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Abstract

The generic doping dependence of the thermodynamic, electrodynamic and

transport properties of high-temperature superconductors remains a puzzle

despite many years of study. We are still awaiting a rigorous scientific the-

ory that explains the resistance-free flow of electric current in these novel

materials. In conventional superconductors, observations of the predicted

dependence of the superconducting transition temperature on isotopic mass

played a key role in identifying a phononic pairing mechanism.

In order to elucidate the role of phonons in the high-Tc superconductors,

the oxygen isotope effect in the separate components of the penetration depth

tensor of the high-temperature superconductor YBa2Cu4O8 was determined

from AC susceptibility measurements, performed on biaxially-aligned pow-

ders set in epoxy. The results, extracted after assuming values for the upper

cut-off radii in the particle size distributions, show that the isotope effect in

the bc-plane is negligible compared to those of the ab- and ac-planes. This

suggests that the electrons prefer to couple to phonon modes in which the

motion of the atoms is perpendicular to the plane of transport.

The electronic entropy, superfluid density, Raman response, spin suscepti-

bility and thermoelectric power were calculated from energy-momentum dis-

persions determined by angle-resolved photoemission spectroscopy (ARPES).
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An excellent match with experimental data was obtained. This is a highly

significant result because it provides the first comprehensive link between

these bulk properties and the ARPES measurements which are dominated

by the outermost CuO2 layer. Thus, in most respects surface effects do

not appear to seriously modify or obscure the band structure which governs

bulk properties. The calculations reveal the presence of a van Hove singu-

larity (vHs) at the Fermi level (EF ) in the heavily overdoped regime to be

a universal feature of the cuprates. The evolution of these properties with

temperature and doping can be fully explained by the retreat of EF from

the vHs and the opening of a normal state pseudogap as doping is decreased.

Consequently, the pairing potential amplitude is found to be a strongly de-

creasing function of hole concentration, similar to the doping dependence of

the exchange interaction, J . The pairing interaction is possibly a universal

function of the EF −EvHs with the maximum in the transition temperature

(Tc) governed by the exact magnitude of the density of states on the flanks of

the vHs. These are key new discoveries which may provide a route forward

to solving the puzzle of high-temperature superconductivity.
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Chapter 1

Introduction

Perhaps no other class of materials has been the target of such concentrated

research as the high temperature superconducting cuprates. Twenty one

years after the discovery of the first high temperature superconductor by

Bednorz and Müller we are still awaiting a rigorous scientific theory that

explains the origin of the resistance-free flow of electric current in these ma-

terials. If the history of superconductivity is anything to go by our patience

will eventually be rewarded.

First discovered in 1911 by Kamerlingh Onnes[1, 2] it would be another

46 years until the phenomenon low-temperature or conventional supercon-

ductivity in metals would be explained by a theory proposed by Bardeen

Cooper and Schrieffer[3]. BCS Theory, as it has become known, describes

how the pairing of electrons can occur in the presence of an arbitrarily small

attractive interaction and is now regarded a significant achievement of mod-

ern condensed matter theory. It has proceeded to have impacts on areas

of physics well beyond the realm of the metallic systems it was initially in-
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tended to describe[4]. The diversity of its reach now extends from the pairing

of neutrons and protons in nuclei[5], to the pairing of nucleons in neutron

stars[6] and the behaviour of the exotic quark matter[7] speculated to exist

inside their cores.

In the years between 1911 and 1974 the discovery of materials with higher

superconducting transition temperatures (Tc’s) proceeded incrementally with

an average rate of increase in Tc of about three degrees per decade. Then

for the next twelve years the highest Tc achieved remained fixed at 23.3K.

At the time it was widely believed that superconductivity above 30K was

impossible. It therefore came as a complete shock to the physics community

when Bednorz and Müller announced the discovery of the onset of supercon-

ductivity in Ba-La-Cu-O at 35K[8, 9] (the superconducting phase was later

identified to be La2−xBaxCuO4[10]). The new ‘high-temperature’ supercon-

ductor belongs to a class of layered copper-oxide based ceramics or cuprates.

Their relative ease of preparation spurred a worldwide race to find similar

materials with yet higher Tc’s. Barely a year later superconductivity above

90K was discovered in YBa2Cu3O6+x[11, 12]. To date the record at ambi-

ent pressure stands at 135K in HgBa2Ca2Cu3O8+δ which can be increased to

around 160K via the application of pressure[13].

The quest for higher transition temperatures is driven by the obvious

advantages that superconductors bring to technological applications. Until

the arrival of high-temperature superconductivity (HTS) these advantages

were largely outweighed by the costs associated with cooling the materials

to the superconducting state. The lack of an understanding of the mech-

anism underlying high temperature superconductivity in the cuprates has
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not prevented their commercial exploitation. Such an understanding might

however allow us to determine from first principles if higher transition tem-

peratures are possible in this class of materials, or whether we have reached

some fundamental limit and should direct our search elsewhere. To this end

the cuprates have been subjected to the full arsenal of modern experimental

probes.

Proposed mechanisms for electron pairing in high-Tc superconductors can

be described as either phonon based or non-phonon based (or maybe a com-

bination of both). Phonons are quantized lattice vibrations. Observations

of the predicted dependence of the superconducting transition temperature

on isotopic mass[14] helped confirm the virtual exchange of phonons as the

source of electron pairing in conventional low temperature superconductors.

The role of phonons in HTS is not clear and so the aim of the experimental

part of this project was to determine the isotope effect in the penetration

depth tensor. The penetration depth, λ, is a fundamental length scale and

is related to the superfluid density. The superfluid density, ρs ∝ λ−2, is a

measure of the rigidity of the superconducting condensate.

The generic doping dependence of the thermodynamic, electrodynamic

and transport properties of high-Tc superconductors remains a puzzle despite

many years of study. Different techniques have at times produced seemingly

contradictory results, leading to an increase rather than a decrease in the

number of candidate theories. Their unusual behaviour is often taken to

be a signature of exotic physics yet it should be related to the electronic

energy-momentum dispersion, obtained for example from angle-resolved pho-

toemission spectroscopy (ARPES). The aim of the theoretical component of
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this project was to calculate various transport and thermodynamic prop-

erties from the energy-momentum dispersion and compare the results with

experimental data.

The thesis is organised as follows. Chapter 2 contains brief background

information on aspects of high-Tc superconductivity relevant to the under-

standing of the results presented in this work, especially those of chapter 6.

More detailed information can be found in the cited references.

Chapter 3 describes the experimental techniques employed in sample

preparation, as well as a listing of the measurement apparatus employed.

All measurements were performed using standard techniques on commer-

cial lab equipment and so descriptions of how this equipment works is not

included in this work. The experimental results are presented in chapter 4.

Chapter 5 details the techniques employed in the computational part

of this work. In particular, the program architectures and algorithms are

described in a programming language independent manner and should be

understandable by readers who are unfamiliar with computer programming.

The computational results and comparison with experimental data is pre-

sented in chapter 6.

Lastly, the summary and conclusions are presented in chapter 7.

It is our view that the present studies have firstly provided an important

bridge between the thermodynamics and the band structure as probed by

ARPES. Secondly, and perhaps more importantly, this work has identified

the key features governing the universal phase diagram and the systematic

evolution of physical properties with doping. These key features actually

provide a strategy for tailoring the physical properties and, most importantly,

4



for controlling the value of Tc. The puzzling but exciting problem of high-Tc

physics is certainly not yet solved but the present work clarifies many features

and lights the way forward to that final goal.
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Chapter 2

Background

2.1 Crystal Structure

The high-Tc superconductors are brittle copper oxide based ceramics known

as cuprates. Their structure can be viewed in a simple picture as a stack of

copper oxide (CuO2) sheets extending in the ab-plane separated by charge

reservoir layers. The resulting transport properties are highly anisotropic.

Electron dynamics are quasi two dimensional, being largely confined to the

ab-plane, while c-axis transport is weak, and for underdoped cuprates inco-

herent.

More specifically, the crystal structure comprises a set of n CuO2 sheets of

corner-linked square-planar coordinated copper. For n > 1, the CuO2 sheets

are separated from one another by an oxygen-free plane of yttrium or calcium

atoms. Generally speaking, Tc rises with the number of CuO2 sheets in the set

up to n=3 or 4. For higher values the carriers doped from the charge reservoir

layers are increasingly diluted and Tc falls due to underdoping[15]. Each set of
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CuO2 sheets is separated from the next by metal-oxide layers where the metal

atoms are usually lanthanum, barium, thallium or bismuth[16]. The crystal

structure of the two-layer (n = 2) Bi-Sr-Ca-Cu-O (BSCCO) superconductor,

Bi2Sr2CaCu2O8+δ (Bi-2212), is shown in Fig. 2.1. The Y-Ba-Cu-O (YBCO)

cuprates are further complicated by the presence of CuO chains extending in

the b direction. The structure of YBa2Cu4O8 (Y-124) is shown in Fig. 2.2.

2.2 Phase Diagram

The parent compounds of the high-Tc cuprates are Mott-Hubbard antifer-

romagnetic insulators. Simple band structure considerations suggest a half

filled 3dx2−y2 band and hence a parent metallic state. But the strong on-site

Coulomb repulsion causes a splitting of this band into an occupied lower

Hubbard band and an empty upper Hubbard band. The undoped state is

therefore an insulator. In effect, the insulating nature of these materials re-

sults from strong Coulomb repulsion which prevents electrons from hopping

between neighbouring Cu sites. The Coulomb repulsion energy is known as

the Hubbard U . The small amount of electron hopping, in combination with

the Pauli exclusion principle insists that the spins on the Cu ions arrange

themselves antiferromagnetically as illustrated in Fig. 2.3 in what is known

as a Néel lattice.

Holes may be chemically doped into the cuprates by replacing some of

the trivalent (3+) ions in the charge reservoir layers with divalent (2+) ions.

The divalent ions supply only two electrons where three are required, and so

to maintain charge neutrality electrons are depleted from the CuO2 layers. In

7



Figure 2.1: Crystal structure of Bi-2212[17].
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Figure 2.2: Two views of the crystal structure of Y-124[17]. Yttrium and barium
atoms are shown in green and pink respectively. The double CuO chains are clearly
visible between the opposing CuO5 square pyramid pentahedra.
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Figure 2.3: Antiferromagnetic structure of the copper oxide plane. Copper atoms
are red and oxygen atoms are blue.

certain cuprates (e.g. Bi2Sr2CaCu2O8+δ) additional holes can also be intro-

duced by altering the oxygen content. Some cuprates, while stoichiometric,

are self-doped. Examples include YBa2Cu3O7 and YBa2Cu4O8.

The hole-doped cuprates have a somewhat universal doping phase dia-

gram, an example of which is illustrated in Fig. 2.4. The doped holes are

free to hop between copper sites resulting in a melting of the Néel lattice

and a corresponding drop in the Néel temperature, TN , to zero with doping.

Following the disappearance of the 3D antiferromagnetic state superconduc-

tivity emerges with a transition temperature, Tc, that has a roughly parabolic

dependence on hole concentration, p. It has been argued that most cuprates

exhibit superconductivity between hole concentrations of 0.05 and 0.27 with

Tc following the empirical relation[18] Tc/Tc,max = 1 − 82.6(p − 0.16)2. (An

exception is the single layer Bi2Sr2CuO6+δ system.)

The maximum transition temperature occurs at optimal doping, popt =
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0.16. Optimal doping divides the phase diagram into underdoped (p < 0.16)

and overdoped (p > 0.16) regions. The underdoped region is dominated by

the pseudogap (to be discussed later in the chapter) while in the heavily over-

doped region the cuprates exhibit Fermi-liquid-like metallic behaviour. The

intermediate region is characterised by a non-Fermi-liquid regime in which

the behaviour of physical properties deviate from those expected in a Landau

Fermi liquid picture. The most notable example is the linear temperature

dependence of the in-plane electrical resistivity. Varma et al.[19] have pro-

posed a ‘marginal-Fermi-liquid’ phenomenology to describe the behaviour in

this regime.

2.3 Angle Resolved Photoemission

Spectroscopy

Angle resolved photoemission spectroscopy (ARPES) uses the photoelectric

effect to determine the electronic structure of materials. The geometry of

a typical ARPES measurement is shown in Fig. 2.5. Incident high energy

photons with energy hν eject electrons from the sample. The energies of the

emitted electrons are measured by an electron analyser as a function of polar

(θ) and azimuthal (φ) angles. Using energy and momentum conservation

laws the initial energy and momentum of the electron, and by extension

the electronic energy-momentum dispersion of the sample, can be deduced.

Energy dispersion curves (EDC’s) can be produced from energy scans at fixed

momentum, and momentum distribution curves (MDC’s) can be produced

12



from momentum scans at fixed energy.

The photons used in ARPES experiments on HTS materials have typically

been supplied by a synchrotron light source with energies in the ultraviolet

(< 100eV) range. At these energies ARPES measurements are extremely

surface sensitive. To achieve measurements representative of the bulk re-

quires atomically clean samples. As a result the majority of ARPES studies

on the cuprates have been performed under ultra high vacuum conditions on

BSCCO single crystals which can be naturally cleaved in situ between the

BiO planes. Most recently an ARPES system has been developed in which

a 6eV laser is used as the photon source[20]. The use of lower energy pho-

tons offers the advantages of increased bulk sensitivity, reduced background

signal and increased energy and momentum resolution. These advantages

might allow the ARPES technique to be extended to materials that do not

cleave easily.

Some notable contributions from ARPES to the understanding of the

high-Tc cuprates include the mapping of the Fermi surface[21], the observa-

tion of an extended saddle-point singularity in the dispersion[22, 23], the

observation of a normal-state pseudogap[24, 25] and related break up of

the Fermi surface in the underdoped regime[26], and the observation of an

anisotropic superconducting gap consistent with a d-wave order parameter[27,

28, 29, 30].
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Figure 2.5: ARPES measurement geometry. A photon with energy hν ejects an
electron e− that is detected by an analyser.

2.4 Energy-momentum Dispersion

The electronic structure of the cuprates is often interpolated from experi-

mental data using a semi empirical tight binding model. In the tight bind-

ing model the electron wavefunction is approximated by a linear combina-

tion of isolated atomic orbitals. The model gives good qualitative results

for bands that are derived from strongly localised atomic orbitals. The

energy-momentum dispersion that results from the tight binding model is

parametrized by hopping parameters. These parameters describe the ability

of an electron to jump from one specific atom to another and are obtained

from fits to experimental data. The relationship between the electron orbitals

in the CuO2 plane and the hopping parameters is illustrated in Fig. 2.6.

Most theories of high-temperature superconductivity are based on the
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Figure 2.6: Schematic diagram of electron orbitals in the CuO2 plane and related
hopping parameters (adapted from Ref. [31]).

Hubbard model with one Cu dx2−y2-like orbital per CuO2 unit. The single

electron energy-momentum dispersion in this model given by[31]

ǫ(k) = −2t(cos kx+cos ky)+4t′ cos kx cos ky−2t′′(cos 2kx+cos 2ky)+..., (2.1)

where t,t′,t′′,... denote the hopping integrals on the square lattice.

The six-parameter Bi-2212 energy-momentum dispersion reported by Nor-

man et al.[32] is plotted in Fig. 2.7. It was obtained from tight-binding fits

to ARPES data. This dispersion does not include fine structure due to

renormalization effects or bilayer splitting. Although the exact values of the

hopping parameters differ between the cuprates the overall shape of the dis-

persion is common. It is dominated by saddle points at (±π, 0) and (0,±π)

which give rise to a van Hove singularity in the density of states.
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Figure 2.7: Energy momentum dispersion of Bi-2212 determined from a six pa-
rameter tight-binding fit to ARPES data[32]. kx and ky are in units of 1/a where
a is the lattice spacing.

2.4.1 Fermi Surface

In the present work the dispersion is assumed to be completely two-dimensional.

In two dimensions the Fermi ‘surface’ is defined by a constant energy con-

tour. Figure 2.8 shows the dispersion projected onto the (kx, ky) plane with

the Fermi surface near optimal doping indicated by the magenta coloured

constant energy contour. The Fermi surface is centered on the (π, π) point

and is called ‘hole-like’ because it encloses unfilled or empty states[33].

ARPES measurements on the single layer Bi2Sr2CuO6+δ (Bi-2201) mate-

rial show that the dispersion is, to a good approximation, rigid with doping[34].

In other words, the shape of the dispersion is independent of doping. The

position of the Fermi energy does however change with doping, progressing

down the energy contours in Fig. 2.7 or towards k=(0,0) in Fig. 2.8. As
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Figure 2.9: The van Hove singularity in the density of states shown in (a) denotes
the boundary between hole-like (yellow) and electron-like (blue) Fermi surfaces
shown in (b).

can be seen in Fig. 2.9 the van Hove singularity (vHs) denotes the boundary

between hole-like and electron-like Fermi surfaces. Maps of the Fermi sur-

face of Bi-2201 from ARPES[34] show that the topology of the Fermi surface

evolves smoothly from hole-like to electron-like as doping is increased. This

implies that as a function of increasing doping the Fermi energy sweeps from

high energy to low energy and indeed passes through the vHs.

2.4.2 Bilayer Splitting

The bilayer Bi-2212 cuprate contains two CuO2 planes per unit cell which are

separated by a layer of calcium atoms. Various calculations[35, 36, 37] of the

band structure of bilayer cuprates predicted that intra bilayer coupling would

lead to a splitting of the band into an upper antibonding band and a lower

bonding band. This so-called bilayer splitting was only observed recently[38,

39] by ARPES after improvements in measurement resolution and the ability
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to prepare heavily overdoped Bi-2212 samples had been developed. The

strong dependence of the relative intensities of bonding and antibonding

band spectra on the incident photon energy was found to be responsible for

previous conflicting observations of hole-like[40] and electron-like[41] Fermi

surfaces in similarly doped samples.

Figure 2.10 shows the bilayer energy momentum dispersion of Bi-2212

determined from tight-binding fits to high-resolution ARPES data[42]. The

bonding band dispersion is shown in blue and the antibonding band dis-

persion in red. The splitting in momentum space is greatest in the antin-

odal [(±π, 0) and (0,±π)] regions and small or non existent along the nodal

[(0, 0) → (π, π)] symmetry line reflecting the symmetry of the intra-plane

hopping parameter t⊥[43]. The maximum energy splitting is of the order of

100meV. Clearly, with increasing doping, the descending Fermi level will first

cross the antibonding vHs then the bonding band vHs.

2.4.3 Superconducting Gap

The superconducting state is characterized by an energy gap in the den-

sity of states related to the binding energy of the Cooper pairs. In conven-

tional low-temperature BCS superconductors the Cooper pairs are formed

from electrons with equal and opposite momentum and so have zero net

momentum[44, 3]. This results in an isotropic or s-wave symmetric k-space

energy gap. In contrast, ARPES[27, 28], penetration depth[45], Raman

spectroscopy[46] and nuclear magnetic resonance[47] experiments on the

cuprates indicate the presence of an anisotropic superconducting gap consis-
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Figure 2.10: Energy momentum dispersion, including the effect of bilayer splitting,
of Bi-2212 determined from tight-binding fits to high-resolution ARPES data[42].
The bonding (antibonding) band dispersion is shown in blue (red).

tent with d-wave symmetry, in which the Cooper pairs have non-zero mo-

mentum. The above techniques reveal information about the magnitude of

the order parameter but not its sign, and it was not until phase sensitive

measurements were performed that the now generally accepted dx2−y2 sym-

metry was established[48, 49]. The dx2−y2-wave superconducting gap function

∆0
1
2
(cos kx−cos ky) is plotted in Fig. 2.11(a). The gap function has line nodes

extending along the zone diagonals, which give rise to four point nodes in

the superconducting state [two of which are illustrated in Fig. 2.11(b)], and

antinodes at (±π, 0) and (0,±π).
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1
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2.5 Van Hove Scenario

In BCS theory[3] the superconducting transition temperature, Tc, is expo-

nentially related to −1/N(EF ) where N(EF ) is the density of states at the

Fermi level. The observation by ARPES of saddle points[50, 22, 23] (flat re-

gions) in the dispersion implies the existence of a van Hove singularity (vHs)

in the density of states. Initially these observations lent weight to theories

based on the so-called ‘van Hove scenario’. For a review of the van Hove

scenario see Ref.[51]. Under this scenario the peak in Tc as a function of hole

concentration is attributed to the Fermi level sweeping through the vHs at

optimal doping[52]. Other properties explained under the van Hove scenario

included the doping dependence of the isotope effect on Tc[53], thermoelec-

tric power[54] and superconducting gap anisotropy[55]. The vHs itself was

even proposed as the basis of a novel electronic pairing mechanism[56].

A major problem with the van Hove scenario is that ARPES measure-

ments indicate that the Fermi level crosses the vHs not at optimal doping but

in the very heavily overdoped region of the phase diagram. In the case of Bi-

2201 the crossing is near where Tc goes to zero[34], while at optimal doping

the vHs lies 42meV below the Fermi level[57]. A similar situation is observed

in La-214[58, 59, 60, 61]. Measurements performed on Bi-2212[42] indicate

that Fermi level crosses the antibonding band vHs near p=0.22 where Tc is

well below Tc,max but still quite high at around 60K. The consequences of the

Fermi level crossing the vHs in the overdoped regime are explored as part of

this work. One has to ask, for example, why is there no local peak in the

p-dependence of Tc which occurs at the vHs crossing?
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2.6 Pseudogap

The underdoped region of the phase diagram is dominated by a partial gap in

the density of states known as the pseudogap, which opens up in the normal

state. For reviews see Refs. [62] and [63]. First observed as a suppression of

the 63Cu nuclear relaxation rate[64] and static spin susceptibility[65, 66] the

pseudogap was initially interpreted as a ‘spin gap’. Electronic specific heat

measurements by Loram et al [67, 68]. revealed the pseudogap to be a gap in

the quasiparticle density of states. This finding was subsequently confirmed

by ARPES[24, 25] and tunneling experiments[69, 70, 71].

In ARPES the pseudogap becomes observable below a temperature T ∗

and first opens up at the antinodal (±π, 0) and (0,±π) regions of the Fermi

surface, resulting in ungapped portions of the Fermi surface known as Fermi

arcs[26, 72]. The Fermi arcs shrink with decreasing temperature as the pseu-

dogap extends towards the nodal regions of the Fermi surface. The magnitude

of the pseudogap at the antinodes is observed to be constant implying that

the pseudogap ‘fills in’ with increasing temperature, in contrast to the su-

perconducting gap which ‘closes’ with increasing temperature[73, 26]. This

filling behaviour has also been inferred from tunneling[69] and fits to the spin

susceptibility[74]. The ARPES data has led to the widespread belief that the

pseudogap fills completely at T ∗ resulting in the full restoration of the Fermi

surface above T ∗. As part of this work this view is explicitly shown to be

inconsistent with thermodynamic data and is most likely an artifact of the

way that the ARPES data is interpreted. As such, the T ∗ line on the phase

diagram represents the energy scale of the pseudogap or a crossover rather
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than a true phase transition. Although it is agreed that the magnitude of the

pseudogap increases monotonically with decreasing doping, the exact form

of the T ∗ line on the phase diagram depends on the theoretical model used

to describe the pseudogap[63].

The origin of the pseudogap is one of the most highly debated topics in

the field of HTS. Some believe that solving this problem will provide a key to

unlocking the mystery of high temperature superconductivity in the cuprates.

Regardless of whether this turns out to be true or not, the pseudogap presents

a significant hurdle in the race to the finish line. The numerous theoretical

models for the pseudogap fall roughly into two camps: those which attribute

the pseudogap to preformed pairs; and those which attribute the pseudogap

to an, as yet, unknown correlation that competes with superconductivity.

In the preformed pairs scenario the pseudogap arises due to the forma-

tion of Cooper pairs above Tc that lack long-range phase coherence. The

pseudogap phase is then essentially a precursor of the superconducting state.

At Tc the pairs become phase coherent and superconductivity is achieved.

Under this scenario the pseudogap merges smoothly into the superconduct-

ing gap. The phase diagram is dominated by a single energy scale, namely

the antinodal gap magnitude, and the T ∗ line is coincident with Tc on the

overdoped side [see Fig. 2.12(a)]. Experimental evidence cited in support of

this scenario includes the similarity of the momentum dependence and mag-

nitude of the pseudogap to the d-wave superconducting gap, as determined

in early ARPES experiments[24, 25], and the apparent smooth evolution of

the pseudogap into the superconducting gap[70].

In the second scenario the correlation underlying the pseudogap is in-
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dependent and competes with that which gives rise to superconductivity.

The pseudogap is separate from the superconducting gap and removes states

which, in its absence, would otherwise be available for superconductivity. In

this scenario the T ∗ line drives through the superconducting dome vanishing

at a zero temperature quantum critical point at pcrit ≈ 0.19 [see Fig. 2.12(b)].

Experimental evidence indirectly supporting this picture includes the rapid

collapse of various properties below critical doping including the superfluid

density, electronic entropy, condensation energy, critical current density and

irreversibility field[75]. The most direct signature of this scenario is the ob-

servation of two distinct energy gaps in underdoped cuprates corresponding

to the pseudogap and superconducting gap. Two gaps have been observed

more recently by Andreev reflection[76], Raman spectroscopy[77], and most

recently by ARPES[78, 79] and scanning tunneling microscopy[80], seriously

eroding the support for the preformed pairs scenario. The two gap scenario

was inferred much earlier from specific heat[67, 68] and NMR Knight shift[81]

data. Further evidence that the pseudogap is unrelated to superconductivity

comes from the observation of a very similar pseudogap state in the colossal

magnetoresistive bilayer manganite La1.2Sr1.8Mn2O7[82].

2.7 Isotope Effect

Observations of the predicted linear dependence of Tc on the inverse square

root of the isotopic mass in tin[14] helped confirm the virtual exchange of

phonons as the source of electron pairing in conventional low-temperature

superconductors. The role of phonons in HTS remains unclear as the results
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Figure 2.12: (a) In scenarios based on preformed pairs T ∗ merges smoothly onto
the Tc curve in the overdoped region. (b) In the competing correlation scenario
T ∗ drives through the Tc dome, vanishing at critical doping pcrit=0.19.
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of isotope effect experiments performed on the cuprates are not as easy to

interpret. The isotope exponent α(E) in a given property E is defined as

α(E) = −(∆E/E)/(∆M/M) where M is the isotopic mass. For BCS super-

conductors α ≈ −0.5. In the LSCO and YBCO systems the isotope effect

in Tc, α(Tc), is found to be strongly dependent on doping. In YBCO[83, 84]

α(Tc) increases rapidly from a value of around 0.06 at optimal doping to

values exceeding 0.5 in the deeply underdoped regime. A similar evolution is

observed in the LSCO system[85, 86, 87, 88] but, in addition to the rise with

underdoping, α(Tc) exhibits a local maximum at p=0.125 which has been

attributed to the presence of spin-charge ordering known as “stripes” at this

doping[89].

An attempt to explain the rise of the isotope effect coefficient with un-

derdoping was made by Tsuei et al.[53] under the van Hove scenario. In

their model the vHs is located at the Fermi level at optimal doping and

is responsible for the maximal value of Tc there. Their calculated isotope

effect coefficient has a minimum at optimal doping and increases symmet-

rically about this point as a function of doping. However, this symmetrical

behaviour is not observed in the data[84].

In metals the energy-momentum dispersion becomes renormalized due to

screening by the ions[90]. This electron-phonon correction only affects the

dispersion close to the Fermi level on the scale of the Debye energy (h̄ωD)

resulting in a kink in the dispersion. The kink separates the dispersion into

a low energy part that is close to the Fermi level and a high energy (unrenor-

malized) part that is further from the Fermi level. ARPES has revealed the

presence of such a kink in the cuprate nodal dispersion at around 70meV
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below the Fermi level[91, 92, 93]. Several excitations have been advanced

to explain the origin of the kink including, but not limited to, phonons[93],

and a collective magnetic mode[94]. Detailed momentum dependent mea-

surements indicate that the kinks in the nodal and antinodal regions behave

differently with temperature, suggesting that they may arise from different

mechanisms[95]. Cuk et al [96]. and Devereaux et al [97] have interpreted the

nodal kink in terms of the in-plane Cu-O breathing mode and the antinodal

kink in terms of the B1g oxygen bond-buckling phonon. The slope of the high

energy part of the nodal kink is observed to increase with underdoping[93, 98]

while the constant slope of the low energy part reveals a universal nodal Fermi

velocity[98].

In 2004 Gweon et al.[99] reported an unusual isotope effect in the disper-

sion of Bi-2212. An unexpected and large isotope shift in the slope of the

high energy part of the dispersion was found in addition to a more conven-

tional 5meV shift in the kink energy. Also found was a sign reversal of the

isotope shift in the high energy slope in going from the nodal to antinodal

regions of the Fermi surface. However, more recent measurements reported

by Douglas et al.[100] paint a different picture. Using low energy photons

(7eV) that give extremely high resolution as well as increased bulk sensitiv-

ity they report an insignificant isotope shift in the high energy slope. The

results obtained by Gweon et al. are attributed to sample misalignments, the

precise control over which was found to be crucial to obtain repeatable en-

ergy positions in the high energy regime. At the 2007 March meeting of the

American Physical Physical Society[101] Douglas presented further results

showing a 3meV isotope shift in the kink energy consistent with the isotope
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induced Raman shift observed on the same samples. We await upcoming

measurements for confirmation of this more conventional effect - more con-

ventional because the bosonic energy scale is shifted while the presumably

unrenormalized high energy slope is not altered.

2.8 Superfluid Density

Technically speaking superconductors are not perfect conductors but are per-

fect diamagnets. When a superconductor is cooled below its transition tem-

perature in an applied field it becomes diamagnetic and the magnetic flux

is expelled from its interior. This is known as the Meissner effect. The flux

exclusion is due to surface layer screening currents that are induced as the

sample is cooled below Tc. The layer of current must have a finite thickness

otherwise the current density would be infinite. As a result the flux density

does not fall abruptly to zero at the boundary of the superconductor but

decays exponentially within the region of the screening currents. A measure

of this depth is called the London penetration depth λ.

In conventional superconductors λ =
√

m/µ0nse2[44] where ns is the car-

rier density. The superfluid density, defined as ρs = 1/λ2, is a measure of the

rigidity of the superconducting condensate. The anisotropic structure of the

high-Tc cuprates gives rise to significant anisotropy in the λ. Though strictly

unphysical, it is convenient to express this as an anisotropy in ρs.

In contrast to BCS superconductors the high-Tc cuprates have been found

to exhibit an isotope effect in ρs (for example see Refs. [102, 103, 87]). The

isotope effect in ρs is observed in magnetic measurements as a reduction in
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diamagnetic screening, or equivalently, an increase in the magnetic penetra-

tion depth. The origin of this effect is still controversial. According to the

expression for λ given above an isotope effect could be seen as due to either a

shift in ns and/or the effective mass m∗. The isotope effect in ρs interpreted

in terms of m∗ has been claimed as evidence for polaronic charge carriers[104].

However, a more recent study[87] was able to explain the isotope effect in

ρs as being due to the presence of a normal-state pseudogap that competes

with superconductivity.
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Chapter 3

Experimental Techniques

The aim of the experimental part of this project was to determine the isotope

effect in the separate components of the penetration depth tensor from AC

susceptibility measurements on powders of YBa2Cu4O8 biaxially-aligned in

epoxy. YBa2Cu4O8 was chosen because of its fixed oxygen stoichiometry.

The experimental techniques employed are detailed in this chapter.

3.1 Preparation of YBa2Cu4O8

Polycrystalline samples of YBa2Cu4O8 (Y-124) were prepared using a con-

ventional solid state reaction technique. Stoichiometric mixtures of high

purity Y2O3(99.99%), BaCO3(99.98%) and CuO(99.99%) from Aldrich were

thoroughly ground together with an agate pestle and mortar, pressed into

pellets, and calcined in air at 925◦C for 18 hours. With the aim of prepar-

ing a more homogeneous starting material the pellets were then ground up,

repressed and refired at 930◦C for 24 hours. To obtain the 124 phase the
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pellets were ground, repressed and sintered in a sequence of overnight firings

at 930, 935, 940 and 950◦C under a 60bar static oxygen atmosphere. At the

end of the 950◦C step the samples were cooled to 700◦C over 6 hours before

being cooled to room temperature over a further 6 hours.

3.2 Oxygen Isotope Exchange

Substitution of 16O for 18O was achieved by annealing a pellet in an 18O en-

riched atmosphere at 350◦C. A control sample placed in an 16O atmosphere

was annealed in parallel. A schematic diagram of the oxygen isotope ex-

change rig is given in Fig. 3.1. The rig comprises two quartz tubes in which

the samples are placed and relevant plumbing for evacuating and charging

the tubes with the 16O(>99.7%)/18O(99%)-enriched gasses.

Because the atmospheres are stagnant the tubes must be withdrawn from

the furnace and the gas refreshed under ambient conditions. Refreshment of

the gas was performed at the beginning and end of each work day for the

duration of the exchange. The number of ‘hits’ required is a function of the

number of moles of 18O in the quartz tube, NT , and the initial number of

moles of 16O in the sample, NS. The exchange percentage after the ith hit

is given by

100

(

1 −
Ns

(Ns + NT )

)i

(3.1)

The isotope exchange can be confirmed in the samples from the change in

sample mass and also by the measuring shift of the oxygen vibrational modes

in the Raman spectra.
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Figure 3.1: Schematic diagram of the oxygen isotope exchange rig.
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The rig includes a quartz cold finger for retrieving the gas from hits near

the end of the exchange process which contains mostly expensive 18O. The

gas can be condensed inside the liquid-nitrogen-cooled finger and stored in a

collection bladder for future use.

3.3 Biaxial Alignment

The large anisotropy in the magnetic susceptibility of the cuprates has long

been exploited to produce grain-aligned samples[105]. Typically fine grains

of superconducting powder are dispersed in an epoxy or wax which is left

to set in the presence of a static magnetic field. The resulting uniaxially

(c-axis) aligned samples allow the separate study of properties both parallel

and perpendicular to the ab-plane.

In this work we employed the technique pioneered in house by Staines

et al.[106] to produce biaxially textured samples. The technique takes ad-

vantage of the difference in the normal-state magnetic susceptibilities along

the crystal axes of Y-124 which are ordered χc > χa > χb. The technique is

explained in their paper as follows:

“If a magnetic field is initially applied to a suspension of sin-

gle crystal grains they will rotate so the c-axis is aligned with the

field direction with a characteristic grain rotation time which is

determined by the field strength, susceptibility anisotropy, and

the viscosity of the suspending fluid. If the field is then switched

to a second direction orthogonal to the first for a time which is

short compared to the grain rotation time the crystal axis with in-
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termediate susceptibility, the a-axis, will rotate towards the field

direction. Repetition of this cycle of field switching leads to bi-

axial alignment of the grains.”[106]

A schematic diagram of the biaxial alignment rig is shown in Fig. 3.2.

The rig is homemade, comprising a rotating platform that is driven by a

chart recorder. The chart recorder is controlled by a square wave input from

a function generator. The sample orientation is switched between 0 and

90 degrees relative to the direction of the magnetic field with dwell times

dependent on the material being aligned. For Y-124 dwell times of two

seconds in the primary position and one second in the secondary position

were found to be appropriate. Sample alignment can be confirmed by the

presence and absence of specific peaks in X-ray diffraction spectra, and the

quality of the alignment can be determined via analysis of rocking curves.

The 16O/18O substituted pellets were cut in half and ground separately

in isopropanol for 30 minutes by hand. The small quantities of powder (<1g)

precluded the use of a ball mill. The powders were aligned in Struers EpoFix

epoxy. Epofix is a low viscosity epoxy that takes approximately 12 hours to

cure at room temperature. The resin and powder were combined in a ratio

of 1.28:1 (resin:powder) by weight and mixed using a mechanical milkshake

mixer with a high shear rate (≈ 4000 RPM) for two minutes. The hardener

was mixed in by hand and the mixture was immediately poured into a flexible

teflon mould with internal dimensions 7mm×7mm×5mm. The mould was

then placed on the biaxial alignment rig under an applied field of one Tesla

where it was left to set overnight.
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Figure 3.2: Schematic diagram of the biaxial alignment rig. The chart recorder
switches the orientation of the sample by 90 degrees relative to the magnetic field.
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3.4 Measurements

Masses were measured with a Mettler AE200 electronic analytical balance

with 0.1mg readability and 205g capacity.

X-ray diffraction measurements were performed on Phillips PW1700 and

PW3700 series Bragg-Brentano diffractometers with fixed divergence slits

and graphite diffracted beam monochromators. The radiation used was

cobalt Kα and the detectors were xenon filled proportional counters.

Raman spectra were obtained at room temperature using a Jobin Yvon

LabRam confocal spectrometer with a 633nm 3mW laser, a 600 lines/mm

holographic grating and a liquid nitrogen cooled CCD detector.

A Shimadzu SALD-2001 laser diffraction particle size analyser was used

to measure the size distributions of portions of the powders used in man-

ufacturing the biaxially aligned samples. The particles were suspended in

anhydrous isopropyl alcohol and utrasonicated for six minutes. The size

distributions of the grains in the composite powder-epoxy samples were de-

termined from images taken with a LEO 400 scanning electron microscope.

The images were analysed with ImageJ, an image processing and analysis

software program (available from http://rsb.info.nih.gov/ij/).

Magnetization and AC susceptibility measurements were performed on

a Quantum Design MPMS XL SQUID magnetometer. Bulk pellet samples

were mounted in plastic straws. Powder samples were sealed in gelatin cap-

sules which were then mounted inside plastic straws. The composite powder-

epoxy samples were mounted on a horizontal sample rotator with a small

amount of GE varnish. The horizontal rotator allows samples to be rotated
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about the horizontal axis and was employed to optimize the alignment be-

tween the crystallographic axes and the magnetic field.
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Chapter 4

Experimental Results

4.1 Sample characterization

The X-ray diffraction spectrum taken from the surface of a Y-124 pellet

after the final cook in 60bars O2 at 950◦C is shown in Fig. 4.1. There is a

good match with the powder diffraction database pattern (powder diffraction

file #43-0402) for YBa2Cu4O8, and the spectrum is free of any significant

impurity phases. Note that the quality of the bulk is expected to be superior

to that of the surface.

A pellet 12mm in diameter and approximately 3mm thick was cut in

half and annealed ten times over a six day period in the isotope exchange

rig. Based on the sample mass and Eqn. 3.1 it was estimated that ten steps

would result in a 94.4% exchange. The sample masses before and after the

exchange are given in Table 4.1. The mass of the 16O sample is virtually

unchanged while the change in mass of the 18O sample is consistent with a

93.4% exchange.
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Figure 4.1: X-ray diffraction spectrum obtained from the surface of a sample pellet
after the final cook at 950◦C. The expected pattern for YBa2Cu4O8 is shown in
red along with the Miller indices.
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Table 4.1: Sample masses before and after oxygen isotope exchange.

Sample Initial Final % Exchanged
16O 0.8122g 0.8120g -
18O 0.9460g 0.9650g 93.4
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Figure 4.2: Raman spectra taken from the surface of the 16O/18O substituted
Y-124 sample pellets. Phonon mode assignments are from Refs. [108, 107]

The isotope exchange was confirmed in Raman spectra taken from the

sample surfaces, plotted in Fig. 4.2. As expected the oxygen modes are

shifted to lower frequencies in the 18O substituted sample and there is no

discernable shift in the copper modes. The measured shifts in the O(1) and

O(4) lines, listed in Table 4.2, compare well with the theoretical shifts from

Ref. [107]. In a first order approximation the fractional change in frequency

is given by 1 −
√

16/18. For the O(4) mode this corresponds to a shift of

28cm−1 which matches the observed shift.

16O and 18O substituted biaxially-aligned composite powder-epoxy sam-
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Table 4.2: Oxygen isotope induced Raman shift, ∆, in the O(4) and O(1) phonon
modes. Values from Ref. [107] are included for comparison.

Peak 16O cm−1 18O cm−1 ∆ cm−1 ∆ Ref. [107] cm−1

O(4) 490.1 462.0 28.1 28.2
O(1) 589.4 561.7 27.7 26.3

ples were prepared following the procedure outlined in section 3.3. X-ray

diffraction spectra taken from three orthogonal faces of the samples are shown

in Fig. 4.3. The spectra measured from the faces normal to the c-axis (shown

in black) consist of the periodic reflections from the ab-planes with Miller in-

dices given by [0,0,2n]. There is a small reflection from the [1,0,8] plane. The

spectra taken from faces normal to the a- and b-axes are dominated by the

[2,0,0] and [0,2,0] reflections respectively.

A close-up of the orthogonal [0,0,14], [0,2,0] and [2,0,0] peaks is shown in

Fig. 4.4. The observation of only a single peak in each spectrum indicates

good biaxial texture. Rocking curves were measured on each of these peaks.

The full width at half maximum (FWHM) values of the rocking curves are

listed in Table 4.3. The results indicate that the quality of alignment is

comparable between the two samples in the a and c directions. The degree

of alignment and agreement between samples is worst in the b-direction, with

the FWHM of the 18O sample some four degrees larger than the 16O sample.

This is not surprising as the b-axis lies transverse to the magnetic field during

the alignment process.

Using a diamond wheel saw, rods were cut from the edges of the samples

along the three orthogonal directions for the AC susceptibility measurements.

The dimensions were roughly 1.5×1.5×7mm for the a- and c- axis oriented
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Figure 4.3: X-ray diffraction spectra taken from three orthogonal faces of the
biaxially aligned samples. The spectra measured from faces orthogonal to the a-
and b-axes have been shifted vertically for clarity.
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Figure 4.4: Close up of the [0,0,14], [0,2,0] and [2,0,0] Bragg peaks as measured
from three orthogonal faces of the biaxially aligned samples.
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Table 4.3: Rocking curve full width half maximum values of the orthogonal [2,0,0],
[0,2,0] and [0,0,14] X-ray diffraction peaks.

Sample [2,0,0] [0,2,0] [0,0,14]
16O 5.1◦ 5.8◦ 4.3◦
18O 5.5◦ 10◦ 5.2◦

Table 4.4: Mass, volume and density parameters of the AC susceptibility samples.
Subscripts c, e and p stand for composite, epoxy and powder respectively. The
right-most column lists the powder volume fraction.

Sample mc Vc ρc ρe ρp Vp Vol. frac.
(mg) (10−3cm3) (gcm−3) (gcm−3) (gcm−3) (10−3cm3) (%)

16Oa 26.9 16.5 1.63 1.10 6.12 1.74 10.5
16Ob 18.4 11.6 1.59 1.10 6.12 1.13 9.73
16Oc 27.0 16.3 1.66 1.10 6.12 1.82 11.2
18Oa 24.2 14.8 1.64 1.10 6.25 1.55 10.5
18Ob 17.6 10.8 1.63 1.10 6.25 1.11 10.3
18Oc 27.2 16.4 1.66 1.10 6.25 1.78 10.9

rods and 1.5×1.5×5mm for the b-axis oriented rods. The volume of pow-

der, Vp, in the composite powder-epoxy samples can be calculated from the

following expression

Vp = Vc

(

ρe − ρc

ρe − ρp

)

(4.1)

where Vc is the volume of the composite sample and ρe, ρc and ρp are the

densities of the epoxy, composite, and powder respectively. Table 4.4 lists

the volume fraction of Y-124 powder in each of the samples calculated from

Eqn. 4.1.

The size distributions of samples of 16O/18O Y-124 loose powder are

shown in Fig. 4.5. Particles in the 16O powder were found to have a mean

diameter of 4.1µm and a standard deviation of 0.34µm. In comparison, parti-

cles in the 18O powder were found to be larger but more narrowly distributed,
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with mean diameter of 6.7µm and standard deviation of 0.3µm.

The size distributions of the grains in the composite powder-epoxy sam-

ples were determined from scanning electron microscope (SEM) images. The

SEM technique requires conductive samples. The images were taken from

polished carbon-coated surfaces of pieces of the samples that were left over

following the removal of the rod shaped pieces mentioned earlier. Some repre-

sentative SEM images are shown in Fig. 4.6. The grains appear to be evenly

distributed throughout the images. The size distributions as determined from

multiple images are plotted in Fig. 4.7.

Comparison of these distributions with those of the loose powders shows

that in the process of mixing the powder and resin the particles (or possi-

bly clumps) have been broken down even further. The distributions from

the SEM images are more evenly matched although, as seen in the inset to

Fig. 4.7, the particles in the 18O sample are still slightly larger on average.

4.2 Magnetization

Figure 4.8 shows the DC mass magnetization of the 16O and 18O substi-

tuted YBa2Cu4O8 bulk pellet samples under an applied field of 100Oe. The

transition temperatures of the 16O and 18O samples are 81.96K and 81.49K

respectively. The isotope effect in Tc is therefore 0.046. This compares well

with the results of Khasanov et al. who obtained a value of 0.048(8)[103].
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Figure 4.5: Differential (q) and cumulative (Q) particle size distributions of 16O
and 18O substituted Y-124 loose powders, as determined by laser diffraction mea-
surements.
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(a) 16O

(b) 18O

Figure 4.6: Scanning electron microscope images showing the distribution of grains
in the 16O and 18O substituted powder-epoxy composite samples. The scale is
20µm.
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Figure 4.8: DC mass magnetization of 16O and 18O substituted YBa2Cu4O8 bulk
pellet samples under an applied field of 100Oe. The inset shows the magnetization
near Tc.
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4.3 AC Susceptibility

AC susceptibility measurements were performed on the rod-shaped composite

samples with the field aligned parallel to the a-, b- and c-axes, alternately.

A rotatable sample holder was used to obtain an optimal sample alignment.

Temperature-dependent measurements were performed on warming under

an AC field of amplitude 1Oe and frequency 332.45Hz. The susceptibility

at 5K was found to be independent of field for amplitudes up to 5Oe and

frequencies up to 699.63Hz indicating good grain separation and the absence

of weak links.

The temperature dependent AC susceptibility is shown in Fig. 4.10 for all

six combinations of isotope and alignment. The susceptibility in S.I. units is

dimensionless and was calculated using the following relation

χ(T ) =
m′(T )

V H
× 4π (4.2)

where m′ is the measured signal in emu, H is the applied field amplitude

in Oe and V is the volume of powder in cm3. For a perfectly diamagnetic

infinitely long thin wire parallel to the applied field χ=-1.

4.4 Penetration Depth & Superfluid Density

If a perfectly diamagnetic object is subjected to a uniform applied field H0

the field at the surface of the object is renormalized to a value H given by[44]

H =
1

1 − n
H0 (4.3)
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n is the demagnetization factor and its value depends on the geometry of

the sample. For a sphere n = 1
3
. Therefore the susceptibility of a perfectly

diamagnetic spherical grain in S.I. units is χ0 = −1.5. For a superconduct-

ing sphere of radius r with magnetic penetration depth λ the normalised

susceptibility is given by the so-called “Shoenberg formula”[109, 110]

χ

χ0

= 1 −
3λ

r
coth

(

r

λ

)

+
3λ2

r2
(4.4)

Equation 4.4 describes the suppression in susceptibility that arises due to

penetration depth effects and is plotted as a function of λ/r in Fig. 4.11.

For a distribution of spherical grains the effective normalised susceptibility
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Table 4.5: Susceptibilies (χ), normalised susceptibilities (χ/χ0), and ab-plane pen-
etration depths (λab) as calculated from the size distributions determined by SEM
image analysis.

Sample χ χ/χ0 λab (nm)
16O -0.702 -0.468 2961
18O -0.813 -0.542 2964

is given by[110]

(

χ

χ0

)

eff

=

∫

(

1 − 3λ
r

coth
(

r
λ

)

+ 3λ2

r2

)

r3g(r)dr
∫

r3g(r)dr
(4.5)

where g(r) is the measured grain size distribution.

Another potential source of susceptibility reduction comes from the renor-

malized field from one particle perturbing the fields experienced by neigh-

bouring particles. An investigation by Campbell et al.[111] shows that this

effect becomes significant for superconductor volume fractions above 20%

and so this effect will be neglected in the following analysis.

The ab-plane penetration depths, λab, at 5K were calculated from Eqn. 4.5

using the grain size distributions determined from SEM image analysis. The

results are shown in Table 4.5. The values obtained are on the order of

3µm, far in excess of the 127nm measured by Panagopoulos et al. on c-

axis grain-aligned samples[112]. In an effort to locate the source of this

discrepancy λab was calculated as a function of the upper cut-off radius used

in the integrations of Eqn. 4.5. The results are plotted in Fig. 4.12. Also

plotted is the percentage of particles that are larger than the upper cut-off

radius. The plot clearly illustrates the enormous effect that a small number

of large grains in the distribution has on the calculated values of λab.
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Figure 4.12: Variation of the T=5K ab-plane penetration depth (calculated from
corrected ACS data) with grain distribution upper cut-off radius. Also plotted is
the percentage of particles with radii larger than the upper cut-off radius.

Guided by the fact that the mean particle size was found to be lower

in the composite samples relative to the free powders we presume that the

high shear rate in the mixing with resin broke up aggregates. Certainly no

more milling was employed so the high end of the distribution is almost

certainly affected, probably dominated, by aggregates and polycrystalline

grains. These will of course yield a susceptibility reflecting the individual

grain sizes, not their aggregate size. Accordingly, our strategy for analysis

was as follows. Firstly, an upper cut-off radius (=0.76µm) for the 16O distri-

bution was chosen so that the calculated value of λab reproduced the result

obtained by Panagopoulos et al.[112]. (Note that this value is also confirmed

by optical measurements[113]). Secondly, the oxygen isotope coefficient in

λab (=0.18±0.06), as determined by muon spin relaxation measurements on

Y-124 by Khasanov et al.[103], was used to deduce a value of λab for the 18O
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Table 4.6: ab-, bc- and ac-plane penetration depths (λ) at 5K, as calculated from
the particle size distributions determined from SEM image analysis with fixed
upper cut-off radii. χ/χ0 is the normalised AC susceptibility and α(λ) is the
oxygen isotope effect exponent in the penetration depth.

χ/χ0,16O χ/χ0,18O λ16O (nm) λ18O (nm) α(λ)
ab -0.468 -0.542 131 134(1) -0.18(6)
bc -0.161 -0.225 337 335(3) +0.05(7)
ac -0.135 -0.178 377 396(4) -0.40(7)

Table 4.7: a-, b- and c-axis penetration depths (λ) at 5K and corresponding isotope
exponents (α(λ)) as calculated from the ab-, bc- and ac-plane penetration depths.

λ16O (nm) λ18O (nm) α(λ) λ (nm) Ref. [112]
a 147 158±2 -0.6±0.1 154
b 117 113±1 0.27±0.07 86
c 970 990±10 -0.16±0.08 615±90

substituted sample. This, in turn, implied a cut-off radius =0.96±0.01µm

for the 18O distribution. This is consistent with our observation of a higher

mean radius for the 18O sample. Finally, the bc- and ac-plane penetration

depths were calculated assuming these cut-off radii. The results are listed in

Table 4.6.

Assuming the relation λ2
xy = λxλy, the a-, b- and c-axis penetration depths

and corresponding isotope effect coefficients were calculated. They are listed

in Table 4.7 along with values determined by Panagopoulos et al.[112]. Al-

though the match isn’t exact the relative magnitudes are comparable. We

find a smaller anisotropy than has been reported from AC susceptibility[112]

and infrared measurements[113] and this reflects the supposed aggregation

which will exhibit a more averaged susceptibility.

The superfluid density, ρs, is proportional to 1/λ2. The plane and axis
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Table 4.8: Plane and axis superfluid densities (ρs) at 5K and isotope effect coeffi-
cients (α(ρs)).

ρs,16O (µm−2) ρs,18O (µm−2) α(ρs)
ab 58.3 55.7±0.8 0.4±0.1
bc 8.8 8.9±0.2 -0.09±0.20
ac 7.0 6.4±0.1 0.7±0.1
a 46 40±1 1.0±0.2
b 73 78±1 -0.55±0.11
c 1.06 1.02±0.02 0.30±0.15

superfluid densities and corresponding isotope effect coefficients are listed in

Table 4.8. The temperature dependence of the plane and axis superfluid den-

sities were calculated similarly from the temperature dependent susceptibility

data and are plotted in Figs. 4.13 and 4.14.

The results show that the b-axis superfluid density is greatest. This is to

be expected due to proximity-induced condensation of carriers on the double

CuO chains that extend in the b direction[112]. The c-axis superfluid density

is weakest. This is because the planes are only weakly (Josephson) coupled

in the c-direction. Turning to the isotope effect we see that the isotope effect

in the bc-plane is negligible compared with those in the ab- and ac-planes.

Assuming that this is a valid result, inspection of the phonon modes[114]

shows that, with the exception of the CuO2 plane breathing modes, the

motion of the atoms are parallel to the bc-plane. The implication is that

the electrons prefer to couple to phonon modes in which the atomic mo-

tion is perpendicular to the transport plane. Support for this conjecture

comes from site-selective oxygen isotope exchange experiments performed on

Y0.6Pr0.4Ba2Cu3O7−δ[115]. By preparing samples in which 18O was substi-

tuted onto only either the planar oxygen sites or the apical and chain oxygen
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16O/18O substituted Y-124.
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sites;

“It was found that the whole or nearly the whole [isotope]

effect on the transition temperature Tc and on the in-plane mag-

netic penetration depth λ−2
ab (about 100% within error bars) comes

from the oxygen within the superconducting CuO2 planes and not

from the apical and chain oxygen.”[115]

For an array of weakly coupled superconducting layers the out-of-plane

(c-axis) penetration depth is[116]

λ2
c = ρ−2

s,c =
h̄c2

8πdeJc

(4.6)

where d is the interplanar spacing. Jc is the critical current given by[117, 118]

Jc =
π∆(T )

2eRn

tanh

[

∆(T )

2kT

]

(4.7)

where ∆(T ) is the superconducting gap and Rn is the normal state resistance

of the interlayer junctions. For a d-wave superconductor in the weak-coupling

limit ∆(0)=2.14kBTc. Substituting for ∆ and differentiating Eqn. 4.6 with

respect to Tc gives

1

ρs,c

∂ρs,c

∂Tc

=
1

Tc

+
1.07

T tanh
(

1.07Tc

T

) −
1.07 tanh

(

1.07Tc

T

)

T
(4.8)

=
1

Tc

, as T → 0
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By definition

α(ρs,c) = −
M

ρs

∂ρs,c

∂M
(4.9)

and

α(Tc) = −
M

ρs

∂Tc

∂M
(4.10)

so in the T = 0 limit

α(ρs,c) = −

(

Tc

ρs,c

∂ρs,c

∂Tc

)

M

Tc

∂Tc

∂M
= α(Tc) (4.11)

And it follows that

α(λc) = −
1

2
α(Tc) (4.12)

The value of α(ρs,c)=0.3 obtained in this experiment is nearly an order of

magnitude larger than α(Tc)=0.046 and is clearly inconsistent with the ex-

pected result given by Eqn. 4.11. This leads us to the conclusion that, for

at least YBa2Cu4O8, the interlayer coupling is stronger than, or different

from, simple Josephson coupling. This particular, and unexpected result,

may reflect the unusual c-axis transport in Y-124 which at low temperatures

is coherent[119] and when superconductivity is suppressed using strong mag-

netic fields remains metallic-like to the lowest temperatures (20K) unlike any

other HTS system[120]. This indicates 3D band conductivity rather than the

tunneling conductivity seen in other cuprates and is to be associated with

the double Cu2O2 chains. It is not surprising that the Josephson coupling

isotope effect is not seen in Y-124, though it should be seen in all other

cuprates.
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Chapter 5

Computational Techniques

The calculations of physical properties in the next chapter were performed

using software programs written entirely by the author. The programs were

initially implemented in the free JavaTM programming language. As the

complexity of the calculations increased the programs were translated to

the C++ programming language. C++ applications are compiled to native

machine code and so offer a speed advantage over Java applications that are

interpreted by a runtime environment. The programs were compiled using

the free Borland R© C++ Compiler 5.5. The calculations were performed on a

desktop P.C. with an Intel R© Pentium R© 4 dual core CPU having a combined

clock speed of 3.00GHz.

An object-oriented (or modular) approach was taken with regards to the

design of the programs. Such an approach allows code to be easily modified,

extended and reused. An object-oriented program consists of a collection of

cooperating objects. An object is a bundle of variables and related methods (a

method is similar to a procedure or function), and therefore has a particular
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Figure 5.1: The Console program architecture.

state and behaviour. Each object is an instance of a particular class of

objects. A class is the blueprint from which individual objects are created,

and defines the states and behaviours that those objects may possess.

Before discussing each of the classes individually we list for convenience

the key equations for which these classes were written to evaluate. They are:

1. The density of states.

N(E) = N−1
k

∑

k

δ [ǫ(k) − E] (5.1)

where ǫ(k) is the energy-momentum dispersion.

2. The BCS gap equation.

1 =
V

2

∑

k

|g(k)|2

E(k)
tanh

(

E(k)

2kBT

)

(5.2)
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where E(k) =
√

ǫ2(k) + ∆2(k)

3. The number of carriers.

n = (2/VA)
∫

f(E)N(E)dE (5.3)

where f(E) =
(

exp
(

E−µ(T )
kBT

)

+ 1
)−1

4. The superfluid density.

1

λ2
ab

=
µ0e

2n

4πh̄2

∑

k





(

∂ǫ(k)

∂kx

)2
∆2(k)

E2(k)
−

∂ǫ(k)

∂kx

∂∆(k)

∂kx

∆(k)ǫ(k)

E2(k)





×

[

1

E(k)
−

∂

∂E(k)

]

tanh

(

E(k)

2kBT

)

(5.4)

5. The diffusion thermopower.

S(T ) =
1

|e|T

∫

∞

−∞
σ (E) (E − µ)

(

∂f(E)
∂E

)

dE
∫

∞

−∞
σ (E)

(

−∂f(E)
∂E

)

dE
(5.5)

σ(E) is the spectral conductivity which under the Boltzmann formalism

is given by

σ(E) =
e2

V

∑

k

vα(E,k)ℓα(E,k)δ[ǫ(k) − E] (5.6)

where ℓα = vα(E,k) · τ(E,k, T ) and vα = ∂ǫ(k)
∂kα

A more thorough expanation of the terms in each of the equations can be

found in the following chapter.
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5.1 Dispersion

The Dispersion class forms a base class for the Dos, SCgap, SFDensity and

VSum classes. The purpose of this class is to return information about the

electronic dispersion. Dispersion stores the tight binding coefficients of sev-

eral cuprate energy-momentum dispersions and has methods for calculating

the energy ǫ(k), pseudogap energy, superconducting gap energy ∆(k), and

various derivatives of ǫ(k) and ∆(k), at any specified k-space coordinate and

temperature. The user is able to specify which dispersion to use, the posi-

tion of the Fermi level, the pseudogap magnitude and the maximum angle

to which the pseudogap extends around the Fermi surface.

5.2 Dos

The Dos class is derived from the Dispersion class, which means that it

inherits the methods (functions) of the Dispersion class. It has methods

for returning the density of states, number of carriers, spin susceptibility,

electronic entropy and spin lattice relaxation rate for any specified dispersion,

temperature, superconducting gap and pseudogap values.

The density of states (Eqn. 5.1) is determined by calculating the energy

at each point of a 3000 by 3000 grid spanning a quadrant of the first Brillouin

zone (kx = 0 → π, ky = 0 → π). A histogram of the energies is stored in

an array with an energy resolution of 1meV. The array index i is calculated

according to i = (E − E1)/dE where dE=1meV and E1 is the lower energy

bound. If i is fractional it is rounded to the nearest integer. The density
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of states can be output as a tab-delimited text file. The number of carriers,

spin susceptibility, electronic entropy and spin lattice relaxation rate are

calculated by performing numerical integrations of the density of states using

the trapezium rule.

An instance of the Dos class, known as a Dos object, is utilized by the

Mu class in calculating the temperature-corrected chemical potential.

5.3 SCgap

The SCgap class is derived from the Dispersion class. The purpose of this

class is to calculate the superconducting gap self consistently from the BCS

gap equation (Eqn. 5.2) at a given temperature and chemical potential.

The superconducting gap amplitude, ∆0, is calculated recursively until it

stabilises to within 0.1 percent. The trial values for ∆0 in each recursive step

are determined by linear extrapolation of the two previous trial values, as

illustrated in Fig 5.2. In order to improve speed the k-space sum is performed

over a smaller 1000 by 1000 grid spanning a quadrant of the first Brillouin

zone.

An instance of the SCgap class, known as an SCgap object, is utilized by

the Mu class in calculating the temperature-corrected chemical-potential.

5.4 Mu

The Fermi energy is the value of the chemical potential at zero tempera-

ture. The primary purpose of the Mu class is to determine the temperature-
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Figure 5.2: The correct value of the superconducting gap magnitude, ∆0, results
in equality between both sides of the BCS gap equation. Trial values of ∆0 are
chosen by linear extrapolation of the two preceding trial values.

corrected chemical potential, µ(T ), for a given energy-momentum dispersion

and Fermi energy. To do this the Mu class enlists the services of a Dos object

and an SCgap object.

µ is calculated recursively so that the number of carriers remains constant

(to within 0.001 percent) with temperature, a condition defined by Eqn. 5.3.

The number of carriers is obtained from the Dos object. The algorithm used

in determining µ is illustrated in Fig. 5.3. The trial values for µ in each

recursive step are determined by linear extrapolation of the two preceding

trial values.

In the absence of both a pseudogap and superconducting gap the cal-

culation of µ(T ) is very fast as only a single calculation of the density of

states is required. However, in the presence of a pseudogap and/or supercon-
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ducting gap, the density of states must be re-computed whenever µ changes.

This is because the pseudogap is pinned to the chemical potential and the

superconducting gap energy (obtained from the SCgap object) is calculated

self-consistently. For a given temperature µ can usually be determined in 3-4

iterations.

Once the chemical potential at a given temperature has been determined

the Mu class obtains the susceptibility, electronic entropy and spin lattice

relaxation time from the Dos object. These quantities along with the super-

conducting gap amplitude data obtained from the SCgap object are output

to a tab-delimited text file by the Mu class. In addition, binary files are pro-

duced contaning the µ(T ) and ∆0(T ) data. These files are loaded as inputs

by the SFDensity, VSum and Tep classes.

5.5 SFDensity

The SFDensity class is derived from the Dispersion class. It computes the

superfluid density from Eqn. 5.4. The k-space sum is performed over a 1000

by 1000 grid spanning a quadrant of the first Brillouin zone. As inputs, the

class loads the two binary files produced by the Mu class which contain the

temperature dependent chemical potential and superconducting gap ampli-

tude data. The superfluid density as a function of temperature is written to

a tab-delimited text file.
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Figure 5.3: The algorithm used in determining the chemical potential, µ, as a
function of temperature. n is the number of carriers.
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5.6 VSum

The VSum class is derived from the Dispersion class. The purpose of this

class is to perform intermediate calculations that are then used by the Tep

class in calculating the thermoelectric power. Specifically VSum loads the

chemical potential binary file produced by the Mu class as an input and

performs the following k-space sum at each temperature

V (E, T ) =
∑

k

v2
xδ [ǫ(k) − µ(T ) − E] (5.7)

where vx = ∂ǫ(k)
∂kx

. The sum is performed at each point of a 3000 by 3000 grid

spanning a quadrant of the first Brillouin zone. The V (E, T ) table is stored

in a two-dimensional array indexed by temperature and energy. The energy

resolution is 1meV. The calculation is performed in much the same way as

the density of states. The only difference is that instead of incrementing the

value stored in a particular cell by 1 we increment the value by v2
x. VSum

outputs both a tab-delimited text file and binary file containing the V (E, T )

table. The electrical conductivity, σ, in the Boltzmann formalism can be

obtained by multiplying V (E, T ) by the scattering rate τ(E, T ).

5.7 Tep

The Tep class loads the chemical potential and velocity sum binary files

produced by the Mu and VSum classes as inputs and computes the ther-

moelectric power according to Eqn. 5.5. The form of the scattering rate,

τ(E, T ), can be chosen by the user.

70



Figure 5.4: A screen capture of the Console program interface.

5.8 Console

Console is the main class of the program and provides a text-based user inter-

face. Where possible textual menus are presented to the user. A screen-shot

of the main menu is shown in Fig. 5.4. A graphical user interface can be

added simply by the replacement of this class. Its purpose is to prompt the

user for the type of calculation to be performed and to ensure that a valid and

complete set of input parameters is passed to each of the Dos, Mu, SFDen-

sity, VSum and Tep objects. To conserve memory the Console class creates

these objects dynamically for the duration of the calculation. Filenames are

generated by the class based on the dispersion, Fermi energy and pseudo-

gap parameters specified by the user. The Console program architecture is

illustrated in Fig. 5.1.
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5.9 RunFindTc

RunFindTc is a program written to calculate the transition temperature by

numerically solving the self consistent BCS gap equation in the case where

the superconducting gap magnitude is zero. The program architecture is

shown in Fig. 5.5. The RunFindTc class obtains the required parameters

from the user and which are then passed to instances of the FindTc and Mu

classes. Using the outputs from these objects the transition temperature is

calculated in such a way that includes corrections to the chemical potential

for temperature. The algorithm is illustrated in Fig. 5.6.
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5.10 FindTc

The FindTc class is derived from the Dispersion class. An instance of FindTc

is used by the RunFindTc class in calculating the transition temperature.

The FindTc class is very similar to the SCgap class. In the SCgap class the

temperature is specified and a recursive algorithm is used to determine the

superconducting gap magnitude from the self consistent BCS gap equation.

In the FindTc class it is the superconducting gap magnitude that is speci-

fied (=0) and the transition temperature is determined recursively. The class

requires an initial guess from the user of the value of Tc. Subsequent trial val-

ues are then computed using a linear extrapolation method. The algorithm

is unable to accommodate a temperature dependent pseudogap because the

calculations become non-linear and therefore the linear extrapolation method

no longer produces converging trial temperatures.
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Chapter 6

Computational Results

6.1 Electronic Entropy

For Bi-2212 we employ a two-dimensional bilayer dispersion ǫ(k) provided

by the authors of Ref. [42]. It was obtained from tight binding fits to high-

resolution ARPES data from an overdoped sample with a Tc of 55K. The

tight binding basis functions and coefficients are listed in table 6.1. Similar

fits made to data from a less overdoped sample with Tc = 80K suggest that

the hopping parameters change slightly with doping, but the error bars in

the data are also larger for that sample. For our purposes we assume that the

parameters are independent of doping and that the Fermi level shifts with

doping relative to the “rigid” band structure.

The density of states (DOS) per spin at energy E is given by

N(E) = N−1
k

∑

k

δ [ǫ(k) − E] (6.1)
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Table 6.1: Bi-2212 bilayer dispersion tight binding basis functions and coefficients
where ǫ(k) =

∑

ciηi(k).

ci ηi(k)
0.183 1
-0.654 1

2
(cos kx + cos ky)

0.1236 cos kx cos ky

-0.1317 1
2
(cos 2kx + cos 2ky)

0.0083 1
2
(cos 2kx cos ky + cos kx cos 2ky)

0.0212 cos 2kx cos 2ky

0.053 ±1
4
(cos kx − cos ky)

2

where Nk is the number of k-space points over which the summation is per-

formed. The entropy per mole for weakly interacting fermions is given by[121]

S = −2R
∫

[f ln f + (1 − f) ln (1 − f)]N(E)dE (6.2)

where f is the Fermi-Dirac distribution function and R is the gas constant.

The chemical potential µ(T ) is calculated self-consistently such that the car-

rier concentration n is T -independent. n is given by:

n = (2/VA)
∫

f(E)N(E)dE (6.3)

Where VA is the atomic volume per formula unit.

The Fermi surface (FS) in the 1st Brillouin Zone is shown in the inset to

Fig. 6.3. The pseudogap first forms on the FS near (π, 0) leaving ungapped

Fermi arcs[26] between. With decreasing temperature the Fermi arcs narrow

such that the gap becomes nodal at T = 0. We therefore adopt a pseudogap
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of the form

Eg =































































Eg,max cos
(

2πθ
4θ0

)

, (θ < θ0)

Eg,max cos
(

2π(θ−π/2)
4θ0

)

, (θ > π
2
− θ0)

0 otherwise

(6.4)

where

θ0 =
π

4

[

1 − tanh
(

T

T ∗

)]

(6.5)

and T ∗ = Eg,max/kB. 0 ≤ θ ≤ π/2 is the angle shown in Fig. 6.3. The

pseudogap is states-non-conserving i.e. unlike the SC gap there is no pile up

of states outside the gap (see Fig. 6.3). This is implemented by eliminating

states with energies E < Eg from the summations. A plot of the antibonding

band energy-momentum dispersion with a 10meV pseudogap at 50K is shown

in Fig. 6.1. The evolution with temperature of the pseudogap on the Fermi

surface is shown in Fig. 6.2.

Fig. 6.3 shows the DOS calculated from the bilayer dispersion. The bond-

ing and antibonding band vHs’s are clearly visible with the former 105meV

below the latter. Also shown is a 20meV pseudogap at T = 0K and 100K

illustrating the gap filling with temperature. The gap node is pinned to the

chemical potential at all T .

Eqn. 6.5 models the observed temperature dependence of the Fermi arc

length[72]. At T = 0, θ0 = π/4 and the pseudogap is fully nodal. As the

temperature rises, θ0 decreases resulting in a ‘filling-in’ of the pseudogap and
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Figure 6.3: The density of states calculated from the Bi-2212 bilayer dispersion
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surface in the (kx, ky) plane showing the angle θ.
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the growth of the Fermi-arcs. This model is based on results by Kanigel et

al.[72] that show the Fermi-arcs collapsing linearly as a function of T/T ∗,

extrapolating to zero as T → 0. However we note an important difference

between this model and their results. The Kanigel data shows the pseudogap

opening abruptly at T = T ∗. A pseudogap which fills completely at T ∗ would

result in a jump in the specific heat coefficient γ at T ∗, which is not observed

experimentally (see Fig. 6.4). The smooth evolution of the tanh function in

Eqn. 6.5 overcomes this problem.

We suggest that the apparent closing of the pseudogap is an artifact

of quasiparticle lifetime broadening. Kanigel et al. estimate the size of the

pseudogap around the Fermi surface as being half the peak to peak separation

in the symmetrized ARPES quasiparticle energy dispersion curves (EDCs).

The symmetrized ARPES EDCs have been simulated[123] as the sum of two

thermally broadened Lorentzians. The simulations (see Fig. 6.5) show that

estimating the gap size in this fashion results in an apparent gap that fills

faster than the actual gap. The discrete jump at T ∗ in the Fermi arc length

reported by Kanigel et al. is also found to be an artifact of their peak-to-

peak analysis in the presence of quasiparticle lifetime broadening. Thus, as

shown in inset (a) of Fig. 6.5, a true d-wave gap (∝ cos 2φ) with nodes at

φ=45◦ appears to close at a smaller angle, exposing apparent, but fictitious,

Fermi arcs. The inset (b) to Fig. 6.5 shows the temperature dependence of

the apparent Fermi arc length (FAL). This seems to extend out abruptly to

cover the entire Fermi surface at T ∗, just as reported by Kanigel et al. (see

data points in inset (b)). But the entire effect is fictitious in that it can be

caused by quasiparticle lifetime effects.
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The entropy in the SC state has been modelled using a d -wave gap of

the form ∆(k) = 1
2
∆0g(k) where g(k) = cos kx − cos ky. The dispersion in

the presence of the SC gap is given by E(k) =
√

ǫ2(k) + ∆2(k) and ∆0(T ) is

determined from the self-consistent weak-coupling BCS gap equation[124]

1 =
V

2

∑

k

|g(k)|2

E(k)
tanh

(

E(k)

2kBT

)

(6.6)

The summation is performed over both the bonding and anti-bonding bands

and ∆ is assumed to be the same for both bands[125]. We adopt a pairing

potential of the form Vkk
′ = V g(k)g(k′). The amplitude, V , is assumed

to be constant (=125meV) up to an energy cut-off, ωc, chosen such that Tc

matches the experimentally observed value. The pseudogap is not included

in the process of calculating ∆0(T ). Including the pseudogap as modelled

by Eqn. 6.4 in the self-consistent calculation of ∆0(T ) quickly results in ∆0

going to zero for Eg values that are much smaller than what is experimentally

observed. The reason for this can be explained as follows.

In the case of an s-wave superconducting gap the BCS gap equation takes

the form[3]

1 = N(0)V

ωc
∫

0

dǫ
√

ǫ2(k) + ∆2(k)
(6.7)

In the pseudogap model, states with energies less than Eg are eliminated.

These low-energy states provide the highest contributions to the integral.

In order to compensate, ∆(k) reduces. The rapid reduction in ∆(k) with

increasing Eg is due to the states-non-conserving nature of the model. In

order to incorporate the pseudogap self-consistently under the current scheme
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we are left with two possiblities: (a) introducing a reduction in Eg at low

temperatures; (b) altering the zero-temperature Fermi-arc length. These

possibilities will be explored in sections 6.2 and 6.3.

Fig. 6.6(a) shows the experimental normal- and SC-state entropy data

of Loram et al [122]. Fig. 6.6(b) shows the absolute entropy calculated from

dispersion with no fitting parameters. We have merely specified the location

of EF relative to EvHs at two points only: 0meV for an overdoped sample

with p = 0.225[42]; 96meV for an underdoped sample with p = 0.11[126];

and interpolated between (as well as a little beyond the vHs). The doping

dependence of Eg is obtained from measurements of the leading-edge ARPES

gap at 100K[127]. The overall T - and doping-dependence of the experimental

data is reproduced superbly, with absolute values just a factor of 3/4 lower.

In Fig. 6.6(a) we have rescaled the computed entropy by a constant factor of

4/3 and refined the fit by using EF and Eg,max as fitting parameters. These

refinements do not alter the overall behaviour and are tightly constrained.

For example, the normal-state fits to the four most overdoped data sets have

been obtained by adjusting a single parameter, namely EF , as are the high-T

asymptotes for all data sets. The Fermi level in the most overdoped fit is

only 8meV above the antibonding band vHs.

As the doping decreases the vHs recedes from EF resulting in a decrease

in the number of states within kBT of µ and a corresponding reduction in

entropy. However, as the doping is further reduced the recession of the vHs

from EF is no longer able to account for the observed decrease in entropy

alone and the second adjustable parameter, the pseudogap magnitude Eg,

is introduced. This results in the progressive downturn in the normal state
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Figure 6.6: (a) Refined normal-state (black) and SC-state (red) fits to the elec-
tronic entropy data of Loram et al [122] for Bi-2212. For clarity every 20th data
point only is shown. Each curve represents a different doping level from p = 0.129
to 0.209. (b) Unrefined absolute entropy curves with no fitting parameter.
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S/T as temperature decreases.

The deduced values of EF − EvHs and Eg are plotted as a function of

doping in Fig. 6.7(a) along with the measured Tc. The doping level has been

determined from the empirical relation[18] p = 0.16 ± 0.11
√

1 − Tc/Tc,max.

The vHs crossing is projected to occur at p = 0.22 exactly consistent with

the ARPES data of Kaminski et al. (who observe a change in Fermi surface

topology at p = 0.225), thus indirectly confirming their data and the ARPES

technique in general. Good agreement between the EF−EvHs values obtained

from the entropy fits and those obtained from ARPES is found across the

phase diagram as shown in Fig. 6.8. In view of the fact that ARPES is a

surface technique dominated by the outermost CuO2 layer while the specific

heat is a bulk property our conclusions effectively confirm both techniques.

This is not a trivial conclusion. Both the fitted and measured values of

EF −EvHs differ somewhat from the expected doping dependence determined

by integrating the density of states (shown by the dotted line in Fig. 6.8).

However, the doping dependence calculated in this fashion depends on the

accuracy of the tight binding fits at energies far below EF , and the deviation

may simply arise as a result of the rigid band approximation.

The remarkable success, illustrated in Fig. 6.6, in reconciling the bulk

thermodynamics with the quasi-two-dimensional in-plane surface dynamics

probed by ARPES shows just how much the CuO2 planes are decoupled.

Pairing models based on inter-layer coupling[128] would appear to be heavily

compromised by such results. This question is, of course, pertinent to the λc

isotope effect data discussed in Section 4.4.

We are now in a position to understand the progressive increase in entropy
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arrow indicates increasing doping.

with doping that has previously been estimated to be the classical value

of one kB per added hole. Figure 6.9 shows Fig. 6.6(a) replotted as S vs

T for different doping levels while Fig. 6.10 shows the same data plotted

as S vs p for different temperatures. The latter plot reveals an average

increment in entropy of about 0.85kB per added hole. For a 2D system of

nearly free electrons this should be zero, and its near classical value was a

point of significant interest to Loram et al.[122] We now see that this is just

a signature of the approach to the vHs and the associated increase in DOS

and spectral weight.

S/T at fixed temperature rises with doping and reaches its maximum at

the vHs crossing. Of course beyond the vHs S vs p is a decreasing function

of doping. The maximum in S/T is also observed in La2−xSrxCuO4[129] and
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fits made to the data using (in the absence of suitable data for LSCO) an

ARPES derived Bi-2201 single layer dispersion indicate a crossing between

p = 0.24 and 0.27 (see Fig. 6.11).

In their paper Loram et al.[129] explain the entropy maximum as being

due to a peak in the DOS at the Fermi level that grows and collapses as a

function of doping. They dismiss the possibility of a vHs passing through the

EF with doping, arguing that the temperature dependence of the chemical

potential will prevent the large changes observed in entropy as the doping

is changed. The fits made to the Bi-2212 and LSCO data show that this

is not the case. The vHs does indeed result in a strongly temperature de-

pendent chemical potential. However the amount by which it changes with

temperature depends on the height and extent of the vHs with respect to the

background density of states.
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The pseudogap is observed to open at critical doping pcrit = 0.188 in

agreement with previous analyses[122, 81]. Eg has been fitted with the fol-

lowing equation

T ∗(p) = Eg/kB = T ∗

0 (1 − p/pcrit)
1−α (6.8)

with T ∗

0 = 443.7K and α = 0.317. These values agree with the results of

Naqib et al.[130] who have determined T ∗(p) of Y1−xCaxBa2(Cu1−yZny)O7−δ

from transport measurements. A fit to their data gives T ∗

0 = 510K and

α = 0.2. The sublinear behaviour of T ∗(p) and non-zero value of α is expected

if pcrit is a quantum critical point[131].

From the SC state fits the energy cut-off, ωc, is surprisingly found to be

linearly related to the distance of the Fermi level from the vHs, see Fig. 6.12.

In particular ωc(meV ) = 10.96 + 0.637(EF − EvHs) with correlation coef-

ficient R = 0.99945. Because of this rapid fall in energy scale with doping

this behaviour is suggestive of spin-fluctuation mediated superconductivity or

perhaps electron-phonon coupling enhanced by spin-fluctuations, but proba-

bly not coupling to phonons alone.

Fig. 6.7(b) shows the magnitude of the combined SC gap and pseudo-

gap, ∆max, measured from the calculated DOS at 10K. ∆max increases with

decreasing doping just as observed from ARPES[132], tunnelling[133] and

Raman scattering[134]. Also plotted is the SC gap magnitude ∆, deter-

mined by setting Eg = 0 and measuring the gap in the calculated DOS at

10K. The magnitude is smaller than typically observed because of the weak

coupling assumption for which 2∆/kBTc = 4.28. The gap, ∆, rises and falls
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Figure 6.12: Pairing potential cut-off energy vs distance from antibonding van
Hove singularity.

in conjunction with the observed Tc. It is important to note that the experi-

mentally observed monotonic increase in the gap magnitude with decreasing

doping is here seen to be associated with the pseudogap, and not the SC

gap as generally believed. The behaviour here is consistent with the two-

gap picture presented by Deutscher[76] and more recently by Le Tacon et

al.[77] but has been a feature of the work of Loram and Tallon for a long

time[127, 67, 81].
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6.2 Superfluid Density

The superfluid density, ρs, is proportional to the inverse square of the pene-

tration depth given by[135]

1

λ2
ab

=
µ0e

2n

4πh̄2

∑

k





(

∂ǫ(k)

∂kx

)2
∆2(k)

E2(k)
−

∂ǫ(k)

∂kx

∂∆(k)

∂kx

∆(k)ǫ(k)

E2(k)





×

[

1

E(k)
−

∂

∂E(k)

]

tanh

(

E(k)

2kBT

)

(6.9)

where n is the electron volume density. This equation has the desirable

property of explicitly yielding ρs = 0 in the normal limit, ∆(k, T = Tc) = 0,

even in the presence of a normal-state pseudogap. This statement is made

simply because other forms have been proposed which do not exhibit this

property (see for example Ref. [136]). The summation is performed over

both the bonding and anti-bonding bands and ∆ is assumed to be the same

for both bands[125].

Using the parameters obtained from the entropy fits in section 6.1 the

superfluid density was calculated using Eqn. 6.9 with no further adjustable

parameters. The temperature dependence is shown in Fig. 6.13(a). For

comparison (and in the absence of data for Bi-2212) Fig. 6.13(b) shows the

ab-plane superfluid density of La2−xSrxCuO4 determined by ac-susceptibility

measurements on grain-aligned samples reported by Panagopoulos et al.[137].

There is excellent qualitative and quantitative agreement between the calcu-

lated and observed results.

Panagopoulos et al. speculated that the significant deviation of the

x=0.24 data from the classic flat band d-wave temperature dependence re-
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flected a change in electronic structure connected with the transition from a

hole-like to electron-like Fermi surface near x=0.27. The calculations confirm

that the increasing linearity of ρs(T ) with overdoping can now be understood

in terms of the approach to the vHs where full linearity occurs. (The crossing

of the vHs in LSCO can also be inferred from the systematic rise then fall

observed in the entropy near p = 0.24[129]. See also Fig. 6.11.)

The opening of the pseudogap leads to the strong reduction in ρs ob-

served below p = 0.19, a result found previously by Tallon et al [138]. This is

clearly illustrated by the plot of ρs(10K) vs p in Fig. 6.14. The overall dop-

ing dependence and absolute magnitude of ρs(10K) concurs almost exactly

with experimental data for Bi-2212[139] also shown in Fig. 6.14. We recall

that no fitting parameters are used in Eqn. 6.9. It is remarkable that S/T

and ρs(T ) are so similar in LSCO, Bi-2212 and indeed Y1−xCaxBa2Cu3O7−δ,

despite the significant differences in bare band structure. It is a central con-

clusion to this work that, despite wide variations in bare band structure, the

renormalized dispersion near EF seems to lead to a universal phenomenology

seen here in the superfluid density, but also in the entropy, the susceptibility,

the thermoelectric power and the universal nodal Fermi velocity[98]. This

observation calls for theoretical explanation within a strong-coupling picture.

In the underdoped data the downturn seen at low T and p in the cal-

culated ρs(T ) curves arises from the closing of the Fermi arcs and is not

observed in the experimental data which shows an upturn at low T and p. A

similar downturn would occur in the condensation energy, which again is not

observed. This indicates that the Fermi arc picture is, at best, incomplete.
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The upturn may be due to a redistribution of spectral weight from the pseu-

dogap to the superconducting gap at low temperatures. This explanation

is supported by ARPES data[72] showing a decrease in the antinodal gap

magnitude with a decrease in temperature, suggestive of a reduction in the

pseudogap magnitude Eg. Linearly reducing Eg by ten percent between 20K

and 0K results in the green dotted curve plotted in Fig. 6.13(a). Alterna-

tively, the Fermi arc picture is as we say incomplete or perhaps even faulted.

This issue is examined in more detail in the following section.

6.3 Raman Response

Raman scattering allows a means to probe the Fermi arcs at low temperature.

To calculate the Raman response we employ the single band six parameter
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tight-binding Bi-2212 dispersion, ǫ(k), reported by Norman et al.[32] and

assume a rigid-band approximation. Inclusion of bilayer splitting will not

significantly affect the following results. We take the Fermi level to be 34meV

above the van Hove singularity at (π, 0) near optimal doping[32], 96meV

above the vHs in an underdoped sample with doping p = 0.11[126], and

interpolate in between for intermediate doping levels. The imaginary part

of the unscreened non-resonant Raman response at T = 0 is proportional

to[140]

χ
′′

0 (q = 0, ω) =
∫ d2k

(2π)2 δ [ω − 2E(k)]
|∆(k)|2

E2(k)
|γ(k)|2 (6.10)

where the integral is over occupied states below EF ,

∆(k) = 1
2
∆0 (cos kx − cos ky) is the d-wave symmetric superconducting gap

function and E(k) =
√

ǫ2(k) + |∆(k)|2. The Raman vertex functions,

γ(k)B1g = γB1g (cos kx − cos ky) and γ(k)B2g = γB2g sin kx sin ky, respec-

tively probe the antinodal and nodal regions of the dispersion as illustrated in

Fig. 6.15. The magnitude of the superconducting gap, ∆0, is taken from the

weak-coupling d-wave result 2∆0 = 4.28kBTc with Tc given by the empirical

relation[18] Tc/Tc,max = 1− 82.6 (p − 0.16)2. We adopt the model pseudogap

given by Eqn. 6.4 but, in order to reflect the Kanigel results, we replace θ0

by

θ0 = π
4

(

1 − T
T ∗

)

(T < T ∗) (6.11)

where T ∗ = Eg,max/kB. This results in a pseudogap that fills linearly with

temperature up to T ∗ where it fills completely. As in section 6.1 the pseu-

dogap is implemented as a states-non-conserving gap by eliminating states

with ǫ(k) < Eg from the integration in equation 6.10. The doping depen-
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dence of Eg is obtained from measurements of the leading-edge ARPES gap

at 100K[127].

Figure 6.16(b) shows the antinodal (B1g) Raman response for six hole

concentrations spanning the range 0.12 to 0.19. Here we have assumed that

the length of the Fermi arc becomes fixed at the onset of superconductiv-

ity, implemented by setting T = Tc in equation 6.11. Figure 6.16(a) shows

the nodal (B2g) response. The calculations closely resemble the recently

reported Raman scattering results of Le Tacon et al.[77] which are repro-

duced in Fig. 6.17. The pseudogap peak maximum in the B1g response shifts

monotonically to higher energies with decreasing doping. Simultaneously

the intensity of this peak rapidly reduces with underdoping. In contrast,

the superconducting peak maximum in the B2g response is found to shift to

lower energies in the underdoped regime. The magnitude of the nodal peak

persists down to the lowest doping levels. Also reproduced is the increased
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Figure 6.16: Calculated Raman response at T = 0 for a Fermi arc length fixed be-
low Tc: (a) nodal B2g and (b) antinodal B1g symmetry. Arrows show the positions
of superconducting gap and pseudogap features.

linear slope of the response at low dopings.

Figure 6.18 shows the nodal response in the alternative case where we

have assumed that the Fermi arcs continue to collapse in the superconducting

state. This has been implemented by setting T = 0 in equation 6.11 resulting

in a fully nodal pseudogap. In this case the B2g peak shifts monotonically

to higher energies with decreasing doping and the intensity reduces rapidly.

This behaviour is not observed experimentally.

In light of these calculations, the Raman data implies the existence of

a finite Fermi arc in the normal state zero temperature limit (or something

else equivalent to this). The observed changing shape of the gap from a ‘V-

shape’ to a ‘U-shape’[30, 125] as doping is reduced follows naturally from this

scenario (see Fig. 6.19). With temperature dependent Raman measurements
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Figure 6.18: Calculated (a) nodal B2g and (b) antinodal B1g Raman response for
a fully nodal pseudogap at T = 0. Also shown is the Raman response at 10K and
20K for the p=0.12 doping state. The growing peak at low frequency is due to the
growth of the Fermi arcs. The intensity scale is the same for all plots.
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angle. In underdoped samples the gap is small near the nodal region, arising from
the superconducting gap opening on the Fermi arcs.

it may be possible to determine whether the Fermi arcs freeze at Tc or instead

continue to shrink to a finite extent at T = 0. The two lower-most curves

in Fig 6.18 show the B2g response calculated at 10K and 20K for the p=0.12

doping state. A peak appearing at low frequency, which shifts to higher

frequencies with increasing temperature, is a signature of the growing Fermi

arcs. These curves are calculated under the assumption that corrections

to the Raman response equation (6.10) for temperature are negligible. To

confirm this effect will require careful measurements of the low-frequency B2g

response of a heavily underdoped sample at a number of temperatures well

below Tc.

In section 6.1 it was shown that the fully nodal pseudogap could not be

included in the self-consistent calculation of the superconducting gap because

it removed too many of the low-energy states that contribute the most weight
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in the BCS gap equation (Eqn. 6.6). A finite Fermi arc at zero temperature

results in a finite density of states at the Fermi level. And so it is now

possible to explore the effect of including the pseudogap in the BCS gap

equation. The entropy is recalculated as in section 6.1 but with the π/4 in

Eqn. 6.5 replaced with an adjustable parameter θmax. To offset the effect

of the finite density of states at the Fermi level the fill rate is slowed from

[1 − tanh (T/T ∗)] to [1 − tanh (T/2T ∗)].

Figure 6.20(a) shows normal- and superconducting-state fits to the most

underdoped entropy/T dataset of Loram et al.[122] where the Fermi arcs

shrink down to a finite length (θmax=35 deg) at zero temperature. The pseu-

dogap is included in the self-consistent calculation of ∆, which is plotted in

Fig. 6.20(b) along with the resulting superfluid density. ∆ exhibits a down-

turn at low temperatures while the superfluid density exhibits an upturn.

Under this scheme the Fermi level is 93meV from the vHs, slightly closer than

107meV in the case of a fully nodal non-self-consistent pseudogap. This only

improves the agreement with the EF − EvHs values obtained from ARPES

(see Fig. 6.8). The pseudogap magnitude is nearly unchanged at 16.5meV

compared with 17.5meV. In order to accommodate the pseudogap either the

pairing potential amplitude, V, or the energy cut-off, ωc must be increased.

Note that if a completely temperature independent pseudogap is assumed

then the Fermi level gets pushed much closer to the vHs and the disagree-

ment with the ARPES values becomes significant. A further consequence

is that the observed decrease in superfluid density is not observed. These

calculations usefully indicate the trends and could be refined in such a way

to yield a more realistic temperature dependence of the gap and a less strong
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Figure 6.20: (a) Normal state (blue) and superconducting state (red) fits to the
p=0.129 electronic entropy/T data of Loram et al.[122] where the Fermi arcs shrink
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consistent calculation of ∆, shown in (b). Also shown is the resulting superfluid
density (blue) compared with that calculated in section 6.1 in the presence of a
fully nodal pseudogap (black).
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upturn in ρs as T → 0.

6.4 Spin Susceptibility

The spin susceptibility for a system of electrons in the static, long wavelength

limit is given by[141]

χs = 2µ2
B

∫

N(E)
(

− ∂f
∂E

)

dE

=
µ2

B

2kBT

∫

N(E)sech2
(

E−µ
2kBT

)

dE

(6.12)

where N(E) is the density of states and f is the Fermi function. The NMR

Knight shift is related to the spin susceptibility by[141]

K(T ) = αχs(T ) + Korb (6.13)

where α is the hyperfine coupling constant and Korb is the temperature in-

dependent orbital shift made up of the Van Vleck orbital susceptibility, χV V ,

and the chemical shift, δ[142, 143]. In this section we fit the

Y0.8Ca0.2Ba2Cu3O7−δ (Y-123) 89Y NMR Knight shift data of Williams et

al.[144] using a rigid ARPES energy-momentum dispersion and the model

pseudogap of section 6.1. The data spans a wide range of doping (p=0.136

to 0.234) and the temperature and doping dependence closely resembles the

behaviour of the Bi-2212 entropy/T data (see Fig. 6.6).

For Y-123 we employ a two-dimensional bilayer dispersion ǫ(k) provided

by the authors of Ref. [145], which was obtained from tight binding fits to
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Table 6.2: Tight binding basis functions and coefficients (in eV) for the bonding
and antibonding bands of Y-123. The energy-momentum dispersion is given by
ǫ(k) =

∑

ciηi(k).

ci (Bonding) ci (Antibonding) ηi(k)
0.488 0.650 1
-2.576 -1.912 1

2
(cos kx + cos ky)

1.080 0.700 cos kx cos ky

-0.312 -0.1880 1
2
(cos 2kx + cos 2ky)

high-resolution ARPES data. The tight binding basis functions and coeffi-

cients for the bonding and antibonding bands are listed in Table 6.2. The

density of states is shown in Fig. 6.21. Comparison with the Bi-2212 den-

sity of states (Fig. 6.3) reveals that the anti-nodal bilayer splitting in Y-123

(≈500meV) is about five times larger than in Bi-2212 (≈100meV). Also, as

seen in the inset to Fig. 6.21, the Fermi surface splitting is not restricted to

the antinodal regions.

Fits to the NMR data are shown in Fig. 6.22(a) where a doping and tem-

perature independent value for Korb of 235ppm has been used. An excellent

match with the data is obtained for all doping levels. A plot of EF − EvHs

and Tc versus hole concentration (Fig. 6.22(b)) indicates that the Fermi level

crosses the vHs near where Tc goes to zero at around p=0.27. The location

of the crossing has greater similarity with the single layer Bi-2201, La-214

and Tl-2201 systems than with the bilayer Bi-2212 system where the vHs

crossing occurs near p=0.22. This can be attributed to the increased bilayer

splitting in Y-123 which makes the area of the density of states probed by

the Fermi window appear very much like a single-layer density of states.

In their paper[144] Williams et al. model the growing Curie-like temper-
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Figure 6.21: The density of states of Y-123 calculated from the energy-momentum
dispersion listed in table 6.2. The inset shows the Fermi surface for p=0.173. In
contrast to Bi-2212, the bilayer splitting in this material is not restricted to the
antinodal regions.
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Figure 6.22: (a) Fits to the Y0.8Ca0.2Ba2Cu3O7−δ
89Y NMR Knight shift data of

Williams et al.[144] calculated from a rigid ARPES energy-momentum dispersion
and the model pseudogap of section 6.1. (b) Tc and the values of EF − EvHs and
Eg obtained from the fits in (a) versus hole concentration.
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ature dependence of the overdoped data with a peak in the density of states

which grows with overdoping. This proposal was previously advanced by

Loram et al.[129] to explain the maxima in the S(T0) (entropy), and χT (T0)

data of La2−xSrxCuO4 as a function of doping near x=0.25.

Under the current model the growing Curie-like temperature dependence

(as well as the maxima in S(T0) and χT (T0)) is clearly the result of the

Fermi level traversing the vHs. The same conclusion was drawn as early as

1995 by Thoma et al.[141] who modelled the susceptibility and Knight shift

using a rigid step-shaped DOS with a logarithmic vHs at the location of the

step. They made the key point that conventional weak-coupling formulas for

Tc within the BCS theory are clearly not compatible with such trends in the

density of states. This will be explored further in section 6.7.

6.5 Thermoelectric Power

The results thus far clearly reveal that the systematic trends in the thermo-

dynamic, electrodynamic and magnetic properties reveal a universal doping-

dependent behaviour that derives from the approach to and crossing of the

vHs. These each involve integrals of the density of states. We turn now to an-

other property that was early shown[146] to exhibit universal behaviour and

that is the thermoelectric power. This now introduces an additional feature

to the DOS, the k-dependent scattering rate. In the following we ignore the

phonon drag contribution, primarily because the computed diffusion ther-

mopower alone adequately describes the p- and T -dependent thermopower.
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The diffusion thermopower is given by[147]

S(T ) =
1

|e|T

∫

∞

−∞
σ (E) (E − µ)

(

∂f(E)
∂E

)

dE
∫

∞

−∞
σ (E)

(

−∂f(E)
∂E

)

dE
(6.14)

σ(E) is the spectral conductivity which under the Boltzmann formalism is

given by

σ(E) =
e2

V

∑

k

vα(E,k)ℓα(E,k)δ[ǫ(k) − E] (6.15)

ℓα is the mean free path given by

ℓα = vα(E,k) · τ(E,k, T ) (6.16)

where vα = ∂ǫ(k)
∂kα

is the group velocity of the conduction electrons, τ(E,k, T )

is the relaxation time and α = x or y.

In order to calculate the thermopower it is necessary to make an assump-

tion about the form of the mean free path, ℓα. A popular starting point is

to assume that it is constant[148, 57]. Under such an assumption the mean

free path can be brought outside the summation in Eqn. 6.15 and is then

cancelled out of the thermopower equation (Eqn. 6.14). In a recent paper

Kondo et al.[57] calculated the thermopower of Bi-2201 from an ARPES-

derived energy-momentum dispersion. Their data is plotted in Fig. 6.23(a)

along with the calculated thermopower curves which have been replicated

by the present author. The calculations assume a constant mean free path

and a temperature independent chemical potential µ. As a first step we have

corrected µ so that the carrier concentration remains constant (Eqn. 6.3)

resulting in the curves shown in Fig. 6.23(b). The correction has an effect
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Figure 6.23: Measured and calculated thermopower of Bi-2201[57]. The curves
are calculated assuming a constant mean free path. In (a) the chemical potential
is constant while in (b) the chemical potential is corrected for temperature. The
values of EF − EvHs from underdoped to overdoped are 70, 42, 16, 6 and -4meV.
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on the magnitude but not the general behaviour of the thermopower. The

different doping states are obtained through the adjustment of a single ex-

perimentally determined parameter, namely EF − EvHs.

Thermoelectric power is a measure of the asymmetry in the conductivity

about µ. The evolution of S(T ) with doping can be easily understood by

examining the energy dependent conductivity shown in Fig. 6.24. Under

the constant mean free path assumption the conductivity is proportional to

∑

vxδ[ǫ(k) − E], which is just a velocity-weighted density of states. As in

the density of states the conductivity is dominated by a peak at EvHs. The

singularity in the conductivity is not as prominent as that in the density

of states due to the smaller velocities near the saddle points at (±π, 0) and

(0,±π). At low temperatures and when the vHs is below µ, the spectral

weight encompassed by the spectral window (ǫ − µ)[∂f(ǫ)/∂ǫ] below µ is

greater than that encompassed above µ, resulting in a positive peak in S(T ).

As the Fermi level retreats from the vHs with underdoping this imbalance

grows, thereby increasing the size and temperature extent of the peak. The

peak disappears in the overdoped regime when the Fermi level crosses the

vHs and so this provides a signature of the vHs crossing.

Returning to the fits, there is good qualitative and quantitative agreement

with overdoped and optimally doped data. However, the calculations are

unable to reproduce the rapid increase in the magnitude of S(T ) seen in

underdoped samples. Thermopower values in excess of 300µV/K have been

observed in underdoped YBCO[146]. Here we explore the effects of including

(i) a normal-state pseudogap and (ii) an energy and temperature dependent

relaxation time.
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Figure 6.24: (a) The density of states of Bi-2201 calculated from the ARPES-
derived energy-momentum dispersion and the conductivity calculated from
Eqn. 6.15 under the constant mean free path assumption. (b) The spectral window
(ǫ − µ)[∂f(ǫ)/∂ǫ] at 50K and 400K.
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Figure 6.25: The extrapolated zero frequency scattering rate from the IR reflec-
tivity data of Hwang et al.[149] versus temperature.

We employ the six parameter tight binding Bi-2201 dispersion reported

by Kondo et al.[57] and a model for the pseudogap given by Eqns. 6.4 and

6.5. The pseudogap, as described by the model, is symmetric about µ and

including the pseudogap on its own does not provide the enhanced asymmetry

required to boost the magnitude of S(T ). This brings us to the scattering

rate.

The scattering rate as determined from infrared reflectivity[149], and also

FWHM analysis of ARPES spectral peaks[150], is found to be linear in en-

ergy. This together with a linear dependence on temperature, as inferred from

linear resistivity, is a signature of the marginal Fermi liquid phenomenology

proposed by Varma et al.[19]. The extrapolated normal-state zero frequency

scattering rate from the IR reflectivity data of Hwang et al.[149] is plotted

as a function of temperature in Fig. 6.25. It is observed to be temperature
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Table 6.3: Values in meV of the parameters used in the Bi-2201 thermopower fits
of Fig. 6.26.

Sample EF − EvHs Eg a
OD0K 2 0 300
OD7K 6 0 200
OD21K 16 0 200
OP35K 40 0 170
UD27K 60 32 138

independent up to a certain temperature T ′ before becoming linear in T . T ′

increases with decreasing doping just as has been observed for T ∗ and Eg.

Based on the above observations the scattering rate is modelled with the

following equation

h̄

τ
(E, T ) =

π

2





1

tanh
(

Eg

2kBT

) − 1



+ |E − EvHs| + a (6.17)

which becomes h̄/τ = πkBT + |E − EvHs| + a in the limit where Eg tends

to zero. a is an adjustable parameter which represents intrinsic scattering.

Note that in order to reproduce the peak in the conductivity at EvHs the

scattering rate must be proportional to E − EvHs, not E − EF . This has an

added effect of increasing the asymmetry in the conductivity about µ, since

EvHs lies below µ in the pseudogap regime. The plausibility and possible

origin of this energy dependence is explored in section 6.6.

Fits to the Bi-2201 data using the above pseudogap and scattering rate

models are shown in Fig. 6.26. The chemical potential is corrected for tem-

perature. The parameters used in the fits are listed in table 6.3. The fits

are improved over those made under the constant mean free path assump-
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Figure 6.26: Fits to Bi-2201 data using the pseudogap model given by Eqns. 6.4
and 6.5, and a model scattering rate given by Eqn. 6.17.
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tion, not only for the underdoped data, but for all datasets. The values of

EF −EvHs are still comparable with those determined from ARPES of -4, 6,

16, 42 and 70meV.

To further test its validity the model was applied to the more abundant

underdoped data of Bi-2212. Here we use the Bi-2212 dispersion of Norman

et al.[32] which does not include the effect of bilayer splitting. The reason

for using this simplified dispersion is that it is not clear how to apply the

scattering rate model to a density of states that has a split vHs. It is ex-

pected that in the underdoped regime where the Fermi level is far from the

antibonding band vHs (and even further from the bonding band vHs) that

corrections due to bilayer splitting will be small. Fits to the underdoped

Bi-2212 data of Munakata et al.[151] and Mandrus et al.[152]. are shown in

Fig. 6.27(a). The chemical potential is corrected for temperature.

The fit parameters are plotted in Fig. 6.27(b) as a function of doping

which has been estimated from the Tc’s using the empirical relation[18]

p = 0.16± 0.11
√

(1 − Tc/Tc,max). The model produces a good fit to the ther-

mopower data but more importantly the parameters follow similar trends to

those obtained from the entropy fits in section 6.1 (see Fig. 6.7). The scatter-

ing rate at zero frequency (E = EF ) is plotted as a function of temperature

in Fig. 6.28. The behaviour resembles the temperature dependence observed

in the optical scattering rate (Fig. 6.25) however the range over which it is

temperature independent is not as large.

As the doping is increased the effect of bilayer splitting becomes important

and it becomes increasingly difficult to obtain a quantitative fit using the

single-layer Bi-2212 dispersion. Note that this does not change the qualitative

117



0 100 200 300 400
-10

0

10

20

30

40

50

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

(a)

(2)
(2)

(2)
(1)

(1)

S 
(

V/
K)

Temperature (K)

(b)

En
er

gy
 (m

eV
)

or
 T

em
pe

ra
tu

re
 (K

)

hole concentration, p

 EF-EvHs
 Eg
 a
 Tc
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result that the positive thermopower peak vanishes as EF traverses the vHs.

As noted earlier the difficulty in applying the bilayer dispersion of Kaminski

et al.[42] lies in deciding on a form for the scattering rate. However, as

demonstrated by Kondo et al.[34], the constant mean free path assumption

reproduces the behaviour of overdoped Bi-2201 thermopower data reasonably

well and so we now apply this assumption to the bilayer Bi-2212 dispersion.

The conductivity is shown in Fig. 6.29. Peaks are visible at the bond-

ing and antibonding band vHs energies. The thermopower calculated from

the conductivity is shown in Fig. 6.30(b) along with comparative overdoped

Bi1.8Pb0.3Sr1.9CaCu2O8 data[153] in (a). The calculations successfully repro-

duce trends seen in the data, further demonstrating the reliability of the

constant mean free path assumption in the overdoped regime. The calcula-
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Figure 6.29: The energy dependent conductivity calculated from the bilayer Bi-
2212 dispersion under the constant mean free path assumption.

tions reveal that the data is consistent with the Fermi level crossing the vHs

in Bi-2212 near p=0.225 (Tc ≈60K) as deduced from ARPES[42] and fits to

the electronic entropy in section 6.1. The deviation from linearity between

100K and 300K is found to be due to the influence of the bonding band

conductivity peak and is clearly visible in the data. The same curvature is

seen in the overdoped data of Munakata et al.[151].

The fact that an exact fit is not obtained is most likely due to the constant

mean free path assumption. This assumption was made in order to keep the

number of assumptions to a minimum. The gradients of the calculated curves

are not as steep as those of the data, but, as seen in Fig. 6.23, this situation

also occurs for Bi-2201. In principle, exact fits could be made by choosing

appropriate scattering rates for the bonding and antibonding bands.

This work builds on the approach taken by McIntosh & Kaiser[148] and
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Kondo et al.[34] but differs from the phonon drag approach taken by

Trodahl[154]. In the phonon drag model the thermopower is explained as a

combination of a negative linear diffusion part and a positive phonon drag

contribution which initially rises linearly with temperature before saturating

at high temperatures. Under that model it is deduced that “the diffusion

thermopower is clearly negative for all hole concentrations and proportional

to temperature for the majority of cuprates.” The model developed here

shows that this is not the case and highlights the importance of including a

realistic band structure.

By taking into account the energy momentum dispersion and a model

for the single particle scattering rate it has been shown that evolution of the

thermopower in the cuprates can be explained by the diffusion component

alone and implies that the phonon drag component is small.

6.6 Scattering Rate

In the previous section it was shown that with an appropriate scattering rate

the doping and temperature dependence of the thermopower, S(T, p), can be

explained by the diffusion component alone. As shown by Kondo et al.[34]

the doping dependence from the optimal to overdoped regimes can be ap-

proximately reproduced by assuming a constant mean free path and sliding

the Fermi level towards the vHs. In the model, the van Hove singularity at

energy EvHs gives rise to a peak in the conductivity at EvHs which is respon-

sible for the behaviour of S(T ). While extending the model, by including

a linear-in-energy scattering rate, it was found that in order to reproduce
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Figure 6.31: Lifetime of the Bloch states at the Fermi level τF (θ) determined from
ARPES measurements at 200K[155]. The curves are fits given by Eqn. 6.18.

the peak in the conductivity at EvHs the scattering rate needed to be pro-

portional to E − EvHs, not E − EF . Here the momentum dependence of

the scattering rate is investigated to find out if it does indeed give rise to a

scattering rate that is proportional to E − EvHs.

Figure 6.31 shows relaxation time plotted as a function of Fermi sur-

face angle for underdoped to overdoped Bi-2201 samples as determined from

ARPES measurements at 200K[155]. It is immediately apparent that the

relaxation time around the Fermi surface increases as the doping increases.

In the most overdoped sample with Tc=7K (filled circles) the relaxation time

is maximal at 0 and 90 degrees. As the Fermi level lies close to the vHs at

this doping this indicates that the scattering rate is small near the saddle

points.
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It is tempting to associate this behaviour of the scattering rate with the

evolution of the pseudogap where the scattering rate is maximal near (π,0)

(perhaps due to scattering from spin fluctuations). A combination of the

sharp reduction in J with doping (see section 6.7) and spin flip scattering due

to mobile electrons will progressively reduce this zone boundary scattering

rate, and notably, the scattering rate is isotropic when the pseudogap closes

(open circles in Fig. 6.31). In the more overdoped region, if the mean free

path becomes constant then the reduction in Fermi velocity near (π,0) as the

vHs is approached would account for the rise in τF (θ=0, 90◦) in the most

overdoped sample.

To obtain an analytical expression for the relaxation time the data was

fitted with the following equation

τ(θ) = Ω

[

exp

(

−
(θ − 45◦)2

σ2

)

− 1

]

+ 8 (6.18)

The fit parameters Ω and σ are plotted as a function of EF−EvHs in Fig. 6.32.

Also plotted is a fit to the Ω values given by

Ω =















































[−15.936(1 − tanh[19.421(EF − EvHs)])

+ 9.4008], [0 < (EF − EvHs) < 0.08]

−6.5352, [(EF − EvHs) ≤ 0]

(6.19)

where (EF − EvHs) is in eV. The value of Ω at 20meV has been omitted

from the fit and the fit is valid up to 80meV. Beyond this point the values

of Ω produced by this equation result in negative relaxation times when
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Figure 6.32: The parameters of the fits shown in Fig. 6.31 as a function of EF −
EvHs. The black curve is a fit to Ω given by Eqn. 6.19

substituted into Eqn. 6.18.

The conductivity can now be calculated from the relaxation time given by

Eqn. 6.18 together with Ω given by Eqn. 6.19. σ is set to 25◦. The result is

shown in Fig. 6.33. The peak at EvHs is reproduced, demonstrating that the

apparent E −EvHs dependence of the scattering rate is simply an artifact of

a more complex underlying momentum dependent relaxation time. However,

EvHs is still included explicitly in this parametrization of the relaxation time

and so we look for a purely momentum dependent expression that reproduces

the relaxation time observed by ARPES.

The velocity field ( ∂ǫ
∂kx

, ∂ǫ
∂ky

) is plotted in Fig. 6.34. The velocity field sug-

gests that the electrons prefer to travel in the diagonal direction and that

transport is frustrated when travelling in the (0, 0)− (π, 0) and (0, 0)− (0, π)

directions. As mentioned by Valla et al.[156], such a situation might arise
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Figure 6.33: The conductivity calculated from Eqn. 6.15 with and ARPES-derived
τ given by Eqn. 6.18 (red). The conductivity calculated under the constant mean
free path assumption is shown in black.
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from the underlying antiferromagnetic structure of the cuprates. Along the

diagonal direction the spins on neighbouring copper sites are ferromagnet-

ically aligned. Whereas along the copper-oxygen bond direction transport

is frustrated by the antiferromagnetic alignment of the spins on neighbour-

ing copper sites. We therefore construct a momentum dependent relaxation

time based on the velocity field as follows. The angle subtended by a given

velocity vector with the kx axis given by φ = tan−1(vy/vx). The deviation

of φ from the (0, 0)− (π, π) diagonal direction is 45◦ − φ. Preferential nodal

transport can then be reflected in the relaxation time mathematically by set-

ting τ ∝ cos[2(45◦−φ)] = sin(2φ) which is plotted as a function of (kx, ky) in

Fig. 6.35. Figure 6.36 shows sin(2φ) plotted as a function of Fermi surface

angle for different values of EF −EvHs. The qualitative behaviour has a rough
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resemblance to the experimental data shown in Fig. 6.31. The conductivity

calculated using this form for the relaxation time is shown in Fig. 6.37. The

peak in the conductivity at EvHs is reproduced further demonstrating that

the unusual E − EvHs dependence of the scattering rate can be accounted

for by considering the momentum dependence of the relaxation time.

6.7 Phase Diagram

Fits to the normal state electronic entropy (section 6.1), spin susceptibility

(section 6.4) and thermoelectric power (section 6.5) confirmed that the Fermi

level crosses a van Hove singularity in the deeply overdoped regime. Fits

to the superconducting state electronic entropy revealed that the pairing

potential cut-off energy, ωc, is linearly related to the distance of the Fermi

level from the van Hove singularity. Now we turn to the magnitude of Tc

itself and the generic superconducting phase diagram. Within a BCS picture

the transition temperature is given by[3]

kBTc = 1.14h̄ω exp

(

−
1

N(EF )V

)

(6.20)

so that if the vHs crossing occurs within the superconducting domain the

exponential dependence upon the density of states should result in a local

peak in Tc precisely at the vHs. In this section the superconductivity phase

diagram is calculated and it is shown that if the Fermi energy crosses the

van Hove singularity in the overdoped regime then the pairing potential or

the pairing energy cut-off must be a strong decreasing function of hole con-
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centration.

The doping dependence of Tc is calculated for Bi-2212 as follows. We em-

ploy the ARPES derived Bi-2212 bilayer dispersion, ǫ(k), listed in table 6.1.

The position of the Fermi level as a function of doping is obtained from the

fits to the entropy in section 6.1. The pairing potential is assumed to be of

the form Vkk
′ = V g(k)g(k′) where g(k) = cos kx − cos ky. Tc is calculated

solving the weak-coupling BCS gap equation for T in the case where ∆0 = 0

given by

1 =
V

2

∑

k

|g(k)|2

ǫ(k)
tanh

(

ǫ(k)

2kBT

)

(6.21)

The summation is performed over states with energy |ǫ(k)| < ωc. The energy

cut-off ωc is assumed to be constant and is set to a value of 70meV. This is

the energy at which a renormalization or ‘kink’ occurs in the dispersion (see

section 2.7).

The weak-coupling assumption is suitable for our purposes and the quali-

tative results would not alter with the introduction of strong coupling. How-

ever, there is in fact important thermodynamic evidence for a weak coupling

scenario[157].

Two cases are considered: (i) the pairing amplitude, V , is constant, cho-

sen such that Tc,max takes the observed value; and (ii) for each p-value V is

selected such that Tc(p) follows the experimentally-observed, approximately

parabolic, phase curve. Fig. 6.38(a) shows Tc(p) plotted as a function of hole

concentration for the two cases.

Turning first to the Tc(p) curve for a constant V (up-triangles), it is evi-

dent that if the pairing interaction and cut-off energy is fixed then the phase

131



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

20

40

60

80

100

120

0

2

4

6

8

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

120

140

-50 0 50 100

50

100

Tc (obs)

DOS

Tc (V=const)

Te
m

pe
ra

tu
re

 (K
)

hole concentration, p

(a)

 N
(E

F) 
(s

ta
te

s/
eV

.u
ni

t c
el

l)

Tc

V100meV

V70meV

J

Eg

kBTwokBTN

(b)

En
er

gy
 (m

eV
)

or
 T

em
pe

ra
tu

re
 (K

)

hole concentration, p

  V

  EF-EvHs

Figure 6.38: (a) The doping dependence of the DOS N(EF ) and of Tc, as observed
(squares) and as calculated (triangles) assuming a constant pairing interaction. (b)
the doping dependence of the pairing amplitude, V , and of the exchange energy
J , the pseudogap energy Eg, the NMR wipe-out line kBTwo and Néel line kBTN .
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curve (a) is more narrow than that which is observed, (b) maximises at the

location of the vHs in the heavily overdoped region (not at optimal doping)

and (c) exhibits a second peak at the bonding-band vHs. All three difficul-

ties are averted, and the peak broadened and shifted back to the observed

optimal doping, only if either the pairing interaction or the energy cut-off

decreases rapidly with increasing doping. This is an important and robust

result independent of the particular details that follow. This is illustrated by

the second case explored, as follows.

The second Tc(p) phase curve (red squares) follows the empirical, approx-

imately parabolic, phase curve[18]

Tc = Tc,max[1 − 82.6(p − 0.16)2]. (6.22)

Using the gap equation, the values of V that reproduce these Tc values

were calculated and are shown by the circles plotted as a function of p in

Fig. 6.38(b). They descend rapidly towards zero with increasing doping. If,

alternatively, V is held constant and the energy cut-off, ωc, is varied, essen-

tially the same result is obtained - a rapidly descending value that vanishes

near p ≈ 0.3 (see Fig. 6.7).

The pairing potential, V , is clearly large and grows with underdoping

towards the magnitude of J , the exchange interaction. For comparison, the

magnitude of J determined from two-magnon Raman scattering[158] is plot-

ted in Fig. 6.38(b), (where J is taken, as usual, as 1/3 the frequency of

two-magnon scattering peak). The magnitude and doping dependence of V

is very similar to that of J , suggesting a close relationship between these.
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Also plotted (open circles) is V when ωc=100meV. A similar rapid fall is

found showing that the choice of ωc is not too critical.

This rapid fall in energy scales with doping is also reflected in several other

energy scales also shown in Fig. 6.38(b). These are the pseudogap energy

scale, Eg and the line Two/kB where Two is the temperature where NMR

intensity wipe-out effects are observed, indicating the onset of inhomogeneous

spin and charge distribution[159, 160]. It is also in this region that the 4×4

checkerboard structure is observed in scanning tunneling spectroscopy[161].

The values of Two are for (Y,Ca)Ba2Cu3O7−δ[160]. These lines all expand out

from the antiferromagnetic phase curve, TN(p)[162], like ripples of remnant

magnetic effects suggesting a common magnetic origin for all these energy

scales.

Here the doping is estimated from the parabolic phase curve which is

known to be approximate only. In fact V is very linear in EF − EvHs, as

shown in the inset to Fig. 6.38(b). This suggests that the overall phase curve

Tc(p) is indeed governed by the proximate vHs combined with a rapidly

declining bosonic energy scale. The value of ωc or V need not vanish at

p ≈ 0.27. Eventually the superconducting energy gap will fall below the

pairbreaking scattering rate and Tc will be reduced to zero[81] even if ωc or

V are not quite zero.

The doping dependence of Tc and the pairing potential amplitude V can

be understood by looking at the energy-resolved contributions to the BCS
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gap equation given by

ζ(E) =
∑

k

|g(k)|2

E(k)
tanh

(

E(k)

2kBT

)

δ[ǫ(k) − E] (6.23)

The BCS gap equation is then given by

1 =
V

2

∫ ωc

−ωc

ζ(E)dE (6.24)

In the underdoped regime, for a given ∆, as EF recedes from the vHs the area

under ζ(E) decreases and so V has to increase (see Fig. 6.39(a)). Whereas

in the overdoped regime, for a given value of EF − EvHs, as ∆ reduces the

area under ζ(E) increases and so V has to decrease (see Fig. 6.39(b)). It is

the interplay between the recession of EF from the vHs and the increase in

V with decreasing doping that results in the parabolic dependence of Tc.

The decrease in the deduced bosonic energy scale or interaction strength

will be reflected in a similar decline in the magnitude of the electron-boson

coupling parameter λ = N(EF )V (or its k-dependent analogue). It is notable

therefore that ARPES measurements of the ratio of the renormalized velocity

at EF to the unrenormalized value well below EF shows a similar rapid

decline with doping[93]. This ratio is a measure of (though overestimates)

the coupling strength. It seems clear therefore from our calculations and

ARPES results that the electron-boson coupling strength indeed falls rapidly

with doping across the phase diagram. This combination of a rapid fall in

V combined with the rise in density of states as the vHs is approached thus

generally accounts for the parabolic Tc(p) phase diagram. This would suggest
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that a prescription for increasing Tc,max would be to modify the structure so

as to shift the vHs to lower doping so that the higher density of states locks

into a higher pairing interaction.

By calculating the band structure of a large number of the single-layer

cuprates Pavarini et al.[31] have found a positive correlation between the ratio

of the next-nearest-neighbour to nearest-neighbour hopping parameters, t′/t,

and the observed Tc,max. The origin of this correlation was investigated using

the Bi-2201 ARPES data of Kondo et al [57]. In their paper Kondo et al. list

the tight binding parameters for the Bi-2201 energy-momentum dispersion

as well as EF −EvHs and Tc values for several doping levels. From this data

V was calculated assuming a rigid band and a fixed pairing potential energy

cut-off ωc=70meV. Having thus determined V as a function of EF − EvHs,

Tc was recalculated for two different values of t′ (one slightly larger and

one slightly smaller). The hole concentration was calculated from the area

enclosed by the Fermi surface, ApFS, using the relation[57]

p = 2
(

ApFS

ABZ

)

− 1 (6.25)

where ABZ is the area of the first Brillouin zone.

The resulting Tc curves are plotted in Fig. 6.40(a). The absolute mag-

nitude of p increases with t′/t and so for comparison the curves are plotted

as a function of p/popt. Tc,max is observed to increase with t′/t in agreement

with the results of Pavarini et al. A comparison of the densities of states

(Fig. 6.40(b)) reveals that the increase in Tc,max is due to a net increase in

the density of states with t′/t.
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Assuming the above V (EF − EvHs) and ωc values, Tc curves were calcu-

lated using the bilayer Bi-2212 dispersion (Table 6.1) and an ARPES-derived

Tl-2201 dispersion[163]. These curves are plotted in Fig. 6.41 together with

the Bi-2201 Tc curve as a function of p/popt. For Bi-2212 the hole concentra-

tion was calculated from the average of the bonding and antibonding band

Fermi surface areas. Tl-2201 has an experimentally observed Tc,max of about

90K[164], while for Bi-2212 Tc,max has been found to be as high as 96K[165].

Remarkably, the calculated Tc curves display maximal values roughly com-

parable to these values. The t′/t values are 0.208 and 0.417 for the Bi-2201

and Tl-2201 dispersions respectively. Comparison of the calculated densities

of states shown in Fig. 6.41(b) again shows that the increases in Tc are due to

increases in the density of states. In Tl-2201 the dominant increase in DOS

appears on the flanks of the vHs while in Bi-2212 the bilayer splitting leads

to an overall increase.

When viewed in conjunction with the findings of Pavarini et al. these cal-

culations strongly suggest that V is a universal energy scale in the single-layer

cuprates (and possibly the multilayer cuprates), with the variations in Tc,max

governed by the exact magnitude of the DOS close to the vHs. In addition,

from the observation that the calculated hole concentration increases with

t′/t we infer that if V is universal, then it is a fixed function of EF − EvHs,

and not of hole concentration.

A rough extrapolation of the curve in Fig. 6.41(b) gives a value for V

at the vHs of about 25meV. Assuming this value results in a calculated Tc

for Tl-2201 of about 7K. Interestingly the thermoelectric power of a Tl-2201

sample with Tc <4K[146] is observed to be negative-linear all the way to
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about 5K providing further confirmation that in Tl-2201 the vHs crossing

occurs near the edge of the superconducting dome.

6.8 Isotope Effect

In this section the isotope effect is calculated from the energy-momentum

dispersion using the model developed in the preceding sections. In section

6.7 it was shown that in order to reproduce the Tc phase curve (within the

BCS framework), with the Fermi level crossing the vHs in the overdoped

region, either the pairing potential amplitude, V , or the pairing energy cut-

off, ωc, had to increase with decreasing doping. To calculate the isotope

effect in Tc we assumed the same values for V and EF − EvHs as functions

of doping and reduced the pairing potential energy cut-off from 70meV to

67meV, as suggested by the latest ARPES findings[101] which show a shift

in the ‘kink’ energy of about 3meV. Tc was then recomputed. A plot of

α(Tc) versus doping is shown in Fig. 6.42 for Y-123 and Bi-2212 together

and compared with La-214 data from Crawford et al.[86].

The calculated isotope effect in Y-123 shows a close resemblance to that

observed in La-214. The peak at p=0.136 can be explained by examining

the energy-resolved contributions, ζ(E), to the BCS gap equation shown in

Fig. 6.43. At this doping the vHs lies 68meV below EF and so ζ(E) changes

rapidly between the 67 and 70meV cut-off energies, resulting in the large

isotope effect.

The calculations provide an alternative explanation for the peak in the La-

214 data (generally attributed to spin-charge stripes[89]) but it is important
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to note that this peak seems to be absent in the Y-123 data. As noted

in section 2.7 the experimental data shows a steep monotonic rise between

p=0.15 and 0.05. The data available is for fully oxygenated samples with

varying amounts of non-isovalent cation substitution whereas the calculations

have been based on samples with a fixed cation substitution and variable

oxygen content. These substituents might play a role in broadening the vHs

and thus wiping out the peak at p=0.136. We have shown elsewhere[167]

that the isotope effect for Y-124 rises rapidly with increasing pressure in this

region and could yet signal an effect as shown in Fig. 6.42(b). Turning to Bi-

2212, the calculated isotope effect is clearly much larger than that observed

in yttrium-doped Bi-2212[166] (circles in Fig. 6.42(c)).

It is important to note that the calculations are based on the assumption
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of a simple doping-independent isotropic isotope shift in the kink energy.

Future ARPES results might well reveal further details that need to be in-

cluded. Details in the pseudogap regime would be especially useful. Pringle

et al.[84] explain the doping dependence of α(Tc) with a model in which α(Tc)

depends on the ratio Eg/∆0 where ∆2
0 = ∆2

SC + E2
g . The isotope effect in Tc

increases due to a small isotope effect in the superconducting gap, ∆SC , that

is increasingly magnified by the growing pseudogap. The present calculations

do not include the pseudogap. However, as shown at the end of section 6.3,

the main effect of including the pseudogap in the self-consistent calculation

of ∆ (and therefore Tc) is to increase the pairing potential amplitude V . One

might therefore surmise that the increased V will lead to an increase in α(Tc).

Such calculations are yet to be performed.
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Chapter 7

Summary and Conclusions

7.1 Experimental Work

The aim of the experimental work undertaken here was to determine the oxy-

gen isotope effect in the penetration depth of YBa2Cu4O8 along the principal

crystallographic axes. The superfluid density is inversely proportional to the

square of the penetration depth. Isotope exchanged powders were biaxially

aligned in epoxy and AC susceptibility measurements were then performed

on these samples. The expected anisotropy in susceptibility and hence the

penetration depth was observed, but the magnitude of the low-temperature

susceptibilities were such that they resulted in values for the ab-plane pene-

tration depths that were over twenty times larger than the generally accepted

value.

The value of the penetration depth was found to be extremely sensitive to

the upper cut-off radius of the grain size distributions used in the analysis. In

an effort to extract some results, upper cut-off radii were selected so that the
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ab-plane penetration depths in the 16O and 18O substituted samples matched

those reported in the literature. The bc- and ac-plane penetration depths

were then calculated.

The isotope effect in the bc-plane was found to be negligible compared to

the ab- and ac-planes. Inspection of the phonon modes shows that, with the

exception of the CuO2 breathing modes, the motion of the atoms are parallel

to the bc-plane. The implication is that the electrons prefer to couple to

phonon modes in which the atomic motion is perpendicular to the plane of

transport. Support for this conjecture comes from site-selective oxygen iso-

tope exchange experiments performed on Y0.6Pr0.4Ba2Cu3O7−δ[115]. These

experiments showed that the isotope effect in the transition temperature

and the superfluid density arises from the oxygen within the superconducting

CuO2 planes and not from the apical and chain oxygen.

The isotope effect in the c-axis superfluid density was found to be nearly

an order of magnitude larger than that expected for a model array of weakly

(Josephson) coupled planes. This may reflect the unusual c-axis transport

in Y-124 which at low temperatures is coherent and is associated with the

double Cu2O2 chains.

7.2 Computational Work

The aim of the computational work undertaken here was to calculate various

transport and thermodynamic properties of cuprate superconductors from

energy-momentum dispersions determined by angle-resolved photoemission

spectroscopy (ARPES). All calculations assumed a rigid band approximation.
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7.2.1 Normal-state Findings

Using parameters taken directly and only from ARPES the electronic en-

tropy of Bi2Sr2CaCu2O8+δ was calculated. ARPES is very much a surface

technique. And while the electronic entropy is determined from bulk specific

heat measurements, its extraction requires the subtraction of the phonon con-

tribution which can be up to one hundred times larger than the electronic

term. For these reasons there exist those who doubt the validity of the data

obtained by these techniques. Here an exceptional match with experimental

data of Loram et al.[122] was found across the entire T -p phase diagram, thus

indirectly confirming both the ARPES and thermodynamic data. Indeed this

work provides the first independent verification of the specific heat work of

Loram et al.

The temperature and doping dependence of the electronic entropy can be

fully explained by the retreat of the Fermi level from a van Hove singularity

(vHs) and the opening of a normal state pseudogap. The same can be said

for the spin susceptibility as shown by fits made to NMR data. By taking

the Fermi level and pseudogap magnitude as fit parameters the electronic

entropy was fitted exactly. (Note to the detractors who like to recite the

adage “with enough free parameters one can fit anything”, these are not free

parameters and are tightly constrained by experimental results.) The fits

indicate that in Bi-2212 the Fermi level crosses the antibonding band vHs

near p=0.22 in full agreement with recent ARPES results[42]. The doping

evolution of the pseudogap magnitude is consistent with the presence of a

quantum critical point near p=0.19.
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As mentioned above fits were made to Y0.8Ca0.2Ba2Cu3O7−δ NMR data

using an ARPES derived Y-123 energy-momentum dispersion. The fits indi-

cate that the Fermi level crosses the vHs at the projected edge of the Tc dome

near p=0.27. The presence of a van Hove singularity in the heavily overdoped

region appears to be a general feature of the cuprate phase diagram. In the

case of La2−xSrxCuO4 the vHs is inferred from ARPES to be crossed in the

deeply overdoped region at p = x = 0.23 − 0.24[59, 60]. A similar situation

occurs with Bi2Sr2CuO6[34] and deeply overdoped Tl2Ba2CuO6 also lies close

to the saddle-point vHs[163]. In the single layer cuprates and double layer

cuprates that have large bilayer splitting the crossing of the vHs occurs near

where Tc goes to zero. In Bi-2212 the bilayer splitting is smaller and the

crossing occurs further up the dome when Tc is about 60K.

The diffusion thermoelectric power of overdoped Bi-2212 was calculated

under the constant-mean-free-path assumption from the bilayer ARPES dis-

persion. While the true thermopower signature of the vHs crossing (namely

the disappearance of the positive thermopower peak) is obscured by the su-

perconducting state, the calculations show the experimental data to be con-

sistent with the Fermi level crossing the vHs near Tc=60K. The calculations

also reveal the influence of the bonding band vHs in the data as a departure

from linearity seen between 100 and 300K.

Underdoped Bi-2212 thermopower data was fitted by including the pseu-

dogap and a model scattering rate with linear energy and temperature depen-

dences. Under the constant-mean-free-path assumption a peak in the energy

dependent conductivity occurs at the location of the vHs, EvHs. Interestingly

it was found that in order to reproduce the peak in the conductivity at EvHs
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the scattering rate had to be proportional to E−EvHs and not E−EF . This

unusual energy dependence was shown to be a consequence of an underly-

ing momentum dependent scattering rate in which transport in the nodal

direction is preferred.

7.2.2 Superconducting-State Findings

Some key insights were obtained from comparison of data and calculations in

the superconducting state. Among these was the determination of the ground

state of the pseudogap, a feature which is shrouded by the superconducting

gap. The zero temperature Raman B2g response was calculated assuming

(i) a completely nodal pseudogap ground state, and (ii) a finite Fermi arc

pseudogap ground state. In light of these calculations, experimental Raman

data demonstrates that there exists a finite Fermi arc at zero temperature

(on which the superconducting gap opens), and that the length of this arc

decreases as doping decreases.

A finite density of states at the Fermi level resolves the problem how to

incorporate a states-non-conserving pseudogap into the self consistent BCS

gap equation. In section 6.1 the normal-state entropy was fitted assuming

a completely nodal pseudogap. While attempting to calculate the supercon-

ducting state entropy data it was found that the pseudogap could not be

included in the self consistent calculation of the superconducting gap ∆(T ).

Instead ∆(T ) was calculated in the absence of the pseudogap after which it

was then re-included. In section 6.3 the most underdoped entropy data was

fitted assuming a finite Fermi arc and the pseudogap was then able to be
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successfully incorporated into the self consistent calculation of ∆(T ).

The departure from a pure d-wave ‘V-shaped’ gap to a ‘U-shaped’ gap

as observed in ARPES[30, 125] follows naturally from this scenario. The

reduced slope of the gap near the nodes is a signature of the smaller super-

conducting gap opening on the arcs of Fermi surface left ungapped by the

larger pseudogap. It is likely that the behaviour of the Fermi arcs can be

explained in a fuller treatment that takes into account quasiparticle lifetime

effects. For example it has been suggested[123] that both the pseudogap

and superconducting gap should be replaced by complex terms of the form

Eg(θ) → Eg(θ)
1−iΓ1/ǫ(k)

and ∆(θ) → ∆(θ)
1−iΓ0/ǫ(k)

. This naturally leads to a ‘U–

shaped’ gap, and instead of frozen Fermi arcs below Tc the Raman data

would then insist on a frozen scattering rate Γ1.

Recently quantum oscillations have been observed in the electrical resis-

tance of YBa2Cu3O6.5[168] (p=0.1) and YBa2Cu4O8[169] (p=0.125) estab-

lishing the existence of a well defined Fermi surface in the ground state of

underdoped cuprates. Quantum oscillations are a direct measure of Fermi

surface area. The areas observed are consistent with the presence of nodal

Fermi pockets that expand as holes are added to the copper oxide planes.

Fermi pockets have not been observed by ARPES or predicted by band

structure calculations. A suggestion of this author is that perhaps the Fermi

pockets represent the area between the bonding and antibonding band Fermi

arcs.

By fitting the superconducting state electronic entropy, the doping depen-

dence of the superconducting gap was found to follow the parabolic behaviour

of Tc, while the combined total gap magnitude (pseudogap + superconduct-
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ing gap) increases monotonically with decreasing doping. As mentioned in

section 2.6, this two-gap picture has now been observed by many techniques

and it signals that the pseudogap arises from a correlation that competes

with superconductivity.

Using only the parameters extracted from the entropy fits (namely the

doping dependence of the Fermi level, pseudogap and superconducting gap)

the doping and temperature dependent superfluid density was calculated.

The results show excellent qualitative and quantitative agreement with ex-

perimental data. The increasing linearity of the superfluid density with tem-

perature was identified with the approach of the Fermi level to the vHs. The

fact that the superfluid density is reproduced with no further parameters

provides further confirmation that both the ARPES and specific heat data

are valid. This is a highly significant result because it provides the first com-

prehensive link between these bulk properties and the ARPES measurements

which are dominated by the outermost CuO2 layer. Thus, in most respects

surface effects do not appear to seriously modify or obscure the band struc-

ture which governs bulk properties.

It is a central conclusion of this work that, despite wide variations in bare

band structure, the renormalized dispersion near EF seems to lead to a uni-

versal phenomenology as seen in the entropy, the susceptibility, the superfluid

density, the thermoelectric power and the universal nodal Fermi velocity[98].

This observation calls for theoretical explanation within a strong-coupling

picture.

After fitting the superconducting state electronic entropy it was revealed

that for a fixed pairing amplitude, V , the pairing potential energy cut-off,
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ωc, is linearly related to the distance of the Fermi level from the vHs (EF -

EvHs). Later it was found that if instead ωc is kept constant then V is linear

in EF -EvHs. In section 6.7 explicit calculations of the Tc(p) phase curve

from the BCS gap equation confirmed that in order for the phase diagram

to be consistent with the presence of the vHs in the overdoped regime either

V or ωc has to be a rapidly descending function of p. Given the strong

doping dependence of high-Tc cuprate observables it would probably be more

surprising if the pairing interaction was not strongly doping dependent.

It is the interplay between the recession of the Fermi level from the

vHs and the increase in V or ωc with decreasing doping that results in the

parabolic dependence of Tc and its insensitivity to the presence of the vHs

in the overdoped regime. These findings force a revision of all ‘van Hove

scenario’ theories that directly attribute the peak in Tc to the van Hove

singularity. Of the two possibilities (V or ωc) the observation of a doping

independent kink energy and the increase in slope of the high energy nodal

dispersion with underdoping[93, 98] suggests that it is V which varies with

doping.

Using V (EF −EvHs) determined solely from Bi-2201 ARPES data, the Tc

curves of Tl-2201 and Bi-2212 were calculated from their respective ARPES

dispersions. Remarkably the calculated values of Tc,max were found be to

comparable with experimental values. When viewed in conjunction with the

positive correlation found between Tc,max and the ratio of the next-nearest

neighbour to nearest neighbour hopping parameters, t′/t[31], the calculations

strongly suggest that V is a universal energy scale in the single-layer cuprates

(and possibly the multilayer cuprates), with the variations in Tc,max governed

152



by the exact magnitude of the density of states close to the vHs. In addition,

from the observation that the calculated hole concentration increases with

t′/t we infer that if V is universal, then it is a fixed function of EF − EvHs,

and not hole concentration.

With regards to the origin of the pairing interaction, the jury is still

out. The magnitude and doping dependence of V is similar to that of the

magnetic exchange interaction J , suggesting a close relationship between

these. The rapid fall in energy scales with doping is also reflected in the

pseudogap energy scale and NMR wipe-out temperature. These lines all

expand out from the antiferromagnetic phase curve, TN(p), like ripples of

remnant magnetic effects suggesting a common magnetic origin for these.

The alternative possibility is phonons. Although a phonon mechanism

involving motion of atoms lying outside of the CuO2 plane is likely to be non-

universal (due to the different bond lengths and substitutionary doping mech-

anisms in each species of high-Tc cuprate) isotope effect experiments show

that the modes that affect Tc are the CuO2 plane oxygen modes. The CuO2

plane is of course the defining universal feature of the cuprates. The isotope

effect experiment carried out as part of this work suggests that it is the trans-

verse vibrational modes that are important. In relation, a large static CuO2

plane buckling (where the Cu atom is displaced from the plane of the oxygen

atoms) is known to reduce Tc[170]. Newns and Tsuei have recently proposed

a fluctuating Cu-O-Cu bond model of high-Tc superconductivity[171]. In

their model the nonlinear modulation of the Cu-Cu bond by planar oxygen

vibrations is responsible for Cooper pairing. In light of the present work the

major fault of the model is that the peak in Tc is ascribed to the vHs.

153



Finally, by assuming a small doping-independent 3meV isotropic shift in

ωc, the isotope effect in Tc, α(Tc), was calculated. The doping dependence

of the calculated α(Tc) is dominated by the density of states and exhibits a

peak in the underdoped regime when EF −EvHs becomes comparable to ωc.

A peak at a similar doping occurs in the La-214 experimental data but it is

most likely due to the presence of static spin/charge stripes at this doping.

Such a peak is not visible in the YBCO experimental data. It is hoped that

future ARPES experiments will shed further light on the isotope effects in

the energy-momentum dispersion so that the agreement between the data

and calculations may be improved.
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