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Abstract

Coal pyrolysis is a complex process involving a large number of chemical

reactions. The most accurate and up to date approach to modeling coal

pyrolysis is to adopt the Distributed Activation Energy Model (DAEM) in

which the reactions are assumed to consist of a set of irreversible first-order

reactions that have different activation energies and a constant frequency

factor. The differences in the activation energies have usually been repre-

sented by a Gaussian distribution. This thesis firstly compares the Simple

First Order Reaction Model (SFOR) with the Distributed Activation Energy

Model (DAEM), to explore why the DAEM may be a more appropriate ap-

proach to modeling coal pyrolysis. The second part of the thesis uses the

inverse problem approach together with the smoothing function (iterative

method) to provide an improved estimate of the underlying distribution in

the wide distribution case of the DAEM. The present method significantly

minimizes the error due to differencing and smoothes the chopped off parts

on the underlying distribution curve.
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Chapter 1

Introduction

1.1 Background Information on Coal

Structure

Coal may be described as a black, heterogeneous rock that is friable-to-hard,

of variable vegetable origin with extraneous mineral additions of equally vari-

able composition and quantity [1]. It is formed by the slow decomposition

of vegetation and it originates from two distinct processes [2] about three

hundred million years ago. The first process was the bacterial change in

the vegetable debris before it got deeply buried (diagenesis). The other pro-

cess occurs after this burial, and involves slow chemical changes due to heat

and pressure (metamorphosis). The age of coal is indicated by its carbon

content or rank. Coal is a complex organic polymer consisting of large poly-

cyclic aromatic clusters of several fused rings strung together by assorted

hydrocarbon chains of varying lengths and other hetroatom (O, N, S) link-

ages [3]. There have been substantial efforts to elucidate the molecular struc-

ture of coal, but the task is exceedingly difficult because of the variety of coal

types, the heterogeneity of a single coal and the complexity of individual coal

constituents [4]. The results of numerous diverse measurements have been

synthesized in attempt to develop a consistent picture. Wender et al. [5]

1



CHAPTER 1. INTRODUCTION 2

proposed a structure for a highly volatile bituminous coal model molecule as

shown in Figure 1.1 below.

Figure 1.1: Proposed structure for a highly volatile bituminous coal model
molecule following Wender et al. [5].

Wender et al. [5] discovered several characteristics of this coal molecule

model. This model molecule is proposed to be part of a larger macromolec-

ular structure and is connected by two linkages to the rest of the coal struc-

ture. The five constituent aromatic hydroaromatic structures of the model

are interconnected by one aromatic ether and four aliphatic bridges. The

distribution of carbon, hydrogen and oxygen atoms among different struc-

tural positions in the model molecule is discussed by Wender et al. [5]. The

molecular structure of coal is also discussed by Van Krevelen [6], Dryden [7]

and Given [8] but much work on describing the molecular structure of coal

remains to be done. This model is certainly suitable for the present discus-

sion of pyrolysis behavior. Details regarding the various functional groups

present in coal have been discussed by Gavalas [9] and Howard [10].
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The organic material in coal is a heterogeneous mixture of organic miner-

als known as macerals. Coal petrographers have identified numerous types of

maceral components by microscopic analysis with reflected and transmitted

light [11]. The precise chemical nature of the macerals is not well established,

but their botanical origins seem to be rather well understood [6]. The various

types of maceral component are often combined into three principal groups:

vitrinite, exinite, and inertinite. The vitrinite is the most abundant of the

three maceral groups, and usually exhibits chemical and physical properties

between those of the other two [7]. The different maceral groups exhibit

markedly different behaviors under pyrolysis conditions [12]. The organic

matter in coal consists primarily of carbon, hydrogen, oxygen, nitrogen and

sulphur, although trace quantities of other elements are found. The elemen-

tal analysis by weight of the organic constituents of different coals shows

anything from 65 to 95% carbon, 2 to 7% hydrogen, up to 25% oxygen, up

to 10% sulphur, and typically 1 to 2% nitrogen [1].

1.2 Pyrolysis

Coal can be pyrolysed by heating the solid in the absence of oxidizing com-

pounds. Heating of coal causes its complex structure to decompose. The

weaker bonds rupture at lower temperatures and the stronger ones at higher

temperatures. On heating, many coals swell and subsequently contract as

they pyrolyze. Internal surface area continually alters in both value and

accessibility, and intrinsic reactivity changes as graphitization proceeds [1].

When coal is heated to above a certain temperature, usually between 400◦C

and 500◦C, chemical reactions occur producing various amounts of gases,

tar, and coke. These reactions in the heating process cause the coal to lose

weight. The tar and gases are usually referred to as volatiles. The relative

amounts of these products and their kinetics of evolution all depend on a

large number of factors, such as the type of coal, the temperature-time his-

tory, the particle size and the total pressure. Thus, previous studies such as
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Chermin and Van Krevelen [13] suggest the following model of three consec-

utive reactions during coal pyrolysis:

i) Coal
k1−→ Metaplast

ii) Metaplast
k2−→ Semi-coke + Primary gas

iii) Semi-coke
k3−→ Coke + Secondary gas

This relatively simple model with the flexibility of three rate constants

(k1, k2, k3) is used to describe the kinetics of the weight loss of coal. However

this model clearly does not relate these reactions to the structure of coal or

any other fundamental chemical processes. The rate constants k1, k2 and k3

must be changed with different coal types and temperatures considered.

1.3 Importance of Coal and Application

It appears to be common knowledge today that petroleum and natural gas

reserves have no longer kept pace with the ever-expanding energy demand in

many nations, and that it will be well into the next century before nuclear

power and solar energy can be expected to bridge the gap. The result is an

urgent need to rely heavily on coal as a major source of energy. Indeed, as an

organic fossil composed mainly of carbon and hydrogen, coal is a commodity

of vast usage potential, not only in terms of its calorific value, but also for

the myriad of useful chemicals that can be derived from it.

Traditionally, coal has failed to compete well with petroleum and natu-

ral gas in the energy market. This is due to solely for the economic factor

of transportation and processing cost. The technology required to produce

gaseous and liquid fuels and raw materials from coal existed decades ago,

but nearly all commercial operations were closed down during the post-war

period when large reserves of petroleum and natural gas were available. The

recent surge in oil and gas prices has stimulated a thriving interest in indus-

trial sectors developing cheaper, cleaner ways of coal utilization. Dozens of
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gasification and liquefaction projects have entered the pilot plant stage, and

many had reached full commercialization by 1980.

Coal has been acknowledged as the principal potential source of fuel for

electrical utilities and a valuable raw material for industrial chemicals. In

the United States, the Geological Survey has estimated the U.S. coal resource

to be about 80% of the total fossil energy reserves in the country [4]. The

energy crises of the seventies and the uncertainties associated with the sup-

plies of petroleum have prompted the rapid development of new conversion

technologies for the utilization of coal for power generation. New technology

has also been developed for its conversion to synthetic gas or liquid fuels.

In developing advanced technologies, three interrelated factors must be kept

in view; technological feasibility, economic viability and environment con-

straints.

Unfortunately, coal contains many impurities like sulfur, nitrogen, sodium,

potassium and other toxic impurities. To avoid environmental pollution, the

emission levels of these contaminants must be kept as low as possible dur-

ing combustion. Emissions must also be limited to the US Environmental

Pollution Agency specified levels [4]. Most recent research on coal pyroly-

sis and kinetic rates is trying to improve the ways in which coal is utilized.

This thesis will assist to improve the use of Distributed Activation Energy

Model (DAEM) for the pyrolysis of coal and especially the use of the inverse

problem in the wide distribution case.

1.4 Review of Previous Simplification

Considerable research on coal pyrolysis has been conducted over the years.

Recent comprehensive reviews are reported predominantly in combustion

and carbonization literature. Also, coal-hydrogen reactions are discussed in

coal gasification and coal liquefaction literature. The more recent research,
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especially that which has focused primarily on kinetic rates, includes Junt-

gen [14], Solomon and Hamblen [15], Solomon et al. [16, 18] and Solomon

and Serio [17]. Several past reviews of pyrolysis are available, however the

best single source is probably Lowry’s [19] compilation of review articles. In

that work Howard [12] reviewed coal pyrolysis reactions (mostly consisting of

information obtained by slow heating techniques), and several other authors

reviewed subjects pertinent to pyrolysis. Jones [20] reviewed a number of

pyrolysis studies but most of his work was done at low heating rates. Py-

rolysis at low heating rates was also critically evaluated by Yellow [21], and

work at high heating rates was summarized by Badzioch [22]. Essenhigh and

Howard [23] reviewed the pyrolysis literature bearing on combustion and ex-

plosion phenomena in coal dusts. With regard to pyrolysis in the presence

of hydrogen, the Institute of Gas Technology [24] published a review of its

extensive coal gasification research. Anthony and Howard [3] reviewed the

fundamental information on pyrolysis and hydrogasification with an empha-

sis on potential use of reaction models in engineering work.

Most recent literature reviews ([3], [10], [14]-[18]) of coal pyrolysis have

identified numerous studies on kinetics and the amounts of total volatile

yield. Some of these studies have addressed the individual volatile species

and measured the kinetics of species evolution. Describing the mathematical

model of coal pyrolysis is often an important part of understanding industrial

processes. Modeling coal pyrolysis is important not only for improvement of

combustion or gasification processes but also for the processes where coal

is a part of the chemical system. Establishing a model for coal pyrolysis is

also relevant to the process of thermal decomposition such as devolatilization.

Howard [10] and Solomon et al. [16] proposed two mathematical models

of coal pyrolysis in their research. They described the two models which are

Single First Order Reaction model (SFOR) and the Distributed Activation

Energy Model (DAEM). From their proposed mathematical models, recent



CHAPTER 1. INTRODUCTION 7

researchers including Niksa and Lau [25], Suuberg [26], Miura and Maki [27]

and McGuinness et al. [28] have discussed the simplification of these models.

Niksa and Lau [25] claimed that holding the SFOR-base rate constant is the

better way to estimate nominal rates for any given thermal history. The

same devolatilization rate will be predicted as in the DAEM at every instant

in the thermal history. By using this approach to explore the relationship

between the DAEM and the SFOR model, the activation energy is fixed.

Niksa and Lau [25] introduce an effective or nominal rate constant < k >

which varies with time. They also derive analytical approximations to the

DAEM for testing linear or exponential temperature ramping. The resulting

rapid variation of the double exponential (DExp) function is approximated

by a piece-wise linear function with three regions. That is, DExp is zero,

DExp is unity, and the last region is in between where it rises linearly from

zero to one. This procedure can make the evaluation of the integral much

easier where the initial distribution is Gaussian. Therefore it provides an

accurate approximation of the full DAEM for all parameters of interest.

Niksa and Lau [25] indicated that this approximate procedure (piece-wise

linear function) provides a more accurate approximation to the full DAEM

for all parameters. This is a refinement of the ideas in Suuberg [26]. Suuberg

used a simple step-function approximation to the double exponential (DExp)

( see also [10, 29, 30]), which jumps from zero to one at an energy that varies

with time. The case of a Gaussian initial distribution in the step-function

gives an error function approximation to the DAEM. This error function will

be used later in this thesis as a foundation function for the development of

the inverse problem in the wide distribution case. Niksa and Lau [25] note

that some shortcomings remain in using their approximation at lower tem-

peratures, particularly with the numerical solution of the equations for the

position of the piece-wise linear approximation.



CHAPTER 1. INTRODUCTION 8

Miura and Maki [27] (see also [31], [32]) consider the inverse problem and

present a method to estimate both f(E) and k0 from three sets of experiments

performed at different heating profiles without assuming any functional forms

for f(E) and k0. They summarize a procedure of four steps for how to es-

timate f(E) and k0. For a linearly-ramping temperature, they approximate

DExp by a step-function because DExp changes rather steeply with E at a

given temperature. Miura and Maki [27] found the rate of change of volatility

with time is proportional to the distribution of volatiles (f). They used this

relationship to obtain f from the experimental measurements. McGuinness

et al. [28] present a more accurate approximation to the double exponential

(DExp), which is used in the two cases of narrow and wide distribution. A

careful analysis in these two regimes is given based upon asymptotic expan-

sions, leading to systematic methods for rapidly finding accurate approxima-

tions. The work in this thesis will build on these mathematical models.

This thesis is composed of two parts. The first compares the Simple First

Order Reaction Model (SFOR) and Distributed Activation Energy Model

(DAEM) in order to understand why the DAEM may be a more appropriate

approach to modeling coal pyrolysis. The second part will focus on how to

solve the inverse problem of finding the distribution based on the DAEM

when the relative width of the initial distribution is much wider than the

width of the double exponential term (DExp) of volatiles.



Chapter 2

Mathematical Models of Coal

Pyrolysis

2.1 Existing Models

Mathematical models have been proposed by Howard [10], Solomon and

Hamblen [15]. A model for pyrolysis using a proposed kinetic expression can

almost always be applied to fit data in some limited regime of temperature

and heating rate. These models suggest that for a single block of coal, the

time-evolution of its constituent parts should be considered, averaged over

the whole block. This approach ignores spatial variation of temperature and

is appropriate for transient weight loss of pulverized coal and can be used as

a component of a more complicated traveling wave model. The development

here follows Howard’s [10] and Solomon and Hamblen’s [15] approaches. As

the process of thermal decomposition of coal evolves, i denotes one particular

reaction and coal’s constituents are numbered with i= 1....n. The thermal

decomposition of coal is assumed to comprise large numbers of independent

chemical reactions. Large fragments of the coal molecule are present due to

depolymerization and the rupture of various bonds within the coal molecule.

The strength of chemical bonds depends on the coal type and rank, related

to the occurrence of different reactions at various temperature intervals. Vi

9
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is the released mass fraction of volatiles corresponding to the ith constituent.

Thus V ∗
i is the initial mass of constituent i in the coal. The contribution to

evolution by a particular reaction is described by a first order equation, so

that the rate of pyrolysis is

dVi

dt
= ki(V

*
i − Vi). (2.1)

The proportionality constant ki is the rate coefficient that is typically asso-

ciated with temperature by an equation which is Arrhenius in form,

ki = k0i exp

( −Ei

RT (t)

)
(2.2)

where k0i is the pre-exponential or frequency factor in sec−1, Ei is the appar-

ent activation energy for constituent i in J/mol, R is the ideal gas constant

in (J/mol kelvins) and T (t) is the absolute temperature of the coal parti-

cle in Kelvins. Values of k0i, Ei, and V *
i are estimated from matching with

experimental data. Anthony and Howard [3] summarized a collection of ex-

perimental rate constant (ki) values, and the associated rate parameters and

coal properties.

The solution to Equation (2.1) may be written in terms of the mass of

volatiles remaining to be released at time t as

V ∗
i − Vi

V ∗
i

= exp

(
−

∫ t

0

ki(u)du

)
. (2.3)

Then the mass of the volatiles released for one sample reaction is

Vi = V ∗
i − V ∗

i exp

(
−

∫ t

0

ki(u)du

)
. (2.4)

The model developed by Howard [10] and Solomon and Hamblen [15] has

been further refined and developed specifically for SFOR and DAEM models

which are briefly described in the following.
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2.2 Single First Order Reaction Model

(SFOR)

The simplest method for the description of the kinetics of the pyrolysis re-

actions is to use a first order reaction for overall weight loss of the volatile

and for individual species evolution. The development of the mathematical

models above shows that if i=1 then the model is referred to as the Single

First-Order Reaction Model (SFOR). Thus, the rate of pyrolysis is expressed

as:

dV

dt
= k(V ∗ − V ). (2.5)

The rate constant (k) in Equation (2.5) is typically correlated with temper-

ature by an Arrhenius expression:

k = k0 exp

(−E

RT

)
. (2.6)

Many authors have approximated the overall process of the complex decom-

position and transport phenomena involved in coal pyrolysis. They believed

it to be a first order type of decomposition, occurring uniformly throughout

the particle. Howard and Essenhigh [33] explained their results by assuming

that pyrolysis is a first order reaction with respect to the amount of un-

decomposed volatile matter. They assume a constant rate which is of the

Arrhenius type. Badzioch and Hawksley[34], and Pitt [30] among others,

have also shown that the thermal decomposition of coal occurs via first order

reactions. The SFOR model is the approach based on holding the activation

energy fixed and defining k in Equation (2.6) as the rate constant which

varies with time, t →∞.
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2.3 Distributed Activation Energy Model

(DAEM)

The DAEM is one of the multi-reaction models used widely to clarify the

thermal decomposition processes of coal pyrolysis. Pitt [30] assumed that

the evolution of a certain substance involves an infinite number of indepen-

dent chemical reactions by considering a continuous distribution of reactants.

That is, many irreversible first-order parallel reactions that have different rate

parameters occur simultaneously. In the DAEM model, the dependence on i

is replaced by a continuous dependence on activation energy E so the values

of k0i, Ei and V ∗
i cannot be predicted earlier and must be estimated from

the experimental data.

DAEM has been applied to represent the change in overall conversion

and the change in the yield of a given component during the coal pyrolysis.

The increase in the number of reactions required can cause a problem. This

problem is simplified by assuming that the ki’s differ only in activation energy

so a common assumption is then to take all the pre-exponential factors,

k0i, to have the same value k0 for all constituents i. Then the number of

reactions is large enough to permit the distribution of energy to be expressed

as a distribution function f(E), where f(E) is the distribution of activation

energies, representing the differences in the activation energies of many first-

order irreversible reactions. Then f(E)dE represents the fraction of the

potential volatile loss V ∗ that has an activation energy between E and E+dE.

Thus, the total amount of volatile material available for release from the coal

can be written as:

dV ∗ = V ∗f(E)dE (2.7)

with the distribution function f(E) normalized to satisfy

∫ ∞

0

f(E)dE = 1. (2.8)
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The solution then becomes

V ∗ − V

V ∗ =

∫ ∞

0

exp

(
−

∫ t

0

k0(E)e−E/(RT (u))du

)
f(E)dE. (2.9)

The SFOR and DAEM models are discussed in relation to the kinetic ex-

pressions for the pyrolysis reaction. These two models are compared in the

next section.

2.4 Comparison of the Two Models

This section compares the two models of coal pyrolysis. From this com-

parison, strong evidence is created to justify which of the models is most

appropriate for modeling coal pyrolysis. The SFOR model is followed in

Howard [10] and Saxena’s [4] work. The values of V ∗, E and k0 are de-

termined experimentally. Details of the different experimental methods are

discussed by Anthony and Howard [3]. The coal is heated so that temper-

ature increases at a constant rate dT
dt

= constant= m where m > 0. Then

integrate this uniform heating rate with Equations (2.5) and (2.6) in the

SFOR model as follows:

∫ V

0

dV

V ∗ − V
=

∫ T

0

k0

m
exp(

−E

RT
)dT. (2.10)

Since E/RT À 1 is a good approximation for pyrolysis reactions, the solution

to Equation (2.10) can be approximated as

V ∗ − V

V ∗ = exp

(−k0RT 2

mE
exp(

−E

RT
)

)
. (2.11)

This approximation applies to the solutions in Equations (2.3) and (2.4).

The distribution curve f(E) is generally assumed to be a Gaussian distri-

bution in the DAEM and Equation (2.9). Within this distribution, the mean
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activation energy E0 and standard deviation σ are both determined by the

experimental data. Thus

f(E) =
1

σ
√

2π
exp

−(E − E0)
2

2σ2
. (2.12)

Equations (2.9) and (2.12) provide the solution for the DAEM model as

follows:

V ∗ − V

V ∗ =
1

σ
√

2π

∫ ∞

0

exp

[
−k0

∫ t

0

exp

(−E

RT

)
dt− (E − E0)

2

2σ2

]
dE. (2.13)

Equation (2.13) permits correlation of coal decomposition data using four

parameters (V ∗, E0, σ, k0) and is applicable to a non isothermal process [35]

where the distribution is Gaussian.

Comparing the two models, three parameters, k0, E0, and σ are required

in addition to V ∗ for the DAEM model. However for the SFOR model, only

two parameters, frequency factor and activation energy are required for anal-

ysis. In other word DAEM requires only one additional parameter, σ, from

SFOR model but it is applicable to the description of thermal decomposi-

tion processes with different heating rates [10, 18]. Niksa and Lau [25] have

explored the relationship between the DAEM and the SFOR models with

an approach based on holding the activation energy fixed and defining an

effective or nominal rate constant < k >, which varies with time as

dV

dt
=< k > (V ∗ − V ). (2.14)

The nominal rates for any given thermal history can be estimated from the

SFOR-based rate constant that predicts the same devolatilization rate as the

DAEM at every instant in the thermal history. Niksa and Lau [25] note that

there is a large variation in < k > with time or temperature, and also a more

modest variation with coal rank. They also derive analytical approximations

to the DAEM for temperatures undergoing linear or exponential ramping.
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Their approach is based on exploiting the rapid changes occurring in the

double exponential (DExp). In Equation (2.9), the integrand consists of the

product of the double exponential term

DExp ≡ exp

(
−

∫ t

0

k0(E)e−E/(RT (u))du

)
,

and a term representing the distribution of activation energy f(E). Niksa

and Lau [25] noted that if E/RT À 1, and the temperature ramps as T=

mt, then

∫ t

0

k0(E)e−E/(RT (u))du ∼ k0RT 2

mE
exp

(−E

RT

)
. (2.15)

Gunes and Gunes [36] discussed the influences of various parameters on

the numerical solution of the nonisothermal DAEM Equation (2.13), while

Brown [37] undertook a detailed review of the effect of various parameters on

the SFOR model. In the SFOR model, Howard [10] plotted Equation (2.11)

using various activation energies and it clearly illustrated the nature of any

parameter changes. The comparison here is focused mainly on the influence

of these parameters: heating rate (m), activation energy (E) and the pre-

exponential factor (k0). Zsako [38] has also done this for the SFOR model.

Although this is not a very realistic model, it is often assumed to apply as a

first approximation. Both models used various numerical values of parame-

ters to explore the effects of the changes in parameters.

Brown [37], Gunes and Gunes [36] and Zsako [38] examined the influence

of each parameter on the numerical solution of both models. The first pa-

rameter is the influence of heating rate (m) on both models. Their results

illustrate that the DAEM and SFOR models show that remaining mass frac-

tion curves are shifted up the temperature scale by an increase in the heating

rate. The second parameter is the influence of mean activation energy (E0).

Both models show similar influences. When E0 values increased it causes the
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curves to shift towards the right. By comparing the curves of both models to

Howard’s [10] curve of data on the total yield of volatiles, it seems that the

DAEM curve gives a more realistic result, due to the influence of standard

deviation (σ). The third parameter is the pre-exponential factor (k0). The

DAEM and the SFOR models show that an increase in k0 value causes the

curves to shift toward the left. The effect of each of the three parameters is

to cause the curves to shift up the temperature scale.

A model such as the Single First-Order Reaction model (SFOR) is strictly

applicable only to homogeneous systems in which decomposition from the

source V ∗ is due to a single chemical process which occurs with a single acti-

vation energy E. Solomon et al. [18] has shown that for the devolatilization

of coal, the values of k0 and E determined for one heating rate are not appro-

priate when used for another heating rate. Some other simple models were

used also and, like the single first order model, they were applicable only un-

der limited experimental conditions [10]. Howard [10] plotted Equation (2.9)

using what might be called reasonable parameters in fitting the data to the

total yield of volatile. The resulting graph showed Howard some inadequacies

in the single reaction model. In an attempt to improve the SFOR model,

Howard specified that the activation energy and pre-exponential factor must

be very low to approximately fit the temperature dependence that results

from the occurrence of different reactions at different temperature intervals.

However, he still concluded that the SFOR model was inadequate for dealing

with the complexities of coal pyrolysis.

When modeling industrial processes where large particles or lumps of coal

are involved, heat transfer cannot be neglected and the change of temperature

cannot be described with one uniform heating rate. In general, the change of

temperature in solids is modelled by the transport partial differential equa-

tion, which may be nonlinear. In other words more complicated reactions

like coal pyrolysis cannot be adequately modelled by a single reaction, due
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to large variations in the value of k0 and E0 with the heating rate dT
dt

[18].

Therefore, researchers realized that the SFOR model could only be applied

to limited experimental conditions and that they needed a model which could

be applied to more complex experimental conditions of coal pyrolysis. They

then moved to a more complicated model such as the Distributed Activation

Energy Model (DAEM) model. It is adapted from Vand’s [29] treatment of

independent parallel processes in modeling the resistance of metallic films.

DAEM has proved very successful in describing the pyrolysis of various coal

types under differing temperature histories.

The DAEM can also be applied to explain the thermal decomposition pro-

cesses of the pyrolysis of coal and other materials, including biomass, residual

oils, resin chars [39] and kerogen [40]. Anthony et al. [35] and Howard [10]

described the DAEM as applicable over a wide range of thermal conditions.

The model was originally developed to predict volatile yields during rapid

pyrolysis of coal but has also been applied at the relatively low heating rate

encountered during thermal decomposition of coal to coke (Merrick, [41]).

DAEM is the simplest model that depicts devolatilization rates during tran-

sient heating over a broad range of heating rates. It is also the only formalism

in devolatilization modeling that captures the observed density of reaction

time scales for this process [10].

2.4.1 Evaluation of the Two Models

The two models have their shortcomings for application to the pyrolysis of

coal. According to Howard [10], the most serious problem of Equation (2.5)

and (2.6) in the SFOR model is the apparently asymptotic yield of volatiles

that is observed after some time at the final temperature. As a result, the

apparent value of V ∗ as a function of final temperature is mechanistically

inconsistent with the equations and is mathematically unamenable. Howard

also plotted Arrhenius plots for rate constants from the work of different

researchers and labelled the different graphs using time zones in some of the



CHAPTER 2. MATHEMATICAL MODELS OF COAL PYROLYSIS 18

correlations. The relatively slow rate of weight loss observed after extended

times at a given temperature requires a set of parameter values that dif-

fer markedly from those that fit the behavior of the graph over short time.

Howard [10] clearly stated that coal pyrolysis is not a single reaction, but

rather a multiplicity of overlapping decompositions concentrated in different

time intervals for isothermal pyrolysis, or in different time and temperature

intervals for the usual case of pyrolysis during heatup. He concluded that

any one set of parameter values for these equations cannot be expected to

represent data accurately over a wide range of conditions. The SFOR model

could only be applied in limited conditions and in this way was problematic.

The problems were then solved by applying the DAEM model to these

limited conditions. However, the main difficulty with the DAEM solution

is a complicated double integral which can require significant computing re-

sources, particularly when it needs evaluating many times [42]. Miura [31]

also discussed in his work that the DAEM model has two major weak points.

The first is the assumption of a constant k0 value for all reactions. The other

is the assignment of the Gaussian distribution to f(E). It is possible to

estimate f(E) from experimental data without assuming the Gaussian dis-

tribution as performed by Vand [29]. However, in order to use the Gaussian

distribution, a constant value must be assigned to k0 beforehand in order

to estimate f(E). Miura [31] presented a simple method to overcome this

problem. The simple method was applied to estimate f(E) and k0(E) from

three sets of experimental data without any assumption on the functional

form of f(E) or k0 for the pyrolysis of three kinds of coal.

In all of the recent research, the DAEM has been described as a more

powerful model for evaluating the complex experimental conditions of coal

pyrolysis. Researchers show that the shortcomings of the SFOR model can

be solved by the use of the DAEM. The DAEM is generally recognized to be

the most appropriate approach to model coal pyrolysis.



Chapter 3

The Inverse Problem

3.1 Systematic Simplifications

This section builds on the work of McGuinness et al. [28]. It follows closely

their fundamental concepts, but further develops their formulae. Their work

was based on an evaluation of the Distributed Activation Energy Model

(DAEM) for the pyrolysis of coal. From Equation (2.9) of the DAEM, the

integrand consists of the product of two major parts. First, the double ex-

ponential (DExp) term is determined by the temperature during the experi-

ment and depends on time through the temperature history experienced by

the sample. The other term representing the initial distribution f(E) is de-

termined by the type of coal being considered and it is independent of time,

and depends on the distribution of volatiles in the sample. So Equation (2.9)

can be re-written as

v =

∫ ∞

0

(DExp)(f(E))dE, (3.1)

where v= 1 − (V/V ∗) is a fraction of the volatile yield not yet released.

Another way of writing the double integral in Equations (2.9) and (3.1) is in

19
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the form

v =

∫ ∞

0

exp

((
−

∫ t

0

k0(E)e−E/(RT (u))du

)
exp(ln(f(E))

)
dE

=

∫ ∞

0

exp

(
−

∫ t

0

k0(E)e−E/(RT (u))du

)
+ ln(f(E)dE.

The effect of constant temperature T (u)= T0 on DExp is discussed first. It

is followed by an investigation of ramping temperature histories.

3.1.1 The double exponential integrand

The equation of the double exponential term is shown as

DExp ≡ exp

(
−

∫ t

0

k0e
−E/(RT (u))du

)
. (3.2)

McGuinness et al. [28] developed a more accurate approximation to DExp

where T (u) is specified and E can take any positive value. Their approach

was similar to the work presented by Niksa and Lau [25] but uses more

systematic methods and a more accurate approximation. McGuinness et

al. [28] discussed the typical values of the parameters (including the range of

k0, activation energy region and temperature range) and functions needed to

motivate the systematic simplifications of the DExp integrand.

Most of the researchers agree that the integral of DExp is particularly

simple when temperature is constant, T (u)= T0 . Equation (3.2) is integrated

with respect to the dummy variable u from zero to t. Then the solution

becomes

DExp ≡ exp
(−tk0e

−E/RT0
)
. (3.3)

When both of the parameters E/RT0 and tk0 from Equation (3.3) are given

large values, the DExp function changes rather steeply with E. This is further
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illustrated if Equation (3.3) is re-written in the form of

exp

(
− exp

(
Es − E

Ew

))
, (3.4)

where

−tk0e
−E/RT0 ≈

(
− exp

(
Es − E

Ew

))
.

Solving Equation (3.3) in the form of Equation (3.4) gives Es ≡ RT0 ln(tk0)

and Ew ≡ RT0. Evaluating Equation (3.4) in relation to the three regions

of piece-wise linear function shows that when Es is much greater than E,

the DExp function is nearly zero. When Es is much less than E, the DExp

function is nearly unity. The DExp function changes rapidly from zero to one

in a range of E values close to Es. The rapid change of the DExp function

can be seen by using the typical values of approximately Ew ≈ 10 kJ/mol

and Es ≈ 100 kJ/mole to show how steep the change is.

The integral in the DExp function holds the same idea for more com-

plicated time history such as when temperature is taken to ramp linearly

with T= mt. However, doing so produces an equation much more difficult

to evaluate. Equation (3.2) can be re-written with T= mt, which becomes

DExp ≡ exp

(
−

∫ t

0

k0e
−E/Rmudu

)
. (3.5)

In Equation (3.5), the integral inside the exponential function can be approx-

imated using the conventional Laplace transform approach. The parameter

E/(Rmt) is assumed to be large. Evaluating the integral of the DExp func-

tion produces the following asymptotic solution.

exp

(
−

∫ t

0

k0e
−E/Rmudu

)
∼ exp

(
−k0Rmt2

E
e−E/Rmt

)
as

E

Rmt
→∞.

(3.6)
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Equations (3.6) and (2.15) have the same form as Equation (2.11) when T=

mt. These equations are exactly the same as the equation resulting from the

p-function presented by Miura [31]. Equation (3.6) can be rewritten in the

form of Equation (3.4):

exp

(
− exp

(
Es − E

Ew

))
,

where (
−k0Rmt2

E
e−E/Rmt

)
≈ − exp

(
Es − E

Ew

)
.

This function has the same nature as described in Equation (3.4) if the

parameters Es and Ew stand by themselves and are not evaluated. Therefore

when E is increased over a range of size Ew around Es, the function is changed

rapidly from zero to one. It can be approximated as follows. Let

g(E) =
Es − E

Ew

;

then the solution of Equation (3.6) can be written as

exp

(
−k0Rmt2

E
e−E/Rmt

)
= exp(− exp(g(E))),

where

g(E) = − E

Rmt
+ ln

(
k0Rmt2

E

)
.

Since only the behavior near Es is of interest, this function is expanded in

a Taylor series as follows in order to allow the parameters Es and Ew to be

identified:

g(E) ∼ g(Es)+(E−Es)g
′(Es)+(E−Es)

2g′′(Es)/2+(E−Es)
3g′′′(Es)/6+ ...

(3.7)

Comparing Equation (3.7) and the definition of g(E) gives the values of
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g(Es)= 0 and g′(Es)= −1/Ew, hence:

g(Es) ≡ − Es

Rmt
+ ln

(
k0Rmt2

Es

)
= 0 (3.8)

and

g′(Es) ≡ − 1

Rmt
− 1

Es

= − 1

Ew

. (3.9)

Solving and simplifying Equation (3.8) and (3.9) gives the solutions Es=

RmtY (k0t) and Ew= RmtEs

Rmt+Es
where Y (x) is the LambertW function consid-

ered to be the one real root of the equation

Y eY = x. (3.10)

Writing Equation (3.8) in the form of Equation (3.10) produces

Es

Rmt
eEs/(Rmt) = k0t.

The LambertW function (Y (x)) is used often in this thesis in order to de-

velop the formula of the inverse problem. So it is useful to understand the

approximations to Y (x) for small and large x in correspondence with the

short and long time periods [43].

Y ∼ x− x2, x ¿ 1,

and

Y ∼ ln

(
x

ln( x
ln x

)

)
, x À 1.

In Equation (2.9), the total integrand is the product of the double exponen-

tial function (DExp) and initial distribution (f(E)). The DExp has been

described as a smooth step-function which changes rapidly from zero to one.

This rapid change is due to the large size of tk0 in a range of activation ener-

gies of width Ew around the value E= Es, with Es and Ew varying with time.



CHAPTER 3. THE INVERSE PROBLEM 24

The f(E) is presumed to be a Gaussian distribution with σ as the standard

deviation of the distribution and E0 as the mean activation energy. Both pa-

rameters are treated as constant values. McGuinness et al. [28] discussed the

two cases of distribution depending on the relationship between DExp and

f(E). The difference between the two cases is in the width of DExp, with the

first case having a relatively wide initial distribution compared to the width

of DExp. The second case is where f(E) is relatively narrow compared to

DExp. The shape of the total integrand changes with time depending on

which limit applies.

This thesis focuses on the wide distribution case, where the initial dis-

tribution f(E) is much wider than DExp. When the initial distribution is

wider than the width Ew, the total integrand is initially the distribution

f(E). However, the left side of the distribution progresses in sharp jumps

rather than smoothly. This ragged step-like effect is due to DExp as time

proceeds. The location of the maximum of the total integrand can move sig-

nificantly, and the shape becomes quite skewed. The right side of the total

integrand is closer to normal than the left side. This problem is evaluated as

originating in the nature of DExp which is approximated by the step-function

(see also [10], [29], [30], [26]).

To demonstrate the approach, the initial distribution (f(E)) is taken to

be a Gaussian distribution with mean activation energy E0 and standard

deviation σ. Approximation is sought to the integral of Equation (2.13) as:

v =
1

σ
√

2π

∫ ∞

0

exp

[
−k0

∫ t

0

exp

(−E

RT

)
dt− (E − E0)

2

2σ2

]
dE.

Using (
−

∫ t

0

k0e
−E/RT dt

)
∼ − exp

(
Es − E

Ew

)

which this is then re-written as

v =
1

σ
√

2π

∫ ∞

0

exp(h(E))dE,



CHAPTER 3. THE INVERSE PROBLEM 25

where

h(E) = − exp

(
Es − E

Ew

)
− (E − E0)

2

2σ2
.

The energy is rescaled as y = E/E0, so the problem becomes

v =

√
α

π

∫ ∞

0

exp(h(y))dy (3.11)

where

h(y) = − exp

(
ys − y

yw

)
− α(y − 1)2, (3.12)

and the constant parameter α= 1
2

(
E0

σ

)2
. Note that in practice α À 1. The

rescaling of the energy helps to smooth the graph of the DAEM solution in

the Maple. It also helps to minimize the time consumed during the plotting

of the DAEM graph. Consider the two special cases of temperature history

by using the rescaled parameters y and τ= k0t.

(i) For a constant temperature where T= T0,

ys =
RT0

E0

ln τ, yw =
RT0

E0

.

(ii) For a linear ramping temperature where T= mt,

ys =
Rmτ

k0E0

Y (τ), yw =
ys

1 + Y (τ)
.

These equations can help to solve for t when the LambertW function is con-

sidered in some complex equations. Note that ys=
Es

E0
and yw= Ew

E0
and Y is

the LambertW function defined above. The linear ramping temperature is

used in the next section in order to improve the approach where the initial

distribution is much wider than DExp. Also studied is the approximation of

Equation (3.11).
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3.2 The Wide Distribution Case

The following sections concentrate on the case where the initial distribution

(f(E)) is much wider than the double exponential (DExp). As discussed in

Section 1.4, the DExp is approximated as a smoothed step-function. It rises

rapidly from zero to one in a range of activation energies of width Ew around

the value E= Es, where Es and Ew vary with time. This case considered the

limit yw

√
α ¿ 1 and the step-function is defined to be

H(y − ys) =

{
0 , if y < ys

1 , if y ≥ ys.

The following approach improves upon this, and upon the linear ramp ap-

proximation discussed in the last section and in Equation (3.12). Equa-

tion (3.11) becomes:

v =

√
α

π

∫ ∞

0

exp

[
− exp

(
ys − y

yw

)
− α(y − 1)2

]
dy

and is rewritten in the form where it includes the step-function and a term

that can be written using the complementary error function erfc.

v =

√
α

π

∫ ∞

0

[
exp

(
− exp

(
ys − y

yw

))
−H(y − ys)

]

exp(−α(y − 1)2)dy +

√
α

π

∫ ∞

ys

exp(−α(y − 1)2)dy. (3.13)

The integrand of the first integral in Equation (3.13) is the product of the

initial distribution and a function which is very small everywhere except in a

neighborhood of size yw around the point y= ys. The initial distribution term

can be expanded as a Taylor series about y= ys. Hence, the first integral
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gives

√
α

π

∫ ∞

0

[
exp

(
− exp

(
ys − y

yw

))
−H(y − ys)

]
exp(−α(y − 1)2)dy

=

√
α

π

∫ ∞

0

[
exp

(
− exp

(
ys − y

yw

))
−H(y − ys)

]
(1− (y − ys)

2α(ys − 1) + ...) exp(−α(ys − 1)2)dy. (3.14)

The right hand side of Equation (3.14) can be re-written as

√
α

π
ywe−α(ys−1)2

∫ ∞

−∞

[
e−e−x −H(x)

]
(1− (y − ys)2α(ys − 1) + ...)dx

and that integrating from −∞ is an approximation. Then the solution be-

comes

√
α

π

∫ ∞

0

[
exp

(
− exp

(
ys − y

yw

))
−H(y − ys)

]
exp(−α(y − 1)2)dy =

√
α

π
ywe−α(ys−1)2

[
A0 − 2αyw(ys − 1)A1 + αy2

w

{
2α(ys − 1)2 − 1

}
A2

+
2

3
y3

wα2
{
2 (ys − 1) + 2α (ys − 1)3 + 1

}
A3

]
,

where

Ai ≡
∫ ∞

−∞
xi(e−e−x −H(x))dx i = 0, 1, 2...

remain to be evaluated. Note that Ai are independent of any parameters and

need to be evaluated only once. The first few values are evaluated as:

A0 ≈ −0.5772, A1 ≈ −0.98906, A2 ≈ −1.81496, A3 ≈ −5.89037.

Most of the previous simplifications of the step-function approximations used

only the conventional error function as a dominant function and ignored

the first integral. The case of a Gaussian initial distribution in the step-

function gives an error function approximation to the DAEM illustrated in
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the second integral of Equation 3.13. The integral can be put in the form of

the conventional error function is evaluated as

1√
π

∫ ∞

√
α(ys−1)

e−u2

du.

The solution is straightforward to compute now. Where erfc is the comple-

mentary error function then

√
α

π

∫ ∞

0

exp(−α(y − 1)2)dy ∼ 1

2
erfc(

√
α(ys − 1)).

Combining these results gives an approximation to the solution of Equa-

tion (3.13).

v ∼ 1

2
erfc(

√
α(ys − 1)) +

√
α

π
ywe−α(ys−1)2

[
A0 + 2αyw(ys − 1)A1+

αy2
w

{
2α(ys − 1)2 − 1

}
A2 +

2

3
y3

wα2
{
2(ys − 1) + 2α(ys − 1)3 + 1

}
A3

]
.

This expansion is only valid when αyw(ys−1) ¿ 1 and in the limit yw

√
α → 0.

This is when the initial distribution (f(E)) is much wider than the width yw

of DExp. The asymptotic approach gives the general result

v ∼
∫ ∞

ys

f(y)dy + ywA0f(ys) + y2
wA1f

′(ys) + y3
wA2f

′′(ys)/2 +

y4
wA3f

′′′(ys)/6 + y5
wA4f

iv(ys)/24 + y6
wA5f

v(ys)/120. (3.15)

Equation (3.15) is used to develop the idea of how to evaluate the wide distri-

bution case by applying the inverse problem. The symbol ′ is used to indicate

the derivative.
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3.2.1 Inverse Problem

The rate of volatilization from the general result in Equation (3.15) is rewrit-

ten in non-dimensional form that gives a procedure for considering the inverse

problem with greater accuracy.

dv

dτ
∼ −f(ys)

dys

dτ
+ ywA0f

′(ys)
dys

dτ
+ A0f(ys)

dyw

dτ
+ y2

wA1f
′′(ys)

dys

dτ

+2A1ywf ′(ys)
dyw

dτ
+

1

2
y3

wA2f
′′′(ys)

dys

dτ
+

3

2
y2

wA2f
′′′(ys)

dyw

dτ

+
1

6
y4

wA3f
iv(ys)

dys

dτ
+

2

3
y3

wA3f
′′′(ys)

dyw

dτ
+

5

24
y4

wA4f
iv(ys)

dyw

dτ
.

(3.16)

The coefficients of dys

dτ
and dyw

dτ
in Equation (3.16) are put together, then the

rate of volatilization becomes:

dv

dτ
∼ [−f(ys) + ywA0f

′(ys) + y2
wA1f

′′(ys) +
1

2
y3

wA2f
′′′(ys)

+
1

6
y4

wA3f
iv(ys)]

dys

dτ
+ [A0f(ys) + 2A1ywf ′(ys) +

3

2
y2

wA2f
′′(ys)

+
2

3
y3

wA3f
′′′(ys) +

5

24
y4

wA4f
iv(ys)]

dyw

dτ
. (3.17)

In this case, E0 is hard to identify beforehand, however Equation (3.16) is

best to evaluate in the dimensional form in order to overcome the difficulties

with greater accuracy. Then the rate of volatilization is rewritten as:

dv

dt
∼

(
−dEs

dt
+ A0

dEw

dt

)
f(Es) +

(
A0Ew

dEs

dt
+ 2A1Ew

dEw

dt

)
f ′(Es)+

(
A1E

2
w

dEs

dt
+

3

2
A2E

2
w

dEw

dt

)
f ′′(Es) +

(
1

2
A2E

3
w

dEs

dt
+

2

3
A3E

3
w

dEw

dt

)

f ′′′(Es) +

(
1

6
A3E

4
w

dEs

dt
s +

5

24
A4E

4
w

dEw

dt

)
f iv(Es).

Note that f(Es) is still needs to be determined whereas Es and Ew are known

functions depending on t (provided that k0 is known). Niksa and Lau [25]
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discussed replacing the dependence on t with dependence on Es, by inverting

Es(t). In order to facilitate calculation, the rate of volatilization have been

expanded in terms of Ew = εew, where ε ¿ 1. The rate of volatilization then

becomes

dv

dt
∼ −dEs

dt
f0 − ε

dEs

dt
f1 − ε2dEs

dt
f2 − ε3dEs

dt
f3 − ... +

εA0
dew

dt
f0 + ε2A0

dew

dt
f1 + ε3A0

dew

dt
f2 + ... +

εewA0
dEs

dt
f ′0 + ε2ewA0

dEs

dt
f ′1 + ε3ewA0

dEs

dt
f ′2 + ... +

2ε2ewA1
dew

dt
f ′0 + 2ε3ewA1

dew

dt
f ′1 + ... +

ε2e2
wA1

dEs

dt
f ′′0 + ε3e2

wA1
dEs

dt
f ′′1 + ... +

3

2
ε3e2

wA2
dew

dt
f ′′0 + ... +

1

2
ε3e3

wA2
dEs

dt
f ′′′0 + ... (3.18)

Usually, when higher derivatives are multiplied by small parameters, the

problem requires singular perturbation techniques, and consideration of bound-

ary layers. However, the boundary conditions f → 0 when Es → 0 or ∞ are

satisfied by the zeroth-order solution and regular series expansion techniques

provide a simple way to approximate f . Hence f is expanded as a power

series in ε, f ∼ f0 + εf1 + ...., and coefficients of power of ε in Equation (3.18)

are equated to obtain these results. The first result is the leading-order term

f0 = − dv/dt

dEs/dt
, (3.19)

which provides an estimate of the underlying distribution. The result ob-

tained by adding the higher-order correction term

εf1 = A0

(
Ew

df0

dEs

+
dEw

dt
f0

dEs

dt

)
, (3.20)
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which is non Gaussian to the leading-order term f0 does provide a more accu-

rate estimate of the underlying distribution in the DAEM than the leading-

order itself. The zeroth-order approximation f0 is the same as the result

obtained by Miura and Maki [27]. In addition to Equations (3.19) and (3.20)

we provide an improved formula by calculating the higher-order terms ε2f2

and ε3f3 shown below:

ε2f2 = εA0

(
dEw

dt
f1

dEs

dt

+ Ewf ′1

)
+ A1Ew

(
2

dEw

dt
f ′0

dEs

dt

+ Ewf ′′0

)
, (3.21)

ε3f3 = ε2A0

(
dEw

dt
f2

dEs

dt

+ f ′2

)
+ εA1Ew

(
2

dEw

dt
f ′1

dEs

dt

+ Ewf ′′1

)

+
1

2
E2

wA2

(
3

dEw

dt
f ′′0

dEs

dt

+ Ewf ′′′0

)
. (3.22)

Each improvement requires higher-order derivatives (differences) to be calcu-

lated, and without some form of prior smoothing this will eventually lead to

numerical errors that are too large. Therefore the more higher-order terms

we add, the better the underlying distribution in the DAEM.

3.3 Numerical Analysis

The inverse problem of determining the distribution from measurements of

v versus time shows that the results obtained by adding the higher-order

correction term εf1 does upgrade the result to a more accurate estimate of

the underlying distribution in the DAEM. However the errors due to differ-

encing are becoming more significant, as the values of v were only accurate

to a limited number of significant figures. McGuiness et al. [28] plotted and

compared the underlying Gaussian distribution with distributions estimated

inversely. It can be seen from this plot that there is more work to be done to

smooth the distribution. The main work of this thesis is to find a method to
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reduce the errors due to differencing by first fitting an appropriate smooth

function to the data. This appropriate smooth function allows the calcula-

tion of higher-order terms, and gives a better fit to data, providing a more

accurate estimate of the underlying distribution in the DAEM.



Chapter 4

Data Fitting

This chapter will provide an overview of the least squares methods of analysis

of data. The first step in the analysis of data by this method is the collection

of the data. Then there is the formulation of a model relating the numerical

values obtained from one or more parameters and from one or more indepen-

dent variables. Parameters are the unknown quantities in the model and the

independent variables are the known quantities. Using the model, one then

obtains estimates of the parameters and their associated errors, together with

subsidiary information such as the differences between the values calculated

using the model and the values obtained by observation. It is good practice

to make a graph of the model which shows the experimental data, the calcu-

lated data and the residuals.

The model is assessed in terms of such criteria as goodness of fit and

relation to underlying mechanisms. Indeed, one objective of the analysis

may well be to try to distinguish between various possible such mechanisms.

After a preliminary analysis the whole process may be repeated. More data

may be postulated and compared to the previous model. The best model is

selected and used to throw light on the underlying mechanisms. That model

has the best procedure to minimize any errors occurring in the nature of the

data collection. The reliability of any parameters obtained by any model

33
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depends on the minimization of error. Therefore the smaller the residuals

the better the fit.

4.1 Collection of data

Finding a particular appropriate model for data is very difficult and time

consuming. There are two methods for developing data in this thesis. The

first is the use of the random number generator. Equation (2.13) of DAEM

assumes f(E) is taken to be a Gaussian Distribution with the mean activa-

tion energy E0 and standard deviation σ. The energy is rescaled and defined

in Equation (3.11) and a random noise term is added as described below.

These randomly generated numbers are used to test whether the model is

working or not.

For the purposes of this thesis Equation (3.11) was used to generate the

random numbers instead of the solution for the DAEM in Equation (2.13),

since it is known that both equations are in equivalent form. The energy

scaling is the only difference between the two equations. There are some rea-

sons behind the selection of Equation (3.11) for Equation (2.13). We found

out that Equation (3.11) worked very well and took less time to evaluate

and graph accurately in the Maple programme compared to Equation (2.13).

The procedure of developing the random numbers was done using the Maple

program as follows.

The work below is performed and evaluated using Equation (3.11) to-

gether with the random number procedure in Maple programme language.

Equation (3.11) is written as:

v(y) =

√
α

π

∫ ∞

0

exp(− exp

(
ys − y

yw

)
− α(y − 1)2)dy
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where the constant parameter

α =
1

2

E2
0

σ2
.

Note that in practice α À 1. For a linear ramping temperature T= mt we

have:

ys =
Rmk0tY (k0t)

k0E0

,

and

yw =
Rmk0tY (k0t)

k0 E0 (1 + Y (k0t))
.

where Y is the LambertW function defined above. Therefore the equation of

v(y) can be re-written as:

v(y) =
E0

2σ

√
2

π

∫ ∞

y

(
e−e

(
RmtY (k0t)

E0
−y

)
E0(1+Y (k0t))

RmtY (k0t) − 1

2

E2
0(y − 1)2

σ2

)
dy.

(4.1)

The constant values are m= 650 K/s and R= 8.3144 J/mol kelvins and

the parameter values used to generate the random numbers are E0= 205

kJ/mol, σ= 40 kJ/mol and k0= 1.07E10s−1. The random number generator

is a procedure that returns a random floating point number within a cer-

tain range. This method develops the procedure which creates the random

number generator. The rand command generates a procedure which returns

random integers. It is a procedure that returns random integers between

−5 and 5%, inclusive, and can be written as rand(−5...5%). To generate

random floating-point numbers with magnitudes between −5% and 5%, the

following equation is used and written in the Maple programme as:

X = evalf

(
1 + rand(−1000..1000)/20000

)
.
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The for loop is applied to generate 20 random numbers

for n from 1 to 20 do X(); od

then the 20 random numbers are multiplied by v(y) to produce the random

data in the following way:

S =

[
seq([n ∗ (3)/20, X() ∗ subs(t = n ∗ (3)/20, v(y))], n = 1..20)

]

evalf

(
seq(S[i], i = 1..20)

)
.

The evaluation of S in the last step gives make-up data which is v(y) plus

a random number of ±5% of v(y), and that is the data generated from the

Gaussian distribution.

The second method used in this thesis for developing data was to use a

digitizer. The data may be originally non-Gaussian distributed. The idea of

this data collection method is to make sure that the equations and model

used in this thesis can work for data where the underlying distribution is

unknown. The digitizer can be used to digitize and produce the data from

published coal volatilization experiments. This method brings the nature of

the data to be more closely or exactly the same as the actual data from the

experiment. The next section describes the kind of errors which can occur in

the data, but first discusses how to choose the estimated parameter values

of a model.

4.2 Estimation of parameters

In all non-linear least-squares problems there is a need to furnish initial esti-

mates of the parameters with which to begin the refinement. In some cases

the parameter estimates need to be really close to the final values or the
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refinement will not work at all. However in other cases, the requirements are

less stringent. It is difficult in general to predict what the requirement will

be, so it is prudent in all cases to use all that is known about the physics

and chemistry of the system under study, and closely related systems. This

will dictate the choice of model, any constraints that may apply and which

parameters are to be refined.

Ideally, one would construct an expert system that could provide reliable

parameter estimates by extrapolation or interpolation from known facts. Un-

fortunately, all too often, the known facts are too sparse to permit this and

one is left with little more than intelligent guesswork. Parameter guesses will

only be usable in simple systems. In more complicated systems one will need

to resort to numerical techniques or simulation. In this thesis, the parameter

estimates have been chosen to be close to the observed values. In this way,

the parameter estimates in this model appear to be able to be evaluated in

such a way as to bring the calculated value close to the observed value.

4.3 Error Description

All observations are subject to errors of various kinds. One of the main ob-

jectives of any fitting method is to reduce the effect of experimental errors on

the calculated values of the parameters, the estimation of which is the true

object of the experiments in which the observations were made. Therefore,

the origin and nature of the errors in observations needs to be understood.

Observational errors can be conceptually divided into two categories; sys-

tematic and random errors. To emphasize the fact that this classification

is conceptual the researchers must be aware that they cannot measure the

errors themselves, unless the true values of the quantities being measured are

known. Errors may stem from different kinds of sources during the measure-

ment.
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Some of the most common sources of both types of errors are as follows:

blunders, sampling error, bias, calibration error and electronic noise. This

list is not exhaustive as there are almost as many types of errors as there are

experiments [44]. In coal pyrolysis experiments, these errors also exist and

cause errors in the collection of data. The presence of errors in experimental

data will clearly affect the reliability of any parameters obtained by any

fitting methods. Accurate results can only be achieved by reducing both

systematic and random errors. The goodness of the fit of a model is also

dependent on errors in experimental data.

4.4 The Goodness of Fit of a Model

A question that has occupied the attention of modelers is that of how well

a specified model fits the data. Extensive methodology has been developed

for investigating whether a proposed model provides a good description of

the data [45]. The method usually involves examination of the residuals,

these being the differences between the observed responses and the fitted or

predicted responses. The usual modeling situation is that a model is adopted

because some theory and/or empirical evidence from the use of the model over

many data sets indicates that the model is appropriate. However, there are

circumstances in which the use of a model is not particularly appropriate, and

several competing models may appear to fit the data equally well in practice.

In this thesis the choice between models must rest on this consideration; the

model that comes closest to behaving as a linear model will be the preferred

choice. In general, a model in which the increment is so small that there is

no useful change in the elements of the parameter vector is a good model,

as is one in which the relative change in the sum of squares on successive

iteration is small. The next section is describing the model to apply in this

thesis.
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4.5 Regression Methods

We use a model of data fitting in order to smooth the data and then apply

the inverse problem to provide a more accurate estimate of the underlying

distribution in the DAEM. Any method of fitting equations to data may be

called regression. Such equations are valuable for at least two purposes: mak-

ing predictions and judging the strength of relationships. Since they provide

a way of empirically identifying how a variable is affected by other variables,

regression methods have become essential in a wide range of fields, including

the social sciences, engineering, medical research and business [46].

Of the various methods of performing regression, the least squares method

is the most widely used for fitting data. In fact, linear least squares regression

is by far the most widely used of any statistical technique and is a powerful

method for analyzing data described by models which are linear in their pa-

rameters. However, often researchers have a mathematical expression which

relates the response to the predictor variables, and these models are usually

nonlinear in their parameters. In such cases, linear regression techniques

must be extended to a more complex method such as nonlinear regression.

One of the nonlinear regression methods will be selected to calculate the

residuals and sum of squares.

4.5.1 Linear Regression Model

This discussion begins with a brief description of linear regression because a

thorough grounding in linear regression is fundamental to understanding non-

linear regression. The linear regression consists of finding those parameters

that minimize a residuals function and, obviously, the smaller the residuals

the better the fit. An important requirement for linear regression is that the

expression should be linear in its parameters. The normal linear regression
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model may be written as:

Yn = β1xn1 + β2xn2 + ... + βpxnp + εn

= (xn1, ..., xnp)β + εn (4.2)

where parameters β= (β1, β2, ..., βp)
T and superscript T denotes the transpose

of the vector. In this model, the random variable Yn, which represents the

response for case n, n= 1, 2, ..., N , has a deterministic part and a stochastic

part. The deterministic part is (xn1, ..., xnp)β, where (xn1, ..., xnp) is a (row)

vector of predictors for the n observations, usually with a 1 in the first po-

sition representing the regression constant, and β is the vector of regression

parameters to be estimated. The stochastic part, represented by random

variable εn , is a shock or disturbance error. The model for the n cases can

be written in matrix notation as

Y = Xβ + ε,

where Y is a N × 1 vector of observable random variables, X is a N × p

matrix of regressor variables, β is a p × 1 vector of unknown regression

coefficients and ε is a N × 1 vector of disturbances (i.e. a random error)

whose components are assumed to be independent of the errors for other

observations, with expectation 0 and constant variance. In mathematical

terms, these assumptions are written as:

E(ε) = 0

or equivalently,

E(Y ) = Xβ

and variance

Var(ε) = σ2.
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An even stronger assumption that is occasionally needed is that the errors

are normally distributed. This assumption is usually needed only to obtain

confidence intervals and in testing procedures. All the above assumptions

can be written in the compact form of:

ε ∼ NID(0, σ2)

which is read as meaning that the components of ε are normally and inde-

pendently distributed with zero mean and common variance σ2.

4.5.2 Nonlinear Regression Model

So far it has been assumed that there is a linear relationship between the

random variable and the parameters as discussed above. There are many

cases in which the functional relationship cannot be written in a linear form.

In that case it is necessary to move on to a more powerful technique such

as nonlinear regression. A nonlinear regression model is one in which the

parameters appear nonlinearly. In the more general normal nonlinear regres-

sion model, the function f(.) which relates the response to the predictors, is

not necessarily linear. A nonlinear regression model can be written as

Yn = f(Xn, θ) + εn, n = 1, 2, ..., N (4.3)

where f is the expectation function for the parameter θ and Xn is a vector of

associated regressor variables or independent variables on which the ith cal-

culated value depends. For example, consider an exponential relationship y=

θeqx where θ and q are the parameters and x is the independent variable. The

relationship is non-linear because the partial derivatives ∂y/∂θ and ∂y/∂q

both contain the parameter themselves. This model in Equation (4.3) is of

exactly the same form as the linear regression in Equation (4.2), except that

the expected responses are nonlinear functions of the parameters. Therefore,

for nonlinear models, at least one of the derivatives of the expectation func-
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tion with respect to the parameters depends on at least one of the parameters.

We used the DAEM which is a nonlinear regression. Equation (4.3) can be

written in the form of matrix notation

Y = η(θ) + ε,

where η(θ) is the N-vector η(θ) with nth element

ηn(θ) = f(Xn,θ) n = 1, 2, ...N

with ε assumed to have a spherical normal distribution. That is

E[ε] = 0,

Var(ε) = σ2.

Therefore ε ∼ NID(0, σ2) as it is in the linear model.

The assumption of a spherical normal distribution for the random error

term ε leads us to consider the Euclidean geometry of the N -dimensional

response space, because we will be interested in the least squares estimates

θ̂ for the parameters θ. The N -vectors η(θ) define a p-dimensional surface

called the expectation surface in the response space, and the least squares

estimates correspond to the point on the expectation surface,

η̂ = η(θ̂)

which is closest to y. That is, θ̂ is the value of θ which minimizes the residual

sum of squares

S(θ) =
N∑

n=1

[Y n − f(θ, Xn)]2

= ‖ y − η(θ) ‖2 . (4.4)
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The next section is to discuss how to obtain the least squares estimates θ̂ for

the parameters θ.

4.6 Determining the Least Squares Estimates

There is a wealth of literature on how to determine the least squares estimates

of the parameters once a nonlinear model has been specified and a set of data

obtained (see for example [47]). The least squares estimates can be evaluated

by using simple geometry. Given a data vector y, an expectation function

f(Xn,θ) and vector of associated regressor variables Xn, n= 1, 2, ..., N then

the following steps can be taken to determine the least squares estimates:

1) find the η̂ on the expectation surface which is closest to y, and then

2) determine the parameter vector θ̂ which corresponds to the point η̂.

In the case of linear regression, both steps 1 and 2 are straightforward

evaluations as discussed by Bate and Watts [48]. However in the case of

nonlinear regression, the two steps are very difficult to evaluate. The first

step is difficult because the expectation surface is curved and often of a finite

extent (or, at least, has edges) so that is difficult even to determine η̂. The

difficulty of the second step involves finding the parameter space coordinates

θ̂ corresponding to that point even if we know η̂ from mapping the parameter

space to the expectation surface [48]. To overcome these difficulties, we uses

an iterative method to determine the least square estimates. This thesis

follows this approach in order to find the appropriate iterative method to

determine the least square estimates in coal pyrolysis but first, the procedure

for fitting the data is summarized.
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4.7 Procedure of Fitting the Data

The procedure of fitting the data is summarized as follows:

Step 1

Generate the data using the Gaussian distribution and adding ±5% noise.

Step 2

Assume f is Gaussian and fit a v(1) to data (is smooth), use fitted v(1) to get
dv(1)

dt
, d2v(1)

dt2
,...and hence f

(1)
0 , f

(1)
1 , ...

Step 3

Use improved f (1)= f
(1)
0 +εf

(1)
1 +.. and fit a v(2) to data to get dv(2)

dt
, d2v(2)

dt2
,...and

hence f
(2)
0 , f

(2)
1 , ...

Step 4

Repeat this process until negligible change in f , that is f (j) ' f (j−1).

Step 5

Does it always converge?

Step 6

Get digitized data and repeat Step 2 to Step 5.



Chapter 5

The Gauss-Newton Method

This thesis favored the Gauss-Newton iterative method to start with, and

the estimates will be determined using this procedure. This is also known as

the linearization method. This part of the process of reducing the residuals

closely follows the work of Bate and Watts [48] which provided a compre-

hensive reference on nonlinear regression and nonlinear least squares esti-

mation. The method is based upon a modification to the Newton method

introduced by Gauss in 1809 and is known as the Gauss-Newton method.

The Newton method uses a linear Taylor series approximation to f(Xn,θ)

about θ0. Gauss suggestion was to use a linear approximation to the expec-

tation function to iteratively improve an initial guess to obtain θ0 for θ and

keep improving the estimates until there is no change. That is, to expand

the expectation function f(Xn, θ) in a first order Taylor series about θ0 as

f(Xn, θ) ≈ f(Xn, θ
(0)) + Vn1(θ1 − θ

(0)
1 ) + Vn2(θ2 − θ

(0)
2 ) + ... + Vnp(θp − θ(0)

p )

where

Vip =
∂f(Xi, θ)

∂θp

|θ(0) p = 1, 2, ..., P

including together all N cases and producing

η(θ) ≈ η(θ(0)) + V(0)(θ − θ(0))

45
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where V(0) is the N × P derivative or Jacobian matrix with elements {Vip}.
This derivative matrix is based on the evaluation of the derivative equation

with respect to each parameter. The approach is equivalent to approximating

the residuals in Equation (4.4), z(θ) = y − η(θ), by

z(θ) ≈ y − [η(θ(0)) + V(0)δ] = z(0) −V(0)δ,

where z(0)= y−η(θ(0)), δ= θ−θ(0). The expression of the Gauss increment δ

involves decomposing V(0) into the product of an orthogonal matrix (N ×N

matrix Q) and an easily inverted matrix (N × P matrix R). Since Q is

orthogonal, QTQ= QQT = I. Note that R is zero below the main diagonal,

R =

[
R1

0

]
,

where R1 is a square (P × P ) and upper triangular matrix. Writing

Q = [Q1 | Q2],

with Q1 the first P columns and Q2 the last N − P columns of Q then

V(0) = QR = Q1R1. (5.1)

Computing a QR decomposition using Householder Transformations is shown

in Appendix 1.

Geometrically, the columns of Q define an orthogonal, or orthonormal,

basis for the response space with the property that the first P columns span

the expectation plane. Projection onto the expectation plane is accomplished

by working in the coordinate system given by Q. For example, transform

the response vector to

w = QTz,
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with components

w1 = QT
1 z(0), (5.2)

and

w2 = QT
2 z(0).

The projection of w onto the expectation plane is then simply

[
w1

0

]

with the Q coordinates and

η̂ = Q

[
w1

0

]
= Q1w1 (5.3)

in the original coordinates. To determine the Gauss increment, first find the

value δ corresponding to η̂. Since

η̂ = V(0)δ,

combining Equation (5.1) and (5.3) gives

R1δ = w1, (5.4)

where δ is solved by back-substitution [49]. The Gauss increment δ(0) can

then be calculated to minimize the approximate residual sum of squares

‖ z(0)−V(0)δ ‖2 using Equations (5.1), (5.2), (5.3) and (5.4). Therefore the

point η̂= η(θ(1))= η(θ(0) + δ(0)) should now be closer to y than η(θ(0)), and

continue on to move to this better new parameter value θ(1)= θ(0)+δ(0). Then

another iteration is performed by calculating new residuals z(1)= y−η(θ(1)),

a new derivative matrix V(1), and a new increment. This iterative process

is repeated until the decreasing Gauss increment is so small that continuing
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will cause no useful change in the values of the parameter vector.

The asymptotic approach gives the general result defined in Equation

(3.16) which arose from a term in the Taylor series which was then integrated.

Equation (3.16) is then differentiated to obtain the rate of volatilization. The

rate of volatilization gives a method for considering the inverse problem with

greater accuracy. McGuinness et al. [28] used the inverse problem to develop

a formula for the leading-order term f0 which is Gaussian and higher-order

correction term εf1 which is non Gaussian. The leading-order term f0 given

in Equation (3.19) and the result of adding the higher-order correction term

from Equation (3.20) does provide a more accurate estimate of the underlying

distribution in the DAEM. In this thesis, a new method is developed to

upgrade the accuracy and provide a more accurate estimate of the underlying

distribution in the DAEM.

5.1 Example 1

The leading order solution (v(1)) of Equation (3.16) provides the estimate f0

which is Gaussian. The leading-order v(1) is used to fit data which is gener-

ated using Gaussian distribution, plus a small random error. We are fitting

v(1) to the data in order to smooth it in preparation for taking derivatives

to obtain higher-order approximations to the underlying distribution. The

leading-order is evaluated by using the Gauss-Newton method as shown be-

low. All calculations use the Maple programme, which has built-in support

for LambertW functions.

The leading-order solution of Equation (3.16) in the case that the under-

lying distribution is Gaussian, is

v(1) = v(t,E0 , σ, k0 ) =
1

2
erfc

(√
α (ys − 1)

)
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where

α =
1

2

E0
2

σ2
,

Es = RmtY (k0 t) ,

ys =
RmtY (k0 t)

E0

,

and Y is the LambertW function. That is,

v(1) = v(t,E0 , σ, k0 ) =
1

2
erfc

(
1

2

√
2

√
E0

2

σ2

(
RmtY (k0 t)

E0

− 1

))
. (5.5)

In order to find the derivative or Jacobian N × P matrix V(0) of variables,

there is a need to find the derivative of equation v(t, E0, σ, k0) with respect

to each parameter E0, σ, and k0. The first derivative p is obtained by differ-

entiating v(t, E0, σ, k0) with respect to parameter E0 as follows:

p = −e
− 1

2
E0

2
“

RmtY (k0 t)
E0

−1
”2

σ−2

(
1

2

√
2

(
RmtY (k0 t)

E0

− 1

)

E0
1√
E0

2

σ2

σ−2 − 1

2

√
2

√
E0

2

σ2
RmtY (k0 t)E0

−2

)
1√
π

. (5.6)

The second derivative r is obtained by differentiating v(t, E0, σ, k0) with re-

spect to parameter σ as below:

r =
1

2
e
− 1

2
E0

2
“

RmtY (k0 t)
E0

−1
”2

σ−2√
2

(
RmtY (k0 t)

Eo
− 1

)

E0
2 1√

π

1√
E0

2

σ2

σ−3. (5.7)

The third derivative s is obtained by differentiating v(t, E0, σ, k0) with respect
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to parameter k0:

s = −1

2
e
− 1

2
E0

2
“

RmtY (k0 t)
E0

−1
”2

σ−2√
2

√
E0

2

σ2
RmtY (k0 t)

1√
π

(1 + Y (k0 t))−1 k0
−1E0

−1. (5.8)

These Equations (5.5), (5.6), 5.7) and (5.8) will be used again in Example 2,

Example 3 and Example 4.

The constant values used in this example are m= 650K/s and R= 8.3144J/

(mol kelvins) and the starting parameter estimates chosen are: E0= 196kJ/

mol, σ= 37kJ/mol and k0= 1.00E10s−1. The parameter estimates have been

chosen to be close to the final values that are used to generate the ran-

dom numbers as one of the criteria of parameter estimation. The data was

generated with a Gaussian distribution and the parameter values of E0=

205kJ/mol, σ= 40kJ/mol and k0= 1.07E10s−1, and a ±5% random error

term has been added to v(y) in Equation(4.1). Using these values, the ran-

dom number generator produces the following data:

Data =

[
[0.1500000000, 0.9621489806], [0.3000000000, 1.024242331],

[0.4500000000, 1.033051170], [0.6000000000, 0.9819960462],

[0.7500000000, 0.9734757992], [0.9000000000, 1.031344011],

[1.050000000, 0.9986545413], [1.200000000, 0.9703193539],

[1.350000000, 0.9130842328], [1.500000000, 0.7918876653],

[1.650000000, 0.6483888526], [1.800000000, 0.5047982891],

[1.950000000, 0.3326939449], [2.100000000, 0.1917859271],

[2.250000000, 0.09363834317], [2.400000000, 0.04104433104],

[2.550000000, 0.01602741851], [2.700000000, 0.004913205795],

[2.850000000, 0.001476246960], [3.0, 0.0003506119174]

]
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The residuals are approximated as z(θ)= y−η(θ), note that the param-

eters θ are in this example E0, σ, k0. This equation gives the residual of the

starting parameter estimates θ(0) in the form of z(0)= y−η(θ(0)) which gives

z0 =

(
− 0.0378505354, 0.0242462450, 0.0330789660,−0.0178351768,

−0.0256596563, 0.0350519455, 0.0119172678, 0.0098383499,

0.0113429238,−0.0032702202, 0.0095844786, 0.0509029936,

0.0546503886, 0.0479206872, 0.03174364522, 0.01916557094,

0.9730655510E-2, 0.3448025851E-2, 0.1202123228E-2,

0.3095576615E-3

)T

and the residual sum of squares S(θ(0))= ‖ y − η(θ(0)) ‖2 of z0 is

S(θ(0)) = Sold = 0.1514721026E-1.

The derivatives are collected into the derivative matrix V(0) by evaluating

the derivative equations p, r and s for each parameter (E0, σ, k0) in the time

given of t= (0.15, 0.30, 0.45, ...3.0)s. The result of the derivatives V(0) is

discussed below:
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V(0) =




6.657472967E-11 −3.260814262E-10 −5.116196669E-18

4.945742232E-10 −2.210665137E-9 −7.615295505E-17

3.196505271E-9 −1.288441133E-8 −7.390246094E-16

1.747656934E-8 −6.264706838E-8 −5.391113343E-15

7.961230992E-8 −2.494416517E-7 −3.071424298E-14

2.991567349E-7 −8.010126430E-7 −1.385549080E-13

9.205173669E-7 −0.000002042104341 −4.975694290E-13

0.000002306225406 −0.000004050412944 −1.425099486E-12

0.000004682650784 −0.000006047818795 −3.256123839E-12

0.000007675553348 −0.000006328105702 −5.931664428E-12

0.00001012282027 −0.000003596281322 −8.606983433E-12

0.00001071014070 0.000001240510815 −9.936068312E-12

0.000009066955560 0.000005337384666 −9.114173826E-12

0.000006127541846 0.000006514272517 −6.634300430E-12

0.000003298752579 0.000005076981573 −3.827234243E-12

0.000001411921998 0.000002847008241 −1.747565780E-12

4.796170009E-7 0.000001196673972 −6.308139239E-13

1.290873580E-7 3.840284786E-7 −1.797899977E-13

2.748588911E-8 9.499133913E-8 −4.041301099E-14

4.623251603E-9 1.820710894E-8 −7.156178286E-15



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The first column elements (V
(0)
n1 ) are obtained from evaluation of p at

each time t. The second column (V
(0)
n2 ) is the result of evaluation of r at

each time t and the last column (V
(0)
n3 ) is evaluated as s varied with time.

Once V(0) is derived then the QR decomposition of 20 × 3 matrix V(0) is

computed. We chose the Householder transformation Hu1 to take the first

column v1 of derivatives V(0) to the e1 using the equation below

u1 =
v1 − ne1

n1

.

e1= (1, 0, ...0)T is the 20× 1 matrix of 1 in the first row and the rest are all

0 where n is the norm of v1, and n1 is the norm of (v1 − ne1) and hence:

u1 =

(
− 0.70710565542, 0.0000167261620091, 0.000108103622303,

0.00059104562355, 0.0026924338778, 0.01011727619299,

0.0311312678436, 0.077994966096, 0.15836404724,

0.25958196523, 0.3423468589395, 0.362209634237,

0.306638236511, 0.20722927485095, 0.1115615563368,

0.04775023641538, 0.0162203189796, 0.00436564616988,

0.000929553973200073326, 0.000156355207556618786

)T
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The 20 × 3 matrix of V0
1 is calculated using this equation V0

1= Hu1V
0,

which equals:

V0
1 =




2.090840347E-5 −0.00000008549682633 −1.897885399E-11

1.075910928E-19 −0.000000002208650474 3.727803811E-16

6.953770490E-19 −0.00000001287139027 2.162496958E-15

3.801903420E-18 −0.00000006257587704 1.047266243E-14

1.731909498E-17 −0.0000002491173485 4.155118902E-14

6.507939207E-17 −0.0000007997940190 1.329946891E-13

2.002520548E-16 −0.000002038354586 3.379996588E-13

5.017029977E-16 −0.000004041018465 6.683000827E-13

1.018677654E-15 −0.000006028743875 9.943969931E-13

1.669761149E-15 −0.000006296839102 1.035564372E-12

2.202147204E-15 −0.000003555045706 5.816706908E-13

2.329914704E-15 0.000001284138898 −2.142935610E-13

1.972451158E-15 0.000005374319185 −8.839458485E-13

1.333002418E-15 0.000006539233245 −1.072227692E-12

7.176203148E-16 0.000005090419142 −8.329010750E-13

3.071534585E-16 0.000002852759748 −4.659404480E-13

1.043371950E-16 0.000001198627706 −1.954575098E-13

2.808203101E-17 0.0000003845543199 −6.261523288E-14

5.979359287E-18 0.00000009510330373 −1.546360741E-14

1.005755491E-18 0.00000001822594190 −2.959575089E-15



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We performed a second rotation which is orthogonal to the first rotation

by choosing u2 so that Hu2 zeros the rows below the diagonal of the second

column of V
(0)
1 without changing the first column. To ensure that there is no

change to the first column, the first element of u2 must be zero. Therefore

the vector u2 is chosen to be

u2 =
v2 − n2e2

n3

.

e2= (0, 1, 0, ...0)T is the 20× 1 matrix of unit in the second row and the rest

are all 0 where n2 is the norm of v2, and n3 is the norm of v2 − n2e2 and

obtains:

u2 =

(
− 0.70710565542, 0.000016726162009, 0.00010810362230,

0.00059104562355, 0.0026924338778, 0.01011727619299,

0.0311312678436, 0.077994966096, 0.15836404724,

0.25958196523, 0.3423468589395, 0.362209634237,

0.306638236511, 0.20722927485095, 0.1115615563368,

0.04775023641538, 0.0162203189796, 0.00436564616988,

0.000929553973200073326, 0.000156355207556618786

)T

.



CHAPTER 5. THE GAUSS-NEWTON METHOD 56

Then V0
2 is calculated by using this equation V0

2= Hu2Hu1V
(0) as shown

below:

V0
2 =




2.090840347E-5 −8.549682633E-8 −1.897885399E-11

−1.006509781E-19 1.479064855E-5 −2.431052651E-12

6.951959293E-19 −9.824868842E-19 4.689310927E-17

3.801025393E-18 −4.776485086E-18 1.873891538E-16

1.731559985E-17 −1.901539908E-17 6.050588455E-16

6.506817272E-17 −6.104926828E-17 1.536682644E-15

2.002233251E-16 −1.555901988E-16 2.965857752E-15

5.016461666E-16 −3.084555152E-16 4.098777332E-15

1.018592478E-15 −4.601814814E-16 3.483542316E-15

1.669672999E-15 −4.806452084E-16 5.854953927E-16

2.202096693E-15 −2.713603034E-16 −2.653785648E-15

2.329932593E-15 9.801987545E-17 −3.226291726E-15

1.972527035E-15 4.102276073E-16 −5.967995293E-16

1.333094630E-15 4.991471660E-16 2.592255933E-15

7.176922011E-16 3.885577978E-16 3.784792294E-15

3.071935440E-16 2.177547634E-16 2.952917661E-15

1.043540804E-16 9.149255317E-17 1.554727122E-15

2.808744344E-17 2.935349512E-17 5.919718028E-16

5.980692692E-18 7.259337629E-18 1.680307645E-16

1.006012050E-18 1.391208158E-18 3.612871787E-17



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We now performed a third rotation which is orthogonal to the first and

second rotations by choosing u3 so that Hu3 zeros the rows below the diagonal

of the third column of V0
2 without changing the first and second columns.

To ensure there is no change to the first and second columns, the first two

elements of u3 must be zero. Therefore the vector u3 is chosen to be

u3 =
v3 − n4e3

n5

.

e3= (0, 0, 1, ...0)T is the 20 × 1 matrix of unit in the third row and the rest

are all 0 where n4 is the distance of v3, and n5 is the norm of v3 − n4e3 and

hence:

u3 =

(
0.0, 0.0, −0.705368653379, 0.0139085505895,

0.0449091710574, 0.114056912395, 0.220134312740,

0.304222793655, 0.2585583185999, 0.0434571165109,

−0.196971442500, −0.239464455565, −0.04429614135326,

0.192404533825, 0.2809179401508, 0.219173862712,

0.115396224304, 0.0439378139002, 0.0124717164338,

0.00268157516058

)T

which gives

R = Hu3Hu2Hu1V
0.

The matrix R is in the form of

R =

[
R1

0

]
,
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where R1 is the 3× 3 upper triangular matrix given below




2.09084035E-5 −8.549682633E-8 −1.897885399E-11

0 1.479064854E-5 −2.431052651E-12

0 0 9.550287027E-15


 .

In order to find Q1= V(0)R1inv, there is a need to calculate the inverse of R1

and the response vector is transformed to w1= QT
1 z(0). Then the increment

δ(0) is calculated to minimize the approximate residual sum of squares, as

shown below:

δ(0) = R1invw1

which gives

δ(0) =




2.44810107473540911E6

4.45640399695003463E5

2.69085969986378856E12


 .

The new parameter value (θ(1)) is calculated in the form of θ(1)= θ(0) + δ(0)

to obtain

θ(1) =




2.64410107473540911E6

4.82640399695003463E5

2.70085969986378857E12


 .

Another iteration is performed by calculating the new residuals z(1). Using

the Gauss-Newton method the residuals are written as z(θ)= y−η(θ). This

equation gives the residual of the new parameter estimates θ(1) in the form

of z(1)= y − η(θ(1)) and the new sum of squares (Snew) is

S(θ(1)) = Snew = 7.22067597.

In the undertaking of this thesis a program was developed to make it easier

to identify the nature of Sold and Snew. The program is read in the Maple
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language as follows:

f := proc(sold, snew)

if snew ≤ sold then

print(“true′′);

else

print(“Apply Step Factor′′)

end if ; end proc;

As seen in the Example 1, the Gauss-Newton increment can produce an

increase in the sum of squares, therefore the step factor is introduced.

5.2 Step Factor

From the Example 1, Snew= 7.220068554 > Sold= 0.1514721026E-1, a step

factor is applied because the Gauss-Newton increment produces an increase

in the sum of squares. The requested increment usually extends beyond the

region in which the linear approximation is valid. Thus, a small step in the

direction θ(0) should produce a decrease in the sum of the squares. Therefore

a step factor λ can be introduced and calculated as

θ1 = θ0 + λδ0

where λ is chosen to ensure that

S(θ1) < S(θ0). (5.9)

A common method of selecting λ is to start with λ= 1 and halve it until

Equation (5.9) is satisfied.

As seen in the Example 1, the Gauss-Newton increment produced an
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increase in the sum of squares which did not match with the thesis expecta-

tions. The step factor is applied to produce a decrease in the sum of squares

by letting λ= 0.005 for a start. Then the residuals are calculated in the form

of z(1)= y − η(θ(1)) which gives the new sum of squares (Snew) as Snew=

7.220067027. The method of step factor uses different values of λ until the

Equation (5.9) is satisfied and then the iterative process is repeated until

convergence is obtained. That is, until the increment is so small that there is

no useful change in the elements of the parameter vector. Also, the relative

change in the sum of squares on successive iterations is small. From Example

1, the Gauss-Newton method does not agree with either of the criteria above

which are used to declare convergence. This means that when the process

is repeated, the requested increment extends beyond the region where the

linear approximation is valid and produces an increase in the sum of squares.

Note that when the step factor was applied, the Snew was still greater than

the Sold. Therefore the Gauss-Newton method does not work for this type of

nonlinear equation.

This erratic behavior of the Gauss-Newton method could be improved in

practice by applying parameter transformations to improve constraints on

parameters. For example, if θp must be positive and reparametrize to φp=

lnθp, so throughout the iterations the value of θp= eφ
p remains positive. An

interval constraint on a parameter can be written as

a ≤ θ ≤ b,

and can be enforced by a logistic transformation of the form

θ = a +
b− a

1 + e−φ
,

while there is an order constraint on parameters θj, ..., θk, such as

a ≤ θj ≤ θj+1 ≤ ... ≤ θk ≤ b,
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and this can be enforced by a transformation given in Jupp [50]. The rec-

ommendation is based on the fact that the range of the parameter values

are expected to be all positive numbers. Example 1 illustrated that when

the iterative process is repeated several times, the parameters will end up

as negative values. The negative values show that this iterative method is

inappropriate for use in this situation. Therefore, applying parameter trans-

formations to improve constraints on parameters is one way to fix the problem

of erratic behavior of Gauss-Newton method.

The Gauss-Newton iterative method for nonlinear least squares is a simple

and useful method for finding the least square estimates θ̂ for the parame-

ters θ. Some modifications to this method, as well as alternative methods,

have been suggested primarily to deal with ill-conditioning of the derivative

matrix V and to avoid having to code and to specify the derivatives. The

considerations of Seber and Wild [51] regarding the Gauss-Newton algorithm

lead this thesis to discuss Gauss-Newton-based algorithms under two head-

ings: “small-residual problems” and “large-residual problems.” This thesis

is primarily focused on Gauss-Newton-based algorithms for small-residual

problems because the sum of squares of the starting parameter estimates is

small. They are derived by taking the Gauss-Newton step as a search di-

rection and modifying the basic Gauss-Newton algorithm in the same way

as Seber and Wild [51] modified the classical N algorithm. This gives such

popular least-squares algorithms as the Marquardt [53] method.



Chapter 6

Method for Small-Residual

Problems

6.1 Levenberg-Marquardt Algorithms

A condition that causes erratic behavior of Gauss-Newton iterations is the

singularity of the derivative matrix V , which in turn is caused by the 3rd

column is close to 0. There are significant difficulties in accurately determin-

ing both E0 and k0, because they are highly correlated. When V is nearly

singular, δ can be very large, causing the parameters to go into undesirable

regions of the parameter space, as found in the Gauss-Newton method in Ex-

ample 1 above. One solution to the problem of near-singularity is to perform

the calculations for the increment in a numerically stable way. Bates and

Watts [48] recommend using the QR decomposition rather than the normal

equation (XTXβ̂= XTy). This solution is used in this thesis but is still

unable to provide better results. Bates and Watts [48] also recommend the

use of parameter transformation.

We also uses the ideas of Levenberg [54] and Marquardt [53] described by

Seber and Wild [51]. Levenberg-Marquardt algorithms allow for singular or

ill-conditioned matrices V TV by modifying the Gauss-Newton step as written

62
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in the form

δ(n) =
(
V(n)TV(n)

)−1
V(n)Tz(n)

to

δ(n) = (V(n)TVn + k(n)D(n))−1V(n)Tz(n), (6.1)

where k(n) is a conditioning factor and D(n) is a diagonal matrix with positive

diagonal elements. Often, for simplicity, D(n)= I(n). A popular choice of D(n)

is a diagonal matrix with entries equal to the diagonal element of V(n)TV, so

that the method is approximately invariant under rescaling of the θ. When

D= I, the Levenberg-Marquardt direction of δ(n) in the Equation (6.1) inter-

polates between the direction of the Gauss-Newton increment (k → 0) and

the direction of steepest-descent V T(y−k)/ ‖ V T(y−k) ‖ (k →∞). Also,

as the direction tends to steepest descent, the step length ‖ θ ‖ tends to zero.

For k > 0, VTV + kD is positive definite, as D is positive definite. Note, as

k →∞ the length δ tends to zero. Thus by choosing k large enough we can

reduce S(θ)=
∑

z2(θ). However, if k is too large for too many iterations, the

algorithm will take too many small steps and thus make little progress.

Levenberg-Marquardt algorithms differ in how they choose and update

k. Originally Levenberg [54] chose k to minimize S(θ) for θ of the form

θ(n) + δ(n), where δ is given by Equation (6.1). This recommendation has

been disregarded because each trial value of k requires the solution of another

least-squares problem. Marquardt recommends a much easier technique to

use and produces an increment which is invariant under scaling transforma-

tions of the parameters. The first iteration, k is chosen as a small positive

value, for example, k(1)= 0.01. If the result from the first iteration agrees

with the increment δ of Equation (6.1), which minimizes the sum of squares

S(θ), then the second iteration, k is divided by a factor, where it is likely

that a factor of 10 is preferable to use in this thesis. Therefore the new

parameters are sets θ(n+1)= θ(n) + δ(n) where k(n+1)= k(n)/10 to push the
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algorithm closer to the Gauss-Newton method. This process is repeated until

convergence is obtained, that is, until the increment is so small that there

is no useful change in the values of the parameter vectors. During the nth

iteration, if the step δ(n) does not reduce the sum of squares S(θ) then the

value of k should be increased by a factor. In other words, if S(θ) is not

reduced, then try k
(n)
old= 10k

(n)
new, each time recomputing k(n) until a reduction

in S(θ) is achieved. Then again k must be divided by a factor and this pro-

cess repeated until convergence is obtained.

The Levenberg-Marquardt algorithm is more difficult to implement than

the Gauss-Newton algorithm, since one must decide how to manipulate both

the conditioning factor k and the step factor λ. There is general agreement

that, in practice, Levenberg-Marquardt algorithms have been proved to be

good general-purpose algorithms for least-squares problems [51], since they

are robust and work well. Remainder, the main work of this thesis is to find a

method to reduce the errors due to differencing by first fitting an appropriate

smooth function to the data. This appropriate smooth function allows the

calculation of higher-order terms, and gives a better fit to data, providing a

more accurate estimate of the underlying distribution in the DAEM.

6.2 Data Generated with a Gaussian

6.2.1 Example 2

To illustrate calculations of the residuals, we follow the same method as in

Example 1 and it will be used again in Example 3 and Example 4. The

leading order is evaluated by using the Levenberg-Marquardt Algorithm to

minimize the residuals as shown below. Using these values in Example 1, the
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random number generator produces the following data:

Data =

[
[0.1500000000, 0.9621489806], [0.3000000000, 1.024242331],

[0.4500000000, 1.033051170], [0.6000000000, 0.9819960462],

[0.7500000000, 0.9734757992], [0.9000000000, 1.031344011],

[1.050000000, 0.9986545413], [1.200000000, 0.9703193539],

[1.350000000, 0.9130842328], [1.500000000, 0.7918876653],

[1.650000000, 0.6483888526], [1.800000000, 0.5047982891],

[1.950000000, 0.3326939449], [2.100000000, 0.1917859271],

[2.250000000, 0.09363834317], [2.400000000, 0.04104433104],

[2.550000000, 0.01602741851], [2.700000000, 0.004913205795],

[2.850000000, 0.001476246960], [3.0, 0.0003506119174]

]
.

The residual sum of squares are written as z(θ(n))= y−η(θ(n)). This equation

gives the residual sum of squares of the starting parameter estimates in the

form of z(0)= y − η(θ(0)) where θ(0) is the starting value for the parameter.

Then

z(0) =

(
− 0.0378494324, 0.0242510975, 0.0330954475,−0.0178037418,

−0.0257222098, 0.0341725915, 0.0074074423,−0.0059564746,

−0.0305957182,−0.0908213332,−0.1365770949,−0.1461597594,

−0.1614304881,−0.1459237837,−0.1113384887,−0.06822852416,

−0.03469009949,−0.01544013354,−0.005547342985,

−0.001724366280

)T

,
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and the residual sum of squares of z(0) is S(θ(0))= ‖ y − η(θ(0)) ‖2.

S(θ(0)) = sold = 0.1204338066.

Next, the derivatives are collected into the derivative matrix V(0) by evalu-

ating the derivative equations p, r, and s for each parameter (E0, σ, k0) at

time t= (0.15, 0.30, 0.45, ...3.0)s. The derivative matrix V(0) is given below:
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V(0) =




1.752041770E-10 −8.163155630E-10 −1.013120380E-17

8.979171718E-10 −3.855832371E-9 −1.040276946E-16

4.175534354E-9 −1.636803082E-8 −7.263423812E-16

1.724075745E-8 −6.102890225E-8 −4.001443106E-15

6.247688786E-8 −1.971259316E-7 −1.813473209E-14

1.971939567E-7 −5.456392482E-7 −6.871384273E-14

5.391057423E-7 −0.000001280865929 −2.192397579E-13

0.000001271144602 −0.000002519759620 −5.909609280E-13

0.000002575993109 −0.000004086652079 −1.347632199E-12

0.000004473613741 −0.000005317508941 −2.601000275E-12

0.000006641297436 −0.000005240482549 −4.248299940E-12

0.000008409741111 −0.000003262208299 −5.869658057E-12

0.000009065886650 1.335259594E-7 −6.856066978E-12

0.000008305875164 0.000003477851455 −6.765525151E-12

0.000006456966120 0.000005320379789 −5.635981026E-12

0.000004253233982 0.000005233197759 −3.960466790E-12

0.000002370758312 0.000003883150494 −2.345832054E-12

0.000001116875526 0.000002285691719 −1.170275915E-12

4.442023518E-7 0.000001090985244 −4.913520484E-13

1.489898680E-7 4.270842885E-7 −1.734961120E-13



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Then the Levenberg-Marquardt Algorithm is applied to calculate the in-

crement δ(0) to minimize the approximate residual sum of squares as follows

δ(0) =
(
V(0)TV(0) + k(0)D(0)

)−1 (
V(0)Tz(0)

)
(6.2)

where V(0)T is the transposed matrix of matrix V(0), k is a conditioning factor

and D is a diagonal matrix with entries equal to the diagonal elements of

V(0)TV(0). The calculation is started by choosing the conditioning factor

k(0)= 0.01 and calculating the V(0)TV(0) where the diagonal elements are the

same as the entries of matrix D. The result is

V(0)TV(0) =




3.61477E-10 −1.55239E-12 −2.72267E-16

1.55239E-12 1.80894E-10 −2.49901E-17

−2.72267E-16 −2.49901E-17 2.08856E-22


 ,

which gives

D(0) =




3.61477E-10 0 0

0 1.80894E-10 0

0 0 2.08856E-22


 ,

and

V(0)Tz(0) =



−0.00000640677251600000005

1.37678954399999998E-7

4.80986471099999980E-12


 .

Therefore the increment δ(0) in Equation (6.2) is as follow:

δ(0) =



−8964.79902392720396

2249.98952546269265

1.14972112552850761E10


 .
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Then the new parameter θ(1)=

(
E

(1)
0 , σ(1), k

(1)
0

)
can be calculated as

θ(1) = θ
(0)
Use1

+ δ(0), (6.3)

where θ(0)Use1 is equal to the starting parameter estimates (θ(0)) and the

increment δ(0) from Equation (6.2). The result of Equation (6.3) gives the

new parameter θ(1) as follows:

θ(1) =




2.11035200976072811E5

46249.9895254626899

2.47972112552850761E10


 ,

where E
(1)
0 = 2.11035200976072811E5, σ(1)= 46249.9895254626899 and k

(1)
0 =

2.47972112552850761E10. Then the new residuals z(1)= y − η(θ(1)) of the

new parameters θ(1) are calculated to be able to find the new residual sum of

squares S(θ(1)). The residual z(1) is given in the form of matrices as follows:

z(1) =

(
− 0.0378494324, 0.0242510975, 0.0330954475,−0.0178037418,

−0.0257222098, 0.0341725915, 0.0074074423,−0.0059564746,

−0.0305957182,−0.0908213332,−0.1365770949,−0.1461597594,

−0.1614304881,−0.1459237837,−0.1113384887,−0.06822852416,

−0.03469009949,−0.01544013354,−0.005547342985,

−0.001724366280

)T

.

Then the residual sum of squares S(θ(1))= ‖ y − η(θ(1)) ‖2 of z(1) is

S(θ(1)) = Snew = 0.01237329944.

Therefore S(θ(1))= Snew= 0.01237329977 < S(θ(0))= sold= 0.1204338066.

This process is repeated until convergence is obtained. That is, until the
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increment is so small that there is no useful change in the elements of the pa-

rameter vector. Also, the relative change in the sum of squares on successive

iterations is small. From Example 2, the Levenberg-Marquardt Algorithm

does agree with both of the criteria above which are used to declare conver-

gence . This means that when the iterative process is repeated, the request

increment δ(n) minimizes the residual sum of squares S(θ(n)) and approaches

closer to the region where the linear approximation is valid.

The plot of the leading order of the asymptotic result by using the ini-

tial parameter estimates θ(0) and the new parameter values are illustrated

in Figure 6.1. The values of θ(0)=(220000, 44000, 1.33E10)T and θ(1)=

(2.11035200976072811, 46249.9895254626899, 2.47972112552850761E10)T.
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Figure 6.1: Comparison of normalized fractional yield not yet released (v)
varied with time in seconds as in Example 2. The circles are data, the solid
line is the initial guessed solution (θ(0)), and the dashed line is the result of
one iteration of Levenberg-Marquardt Algorithm (θ(1)).

The circles illustrated in Figure 6.1 indicate the data from the random

number generator. This fit can provide a good approximation of whether

the fitting graphs are approaching the refinement region or where it starts

to move away from the converged region. The solid line shows the result of

using the starting parameter estimates θ(0) and the dashed line is the result

obtained by using the improved parameters from applying the Levenberg-

Marquardt Algorithm. It can be seen from the graphs in Figure 6.1 that

applying the Levenberg-Marquardt Algorithm does improve the fitting of

the graph. The graph of the new parameters moved towards the refinement

region. This result shows that the increment is becoming smaller and it

minimizes the change in the elements of the parameter vector.
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6.3 Computer Programme

This thesis has described the computer program created in order to provide

guidance in implementing and speeding the above results (Example 2), and

will be used in the later examples. All calculations and computing programs

used the Maple programme, which has built in support for the LambertW

function. Note that we still use the leading order solution (v(1)) of Equa-

tion (3.16) to provide the estimate f0 which is Gaussian in Example 3.

6.3.1 Example 3

From running the programme in Appendix 2, the results from

MakeIteration(2.20E5, 44E3, 1.33E10, 5) are shown in Table 6.1 below.

θ(n) En σn kn S(θ(n))

θ(0) 0.220E6 0.44E5 1.33E10 0.1204338066
θ(1) 211035.201 46249.9895 2.47972118E10 0.01237329944
θ(2) 210310.815 42077.4605 2.99977767E10 0.006463076506
θ(3) 212992.377 44346.2851 5.45149898E10 0.009266540071
θ(4) 214391.234 42993.6278 4.64972779E10 0.006461018969
θ(5) 214344.064 42968.0639 4.70126252E10 0.006452457778

Table 6.1: The results from MakeIteration(2.20E5, 44E3, 1.33E10, 5).

The analysis of the parameters above illustrated that the first two iterations

gave better estimates for each parameter and caused the decrease of sum

of squares. The conditioning factor k is divided by a factor of 10 where

k → 0. This result shows that the Levenberg-Marquardt direction [i.e. the

direction of δ] is estimated as the direction of the Gauss-Newton increment.

However the third iteration shows the sum of squares started to increase its

value. To avoid the increase in the sum of squares, the conditioning factor

k needs to increase by a factor of 10 to push the algorithm closer again to

the Gauss-Newton direction. Then the fourth and fifth iteration shows the

improvement in the sum of squares is now smaller than the previous sum of
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squares. This result shows that when N is large the sum of squares becomes

smaller and smaller. The Levenberg-Marquardt iterative method is repeated

until the results satisfy Equation (6.4) below.

Sold − Snew

Snew

≤ 10−5 (6.4)

At this point the Levenberg-Marquardt alogarithm has converged. Note that

the MakeIteration in Example 3 uses the same equations and initial param-

eter values as in Example 2 but runs up to fifth iteration. The parameter

values from the MakeIteration results are used in Equation (5.5) to calcu-

late the leading order and the results are plotted and shown in Figure (6.2)

below.
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Figure 6.2: Comparison of normalized fractional yield not yet released (v)
varied with time in seconds as in Example 3. The circles are data, the solid
line is the initial guessed solution (θ(0)), the dashed line is the result of first
iterative parameters (θ(1)), the diagonalcrosses indicate the second iterative
parameters (θ(2)), the crosses indicate the third iterative parameters (θ(3)),
the boxes indicate the fourth iterative parameters (θ(4)) and the longdash line
indicates the fifth iterative parameters (θ(5)). These parameters are shown
in Table 6.1.

Figure 6.2 is hard to analyse because the parameter values are close to

each other. When the parameters are close to each other, limitations of the

computer screen resolution make it difficult to see what is going on. It is

then useful to plot the residuals, magnified as appropriate, and to base the

parameter adjustment on the residuals. The residuals z(n), provide informa-

tion regarding assumptions about error terms and the appropriateness of the
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model. Figure 6.3 shows the plot of residuals from Figure 6.2 and uses the

same symbols.

t s
1 2 3

Dv

K0.20

K0.15

K0.10

K0.05

0

0.05

Figure 6.3: Comparison of the differences between parameter values obtained
for v from the MakeIteration parameters result. These residuals are calcu-
lated from the parameter values that were used in Figure 6.2. The solid
line is the initial guessed solution (θ(0)), the dashed line is the result of first
iterative parameters (θ(1)), the diagonalcrosses indicate the second iterative
parameters (θ(2)), the crosses indicate the third iterative parameters (θ(3)),
the boxes indicate the fourth iterative parameters (θ(4)) and the longdash line
indicates the fifth iterative parameters (θ(5)). These parameters are shown
in Table 6.1.

The starting parameter estimates graph (the solid line) in Figure 6.2 and Fig-

ure 6.3 shows the improvement achieved by applying the iterative method

because all the new parameters θ(n) are moved closer to the data than the

graph of the starting parameter estimates. The closest parameters to the
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refinement region are illustrated by the longdash graph in both plots. There-

fore we prove that the present method is working to data which has been

generated with a Gaussian distribution. The next example is trying to fit

data which has been digitized from published coal volatilization experiments.

6.4 Digitized Data

6.4.1 Example 4

So far we have seen that the Levenberg-Marquardt Algorithm can be suc-

cessfully fitted v(1) to the data which was generated using a Gaussian distri-

bution (eg. the randomly generated data in Examples 2 and 3). However, it

remains necessary to demonstrate that this algorithm can apply to data with

non Gaussian distributions. Therefore, we also run the algorithm using v(1)

to fit data which has been digitized from published coal volatilization exper-

iments. Note that when working with digitized actual data the distribution

is unknown. Using digitized data demonstrates that this present method can

apply to coal data with an unknown distribution, even if the initial guess

for that f0 is Gaussian. Again the Levenberg-Marquardt Algorithm for non-

linear least squares with the leading order solution (v(1)) of Equation (3.16)

provides the estimate f0 which is Gaussian, is used to fit actual coal data.

The results from fitting to digitized data for Total volatiles yield[wt,%] versus

Peak temperature [K] at the heating rate of 1060K/s with V ∗= 43.45% of

original coal is given in Table 6.2 [52].



CHAPTER 6. METHOD FOR SMALL-RESIDUAL PROBLEMS 77

Total Volatiles Yield [wt,%] Peak Temperature [K]
0.284736 565.656066
2.644009 840.393492
4.353333 1029.297917
9.312743 1127.510375
21.472291 1191.954415
27.564722 1239.509385
33.829471 1307.397949
39.910990 1363.065836
41.787696 1402.774176
43.280967 1430.661257
43.352204 1476.294889

Table 6.2: Results from digitized data for Total volatiles yield[wt,%] versus
Peak temperature [K] at the heating rate of 1060K/s with V ∗= 43.45% of
original coal.

The original data in Table 6.2 [52] is converted to the fraction of the

volatile not yet released varied with time. This is illustrated in Table 6.3, by

applying the known equations of T= mt and v= 1 − (V/V ∗) to calculate t

and v as shown below.
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Fractional volatiles yield not yet released Time [s]
0.9934468124 0.5336377981
0.9391482394 0.7928240491
0.8998082163 0.9710357708
0.7856675949 1.063689033
0.5058160875 1.124485297
0.3655990334 1.169348476
0.2214160875 1.233394292

0.814501726E-1 1.285911166
0.382578596E-1 1.323371864
0.38902877E-2 1.349680431
0.22507710E-2 1.392731027

Table 6.3: Data of fractional volatiles yield not yet released varied with time,
calculated from Table 6.2 at the heating rate of 1060K/s with V ∗= 43.45%
of original coal.

To illustrate these calculations, consider the data from Table 6.3 with the

starting parameter estimates θ(0)= (234.8E3, 29.7E3, 6.18E10)T. Note that

we are using the same equations and procedure as in Examples 2 and Example

3 for the calculation of residuals and sum of squares in this example. The

data, along with the fitted values, and the residuals are shown in Table 6.4
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n tn vn η0
n z0

n

1 0.5336377981 0.9934468124 0.9999973670 -0.65505546E-2
2 0.7928240491 0.9391482394 0.9977228085 -0.585745691E-1
3 0.9710357708 0.8998082163 0.9496807825 -0.498725662E-1
4 1.063689033 0.7856675949 0.8453222390 -0.596546441E-1
5 1.124485297 0.5058160875 0.7274382290 -0.2216221415
6 1.169348476 0.3655990334 0.6182280855 -0.2526290521
7 1.233394292 0.2214160875 0.4465592773 -0.2251431898
8 1.285911166 0.814501726E-1 0.3113886367 -0.2299384641
9 1.323371864 0.382578596E-1 0.2274286224 -0.1891707628

10 1.349680431 0.38902877E-2 0.1769876180 -0.1730973303
11 1.392731027 0.22507710E-2 0.1110328639 -0.1087820929

Table 6.4: The data, fitted values and residuals at θ(0)= (234.8E3, 29.7E3,
6.18E10)T.

The derivatives evaluated at θ0 are shown in Table 6.5. Collecting these

derivatives into the derivative matrix V(0), the Levenberg-Marquardt Algo-

rithm formulae is then applied to calculate the increment δ(0) using Equa-

tion (6.1)

δ0 =
(
V(0)TV(0) + k(0)D(0)

)−1 (
V(0)Tz(0)

)

by letting k(0) = 0.01. In this case,

δ(0) =



−8937.59330600000067

−829.923865999999976

5.28771319000000000E10


 ,

and the sum of squares at θ(1)= θ(0)+δ(0) is S(θ(1))= Snew= 0.02659909427E-1,

which is much smaller than S(θ(0))= Sold= 0.3036006111. Then this result

θ(1) =




2.25862406694067497E5

28870.0761340151948

1.14677131899214600E11



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n V0
n1 V0

n2 V0
n3

1 4.216347834E-10 -1.920086173E-9 -3.063962406E-17
2 2.401405379E-7 -6.812716081E-7 -2.594697586E-14
3 0.000003490242871 -0.000005730163299 -4.620692899E-13
4 0.000008012133317 -0.000008144936606 -1.162131660E-12
5 0.00001118537030 -1.715310931E-12 -1.715310931E-12
6 0.00001283813753 -0.000003862101996 -2.047467848E-12
7 0.00001331170208 0.000001788549442 -2.239497777E-12
8 0.00001190166150 0.000005854642191 -2.087699293E-12
9 0.00001015950570 0.000007592623646 -1.834118490E-12

10 0.000008741590420 0.000008102634395 -1.609572036E-12
11 0.000006373723004 0.000007782657387 -1.211086250E-12

Table 6.5: The derivatives of p, r and s evaluated at θ(0) = (234.8E3, 29.7E3,
6.18E10)T.

is used to perform another iteration. This process is repeated until conver-

gence is obtained which is determined by Equation (6.4).

The MakeIteration programme in Appendix 2 was then run for N= 3

and the results are given in Table 6.6. Note the data in Table 6.3 is used in

the MakeIteration programme.

θ(1) θ(2) θ(3)

E0 2.25862406694067497E5 225299.399463057256 225128.4315
σ 28870.0761340151948 22930.8042912352830 22935.75770
k0 1.14677131899214600E11 1.23064584957803650E11 1.18018062E11

S(θ) 0.02659909277 0.009649574628 0.009597161809

Table 6.6: The parameters θ(n) when N = 3 where θ(0)= (0.2348E6, 0.297E5,
0.618E11)T and S(θ(0))= 0.3036006111.

The parameter results in Table 6.6 are plotted with the normalized fractional

volatiles yield not yet released versus time, as shown in Figure 6.4.
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Figure 6.4: Normalized fractional yield not yet released (v) varied with time
in seconds is obtained from the result of Table 6.6. The circles are data from
Table 6.3, the solid line is the initial guessed solution (θ(0)), the dotted line is
the result of first iterative parameters (θ(1)), the crosses indicate the second
iterative parameters (θ(2)) and the dashed line indicates the third iterative
parameters (θ(3)).

Similarly to Example 3, this plot is hard to analyse because parameter

values are close to each other. It is then useful to once again plot the resid-

uals, magnified as appropriate, and to base the parameter adjustment on

the residuals. The plot of residuals in Figure 6.5 is able to distinguish the

closeness of the parameter values. Note that the closest parameters to the

refinement region are illustrated by the dashed line graph in both plots.
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Figure 6.5: Residuals of the plots in Figure 6.4, showing differences between
parameter values obtained for v versus time. The solid line is the initial
guessed solution (θ(0)), the dotted line is the result of first iterative parame-
ters (θ(1)), the crosses indicate the second iterative parameters (θ(2)) and the
dashed line indicates the third iterative parameters (θ(3)). These parameters
are shown in Table 6.6.

One of the most important plots in the regression is the plot of residual

z(n) versus the fitted values η
(n)
n . Systematic features in this plot are of in-

terest. Curvature might indicate that the fitted model is inappropriate, and

might suggest a transformation of the data. Residuals that seem to increase

or decrease with the fitted values might indicate nonconstant residual vari-

ance. A few relatively large residuals may be indicative of outliers-cases for

which the model is somehow inappropriate. On the other hand, if the plot
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of z(n) verses η
(n)
n shows no systematic features, then we would have little

reason to suspect that the fitted model was inappropriate for the data.

For example, the fitted values η
(3)
n and residuals z

(3)
n for the third iteration

(N = 3) are given in Table 6.7 and are plotted against each other in Fig-

ure 6.6. Notice that the residuals are generally small compared to the fitted

values and that they do not suggest any distinct pattern in Figure 6.6. All

residuals are typically less than 0.06 in absolute value. This suggests that

the results from analyses of this plot in Figure 6.6, agree with the choice of

the iterative method.

n tn vn η3
n z3

n

1 0.5336377981 0.9934468124 0.9999999555 -0.65531431E-2
2 0.7928240491 0.9391482394 0.9989062100 -0.597579706E-1
3 0.9710357708 0.8998082163 0.9296731900 -0.298649737E-1
4 1.063689033 0.7856675949 0.7394697830 0.461978119E-1
5 1.124485297 0.5058160875 0.5375941145 -0.317780270E-1
6 1.169348476 0.3655990334 0.3781659776 -0.125669442E-1
7 1.233394292 0.2214160875 0.1869741436 0.344419439E-1
8 1.285911166 0.814501726E-1 0.8618463575E-1 -0.473446315E-2
9 1.323371864 0.382578596E-1 0.4416126052E-1 -0.590340092E-2

10 1.349680431 0.38902877E-2 0.2600163112E-1 -0.2211134342E-1
11 1.392731027 0.22507710E-2 0.9790863335E-2 -0.7540092335E-2

Table 6.7: The data, fitted values and residuals at θ(3)= (225128.431,
22935.7578, 1.1801806E11)T for the third iteration (N= 3).

The plot of residuals z(3) versus fitted values η(3) for the third iteration (N=

3) is shown below.
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Figure 6.6: Residuals versus fitted values for digitized data from the third
iteration of the Levenberg-Marquardt Algorithm.

This iterative process satisfies Equation (6.4) when N= 7 and the sum of

squares S(θ(7))= 0.009596682368 with parameter values

θ(7) =




222004.3158

22623.51229

8.52305343E10


 .

Calculating Equation (6.4) gives 4.173317243E-7 which is less than E-5 where

S(θ(6))= 0.009596686373. Therefore the iterative process converges at S(θ(7)).

Now we have also proved that the present method is working to data which

has been digitized from published coal volatilization experiments.
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6.5 Higher-Order Correction

We move on to the next stage of reducing the residuals by adding the higher-

order correction term εf1 which is non Gaussian to the leading-order term f0

which is Gaussian of v(1) and repeating the iterative process shown in Exam-

ples 2, 3 and 4 above, by using the digitized data of Table 6.3 in Example 4.

It is necessary to fit v(1) to the data in order to smooth it in preparation for

taking derivatives to obtain higher-order approximations to the underlying

distribution. Fitting the high-order correction term (f0 + εf1) to data im-

proves the calculation of the residuals and provides the sum of squares which

is smaller than the sum of squares when fitting the leading-order solution

(f0). Therefore it provides a more accurate estimate of the underlying dis-

tribution in the DAEM.

The equation used to fit the data is defined as:

v(2) ∼
∫ ∞

ys

(f0 + εf1) dy

where

f0 = −dv(1)/dt

dEs/dt
,

and

εf1 = A0

(
Ew

df0

dEs

+
dEw

dt
f0

dEs

dt

)
,

then

v(2) ∼
∫ ∞

ys

(
−dv(1)/dt

dEs/dt
+ A0

(
Ew

df0

dEs

+
dEw

dt
f0

dEs

dt

))
dy. (6.5)

The next iterative process is based on adding the higher-order correction

term εf1 to the leading-order term f0 which gives an improved formula v(2)

in Equation (6.5) which can be used to fit the data. Equation (6.5) improves

the result of v(1) to more accurately approximate parameter values since it
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provides a sum of squares which will be much smaller than in the previous

iterative process. Note that if we add the higher-order correction terms ε2f2

in Equation (3.21) and ε3f3 in Equation (3.22), the results from the iterative

process will provide a more accurate estimate of the underlying distribution

in the DAEM.

We change the variable of integration in Equation (6.5) to the time t.

Approximations are sought to the integral

v(2) ∼
∫ ∞

ts

(
−dv(1)/dt

dEs/dt
+ A0

(
Ew

df0

dEs

+
dEw

dt
f0

dEs

dt

))
K

E0

dt

where

K = RmY (k0t) +
RmY (k0t)

1 + Y (k0t)
,

and

ts =
tY (k0t)

2Y

(
1

2
q

1
k0tY (k0t)

) .

Then v(2) is now rewritten as v(2∗)= 1 − v(2) to form the equation of the

fraction of the volatile yield not yet released, and the problem becomes

v(2∗) ∼ 1−
∫ ∞

ts

(
−dv(1)/dt

dEs/dt
+ A0

(
Ew

df0

dEs

+
dEw

dt
f0

dEs

dt

))
K

E0

dt (6.6)

where dv(1)

dt
is the derivative of Equation (5.5) with respect to t and can be

written in the form

dv(1)

dt
= − 1

2
√

π
e−

E0
2
„

RmtY (k0 t)
E0

−1

«2

2σ2
√

2

√
E0

2

σ2

(
RmY (k0 t)

E0

+
RmY (k0 t)

(1 + Y (k0 t))E0

)
.

The iterative calculation of v(2∗) in Equation (6.6) uses the same Levenberg-

Marquardt Algorithm procedure to fit the data as described in Examples 2, 3

and 4. Note that the starting parameter estimates θ(0) used in v(2∗) are chosen
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to be the same as the last parameter values that were obtained from the last

iteration of v(1). That is, when the iteration of v(1) reaches convergence.

Example 5 also uses Equation (6.4) to determine the convergence of the

iterative process.

6.5.1 Example 5

Consider the data from Table 6.3 of Example 4, with the starting parameter

estimates θ(0)= (222004.3158, 22623.51229, 8.52305343E10)T. This θ(0) is

the result of the last parameter values θ(7) from the fitting of v(1) to data.

The data, along with the fitted values, and residuals evaluated at θ(0) are

shown in Table 6.8.

n tn vn η
(0)
n z

(0)
n

1 0.5336377981 0.9934468124 0.9999999560 -0.65531714E-2
2 0.7928240491 0.9391482394 0.9989074760 -0.603817531E-1
3 0.9710357708 0.8998082163 0.9296810465 -0.580153853E-1
4 1.063689033 0.7856675949 0.7394189045 -0.280635149E-1
5 1.124485297 0.5058160875 0.5374672665 -0.1277459033
6 1.169348476 0.3655990334 0.3779949848 -0.1080433468
7 1.233394292 0.2214160875 0.1867994252 -0.366582035E-1
8 1.285911166 0.814501726E-1 0.8605465835E-1 -0.480675215E-1
9 1.323371864 0.382578596E-1 0.4407174470E-1 -0.323614407E-1

10 1.349680431 0.38902877E-2 0.2593793006E-1 -0.395573097E-1
11 1.392731027 0.22507710E-2 0.9759028450E-2 -0.153295219E-1

Table 6.8: The data, fitted values and residuals at θ(0)= (234.8E3, 29.7E3,
6.18E10)T.

The derivatives of p1, r1 and s1 are evaluated at θ(0) where p1 is the derivative

of v(2∗) with respect to E0, r1 is the derivative of v(2∗) with respect to σ and

s1 is the derivative of v(2∗) with respect to k0, is shown in Table 6.9.
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n V
(0)
n1 V

(0)
n2 V

(0)
n3

1 4.178140010E-12 -2.358716647E-11 7.847513483E-16
2 7.710887433E-8 -2.637667615E-7 -6.030924213E-15
3 0.000004122810334 -0.000007318581498 -3.953867893E-13
4 0.00001224669160 -0.00001114165898 -1.287164909E-12
5 0.00001715663740 -1.906793774E-12 -1.906793774E-12
6 0.00001811656197 0.000001401951445 -2.019402747E-12
7 0.00001467294472 0.000009904810303 -1.789429679E-12
8 0.000009565241504 0.00001113978581 -1.216390203E-12
9 0.000006121034139 0.000009264585494 -8.011520630E-13

10 0.000004169006449 0.000007331267085 -5.565427790E-13
11 0.000001960655486 0.000004233369061 -2.702450672E-13

Table 6.9: The derivatives of p1, r1 and s1 evaluated at θ(0)= (222004.3158,
22623.51229, 0.852305343E11)T where p1 is the derivative of v(2∗) with respect
to E0, r1 is the derivative of v(2∗) with respect to σ and s1 is the derivative
of v(2∗) with respect to k0.

The derivatives in Table 6.9 are collected in a derivative matrix V(0) for

which D and V(0)T are generated. Then δ(0) was solved using the Levenberg-

Marquardt Algorithm in Equation (6.1). In this case, δ(0)= (−3076.69856857

405875, 810.148941006380483, 1.98257653671400909E10)T and the sum of

squares at θ(1)= θ(0) + δ(0) is S(θ(1))= Snew= 0.9863897792E-2, which is

much smaller than S(θ(0))= Sold= 0.4233597490E-1. Then therefore θ(1)=

(2.18927617231425946E5, 23433.6612310063792, 1.05056299667140091E11)T

and another iteration was performed.

The iterative process of the MakeIteration programme in Appendix 2

was then run for N= 3 and obtained the parameter values shown in Ta-

ble 6.10. Note the change in the MakeIteration programme of equation,

was from v(1) to v(2∗). The digitized data in Table 6.3 was used.
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θ(1) θ(2) θ(3)

E0 218927.617231425946 218072.400530257641 218079.199449991924
σ 23433.6612310063792 22775.2147499209823 22831.5708550212548
k0 1.0505629966714E11 9.9671137072299E10 9.9574500697115E10

S(θ) 0.9863897792E-2 0.9582835743E-2 0.9577028426E-2

Table 6.10: The parameters θ(n) when N= 3 where θ(0)= (222004.3158,
22623.51229, 0.852305343E11)T and S(θ(0))= 0.4233597490E-1.

The parameter values from Table 6.10 are indistinguishable from plots of

the calculation of v, as illustrated in Figure 6.7 shown below.
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Figure 6.7: Normalized fractional yield not yet released (v) varied with time
in seconds is obtained from the result of Table 6.5. The boxes are data,
the solid line is the initial guessed solution (θ(0)), the circles are the result
of first iterative parameters (θ(1)), the crosses indicate the second iterative
parameters (θ(2)) and the dashed line indicates the third iterative parameters
(θ(3)). These parameters are shown in Table 6.10.

The plot of the residuals versus time in Figure 6.8 shows clearly which

plotted residuals have the smaller sum of squares at θ(n). The smaller the sum

of squares at θ(n), the smaller the amplitude obtained on the plot of residu-

als. Note that the parameter which contains the smallest sum of squares is

illustrated by the dash line graph in both plots.
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Figure 6.8: Residuals of the plots in Figure 6.7, showing differences between
parameter values obtained for v versus time in Example 5. The solid line is
the initial guessed solution (θ(0)), the circles are the result of first iterative
parameters (θ(1)), the crosses indicate the second iterative parameters (θ(2))
and the dashed line indicates the third iterative parameters (θ(3)). These
parameters are shown in Table 6.10.

The iterative process satisfies Equation (6.4) when N= 7 and the sum of

squares S(θ(7))= 0.009575375913 where the parameter value of

θ(7) =




217815.530752700288

22850.3934920922802

9.68677057029868622E10


 .

Calculating Equation 6.4 gives 5.405531905E-7 which is less than E-5 where

S(θ(6))= 0.009575381089. Therefore the iterative process converges at S(θ(7)).
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6.6 Comparison of v(1) and v(2∗)

Comparisons of the two fitted equations v(1) and v(2∗) illustrate that the re-

sults obtained by adding the higher-order correction term εf1 to the leading-

order term f0 provide an improved estimate of the underlying distribution.

This can be seen from the results of the sum of squares at θ(n) and can also

be illustrated clearly in the plotting of the residuals versus time graph. For

example if we let N= 7, the results are illustrated in Table 6.11 below.

θ(7) in v(1) θ(7) in v(2∗)

S(θ(7)) 0.009596682368 0.009575375913
E0 222004.3158 217815.530752700288
σ 22623.51229 22850.3934920922802
k0 8.52305343E10 9.68677057029868622E10

Table 6.11: The parameters θ(7) when N= 7 in both fitting equations v(1)

and v(2∗).

The sum of squares in Table 6.11 illustrates that v(2∗) provides a more accu-

rate estimate because the S(θ(7)) in v(2∗) is smaller than S(θ(7)) in v(1). Note

that both iterative processes showed convergence when N= 7. This means

that S(θ(7)) in v(1) and v(2) are both satisfied in Equation (6.4). The other

alternative, which is more appropriate for comparing v(1) and v(2∗) uses the

parameter values of the smallest sum of squares in Table 6.11, that is θ=

θ(7) in v(2∗).

The plot of the residual results versus time is illustrated in Figure 6.9

with the crosses being v(1) calculations, and the solid circles being those

of v(2∗) calculations. It can be seen that the solid circles provided smaller

residuals than the crosses. This means that v(2∗) provides a more accurate

estimate of parameters than v(1).



CHAPTER 6. METHOD FOR SMALL-RESIDUAL PROBLEMS 93

t s
0.5 1.0 1.5 2.0

Dv

K0.05

0

0.05

0.10

Figure 6.9: Comparison between residual results of v(1) and v(2∗) at θ=
(217815.530752700288, 22850.3934920922802, 9.68677057029868622E10)T.
The crosses are v(1) calculations, and the solid circles are of v(2∗) calcula-
tions.

The second plot shows the residual results versus fitted values from Fig-

ure 6.9 with the v(1) results shown as crosses and v(2∗) results shown as solid

circles. Figure 6.10 shows that the residuals are generally small compared

to the fitted values and that they do not suggest any distinct pattern. All

residuals in v(1) are typically less than 0.13 in absolute value, whereas the

residuals in v(2∗) are less than 0.06 in absolute value. This suggests that the

results from v(2∗) provides a more accurate estimate parameters than v(1).

The analysis of the plotting in Figure 6.10 agrees with the chosen iterative

method.
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Figure 6.10: Comparison between residual results versus fitted val-
ues of v(1) and v(2∗) at θ= (217815.530752700288, 22850.3934920922802,
9.68677057029868622E10)T from Figure 6.9. The crosses are v(1) calcula-
tions, and the solid circles are v(2∗) calculations.

The inverse problem of determining the distribution from measurements

of v versus time when θ= (217815.530752700288, 22850.3934920922802, 9.686

77057029868622E10)T is illustrated in Figure 6.11. Note that when working

with digitized actual data, the distribution is unknown. The crosses in Fig-

ure 6.11 show the result of calculating just the leading-order term f0 using

Equation (3.19), and the solid circles are the result obtained by adding our

higher-order correction term from Equation (3.20). It can be seen that adding

εf1 to f0 shifts the underlying distribution a little bit toward the right which

suggests that adding εf1 gives a non Gaussian total distribution, that is, the

actual data distribution is non-Gaussian otherwise, the best fit of f0 would

lie exactly under it. This result suggests that the method will work well

for non Gaussian underlying distributions. The underlying distribution is
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smooth and shown below.
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Figure 6.11: Comparisons the underlying distributions estimated inversely
from values of v versus time between the leading-order result and the higher-
order result. The leading-order result by a crosses, and the higher-order
result by a solid circles.

Note that during the iterative process, special attention needs to be paid

to how to increase and decrease the conditioning factor k(n). We find out

that there are two approaches to increase k(n) when the new sum of squares

is greater than the previous one. The first approach is presented in Exam-

ples 2, 3 and 4 where k(n) is increased by a factor and used together with

the increased sum of squares parameter values to perform the next iteration.

The second approach is illustrated in Example 5 where k(n) is increased by

a factor and used together with the last decreased sum of squares parameter

values to compute the next iterative. These two methods show that the sec-
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ond approach is much faster to obtain convergence than the first approach.

From Example 5 if the first approach is applied, the algorithm will take too

many small steps and thus make little progress.

As seen in Example 5, the converged parameter values θ(7) from Exam-

ple 4 are used as the starting parameter estimates θ(0) to perform the new

iteration in Example 5. Note that the sum of squares S(θ(7)) at θ(7) is the

smallest in Example 4. We find that the first iteration in Example 5 demon-

strates that S(θ(0)) is greater than S(θ(7)). This result illustrates that the

best width Ew of v(1) is not the best starting width Ew of v(2∗). This is

because the width Ew of v(1) shifts inward and outward in v(2∗) as a result of

adding εf1 to f0. Therefore, the validity of the v(n) depends on the numbers

of higher-order terms added to improve the formula.

The Levenberg-Marquardt Algorithm showed that the direction of δ(n)(k)

is intermediate between the Gauss-Newton direction (k(n) → 0) and the

steepest-descent direction (k(n) →∞). These directions were both seen dur-

ing the iteration process. In Examples 2, 3 and 4, the direction of δ(n)(k)

pushes the algorithm closer to the Gauss-Newton Method. While in Exam-

ple 5, the direction of δ(n)(k) pushes the algorithm closer to Gauss-Newton

Method at the start of the iteration process and then diverges to push the

algorithm toward the steepest descent direction. It can be seen in Example

5 when N = 6, 7 and k = 10, 100 that the values of k start to increase during

the iterative process. The increase of k provides the calculation of δ(n) to

reduce the sum of squares.

To illustrate calculations of the residuals, the leading order solution (v(1))

of Equation (3.16) provides the estimate f0 which is Gaussian. The leading

order v(1) is used to fit data which is generated using a Gaussian distribution,

plus a small random error or digitized data from published coal volatilization

experiments. We are fitting v(1) to the data in order to smooth it in prepara-
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tion for taking derivatives to obtain higher-order approximations which are

not Gaussian to the underlying distribution. Adding the higher-order cor-

rection term εf1 to the leading-order term f0 gives an improved formula v(2)

in Equation (6.5) for fitting the data. Equation (6.5) improves the result

of v(1) to more accurately approximate parameter values since it provides a

sum of squares which is smaller than in the previous iterative process. The

purpose of smoothing the data is to get the best parameter values which

are closest to the final values in order to provide a more accurate estimate

of the underlying distribution in the DAEM. Note that when working with

digitized actual data the distribution is unknown.



Chapter 7

Conclusion

The validity of the two models, the Single First Order model (SFOR) and

the Distributed Activation Energy Model (DAEM) were clarified through the

comparison of their contribution to coal pyrolysis. Evidence is found that

the DAEM is more powerful than the SFOR model in evaluating the complex

experimental conditions of coal pyrolysis. The evaluation of the SFOR model

and the DAEM found the SFOR model to be problematic because it can only

be applied in limited conditions and cannot be expected to represent data

accurately over a wide range of conditions. The shortcomings of the SFOR

model can be resolved and evaluated by the use of the DAEM in coal py-

rolysis. Therefore, the DAEM is generally found to be the most appropriate

model for evaluating the complex experimental conditions of coal pyrolysis.

This thesis attempts to understand and describe the behavior of coal py-

rolysis when the distribution of volatiles is wide compared with the double

exponential term (DExp) . In this case, asymptotic approximations for the

amount of volatile released in the full DAEM were derived, and have been

found by numerical testing to work better than previous approximations for

underlying distribution of coal pyrolysis. The iterative calculation of v(1) and

v(2∗) uses an iterative method called the Levenberg-Marquardt Algorithm to

smooth the data first. This method minimizes the error due to differencing
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between values obtained for v and it proved to work well with coal data. A

computer programme was created to provide guidance and speed the calcu-

lation of the residuals and sum of squares.

The leading-order solution (v(1)) of Equation (3.16) provides the estimate

f0 which is Gaussian, and adding the higher-order correction term εf1 gives

an improved formula v(2) in Equation (6.5) which is non Gaussian. It is

necessary to fit v(1) to the data in order to smooth it in preparation for

taking derivatives to obtain higher-order approximations to the underlying

distribution. Fitting the higher-order correction term to data improves the

calculation of residuals and provides the sum of squares which is smaller

than the sum of squares when fitting the lead-order solution. Note that if

we add the higher-order correction terms ε2f2 in Equation (3.21) and ε3f3 in

Equation (3.22), the results from the iterative process will provide a more

accurate estimate of the underlying distribution in the DAEM. Therefore the

more higher-order terms we add, the better the underlying distribution in the

DAEM.

The iterative method result has smoothed the underlying distribution

shows in Figure 6.11. Figure 6.11 illustrated the plot of the underlying dis-

tribution with the crosses showing the best Gaussian of calculating just the

leading-order term f0. The solid circles illustrate the result obtained by

adding our higher-order correction term which makes the distribution non

Gaussian. The analysis of Figure 6.11 shows that when adding the higher

order (εf1), the underlying distribution curve shifted a little bit toward right

from the best fit f0. This result illustrated that the method seemed to work

well for non Gaussian underlying distribution. Therefore, we anticipate that

this new approach is general enough to apply to any form of energy distri-

bution that provides a case of wide distribution in DAEM.

Substantial difficulty was encountered in finding an appropriate smooth-
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ing function to deal with the complex experimental conditions of coal py-

rolysis. However it is encouraging that the results from this thesis are valid

for any form of energy distribution that provides a case of wide distribution.

An explanation has been presented of the behavior of the double exponen-

tial time-dependent part of the double integral in the DAEM, here called

DExp. This explanation follows closely from the detailed investigation done

by McGuinness et al. [28] but further develops their formulae and applies it.

7.1 Recommendation

It appears at this point that the improvement that remains to be attempted

is trying to solve the erratic behavior of the Gauss-Newton Method. The con-

dition that causes this problem is the ill-conditioning of the derivative matrix

V , which is caused by collinearity of the columns. This thesis recommends

that this erratic behavior of the Gauss-Newton method could be improved

in practice by applying parameter transformations to improve constraints on

parameters. It also remains to be proved that this method (which starts by

assuming f0 is Gaussian) does work for data which is not generated using

a Gaussian distribution. For example, using data generated by a Gamma

Distribution plus noise.

7.2 Research Direction

A question that arose during this work is “ Can the pre-exponential or fre-

quency factor k0 be allowed to depend on the activation energy E of Equa-

tion (2.2) in the Mathematical approach?” We understand that both k0 and

E are highly correlated with each other but we have not yet reached a sat-

isfactory conclusion on whether k0 does depend on E. Miura and Maki [27]

argue in their work that k0 does depend on E by plotting the graph and

showing that k0 cannot be assumed as a constant. They correlate k0 with E
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based on experimental data of the equation

k0 = αeβE

where α and β are constants dependant on the reaction system. However,

it remains as an outstanding question whether k0 really does depend on E

mathematically and physically, and this would be a valuable direction for

future research.



Chapter 8

Appendices

8.1 Appendix 1

QR Decompositions Using Householder Transformations

Performing a QR decomposition of an N×P matrix V by using Householder

transformations (Householder, 1958 [55]) is a generalization of reflections in

the plane. These are N ×N square matrices of the form

Hu = I− 2uuT

where I is the N ×N identity matrix and u is an N -dimensional unit vector,

where the norm of u is described as ‖ u ‖=
√

uTu = 1. Hu is orthogonal

and symmetric, since

Hu
T = IT − 2uuT = Hu

and

Hu
THu = I− 4uuT + 4uuTuuT = I

Multiplying a vector y by Hu, as

Huy = y − 2uuTy
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corresponds to reflecting y in the hyperplane through the origin perpendic-

ular to u. Evaluating and rearranging the equations above for u gives

u =
y− ‖ y ‖ e1

‖ (y− ‖ y ‖ e1) ‖
or

u =
y+ ‖ y ‖ e1

‖ (y+ ‖ y ‖ e1) ‖
where e1 = (1, 0, ..., 0)T and ‖ y ‖ is the norm of y.

8.2 Appendix 2

Computer Programme

MakeIteration := proc(E0in, σin, k0in, N)

local v, p, r, q, s, E0, σ, k0, θ0Use, θ1, t, Sold, X, δ, XT, η, D, δ1, θ0Use1,

Snew, z, z1, y;

v := (t,E0 , σ, k0 ) 7→ 1

2
erfc

(
1

2

√
2

√
E0

2

σ2

(
RmtLambertW (k0 t)

E0

− 1

) )
;

p := diff(v(t, E0, σ, k0), E0);

r := diff(v(t, E0, σ, k0), σ);

s := diff(v(t, E0, σ, k0), k0);

Let E0 := E0in; σ := σin; k0 := k0in;
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Data = [0.9621489806, 1.024242331, 1.033051170, 0.9819960462,

0.9734757992, 1.031344011, 0.9986545413, 0.9703193539,

0.9130842328, 0.7918876653, 0.6483888526, 0.5047982891,

0.3326939449, 0.1917859271, 0.09363834317, 0.04104433104,

0.01602741851, 0.004913205795, 0.001476246960, 0.0003506119174];

The constant values :

m := 650; R := 8.3144;

θ0Use := E0in, σin, k0in;

θ1[1] := θ0Use;

k := 0.1E-1;

z := Matrix

(
evalf([seq([y[i]−(eval(v(t, E0, σ, k0), t = 0.15×i))], i = 1..20)])

)
;

Set up the iteration :

for q from 1 to N do;

Find the sum of squares of the starting parameter estimates (S(θ(0)) = Sold) :

Sold := MatrixNorm(z, 2)2;

Calculate the sum of squares of the improving parameter (S(θ(1)) = Snew) :

X := Matrix

(
evalf([seq([eval(p, t = 0.15× i), eval(r, t = 0.15× i),

eval(s, t = 0.15× i)], i = 1..20)])

)
;

Apply ”The Levenberg −Marquardt Compromise”

δ :=
(
(XTX + kD)−1 (XTz)

)
;
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XT := Transpose(X);

D := Matrix((XT, X), shape = diagonal);

θ0Use1 := Matrix([[E0], [σ], [k0]]);

θ1[q + 1] := θ0Use1 + delta

Data from θ1[q + 1] :

E0 := θ1[q + 1][1, 1];

σ := θ1[q + 1][2, 1];

k0 := θ1[q + 1][3, 1];

print(E0); print(σ); print(k0);

z1 := Matrix(evalf([seq([y[i]− (eval(v(t, E0, σ, k0), t = 0.15×i))], i = 1..20)]));

Snew := MatrixNorm(z1, 2)2;

print(Sold); print(Snew);

if Snew < Sold and
Sold − Snew

Snew

> 10× 10−7 then

z := z1

k :=
1

10
k

else

z := z1

k := k × 10

end if ;

if 0 ≤ Sold − Snew

Snew

≤ E− 5 then

print(STOP );
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else

print(CONTINUE);

end if ; od; end;

MakeIteration(E0, σ, k0, N)
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