynamics

A typical system is given as an autonomous system with a single param-
eter, ẋ = X(x, µ) consisting of a stable periodic orbit Lµ which becomes a
homoclinic loop to the saddle equilibrium point as µ→ 0+. The period of
the limit cycle is of the order of | ln(µ)|. This a consequence of the slow dy-
namics on the limit cycle near the saddle point, and the validity of a linear
approximation to the eigenvalues there. The saddle point has a significant
effect on the map of the coupled system. The formation of a limit cycle can
be seen to be consistent with the dynamics of the Van der Pol equation,
ẍ − µ(1 − x2)ẋ + ω2x = 0. At µ = 0 the equation is a conservative sys-
tem in a parabolic potential well. As µ is increased from zero the system
is no longer Hamiltonian and the limit cycle is established from a Hopf
bifurcation at µ = 0. Normalising the period to one with the substitution
τ = ωt results in ε = µ/ω so the period is inversely proportional to µ for
the perturbed Van der Pol oscillator.
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How do these dynamics arise? Let ẋ = Ax + f2(x) + f3(x) + . . .,
where A is an n × n constant matrix and fi(x) are homogeneous vector
valued polynomials in x of order i. The fi(x) are sums of terms of the
form xm1

1 xm2
2 . . . xmn

n ,m1 + . . . + mn = i,miε{0} ∪ N . There is a critical
point at x = 0. The Poincaré Normal Form Theorem says that this sys-
tem can be transformed into the linear form ẏ = Ay by the transformation
x = y + h2(y) + . . ., unless resonances occur, that is the eigenvalues of A,
λi, i = 1 . . . n are resonant with λi = Σn

j=1mjλj for some i. The nonresonant
terms can be removed from the equation. This is called normalization. See
V.I. Arnold[19]. Bendixson’s criterion applies to a 2D system and states
that for a planar autonomous system ẋ = f(x) in a domain D ⊂ R2, the
system can only have periodic solutions, that is a limit cycle or a homo-
clinic loop, if 5 · (f1, f2) ≡ trace (Df) changes sign or = 0 in D. For a
constant matrix A, with eigenvalues λ1, λ2, trace (A) = λ1 + λ2.

3.4.3 Hopf bifurcation

An example is the Hopf bifurcation. Let a single parameter system be
given by ẋ = A(µ)x + f(µ, x). f has quadratic and higher terms in x. The
case where A(µ) has purely imaginary eigenvalues for some values of µ as
is the case for the Van der Pol equation ẍ + ω2x = µ(1 − x2)ẋ is the Hopf
bifurcation. For µ > 0 a limit cycle exists. More generally, let

ẋ = µx− ωy + . . . ,

ẏ = ωx+ µy + . . . ,

where the higher order terms are at least quadratic and higher, ω 6= 0. If
µ = 0 the eigenvalues of the linear part are purely imaginary. Normalisa-
tion removes all quadratic terms and some cubic terms. To degree 3 the
system becomes:

u̇ = dµu− (ω + cµ)v + a(u2 + v2)u− b(u2 + v2)v + . . . ,

v̇ = (ω + cµ)u+ dµv + b(u2 + v2)u+ a(u2 + v2)v + . . . .
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In polar coordinates:

ṙ = (dµ+ ar2)r + . . . ,

θ̇ = ω + cµ+ br2 + . . . .

This shows a pitchfork bifurcation in r at µ = 0 which corresponds to a
Hopf bifurcation in the full system.

3.4.4 Global bifurcations

A saddle point can be seen to be the consequence of a higher order poten-
tial well. Consider the cubic potential V (x) = x3 − a2x. Let a Hamiltonian
be H(x, y) = y2 + V (x). Then the resulting conservative system has a ho-
moclinic orbit.

Higher order potential functions have more elaborate homoclinic or-
bits. So the double well Duffing equation with a potential function V (x) =

(x2 − a2)2 = x4 − 2a2x2 + a4 has a two homoclinic orbit vector field from
the saddle point. So this is the simplest system with a homoclinic orbit.
For an area preserving or Hamiltonian system in the plane, linearization
of hyperbolic fixed points gives trace(Df) ≡ 0, so all fixed points are sad-
dle points or centers, no sinks or sources can exist. These dynamics are
therefore typical of a large class of conservative systems.

A tangent node may be perturbed in a single parameter map where the
gradient is +1 or equivalently where the eigenvalue is zero in a flow. They
are therefore associated with oscillators.

The global bifurcations which occur with perturbations such as the
crossing of unstable and stable manifolds and periodic cycles create com-
plex dynamics and are therefore of interest. The simplest global bifur-
cation for planar vector fields occur where a trajectory joins two saddle
points or forms a loop on a saddle point. Let ẋ = f(x, µ) be a one parame-
ter planar vector field with a homoclinic loop on a saddle point. Let p0 be
the saddle point with trace(Df(p0)) < 0 such that at µ = µ0 there exists a
homoclinic loop γ0.
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A Poincaré return map Pµ is constructed at a point q 6= p0 on the sta-
ble manifold of p0 (far enough away from p0 that the system is no longer
linear), along a line segment M transversal to q. Only points on the inside
of the stable manifold are studied as for trace(Df(p0)) < 0 and µ > µ0

the unstable manifold leaves the region of the saddle point and the stable
manifold. As trace(Df(p0)) < 0 the saddle point is contracting, flow lines
near p0 are attracted to the homoclinic loop γ0 as they flow past p0, whereas
for the rest of γ0 the divergence must be near zero.

Let the eigenvalues of p0 be −α, β with α > β > 0, and use the stable
and unstable manifolds as x and y coordinates. Let δ be such that 1 > δ >
β
α

. Therefore in an ε-neighbourhood of p0,

|dy
dx
| = | βy + . . .

−αx+ . . .
| < δ|y

x
|. (3.24)

Consider a trajectory starting near the stable manifold at x = ε, y = y0 <

ε. Then using a Gronwall estimate of the trajectory, at y = ε, x = x1 <

y
1
δ
0 (ε)1− 1

δ . As the divergence is small away from the saddle point this is
the Poincaré return map on the transversal M . Therefore as x → q along
M , the slope of Pµ(x) approaches zero. At µ = µ0, q = Pµ0(q) as at µ0

the stable and unstable manifolds coincide in a homoclinic orbit. So Pµ0

touches y = x. As µ increases > µ0, Pµ intersects y = x implying the
existence of a periodic orbit.

Therefore a homoclinic loop from a saddle point has a stable periodic
cycle associated with it and the effect of the bifurcation can be usefully
studied as periodic forcing will cause chaotic homoclinic entanglement.

3.4.5 Dynamics near a Saddle point

The system is supposed to be able to be written in the form:

ẋ = λx+ f(x, y, µ), (3.25)

ẏ = γy + g(x, y, µ), (3.26)
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analytic, with a −ve saddle value ρ = λ + γ < 0 so the saddle point is
contracting meaning that the system is dissipative. S. Wiggins [24] shows
that this is a consequence of i) translating the saddle point to the origin,
ii) utilising the linear stable and unstable eigenvalues as coordinates, iii)
utilisation of the stable and unstable manifolds as coordinates.

Coupled dynamics are expressed as a perturbation of this system. The
perturbed system is:

ẋ = λx+ f(x, y, µ) + µp(x, y, t, µ), (3.27)

ẏ = γy + g(x, y, µ) + µq(x, y, t, µ), (3.28)

where p and q are 2π periodic in t. It is seen that the system is a coupled
oscillator system when p and q depend on x and y. The effect of the per-
turbation is to add a dimension in the θ coordinate. The saddle point is
perturbed from the origin. The stable and unstable manifolds no longer
coincide. When the mainfolds traverse they do so a countable number
of times at homoclinic points where the dynamics simultaneously satisfy
the constraints of both the unstable and stable manifolds. Geometrically a
homoclinic tangle of the manifolds is formed.

Whereas for the 1D forced oscillator it is convenient to make a Poincaré
plot at a cross section of the toroid, which leads to the 1D circle map, for
the dynamics of a 2D forced oscillator the Poincaré section is made in the x
plane at a small distance δ from the saddle point at the origin on the stable
manifold and likewise for the y coordinate on the unstable manifold.

The Poincaré plot is the composition of the dynamics near the saddle
point and near the homoclinic loop. This leads to a 2D map in θ and y.
Now θ can be interpreted as the phase difference between the oscillators
as the limit cycle returns periodically through the x plane at x = δ. It is
seen therefore that the Poincaré map thus constructed is a 2D annulus and
equivalent to the annulus map containing the limit cycle of the oscillator
as the y coordinate corresponds to variations in the limit cycle radius. A
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Poincaré map Tµ can be modelled as:

ȳ = [y + µ(1 + f(θ))]ν , (3.29)

θ̄ = θ + ω − 1

γ
ln[y + µ(1 + f(θ))], (3.30)

where ν = −(λ
γ
) > 1, ω is a constant, and µ(1 + f(θ)) is the Melnikov

function with 〈f(θ)〉 = 0. It is seen that the y map is obtained from the
composition of the subharmonic Melnikov function on the periodic orbit
and the relation y = x−ν near the saddle point, and the θ map from the
transit time of the trajectory near the saddle point where the dynamics are
controlled by the linear system.

It is also seen then that the period is of order | ln(µ)|, and → ∞ as
µ → 0, as the perturbation from the manifold is of order µ, and transit
time derived from the exponential dynamics of the linear system between
the planes at x = δ, and y = δ. The limit set of the map Tµ for small µ, lies
in an annulus Kµ = {0 < y < Cµν , 0 ≤ θ < 2π}, for some C > 0.

The equations (3.29), (3.30) may be rescaled with y → µνy to give the
form:

ȳ = [1 + f(θ)]ν + . . . , (3.31)

θ̄ = θ + ω̄ − 1

γ
ln[1 + f(θ)] + . . . , (3.32)

where ω̄ = (ω − 1
γ
lnµ) → ∞, as µ → 0+. It is seen therefore that the

Poincaré map is dominated by the family of circle maps. Differentiating
the θ map, if

1

γ

f
′
(θ)

1 + f(θ)
< 1, (3.33)

the map Tµ does not have an extremum point, so it has no folds in it and is
invertible. It is found that in this case the image of the annulus Kµ, under
Tµ is also an annulus bounded by two curves of the form y = h±(θ). The
contraction results in a smooth invariant closed curve.
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For strong coupling the gradient of the map must be−ve or sufficiently
+ve over an interval I = [θ1, θ2]. If f ′(θ) < 0 everywhere on I , then the
gradient of the θ map is greater than 1, and with the condition:

1

γ
ln

(
1 + f(θ1)

1 + f(θ2)

)
> 2π(m+ 1), m ≥ 2, (3.34)

ensures that as θ ranges from θ1 to θ2 the map image overlaps with the
interval I at least m times. Alternatively, if

1

γ

f ′(θ)

1 + f(θ)
> 2, (3.35)

everywhere on I then the gradient is less than −1, and with the condition:

1

γ
ln

(
1 + f(θ2)

1 + f(θ1)

)
> 2(θ2 − θ1) + 2π(m+ 1), m ≥ 2, (3.36)

the interval I is mapped onto itself m times, so chaotic trajectories will ex-
ist in either case, as the construction is analogous to the Smale horseshoe.

3.4.6 Bifurcations near a Saddle point

Whereas for a plain limit cycle oscillator the sine map is used for a proto-
type map, now the influence of the saddle point on the limit cycle is given
effect. In this case f(θ) = A sin θ leads to a map based on ln(1 + A sin θ). It
is seen from the criterion for the θ map gradient (3.33), that for A < γ√

1+γ2
,

then the invariant closed curve is an attractor for all small µ. From the cri-
terion for the winding of the map (3.34), it is seen that there are complex
dynamics for A > tanh 3πγ.

Shilnikov et al.[23] describe the structure of the resulting synchroni-
sation zones, in parameters A and − lnµ, as A determines the coupling
and − lnµ the period. The zones are based on the axis − lnµ at coordi-
nates (2πk, 0) where k is an integer. The upper boundary is the bifurcation
curve of a saddle node which curves up to meet the axis A = 1. The
lower boundary is the bifurcation curve of a saddle node which curves to
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lower rotation numbers but does’t terminate on the A = 1 axis. Therefore
it intersects with synchronisation regions of lower rotation numbers. The
rotation numbers coexist in these intersecting regions.

Interior to the synchronisation region asA increases the invariant curve
breaks down in a period doubling bifurcation where the curve is no longer
diffeomorphic to a circle. As the invariant curve consists of a saddle fixed
point with the unstable manifolds closed on the stable fixed point of a
saddle node bifurcation, it is this stable fixed point which bifurcates in a
period doubling bifurcation, so becomes a saddle point connected to the
stable fixed points of the period 2 cycle. The bifurcation curve follows the
boundaries of the synchronisation region and is closest to the − lnµ axis
in the middle of the zone.

Along the boundaries of the zone the dynamics retain their integrity
as A increase until the region of complex dynamics is reached where the
closed invariant curve ends with homoclinic touches of the unstable man-
ifold of the saddle point with the stable manifold. Along the boundary
of the zone before the region of complex dynamics the closed curve com-
mences to develop wiggles as it converges to the saddle point, and the ho-
moclinic touches occur at the boundary of the region of complex dynamics
(A > tanh 3πγ). See figure (3.5). In the interval between the small A re-
gion and the complex dynamics the oscillation of the tangent vector to the
unstable manifold causes it to connect to the saddle point nonsmoothly.
Leaving the synchronisation zone for A < γ√

1+γ2
the closed curve persists

and the dynamics are quasiperiodic, or have a rational rotation number
with a long period. On the boundary above this point the dynamics as
the synchronisation zone is left are either intervals of chaotic and simple
dynamics alternate nearer the small A interval or chaotic near the region
of complex dynamics.
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Q

P

Figure 3.5: Homoclinic touches at boundary of locking zone, P stable fixed
point, Q saddle point
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3.5 Method of Averaging

3.5.1 Introduction

The method of averaging is applied to solving perturbed systems where
the motion of the unperturbed system occurs at a time constant much
smaller than the effects of the perturbation. Originally Lagrange (1788)
solved a problem ẋ = εf(x, t) by expanding f(x, t) in a Fourier series and
discarding the periodic terms retaining only the constant term. He stud-
ied planetary orbits by perturbing a system of N uncoupled oscillators.
Subsequently Van der Pol (1934) used the method to analyse the Van der
Pol oscillator. Lagrange used variation of parameters to solve a first order
system ẋ = A(t)x + εg(t, x), x(0) = x0. For example A(t) =

(
0 1

−ω2 0

)
for the

weakly nonlinear oscillator.
After [25], the solution of the homogeneous equation constitutes the

fundamental matrix Φ(t). Substitute x = Φ(t)y giving:

Φ̇y + Φẏ = A(t)Φy + εg(t,Φy). (3.37)

Therefore,
Φẏ = εg(t,Φy). (3.38)

y is solved for by inverting the fundamental matrix, so

ẏ = εΦ−1(t)g(t,Φ(t)y), (3.39)

with initial values y(0) = Φ−1(0)x0, revealing the problem of Lagrange
ẏ = εf(t, y). Let f(t, y) be periodic in t. Then f(t, y) can be expressed as
a Fourier series g0(y) + g1(y) sin t + h1(y) cos t + . . .. Supposing that f(t, y)

is averaged over a time longer than the period of the oscillation, then as y
varies in the time scale 1

ε
, the contribution from these terms is zero and the

equation depends on g0(y).
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3.5.2 Co-moving coordinates

It is seen that the fundamental matrix for the Van der Pol equation is(
cosωt − sinωt

−ω sinωt −ω cosωt

)
.

This establishes a frame of coordinates relative to the solution of the un-
perturbed system and is known in mechanics as the method of co-moving
coordinates.

Generalising the method, the matrix(
cos(Ωt

k
) − sin(Ωt

k
)

−Ω
k

sin(Ωt
k

) −Ω
k

cos(Ωt
k

)

)
,

where Ω is the forcing frequency, k an integer, and ω the natural frequency
is ≈ Ω

k
, is known as the Van der Pol transformation and establishes coor-

dinates relative to the forcing frequency, and so gives a dynamical time
t = k

Ω
Poincaré plot.

3.5.3 Averaging Theorem

The averaged equation: ẏ = ε 1
T

∫ T
0
f(y, t, 0)dt , εf̃(y) (where f(y, t, ε)

expresses higher order terms in ε), has an associated time t = T flow map
P0. Similarly let the time t = T flow map of the perturbed system be Pε.
The Averaging Theorem shows that a hyperbolic fixed point of Pε has a
corresponding fixed point of the same stability type in P0 as well as having
solutions in unstable and stable manifolds corresponding to O(ε). The
time t = T flow map approximates a Poincaré map on a differentiable
manifold with a vector field restricted to a domain D. Thus the Poincaré
map of the perturbed system Pε|D is topologically equivalent to P0|D for
ε > 0 sufficiently small, as these types of behaviours are local.

This does not generally apply to global behaviour such as periodic or-
bits, and homoclinic bifurcations. For example a hyperbolic periodic orbit
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of averaged equations will correspond to an invariant closed curve in the
Poincaré map Pε|D. But the dynamics may be quite complex due to reso-
nance effects and contain sets of periodic points as ε→ 0.

In the case where f(x, t) is periodic in functions with incommensurate
periods, then it is generally expressible as a finite sum f(x, t) = ΣN

i=1fi(x, t)

where fi is Ti-periodic in t. The averaged equation becomes:

ẏ = εΣN
i=1

1

Ti

∫ Ti

0

fi(y, t)dt, y(0) = x0. (3.40)

3.5.4 Validity of Averaging method

For the validity of the method following the notation and explanation of
V.I.Arnold [19], typically the unperturbed system is:

φ̇ = ω(I), (3.41)

İ = 0. (3.42)

For example this can be seen to be the equation for dynamics on an n-
dimensional torus with n angular coordinates φi, i = 1..n. The dynamics
of the φi are considered to be much faster than the dynamics of the Ii, so a
perturbation of the Ii variables is therefore of interest, as the perturbation
of the φi variables averages out. If this system is perturbed in proportion
to ε then over times of order 1 the full solution is necessary, but over times
of order 1

ε
the dependence on φi can be averaged out.

Let the perturbed equations be:

φ̇ = ω(I) + εf(I, φ, ε), (3.43)

İ = εg(I, φ, ε), (3.44)

where f and g are 2π periodic in φ. The averaged equation is therefore:

J̇ = εG(J), (3.45)

where G(J) =
H
g(J,φ,0)dφH

dφ
, the mean value of g over the unperturbed n-

torus. The presumption is that the solution of the I component of the
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perturbed equation is close to the solution of the averaged equation over
time 1

ε
. Consider a time period 1 � T � 1

ε
so this is an intermediate

time period compared to the fast variables and the slow variables. The
displacement of the projection of the perturbed trajectory on the base (I
variables) is of the order εT � 1. To a first approximation I is a constant,
ε = 0, and φ given by the unperturbed equation, so

∆I = εT [
1

T

∫ T

0

g(I, φ(t), 0)dt] + o(εT ), (3.46)

as the expression in square brackets is the average velocity of the displace-
ment over time T . This is nearly the time average of g as T � 1. Let slow
time τ = εt so that t = 1

ε
corresponds to τ = 1. So the motion of the slow

variables occurs over the time scale 1
ε
. Then ∆I

∆τ
≈time average of g ≈ ∂I

∂τ
,

but ∂J
∂τ

= G(J) meaning that the time average of g is determined from the
space average of g (over φ space), which is G.

Thus the averaging method is valid where the trajectories are uniformly
distributed on the torus, that is quasi-periodic trajectories, and not near
resonant trajectories where the frequencies are commensurate. Clearly the
effect of the synchronization of frequencies is that the trajectories are no
longer dense on the surface (wrt the nominal frequency difference) be-
cause of their stability in a locking region and the dimension of the n-torus
is reduced. The space average, averages uniformly over the surface of the
torus, whereas the time average covers the torus as a function of the length
T of the trajectory, except if it is resonant and then clearly the trajectory fol-
lows a lower dimensional path on the surface of the torus. And as long as
T � 1

ε
the approximation g(I, φ(t), 0) is valid for g(I, φ(t), ε) over the sur-

face of the torus, as the second order terms in ε remain insignificant, and
the average serves for G(J) as any trajectory therefore covers the torus in
this time scale so variations in φ(t) (i.e. ε2f()), are not significant.
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3.6 Action/Angle coordinates

3.6.1 Hamiltonian oscillators

Oscillatory dynamics can be described in terms of Hamiltonian theory by
the perturbation of a Hamiltonian system. The Hamiltonian system is
commonly expressed in action/angle coordinates I/φ as this simplifies the
analysis. In this case the action variables vary slowly compared to the pe-
riodic angle variables. Let a Hamiltonian (conservative energy or volume
preserving) system be expressed as:

φ̇ =
∂H

∂I
, (3.47)

İ = −∂H
∂φ

, (3.48)

such that the unperturbed Hamiltonian H0 depends only on I . The per-
turbed system is given by:

H = H0(I) + εH1(I, φ, ε), (3.49)

where H1 is 2π periodic in φ. The Hamiltonian equations are then:

φ̇ = ω(I) + ε
∂H1

∂I
, (3.50)

İ = −ε∂H1

∂φ
. (3.51)

It is seen that in a Hamiltonian system with n degrees of freedom and
n frequencies, that evolution of the slow variables does not occur as the
averaged system has the form J̇ = 0. This is a consequence of the period-
icity ofH1 meaning that the integral of ∂H1

∂φ
over a period is zero. The effect

of this is that for Hamiltonian systems, usually the dynamics of the slow
variables are invariant for long time frames. Phase curves starting initially
between invariant tori remain there. In the case of 2 degrees of freedom the
invariant tori divide the 3 dimensional Hamiltonian space into domains in
which the phase curves are trapped. In the case of 3 or more degrees of
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freedom the invariant tori do not separate the Hamiltonian space and the
phase curves can move slowly between the tori. This is known as Arnold
diffusion.

3.6.2 System action variables

The notion of an adiabatic invariant is used to define the action variables
of a Hamiltonian system. Quantities asymptotically preserved under suf-
ficiently slow variations of the parameters of a Hamiltonian system are
called adiabatic invariants.

Following Arnold [19]. Let ẋ = v(x, λ) be a Hamiltonian system where
λ is a parameter (or a coefficient of a system). A function of x and λ is
called an adiabatic invariant if for any sufficiently smooth function λ(τ) of
the slow time τ = εt (where ε is the perturbation parameter), the variation
of I(x(t), λ(εt)) along a solution curve remains small in the time interval
0 ≤ t ≤ 1

ε
, where ε is small. i.e. I(x, λ(εt)) = I(x(0), λ(0)) + o(1) on the

time scale 1
ε
. Having λ(τ) a function of slow time means to say that λ(τ)

varies in slow time comparably to x(t) in normal time. The system then
becomes:

φ̇ = ω(I, λ(εt)), (3.52)

İ = 0. (3.53)

3.6.3 Generating function

Arnold introduces the idea of a generating function. For a Hamiltonian
system, time independent, such that ṗ = −∂H

∂q
, q̇ = ∂H

∂p
of size n degrees

of freedom and 2n variables, then let S(I, q) be a generating function to
transform the coordinates p, q → I, φ. Then p = ∂S

∂q
, φ = ∂S

∂I
, H(p, q) =
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H(∂S
∂q
, q) = H0(I). The Hamiltonian system becomes:

İ = 0, (3.54)

φ̇ = ω(I) =
∂H0

∂I
. (3.55)

The implication of there existing a generating function S and therefore
of I being a constant is that the Hamiltonian system is integrable in the
sense that for an n degrees of freedom Hamiltonian system, there exist n
integrals Fi, which are i) constants of motion, that is Ḟi = {Fi, H} = 0 and
ii) functionally independent (can’t be expressed as a function of the others)
and iii) in involution, that is {Fi, Fk} = 0 for i, k = 1..n where {} are the
Poisson brackets {Fi, Fk} = ∂Fi

∂q
∂Fk

∂p
− ∂Fi

∂p
∂Fk

∂q
, and H = F1. Geometrically Fi

and Fk are orthogonal.
The effect is that the trajectories of the system must lie on the n-dimensional

phase surface Fi(p, q) = ki and the involution requirement restricts the sur-
face to be an n-dimensional toroid. The ω(I) = ∂H0(I)

∂I
are interpreted as an

angular velocity vector on the n-torus. The trajectories are n frequency
quasi-periodic if there is no vector of integers m = (m1, . . . ,mn) such that
m · ω(I) = 0. Alternatively for the case of n frequency periodic motion
such a vector exists and m · ω(I) = 0. A point I in the base B is called a
resonant point if the vector ω(I) is a resonance vector.

3.6.4 Perturbed integrable systems

The system (3.54), (3.55) is integrable as in the time scale 1
ε

the equations
in φ are trivially linear. This only occurs in special cases. But if a system is
nearly integrable in that H(p, q) where p = p1 . . . pn, q = q1 . . . qn, contains a
small parameter ε and introduction of action/angle coordinates produces
the system:

İ = εf(I, φ), (3.56)

φ̇ = ω(I) + εg(I, φ), (3.57)
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so that if ε = 0 this system is integrable and if 0 < ε � 1 then the system
is called nearly integrable and can be analysed using perturbation tech-
niques.

Clearly a system remains Hamiltonian if the perturbation is Hamilto-
nian. The trajectories must follow constant energy manifolds as deter-
mined by the Hamiltonian. If the system is integrable then the n constants
of motion Fi imply that the trajectories must lie on an n-dimensional torus.
The structure of the solution is stable where they are quasi-periodic, but
perturbation around the resonances leads to larger changes in the solution
structure.

Although most Hamiltonian systems are non-integrable they are of-
ten studied as perturbations of integrable systems. The effect of a nonin-
tegrable perturbation is that the constants of motion Fi no longer hold.
Supposedly the n-dimensional torus structure would be destroyed but
Kolmogorov-Arnold-Moser theory shows that the torus structure is main-
tained for small values of ε with complicated dynamics between the tori
surfaces. Where there are homoclinic loops between the tori, these can
bifurcate into a chaotic homoclinic entanglement. The constant energy
surfaces do not all respond uniformly to nonintegrable perturbation. The
resonant tori, characterised bym ·ω(I) = 0 in action/angle coordinates are
destroyed by perturbation, being replaced by varied dynamics, while the
non-resonant tori remain. But the system remains Hamiltonian, there are
no attractors.

3.6.5 Dynamics near resonant trajectories

The solution near resonant manifolds can be studied by introducing local
variables. Assume coordinates (I1, φ1), such that the resonant manifold
lies in the I1 = 0 plane. Then introduce I1 = δ(ε)ξ. The layer near I1 =

0 has the local variable I1 = δ(ε)ξ, where δ(ε) = o(1) as ε → 0 and is
determined through balancing the perturbation terms in the dynamical
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equations (so that each equation is similarly perturbed). φ1 is replaced by
ψ = m · (φ1 . . . φn), so at resonance ψ̇ = 0, ψ = constant, resonance is an
equilibrium point for ψ, and ψ̇ = δ(ε)ξ · m · ∂ω(0,I2...Im)

∂I1
to first order. The

dynamical equations are now in δ(ε)ξ̇, İ2 . . . ˙Im, ψ̇, φ̇2 . . . φ̇n. It is found that
δ(ε) =

√
ε, and that ψ obeys a second order pendulum like system (with

potential force ∂V
∂ψ

= εf1((0, I2 . . . Im), (ψ, φ2 . . . φn)) ·m · ∂ω(0,I2...Im)
∂I1

), that is
a two dimensional dynamical system in a time scale of 1√

ε
. It can be seen

that this system is conservative as trace(D[ξ̇, ψ̇]) = 0. This is in spite of
any dissipation in the original system. However as the time scale is only
of order 1√

ε
a second order approximation is warranted. This could lead to

center points becoming attractors or repellers.

3.7 Melnikov’s method

3.7.1 Introduction

The formulation of a problem in the Lagrange form ẋ = εf(x, t, ε) is more
difficult for strongly nonlinear systems of the form ẋ = f(x) + εg(x, t).
f(x) is assumed Hamiltonian and integrable, and εg(x, t) is a small per-
turbation, T -periodic in t, which need not be Hamiltonian. Melnikov’s
method gives information on global behaviours of a system in particular
the homoclinic bifurcation of the homoclinic loop to a saddle point of a
planar system. The global solution of the unperturbed system is used in
the computation of the perturbed solution.

3.7.2 Geometry of a homoclinic loop

Let f(x) have a homoclinic orbit q0(t), with a hyperbolic saddle point p0.
Σt0 is a cross section of the non-autonomous flow (where θ̇ = 1), at time t0.
The Poincaré map P t0

ε maps Σt0 → Σt0 . The stable and unstable manifolds
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of the perturbed system are perturbations of q0(t) so that:

qs,uε (t, t0) = q0(t− t0) + εqs,u1 (t, t0) +O(ε2) forWs : tε[t0,∞), (3.58)

Wu : tε(−∞, t0]. (3.59)

Therefore qs,u1 is found from the first variational equation:

q̇s,u1 (t, t0) = Df(q0(t− t0))q
s,u
1 (t, t0) + g(q0(t− t0), t). (3.60)

This is obtained from substituting the perturbation expansion of qs,uε (t, t0)

into the system and solving for the terms in ε for qs,u1 , where q0(t) is the
solution of the zero order equation in the equation hierarchy.

Let d(t0) = quε (t0)−qsε(t0), where qs,uε (t0) = qs,uε (t0, t0). This is determined
from the intersection of the normal through q0(0), a point on the unper-
turbed homoclinic loop, with the perturbed stable and unstable manifolds
at time t0. So

d(t0) = ε
f(q0(0)) ∧ (qu1 (t0)− qs1(t0))

|f(q0(0)|
+O(ε2), (3.61)

where a∧ b is the wedge product = a1b2−a2b1, as (b1, b2)
⊥ = (−b2, b1). This

is the projection of quε (t0) − qsε(t0) on the normal f⊥, which is the closest
distance of the unstable and unstable manifolds to the point q0(0). q0(0)

remains the same point on the homoclinic loop ∀t0 of the autonomous flow
whenever t0 is defined, as q0(0) is defined in the unperturbed system at
time t = 0, whereas qs,u1 (t0) varies with t0, i.e. it is parameterised by t0, as
d(t0) changes with t0 at the same point on the unperturbed trajectory.

The Melnikov function is then defined as:

M(t0) =

∫ ∞

−∞
f(q0(t− t0)) ∧ g(q0(t− t0), t)dt, (3.62)

d(t0) = εM(t0)
|f(q0(0)| +O(ε2) as from,

∆(t, t0) = f(q0(t− t0)) ∧ (qu1 (t, t0)− qs1(t, t0)), (3.63)

= ∆u(t, t0)−∆s(t, t0), (3.64)
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the time varying distance function (wrt t0), and

∆̇u,s = traceDf(q0(t− t0))∆
u,s + f(q0(t− t0)) ∧ g(q0(t− t0, t)), (3.65)

from the variational equation. trace(Df) = 0 as f is Hamiltonian, and in-
tegrating ∆̇u over (−∞, t0] and ∆̇s over [t0,∞) gives ∆u(t0, t0)+∆s(t0, t0) =

M(t0) = d(t0)|f(q0(0)| + O(ε2), as ∆u(−∞, t0)−∆s(∞, t0) = 0 because the
manifolds intersect at the saddle point pε0.

3.7.3 Bifurcations of a homoclinic loop

What are the possible dynamics of the bifurcation of a homoclinic loop?
The unstable and stable manifolds might simply cross over and the di-
rection of the flow reverse. A limit cycle might appear or vanish in the
interior of the loop depending on the direction of the parameter adjust-
ment. If M(t0) has simple zeros and is independent of ε then for ε > 0,
sufficiently small the stable and unstable manifolds intersect transversely.
If M(t0) 6= 0 for any t0 then the manifolds do not intersect anywhere. The
implication of this is that the traverse homoclinic orbits show the existence
of a Smale horseshoe and therefore chaotic dynamics.

Similarly a Melnikov function can used to analyse the stability of a
limit cycle inside a homoclinic loop. Let qα(t− t0) be a periodic orbit of the
unperturbed system with period Tα, then there exists an orbit qαε (t, t0) not
necessarily periodic which can be expressed as:

qαε (t, t0) = qα(t− t0) + εqα1 (t, t0) +O(ε2), (3.66)

uniformly in tε[t0, t0 + Tα], for ε sufficiently small. The subharmonic Mel-
nikov function is defined as:

M
m
n (t0) =

∫ mT

0

f(qα(t)) ∧ g(qα(t), t+ t0)dt, (3.67)

where qα(t− t0) is a periodic orbit of period Tα = m
n
T , and T is the period

of the perturbation. If M
m
n (t0) has simple zeroes, and is independent of ε,
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and ∂Tα

∂hα
6= 0, where hα = H(qα(t)), then there exists a subharmonic orbit of

period mT . The subharmonic Melnikov function measures the movement
of the perturbed trajectory on the Poincaré plot for m revolutions of the
torus ≡ n cycles of the periodic orbit. So if t0 is at a fixed point then the
Melnikov function is zero.



Chapter 4

Mathematical Modelling of the
Cardiovascular System

4.1 Introduction

The motivation for the derivation of a more complicated map for heart rate
interval is that the existing map [26] used to demonstrate Arnold tongues
in coupling between the respiratory and cardiovascular systems has lim-
ited dynamics and in particular can not exhibit chaos. A more elaborate
map is thought to be helpful to exhibit a wider range of possible behaviour
for the heart interval in order for the dynamics of coupling between the
respiratory and cardiovascular systems to be explored more fully. The
approach is to model the heart interval with diffential equations and to
derive a map from these. Then the map is generalised and its parameters
associated with significant parameters of heart physiology. Some physiol-
ogy of the human respiratory and cardiovascular systems is described in
Appendix A.

64
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4.2 Background

Recent models of the cardio-vascular system are based on the Windkessel
model (DeBoer et al.[27]) of an arterial compartment characterised by a
compliance and a fluid outflow controlled by capillary resistance. J. T. Ottesen [28]
has developed a non-pulsatile model of the cardio-vascular system to study
the effects in the time delay of the parasympathetic and sympathetic con-
trol. The left ventricle is treated as a continuous source of fluid quantified
by a heart rate H and a stroke volume Vstr. There are two compartments
characterised by a compliance with dimensions of volume/pressure, ca, cv
modeling the aorta and the veins going into the right side of the heart.
Connecting the two compartments is the capillary system modelled by a
resistance R. As the right ventricle removes the fluid it is effectively a sink
at a pressure potential of zero. The veins supply fluid to the right ventricle
via the right atrium and the flow into the right atrium is modelled by a
resistance r. The state variables are the mean fluid pressure in the aorta
and the veins, Pa(t), Pv(t). This leads to two differential equations for the
uncontrolled non-pulsatile cardiovascular system:(

Ṗa(t)

Ṗv(t)

)
=

(
− 1
caR

1
caR

1
cvR

− 1
cv

(
1
r

+ 1
R

))(Pa(t)
Pv(t)

)
+

1

ca
HVstr

(
1

0

)
.

The effect of the baroreflex control is added to this system by introduc-
ing H the heart rate, as an additional state variable instead of a constant,
which is controlled by a function f of Pa(t). As the parasympathetic delay
is much less than the sympathetic delay (about 10x), the parasympathetic
delay is neglected and f is a function of Pa(t), and Pa(t − τ). f is a com-
position of h, a 2 dimensional function giving the effect of the parasympa-
thetic tone and the sympathetic tone on the heart rate, and g, the S curve
response of the baroreceptor which gives the parasympathetic tone and
the sympathetic tone as a parameterised function of Pa(t), and Pa(t − τ)

respectively.
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The third equation of the model for the heart rate is then

˙H(t) = f(Pa(t), Pa(t− τ))

Ottesen analyses the stability of this system by linearising the model around
the equilibrium point and studies the characteristic equation. The effect of
the time delay is to introduce a term Q(λ)e−λτ in the usual characteristic
polynomial equation of a linear system. A 2 parameter space is divided
into regions of one positive root, two positive roots, and no positive roots.
Ottesen finds he is able to explain the phenomenon of 10Hz Mayer waves
of blood pressure by changes in the sympathetic time delay with a sensi-
tivity to R, and that the model responds realistically to step changes in R

caused by physical exercise which is verified by experimental data. Otte-
sen also considers the effect of the simplification r = 0, as well as the effect
of a nonconstant stroke volume.

Fowler and McGuiness [29] extend this approach simplifying the model
to a single delay/ recruitment equation. This is linearized to analyse the
stability, giving a transcendental equation σ = −B − Ge−σ. The B,G pa-
rameter plane contains regions of stability, damped oscillation and, unsta-
ble oscillation separated by a Hopf bifurcation curve.

To study the phenomenon of cardiovascular synchronisation a pul-
satile model is needed as it is the dynamics of the heart phase that lead
to synchronisation. Thus rather than a heart rate equation as for the non-
pulsatile model, a heart phase dynamical equation is introduced. McGuin-
ness et al. [26] study cardiovascular synchronisation abstracting the cardio-
vascular system as two relaxation oscillators. Respiratory coupling is via
modulation of the integration rate. During the respiration cycle the heart
rate is slowed during the first half of the cycle and increased during the
second half of the cycle. A 1D map of heart interval in terms of respiration
phase is given. The deviation of the cumulative respiration phase from
a constant rate, at its maximum, is given by the coupling parameter ε in
the middle of the respiration cycle. Cardio-vascular coupling is a pulse
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coupling whereby the respiration cycle is shortened if a heart beat occurs
close enough to the end of the respiration cycle. The parameter A is the
amplitude of the phase pulse and if the addition of this pulse to the current
phase crosses the 1 threshold a new respiration cycle is started.

There have been several studies in the past of coupled relaxation oscil-
lators, either 2 orN oscillators. These use various pulse coupling schemes.
A. A. Brailove [1] has each discharge of the relaxation oscillator providing
a pulse to the coupled oscillator(s) which is integrated. Chia-Chu Chen
[30] introduces a threshold effect where coupled pulses in the initial part
of the integration have no effect. This is exactly analogous to the phase
effectiveness curve of the heart oscillator. The scheme of McGuinness et
al. can be seen to exhibit both extremes of strength in the coupling as
well as representing a model of the cardiovascular system. It can be seen
that coupling of the respiration to the heart is via a O(ε) strength pertur-
bation of a constant rate fr relaxation oscillator representing the effect of
Respiratory Sinus Arrhythmia (RSA, see Appendix A), on the oscillator
threshold. Graphically the triangular deviation of the oscillator map in-
tersects the θi+1 = θi line in a tangent bifurcation to generate the locking
zones, depending on the perturbation ε and the nominal period of the re-
laxation oscillator T = 1

fr
. Similarly a pulse coupled scheme results in the

phase difference of the coupled oscillators drifting until the stable fixed
point created by the pulse coupling is reached. The locking time depends
on the width of the pulse and the width of the locking zone on the height
of the pulse.

H. Seidel and H. Herzel [31] model the cardiovascular system using
a pulsatile model. This is a system of differential equations based on the
Windkessel model as for Ottesen. The pulsatility is expressed by dividing
the heart cycle into the systolic part where the heart is contracting and the
diastolic part where the fluid in the aorta is squeezed into the vascular sys-
tem. Whereas the fluid pressure in the diastolic part is expressed using the
simple Windkessel model ṗ = − p

τv(t)
, the pressure in the systolic part of
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the cycle is a pressure pulse driving function p = di−1 +Si
t−ti
τsys

exp{1− t−ti
τsys
}.

The Seidel and Herzel model is elaborated in several directions. The Wind-
kessel time constant is time varying. This reponds to baro-receptor sympa-
thetic activity. Additionally the metabolism of the sympathetic transmitter
noneprephrine is expressed in a first order delay differential equation for
the vascular concentration. The delay of 1.65s is due to the transmission of
nervous impulses and the transport of the neurotransmitter. The heart rate
is controlled by para-sympathetic and sympathetic loops where the Otte-
sen model uses only the sympathetic loop. These have differing delays,
.3s and 1.65s.

There is no equation for the para-sympathetic neuro-transmitter as this
metabolises quite quickly but there is an equation for the cardiac concen-
tration of the sympathetic neuro-transmitter. This variable affects both
the sympathetic influence on the sino-atrial node and the contractility of
the heart Si and therefore the systolic pressure. Due to the particular
chemistry of the parasympathetic transmitter there is a phase effective-
ness curve where the effect of the parasympathetic activity is dependent
on the phase of the sino-atrial node.

Cross coupling between the parasympathetic and sympathetic loops
is expressed by their product being in the denominator of the time con-
stant of the sino-atrial node. RSA is modelled by a sine half wave term, at
the respiration frequency, in the equations for para-sympathetic and sym-
pathetic activity . This models RSA as centrally coupled in the nervous
system rather than mechanically coupled through the chest cavity. There
is no cardiovascular coupling (CVC) in this model.

Seidel and Herzel numerically solve the system firstly to study the ef-
fect of changes in parameters. They observe a baro-receptor loop response
peak of .1 Hz corresponding to damped oscillations which is some times a
10 sec sustained rhythm corresponding to Mayer waves. The effect of RSA
is observed as a variation in the heart interval at the respiration frequency.

Variations in the sympathetic time delay are observed to cause oscilla-
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tions in the heart interval corresponding to a Hopf bifurcation. Variations
in the baro-receptor coupling, (baro-receptor gain) lead to limit cycles of
the heart interval denoted as alternans —an arrhythmia of alternating heart
periods, and an oscillation of the baro-reflex control loop, the superpo-
sition of which with the cardiac pacemaker constitutes a torus. As gain
increases there is entrainment between the baro-receptor loop oscillation
and the heart oscillator and finally chaos.

4.3 Studying Synchronisation in the Cardio-

vascular System

The current study seeks to investigate the synchronisation in the cardio-
vascular system. As this is a function of the phase of the respiration and
the cardiac oscillators a pulsatile model is needed.

The differential equations of Seidel and Herzel [31] are followed. This
model is more fully explained in [32]. Initially a model of only the parasym-
pathetic loop was studied as the synchronisation of the heart is seen to act
through the phase effectiveness curve F (φ) of the sino-atrial node which
is a function of the parasympathetic neurotransmitter chemistry. Subse-
quently the sympathetic loop was added to study the effect of the respon-
siveness of the heart oscillator to perturbation and the effect on synchro-
nisation as there is a cross product term between the parasympathetic and
sympathetic influences and the gain of the sympathetic loop is about 1.5x
the parasympathetic loop before taking the phase effectiveness curve into
account, so this should be the relative effect on synchronisation. As the
phase effectiveness curve attenuates the effect of the nervous influence by
on average .05x it is the sympathetic loop that has the greatest effect on the
response of the heart oscillator.

The systolic pressure is determined by the contractility of the heart
which is related to the volume of fluid entering the heart and sympathetic
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nervous influence. The systolic pressure of the fluid built up at each stroke
is modelled as proportional to the previous heart interval time. But this is
an approximation as the volume retained in the peripheral system varies
as the resistance to flow varies. This also assumes that the pulmonary sys-
tem plays no dynamical role in the fluid flow, but as there is at least one
heart interval delay for the effect of the current heart stroke to affect the
returning fluid perhaps a dependence on the second to last heart interval
time would be more realistic. Seidel and Herzel include in their model a
system of equations for the contractility of the heart including sympathetic
transmitter concentration in the heart. The systolic pressure at each stroke
is a proportion of the previous interval time and the contractility of the
heart added together.

The Windkessel time constant, a product of the resistance to flow and
the compliance of the aorta is also modelled as a function of peripheral
sympathetic transmitter concentration. The characteristic S shaped func-
tion of the baroreceptor response is included as the transfer function of the
parasympathetic activity to the parasympathetic influence as is the time
delay and similarly for the sympathetic activity. The RSA is added cen-
trally to the parasympathetic and sympathetic activity, rather than being
considered as a mechanical effect of the chest cavity and added to barore-
ceptor activity. The following equations were used,

Baroreceptor activity vb:

vb = k1(p− p0) + k2
dp

dt
. (4.1)

Possibly k2 is small and its effect must be limited by the saturation of the
baroreceptor at the systolic pressure. p0 is a parameter of the dynamic
range of the baroreceptor.

Parasympathetic activity vp:

vp = max(0, v(0)
p + kbpvb + krp| sin(πfrt+ ∆φrp)|). (4.2)

Sympathetic activity vs:

vs = max(0, v(0)
s − kbsvb + krs | sin(πfrt+ ∆φrs)|), (4.3)
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where ∆φrp,s are initial conditions for the respiratory influence on the ner-
vous activity, usually set equal to 0.

Sinus node phase ϕ:
dϕ

dt
=

1

T 0fsfp, (4.4)

T 0 is the heart interval length generated by the sino-atrial node. fs is the
sympathetic influence on the sino-atrial node.

Parasympathetic influence on the phase velocity of the sinus node fp:

fp = 1− kpϕ

(
vp(t− θp) + (v̂p − vp(t− θp))

vp(t− θp)
np

v̂
np
p + vp(t− θp)np

)
F (ϕ), (4.5)

θp is the time delay of the parasympathetic loop, about .5 secs, F (ϕ) is the
phase effectiveness curve.

Cardiac concentration of the sympathetic transmitter ccNa:

dccNa

dt
= −ccNa

τcNa

+ kscNavs(t− θcNa), (4.6)

θcNa is the transport delay of the sympathetic transmitter epinehrine, and
τcNa is the time constant for the metabolism of the transmitter.

Sympathetic influence on the phase velocity of the sinus node fs:

fs = 1 + kcNa
ϕ

(
ccNa + (ĉcNa − ccNa)

cncNa
cNa

ĉncNa
cNa + cncNa

cNa

)
. (4.7)

Phase-effectiveness curve F:

F (ϕ) = ϕ1.3(ϕ− 0.45)
(1− ϕ)3

(1− 0.8)3 + (1− ϕ)3
. (4.8)

Instantaneous fluid pressure p:

dp

dt
=

−p
τv(t)

+ Sn · t · exp(−(t− .04)2

.00125
)kI , (4.9)

Sn is the contractility. kI is a constant which normalises the area under the
pulse function and includes the compliance of the aorta so that the change
in pressure depends on the contractility. τv(t) is the Windkessel time con-
stant which is time varying and depends on the peripheral sympathetic
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transmitter concentration. This equation is an adaption of the Seidel and
Herzel equation so that the system is a continuous rather than piecewise
continuous as in the implementation of Seidel and Herzel where the sys-
tolic and diastolic intervals are considered separately.

Windkessel time constant τv:

τv = τ (0)
v − τ̂v

(
cvNa + (ĉvNa − cvNa)

cnvNa
vNa

ĉnvNa
vNa + cnvNa

vNa

)
. (4.10)

The Windkessel time constant including the fixed compliance of the artery
and a varying peripheral resistance is a Hills function of peripheral sym-
pathetic transmitter concentration with several parameters. The ĉvNa value
is the limiting value of the function and the exponent controls the curva-
ture. The function is linear for low values of the argument.

Peripheral sympathetic transmitter concentration cvNa:

dcvNa

dt
= −cvNa

τvNa

+ kscvNa
υs(t− θvNa), (4.11)

where τvNa is the metabolic time constant of the sympathetic transmitter,
θvNa is the delay of the sympathetic nervous influence, including electri-
cal delay in the nervous system and delay time for the passage of the
epinehrine across the synapse to the peripheral system.

Cardiac contractility without saturation S ′n:

S ′n = S(0) + kcSccNa + ktStn−1. (4.12)

The contractility is based on a constant value with additive terms propor-
tional to the cardiac sympathetic transmitter concentration and the length
of the previous heart interval time.

Cardiac contractility with saturation Sn:

Sn = S ′n +
(
Ŝ − S ′n

) S ′ns
n

S ′ns
n + Ŝns

. (4.13)

The contractility is limited with a Hills function.
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p(0) 50.0 mm Hg ktS 10 mm Hg s−1 S(0) 25 mm Hg

k1 .02 mm Hg−1 Ŝ 70.0 mm Hg kcS 40 mm Hg

k2 .00125 s mm Hg−1 kscNa 1.2 θp 0.5 s
v0
p 0.0 θcNa 1.65 s τcNa 2.0 s
kbp .3 kcNa

ϕ 1.6 ns 2.5
krp .1 ĉcNa 2.0 np 2.0
∆φrp 0 ∆φrs 0 θvNa 1.65 s
fr .2 s−1 kI 346.94 v̂p 2.5
v

(0)
s .8 τ

(0)
v 2.2 s kscvNa

1.2
kbs .7 τ̂v 1.2 s kpϕ 5.8
krs .1 ĉvNa 10.0 τvNa 2.0 s
T 0 1.1 s nvNa 1.5 ncNa 2.0

Table 4.1: Table of nominal parameter values

4.3.1 Numerical solution of system

The heart oscillator was modelled using the DDE23 differential delay sys-
tem solver in MatLab. The system of equations (4.1)-(4.13) has 5 state vari-
ables because as well as the heart phase ϕ (4.4), fluid pressure p (4.9), equa-
tions, and cardiac (4.6) and peripheral (4.11) concentrations of sympathetic
transmitters ccNa, cvNa, the previous heart beat time interval tn−1 (4.12) is
used to determine the volume of blood pumped in the heart beat at the
start of the heart oscillation. So the 4 state variable system used is non-
autonomous as it is driven by this quantity. This represents an implicit
integration of the inverse phase function to find the heart interval.

The DDE23 solver can solve a non-autonomous system of equations
with a finite number of delays. Therefore it is capable of solving the heart
equations numerically with both the parasympathetic and sympathetic
loops. Initially only the parasympathetic loop was studied. Subsequently
the sympathetic loop and peripheral resistance was added to study the
effect.
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The DDE23 solver requires as input a history function which speci-
fies the history of the system dependent variables up to the longest delay.
For the system studied only the pressure variable is delayed so only this
history function is required. As the exact history is unknown it is approxi-
mated initially using nominal values and the Windkessel model for aortic
pressure. The t−1 is an initial condition of the system, as is d−1 the diastolic
pressure at the end of the heart interval (identical to p(t) at φ = 1). These
are set to appropriate values when the model is started. The tn−1 is then
iterated for a number of heart cycles to remove the transient effect of the
initial inaccuracy in the history function.

It was found that, as the step size is adaptive, the pulsatile nature of
the system caused problems with the DDE23 solver. That is as the pres-
sure pulse of the heart beat was continuous rather than discontinuous the
solver did not track the rapid change in the pressure state variable very
well. Therefore the system was solved one heart interval at a time. This
meant that an approximate history function was inadequate, as the solver
would require an accurate history prior to the initial condition, so the out-
put of the solver for each interval needed to be stored in an array for a
time, up to the maximum delay in the system. The history function sup-
plied to the solver looked up values in the history array, when the solver
needed state values beyond the length of the current interval calculation.
Otherwise the history function uses the state values saved by the DDE23
solver.

The DDE23 solver has a number of options which increase its useful-
ness. The usual relative and absolute tolerance can be set. A particular
option which is used in the solution of the heart interval is the ’Events’
option. An event function handle is supplied in the options field of the
function call which monitors the steps of the solution and detects a zero
crossing in either direction of a function of the solution state, and then can
stop the integration. In the solution of the heart interval length this facility
is used to detect the end of the heart phase cycle at φ = 1. The integration
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is then stopped at the exact heart interval length instead of having to inter-
grate over a fixed time interval longer than the heart interval length and
then search the solution data for the end of the heart phase cycle. Another
option is ’discontinuities’ which restarts the integration at given discon-
tinuities in the solution corresponding to initial conditions of a solution
which uses the previous solution as the history function.

This is a similar approach to Seidel and Herzel [31] who use a 4th or-
der Runge-Kutta algorithm (so the error is O(h5), where h is the step size),
with a fixed step size less than the smallest delay, to simplify program-
ming, and a ring buffer for the solution history. The DDE23 uses a Runge-
Kutta BS(2,3) algorithm as described by Shampine et al. [33]. In this case
therefore the integrator error is of order O(h4), whereas the error estimate
for the stepsize control is of order O(h3).

After a fixed number of cycles to remove the grossest transient the rota-
tion number of the heart oscillator with respect to the respiration oscillator
is calculated until it has stabilised. This is taken to be relative to the rota-
tion number to allow the variation of the rotation number with respiration
frequency to be distinct. As the rotation number varies a little with the
respiration phase this will take a number of respiration cycles. About 5000
heart intervals were calculated at each respiration frequency to find the ro-
tation number as it took this length of time to average out the effect of the
variation in the heart interval in a respiration cycle. While the nonlinear-
ity of the phase effectiveness curve is necessary to difference the phases of
the respiration and heart interval and generate a synchronizing force, the
phases are also added generating a higher frequency component and the
respiration fundamental component is also present causing significant jit-
ter in the rotation number over a respiration cycle. Without synchronising
the calculation to respiration cycle, which proved to be difficult because
of the jitter, a large number of heart intervals was needed to find a precise
rotation number.
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4.3.2 Behaviour of heart system model

The system seems quite elaborate for a study of oscillator coupling but
it was found that the entire system is involved in the coupling dynam-
ics so that all the equations of Seidel and Herzel are necessary for prac-
tical results. It is the peripheral resistance that has the greatest effect on
fluid pressure and the Windkessel constant adjusts to maintain an approx-
imately constant diastolic pressure via the sympathetic loop as a result of
the high gain of this reflex. However RSA coupling occurs via the phase
effectiveness curve of the parasympathetic loop altering the heart rate,
which affects the fluid pressure, such that the peripheral control loop is
counteracting the RSA. The fluid flow is related to the pressure via the
compliance of the aorta. So the flow rate is proportional to the difference
between the systolic and diastolic pressures or the contractility. Increasing
contractility implies increased flow due to higher average pressure and
increased heart rate also implies increased volume.

Seidel and Herzel model the heart stroke piecewise through adding
an exponential pulse function onto the diastolic pressure of the previous
heart interval during a time period called the systolic interval and then
solve the Windkessel model during the diastolic interval. For a continuous
model the differentiated step function is added to the Windkessel model
for the systolic interval so that the differential equation is valid throughout
the heart interval. The piecewise method allows a replica of the physio-
logical situation, where a bump occurs at the systolic peak as fluid back
pressure closes the heart valve, but neglects the effect of peripheral flow
during the systolic interval perhaps affecting the heart interval time. The
nonpiecewise method used equated the area under an e(x−a)2 pulse func-
tion to the pressure increase of the heart stroke and added the pulse func-
tion to the Windkessel model (4.9).

The system of Seidel and Herzel includes a model of heart contractility
and the system was found to be sensitive to these equations also. The heart
contractility depends on the filling time via the myocardial fibres and the
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cardiac sympathetic transmitter concentration. It can be seen that where
the contractility would be purely proportional to the filling time then this
has the effect of degenerating the sympathetic loop gain as the fluid pres-
sure would decrease with shorter heart intervals, whereas the effect of the
sympathetic loop is to increase pressure through increasing heart rate. In
this case of contractility proportional to filling time it was found that the
bifurcation to oscillations with increased sympathetic time delay did not
occur. Using a fixed constant for the contractility it was found that the
bifurcations were sensitive to the value of the constant. For higher val-
ues of fixed contractility only damped oscillations were present and these
became stable oscillations at a lower value. This seems to be an effect of
nonlinearities in the S curves and the operating level of the system as the
higher value constant increased the heart interval length and the average
pressure level. The contractility was found to be essential to maintaining
the system equilibrium point or pressure level. With the contractility as
a constant to govern the pressure level, the equilibrium point was lost at
about 80 mmHg diastolic pressure. That is to say the pressure would de-
crease to zero and the system cease to function. The effect worsened with
the contractility depending only on the previous interval length. The Sei-
del and Herzel equations model the contractility as a fixed term plus a
term proportional to the previous time interval length and a term propor-
tional to a saturating function of the transmitter concentration. As increas-
ing transmitter concentration decreases the heart interval, this cancels the
degenerating effect on the sympathetic loop gain, of the dependence of the
contractility on the previous heart interval.

Figure (4.1) shows output of the model for typical parameters. The
timescale of the graphs of parasympathetic and sympathetic activity are
shifted by the respective delays wrt the pressure to indicate at what time
they affect the phase progression although the graphs are still synchro-
nised with the pressure graph. To validate the model some parameters
were varied to compare the results with those of Seidel and Herzel. Fig-
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Figure 4.1: Output of the heart system model
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ures (4.2)-(4.3), show the effect of increasing the sympathetic loop delay
from t = 1.65 s to t = 2.5 s. The results are nearly identical to those of
Seidel and Herzel. It was found that the model is very sensitive to the
contractility (systolic pressure). A variation of +2.5 percent would quench
the oscillation or −2.5 percent would double the amplitude. This is at-
tributed to the baroreceptor S curves compressing the amplitude of the
parasympathetic and sympathetic responses, reducing the loop gain and
limiting the amplitude of the oscillation, and so the stability is sensitive to
the average pressure level.

Another parameter tested was the parasympathetic loop gain. At higher
levels of gain an alternans arrhythmia was found as per Seidel and Herzel,
and loop oscillation which could be entrained. See figure (4.4). This en-
trainment employs the same phase reponsiveness curve mechanism as the
RSA. The explanation for this effect depends on the delay times of the
parasympathetic and sympathetic loops and the control of the average
fluid pressure by the sympathetic loop. Initially the sympathetic trans-
mitter peak corresponds approximately with the parasympathetic activ-
ity peak in the middle of the heart interval. The sympathetic transmitter
trough is after the systolic peak because the sympathetic transmitter rise
time follows the Windkessel time constant whereas the fall time is due
to the metabolic time constant which is longer. The sino-atrial time con-
stant is controlling the initial phase advance. The sympathetic transmitter
is decaying at this point to its minimum, and so is the parasympathetic
influence which is also attenuated by the phase effectiveness curve. The
parasympathetic loop controls the middle of the heart interval due to the
.5 sec delay from the start of the heart interval and the effect of the phase
effectiveness curve increasing at this point. As the sympathetic transmitter
metabolic time constant is longer the parasympathetic influence decreases
faster and the sympathetic transmitter controls the end of the interval.

As the parasympathetic loop gain increases, the interval time becomes
longer. The diastolic pressure therefore decreases as much as the sympa-
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thetic control loop allows because it needs a small difference from the set
point to counteract the effect of the increased parasympathetic activity.

At the bifurcation point the interval has lengthened, and the heart phase
rises very sharply at the end of the interval due to the stronger influence
of the sympathetic transmitter. The sympathetic activity threshold now
corresponds to heart phase φ = 0 and corresponds to an inflection in the
decay of the sympathetic transmitter

As the sympathetic activity threshold crosses into the n − 1 interval
the following sympathetic activity peak is adding to the sino-atrial node
time constant to shorten the interval n as it moves away from the oppos-
ing parasympathetic influence. Additionally the contractility n is decreas-
ing as the minimum of the sympathetic transmitter moves closer to zero
phase, so decreasing the subsequent parasympathetic lengthening influ-
ence in interval n. The n − 1 interval is still responding to the increased
parasympathetic loop gain but less so due to the effect of the difference in
time constants, but this is also counteracted by the overall decrease in the
baroreflex influence being dominated by the sino-atrial time constant. As
the interval n shortens and the contractility n decreases, the following in-
terval n+ 1 has its associated n− 1 sympathetic activity shift back into the
n+1 interval more under counteracting effect of the n+1 parasympathetic
activity so adds to the lengthening effect on the n+1 interval. The long in-
terval therefore now has two sympathetic activity threshold crossings and
the short interval none.

As the average pressure decreases the sympathetic loop gain increases
due to the reduction in amplitude compression of the S curves and oscil-
lation occurs in the sympathetic loop.

4.3.3 Frequency response of heart system

The frequency response of the heart interval length to the RSA or centrally
coupled noise was studied. This was found by using a low level of excita-
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tion in the RSA terms of the equations (4.1)-(4.13). The Fourier spectrum is
frequency modulated and the side bands of the carrier frequency give the
magnitude of the deviation of the heart interval frequency depending on
the excitation frequency provided the excitation is small and the FM spec-
trum has only 1 side band. The frequency deviation should be much less
than the modulation frequency for this. See M. Schwartz p273, [34]. So
one method of finding the frequency response is to examine the spectrum
around the carrier frequency at low coupling to determine the frequency
modulation of the carrier.

Alternatively as the heart interval is a frequency modulated delta func-
tion sequence, the modulation spectrum should be present in the base
band. Intuitively this is seen by observing that integrating a frequency
modulated delta function sequence at a time constant longer than the car-
rier period (and shorter than the modulation period) should give a signal
proportional to the modulating signal. The heart interval signal is anal-
ysed by considering it to be a delta function sequence frequency modu-
lated by the RSA.

The frequency modulation model of the HRV is a simplification. HRV
is formalised by the Integral Pulse Frequency model (IPFM) which is a re-
laxation oscillator model in which both the integration rate and the thresh-
old are modulated. This corresponds to the different effects of parasym-
pathetic and sympathetic influence due to their different chemical actions.
The Poincaré return time is most often treated as being due to a constant
frequency but clearly any model is possible for the phase advancement
between the Poincaré surfaces. [35],[36],[37],[38].

The spectrum was found by exciting the RSA terms in the system with
a random constant value for each interval. In the frequency spectrum the
input to the RSA is therefore white noise with a constant frequency spec-
trum and it is the power spectrum of the output that is calculated. The
coupling was small = .04 to avoid the effect of nonlinearity. 100000 heart
intervals were calculated and the Fourier power spectrum computed. If
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the total length of the heart intervals is T then the components of the spec-
trum at multiples of 1

T
correspond to Fourier series coefficients. Logically

whatever is the signal outside of the rectangular window it could be a peri-
odic function of the signal inside the window and in that case the spectrum
would be a Fourier series with components at 1

T
. The Fourier series of the

periodic function does exist but the transform does not, or it is a delta
function sequence weighted by the Fourier coefficient, as the integration
over 0 to T is multiplied by Σ∞

n=−∞e−jnωT to obtain the transform of the

periodic signal. Multiplying the periodic signal by a T e−j
ωT
2

sin ωT
2

ωT
2

to ob-

tain the time frame, the zeros of the sin(x)
x

function coincide with the other
Fourier series components so the value of the time interval spectrum at the
Fourier component frequency must be that of the Fourier series compo-
nent amplitude. The Fourier components are what is meaningful because
knowledge of these allows the signal to be completely reconstituted. The
frequency spectrum values of the Fourier Transform between those cor-
responding to the Fourier series coefficients are sums of values of a sin(x)

x

function weighted by the Fourier coefficients.
It is seen that the increase in the spectrum envelope at low frequencies

is due to the finite time interval length and is weighted by the 1
x

term
giving a linear increase in the log spectrum. This gives a time average
of the Fourier coefficients at a resolution of 1

T
. This is a high resolution

for a long period T but does not average the noise for each coefficient
effectively. An ensemble average of many shorter time lengths is used to
find more accurate values of the spectrum at the components of the Fourier
series but at a lower frequency resolution. So a time interval length of
about 8192 seconds was used with a Hanning window H(t) = 1− cos(2πt

T
)

to reduce leakage of the rectangular window due to the discontinuity at
each end, as well as using an integral number of the average heart interval
length for the time interval to reduce the discontinuity, which gives an
ensemble of about 120 time intervals. The power spectrum is found as the
magnitude squared of the Fourier transform of the heart interval data as
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the autocorrelation of the heart interval data is difficult to calculate being
based on delta functions. As the heart intervals are discrete the system is a
sampled data system. The sampling frequency is the number of intervals
n divided by the total length of the intervals T , so n

T
. So the spectrum is

repeated at intervals of n
T

.
One method of detection of the modulation would be to phase lock the

sampling frequency to the data and determine the time deviation for each
interval exactly. The spectrum is then found from the length of each de-
viation equiplaced at the sampling frequency, and applying a DFT. This
is equivalent to simply transforming the heart interval data placed at the
intervals of the sampling frequency. As discussed earlier this would be an
approximation. This would assume that the modulation was being sam-
pled at the sampling frequency whereas clearly the time interval length is
determined instantaneously by the integration rate and the threshold at
the end of the heart interval, so the modulation is sampled at this time.
The data could be made equispaced by assuming a model for the modu-
lation signal and interpolating. Akselrod and Keselbrener [39], use a DFT
model of varying resolution to interpolate the time interval data.

As the system is a frequency modulated pulse train the spectrum also
exists in the base band. The spectrum was directly computed by a piece-
wise integration of the Fourier Transform so each interval was represented
by a δ function spaced by the time intervals. In figure (4.5) the response
of the sympathetic loop can be seen in the response as the peak at .1Hz. It
was seen that noise coupled into the sympathetic loop was subject to the
metabolic dynamics of the sympathetic transmitter and consequently the
higher frequency band was attenuated. This is illustrated in figure (4.6)
when the parasympathetic loop coupling is set to zero. In physiological
data a parasympathetic response would also be noticeable but also a roll
off of the response and this seems to indicate that the sympathetic loop is
subject to more noise and that the parasympathetic loop has higher gain
than the nominal value of the model. As the system is a sampled data
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Figure 4.5: frequency response of heart system
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system aliasing effects are apparent around fc/2 that is .5 Hz. The average
interval length of the data is ∼ .99 secs so the fundamental frequency is
∼ 1.01 Hz.



Chapter 5

Coupling in the Cardiovascular
System

5.1 Introduction

Considering the cardiovascular system as two coupled oscillators the sim-
plest mathematical model might be:

φ̇1 = ω1 + εf1(φ1, φ2) + ξ1(t),

φ̇2 = ω2 + εf2(φ1, φ2) + ξ2(t), (5.1)

where ωi are the frequencies of each oscillator in the absence of coupling
or noise, fi the coupling functions periodic in φ1, φ2, and ξi noise or higher
dimensional dynamics of the oscillator system which have the effect of
noise such as chaos or toroidal oscillations. The trajectories φi have a zero
Lyapunov exponent and are defined on the real line, that is they are a lift
of an oscillator defined on an interval. The coupling functions need not be
identical so that the coupling is asymmetrical. A driven oscillator system
has one of the fi zero and so a uniform phase advance for that oscillator in
the absence of noise. The dynamics of the phase difference depend on the
nature of the coupling.

90
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For synchronisation the coupling must be a function of the phase dif-
ference φd = mφ1 − nφ2, where m,n are integers, so that an equilibrium
point of the phase difference dynamics is a fixed phase relationship be-
tween φ1, φ2. i.e. see section (3.3). Consider the phase difference dynamics
mφ̇1 − nφ̇2 = φ̇d. If the coupling functions fi are not entirely a function
of the phase difference φd then the dynamical equation is effectively non-
autonomous driven by terms in φ1 and φ2, possibly nonlinear. As long as
the variation in the phase difference does not exceed ±π the signal will
remain in synchronisation. As elaborated in section (3.3) the phase differ-
ence φd is not strictly a constant because of the non-autonomous terms.
Expressing the phases relative to a common zero let φ′i = φi + φci . Writing
the phase difference mφ′1 − nφ′2 = m(φ1 + φc1)− n(φ2 + φc2) = 0 shows that
mφ1 − nφ2 = nφc2 −mφc1 a constant for synchronisation, so linearly trans-
lated coordinates are identical at synchronisation, and that if φd varies by
more than ±π then a cycle has slipped. When synchronisation is main-
tained, φd is periodic over the period of the synchronisation (nT1 = mT2).

Considering the symmetry of the coupling functions, a function can be
decomposed into an odd part fo, where fo(x) = −fo(−x), and an even part
fe, where fe(x) = fe(−x). Even parts of the coupling functions will cancel
when differenced so that the phase difference dynamics are odd or have an
even part if the coupling is asymmetrical. An even part in the phase differ-
ence vector field shifts the equilibrium points from the nominal zero phase
difference of an odd function as it is equivalent to a phase shift of the cou-
pling function. It is seen that asymmetrical coupling does not change the
nature of the dynamics of the phase difference so that a driven oscillator
system is a good model for studying bifurcations of coupled oscillators.

Generally the coupling term k(φ1, φ2) of the phase difference dynamics
φd = φ1−φ2, is a function of φ1 and φ2. Suppose it is continuously differen-
tiable C1 on T 2, so 2π periodic in φ1, φ2, and so can be expressed as a two
dimensional Fourier series. Therefore all trignometric terms in mφ1 ± nφ2

are possible. The coefficient of the respective mφ1 − nφ2 difference terms
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gives the coupling coefficient for a particular m
n

ratio and the remaining
terms of the series are synchronous with the period of the synchronisation
when the system is synchronised, so their effect averages out to zero over
this period according to the averaging theorem (see F. Verhulst [25] p149).
When the system is not synchronised then the oscillators must be at their
nominal frequencies as the averaging theorem is valid for quasi-periodic
frequencies also. Higher order terms at multiples of the locking ratio result
in a non-sinusoidal coupling function.

Non-isochronicity in an oscillator (section (3.2)), can be expressed by
another dimension r (or dimensions), which gives higher order dynamics
to the synchronisation process. For example an electronic phase locked
loop is generally second order or higher [40]. In this case the oscillators
are based on the phase model but the coupling is via a dynamical system.
So the coupling function is f(r) and ṙ = g(r, φd). Generally the coupling
is fi(r, φ1, φ2), and ṙ = g(r, φ1, φ2) + ξr(t). A higher dimensional oscilla-
tor (non-chaotic) is necessarily of the nature of a limit cycle attractor so
the synchronisation properties must depend on the coupling on the limit
cycle.

5.2 A Phase locked loop model of

Cardiovascular system synchronisation

It can be seen that while the sino-atrial node can be modelled as a sim-
ple relaxation oscillation, the heart oscillator is made non-isochronous by
virtue of the baroreceptor loop. This loop modifies the progression of the
phase depending on the pressure in the aorta. Considering a 3D phase
map of the heart oscillator system, cylindrical co-ordinates r, θ, z could be
used, where θ is the sino-atrial phase, r is the pressure in the aorta, and
z is the time axis which makes the system autonomous. An increase in
pressure slows down the phase progression and lengthens the heart inter-
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val. So the system is non-isochronous in the r dimension and responds to
perturbations of pressure. As the sympathetic loop has a higher gain than
the parasympathetic loop it is the more significant for second order effects
on the RSA. So sympathetic transmitter concentration is the most signifi-
cant variable in expressing the non-isochronicity of the system, that is the
dynamics of the level of the sympathetic transmitter have a second order
effect on the RSA. It can be seen (e.g. from figure (4.1), and equation (4.3))
that the level follows the respiration with some delay and the diastolic
pressure is directly related to the level of sympathetic transmitter.

The heart oscillator can be compared to the electronic frequency con-
trolled oscillator in a 2nd order phase-locked loop [40]. As a system the
driven 2nd order phase locked loop consists of two 1D oscillators and a
coupling function which is a first order system of the phase difference. So
as a 3D system the dynamics are restricted by the oscillator subsystems
and the extra dimension gives 2nd order dynamics to the synchronisation.
Chaotic behaviour must not be possible as the Lyapunov exponents of the
oscillators are zero which restricts the remaining Lyapunov exponent to
be < 0 for bounded behaviour. But it is possible to generate chaotic be-
haviour by perturbing the driving signal.

An electronic phase locked loop is characterised by a difference be-
tween the capture range, that is the level of detuning between the oscilla-
tor centre frequency and the input signal frequency at which the oscillator
will lock for all initial conditions of oscillator frequency and phase, and the
hold range, that is the detuning over which the oscillator will remain in
lock from an initial locked state, as the input signal frequency is changed.

A phase locked loop has coupling dependent on the gain of the system
which is a parameter, whereas in the cardiovascular system the RSA is
relatively weakly coupled and fixed by physiological considerations. In a
phase locked loop the phase difference between the oscillator and the driv-
ing signal is detected explicitly by a phase detector giving a sinusoidal, or
triangular, phase difference characteristic, rather than through a nonlinear
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process as in the cardiovascular system. It is a coupled oscillator system as
the voltage controlled oscillator is driven by phase difference dynamics.

A similar mechanism applies to the RSA input to the heart oscillator.
In a locked state there is a constant phase difference which is necessary
to hold the frequency controlled oscillator at the driving frequency. The
RSA input directly modulates the heart interval length via the sino-atrial
nervous input proportionate to the depth of the RSA, and the depth of
the RSA is a function of the respiration phase. Without the nonlinear
expression of sino-atrial node phase through the gain of the phase re-
sponsiveness curve F (φ), as in figure (5.3), the effect of the respiration
would simply be to modulate the heart interval length, but the product
term of heart phase and respiration phase generates a change in heart fre-
quency and therefore heart interval length, proportionate to the phase dif-
ference. The effect of the perturbations of the heart interval by the RSA is
to cause changes in pressure and this is therefore counteracted by the non-
isochronicity expressed by the parasympathetic and sympathetic loops
which degenerate the open loop effect of the RSA.

Sum and difference terms of heart phase and respiration phase are gen-
erated by the multiplication of the phase reponsiveness curve F (φ) with
the sino-atrial input due to respiration. The rational relationship of the
oscillators is fixed by the multiple of the harmonic terms of phase differ-
ence. A possible complication in the system is the baro-receptor S-curve
which compresses higher pressures so that the effect of the respiratory in-
fluence is eliminated while the pressure is high, and only acts at the end of
the heart interval as the pressure decreases. Considering the delay of the
parasympathetic metabolism (.5 secs) it can be seen that as the nervous
influence due to pressure comes out of compression at a time related to
the peak pressure the falling edge of the pressure has the respiratory in-
fluence imposed on it as well as variations in pressure due to the action of
the cardio-vascular system. This edge then falls within the most dynamic
part of the phase responsiveness curve. The effect would cause the signal
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to the sino-atrial node to be of the form of a pulse modulated in width.
In practice it was found that there was little compression from the S-

curves, so normally the system is operating on a nearly linear part of the
curve. It did seem that the S-curves were ineffectual when using the nom-
inal parameter values, so it is possible that the validity of these values
should be verified as they only seem to operate for very high pressure lev-
els. Increasing the compression of the S-curves did result in the locking
zones increasing for low levels of coupling but diminishing as coupling
increased as the respiratory influence saturated the S-curves. Equally the
linearity of the S-curves is illustrated by the dependance of the phase lock-
ing on the phase responsiveness curve F (φ). Replacing the phase respon-
siveness curve by a constant, the locking zones diminished in width by
25x. So the multiplication of the phase responsiveness curve by the cou-
pled respiration is nominally the only nonlinearity leading to phase lock-
ing. The various S-curves are operating in a nearly linear region and must
account for the small residual synchronising effect.

For the sympathetic loop there is no phase responsiveness curve as the
metabolism and effect of the neurotransmitter is different, so synchroni-
sation depends on the para-sympathetic baroreflex loop. However there
is cross coupling between the sympathetic loop and the para-sympathetic
loop at the sino-atrial node as shown by the product term fsfp in equa-
tion (4.4) for heart phase in the model, so there is a second order depen-
dence of synchronisation on the sympathetic loop. The terms are of the
form fp = 1 − F (φ)kp(vb(t) + x(θ)), fs = 1 + ks(v

(0)
s − vb(t) + x(θ)), where

F (φ) is the phase responsiveness curve, x(θ) is the respiratory influence
(expressed by the krp| sin(πfrt + ∆φrp)| in eqns (4.2),(4.3)), v(0)

s is the sym-
pathetic transmitter threshold, and vb(t) expresses that the decay of the
pressure is approximately proportional to the interval phase.

A second order phase locked loop contains a low pass filter which
modifies the dynamics of the loop. The low pass filter increases the or-
der or dimension of the system. The dimension of the heart oscillator sys-
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tem is also increased by the time delay of the reflex loop which causes
the oscillator to be an infinite dimensional system. Whether the higher di-
mensions are significant will depend on the magnitude of the higher order
Lyapunov exponents. From a practical point of view the significant differ-
ence between an electronic phase locked loop and the heart system is that
the low pass filter, as well as modifying the dynamics of the phase locked
loop reponse also removes artifacts of the phase detection process. In the
electronic phase locked loop this is a 2f component. The sino-atrial node
phase responsiveness is quite nonlinear so many components are present
besides the detected phase difference. These components cause fluctua-
tions in the synchronizing force which lead to jitter in the phase difference
between the two oscillators. Whether a phase locking zone exists will de-
pend on the magnitude of the jitter.

Figure (5.1) shows a simplified heart system represented as a phase
locked loop. In the figure Krsa is the respiration coupling and Kh is the
gain of the heart oscillator frequency response. F (φ) is the phase respon-
siveness curve. The heart oscillator is affected through the parasympa-
thetic control. The heart oscillator system counteracts the disturbance
caused by the respiratory influence on the pressure through the parasym-
pathetic and sympathetic loop and through the peripheral resistance after
some delay depending on the path. This causes the locking zone width to
be a function of respiration frequency although this frequency responsive-
ness is not shown on figure (5.1). It seems that the parasympathetic loop
which acts within a heart interval is part of the heart contractility subsys-
tem. It seems to be the sympathetic loop that adjusts the heart interval and
peripheral resistance depending on fluid pressure in the aorta and other
arteries.

The locking dynamics can be expressed as a first order differential equa-
tion. Consider the 1 : 1 locking region as other ratios are similar but oc-
cur through higher harmonics in the phase responsiveness curve F (φ).
The phase responsiveness curve can be approximated by the function A−
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Heart system first order phase locked loop

Figure 5.1: heart system first order phase locked loop
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B sin(φh) for the 1 : 1 ratio. A = .03222, B = .10428. These values are
obtained by solving in Maple with the same ordinate for the zero crossing
and the same value at the ordinate of the peak value of the phase respon-
siveness curve. The fundamental component of the respiratory influence
function | sin(πfrt)| (from eqns (4.2,4.3)) is − 4

3π
cos(ωrt). From the diagram

5.1, let

dθr
dt

= ωr, (5.2)

dφh
dt

= ωh +KrsaKh
4
3π

cos(θr)F (φh

2π
), (5.3)

be the equations of the pll illustrated, and using the fundamental compo-
nent of the respiratory influence, and where φh, θr are the heart phase and
respiration phase respectively, ωh is the nominal heart frequency and ωr

is the frequency of respiration. Taking the difference of the two equations
(5.2),(5.3), and using the above approximation for the phase responsive-
ness curve F (φ), let

d(φh − θr)

dt
= ωh − ωr +BK sin(φh − θr), (5.4)

where K = 2
3π
KrsaKh. Let φd = φh − θr be the phase difference, then the

dynamics of the RSA locking are:

dφd
dt

= ∆ω +BK sin(φd). (5.5)

It is seen that a time=T map at the frequency of the respiration would be
a sine map. For this first order phase locked loop there is an analytical
solution:

φd(t) = 2·arctan(
tan(1

2
t
√

∆ω2 − (KB)2 + 1
2
φ0 ·

√
∆ω2 − (KB)2)

√
∆ω2 − (KB)2 −KB

∆ω
),

(5.6)

where φ0 =
2 · (arctan(∆ω·tan(φ(0)/2)+KB√

∆ω2B2K2
)

√
∆ω2B2K2

.

Figure 5.2 shows the plot of the vector field of the first order phase
locked loop normalised wrt KB. The equilibrium points occur at the in-
tersection with the φ axis. The intersection with positive slope has isoclines
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Figure 5.2: phase line plot for first order phase locked loop
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away from the point so it is the intersection with negative slope that is sta-
ble. For locking | ∆ω

KB
| < 1 therefore both the pulling range and the hold

range are ±KB radians.

5.3 The Synchronization mechanism in

the Cardiovascular system

It is clear that the respiration affects the heart interval as a function of
the phase difference between the heart interval and the respiration cy-
cle, when one considers the phase responsiveness curve of the sino-atrial
node. This curve expresses the phase of the heart oscillator by sensitiv-
ity of the rate of phase advance to parasympathetic input depending on
the phase of the oscillator. Synchronisation requires that the coupling is
a function of the phase difference between the two oscillators so that the
phase difference is an autonomous dynamical system.

For the model equations (4.1)-(4.13) the phase responsiveness curve
F (φ) is as given by Seidel and Herzel ([31]) and is a curve fitted to the-
oretical data from an ionic model of the sino-atrial node.

Clearly a corresponding mφ1 − nφ2 term has to be generated for the
m

n
locking region. Generally the nonlinearities of a system must generate the
required phase difference terms for a system driven by a single tone. For a
more complicated driving signal such as the respiration in the cardiovas-
cular system there are additional harmonics in the driving signal as well
which explicitly generate higher order phase differences. In the model the
coupling function f(φ, θ) = | sin( θ

2
)|F (φ).

The half sine function f(t) = | sin( π
T
t+ ∆)| has the Fourier series:

f(t) =
2

π
− 4

π
·
(

cos 2( π
T
t+ ∆)

1 · 3
+

cos 4( π
T
t+ ∆)

3 · 5
+

cos 6( π
T
t+ ∆)

5 · 7
+ · · ·

)
,

(5.7)
where T is the respiration period. The phase responsiveness curve F (x) =
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Figure 5.3: heart oscillator phase responsiveness curve
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x1.3(x − 0.45)
(1− x)3

(1− .8)3 + (1− x)3
is multiplied with the perturbation due

to respiration to generate phase difference and sum components which
modulate the heart rate. The phase responsiveness curve can be expressed
in a Fourier series:

F (x) =
a0

2
+

∞∑
n=1

(
an cos(

2nπx

aT
) + bn sin(

2nπx

aT
)

)
, (5.8)

where a gives the heart interval period as a fraction of T . The first five
coefficients are

n an bn

0 0.0289
1 -0.0040 -0.0383
2 -0.0113 0.0016
3 -0.0022 0.0047
4 0.0007 0.0024
5 0.0009 0.0008

Figure 5.3 shows the phase responsiveness curve. Figure 5.4 shows the
respiration influence on the sino-atrial node assuming that the respiration
perturbs the autonomic system influence linearly. Figure 5.5 shows how
the heart interval length varies vs respiration phase for a 5:1 heart rate to
respiration rate ratio. The RSA influence occurs via the parasympathetic
loop so an increase in influence lengthens the heart interval. So the heart
interval length relative to the respiration phase varies over a range of 10%.
This effectively gives the map for the heart interval length as a function of
respiration phase.

The first terms of the series (5.7), (5.8) are multiplied together to show
the components that are present to modulate the heart interval time. When
there is synchronisation a = m

n
, so there are m respiration cycles to n heart
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Figure 5.4: Effect of respiration on heart rate calculated from model data
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Figure 5.5: average value of the respiration influence vs respiration phase



CHAPTER 5. COUPLING IN THE CARDIOVASCULAR SYSTEM 105

cycles, and approximating phase as identical to time:

f(t)F (t) =
1

3π
(3a0 + 6a1cos(

πt

aT
) + 6b1sin(

πt

aT
)− 2a0cos(

πt

T
+ φd),

− 2a1cos(
( 1
a
− 1)πt

T
− φd)− 2b1sin(

( 1
a
− 1)πt

T
− φd),

− 2a1cos(
( 1
a

+ 1)πt

T
+ φd)− 2b1sin(

( 1
a

+ 1)πt

T
+ φd).

(5.9)

There is a constant term, three fundamental terms, two sum terms, and
two difference terms. Dynamically as the frequency of the heart oscillator
changes under the effect of these quantities which are a function of the
phases of the two oscillators, the phase difference φd between the heart in-
terval and the respiration adjusts so that it balances the difference between
the nominal frequency of the heart interval and the respiration as the heart
interval changes to be rationally related to the respiration period.

What is the effect of the different terms in the Fourier series on the
synchronisation? Approximately, if the variability in the coupling effect
does not exceed ±π, then a difference term will be able to synchronise
the oscillators at a ratio m

n
. The remaining oscillating terms of the cou-

pling add to change the length of the heart interval depending on its rel-
ative place in the m respiration cycles. This causes the deviation from
the instantaneous synchronisation criterion of |mθr − nφh| = const. But
the average over the m respiration cycles must be constant as the total
phase over the synchronisation period must lead to m(n heartcycles) =

n(m respirationcycles). Multiplying a system (5.1) by integers m and n re-
spectively, does not change the frequency content of the coupling func-
tions. So synchronisation at a particular ratio m

n
depends on the relative

magnitudes of the terms.
If mf1 = nf2 when there is synchronisation then nT1 = mT2 where T1

and T2 are the periods of the oscillators. Then the synchronisation has a
frequency of mf1 = nf2 so Fourier components may exist at all integer
multiples. Where there is no synchronisation then the signal is quasiperi-
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odic and the spectrum is continuous. This leads to the Fourier transform
of the autocorrelation of the signal (the power spectrum) criteria for syn-
chronisation where the autocorrelation spectrum shows peaks at intervals
corresponding to the frequency of the synchronisation and the oscillator
frequencies are rationally related. This must require a long time period to
resolve the frequency components of the synchronisation. There must also
be spectral peaks at the frequencies of the oscillators.

5.4 RSA Synchronization detection

Two methods to detect synchronisation of heart and respiration were used
in numerical solutions to our model equations (4.1)-(4.13). The first method
detects synchronisation through the phase difference of the oscillators.
The phase difference of the respiration is tracked at each heart interval
time. This corresponds to iterations of a map given by the Poincaré sec-
tion through a torus. Synchronisation is found when there is a repeating
sequence of phases. After the rotation number has stabilised the phase of
respiration is set as a reference value, and the heart intervals calculated
for 100 heart beats, while tracking the respiration phase to detect the rec-
curence of the reference value. Sequences which do not recur within 100
heart beats are not detected.

As the locking zones might be quite narrow for low values of coupling
it is possible that zones might fall between discrete frequency steps as the
respiration frequency is swept across a range. So to detect any synchroni-
sation initially a quantified uncertainty is allowed in detecting the respi-
ration reference phase. At heart beat n the reference phase is detected to
within ±∆. So, for m cycles of respiration the actual respiration frequency
could be with equal probability, fr± fr · ∆

m
cycles/sec where fr is the nom-

inal respiration frequency. So a frequency step of 2 · fr · ∆
m

will detect all
ratios up to m respiration cycles. The uncertainty is a decreasing function
of m so synchronisation ratios with greater than m respiration cycles will
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not be detected if they lie in between frequency steps. Synchronisation
ratios with less than m respiration cycles will be detected first.

Similarly the locking ratio uncertainty equivalent to the rotation num-
ber uncertainty is m

n
± ∆

n
. Once the m and n values are determined they

can be used to compare a calculated rotation number to m
n

.
Plotting the rotation number against frequency for a respiration fre-

quency range shows a Cantor set of locking zones with constant rotation
number. Quasi-periodic behaviour is shown as a region of linear increase
in rotation number against frequency. Noise processes may be present as
well as other dynamical processes which will perturb the synchronising
process. External dynamical processes driving the synchronisation can
be exponential, or periodic, or quasiperiodic. A chaotic process can be
treated as noise. If a driving process is exponential either it will decay
away or synchronisation will be lost as the phase difference increases con-
tinually with the oscillators slipping cycles. Therefore the state variable of
the phase difference might have a periodic component or noise component
which is averaged over time.

A program was written to detect the synchronisation of respiration
with heart interval using the Matlab model. As the synchronisation ratios
present are initially unknown these have to be detected first. To do this the
respiration frequency is stepped with a coarse ∆ across a frequency range
of interest and a synchronisation ratio determined for each frequency step.
A number of heart intervals are allowed as a transient response to the res-
piration frequency step. At the end of each heart interval the phase of the
heart oscillator is zero so the phase difference between the respiration and
the heart is given by the respiration phase. At a heart interval time the
respiration phase is observed to be a reference value and then if synchro-
nisation is present this phase will re-occur n heart intervals and m respi-
ration cycles later. The reference phase value is not affected by the higher
order product terms but the intermediate values of phase do not satisfy
the |mφ − nθ| = const criterion for synchronisation but oscillate back and
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forth around the nominal value given by the criterion. So to determine the
existence of synchronisation the reference respiration phase value is up-
dated each time it is detected to establish a mean value. This also allows
for residual transient response and any noise. The interference of noise
and nonautonomous dynamics means that in some situations detection
would need to be based on stochastic methods.

In the current study it was assumed no nonautonomous signals were
present. An uncertainty of ∆ in the phase detection is allowed for initally
and detection is then refined. This will mean that a significant ratio will be
detected anyway even if there is not any entrainment of the heart interval
after a sufficient number of heart intervals. This establishes a limit on the
number n = 1

∆
of heart intervals it is useful to count up to.

This establishes a locking ratio and the respiration phase at this ratio
to subsequent heart intervals is averaged over a number of cycles to con-
firm the locking ratio and find the mean reference phase. Having found
important synchronisation ratios at a range of respiration frequencies the
exact extent of each locking zone is then established by searching across
two frequency steps for the zone boundaries using an interval bisection of
the frequency interval.

The results of running the heart model showed that the effect of the un-
certainty of ∆ in the initial detection did result in a large number of narrow
apparent locking zones but as the initial results were refined practically all
the locking zones disappeared except for 2 or 3 of the significant zones.
This was a consequence of the locking regions being much less significant
than anticipated. Therefore it was found to be more practical to plot the ro-
tation number over a small range of respiration frequency where the ratio
would be present.

A second method used the autocorrelation of the power spectrum of
the heart interval times to indicate any synchronisation graphically. The
autocorrelation has the effect of integrating harmonically related compo-
nents. The Fourier components of the oscillator signal which are integer
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multiples of the time frame are meaningful. Clearly using a time frame T
which contains an integral number of heart oscillator intervals n is advan-
tageous as this identifies the Fourier components with harmonics of the
heart interval. In calculating an ensemble average it is necessary to use
the same length of time T for each frame of signal. This means that the
number of heart intervals is not exactly integral due to the slight variance
from the average heart interval length of a finite number n of heart inter-
vals. For the synchronisation ratio, as it would be unknown the multiple
of synchronisation periods would often not be related to the time frame
T . This results in a band of n

T
Fourier frequency components around the

sychronisation frequency, because the spectrum has the form of sinx
x

with
zeros at a spacing of 1

T
relative to the centre frequency, with the centre

frequency at the frequency of synchronisation.
Calculating the Fourier components of a sine wave nonsynchronous

with the time interval it is seen there are sum and difference frequency
terms to integrate. i.e. cos((ωm − 2πn

T
)t) + cos((ωm + 2πn

T
)t). The sum term

contributes little as it varies rapidly. It is the the fractional part of the sine
wave in the interval T which contributes to the amplitude of the compo-
nent, as the whole cycles average to zero. For a rapidly varying sine wave
this must be for a correspondingly shorter part of the integration time.
The difference term therefore has a fractional period of the sine wave con-
tributing for a greater part of the integration over the interval T depending
on the closeness of the nonsynchronous sinewave to a n

T
Fourier compo-

nent. It might be assumed that the time T is sufficiently long so that many
cycles of heart interval are included and that the fractional interval length
is relatively small compared to T so that the average frequency of the heart
intervals is close to a Fourier component n

T
. This is also true for the slower

oscillator of the synchronising pair, in this case the respiration. For an m
n

ratio the period of the synchronisation is mTr = nTh and this could be a
significant fraction of T . It is this period that is fundamental in the fre-
quency spectrum and multiples of this frequency appear at the Fourier
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components n
T

.
For quasiperiodic behaviour there is no periodicity in the time frame

T and 1
T

is the fundamental component. So qualitatively the spectrum
consists of components at a spacing of 1

T
, which depend in amplitude on

how synchronous the waveform is in the interval T , that is how many
cycles of synchronisation occur within the time interval T or none at all
for quasiperiodic waveforms. At multiples of the frequency of the syn-
chronisation (mTr = nTh), there is a peak at n

nTh
which is the average

frequency of the heart interval, and the respiration components are at in-
teger multiples of m

mTr
. The effect of quasiperiodic behaviour is that m,n

change suddenly from being relatively small to relatively large or infinite
as the quasi-periodicity is indistingushable from a period of synchronisa-
tion larger than T , and the periodicity at the synchronisation frequency
in the signal is suddenly lost. The period of the signal is now T so the
synchronising effect on the heart intervals of the respiration now appears
in all 1

T
components. The components of 1

T
are more spread out around

the multiples of the two oscillator frequencies, giving an autocorrelation
power spectrum that is broadened around its main peak at 1

Th
also. This

is apparent in the baseband where the single component at the synchroni-
sation frequency when the respiration and heart interval are synchronous
becomes many 1

T
components when the respiration is not synchronous. In

a nonlinear system where there are Arnold tongues the oscillators remain
locked and synchronised as the respiration frequency changes, so the mag-
nitude of the 1

T
components also remains fixed, until the boundary of the

Arnold tongue is crossed when there is a sudden jump in the magnitude
of the 1

T
components, as the rotation number also changes with a step.

The figures (5.6)-(5.9) show the result of power frequency spectrum
analysis of heart interval data generated by the Matlab model. They do
bear out the reasoning of fundamental Fourier components appearing for
quasiperiodic behaviour. The graphs are calculated from a time inter-
val T of 1024 times the average heart interval length for 33 x 1024 heart
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Figure 5.6: autocorrelation power for 5:1 ratio
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Figure 5.7: a rotation number slightly greater than 5:1
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Figure 5.8: quasiperiodic behaviour



CHAPTER 5. COUPLING IN THE CARDIOVASCULAR SYSTEM 114

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−8

−6

−4

−2

0

2

4

6

8

10

12

heart interval power spectrum
rot no=4.5 fstep=0.001031 Hz, kprsa=0.2, ksrsa=0.2

resp freq=0.2346 time interval=32008.9859secs  24−May−2007

autocorrelation power spectrum(Hz)

au
to

co
rre

la
tio

n 
po

w
er

 d
B

Figure 5.9: locking ratio 9:2
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intervals. The total time length of the data is printed on the graphs. This
gives an ensemble of about 32 intervals over which the frequency data is
averaged. 1024 frequency points are taken which means that the highest
frequency is 1 step less than the average heart interval frequency, the car-
rier component. The average interval frequency for each time interval T
must vary statistically, according to the heart interval statistics.

Figures (5.6) and (5.7) show a locking ratio of 5:1 and just outside this
ratio with a rotation number of 5.0001 respectively. The most distinctive
feature is the increase in fundamental 1

T
components for figure (5.7). The

level increases by about 3dB for a .0001 change in the rotation number.
Another feature, not expected, are low levels of narrow band noise around
2x the respiration frequency. These are also sensitive to the locking zone.
These are not readily explicable and seem to relate to dynamical processes
occuring perhaps in the context of a system resonance. It is noted that al-
though the RSA coupling coefficient is 2x the nominal physiological value,
coupling is relatively weak and the rotation numbers still a little unstable
at this coupling, as seen in section (5.5). The fundamental respiration com-
ponents, also the synchronisation frequency at a 5:1 locking ratio, are ap-
parent at slightly greater than .2Hz as the heart interval frequency is a little
more than 1Hz. Figure (5.8) clearly shows quasiperiodic behaviour. The
level of the fundamental 1

T
components is elevated throughout the spec-

trum. Other components result from the spectrums of the carrier and the
respiration modulation no longer being integral multiples. Figure (5.9)
shows the 9:2 ratio. In this case the fundamental 1

T
components are at a

lower level as expected and also there exist 1
2
x respiration sub harmonic

frequency components at the synchronisation frequency.
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5.5 RSA locking regions of the Cardiovascular

system

The coupling of the respiration to the heart oscillator through RSA was
studied to find its significance in the cardiovasular system. To detect lock-
ing zones the respiration frequency was swept across a respiration fre-
quency range containing a significant synchronisation ratio. The RSA cou-
pling has proved to be quite weak so only a narrow range of frequencies
was needed to show an entire locking region.

The plots were made for a number of significant ratios with normal
physiological parameters and a range of coupling coefficients for the parasym-
pathetic and sympathetic loops. The effect of the RSA coupling is seen
to be quite weak. The response of the peripheral resistance to pressure
changes and the contractility variation significantly degrade the locking
regions as it was found that the locking regions were an order of mag-
nitude greater with constant peripheral resistance and contractility. At a
normal coupling coefficient krsa = .1 it can be seen that the locking region
is not clearly defined. Figure 5.10 shows the variation in rotation number
as the number of heart intervals increases. This is caused by the heart in-
terval changing within the respiration cycle. Without synchronisation of
the heart interval and the respiration a number of heart intervals are re-
quired to determine the rotation number. The variance of the respiration
phase at each heart interval add, as it is assumed not to be correlated, so
the rotation number is converging at a rate 1√

N
. This is the case for noise or

if the frequencies are incommensurate. If the frequencies are synchronised
then the harmonically related jitter is also periodic at q respiration cycles
for a p

q
synchronisation and the rotation number is precise at each q cycles

of respiration.
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ratio
3:1 4:1 5:1 6:1 7:1

RSA .1 .0009 .0003 .0002 .0001 .00005
.2 .0016 .0006 .00025 .0002 .0001
.3 .0019 .0006 .0005 .0004 .0003
.4 .0034 .00185 .0016 .0016 .0008
.5 .0204 .0127 .0100 .0069 .0058

Table 5.1: Locking zone width, in respiration frequency (Hz)

ratio 3:1 4:1 5:1 6:1 7:1
RSA .1 .3428-.3437 .2573-.2577 .20492-.20615 .1718-.1719 .1476-.1476

.2 .3496-.3512 .2627-.2633 .2105-.21075 .1759-.1761 .1521-.1522

.3 .3574-.3593 .2687-.2693 .2156-.2161 .1818-.1822 .1588-.1591

.4 .3664-.3698 .2766-.2785 .2435-.2451 .1905-.1921 .1674-.1682

.5 .3868-.4072 .2957-.3084 .2413-.2513 .2063-.2132 .1817-.1875

Table 5.2: Locking zone boundaries, in respiration frequency (Hz)

The law k · εx is used to explain the locking region widths where k

is a constant of proportionality and ε is the coupling coefficient (= krsa).
Following are tables of locking ratio data obtained from numerical simu-
lation.

It is seen that the nominal RSA coupling coefficient must have a con-
stant of proportionality to reflect the actual coupling, so this must be in-
cluded in a power law rule, a · (c · ε)x so the constant of proportionality
must also be subject to the power law. The locking zone width is related
to the Farey sequence that the ratio first occurs in and this is given by the
denominator of the locking ratio, so x = n where n is the denominator of
the Farey sequence.

One problem is that due to the frequency response of the system the
actual coupling is higher at higher respiration frequencies. This is due to
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the respiration frequency becoming comparable to the sympathetic time
delay so the peripheral resistance no longer counteracts the RSA. A res-
onance effect could be envisaged. The lower ratios will have higher cou-
pling than indicated by the nominal value. This is shown by the data of the
3:1 ratio as the locking zones increase dramatically at this ratio. A second
departure from the norm is a nonlinear effect which becomes apparent at
a coupling coefficient of >.4. In this case the RSA coupling is dominating
the baroreflex feedback and the heart oscillator is being driven in an open
loop fashion.

Using Maple the data was first fitted to k · εn for each locking zone 3-7
using the .1-.4 range of coupling coefficients.

Coefficient of linear fit to εn

n 3 4 5 6 7
k .05779 .07354 .15948 .39613 .50419

The residual mean square is of order 10−8 in each case. This data is
fitted to the law a·bn where n is the rotation number. This gives a = .013783

and b = 1.6856, with the residual mean square=.0032.
The exercise is repeated without the 3:1 ratio or the .4 coupling, with

the following results.

Coefficient of linear fit to εn

n 4 5 6 7
k .08580 .21590 .56859 1.39383

The residual mean square is approximately the same, of order 10−8.
Fitting to the law a · bn gives a = .0023274 and b = 2.4937, with the residual
mean square=.0000866. So the nonlinear and frequency response effects
are affecting the Arnold tongues considerably.



CHAPTER 5. COUPLING IN THE CARDIOVASCULAR SYSTEM 123

5.6 Dynamics of RSA phase locking

5.6.1 Step response of heart system

A step function was used as input for the RSA of the complete heart model.
Rather than coupling a half sine wave to model the influence of respira-
tion a Heaviside function was used. The system variables were recorded
before and after the step. Heart interval length, diastolic pressure, and
sympathetic transmitter concentration are plotted in figures 5.14-5.16.

This shows the effect of the RSA and the parasympathetic loop and
sympathetic loops on the response of the heart oscillator. Inspection of
the model equations (4.1)-(4.7) shows that the sympathetic RSA coupling
counteracts the parasympathetic RSA coupling due to the RSA being mod-
elled as centrally coupled, although the parasympathetic and sympathetic
loops have the same effect in controlling heart interval length. In figure
5.14 it is seen that the sympathetic RSA coupling causes the heart inter-
val time to decrease while the parasympathetic RSA coupling is causing
it to increase. This shows the much higher gain of the sympathetic loop
is controlling the heart interval time. At the same time the effect of the
sympathetic baroreflex loop and the sympathetic control of the peripheral
resistance is to counteract any changes in diastolic pressure. The periph-
eral resistance has the greatest overall effect but a small diastolic pressure
change from the nominal value is still required to counteract the RSA. So
although the initial diastolic pressure change is a large step due to the
parasympathetic coupling it rebounds in the opposite direction due to the
action of the sympathetic loops.

The ringing is a consequence of the high gains in the sympathetic loops
and underdamping as the sharp initial step takes some time to decay away.
It is seen that the heart oscillator is nonisochronous, as the heart interval
length varies with the diastolic pressure, which is closely related to the
sympathetic transmitter levels and so can be taken to indicate these lev-
els. As a second order system it is underdamped as shown by the ringing
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which has the effect of slowing the return of the heart interval length to
the limit cycle. The two Lyapunov exponents of such a system must be
negative and relatively small. The ringing corresponds to a rotation in the
phase space which the Lyapunov exponents are not able to show.

5.6.2 Phase relationship across locking region

Figures 5.17-5.19 show a plot of the heart interval time in terms of respi-
ration phase and across a range of respiration frequencies. The horizontal
axis is respiration phase, the vertical axis respiration frequency, and the
depth is diastolic pressure. The respiration phase is plotted for about 50
heart intervals at a respiration frequency about a 5 : 1 locking region. It
can be seen where the heart oscillator is synchronised to the respiration
the points map onto each other and there are 5 points along the respira-
tion phase axis. The spacing between the points varies with the respira-
tion phase rather than being equally spaced, due to the direct response of
the heart oscillator to the respiratory influence. Across the respiration fre-
quency the points change in phase as the phase difference required to hold
the heart oscillator in synchronism changes. Where the oscillators are not
synchronised the points trail in a line as the phase of the oscillators slip
with respect to the other. More points would give a better illustration of
this. The diastolic pressure is thought to be a variable that expresses the
most about the state of the heart system after the heart interval as it has
the most effect on the sympathetic transmitter concentrations.

5.6.3 Maps of the cardiovascular system

Figure 5.20 shows the effect of the RSA on the return time of the heart
interval. The tn+1 time depends on whether tn is on the rising or falling
slope of the respiration. A 2 dimensional embedding was also plotted in
3D but this revealed no new features.
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Figure 5.17: A view of a 3d plot of respiration frequency vs heart interval
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Figure 5.21 shows the dependence of the heart interval length on the
respiration phase at the start of the interval.

Figure 5.22 shows the heart interval map in terms of respiration phase
Therefore the effect of the respiration phase on the heart interval return
time is shown graphically.
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Figure 5.22: heart interval in terms of respiration phase, the RSA coupling
is 2x nominal value



Chapter 6

Conclusions

The purpose of the study was to investigate coupling in the human cardio-
vascular system. Mathematical models of oscillators were considered and
the abstract mathematical representation of oscillating systems. Math-
ematical techniques for analysing oscillators were elaborated including
how to understand the effects of noise, in particular white noise. Coupling
between oscillators is divided into weak coupling amenable to perturba-
tion methods or strong coupling requiring analytical solution or qualita-
tive abstract models. The coupling can be assymmetric leading to the dy-
namics of the coupling being nonautonomous and disrupted by external
dynamics. The dynamics of oscillator coupling is studied in terms of the
phase difference between pairs of oscillators. Single order coupling dy-
namics are the most simple but any order dynamics are possible. In this
case further state variables in addition to the phase difference lead to all
possible dynamics for the phase difference.

The significant phenomenon of coupled oscillators is that of synchro-
nisation where the frequency of two oscillators adjust to a ratio N

M
at a

fixed phase difference, where N and M are integers. Another possible
dynamical phenonemon produced by oscillator coupling is that of chaos.
Otherwise the frequencies of the oscillators are incommensurate and the
phase difference is said to be quasiperiodic. Synchronisation is defined
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to occur where |Nθ − Mφ| = constant, where θ and φ are the phases of
the oscillators, and M ,N are integers. In practice due to the nature of os-
cillator coupling as the oscillators progress through the M and N cycles
respectively the phase difference c is able to vary so that if it exceeds ±π
then the oscillators have lost synchronisation. It is seen that this is a result
of the restriction of the domain to the interval [0, 2π], so that if the phase
difference φd evolves outside the range c±π then as the point c− (π+ ε) is
identical to the point c+(π−ε) an identical trajectory evolves in a different
cycle, whereas if φd remains within c ± π the trajectory evolves in the one
cycle of phase difference so that the oscillators remain synchronised.

Another useful quantity is the rotation number which is the ratio of the
phase advance of the oscillators in the limit ρ = 1

2π
limN→∞

1
N

ΣN
n=0(θn+1 −

θn) where the phase is measured in terms of cycles of the coupled oscilla-
tor.

Maps are used to study the dynamics of coupled oscillators. Forced
oscillators have been extensively studied at least for weak coupling and
they lead naturally to a 1D map as the driven oscillator phase is strobed by
the fixed frequency of the forcing oscillator. The sine map φn+1 = φn + τ +

b sin(2πφn) is often used as a prototype map for the qualitative behaviour
of such systems. The sine map is seen to exhibit locking zones. A 1D
map is particulary useful applied to the phase model of two coupled 1D
oscillators. Adding a dimension gives a 3D system where one oscillator
has higher order dynamics or where the coupling is a two dimensional
system. The geometry and mathematics of 2D maps as they pertain to
coupled oscillators has been developed recently [23].

Where the behaviour of particular oscillating systems is needed then
methods to analytically solve such systems are required. Solution often
proceeds by perturbing the solution of a simplified system whose analytic
solution is more easily obtainable. The method of averaging is seen to be a
sound method for finding solutions of oscillating systems as it is based on
the elimination of periodically varying quantities by averaging to obtain
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simplified equations for the important dynamics of a system. Similarly
the method of angle/action variables was seen to be relevant to oscillating
systems as it enables the reformulation of the oscillating system in terms
of the oscillator angles and the interactions between the oscillators, and
such a formulation is then amenable to solution by the method of averag-
ing. Some properties and dynamics of Hamiltonian and non-conservative
systems were remarked upon.

The Melnikov method and its relevance to understanding the effect of
perturbations to homoclinic loops to saddle points on systems containing
such dynamics was explained. That is the detection of chaotic regions of
chaotic trajectories and of detecting synchronisation on periodic cycles.

There is still much work to do to arrive at an understanding of the dy-
namics of strongly coupled nonlinear oscillators. Perez and Glass [18] base
their numerical study on the sine map and arrive at a bifurcation structure
showing a wide range of complex dynamics the origin of which remains
to be explained. Shilnikov et al. [23] goes further to the forced Van der Pol
oscillator under the influence of a saddle point, a 3D system. While the
range of complex dynamics is comparable to the sine map, there are struc-
tural differences in the bifurcations. Shilnikov et al. explain the dynamical
basis of some of the bifurcations. Neither account explains the dynamics
of the dependence of the locking range of the electronic phase locked loop
on initial conditions. The locking region is determined by a saddle node
bifurcation. A phase portrait given by Endo [40] shows where the detun-
ing is above the critical value only one unstable manifold of the saddle
point terminates on the stable fixed point and the other forms a homo-
clinic loop to the saddle point. So in this manner it differs from the driven
Van der Pol oscillator where both unstable manifolds close on the stable
fixed point. It is seen therefore that whereas Arnold tongues are generic
for weak coupling between two oscillators, the bifurcation structure for
strong coupling depends on the system. Some theoretical aspects remain
to be explained and actual dynamical systems exhibited.
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In chapters 4 and 5 the human-cardiovascular system was modelled
mathematically and the behaviour of the model described with particu-
lar attention to oscillator coupling in the system. Firstly some existing
heart models were described, their principles and the cardiovascular sys-
tem phenomena they are based on. A distinction is made between pul-
satile models which model the beat to beat functioning of the cardiovascu-
lar system and non-pulsatile models which do not model the beat to beat
fluctuations of the cardiovascular quantities but their average levels. As
the current study concerns synchronisation of oscillators it is interested in
the phase dynamics of oscillations in the cardiovascular system and uses
a pulsatile model.

The model used is that of Seidel and Herzel [31] who studied bifurca-
tions in the cardiovascular system but not synchronisation due to Respi-
ratory Sinus Arrythmia (RSA). The study started with an implementation
of the differential delay equation model of Seidel and Herzel in Matlab
using the DDE23 differential delay equation solver. To verify the valid-
ity of the implementation some of the results of Seidel and Herzel were
repeated. There was found to be strong qualitative agreement but some
small variation quantitatively such as the exact bifurcation points. This
did not seem to be significant. One interesting phenomenon reproduced
was that of synchronisation between an alternans— arrhythmia of alternat-
ing heart interval length caused by increased parasympathetic loop gain
and oscillations in the heart interval length caused by oscillations in fluid
pressure which develop at low average fluid pressure. This was seen to
involve the same mechanism as RSA synchronisation.

The RSA was studied across a range of respiration frequencies and a
number of levels of coupling. Initially it was sought to map all ratios
by sweeping the respiration frequency and searching at intervals of fre-
quency for locking zones. This was not successful as the locking zones
are quite small and difficult to locate for normal physiological parameters.
Therefore the locking regions were found by estimating their location from
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the nominal respiration frequency and heart rate and plotting the rotation
number across a small interval using small steps of respiration frequency
so that the zones could be located by inspecting the plot. The range of the
plot was then narrowed to uncover the detail of the locking zone.

It was observed that the width of the locking zones increased with
coupling, and decreased with increasing denominator of the ratio. The
mechanism of the frequency (and phase) locking was investigated. This
was found to be due to the response of the parasympathetic loop being
dependent on the phase of the heart interval. The influence of the res-
piration modulates the parasympathetic tone so that this expresses the
phase of the respiration. The parasympathetic tone is multiplied by the
phase effectiveness curve F (φ) which expresses the phase of the heart in-
terval. This produces the phase difference term necessary for phase and
frequency locking and also sum and difference terms at harmonics of the
respiration and heart interval. The net effect of these terms averages out
to zero over cycles of the n cycles of heart interval and m cycles of respi-
ration of the period of synchronisation of a n

m
locking ratio. At most mn

oscillator cycles are required. From the Averaging Theorem the possible
time scale for synchronisation is 1

ε
where ε is the coupling coefficient. But

these higher order terms vary the relative phase of the heart interval over
the respiration cycle and the heart interval time varies wrt the respiration
phase.

Graphs of the heart interval in terms of respiration phase were plotted
over a range of respiration frequencies to show that the heart intervals oc-
cured at fixed phases of the respiration cycle depending on the respiration
frequency while the two oscillators were locked but the relative phases of
the oscillators drifted when they were not locked. Fourier series of the
phase effectiveness curve and the respiration influence were used to anal-
yse these effects. Formally the phase locking of the heart system acts as
a first order phase locked loop. From a phase plane plot the equilibrium
points were seen to result from a tangent bifurcation and the width of the
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locking region can be determined from the loop gain.
The main result of the study is the smallness of the locking zones for

normal physiological parameters. The RSA locking zones occupy only a
small measure of the respiration frequency range as predicted by McGuin-
ness et al. [26]. So it is difficult to locate minor ratios in large intervals of
respiration frequency to exclude quasiperiodic behaviour. The heart sys-
tem itself also affects the width of the Arnold tongues which can be ex-
plained in terms of the model. As the respiratory influence changes the
fluid pressure it is counteracted by the action of the peripheral system
controlling the peripheral resistance to restore the fluid pressure to its nor-
mal level and the peripheral resistance has the greatest effect on the fluid
pressure. It was found that with fixed peripheral resistance the width of
the locking zones was about 5x greater. In this situation the respiratory
influence is able to affect the sympathetic loops control of fluid pressure
through heart interval length. Also the locking zones are dominated by the
sympathetic loop gain as despite the counteracting effect of the parasym-
pathetic loop they were .5x as wide with the sympathetic loop disabled.
The effect of medical procedures on the cardiovascular system parameters
could therefore well have a significant effect on RSA and this would need
to be studied further in this case. The quantitative effect of cardiovascular
coupling (CVC) on synchronisation needs to be modelled to determine its
significance as this is another explanation for the physiological effect.
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Appendix A

Physiology of the Cardiovascular
System

The cardiovascular and respiratory systems are two examples of biologi-
cal systems controlled by oscillators. These systems are coupled both cen-
trally through nerve connections and mechanically through the heart and
the lungs both being located in the chest cavity. The heart is controlled by
the sino-atrial node, a small area of specialized muscle tissue on the out-
side of the heart at the top. The sino-atrial node autonomously generates
the electrical impulses that trigger the periodic contractions of the heart
muscle.

Respiration is centrally controlled by the medulla, a part of the brain
stem. Three distinct groups of neurons in the medulla interact to operate
the mechanism of breathing. The dorsal respiratory group controls in-
spiration. This centre spontaneously commences to generate the nervous
activity which drives the diaphragm to contract and inflate the lungs. This
is a steadily increasing rate of electrical impulses which are conducted by
the phrenic nerve to the diaphragm. The depth of inspiration of the lungs
is in direct response to the increasing activity of the dorsal group. Subse-
quently the pneumotaxic group quenches the activity of the dorsal group
and expiration occurs through the elasticity of the lung tissue and muscle

146



CHAPTER 4. CARDIOVASCULAR SYSTEM PHYSIOLOGY 147

tissue. One nervous input which provokes the pneumotaxic group to act
is from stretch receptors in the lungs which indicate the depth of the respi-
ration to prevent tissue damage from overinflation. Other nervous inputs
signal the level of CO2 and O2 in the blood. A third region of neurons the
ventral group is usually dormant when the body is at rest but becomes ac-
tive to increase breathing rate when CO2 and O2 ventilation requirements
increase, acting both during the inspirational time to increase inspiration
depth and decrease inspiration time and also during the expirational pe-
riod, speeding expiration by driving muscle tissue to compress the chess
cavity rather than relying on tissue elasticity.

The working of the heart pumps blood around the body through the
arteries, capillaries, and veins, and thereby transports oxygen to the body
and removes carbon dioxide from the body. For this there are two blood
circuits, the pulmonary through the lungs which absorbs O2 from the air
in the lungs and releases CO2 from the blood to the air in the lungs, and
the systemic circuit which transports blood around the body to the other
organs and muscles. The pressure of the blood in the arteries built up by
the beating of the heart causes it to flow through the capillaries, at a rate
determined by the dilation of the capillaries, to the veins which return the
blood to the heart. One half of the heart receives venous blood from the
body and pumps it through the pulmonary artery to the lungs to be reoxy-
genated. Oxygen rich blood from the lungs is carried by the pulmonary
vein back to the heart to be pumped around the body. The contraction of
the heart muscle forces the blood into the aorta, the main artery leading
from the heart to the body, which expands to contain the blood. The elastic
tension of the aorta maintains the pressure that is necessary for the blood
to flow around the body. The pressure differential between the arteries
and the veins maintains the flow through the capillaries. Immediately af-
ter a heart beat the pressure in the aorta is at a peak. A network of arteries
transports the blood to different parts of the body where it flows through
the capillaries and O2 and CO2 from body tissue are exchanged. A signif-
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icant division of the systemic circulation is between the brain and the rest
of the body due to the importance of the brain and its large oxygen con-
sumption. The rate of flow of blood through the capillaries is controlled
by their dilation and contraction acting under nervous influence. The elas-
ticity of the aorta and the resistance of the capillaries to blood flow lead to
the Windkessel model for blood pressure in the arteries. The resistance
of the capilleries to blood flow is denoted as R. This is not a constant but
varies according to the workings of the body. So ∆P = F.R, where ∆P

is the difference between the aortic pressure and the venous pressure and
F is the blood flow in units of volume per second. This rule is analogous
to Ohm’s law in electronics. Therefore if the tension of the aorta can be
compared to the voltage on a capacitor where the volume of blood is anal-
ogous to the electronic charge then dP

dt
= F

C
, and C is the ratio of units of

volume of blood to units of tension of the aorta. Therefore dP
dt

= ∆P
RC

and the
change in pressure in between heartbeats is proportional to the aortic pres-
sure minus the venous pressure, with a time constant of RC. The pressure
at the instant before the heart beat is known as the diastolic pressure and
the peak pressure at the instant after the heart beat as the systolic pressure.
The response of the artery wall to blood pressure is termed its compliance.
This is the change in volume of an artery to a change in blood pressure. So
Ca = dVa

dPa
. Therefore a heart stroke of volume Vv changes the pressure in

the artery by ∆P = Vv

Ca
. The aorta and pulmonary arteries are physically

different due to their different functions in the circulatory system. The
aorta wall is thick and muscular so that it can exert a high pressure on the
blood and force it around the systemic circuit. It is also long to conduct
the blood to the organs of the body so this gives it a greater volume. The
aorta compliance is therefore relatively low to maintain pressure on the
blood it contains. The pulmonary artery is quite short, about 4cm before it
branches to each lung, as it only has to carry blood to the nearby lungs. It
has thin walls and contains the volume of blood from the heart by expand-
ing more. So it exerts a lower pressure on the blood than the aorta but it
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only has to force the blood through the lungs. Its compliance is about 19
times that of the aorta.

The heart beats autonomously under the control of the sino-atrial node.
This node is a type of muscle tissue that is adapted to contract sponta-
neously and generates the electrical impulse that is conducted throughout
the heart and initiates a heart muscle contraction. The bio-chemical pro-
cess occurs through the flow of ions through the cell membrane. Three
types of ions are involved, calcium, sodium, and potassium. (Ca++, Na+

and K+). A momentary high Ca++ inflow causes the electrical impulse,
an outflow of K+ causes the -ve polarisation of the cell membrane, and a
steady inflow of Na+ causes the subsequent depolarisation. Channels in
the cell membrane open and close to transport the ions into or out of the
cell. The voltage across the cell membrane is polarized to about -60mV
with respect to the outside of the cell and then slowly starts to increase. At
a threshold level there is a discharge which sharply depolarizes the muscle
cell causing the voltage pulse that triggers the heart beat.

The two separate pumps of the heart, one for the pulmonary circuit
and one for the systemic circuit, act in the same way. They each have two
chambers, the atrium and the ventricle. The atrium fills with venous blood
during the time between beats when the heart is at rest. Thus the venous
pressure does not increase, as the blood flows from the capillaries as the
atrium inflates to contain the extra volume. It then operates to pump the
blood through a valve into the ventricle which immediately operates to
pump the blood into the pulmonary artery or aorta through another valve.
It can be seen that the volumes of blood pumped by each side of the heart
must be the same otherwise pressure would build up in either of the aorta
or pulmonary artery due to increasing volume. The contractility of the
heart refers to its tendency to contract more strongly according to the ini-
tial extension of muscle fibres, known as myocardial fibres, in the ventri-
cle. A stronger contraction then equates to a higher artery pressure at the
end of the contraction. So a longer interval between beats fills the atrium
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Figure A.2: ion flows of the sino-atrial node, iCa = Ca++, iK = K+, if =

Na+, with corresponding cell membrane potential
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more completely and the increased blood volume extends the myocardial
fibres which results in a stronger contraction. A mechanism known as
the Frank-Starling mechanism maintains the equality of pressure between
the systemic and pulmonary systems independent of heart rate, equalis-
ing the blood flows in each circuit. An amount of blood is present in the
ventricle at the end of a contraction. Whatever the blood flow from the
atrium due to the venous pressure and the length of the heart interval, if
the strength of the contraction expels more blood from the ventricle than
has been pumped into the ventricle then the residual blood in the ven-
tricle falls and subsequently the ventricle is filled to a lower level so that
the strength of the contraction falls to adjust to the inflow from the atrium
or vice-versa. If the artery pressure builds up then the residual blood in
the ventricle also increases and the contraction strength increases until the
volume of blood from the atrium is expelled into the aorta and similarly if
the artery pressure falls. So an increase in output at one ventricle will flow
through to increased venous inflow at the otherside of the heart and the
second ventricle will rise to match the first.

Although the heart can beat autonomously controlled by the sino-atrial
node at a rate of about 60-70 beats per minute a central control system
modifies this rate in accordance with varying demands of the body. Thus
blood pressure and CO2 and O2 levels alter the heart rate. A centre of neu-
rons in the medulla (part of the brain stem) controls heart rate through the
parasympathetic and sympathetic nervous systems. Afferent nerve sig-
nals from a variety and number of receptors in the vascular system travel
to the medulla and the medulla transmits efferent nerve signals to the
heart to change its rate. The parasympathetic signals are conducted by
the vagal nerve from the medulla to the sino-atrial node. In the nervous
system the parasympathetic nervous system accentuates the sympathetic
nervous system in some functions. The paraysmpathetic and sympathetic
nervous systems are distingushed by the type of neuro-transmitter that is
released in response to nerve signals at the nerve endings where they con-
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tact the organ affected. The parasympathetic system uses acetylcholine
as its neurotransmitter and the sympathetic system uses epinehrine also
known as adrenaline. These neurotransmitters have distinct effects on
the flow of ions through the cell membrane of muscle tissue. The effect
of parasympathetic activity is to slow the heart down and so the acetyl-
choline mainly increases the inflow of K+ resulting in a higher magni-
tude polarization which takes longer to discharge and so the heart rate
is slowed. The flows of Ca++ and Na+ are also decreased slightly. The
effect of sympathetic activity is to increase the heart rate as the epinehrine
increases the flow of all ions but K+ less so resulting in a quicker depolar-
ization and faster heart rate. A significant difference between the two neu-
rotransmitters is their response time. Acetylcholine is released in a delay
of about .3 seconds so has an immediate effect on the heart rate. It is also
metabolised straight away so does not build up in the tissue of the sino-
atrial node. Epinehrine is released only slowly and in smaller amounts,
so has to be released over a period of time to have any effect and then it
is recovered by the body even more slowly so its action is longer lasting.
The delay for the release of epinehrine is about 3 seconds. The effect of the
epinehrine dynamics is like a low pass filter on the sympathetic nervous
activity. In experimentation different anesthetics can be used to selectively
block the parasympathetic or sympathetic actions to observe the effect on
the cardiovascular system. Atropine can be used to block acetylcholine
and Propranolol to block epinehrine. It is seen that the heart beat interval
time varies according to the effects of control systems in the body with dif-
ferent response times. This is known as heart rate variability. The effect of
these different systems is to give the heart rate variability a characteristic 1

f

noise power spectrum. Alternatively the variability could be a centralised
effect of the autonomic nervous system. The effect of the parasympathetic
and sympathetic control loops can be seen to cause peaks in the power
spectrum. Energy in the .04 Hz-.15 Hz band is associated with the sym-
pathetic control loop and energy in the .15 Hz-.5 Hz band with parasymp-
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thetic conrol. A sharp peak at .2Hz is associated with respiration. Lower
frequencies are the result of other systems of the body such as hormonal
and endocrine systems. The power spectrum can be used diagnostically
and these quantities designated as lf energy and, hf energy indicate the ac-
tivity or tone of the autonomic system and their ratio is also significant. A
lower heart rate variability or increased sympathetic activity is associated
with the occurence of pathological cardiac arrhythmia.([41])

To control blood pressure special baroreceptor cells in the arteries sense
the blood pressure and output signals to the nervous system. Barorecep-
tor cells are located in the aorta and also in the branching of the carotid
artery in the neck leading to the brain. This shows the importance of
blood flow to the brain. Ordinarily there would not be much difference
in the blood pressure at the two locations as they are directly connected
but should the blood pressure in the brain drop, more blood is directed
there through the constriction of capillaries in the body blocking blood
flow through the body. The response of the baroreceptors has a character-
istic S-shaped curve. so the nervous output is saturated at high and low
pressure. The level of the pressure is shown by the rate of the electrical
impulses that are conducted along the neurons of the nerve fibre, so for
the parasympathetic nerve, at high pressure the spike rate is at a maxi-
mum and drops to a minimum at low pressure. The sympathetic system
reponse to the baroreceptor is an inverted S-shape so that the spike rate
is at a minimum at high blood pressure. In this way both the parasympa-
thetic and sympathetic nervous systems respond to high blood pressure
by decreasing the heart rate.

Blood pressure is mainly effected by the dilation and contraction of the
capillaries. But it is only the sympathetic system which affects the cap-
illaries. The parasympathetic system is not involved here. So the heart
rate only has an effect on the blood pressure on a beat by beat basis due
to the delay in the sympathetic control loop and the higher gain of the
sympathetic loop. As mentioned blood flow in different parts of the body
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Figure A.3: baroreceptor S curves
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can be controlled separately and the capillaries are dilated through sym-
pathetic control to increase blood flow and decrease blood pressure and
vice versa. The 3 second delay in sympathetic control is illustrated by the
phenomonen of Mayer waves. Mayer waves are oscillatory fluctuations in
blood pressure with a period of about 10 seconds. The 10 second period
is a consequent of the 3 second delay in the sympathetic control loop and
oscillation is caused by the gain of the loop. [29]

The levels of CO2 and O2 in the blood are controlled both through
the ventilation rate and through the rate of blood flow. Chemorecep-
tor cells detect the levels of CO2 and O2 in the blood and signal this to
the neuron centres in the medulla controlling respiration and heart rate.
These chemoreceptor cells are located in the aorta and also the branch-
ing of the carotid artery in the neck. CO2 and O2 levels are detected
by different chemoreceptors. Additionally the dorsal nerve group in the
medulla responsible for inspiration responds directly to CO2 in the blood.
Its metabolic rate increases in direct response to an increase in CO2 in the
blood. Thus the ramp of nervous activity driving the diagphram to con-
tract will increase at a faster rate as the CO2 level increases. The CO2 and
O2 chemoreceptors are not independent. They affect each others response.
This effect is known as the Oxford fan.

At normal CO2 and O2 levels it is the CO2 which control ventilation
and the O2 receptors are relatively ineffective, except at extremes of oxy-
gen pressure. But as the CO2 pressure departs further from its normal
level then the O2 receptors have more effect. A recognised abnormality
in breathing is called Cheyne-Stokes breathing after the physicians who
discovered it. In this condition breathing is periodic rising to a peak of
inspiration depth and then falling possibly to stop momentarily. Two sit-
uations where this occurs are in heart disease and at high altitudes in un-
acclimatised persons. The two cases can be distingushed by the length of
the period of breathing. For heart disease a weak heart results in a slow
blood flow and the delay in the blood reaching the peripheral chemore-
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ceptors in the carotid artery causes an oscillation in breathing of about 60
seconds period. In the case of unacclimatised persons at high altitudes
it is the change in gain of the peripheral chemoreceptors due to the Ox-
ford fan effect which results in a breathing depth oscillation of about 20
seconds period. Physiologically a reduction in O2 pressure in the blood
due to the decrease of O2 pressure in the air at altitude, increases blood
flow and that along with the altitude also reducing blood CO2 pressure
renders the central controller ineffective. The lower CO2 pressure in the
blood accentuates the response of the peripheral controller, which is now
controlling ventilation, to O2, resulting in breathing depth fluctuation and
fluctuating O2 levels. ([42])

There is direct coupling between the two systems of heart rate and res-
piration as a result of the physiology. Respiratory sinus arrhythmia (RSA)
is coupling from respiration to heart rate. Effectively heart rate increases
during inspiration and decreases during expiration. There are two pos-
sible sources, central coupling in the medulla, the more significant, and
mechanical coupling in the chest cavity. The central coupling acts by di-
minishing parasympathetic activity during inspiration so that the heart
rate is allowed to increase to its sinoatrial determined rate or the rate due
to sympathetic activity.

Mechanical coupling occurs due to the increase and decrease in air
pressure in the chest cavity during respiration. During inspiration the
lower air pressure necessary to inflate the lungs also increases the filling of
the atrium of the heart by lower pressure venous blood leading to a greater
stroke volume of the heart and an increase in blood pressure in the aorta.
Apparently this would lead to a decrease in heart rate due to an increase
in parasympathetic activity. However an additional physiological mecha-
nism is at work in the form of stretch receptors in the atrium which affect
the sinoatrial node as the atrium is inflated and in the absence of other
nervous input, speed the heart up. The activity of the stretch receptors
in the atrium counteracts parasympathetic activity affecting the sinoatrial
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node which is in any case diminished by central coupling. For low initial
volumes of blood the heart rate does in fact decrease as paraysmpathetic
activity dominates, but as volume increases further heart rate speeds up
again when the stretch receptors in the atrium take effect.

Coupling from the heart to the respiration is known as cardiovascular
coupling (CVC). This has the effect of causing a new cycle of respiration to
be synchronised to a heartbeat. That is at the end of expiration the next in-
spiration is triggered by a heartbeat. The cause of this is not clear. Perhaps
a new charge of blood from the heart affects the central chemoreceptor.
Clearly an integral number of heart beats occurs in each respiration cy-
cle when there is synchronism. But also the synchronisation might skip a
cycle or cycles so the ratio of heart beats to respiration becomes m : n.
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Figure A.5: heart rate vs blood volume


