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ABSTRACT 
 

This study examines the population ecology and dynamics of three co-existing 

mussel species (Aulacomya maoriana, Mytilus galloprovincialis and Perna canaliculus) 

in Wellington Harbour, New Zealand. The present study investigates the role of multiple 

environmental factors and their multiple effects on the intertidal mussel population. 

Wellington Harbour is a complex system, supporting speciose intertidal invertebrate 

communities. CTD data loggers recording seawater temperature, turbidity, chlorophyll a 

concentration and salinity at Evans Bay, Seatoun, Matiu-Somes Island and Petone 

provided the environmental data. The data suggest the existence of distinct zones within 

Wellington Harbour, with different hydrological regimes present at each zone. 

Consistently high salinity (35.08 + 2.9 PSU) and chlorophyll a concentration (9.42 + 4.33 

µg l-1) were found at Evans Bay, while these parameters displayed a degree of temporal 

variation and were significantly lower at Seatoun (31.5 + 4.17 PSU and 2.15 + 2.1 µg l-1) 

and Matiu-Somes Island (33.26 + 0.99 PSU and 1.23 + 1.79 µg l-1). At Petone, a site 

located near the Hutt river mouth, salinities were reduced (31.59 + 3.21 PSU) while 

chlorophyll a levels were similar to those at Matiu-Somes Island (1.64 + 1.08 µg l-1). 

Mean turbidity values were similar at Seatoun and Evans Bay (11.51 + 18.53 FTU and 

11.89 + 5.52 FTU, respectively), with mean turbidity slightly reduced at Petone (8.20 + 

11.16 FTU) and elevated at Matiu-Somes Island (15.35 + 11.12 FTU). Further, CTD data 

revealed similar seawater temperature at all sites, with mean values oscillating around 13 

- 15ºC. 

 

The ecology of larval stages was expressed in this study by quantifying the rates 

at which mussel larvae settled on the experimental substrate. A year-round spawning, as 

well as temporal and spatial variability in mussel recruitment at four experimental sites 

was revealed. Evans Bay was the site with consistently higher recruitment rates but not 

the mean recruit numbers (721 + 879 larvae), while the highest number of recruits (9851 

larvae) was recorded at Petone (1041 + 2112 larvae). Recruitment rates were lower at 

Seatoun (729 + 536 larvae) and Matiu-Somes Island (410 + 636 larvae). However, only 
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at Seatoun was this variability clearly linked to the environmental conditions of water 

turbidity, chlorophyll a concentration, and salinity.  

 

The post-larval ecology part of this study concentrates on the condition index and 

gonad mass, and the degree of infestation with a parasitic pea crab Pinnotheres 

novaezelandiae studied at four sites. Spatial and temporal variation in condition index 

and gonad mass was revealed in all three species investigated, with both condition index 

and gonad mass of adult mussels being highest at Matiu-Somes Island (14.59 + 4.41 and 

0.21 + 0.16 g), followed by Kau Point (13.47 + 6.99 and 0.17 + 0.10 g), Seatoun (13.32 + 

7.79 and 0.11 + 0.10 g) and Evans Bay (11.99 + 2.78 and 0.14 + 0.14 g). Condition index 

was significantly correlated with gonad mass, and was highest in Aulacomya maoriana 

(15.85 + 9.38), followed by Perna canaliculus (12.52 + 4.39) and Mytilus 

galloprovincialis (11.66 + 5.91). The condition was generally reduced in mussels infested 

with the pea crab Pinnotheres novaezelandiae, although the overall infestation rate was 

low (3.28%).  

 

In order to describe the pattern of mussel community development, patches of 

bare rock were experimentally created in the mid-intertidal zone. Subsequently, predator-

exclusion cages were set up in those areas and monitored regularly. The abundance of 

main groups of intertidal taxa settling on the cleared substrate was expressed in terms of 

percent cover, and was highest at Evans Bay (59.57 + 80.27%), lowest at Kau Point 

(13.96 + 26.18%) and intermediate at Seatoun (22.56 + 41.64%). However, the bottom-

up factors were visibly linked to the community development at Seatoun. The full cage 

experimental treatment provided the maximum protection from predation and 

desiccation, therefore the community recovery was most pronounced under this 

treatment. Mytilus galloprovincialis was revealed as the most competitive mussel species, 

in some cases able to colonise the entire available substrate and exclude other two mussel 

species. 

 

Further, seasonality of mussel response to wave action and desiccation was 

investigated. Mussel species-specific strength of attachment to the rocky substrate was 
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expressed in kg (effectively the force) required for the mussel to be removed from the 

rocky substrate at shores facing south and north in Wellington Harbour. The strength of 

attachment was highest in Perna canaliculus (5.81 kg + 2.27), followed by Aulacomya 

maoriana (3.63 kg + 1.63) and Mytilus galloprovincialis (3.44 kg + 1.70). Mussel 

strength of attachment was generally higher at south-facing sites, due to stronger waves 

generated by southerly winds. In a separate experiment, in which mussels were exposed 

to air at six different shore levels within the intertidal zone, desiccation tolerance was 

highest in Mytilus galloprovincialis on the south-facing sites (LD50=0.62m and 0.87 for 

north- and south-facing sites, respectively), followed by Aulacomya maoriana 

(LD50=0.65 and 0.75m for north- and south-facing sites, respectively) and Perna 

canaliculus (LD50=0.20 and 0.35m for north- and south-facing sites, respectively). LD50 

desiccation exposure values were lower in all three species found on the north-facing 

shores, indicating that mussels on those shores are less tolerant to desiccation-induced 

stress and therefore died more rapidly. 



 vi

CONTENTS 
 

 
CHAPTER ONE 

LINKING INTERTIDAL MUSSEL ECOLOGY AND THE WATER COLUMN  
1.1. Factors affecting rocky intertidal assemblages .................................................................................. 1 
1.2. Benthic-pelagic coupling ................................................................................................................... 7 
1.3. Worldwide research of mussel communities ................................................................................... 12 
1.4. Intertidal mussel communities in Wellington Harbour .................................................................... 16 
1.5. Thesis outline ................................................................................................................................... 22 
References .............................................................................................................................................. 25 

 
CHAPTER TWO 

WATER COLUMN CHARACTERISTICS  
2.1. Introduction ..................................................................................................................................... 39 
2.2. Materials and Methods ..................................................................................................................... 42 
2.3. Results ............................................................................................................................................. 45 

All sites, August 2002 – September 2003........................................................................................... 46 
Seatoun and Matiu-Somes Island, March 2002 – September 2003..................................................... 52 

2.4. Discussion ........................................................................................................................................ 57 
References .............................................................................................................................................. 62 

 
CHAPTER THREE 

CONDITION INDEX, GONAD MASS, PEA CRABS 
AND RECRUITMENT OF BIVALVE LARVAE  

3.1. Introduction ..................................................................................................................................... 66 
3.2. Materials and Methods ..................................................................................................................... 72 
3.3. Results ............................................................................................................................................. 78 

Condition Index, Gonad Mass And Pea Crab Infestation .................................................................. 78 
Water column characteristics  (August 2002-May 2003) .............................................................. 78 
Condition Index ............................................................................................................................. 82 

Aulacomya maoriana ............................................................................................................... 84 
Mytilus galloprovincialis .......................................................................................................... 85 
Perna canaliculus ..................................................................................................................... 87 

Gonad Mass ................................................................................................................................... 88 
Aulacomya maoriana ............................................................................................................... 89 
Mytilus galloprovincialis .......................................................................................................... 90 
Perna canaliculus ..................................................................................................................... 92 

Pea crab infestation ....................................................................................................................... 94 
Aulacomya maoriana ............................................................................................................... 94 
Mytilus galloprovincialis .......................................................................................................... 95 
Perna canaliculus ..................................................................................................................... 95 

Larval Settlement And Recruitment ................................................................................................... 96 
Water column characteristics – Larval settlement and recruitment................................................ 96 
Larval densities at recruitment ...................................................................................................... 96 

3.4. Discussion ........................................................................................................................................ 99 
References ............................................................................................................................................ 110 

 
CHAPTER FOUR 

INTERTIDAL MUSSEL COMMUNITY DEVELOPMENT  
4.1. Introduction ................................................................................................................................... 116 
4.2. Materials and Methods ................................................................................................................... 123 
4.3. Results ........................................................................................................................................... 130 

Water column properties .................................................................................................................. 130 
Caging experiment - percent cover estimates .................................................................................. 130 



 vii

Seatoun: Relationship among species of colonizers and bare substrate ...................................... 133 
Seatoun: Effects of caging treatments ......................................................................................... 135 
Seatoun: CTD-Percent cover correlation ..................................................................................... 139 
Seatoun: Multiple Regression analysis ........................................................................................ 140 

Aulacomya maoriana ............................................................................................................. 140 
Mytilus galloprovincialis ........................................................................................................ 141 
Perna canaliculus ................................................................................................................... 142 

Kau Point: Relationship among species of colonizers and bare substrate ................................... 143 
Kau Point: Effects of caging treatments ...................................................................................... 145 
Kau point: Multiple Regression analysis ..................................................................................... 149 

Aulacomya maoriana ............................................................................................................. 149 
Mytilus galloprovincialis ........................................................................................................ 150 
Perna canaliculus ................................................................................................................... 152 

Evans Bay: Relationship among species of colonizers and bare substrate .................................. 153 
Evans Bay: Effects of caging treatments ..................................................................................... 155 
Evans Bay: CTD-Percent cover correlation ................................................................................ 159 
Evans Bay: Multiple Regression analysis ................................................................................... 160 

Aulacomya maoriana ............................................................................................................. 160 
Mytilus galloprovincialis ........................................................................................................ 161 
Perna canaliculus ................................................................................................................... 162 

4.4 Discussion ....................................................................................................................................... 163 
References ............................................................................................................................................ 174 

 
CHAPTER FIVE 

MUSSEL STRENGTH OF ATTACHMENT AND TOLERANCE TO DESICCATION  
5.1. Introduction ................................................................................................................................... 183 
5.2. Materials and Methods ................................................................................................................... 187 
5.3. Results ........................................................................................................................................... 192 

Effects of wave exposure on mussel attachment .............................................................................. 192 
Aulacomya maoriana ............................................................................................................. 193 
Mytilus galloprovincialis ........................................................................................................ 196 
Perna canaliculus ................................................................................................................... 198 

Effects of desiccation on mussel survival ........................................................................................ 200 
Aulacomya maoriana ............................................................................................................. 201 
Mytilus galloprovincialis ........................................................................................................ 204 
Perna canaliculus ................................................................................................................... 206 

5.4. Discussion ...................................................................................................................................... 208 
References ............................................................................................................................................ 217 

 
CHAPTER SIX 

ROCKY INTERTIDAL COMMUNITY ORGANIZATION  
6.1. Community organization model .................................................................................................... 221 

Direct vs. indirect effects in intertidal community organization ...................................................... 227 
The role of facilitation in the intertidal community organization ................................................ 228 
Mussels as ecosystem engineers ................................................................................................. 231 

6.2. Open vs. closed intertidal populations ........................................................................................... 233 
6.3. Wellington Harbour rocky intertidal mussel assemblages ............................................................. 236 
References ............................................................................................................................................ 238 

 



 viii

LIST OF FIGURES 
 

CHAPTER ONE 
Figure 1.1. A schematic mussel life cycle with a planktonic larval and benthic adult phases........................ 8 
Figure 1.2. Global distribution of the main commercially important mussel species................................... 13 
Figure 1.3. The mid-intertidal zone in Wellington, uncovered at low tide................................................... 18 
Figure 1.4. Wellington Harbour area............................................................................................................ 19 
Figure 1.5. Major ocean currents around New Zealand................................................................................ 21 
 
CHAPTER TWO 
Figure 2.1 Data loggers used in the present study. ....................................................................................... 42 
Figure 2.2. Map of Wellington Harbour with the sites of data loggers deployment..................................... 44 
Figure 2.3. Temperature at all sites, August 2002 – September 2003. ......................................................... 48 
Figure 2.4. Salinity at all sites, August 2002 – September 2003 .................................................................. 48 
Figure 2.5. Chlorophyll a at all sites, August 2002 – September 2003 ........................................................ 49 
Figure 2.6. Turbidity at all sites, August 2002 – September 2003 ............................................................... 50 
Figure 2.7. PCA global results for both data sets. ........................................................................................ 51 
Figure 2.8. PCA results at Seatoun and Evans Bay, August 2002 – September 2003.................................. 52 
Figure 2.9. PCA results at Petone and Matiu-Somes Island, August 2002 – September 2003..................... 52 
Figure 2.10. Temperature at Seatoun and Matiu-Somes Island, March 2002 – September 2003................. 53 
Figure 2.11. Chlorophyll a at Seatoun and Matiu-Somes Island, March 2002 – September 2003............... 54 
Figure 2.12. Salinity at Seatoun and Matiu-Somes Island, March 2002 – September 2003......................... 56 
Figure 2.13. Turbidity at Seatoun and Matiu-Somes Island, March 2002 – September 2003.. .................... 56 
Figure 2.14. PCA results at Seatoun and Matiu-Somes Island, March 2002 – September 2003. ................. 57 
 
CHAPTER THREE 
Figure 3.1. Schematic representation of the dynamics in rocky intertidal mussel communities. ................. 71 
Figure 3.2. Map of Wellington Harbour....................................................................................................... 74 
Figure 3.3. Temperature at all sites, August 2002 – May 2003.................................................................... 79 
Figure 3.4. Turbidity at all sites, August 2002 – May 2003. ........................................................................ 80 
Figure 3.5. Chlorophyll a at all sites, August 2002 – May 2003.................................................................. 80 
Figure 3.6. Salinity at all sites, August 2002 – May 2003............................................................................ 81 
Figure.3.7. CI in all three mussel species at all four sites............................................................................. 83 
Figure 3.8. Aulacomya maoriana, general variation of CI ........................................................................... 85 
Figure 3.9. Mytilus galloprovincialis, general variation of CI. .................................................................... 86 
Figure 3.10. Perna canaliculus, general variation of CI............................................................................... 87 
Figure 3.11. GM in all three mussel species at all four sites. ....................................................................... 89 
Figure 3.12. Aulacomya maoriana, general variation of GM....................................................................... 90 
Figure 3.13. Mytilus galloprovincialis, general variation of GM ................................................................. 91 
Figure 3.14. Perna canaliculus, general variation of GM ............................................................................ 93 
Figure 3.15. Rainfall data in Wellington area............................................................................................... 94 
Figure 3.16. CI of infested and healthy mussels........................................................................................... 97 
Figure 3.17. Larval densities at settlement – comparison among sites......................................................... 99 
 
CHAPTER FOUR 
Figure 4.1. Location of experimental sites in Wellington Harbour ............................................................ 124 
Figure 4.2. Open cage exposed at low tide. ................................................................................................ 126 
Figure 4.3. Full cages exposed at low tide.................................................................................................. 127 
Figure 4.4. “No roof” cage exposed at low tide.......................................................................................... 127 
Figure 4.5. Control frame exposed at low tide. .......................................................................................... 128 
Figure 4.6. Seatoun, control plots............................................................................................................... 136 
Figure 4.7. Seatoun, “no roof” treatment.................................................................................................... 137 
Figure 4.8. Seatoun, open cage treatment................................................................................................... 138 
Figure 4.9. Seatoun, full cage treatment ..................................................................................................... 139 
Figure 4.10. Pareto chart for A. maoriana at Seatoun. ............................................................................... 141 



 ix

Figure 4.11. Pareto chart for M. galloprovincialis at Seatoun.................................................................... 142 
Figure 4.12. Pareto chart for P. canaliculus at Seatoun.............................................................................. 143 
Figure 4.13. Kau Point, control plots.......................................................................................................... 147 
Figure 4.14. Kau Point, “no roof” treatment. ............................................................................................. 147 
Figure 4.15. Kau Point, open cage treatment.............................................................................................. 148 
Figure 4.16. Kau Point, full cage treatment................................................................................................ 149 
Figure 4.17. Pareto chart for A. maoriana at Kau Point. ............................................................................ 150 
Figure 4.18. Pareto chart for M. galloprovincialis at Kau Point................................................................. 151 
Figure 4.19. Pareto chart for P. canaliculus at Kau Point. ......................................................................... 153 
Figure 4.20. Evans Bay, control plots ........................................................................................................ 156 
Figure 4.21. Evans Bay, “no roof” treatment. ............................................................................................ 157 
Figure 4.22. Evans Bay, open cage treatment. ........................................................................................... 158 
Figure 4.23. Evans Bay, full cage treatment............................................................................................... 159 
Figure 4.24. Pareto chart for A. maoriana at Evans Bay. ........................................................................... 160 
Figure 4.25. Pareto chart for M. galloprovincialis at Evans Bay................................................................ 161 
Figure 4.26. Pareto chart for P. canaliculus at Evans Bay ......................................................................... 162 
 
CHAPTER FIVE 
Figure 5.1. Schematic representation of the competing factors in a wave-swept rocky environment ........ 184 
Figure 5.2. Schematic representation of factors involved in survival of mussels exposed to desiccation. . 185 
Figure 5.3. Location of experimental sites in Wellington Harbour. ........................................................... 187 
Figure 5.4. Spring balance used to measure the strength of mussel attachment. ........................................ 189 
Figure 5.5. Front Lead: a view of the north-facing side. ............................................................................ 192 
Figure 5.6. Seasonal, site- and species-specific variation in SoA............................................................... 195 
Figure 5.7. Aulacomya maoriana SoA at sites facing north and south....................................................... 196 
Figure 5.8. Aulacomya maoriana: mean SL according to site aspect......................................................... 196 
Figure 5.9. Mytilus galloprovincialis: SoA at sites facing north and south................................................ 197 
Figure 5.10. Mytilus galloprovincialis: mean SL according to site aspect ................................................. 198 
Figure 5.11. Perna canaliculus: SoA at sites facing north and south......................................................... 200 
Figure 5.12. Perna canaliculus: mean SL according to site aspect ............................................................ 200 
Figure 5.13. Probability of survival for all three species at Front Lead...................................................... 202 
Figure 5.14. Site aspect- and species-specific probability of survival........................................................ 203 
Figure 5.15. Aulacomya maoriana: probability of survival vs. site aspect and tidal height. ...................... 203 
Figure 5.16. Aulacomya maoriana: probability of survival vs. site aspect and season.. ............................ 204 
Figure 5.17. Mytilus galloprovincialis: probability of survival vs. site aspect and tidal height. ................ 205 
Figure 5.18. Mytilus galloprovincialis: probability of survival vs. site aspect and season......................... 206 
Figure 5.19. Perna canaliculus: probability of survival vs. site aspect and tidal height.. .......................... 207 
Figure 5.20. Perna canaliculus: probability of survival vs. site aspect and season.................................... 207 
Figure 5.21. Seasonal differences in solar radiation for Wellington Harbour. ........................................... 208 
 
CHAPTER SIX 
Fig. 6.1. A community development model with mechanisms showing the competitive dominance 

exclusion ........................................................................................................................................... 223 
Fig. 6.2. Graphic representation of the incorporation of facilitation theory into community regulation 

theory. ............................................................................................................................................... 230 
 

 



 

 x

LIST OF TABLES 
 
CHAPTER TWO 
Table 2.1. Descriptive statistics. All sites, August 2002 – September 2003................................................. 46 
Table 2.2. Descriptive statistics. Matiu-Somes Island and Seatoun, March 2002 – September 2003. ......... 46 
Table 2.3. MANOVA, all sites, August 2002 – September 2003................................................................. 49 
Table 2.4. MANOVA, overall model. All sites, August 2002 – September 2003........................................ 49 
Table 2.5. Differences among sites in each water parameter........................................................................ 49 
Table 2.6. Gamma values for water parameters at Evans Bay. .................................................................... 50 
Table 2.7. Gamma values for water parameters at Seatoun.......................................................................... 50 
Table 2.8. Gamma values for water parameters at Matiu-Somes Island. ..................................................... 51 
Table 2.9. Gamma values for water parameters at Petone............................................................................ 51 
Table 2.10. MANOVA, Seatoun and Matiu-Somes Island, March 2002 – September 2003. ...................... 55 
Table 2.11. MANOVA, overall model for each variable. Seatoun and Matiu-Somes Island, March 2002 – 

September 2003. ................................................................................................................................. 55 
Table 2.12. Differences in water parameters between Seatoun and Matiu-Somes Island. ........................... 55 
Table 2.13. Gamma values for water parameters at Seatoun........................................................................ 55 
Table 2.14. Gamma values for water parameters at Matiu-Somes Island. ................................................... 55 
 
CHAPTER THREE 
Table 3.1. Descriptive statistics of the water column parameters................................................................. 78 
Table 3.2. Gamma values for water parameters at Seatoun.......................................................................... 81 
Table 3.3. Gamma values for water parameters at Evans Bay. .................................................................... 81 
Table 3.4. Gamma values for water parameters at Matiu-Somes Island. ..................................................... 82 
Table 3.5. MANOVA model for differences in water characteristic............................................................ 82 
Table 3.6. MANOVA - the overall model. ................................................................................................... 82 
Table 3.7. General ANCOVA for differences in CI among all mussel species, sites and months. .............. 83 
Table 3.8. Aulacomya maoriana, CI vs. SL and CI vs. GM correlation....................................................... 84 
Table 3.9. Aulacomya maoriana, CI vs. CTD correlation. ........................................................................... 84 
Table 3.10. Mytilus galloprovincialis, CI vs. SL and CI vs. GM correlation. .............................................. 86 
Table 3.11. Mytilus galloprovincialis, CI vs. CTD correlation. ................................................................... 86 
Table 3.12. Perna canaliculus, CI vs. SL and CI vs. GM correlation. ......................................................... 87 
Table 3.13. Perna canaliculus, CI vs. CTD correlation . ............................................................................. 88 
Table 3.14. General ANCOVA for differences in GM among all mussel species, sites and months. .......... 88 
Table 3.15. Aulacomya maoriana, GM vs. CTD correlation........................................................................ 90 
Table 3.16. Mytilus galloprovincialis, GM vs. CTD correlation.................................................................. 91 
Table 3.17. Perna canaliculus, GM vs. CTD correlation ............................................................................ 92 
Table 3.18. Correlation between GM and SL in all species. ........................................................................ 92 
Table 3.19. Site- and species-specific differences in the water column parameters, CI, GM and SL. ......... 93 
Table 3.20. Aulacomya maoriana - pea crab infestation. ............................................................................. 95 
Table 3.21. Mytilus galloprovincialis - pea crab infestation. ....................................................................... 95 
Table 3.22. Perna canaliculus - pea crab infestation. .................................................................................. 96 
Table 3.23. Comparison of mean CI of infested and healthy mussels.......................................................... 96 
Table 3.24. Factorial ANOVA for differences in larval density among sites and months ........................... 98 
Table 3.25. Site-specific correlation between CTD and larval settlement data. ........................................... 98 
Table 3.26. Site-specific differences in the water column parameters and larval settlement. ...................... 98 
 
CHAPTER FOUR 
Table 4.1. Algal and invertebrate species for which percent cover data were obtained. ............................ 131 
Table 4.2. Results of MANOVA for differences in percent cover of bare substrate, algal and invertebrate 

species among sites, treatments and months. .................................................................................... 132 
Table 4.3. Overall model fit of MANOVA for  individual species of algae, barnacles, mussels, whelks, 

limpets and bare substrate. ................................................................................................................ 132 
Table 4.4. MANOVA for differences in percent cover of groups of algae, invertebrates and bare substrate 

among sites, treatments and months.................................................................................................. 133 



 

 xi

Table 4.5. Overall model fit of MANOVA for groups of algae, invertebrates and bare substrate. ............ 133 
Table 4.6. Seatoun: Results of MANOVA for differences in percent cover of bare substrate and functional 

groups of algae and invertebrates among treatments and months. .................................................... 133 
Table 4.7. Seatoun: Overall model fit of MANOVA for groups of algae, invertebrates and bare substrate.

.......................................................................................................................................................... 134 
Table 4.8. Seatoun: Results of MANOVA for differences in percent cover of bare substrate, algal and 

invertebrate species among treatments and months. ......................................................................... 134 
Table 4.9. Seatoun: overall model fit of MANOVA for  individual species of algae, barnacles, mussels, 

whelks, limpets and bare substrate.................................................................................................... 134 
Table 4.10. Seatoun: CTD and functional groups percent cover data correlation. ..................................... 139 
Table 4.11. Aulacomya maoriana, Seatoun: Results of the Multiple Regression....................................... 140 
Table 4.12. Mytilus galloprovincialis, Seatoun: Results of the Multiple Regression................................. 141 
Table 4.13. Perna canaliculus, Seatoun: Results of the Multiple Regression............................................ 142 
Table 4.14. Kau Point: Results of MANOVA for differences in percent cover of bare substrate and 

functional groups of algae and invertebrates among treatments and months.................................... 144 
Table 4.15. Kau Point: Overall model fit of MANOVA for groups of algae, invertebrates and bare 

substrate. ........................................................................................................................................... 144 
Table 4.16. Kau Point: Results of MANOVA for differences in percent cover of bare substrate, algal and 

invertebrate species among treatments and months. ......................................................................... 144 
Table 4.17. Kau Point: overall model fit of MANOVA for  individual species of algae, barnacles, mussels, 

whelks, limpets and bare substrate.................................................................................................... 145 
Table 4.18. Aulacomya maoriana, Kau Point: Results of the Multiple Regression. .................................. 149 
Table 4.19. Mytilus galloprovincialis, Kau Point: Results of the Multiple Regression.............................. 151 
Table 4.20. Perna canaliculus, Kau Point: Results of the Multiple Regression......................................... 152 
Table 4.21. Evans Bay: Results of MANOVA for differences in percent cover of bare substrate and 

functional groups of algae and invertebrates among treatments and months.................................... 153 
Table 4.22. Evans Bay: Overall model fit of MANOVA for groups of algae, invertebrates and bare 

substrate. ........................................................................................................................................... 154 
Table 4.23. Evans Bay: Results of MANOVA for differences in percent cover of bare substrate, algal and 

invertebrate species among treatments and months. ......................................................................... 154 
Table 4.24. Evans Bay: overall model fit of MANOVA for  individual species of algae, barnacles, mussels, 

whelks, limpets and bare substrate.................................................................................................... 155 
Table 4.25. Evans Bay: CTD and functional groups percent cover data correlation. ................................. 159 
Table 4.26. Aulacomya maoriana, Evans Bay: Results of the Multiple Regression .................................. 160 
Table 4.27. Mytilus galloprovincialis, Evans Bay: Results of the Multiple Regression............................. 161 
Table 4.28. Perna canaliculus, Evans Bay: Results of the Multiple Regression........................................ 162 
 
CHAPTER FIVE 
Table 5.1. ANCOVA results for differences in SOA among sites, species and seasons. ........................... 192 
Table 5.2. ANCOVA results for differences in SOA among species, seasons and site aspect................... 193 
Table 5.3. Aulacomya maoriana: Descriptive statistics of SoA at all sites and seasons ............................ 194 
Table 5.4. Mytilus galloprovincialis: Descriptive statistics of SoA at all sites and seasons....................... 197 
Table 5.5. Perna canaliculus: Descriptive statistics of SoA at all sites and seasons.................................. 199 
Table 5.6. Logistic Regression – general analysis...................................................................................... 201 
Table 5.7. Aulacomya maoriana: Logistic regression results..................................................................... 204 
Table 5.8 Mytilus galloprovincialis: Logistic regression results ................................................................ 205 
Table 5.9. Perna canaliculus: Logistic regression results .......................................................................... 208 
 
CHAPTER SIX 
Table 6.1. Examples of mussel marine ecosystem engineering activity (adapted from Jones et al., 1994).232 

 



Chapter One   Intertidal Ecology and the Water Column 

 1

CHAPTER ONE: 

LINKING INTERTIDAL MUSSEL ECOLOGY AND THE WATER COLUMN  

 

1.1. Factors affecting rocky intertidal assemblages 

 

Filter-feeders, such as mussels, dominate the rocky intertidal zone worldwide. 

This can be attributed to two factors: access to various food resources and the low 

energetic cost of food capture (Gili & Coma, 1998; Ricciardi & Bourget, 1999). Filter-

feeders have access to numerous food resources, including phytoplankton, detritus, 

bacteria and dissolved organic matter, that are produced in the three-dimensional pelagic 

environment and are continually replenished by tidal currents and wave action flowing 

over the attached invertebrates (Fréchette & Bourget, 1985). By contrast, grazers (e.g. 

limpets and chitons) utilise algal food that is produced in a relatively limited, two-

dimensional space on the rocky surface and less frequently replenished (Bustamante et 

al., 1995).  

 

The intertidal zone represents a transition between marine and terrestrial 

environments, and is not therefore uniform in nature. Its vertical extent changes from day 

to day because of water movements associated with waves, sea spray and the varying 

height of the tides. Temperate rocky intertidal shores around the world have three distinct 

horizontal bands, the supra-littoral (the upper intertidal), the eulittoral (the mid-intertidal) 

and the sub-littoral (the lower intertidal). Each band is distinguished from those adjacent 

by a combination of morphology and dominant organisms. The vertical extent of rocky 

intertidal zones varies, depending on the exposure to wave action, the slope of the rocky 

surface and the tidal range. A gradual slope to the rock will produce broad individual 

zones, but on a vertical face, under conditions of similar wave and tidal exposure, the 

individual zones will be narrow. Similarly, as a result of the sea spray, intertidal zones are 

broader on exposed surfaces than on sheltered surfaces (Nybakken, 2001). Because of the 

constant water movement resulting from waves, spray and tides, the transition between 
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terrestrial and marine environments is gradual and creates a habitat in which emersion is 

stressful to fully marine organisms, while immersion is stressful to fully terrestrial 

organisms (Barnes & Hughes, 2002). Consequently, the organisms inhabiting the 

intertidal zone, such as mussels, must be able to cope with both elements in order to 

survive. For mussels, the distribution within the zone is dictated by how well they can 

withstand the changing physical and biological factors.  

 

Physical factors 
 

 A number of physical factors, often working together, regulate the distribution of 

mussels in the intertidal zone. These factors include tidal range and exposure to wave 

action. Recently, latitude has also been suggested as an important factor in the structuring 

of intertidal mussel communities worldwide (e.g. Ricciardi & Bourget, 1999). Each of 

these factors is discussed in turn. 

 

The tidal range is perhaps the single most important determinant of the upper 

distribution of mussels in the intertidal zone (Barnes & Hughes, 2002), as it involves 

exposure to air temperatures and consequently to desiccation stress and potentially 

harmful ultraviolet (UV) radiation. Because of fluctuations in tidal height, a very short 

vertical movement on the shore can result in significant changes in exposure time. 

Therefore, mussels growing higher on the rocky shore suffer longer emersion and 

reduced access to food (which in turn reduces feeding time), unlike mussels living lower 

in the intertidal zone, where the total immersion time, food availability and protection 

from air temperatures are greater. Longer intervals between the full immersion periods 

force mussels to utilise greater amounts of stored energy in order to meet their metabolic 

requirements, which results in reduced mussel growth. Further, mussels exposed to air 

suffer from desiccation and have to expend more energy in order to repair their tissues 

damaged by the water loss caused by heat.  

 

Wave exposure has been proposed as another limiting factor for intertidal mussel 

communities. Ricciardi & Bourget (1999) report that the biomass of filter-feeding 
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communities, including mussels, is higher on exposed (rather than sheltered) rocky 

shores. Exposed shores host high-density populations of filter-feeders (mussels, barnacles 

and ascidians), while sheltered rocky shores are dominated by macroalgae and grazers 

(e.g. limpets and chitons) (McQuaid & Branch, 1984, 1985). Increased exposure to wave 

action leads to an increase in food availability and feeding time for mussels and 

subsequently to their greater abundance and increased growth (Dahlhoff & Menge, 

1996). Moreover, under conditions of high wave exposure, other members of intertidal 

communities such as mobile consumers (carnivores, scavengers and grazers) are limited 

in their foraging, unless they have access to rock crevices that can act as refugia, which 

may contribute to mussel dominance of the rocky intertidal (Lubchenco & Menge, 1978; 

Burrows & Hughes, 1989).  

 

Physical disturbance by intense wave action, scouring ice or floating logs can 

severely reduce and alter intertidal mussel communities. Propelled by waves, floating 

logs pound against the community and can dislodge significant numbers of mussels, 

creating patches of bare substrate among the competitive dominants. This is further 

intensified by wave action, often removing individual mussels from the edges of a 

colony. The space that has suddenly become available is quickly recolonised by other 

recruiting species, which adds to the species diversity. Ice scour can create very harsh 

conditions, forcing the members of intertidal communities to retreat to rock crevices. 

Bergeron & Bourget (1986) report typical intertidal zonation inside such crevices, where 

the upper part is devoid of organisms, the middle part hosts barnacles and fucoid algae, 

with mussels found in the lower part. Carroll & Higsmith (1996) describe how ice 

disturbance can alter the balance between mussels and their predators in the upper 

intertidal zone. As the mussels Mytilus trossulus recolonised space from which they had 

previously been removed by ice, the predatory whelk Nucella lima preyed upon the 

juvenile mussels. While N. lima was previously unable to control adult M. trossulus, it 

was suddenly able to control the juveniles and thus the predator-prey balance was 

changed. 
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Finally, high exposure to wave action can result in the increased load of sediment 

brought into the community by waves. Sediments accumulating on rocky substrata cause 

stress and burial of mussels, resulting in hypoxic conditions and subsequent death. 

Further, increased sedimentation can lead to scour of the substrate, which has negative 

effect of larval settlement and recruitment to intertidal communities (Airoldi, 2003). 

  

Latitude is another factor regulating intertidal mussel communities. From a global 

perspective, temperate intertidal mussel communities (25-60ºN and 25-60ºS) have a 

greater biomass (expressed as ash-free dry weight, ASDW) when compared with 

intertidal communities from tropical (25ºN-25ºS) and polar (>60ºN and >60ºS) regions 

(Ricciardi & Bourget, 1999). The low biomass of intertidal mussel communities in polar 

latitudes might be a result of unfavourable factors such as freezing temperatures and ice 

scouring (Bergeron & Bourget, 1986), whereas in tropical regions rocky intertidal 

communities experience severe desiccation, hypoxic and salinity stress (Lubchenco et al., 

1984; Menge et al., 1986). In tropical regions, primary phytoplankton production is 

continuous and in phase with pelagic herbivore production, and thus the transfer of 

energy to benthic levels is reduced, whereas in temperate latitudes this primary 

production is seasonal and generates an enormous amount of phytoplankton. A 

substantial part of this phytoplankton production in temperate regions subsequently 

avoids being consumed by zooplankton and is thus more readily available to benthic 

consumers, in particular mussels (Ricciardi & Bourget, 1999). Mussel biomass in 

temperate regions is further increased by the substantial input of organic detritus from 

kelp beds in winter, when phytoplankton production is low (Bustamante & Branch, 

1996).  

 

Biological factors 
 

Biological factors (e.g. interspecific competition, intraspecific competition and 

predation) play a major role in the distribution patterns of mussels in the rocky intertidal 

zone. Typically, mussels densely populate temperate rocky shores. Because the major 

resources (such as space and food) available to mussels in the intertidal zone are limited, 
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competition for those resources among the members of the intertidal communities is 

inevitable. Mussels can compete for the resources with other species (interspecific 

competition) or the competition for resources can occur among individuals within the 

same mussel species (intraspecific competition). Mussels are dominant competitors, they 

are able to exploit their resources, quickly outcompete other competitors, dominate the 

available space and ultimately reduce the species diversity on the rocky substrate. 

According to the species diversity competition hypothesis proposed by Sanders (1968), 

interspecific competition favours increased specialisation of species and helps to reduce 

the intensity of the competition, provided that the environment is stable for a sufficient 

period of time. This situation leads to the inclusion of new species in the intertidal 

community and thus to an increase in species diversity (Mann, 2000). However, the 

inclusion of new species in the community can have adverse and unpredictable effects. 

The accidental introduction of the mussel Mytilus galloprovincialis on the west coast of 

South Africa has almost eliminated the slower-growing indigenous mussel Aulacomya 

ater. The former is now spreading east, where it is likely to become competitive with the 

native mussel Perna perna (Griffiths et al., 1992). The fact that P. perna is heavily 

infested with a trematode Proctoeces, while M. galloprovincialis is free of this parasite, 

may give the latter a competitive advantage and eventually lead to displacement of the 

native P. perna from the higher intertidal (Calvo-Ugarteburu & McQuaid, 1998). 

 

Predation is another important factor determining the abundance and distribution 

of mussels in the intertidal zone. Various studies (e.g. Paine, 1966; Dayton, 1971; Menge 

& Sutherland, 1976; Menge et al., 1994) show that predators (such as starfish) can 

maintain the numbers of mussels at low levels, thus preventing the exclusion of algal and 

other invertebrate species from the habitat. The major mussel predators include starfish, 

gastropods, crabs (although crabs are limited to the lower intertidal) and birds. Predation 

by starfish acts in a fashion similar to that of physical disturbance: starfish can create 

breaks in the mussel cover, thus providing free space for other species to colonise and 

preventing mussels from taking over the habitat, and eventually providing conditions for 

species diversity within the community (Menge & Sutherland, 1976). Starfish either open 

the mussel shell with their arms and tubular feet, then evert their stomach to engulf the 
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mussel and digest its tissues, or they secrete an anaesthetic that numbs the mussel, 

causing it to gape. 

 

Gastropods are also significant predators on mussels and choose their prey on the 

basis of profitability (i.e. the potential energy gain from a food item relative to handling 

time), which increases with prey size. Seed (1969) reports that gastropods can consume 

up to two mussels (1-3cm in shell length) per week in summer, at the height of their 

predatory activity. Gastropods can drill a hole in the mussel shell, rasp the tissues with 

their radula and then devour them, or inject paralysing toxins with a proboscis through 

the gape in the mussel shell and then consume their prey. 

 

Typically, three crab genera prey on mussels in the lower intertidal and subtidal 

zone: Cancer, Carcinus and Pachygrapsus. Crab predation on mussels is seasonal, with 

reduced intensity in winter, when crabs migrate offshore. Like gastropods, crabs select 

their prey size, with the upper limit directly related to the size of the crab, and normally 

choose small mussels (<45 mm) because these are easier to handle, while the energetic 

cost of handling is also lower (Rovero et al, 2000). Crabs crush mussel shells with their 

claws.  

 

The most important bird group preying on mussels includes oystercatchers 

Haematopus spp. and Eider ducks Somateria spp. Oystercatchers prey extensively on 

mussels and cannot normally survive if their diet is limited to one or two species, and 

generally rely on three or four species (Gosling, 2003). Similarly, mussels constitute as 

much as 60% of the dietary requirements of Eider ducks, which can remove significant 

numbers of individuals from a mussel clump (Gosling, 2003). Birds open mussels by 

stabbing into gaping mussels, prising open closed ones or by hammering a hole in the 

dorsal or ventral regions of the shell (Gosscustard et al., 1993; Nehls & Ruth, 1994). 

  

In the course of evolution, however, mussels have developed specific mechanisms 

designed to protect them from predators. Dolmer (1998) reports that starfish can prey 

only on the surface of the mussel bed and that smaller mussels find refuge from predators 



Chapter One   Intertidal Ecology and the Water Column 

 7

inside the bed. Moreover, predator-exposed mussels have thicker shells and stronger 

adductor muscles (Reimer & Tedegren, 1996). Similarly, mussels exposed to heavy 

predation from crabs develop more robust shells and thicker byssus (Cote, 1995; Leonard 

et al., 1999). Further, Norberg & Tedengren (1995) report that not all mussels are equally 

vulnerable to starfish predation. According to the authors, 70% of Mytilus edulis in the 

North Sea were able to escape predation from the starfish Asterias rubens, while M. 

edulis from the Baltic Sea were opened within an hour. 

 

Case studies performed by Dayton (1971) and Paine (1966, 1974) can serve as 

examples demonstrating the subtle interplay between biological factors (such as 

competition and predation) in the intertidal mussel beds on the Washington coast. 

Whenever an open space occurred, it was first colonised by rapidly growing algae, which 

were in turn displaced by the barnacles Balanus gladula, B. cariosus and Pollicipes 

polymerus, which in turn were eventually smothered by the mussel Mytilus californianus. 

Because no other organism can settle and smother M. californianus, these mussels 

dominate the intertidal shore and grow there in distinct horizontal bands, while being 

absent in the subtidal zone, where the starfish Pisaster ochraceus controls them. This 

voracious predator is able to consume M. californianus in numbers large enough to 

prevent the mussels from monopolising all the available space; therefore it has been 

shown as capable of influencing the entire community structure. As such, P. ochraceus 

can be regarded as a keystone species (Paine, 1966). 

 

1.2. Benthic-pelagic coupling 

 
The term “benthic-pelagic coupling” has been used to describe numerous interactions 

between benthic invertebrate communities and the nearshore water environment, 

including the physics of the coastal waters, life history of the coastal species, larval 

supply, settlement and recruitment, and nutrient cycling between bivalve communities 

and the water column (Dame et al., 1989; Schiel, 2004). 

 
 
 



Chapter One   Intertidal Ecology and the Water Column 

 8

The importance of larval supply 
 

Traditionally, temperate rocky intertidal communities have been viewed as the 

outcome of physical and biological factors discussed above (Dayton, 1971; Connell, 

1972; Paine, 1974; Peterson, 1979). Recently, however, intertidal communities have been 

shown to depend heavily on the influence of physical oceanography through the transport 

and dispersal of invertebrate larvae (Shanks, 1995; Harris et al., 1998; Mann, 2000; 

Swearer et al., 2002). Advective processes in coastal systems leading to significant larval 

dispersal ultimately affect larval recruitment to intertidal communities. This, in turn, is 

crucial to the subsequent population dynamics of the intertidal system (Botsford et al., 

1994, 1998; Young, 1995; Pineda, 1999).  

 

Competent larval stage 

substrate 
contact/ 
exploration  

Settlement and 
metamorphosis 

Juvenile benthic stage Adult benthic stage 

Gamete 
maturation, 
spawning, 
fertilization 

Larval development and 
dispersal 

 
Water column 

   Bottom 

 
Figure 1.1. A schematic mussel life cycle with a planktonic larval and benthic adult phases (adapted from 

Eckman, 1996). 

 

Transport of larvae by tidal currents has a profound impact on intertidal 

communities as the advection creates recruitment variation and determines whether the 
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larvae complete their development near a favourable habitat. Factors such as larval 

condition, settlement and subsequent recruitment to the intertidal community have a 

strong effect on adult density and establish a pattern in such communities (Menge, 2000; 

Chícharo & Chícharo, 2001), whereas the post-recruitment processes of predation, 

competition, heat and desiccation modify that pattern (Gaines & Bertness, 1992; Shanks, 

1995; Palmer et al., 1996; Phillips, 2002). In mussels, the life cycle includes two different 

and complex, yet interdependent, phases: a planktonic larva and a benthic, sedentary 

adult (Fig. 1.1). For larvae, the benthic adult fecundity and fertilisation success, 

subsequent growth and larval stage duration, larval mortality, behaviour and dispersal by 

currents, and settlement resulting in metamorphosis are crucial. Morgan (1995) lists 

numerous factors affecting larval survival, including extreme or variable temperatures 

and salinities, reduced oxygen levels, pollution, UV and starvation. Moreover, prolonged 

development in the planktonic phase can also be detrimental to larvae as it increases the 

probability of predation, advection from adult habitats and reduction of suitable habitats.  

 

Larvae are generally believed to be most sensitive to changes in temperature and 

salinity, with the greatest mortality occurring from fluctuating temperature at the northern 

and southern limits of species distribution, in shallow bays and near the beginning of 

their larval life. Spring rainfalls can often reduce salinity in estuaries and harbours, 

rapidly creating stressful conditions for larvae. However, larvae can recover from salinity 

shock more quickly than from temperature shock (Morgan, 1995). Naturally, tolerance to 

changes in temperature and salinity reflects the prevailing conditions in the intertidal 

habitats the larvae originated from, so that these two factors can alter larval survival rates 

only at the margins of the species range.  

 

Starvation has been recognised as a major source of larval mortality. 

Traditionally, the food abundance in the water column for larvae and adult mussels has 

been expressed as chlorophyll a concentration. It has been suggested, however, that this 

method is a gross estimate and may not always indicate the true nutritional conditions, 

since the suitability of phytoplankton and zooplankton varies among bivalve species 

(Morgan, 1995). Attention has been given to highly unsaturated fatty acids (HUFA) 
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content in phytoplankton cells as being essential for larval development, success at 

recruitment and the subsequent development of a community (Olson & Olson, 1989; 

Caers et al., 2003).  

 

Exchange of nutrients  

 

A two-way exchange of organic matter between the mussels and the overlying 

water is important for both the benthic and pelagic components of the intertidal system 

(Zhang, 2000). Understanding the physical, chemical and biological processes governing 

both the planktonic and the benthic compartments of the intertidal systems is vital to our 

knowledge of the spatial and temporal distributions, abundances, intertidal population 

structure and growth rate (Eckman, 1996; Ackerman et al., 2001). From an ecological 

perspective, the limiting factors of primary production by phytoplankton, influx of 

nutrients into aquatic ecosystems and both horizontal and vertical transport (i.e. bottom-

up processes) and consumption by grazers (i.e. top-down processes) have been of 

particular interest (Fretwell, 1987; Menge et al., 1997). In the bottom-up processes, the 

phytoplankton growth can be limited by the lack of nutrients, whereas in the top-down 

processes pelagic grazing of phytoplankton is the limiting factor (Ackerman et al., 2001). 

Benthic suspension-feeders such as mussels also contribute to the consumption of 

phytoplankton by removing it from the water column, thus establishing a link between 

the pelagic and benthic components. This benthic-pelagic relationship is further limited 

by water depth, the physical processes responsible for the water column mixing and 

subsequent re-suspension of organic particles, and biological processes modifying 

phytoplankton availability to the benthos, such as variation in the quality and quantity of 

food and in the filtration rate (Fréchette et al., 1989; Fréchette & Grant, 1991; Butman et 

al., 1994; O’Riordan et al., 1995, Marcus & Boero, 1998; Widdicombe & Austen, 2001).  

 

The importance of organic matter subsidies from subtidal kelp beds to intertidal 

systems worldwide has been emphasised by numerous researchers (e.g. Duggins et al., 

1989; Bustamante et al., 1995; Bustamane & Branch, 1996; Bégin et al., 2004). As highly 

productive seaweeds, macroalgae provide organic detritus (particulate and dissolved) to 
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the intertidal communities, which subsequently stimulates the growth of invertebrate 

grazers, such as limpets, and the filter-feeders, such as mussels and barnacles. Further, 

macroalgae can impact on the benthic-pelagic coupling in temperate intertidal systems by 

preventing the diffusion of dissolved inorganic nitrogen (DIN) from the water column to 

the sediments and by intercepting urea from the sediment to the water column (Tyler et 

al., 2001).  

 

Mussels are responsible for a significant share of the energy flow from the pelagic 

to the benthic system, often benefiting from the pelagic primary production in the 

overlying water column (Graf et al., 1982; Christensen & Kanneworff, 1986; Grall & 

Chavaud, 2002). Further, mussels stimulate the transfer of seston and nutrients from the 

water column to the benthos (Porter et al., 1996) and subsequently release the nutrients 

back into the water column (Raffaelli et al., 2003). When the amount of food filtered by 

individual mussels exceeds their demand, pseudofaeces are produced. These 

pseudofaeces include the excess particulate organic matter, which is then deposited 

outside the mussel and utilised as a food source by other members of the community, 

such as bacteria which release the nutrients into the water column (Graf, 1992). 

Moreover, mussels can significantly reduce the phytoplankton biomass in the intertidal 

system by filtering it from the water column (Officer et al., 1982; Connell, 1985; Olive, 

1985; Dame et al., 1989; Frechette et al., 1989; Ogilvie et al., 2000), but they have also 

been shown to promote primary production by converting particulate nitrogen into 

dissolved organic nitrogen (DIN), thus making it available for phytoplankton (Asmus & 

Asmus, 1991). Mussels can also retain essential nutrients in the intertidal system 

(Kuenzler, 1961; Jordan & Valiela, 1982; Bertness, 1984) and have a stabilising effect on 

the phytoplankton biomass, reducing high levels in winter (grazing effect) and slightly 

increasing low levels in summer (Gibbs & Vant, 1997; Ogilvie et al., 2003). In winter, 

when levels of nitrogen in the water column are high, mussel grazing can reduce the 

phytoplankton production. In summer, however, mussels can stimulate the phytoplankton 

biomass by excreting metabolic ammonium, which can be subsequently utilised by 

phytoplankton (Ogilvie et al., 2003). Thus, the links between mussels and pelagic 

production in intertidal communities are two-fold: supply and regeneration of nutrients 
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into the water column and simultaneously reducing the planktonic production by 

phytoplankton consumption. 

 

1.3. Worldwide research of mussel communities  

 

Until recently, analysis of the distribution of mussels worldwide has been based 

mostly on shell morphometry, often creating confusion – a result of inaccuracies 

associated with morphometric techniques that fail to account for the mussel shell 

response to environmental conditions.  With the advent of more advanced techniques, 

such as nuclear DNA markers and the analysis of mitochondrial DNA (mtDNA), the 

distribution of some mussel species had to be revised (Koehn, 1991; Gosling, 2003; 

Gardner, 2004).  

 

Mytilidae is a family dating from the Devonian period and includes important 

genera such as Mytilus, Perna and Aulacomya (Seed & Richardson, 1990). In the 

northern hemisphere the genus Mytilus is represented by M. trossulus in the Pacific, the 

north-western Atlantic and the Baltic Sea, M. edulis in the Atlantic and M. 

galloprovincialis in the Mediterranean and along the Atlantic coast of southern Europe 

and North Africa (McDonald & Koehn, 1988; McDonald et al., 1991; Gosling, 1992; 

Comesaña et al., 1998). M. galloprovincialis has also been introduced to the Sea of 

Japan, southern California and Puget Sound (Hilbish et al., 2000). Where the ranges of 

M. edulis, M. trossulus and M. galloprovincialis overlap, various degrees of hybridisation 

occur (Gosling, 2003). Perna viridis represents the genus Perna in the northern 

hemisphere in the sub-tropical regions of the Arabian Sea, Bay of Bengal, the East China 

Sea and the South China Sea. P. viridis also inhabits tropical latitudes in the Malaysian 

waters (Gosling, 2003). In the southern hemisphere, shell morphometric analyses and 

protein markers techniques identified the genus Mytilus as M. edulis or M. 

galloprovincialis (McDonald et al., 1991). However, recent analyses of mtDNA revealed 

that the mussels in the southern hemisphere developed from migration events from the 

northern hemisphere (Gardner, 2004). As a result, the southern hemisphere M. edulis and 

M. galloprovincialis are similar but not identical to M. edulis and M. galloprovincialis 
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from the northern hemisphere (Hilbish et al., 2000; Gosling, 2003). M. edulis can be 

found along the southern coasts of South America, while M. galloprovincialis inhabits 

waters in southern Australia, Tasmania and New Zealand (Hilbish et al., 2000). M. 

galloprovincialis has recently invaded the western shores of South Africa and Namibia 

and, as noted earlier, is currently spreading east, threatening three indigenous mussel 

species: Choromytilus meridionalis, Perna perna and Aulacomya ater (Grant & Cherry, 

1985; Branch & Steffani, 2004). The genus Perna is represented in the southern 

hemisphere by P. perna, P. viridis and P. canaliculus. P. perna inhabits waters off South 

America, South Africa and eastern Madagascar Island, P. viridis is found in the tropical 

waters of Indonesia, while P. canaliculus is indigenous only to New Zealand (Siddal, 

1980; Calvo-Ugarteburu & McQuaid, 1998). Two species from the genus Aulacomya are 

found in the southern hemisphere: A. ater and A. maoriana. The former inhabits the coast 

of South Africa and also the Pacific and Atlantic shores of South America, while the 

latter is indigenous to New Zealand (Gosling, 2003). The distribution of the main 

commercially important mussel species is presented in Fig. 1.2. 

 

 

Figure 1.2. Global distribution of the main commercially important mussel species (adapted from Gosling, 
2003). 
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Voluminous literature has been dedicated to various aspects of the ecology of 

marine mussels in North America, where genus Mytilus has been investigated at 

numerous sites, including New England, Newfoundland, the Bay of Fundy, British 

Columbia, Québec, California and the Oregon Coast. These studies concentrate mainly 

on the physiological energetics of the mussels (e.g. Harger, 1970; Thompson, 1984; 

Emmet et al., 1987; Gardner & Thomas, 1987), the relationship between the mussels and 

the environmental parameters such as temperature, salinity and food abundance (e.g. 

Page & Hubbard, 1987; Fréchette et al., 1989; Alunno-Bruscia et al., 2001; Gardner & 

Thompson, 2001), the relationship between the mussels and other members of the coastal 

communities, including predators (e.g. starfish and gastropods) and filter-feeders such as 

barnacles (Paine, 1976; Paine & Levin, 1981; Roughgarden et al., 1988; Menge, 1991; 

Menge, 1992; Lohse, 1993; Menge et al., 1994; Petraitis et al., 2003), and on the 

structure of mussel beds (e.g. Commito & Rusignuolo, 2000; Dahlhoff et al., 2002).  

 

Research in South America also relates to various aspects of the biology of single 

mussel species. For example, Prieto et al. (1999) studied the reproduction and growth in 

Perna perna in Venezuela, Chaparro & Winter (1983) and Gray et al. (1997) studied the 

reproduction and growth of Mytilus edulis chilensis in Chile and the Falkland Islands, 

respectively. The interactions between mussels, environmental variables and other 

invertebrates in the rocky intertidal have been described for the genus Brachidontes by 

Tanaka & Magalhães (2002) and Adami et al. (2004) in Brazil and Argentina, 

respectively. Further, the physiological ecology of a Chilean mytilid Choromytilus chorus 

was investigated by Navarro (1988). Paine et al. (1985) and Navarette and Castilla (1990) 

studied the succession dynamics in mussel beds of Peromytilus purpuratus in Chile, 

while Guiñez & Castilla (1999) developed a self-thinning model for multi-layered 

intertidal beds of the same mussel species. It is worth noting that some parts of the world, 

including South America, Africa and Asia, are under-represented because of few 

comprehensive accounts (Gosling, 2003). 

 

The ecology of the European Mytilus edulis has been extensively studied at 

numerous sites in Germany, Sweden, the Netherlands, England, France, Italy and Spain. 
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Secondary production, growth and the physiological energetics of this species were 

described by many workers, for example Thompson & Bayne (1974), Bayne & Worrall 

(1980), Rosenberg & Loo (1983), Craeymeersch et al. (1986), Widdows & Johnson 

(1988) and Hawkins et al. (1996).  Relationships between Mytilus and salinity, 

temperature and food availability were investigated by, among others, Livingstone et al. 

(1979), Widdows et al. (1979), Widdows (1985), Hawkins et al. (1986), Seed & 

Richardson (1990), Hawkins & Bayne (1991) and McGrorty & Goss-Custard (1993), 

while the ecological interactions between M. edulis and other invertebrates in European 

waters were investigated by, among others, Buschbaum (2000; 2001), Davenport et al. 

(2002) and Kostylev & Erlandsson (2001). The population dynamics of Mytilus 

galloprovincialis were investigated by Ardizzone et al. (1996). On a number of 

occasions, Mytilus edulis is described in conjunction with another European species, 

Mytilus galloprovincialis, for example in relation to fecundity and growth (Gardner & 

Skibinski, 1990; Camacho et al., 1995).  

 

There are many South African reports dealing with various aspects of the ecology 

of a single species, such as the influence of wave exposure on Mytilus galloprovincialis 

beds (e.g. Raubenheimer & Cook, 1990; Steffani & Branch, 2003; Hammond & Griffiths, 

2004), the ecological energetics of Aulacomya ater (e.g. Griffiths & King, 1979) and the 

population structure in genus Choromytilus (e.g. Griffiths, 1980; Griffiths & Hockey, 

1987; Clarke & Griffiths, 1990). However, numerous South African researchers have 

investigated the trophic structure and population dynamics of more than one species 

within the same community, such as Choromytilus meridionalis, Perna perna, 

Aulacomya ater and Mytilus galloprovincialis, thus describing the interspecific 

relationships in mussel beds in greater detail (e.g. Bayne et al. 1984; Wickens & 

Griffiths, 1985; van Erkom Schurink & Griffiths, 1990; van Erkom Schurink & Griffiths, 

1991, 1992, 1993; Bustamante & Branch, 1996b; Bustamante et al., 1997).   

 

A search of the available scientific literature revealed that in most cases only 

single mussel species are studied at particular locations. Therefore, records examining 

relationships among more than one taxa within the same community are scarce. This 
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thesis, however, investigates the population dynamics of three mussel species co-existing 

in a speciose environment: Mytilus galloprovincialis, Aulacomya maoriana and Perna 

canaliculus. Thus, a high-resolution picture of the ecological relationships that occur 

among different taxa within the same habitat is provided. 

 

1.4. Intertidal mussel communities in Wellington Harbour 

 

In Wellington Harbour (Fig. 1.4) the intertidal zone is rather compressed, with a 

small tidal range of about 1.5 m. The degree of wave exposure varies between moderately 

exposed and moderately sheltered rocky reefs, with very exposed reefs found only on the 

South Coast of Wellington (Northcote, 1998). Such physical zonation influences the 

distribution and survivorship of various life forms within this region. The upper shore is 

generally colonised by lichens and gastropods, which are replaced lower down by 

barnacles, which in turn give way further down to mussels and algae (Morton & Miller, 

1968, Morton, 2004).  The upper limit of the supra-littoral is influenced by sea spray, so 

on shores exposed to wave action this band will be wider than on sheltered shores, 

whereas the lower limit of the supra-littoral is the upper limit for barnacles. The primary 

producers in this band are the lichens Verrucaria, cyanobacteria and microscopic green 

algae, while seaweeds are scarce. Characteristic herbivores are the Littorinid gastropods 

Littorina unifasciata and Littorina cincta. The mid-intertidal zone is the broadest and 

extends from the upper limit for barnacles to the upper limit for large rockweeds (e.g. 

Hormosira banksii). The barnacles Chamaesipho brunnea and Ch. columna and Elminius 

modestus are common, replaced lower down by mussels (Fig. 1.3). Herbivores include 

the limpets Cellana ornata, C. radians and C. denticulata. Coralline algae, for example 

the common Corallina officinalis, also inhabit this part of the intertidal zone. Other 

common intertidal algal species in Wellington Harbour include Ulva lactuca, Porphyra 

columbina, Codium adhaerens and Champia novaezelandiae. The lowest part of the 

intertidal zone, the sub-littoral, extends from the low-water mark at spring tide to the 

upper limit of the large kelps, including Carpophyllum maschalocarpum.  
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Wellington Harbour constitutes a speciose, model system for investigating mussel 

ecology for a number of reasons. In Wellington Harbour, three species of mussels co-

exist: endemic to New Zealand ribbed mussel Aulacomya maoriana, the greenshell 

mussel Perna canaliculus and the Mediterranean mussel Mytilus galloprovincialis. Such 

situation creates a rare and unique opportunity to study the dynamics among three co-

existing intertidal mussel species. Given the fact that all of these species commonly occur 

throughout the rocky intertidal zone in the Harbour, gradients of interspecific competition 

must occur. Such competition can be manifested through a species-specific variability of 

each ecological parameter, i.e. maintaining higher juvenile recruitment, or higher adult 

condition by one of the species and therefore its greater ability to contribute to the next 

generation by producing more offspring, or producing it more frequently during either the 

reproductive season or throughout the entire year, and eventually outcompeting the 

remaining species within the community. Further, Wellington Harbour is a subject of 

significant variation in the water column parameters, with numerous sites lying in close 

proximity, yet consistently remaining in different hydrology regimes, such as the input of 

heavy, saline, oceanic waters from Cook Strait in the south and a large input of fresh 

water from the Hutt River in the north of the Harbour.  

 

Wellington Harbour study system 

 

Located in central New Zealand (41°16′ S; 174°51′ E), Wellington Harbour (Fig. 

1.4) lies on the boundary of the Pacific and Australian tectonic plates, in the middle of a 

zone of parallel NE-SW trending faults. The bedrock is greywacke, and the landscape of 

the whole Wellington area can be presented as a series of tilted blocks, uplifted on the 

western side of the main fault lines (Molloy & Smith, 2002). The Harbour has been 

described as one of the finest natural harbours in the world and, despite the fact that it has 

been heavily modified by urban and port development together with land reclamation, 

some of its areas remain intact (Dix et al., 1990; Northcote, 1998).  
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Figure 1.3. The mid-intertidal zone in Wellington, uncovered at low tide. Note the shore dominated by the 
Mediterranean mussel Mytilus galloprovincialis, oystercatchers Haematopus unicolor and floating  kelp 
Macrocystis. 

 

Wellington Harbour is a roughly circular, semi-enclosed embayment with three 

islands: Matiu-Somes Island, Mokopuna Island (just north of Matiu-Somes Island) and 

Ward Island. The total area of the Harbour is 85 km2 (Wear & Gardner, 2001) with an 

average depth of 14 metres and the greatest depth of 32 metres just south of Somes Island 

(Booth, 1975; Wear & Gardner, 2001). The maximum width of the Harbour is 11.1 km 

and the minimum width is 1.8 km (Heath, 1977). The water volume has been estimated as 

approximately 1320 x 106 m3 (McConchie, 2000). The total catchment area of the 

Harbour is 725 km2, with the Hutt River being the main source of fresh water, 

discharging a minimum of 2.6 x 106 tons to a maximum of 180 x 106 tons of fresh water 

per day (Maxwell, 1956). Other sources of fresh water input into Wellington Harbour are 

the small streams of Ngauranga, Korokoro and Kaiwharawhara, but their water input is of 
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secondary importance. The Hutt River drains the southern Tararua Mountains and heavy 

rainfall in that area often creates 

 

 

Figure 1.4. Wellington Harbour area (adapted from Molloy & Smith, 2002). 

 

a surplus of water, which is carried downstream with large amounts of suspended 

sediment and then discharged into the Harbour. This phenomenon creates a large, cool 

layer of lower salinity that enters the Harbour as a conspicuously brown plume and mixes 

with its waters to a depth of about 5 m (McConchie, 2000). In northerly winds 

(accounting for 50–60% of winds in the Wellington region), the plume is pushed along 

the eastern shores of the Harbour, past eastern Matiu-Somes Island, reaching as far south 

as Camp Bay. In southerly wind conditions, the plume is often trapped against the 

northern end of the Harbour (McConchie, 2000; Brodie, 1958). Wellington Harbour 

experiences semi-diurnal tides with the mean tide approximately 0.75 metres (Maxwell, 

1956). Heath (1977) calculates that the total flushing time is approximately 10 days. 

There is only one entrance to the Harbour, in the south, connecting it with the open ocean 
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via Cook Strait. As such, the Harbour can be regarded as an area where fresh water from 

the Hutt River mixes with saline oceanic water. Indeed, the Cook Strait water seeps into 

the Harbour near the bottom, while the fresh water is confined to the upper 5 m and is 

often found in much thinner layers. Heath (1977) reports that the salinity of Cook Strait 

water ranges from 34.5 ‰ to 35 ‰ and Brodie (1958) gives the salinity of the Harbour 

ranges from 32.8 ‰ to 33.7 ‰. In fact, the saline oceanic water entering Wellington 

Harbour is a mixture of three major currents, which meet in central New Zealand (Fig. 

1.5). Heath (1971) identifies and describes those currents as: 

 

• The subtropical and sub-surface, warm East Cape Current flowing towards Cook 

Strait from the northeast, along the eastern coast of the North Island, but entering 

the Cook Strait area from the southeast; 

• The subtropical and sub-surface, warm and low-nutrient D′Urville Current 

travelling up the west coast of the South Island, but entering Cook Strait from the 

north because of the influence of the strong, prevailing northerly winds in the 

area; 

• The sub-Antarctic, cool and low-salinity Southland Current, originally sub-

tropical and flowing from Australia as the Tasman Current but deflected round the 

southernmost part of New Zealand and travelling along the eastern coast of the 

South Island (Westerskov & Probert, 1981). This current interacts with the 

southward-flowing East Cape Current and the D′Urville Current (Sutton, 2003). 

 

The Tasman Sea waters are effectively excluded from the Cook Strait–Wellington 

Harbour system by a submarine isthmus, or “land bridge”, approximately 100–200 

metres deep stretching as far north as the Taranaki Bight (Westerskov & Probert, 1981; 

Bowman, 1983). Stevens (1974) describes the land bridge as a land connection between 

the North and South Islands which has been drowned by the ocean very recently, about 

10,000 years ago. The resulting hydrological situation is remarkable: Cook Strait being a 

highly dynamic system where numerous currents meet and mix, sweeping the ocean 

floor, and Wellington Harbour being a sheltered and speciose embayment, rich in 
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nutrients from the river and surrounding land, supporting numerous invertebrate 

communities.  

 

 

Figure 1.5. Major ocean currents around New Zealand (adapted from Morton & Miller, 1968). 

WCC=Wairarapa Coastal Current, WE=Wairarapa Eddy. 
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Like the rest of New Zealand, Wellington Harbour is a dynamic environment that 

has been subject to dramatic changes. The scale of those changes can perhaps be best 

understood in terms of the geological history of the Harbour: at the time when the Hutt 

River was created, about 4 million years ago, the average depth in the Harbour was 

estimated at between 900 and 1800 metres (Davis, 1982). Since then, the river has been 

constantly depositing sediments in Wellington Harbour. Also, land erosion has resulted in 

vast quantities of rocks and boulders being brought down into the harbour basin. 

Consequently, present-day Wellington Harbour has an average depth of only 14–16 

metres. 

 

1.5. Thesis outline 

 

The mechanisms shaping intertidal communities, such as larval settlement and 

recruitment, combined with the interactions among adult members of the intertidal 

communities (e.g. competition and predation) have been the subjects of great 

international interest. This thesis relates Wellington Harbour local findings to global 

ecological trends reported elsewhere. This thesis describes the structure of mussel 

communities in Wellington Harbour, the numerous physical and biological factors 

influencing the structure of such communities, the ecological mechanisms occurring at 

the level of both the individual mussel and the entire population, and the way these 

ecological mechanisms help to establish and maintain the communities. The present study 

contributes to the existing knowledge of intertidal ecology by focusing on both local-

scale (within metres) and broad-scale patterns (kilometres), and as such constitutes a 

combination of multi-site and multi-species scientific studies of important aspects of 

ecology of rocky intertidal mussel communities in Wellington Harbour. Further, the 

approach taken in this study follows the idea that animal behaviour is complex and varies 

according to variation of local-scale cues that cannot be ignored because it establishes 

and maintains the observed patterns in intertidal communities (Chapman, 2000). The 

present study presents the results based on a novel set of data obtained from a highly 

productive, dynamic system supporting speciose algal and invertebrate intertidal 

communities that are dominated by three co-existing mussel species. Such co-occurrence 
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of three different and dominant mussel species presented a rare and unique opportunity to 

study the dynamics of these communities at the level of each mussel species, as well as 

the level of the entire community. 

 

The larval ecology part of this study concentrates on the rates at which mussel 

larvae settled on the experimental substrate. The reproductive cycle and the timing of the 

settlement of larvae are crucial to the subsequent life of adult stages. Upon settlement, the 

successful larvae metamorphose into juvenile mussels and join the already mature adult 

mussel colonies, or establish new colonies. Quantifying the settlement density on the 

substrate helps to create a picture of temporal and spatial variability in mussel 

recruitment. This, in turn, reflects the environmental conditions that shape the entire 

mussel population. It is possible that co-existing species of mussels will spawn and 

produce their planktonic larvae at different times of the year. For example, on the West 

Coast of the United States, Mytilus galloprovincialis spawns between October and 

February, whereas Mytilus californianus dribbles gametes continuously throughout the 

year (Gosling, 2003). A year-round spawning is a flexible reproductive strategy and a 

reflection of adaptability to prevailing environmental conditions.  

 

The post-larval ecology part of this study concentrates on various factors affecting 

the intertidal adult mussel community. These include the general state of mussel fitness, 

expressed as the condition index and gonad mass, and the degree of infestation with a 

parasitic pea crab Pinnotheres novaezelandiae. As described earlier, mussels free from 

parasites can gain competitive advantage over infested mussels. This may result in the 

higher condition index of the healthy mussels and lead to their dominance within the 

habitat. In the present study, spatial and temporal species-specific variation in condition 

index, gonad mass and the degree of infestation with the pea crab were investigated and 

related to the patterns of within-community dominance observed in situ.  

 

International data show the stages of recolonisation of the rocky substrate and the 

recovery of intertidal communities from physical disturbance (reviewed by Schiel, 2004). 

In order to describe the pattern of succession in mussel communities, from bare rock to 
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mature community, patches of bare rocky substrate were experimentally created and 

monitored. Predator-exclusion cages were set up in the intertidal zone. The abundance of 

gradually settling intertidal organisms was expressed in terms of percent cover, revealing 

complex interactions among members of the intertidal community and the mechanisms of 

community regulation according to the experimental cage treatment 

 

Further, seasonality of mussel response to wave action and desiccation was 

investigated. An experiment was designed, in which mussels were exposed to air at six 

different shore levels within the intertidal zone. In a separate study, species-specific 

mussel strength of attachment to the rocky substrate was quantified at shores facing south 

and north in Wellington Harbour. 

 

In order to obtain environmental data of the water column parameters, electronic 

Conductivity-Temperature-Depth data loggers (CTDs) were employed in this study and 

deployed at four localities within Wellington Harbour from December 2001 until 

November 2003. Environmental data provided by the data loggers assisted in 

understanding of the subtle and often complex ecological processes that determine 

patterns of life in the intertidal zone. Moreover, the data obtained by the CTDs helped to 

link the ecological processes taking place within the intertidal mussel communities and 

the physical processes occurring in the nearshore water column. The CTDs recorded 

seawater data of conductivity, temperature, turbidity, chlorophyll a, salinity and water 

pressure. 
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CHAPTER TWO:  

WATER COLUMN CHARACTERISTICS 

 

2.1. Introduction 

 

Ecological studies of marine invertebrates often include examination of the 

ambient water characteristics. Seawater parameters help us understand differences 

underlying the distribution of invertebrates and structure of their communities. A study of 

the water column characteristics is a powerful tool helpful in explaining the spatial and 

temporal variability of those characteristics. Temperature, salinity, chlorophyll a 

concentration and turbidity are among the most widely studied seawater parameters. 

Temperature and salinity can be linked to various phases of bivalve lives, including 

gametogenesis and reproduction, larval settlement and recruitment, together with 

subsequent growth and condition of adult stages. Seston quality, often expressed as 

chlorophyll a concentration, suggests the concentration of phytoplankton on which filter 

feeders rely as food. It also points to dietary conditions in which those animals live, as 

variety of suspended particles present in the water column, such as detritus, bacteria and 

phytoplankton, differently contribute to the nutrient acquisition by invertebrates (Gosling, 

2003). Seston quantity can be referred to as turbidity and typically defined as the amount 

of suspended sediment particles in water (Mylvaganam & Jakobsen, 2000). Thus, 

chlorophyll a provides the qualitative measure of seston in the water column, while 

turbidity is a quantitative seston measure. When combined, the two parameters can often 

provide the information about the amount of particles suspended in the water column, as 

well as their potential nourishment value to seston-feeding bivalves, although chlorophyll 

a estimates may not always reflect the true nutritional conditions as the suitability of 

phytoplankton varies among bivalve species (Morgan, 1995).  

 

Understanding the interplay among the physical, chemical and biological 

processes governing the planktonic and the benthic compartments of the intertidal 

systems is essential to our knowledge of the distribution and abundances of bivalve taxa 

(Eckman, 1996; Ackerman et al., 2001). Temperature, salinity and food availability are 
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significant factors regulating the dynamics of filter-feeder communities. These factors are 

often further affected by hydrological regimes, such as currents, gyres, flow patterns, and 

local water residence time that distribute food particles among coastal areas and stimulate 

life cycles and succession in such communities by altering temperature and salinity 

regimes (Officer et al., 1982, Menge et al., 1997, Dower & Brodeur, 2004). 

 

Although most marine bivalves can tolerate temperatures ranging from –3ºC to 

+44ºC, this tolerance is species-specific; and within each species, embryonic and larval 

stages have a narrower temperature tolerance that the adult stages. Further, temperatures 

required for spawning are always higher than temperatures required for growth (Vernberg 

& Vernberg, 1972). Thus, all of these factors set limits to the natural distribution of 

individual bivalve species. For example, in a coldwater scallop species Placopecten 

magellanicus, Brand (1991) found that the optimum temperature for existence is 10ºC 

and the upper lethal temperature is 24ºC. In the northern end of the species range 

(Newfoundland), the scallop is found in shallow areas where low water temperature in 

summer prolong the larval development thus reducing recruitment or don’t trigger 

spawning at all, but further south (Cape Hatteras, North Carolina) the species occurs in 

deeper waters (over 55m), separated from the cooler surface layers by a thermocline. A 

similar comment can be made about the larval stages of the mussel Mytilus edulis, also 

limited in their distribution to Cape Hatteras. This is achieved by the interplay of the 

warm Gulf Stream moving north and the cold Labrador Current travelling south, both 

currents meeting near Cape Hatters and creating a temperature barrier for the distribution 

of Mytilus larvae south of this area (Gosling, 2003). 

 

Salinity and temperature are key factors setting limits to the natural distribution of 

species at geographical and local scales. Mussels are generally considered as euryhaline 

bivalves (i.e. able to tolerate a wide range of salinities), and consequently present in 

many estuaries and bays where local salinities can significantly fluctuate from the 

average open ocean salinity of 35 PSU. Bayne (1976) reports that Mytilus edulis can 

survive in salinities as low as 4 PSU and as high as 40 PSU. Sivalingham (1977) makes a 
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similar comment about Perna viridis, whose normal salinity range is 27 – 33 PSU. The 

author reports that the experimental LD50 salinity for this species was as high as 80 PSU. 

 

Until the last decade, measurements of the physical, chemical and biological 

properties of seawater used to be costly, time- and labour-consuming. Measurement 

procedures often were limited by factors including transport, collection techniques, site 

availability and weather. Traditional field measurements often failed to alert in time to 

events such as bacterial contamination of shellfish, harmful algal blooms or oxygen 

depletion. Also, the data quality might have been compromised because of extended 

holding times before analysis or use of non-standardised methodologies (Pettinger, 1971; 

Teillet et al., 2002; Glasgow et al., 2004). The emergence of CTD sensors has enabled 

marine scientists to obtain rapid, high-quality bio-hydrological data (Mills & Tett, 1990; 

Kalashnikov et al., 1998). Optical sensors, such as the ones employed in this study, are 

able to provide rapid and high-resolution in situ measurements of chlorophyll 

concentration and turbidity, based on the fact that since the chlorophyll and 

phaeopigment in phytoplankton are fluorescent, chlorophylls can be detected (Yentsch & 

Yentsch, 1984; Smith et al., 1981).  

 

Study system 

 

In general, available literature on Wellington Harbour hydrology and water 

column characteristics is scarce and fragmented. Although previous investigations in this 

area did include examination of the seawater parameters (e.g. Booth, 1975; Gardner & 

Kathiravetpillai, 1997; Helson & Gardner, 2004), the water column data collected in the 

present study were obtained by means of fully automated, electronic data loggers. The 

present study is therefore the first multi-site, detailed and inter-annual sampling series of 

the water column characteristics performed in Wellington Harbour. The configuration 

and hydrological conditions in Wellington Harbour affect its tidal currents and their 

speed, total flushing time of the Harbour (estimated as about 10 days) and the amount of 

nutrients entering the Harbour at different locations (Maxwell, 1956; Brodie, 1958; 



Chapter Two   Water Column Characteristics 

 42

Heath, 1974). These factors, in turn, affect the water parameters and ultimately 

invertebrate communities within the Harbour.  

 

2.2. Materials and Methods 

 

Four Richard Brancker Research Ltd XR 420 CTDs (Fig. 2.1) were used in this 

study, all deployed at a depth of 2 –3 m using SCUBA. Each CTD was equipped with a 

Seapoint chlorophyll fluorometer for in situ measurements of chlorophyll a and Seapoint 

turbidity meter for measuring turbidity by detecting light scattered by suspended particles 

in the water column. All sensors were factory calibrated: temperature sensors were 

calibrated to an accuracy of + 0.002ºC, over the range –5 to +35ºC, conductivity sensors 

were calibrated to an accuracy of + 0.03 milliSiemens (mS) cm-1 over the range 1 to 70 

mS cm-1, depth sensors were calibrated to an accuracy of + 0.05% of the full scale with 

the full scale range 10 to 4000 m. Salinity was a derived parameter, i.e. calculated by the 

software from conductivity, temperature and pressure data. Turbidity sensors were 

factory calibrated to an accuracy of + 2% of the full scale, with the range 0 to 125 

Formazin Turbidity Units (FTU). Chlorophyll a fluorometer sensor was calibrated, with 

the minimum detectable level of 0 μg l-1 and maximum detectable level of 15 μg l-1.  

 

 

Figure 2.1 Data loggers used in the present study. 
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First two data loggers were deployed in December 2001 and the next two were 

acquired and deployed in August 2002. All loggers were set to record the following 

environmental data: temperature (ºC), salinity measured in Practical Salinity Units (PSU), 

pressure (deciBars), depth (m), turbidity measured in Formazin Turbidity Units (FTU), 

conductivity measured in miliSiemens per centimetre (mS cm-1) and chlorophyll a 

concentration (μg l-1). These water column characteristics were recorded every hour for 

ten seconds and then automatically averaged. The CTDs were retrieved after 

approximately a month of recording and the data from each logger were downloaded onto 

a computer and subsequently analysed.  The four CTDs were deployed at the following 

sites (Fig. 2.2):  Petone wharf, Evans Bay (at Miramar wharf), Matiu-Somes Island (at 

northern wharf), and at the Front Lead light in the shipping channel (this CTD, hereafter 

referred to as Seatoun, was moved to a nearby Falcon Shoal light in April 2003 due to 

renovation works at the Front Lead light). Such multi-site deployment of the loggers was 

dictated by the interest in collecting data from a variety of environmental conditions 

present in various parts of Wellington Harbour. Because of adverse weather conditions 

and sporadic gear failure, it was not always possible to collect data for the entire period 

of this study. Also, Front Lead and Matiu-Somes Island loggers had already been 

collecting data for nine months before the Evans Bay and Petone loggers were first used. 

For these reasons the final data set is incomplete and fragmented. Nevertheless, it is the 

most comprehensive data set of its kind collected for Wellington Harbour. Four water 

column parameters were analysed: temperature, salinity, chlorophyll a concentration and 

turbidity. 

 

Data analysis 

 

Two sets of data were selected and analysed. One set represented data obtained at 

all four sites between August 2002 and September 2003 (data were not obtained in July 

2003), and the second set represented data obtained at Seatoun and Matiu-Somes Island 

between March 2002 and September 2003 (data were not obtained in July 2002 and July 

2003). Within each data set, differences among sites and months for each parameter were 

analysed. Further, the influence of the parameters on aspects of intertidal mussel ecology 
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are analysed in conjunction with the biological data collected in this study and discussed 

in the following chapters.  

 

 

Figure 2.2. Map of Wellington Harbour with the sites of data loggers deployment (adapted from Molloy & 
Smith, 2002). PET – Petone, MSI – Matiu-Somes Island, FLS – Falcon Shoal, FRL – Front Lead, EVB – 
Evans Bay. 

 

Plots of the auto-correlation function for each variable confirmed no correlation if 

a lag of 48 hours was used (Hurlbert, 1984; Venables & Ripley, 2002). Subsequently, to 

reduce the size of data sets, but to maintain its integrity, data points were allocated to 

separate bins of 48-hour duration. Comparison of the raw (non-binned) and the binned 

data sets indicated that the temporal trends of both were similar and that the binned data 

set was representative of the raw data set. All subsequent analyses were carried out on the 

binned data set. CTD data were log10-transformed in order to meet the requirements of 

distribution normality and homogeneity of variances. Subsequently, a repeated-measures 

ANOVA was performed on each data set to investigate the spatial and temporal 

differences in each water column parameter. ANOVA procedure was employed despite 

the fact that data showed some non-normality (even after transformation), as these 

procedures are sufficiently robust against even gross deviations from normality and 
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variance homogeneity, and in situations when the number of data points is large (n>100), 

as was the case in this study (Zar, 1984; Quinn & Keough, 2002).  

 

A non-parametric correlation coefficient Gamma (γ) was employed to investigate 

correlations between the water column variables, in particular between turbidity and 

concentration of chlorophyll a. The Gamma statistic is preferable to Spearman’s R or 

Kendall’s Tau (Τ), in particular when data set includes many tied observations, as was the 

case in this experiment between chlorophyll a concentration and turbidity. Gamma 

expresses the probability of agreement between the rank-ordered variables being tested 

(Liebetrau, 1983, Stanisz, 1998; Zielinski, 1999; Gardner et al., 2004).  

 

Finally, the Principal Component Analysis (PCA) was used as a multivariate 

exploratory technique. PCA was chosen as a tool to summarise and examine site-specific 

and time-dependent relationships among variables. In PCA, separate points representing 

each variable in each data set can present a summary of the overall variation. Similarly, 

separate points representing each variable can further show the overall variation at each 

site. PCA was employed here for raw data for all four variables, and is subsequently 

presented in the form of site-specific scatterplots. PCA analysis was performed on 

residuals of raw data, as this technique has been shown to best reveal gross features of the 

data, where the known data structure had been removed (Venables & Ripley, 2002). All 

statistical analyses were performed using Statistica software version 6.0 (StatSoft Inc. 

2001, USA). 

 

2.3. Results  

 

Two separate data sets were independently analyzed: Seatoun, Matiu-Somes 

Island, Evans Bay and Petone data recorded between August 2002 and September 2003, 

and Seatoun with Matiu-Somes Island data collected between March 2002 and September 

2003. Tables 2.1 and 2.2 give descriptive statistics for each data set. 
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Table 2.1. Descriptive statistics. All sites, August 2002 – September 2003. 

Parameter/Site N Mean Min. Max. SD 

Temp. (ºC)      
Evans Bay 147 13.498 10.175 18.766 2.223 
Matiu-Somes Island 148 13.815 10.303 18.135 2.483 
Seatoun 167 13.909 10.548 17.886 2.250 
Petone 158 13.402 10.003 18.557 2.254 
Salinity (PSU)      
Evans Bay 147 34.894 29.128 36.273 1.649 
Matiu-Somes Island 148 33.371 29.002 34.697 0.959 
Seatoun 167 29.798 15.663 34.879 5.384 
Petone 158 31.786 20.623 34.936 2.722 
Chl. a (μg l-1)      
Evans Bay 147 8.885 0.177 14.245 4.354 
Matiu-Somes Island 148 1.174 0.062 10.874 1.655 
Seatoun 167 2.603 0.077 22.615 2.977 
Petone 158 1.91 0.073 8.126 1.031 
Turb. (FTU)      
Evans Bay 147 10.489 0.208 27.360 4.749 
Matiu-Somes Island 148 16.531 1.163 103.831 11.240 
Seatoun 167 8.024 0.403 43.187 9.841 
Petone 158 7.244 0.346 72.521 8.182 
 

Table 2.2. Descriptive statistics. Matiu-Somes Island and Seatoun, March 2002 – September 2003. 

Parameter N Mean Min. Max. SD 

Temp. (ºC)      
Matiu-Somes Island 184 13.968 10.302 18.135 2.343 
Seatoun 199 14.211 10.707 33.459 2.591 
Salinity (PSU)      
Matiu-Somes Island 184 33.275 29.002 34.699 0.942 
Seatoun 199 30.496 15.663 34.878 5.027 
Chl. a (μg l-1)      
Matiu-Somes Island 184 1.213 0.062 10.874 1.770 
Seatoun 199 2.298 0.077 33.459 3.027 
Turb. (FTU)      
Matiu-Somes Island 184 14.632 1.163 103.831 11.008 
Seatoun 199 17.521 0.403 118.074 27.273 

 

All sites, August 2002 – September 2003. 
 

Seasonal and spatial patterns were evident in data collected at all sites between 

August 2002 and September 2003 (Table 2.1). Temperature displayed typical seasonal 

fluctuation (Fig. 2.3). Maximum mean monthly temperature (17.84ºC) was recorded at 

Evans Bay in January 2003. The minimum mean monthly temperature (10.69ºC) was 

recorded at Matiu-Somes Island in August 2002. In January 2003 average monthly 
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temperature at Petone was noticeably reduced (12.84˚C). Simultaneously, average 

monthly salinity was also reduced at this site in January 2003 (27.09 PSU) (Fig. 2.4), 

which suggests that reduced temperature and salinity were a result of heavy rainfall and 

subsequent formation of a cold and freshwater plume that enters the Harbour from the 

Hutt River.  

 

Salinity displayed significant variation (Fig. 2.4), with the highest mean monthly 

salinity recorded in April 2003 at Evans Bay (36.15 PSU) and the minimum monthly 

salinity (21.67 PSU) at Seatoun in March 2003. Significant decreases in salinity were 

recorded between December 2002 and February 2003 at Matiu-Somes Island, Petone and 

Evans Bay (values as low as 32–28 PSU). Salinity readings were also reduced at Seatoun 

between March and April 2003 (21.74 PSU).  

 

Chlorophyll a concentration varied significantly around the Harbour and the data 

suggest a division of Wellington Harbour into several areas, each with different prevalent 

regime (Fig. 2.5). Maximum mean monthly chlorophyll a concentration (14.14 μg l-1) 

was recorded at Evans Bay in April 2003; the minimum mean monthly chlorophyll a 

concentration (0.27 μg l-1) was recorded at Matiu-Somes Island in December 2002. The 

northern part (represented here by Petone and Matiu-Somes Island) had consistently low 

chlorophyll concentration (0–2 μg l-1), and this trend displayed a slight variation at the 

end of the recording period. At Seatoun, chlorophyll a concentration was greatly variable, 

originally elevated (up to 8.41 μg l-1 in November 2002), and later reduced to 2–3 μg l-1 

per month. The inner zone of the Harbour, represented here by Evans Bay, had 

significantly higher chlorophyll a concentration compared to the other sites. Average 

chlorophyll concentration at Evans Bay was 9.98 μg l-1. 

 

Turbidity was highly variable at all sites throughout the study period and no clear 

pattern was found (Fig. 2.6). The highest mean monthly value was recorded in September 

2003 at Matiu-Somes Island and Seatoun (34.02 and 32.28 FTU, respectively). The 

lowest mean monthly turbidity (0.70 FTU) was recorded at Petone in December 2002. 
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Temperature at all sites, August 2002 - September 2003.
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Figure 2.3. Temperature at all sites, August 2002 – September 2003. Points represent mean monthly values 
+ 95% confidence interval. 

 
Salinity at all sites, August 2002 - September 2003.
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Figure 2.4. Salinity at all sites, August 2002 – September 2003. Points represent mean monthly values + 
95% confidence interval. 

 

Repeated-measures ANOVA revealed significant spatial and temporal variability 

of the water column parameters in this data set (Table 2.3). Among sites, Evans Bay 

stands out as the warmest site, where the water is also most saline and most chlorophyll-

rich (Table 2.5). The overall model for each variable in this data set was accepted (Table 

2.4).  
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Table 2.3. MANOVA, all sites, August 2002 – September 2003. 

Effect λ-value Effect df Error df F p-value 
Site 0.203 12 1495.141 102.975 <0.001 
Month 0.024 48 2178.478 73.598 <0.001 
Site*Month 0.069 144 2252.933 14.887 <0.001 
 

Chlorophyll a at all sites, August 2002 - September 2003.
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Figure 2.5. Chlorophyll a at all sites, August 2002 – September 2003. Points represent mean monthly 
values + 95% confidence interval. 

 

Table 2.4. MANOVA, overall model. All sites, August 2002 – September 2003. 

Variable R R2 SS Model df Model MS Model F p-value 
Temperature 0.970 0.942 3.048 51 0.060 180.414 <0.001 
Salinity 0.877 0.769 1.716 51 0.034 37.141 <0.001 
Chlorophyll a 0.874 0.764 127.072 51 2.492 36.087 <0.001 
Turbidity 0.849 0.720 95.939 51 1.881 28.678 <0.001 
 
 
Table 2.5. Differences among sites in each water parameter. 

Variable Differences among sites p-value 
Temperature (ºC) Evans Bay=Matiu-Somes Island=Seatoun>Petone <0.001 
Turbidity (FTU) Matiu-Somes Island>Evans Bay>Seatoun=Petone <0.001 
Chlorophyll a (μg l-1) Evans Bay>Seatoun=Petone>Matiu-Somes Island <0.001 
Salinity (PSU) Evans Bay>Matiu-Somes Island>Petone>Seatoun <0.001 
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Turbidity at all sites, August 2002 - September 2003.
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Figure 2.6. Turbidity at all sites, August 2002 – September 2003. Points represent mean monthly values + 
95% confidence interval. 

 

Gamma (γ), the non-parametric correlation coefficient, revealed a number of 

correlations among the water column characteristics from this data set (Tables 2.6-2.9). 

Turbidity and chlorophyll a concentration were significantly correlated at Seatoun, but 

not at Evans Bay, Matiu-Somes Island and Petone.  

 

Table 2.6. Gamma values for water parameters at Evans Bay. 

Variable Temperature Turbidity Chlorophyll a Salinity 
Temperature - p=0.56 p=0.04 p=0.03 
Turbidity γ=-0.033 - p=0.39 p<0.001* 
Chlorophyll a γ=0.112 γ=-0.048 - p=0.001* 
Salinity γ=0.123 γ=0.258 γ=0.177 - 

* Significant after Bonferroni correction for multiple testing. 

 

Table 2.7. Gamma values for water parameters at Seatoun. 

Variable Temperature Turbidity Chlorophyll a Salinity 
Temperature - p < 0.001* p =0.11 p < 0.001* 
Turbidity γ=-0.314 - p=0.043 p < 0.001* 
Chlorophyll a γ=-0.083 γ=0.106 - p < 0.001* 
Salinity γ=-0.311 γ=0.379 γ=0.172 - 

* Significant after Bonferroni correction for multiple testing. 
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Table 2.8. Gamma values for water parameters at Matiu-Somes Island. 

Variable Temperature Turbidity Chlorophyll a Salinity 
Temperature - p=0.75 p=0.027 p=0.76 
Turbidity γ=0.018 - p=0.039 p=0.28 
Chlorophyll a γ=-0.122 γ=0.114 - p=0.33 
Salinity γ=0.017 γ=0.060 γ=0.054 - 

 

Table 2.9. Gamma values for water parameters at Petone. 

Variable Temperature Turbidity Chlorophyll a Salinity 
Temperature - p=0.005 p=0.003* p=0.379 
Turbidity γ=-0.151 - p=0.036 p<0.001* 
Chlorophyll a γ=-0.161 γ=-0.112 - p=0.088 
Salinity γ=0.047 γ=0.341 γ=-0.091 - 
* Significant after Bonferroni correction for multiple testing. 

 

In the Principal Component Analysis (PCA), PC1 and PC2 explained 53.56% of 

the total variation in this data set (Fig. 2.7). At Seatoun, 61.88% of the variation in the 

data set was explained, and 54.98% at Evans Bay (Fig. 2.8). The procedure also 

explained 65.01% variation in this data set at Petone and 64.03% at Matiu-Somes Island 

(Fig. 2.9). At most sites, the PCA procedure displayed turbidity and chlorophyll a 

concentration as points near each other, which revealed a degree of similarity between 

these variables.  

 

 
PCA all sites, August 2002 - September 2003.
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PCA Seatoun and Matiu-Somes Island, 
March 2002 - September 2003.
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Figure 2.7. PCA global results for both data sets. 
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PCA Seatoun, August 2002 - September 2003.
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PCA Evans Bay, August 2002 - September 2003.
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Figure 2.8. PCA results at Seatoun and Evans Bay, August 2002 – September 2003. 

 
PCA Petone, August 2002 - September 2003.
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PCA Matiu-Somes Island, August 2002 - September 2003.

 temperature 

 turbidity 

 chl. a

 salinity 

-1.0 -0.5 0.0 0.5 1.0
Factor 1 : 33.68%

-1.0

-0.5

0.0

0.5

1.0
Fa

ct
or

 2
 : 

30
.3

5%

 
Figure 2.9. PCA results at Petone and Matiu-Somes Island, August 2002 – September 2003. 

 

Seatoun and Matiu-Somes Island, March 2002 – September 2003. 
 

Spatial and temporal variability in data were evident (Table 2.2). Throughout the 

recording period, temperature displayed seasonal fluctuations, with the highest mean 

monthly temperature (17.50ºC) recorded at Matiu-Somes Island in March 2003. The 
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minimum mean monthly temperature (10.68ºC) was also recorded at Matiu-Somes Island 

in August 2002 (Fig. 2.10).  

 

Chlorophyll a concentration was variable, as the CTD at Seatoun recorded higher 

concentration throughout most of the recording period. The highest mean monthly 

chlorophyll concentration (8.41 μg l-1) was recorded at Seatoun in November 2002, 

whereas the minimum mean monthly chlorophyll a concentration (0.01 μg l-1) was 

recorded at Matiu-Somes Island in May 2002 (Fig. 2.11).  

 

Although the maximum mean monthly salinity (34.45 PSU in May 2003) was 

recorded at Seatoun, salinity at this site was generally reduced for almost entire sampling 

period (recorded range between 34 and 31 PSU). The lowest mean monthly salinity at 

Seatoun was 21.67 PSU in March 2003. At Matiu-Somes Island salinity was less variable 

and it ranged between 32 and 34 PSU. Maximum monthly salinity at Matiu-Somes Island 

was 34.11 PSU in February 2003 and minimum monthly salinity was 31.58 PSU in 

January 2003 (Fig. 2.12).  

 

Temperature at Seatoun and Matiu-Somes Island, March 2002 - September 2003.
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Figure 2.10. Temperature at Seatoun and Matiu-Somes Island, March 2002 – September 2003. Points 
represent mean monthly values + %95 confidence interval. 
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Turbidity oscillated around 20 FTU for most of the sampling period (Fig. 2.13), 

indicating that suspended particles were always present in the water column at both sites. 

Originally, however, turbidity was significantly higher at Seatoun (March – May 2002) 

and the maximum mean monthly turbidity was recorded at Seatoun in April 2002 (97.14 

FTU). Maximum monthly turbidity at Matiu-Somes Island was 34.0 FTU in September 

2003. Minimum mean monthly salinity (1.09 FTU) was recorded at Seatoun in March 

2003. 

Chlorophyll a at Seatoun and Matiu-Somes Island, March 2002 - September 2003.
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Figure 2.11. Chlorophyll a at Seatoun and Matiu-Somes Island, March 2002 – September 2003. Points 
represent mean monthly values + 95% confidence interval. 

 

Repeated-measures ANOVA revealed significant spatial and temporal variability 

of the water column parameters in this data set (Table 2.10). Seatoun was shown as a site 

with marginally warmer and significantly more chlorophyll a - rich water, whereas water 

at Matiu-Somes had significantly higher salinity and turbidity (Table 2.12). The overall 

model for each variable at both sites was accepted (Table 2.11). 
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Table 2.10. MANOVA, Seatoun and Matiu-Somes Island, March 2002 – September 2003. 

Effect λ-value Effect df Error df F p-value 
Site 0.537 4 346.000 74.608 <0.001 
Month 0.01 64 1356.805 46.792 <0.001 
Site*Month 0.075 64 1356.805 19.845 <0.001 
 

Table 2.11. MANOVA, overall model for each variable. Seatoun and Matiu-Somes Island, March 2002 – 
September 2003. 

Variable R R2 SS Model df Model MS Model F p-value 
Temperature 0.948 0.900 1.853 33 0.056 94.688 <0.001 
Turbidity 0.888 0.788 88.993 33 2.697 39.239 <0.001 
Salinity 0.885 0.782 1.291 33 0.039 38.038 <0.001 
Chlorophyll a 0.859 0.738 74.357 33 2.253 29.79 <0.001 
 
Table 2.12. Differences in water parameters between Seatoun and Matiu-Somes Island. 

Variable Differences among sites p-value 
Temperature (ºC) Seatoun=Matiu-Somes Island <0.001 
Turbidity (FTU) Matiu-Somes Island>Seatoun <0.001 
Chlorophyll a (μg l-1) Seatoun>Matiu-Somes Island <0.001 
Salinity (PSU) Matiu-Somes Island>Seatoun <0.001 
 

 

Gamma (γ) revealed significant correlation among the water column 

characteristics recorded at both sites. Turbidity and chlorophyll a were not significantly 

correlated at Seatoun (Table 2.13), but they were correlated at Matiu-Somes Island 

(Tables 2.14).  

 

Table 2.13. Gamma values for water parameters at Seatoun. 

Variable Temperature Turbidity Chlorophyll a Salinity 
Temperature - p=0.009 p=0.001* p<0.001* 
Turbidity γ=-0.125 - p=0.31 p<0.001* 
Chlorophyll a γ=-0.155 γ=-0.048 - p=0.08 
Salinity γ=-0.238 γ=0.315 γ=0.084 - 

* Significant after Bonferroni correction for multiple testing.  

 

Table 2.14. Gamma values for water parameters at Matiu-Somes Island. 

Variable Temperature Turbidity Chlorophyll a Salinity 
Temperature - p=0.81 p=0.051 p=0.28 
Turbidity γ=0.012 - p=0.008 p<0.001* 
Chlorophyll a γ=-0.097 γ=0.130 - p=0.21 
Salinity γ=-0.053 γ=0.167 γ=0.062 - 
* Significant after Bonferroni correction for multiple testing. 
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Salinity at Seatoun and Matiu-Somes Island, March 2002 - September 2003.
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Figure 2.12. Salinity at Seatoun and Matiu-Somes Island, March 2002 – September 2003. Points represent 
mean monthly values + 95% confidence interval. 

 

 
Turbidity at Seatoun and Matiu-Somes Island, March 2002 - September 2003.

Seatoun   Matiu-Somes Island

Mar-2002
May-2002

Aug-2002
Oct-2002

Dec-2002
Feb-2003

Apr-2003
Jun-2003

Sep-2003
-20

0

20

40

60

80

100

120

tu
rb

id
ity

 (F
TU

)

 
Figure 2.13. Turbidity at Seatoun and Matiu-Somes Island, March 2002 – September 2003. Points represent 
mean monthly values + 95% confidence interval. 
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Employed as an exploratory technique here, PCA explained 61.40% of the total 

variation in this data set (Fig. 2.7). When performed again for each site separately, PCA 

explained 61.92% of the variation among the environmental variables at Seatoun and 

62.29% at Matiu-Somes Island (Fig. 2.14). As in the previous data set, PCA displayed 

concentration of chlorophyll a and turbidity as points lying close to each other, which 

suggests a degree of similarity between these two variables. 
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PCA Matiu-Somes Island, 
March 2002 - September 2003.
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Figure 2.14. PCA results at Seatoun and Matiu-Somes Island, March 2002 – September 2003. 

 

2.4. Discussion 

 

Significant spatial and temporal differences among the seawater variables were 

detected in the course of this study. Data obtained in the present study are at odds with 

the traditional view that Wellington Harbour is a homogenous and well-mixed body of 

water. Instead, the data suggest that distinct aquatic zones are present in Wellington 

Harbour. Thus, in the inner Harbour, represented here by Evans Bay, water has 

consistently high salinity and is rich in chlorophyll a. Inner areas of Wellington Harbour 

probably receive significant volumes of terrigenous nutrients, further stimulating the 

local phytoplankton production. However, further research is needed to clarify the role of 

the land-derived nutrients in chlorophyll a production. In the northern areas of the 

Harbour, such as Petone, heavily influenced by the Hutt River discharge of fresh water, 
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salinities are frequently reduced and sometimes high-turbidity loads of organic matter can 

be detected. Such riverine inputs often form a distinct plume travelling south, and altering 

the hydrological regimes within the Harbour. It also appears that in central Harbour zone, 

represented here by Matiu-Somes Island, salinity, chlorophyll a and turbidity regimes can 

be highly variable. The Hutt River plume, most often travelling south along the 

Eastbourne coast, heavily affects these central parts of the Harbour. However, salinity, 

chlorophyll a and turbidity were variable at Seatoun. A CTD deployed there also detected 

elevated concentrations of chlorophyll a, as well as reduced salinity, although the 

readings were not as consistent as at Evans Bay, which suggests more variable 

chlorophyll a and salinity regime in the Harbour areas surrounding Seatoun. Variable 

salinity at Seatoun most likely originated not only from a freshwater runoff after storm 

events, but also from the cool and freshwater plume that frequently enters the Harbour 

from the Hutt River and can travel along the Eastbourne coast, as far south as the 

Harbour entrance. 

 

The data analysis showed that temperature, salinity and chlorophyll a readings 

were higher at Evans Bay than any other site during the study period (Tables 2.5 and 

2.12). This is perhaps explained by the location of the bay, which is a shallow body of 

water, largely surrounded by north-south oriented land masses of the Miramar Peninsula 

in the east, Kilbirnie and Rongotai flats in the south and the Hataitai and Roseneath hills 

in the west. Such a configuration facilitates nutrients input from the land, as well as input 

from the numerous storm water drains that feed into Evans Bay. Although the scale of the 

direct input of chlorophyll a into the Harbour remains unclear, it is likely that elevated 

concentrations of nutrients enter the Harbour from the land through the stormwater 

drains. Such terrigenous input of nutrients stimulates the chlorophyll a production in the 

Harbour, which in turn was detected by the data loggers (Hickman et al., 1991; Gibbs et 

al., 1992; Wieters et al., 2003).  

 

Further, there is evidence that the circulation rate in the Harbour is not steady at 

all locations. Heath (1977) reports that the flow rate is at its fastest near the entrance 

channel (0.45-0.5 m s-1) and then it slows down substantially in the main Harbour (0.03 
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m s-1), before it slows down even further, to 0.015 m s-1 in Lambton Harbour. One can 

therefore expect that the flushing time of Evans Bay be longer compared to the central 

parts of Wellington Harbour. As a result of such reduced water circulation rate in inner 

Harbour areas, longer periods of time are required for the water of to be replaced in 

Evans Bay. This increased water residence period further contributes to the fact that 

Evans Bay waters are chlorophyll a-rich, because with longer residence time, the waters 

can become more saturated with nutrients entering the Bay through numerous storm 

water drains, thus stimulating local chlorophyll a production.   

 

Water temperature data obtained in this study are very similar to seasonal 

temperature cycle reported by Helson et al. (2004) who recorded 17.6ºC in summer and 

11.8ºC in winter, and Booth (1975) (17.2ºC in summer and 11.2ºC in winter). In the 

present study, mean winter and summer values oscillated around 17-18ºC in summer and 

10-11ºC in winter (Figs. 2.3 and 2.10). Maxwell (1956) reported difference in 

temperature between western (Oriental Bay) and eastern Wellington Harbour (York Bay). 

Western Harbour waters were warmer (14 ºC) than eastern Harbour waters (12.5–13.5 

ºC). Such a change in temperature was accompanied by reduced salinities, from 33.5‰–

35‰ in Oriental Bay to 31.0 ‰ -32.0 ‰ in York Bay. These two phenomena were 

attributed to the fresh water plume entering the Harbour from the Hutt River and flowing 

south along the Eastbourne coastline.  

 

Large volumes of organic matter enter the Harbour in the north as a high-turbidity 

plume originating from the Hutt River. It is estimated (McConchie, 2000) that the Hutt 

River drains an area of 555.5 km2 and discharges into the Harbour on average 25.6 m3 of 

fresh water every second. Other freshwater inputs within the Harbour include Waiwhetu 

(0.27 m3 s-1) and Korokoro streams (0.25 m3 s-1).  In the prevailing north-westerly wind 

conditions in Wellington, the Hutt River plume is often pushed against the eastern shores 

of the Harbour (Brodie, 1958; McConchie, 2000). As this brackish plume travels south 

towards the Harbour entrance, it passes the north-eastern shores of Matiu-Somes Island. 

A CTD deployed there detected conditions of high turbidity and reduced salinity. Helson 

et al. (2004) found greatly reduced salinity at Eastbourne between spring and autumn, 
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with the lowest salinity reading obtained 28.0‰, which strongly points at the Hutt River 

plume. Booth (1975) also found that northern part of Wellington Harbour is prone to 

lowered salinities resulting from freshwater riverine inflow.  

 

Turbidity has been classified as an ecologically important parameter 

(Mylvaganam & Jakobsen, 2000) and can be regarded as a good indicator of the presence 

of various suspended particles in the ecosystem. The particle list includes clay, silt, 

plankton or organic and inorganic compounds. High turbidity, when combined with 

sedimentation, can be related to a decrease in primary production (Henley et al., 2000), 

which can lead to decreases in available food, reproduction or recruitment. Although no 

apparent seasonal turbidity trend was detected in the present study at any site, elevated 

turbidity recorded at Seatoun and Matiu-Somes Island between September 2003 and a 

short-lived turbidity peak in April - May 2002 at Seatoun might be related to increased 

rainfall. In autumn 2002 and spring 2003 turbidity appeared as closely related to 

chlorophyll a levels (Tables 2.6–2.9 and 2.13–2.14), and the PCA results confirmed this 

(Figs. 2.9 and 2.14). The significant turbidity-chlorophyll correlations means that the 

particles suspended in the water column most likely were phytoplankton cells. This also 

means that the conditions of high food concentration were favourable for filter-feeders, 

such as mussels. However, it is possible that at the same site reduced chlorophyll levels 

accompany elevated turbidity, as was the case at Matiu-Somes Island in both data sets 

(Table 2.7-2.9, 2.14). Gardner et al. (2004) recorded low chlorophyll levels together with 

high turbidity, and explain this by suggesting that an oceanographic regime, such as 

greater current strength, could be responsible for such phenomena.  

 

From the perspective of intertidal mussel communities, the presence of distinct 

zones within Wellington Harbour implies variability in the environmental regimes, which 

have impact on mussel ecology. Analysis of the temperature data suggested that mussel 

communities in Wellington Harbour are never limited by this parameter, so temperature-

induced massive mussel mortalities rarely, if ever, occur. Thus, the water temperature 

regime in the Harbour is well within the tolerance range of mussels.  
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Variation of salinity or chlorophyll a, however, can affect mussel communities 

through reduced adult condition. Variable salinity and chlorophyll regimes could also 

affect larval recruitment rates to such communities, thus slowing down substrate 

recolonisation processes or the ability of the community to recover from occasional 

disturbance. Reduced salinity creates environmental osmotic stress for recruiting mussel 

larvae that, in order to survive, need to expend considerably more energy to cover the 

metabolic costs of osmoregulation. In bivalve larvae, these costs can only be covered 

through intensified food intake and subsequent energy release. In a low-seston regime, 

such as the one discovered at Matiu-Somes Island, this is difficult to achieve. As a result, 

one would expect reduced recruitment and survival of mussel larvae at such sites. 

Occasional pulses or consistently high seston concentration, as recorded in the present 

study for example at Seatoun and Evans Bay, respectively, can be a signal for the 

intertidal mussel communities that the environmental conditions are favourable for 

reproduction. Thus, it could be possible to find high larval recruitment at sites with 

elevated chlorophyll, although temperature is the major signal for spawning. Mussels, 

however, are opportunistic spawners, which means that water temperature is not a 

prerequisite, and other environmental stimuli, such as elevated seston concentration, can 

trigger spawning in mussels. Consequently, sites with elevated seston, and steady salinity 

would be characterised by elevated recruitment and community development. 
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CHAPTER THREE:  

CONDITION INDEX, GONAD MASS, PEA CRABS,  

AND RECRUITMENT OF BIVALVE LARVAE 

  

3.1. Introduction 

 

Condition, volume of gonad tissue, and the current reproductive stage of bivalves 

are closely related. Intense reproductive activity often results in reduced gonad volume 

and therefore in reduced condition. This, in turn, heavily depends on the resources 

currently available to fuel the tissue growth of the animals.  These ecological traits are all 

shaped by the parameters of the aquatic environment, such as temperature, salinity and 

the concentration of food. Thus, at the height of the reproductive season and spawning 

activity, when the gonad reaches its minimum volume, a negative relationship exists 

between mussel condition and the concentration of recruiting larvae in the water column.  

 

This chapter investigates the interplay among several ecological traits of mussels, 

such as gonad mass, adult condition and environmental parameters affecting these traits 

in three mussel species in Wellington Harbour: Aulacomya maoriana, Mytilus 

galloprovincialis and Perna canaliculus. Simultaneously, the effects of the pea crab 

Pinnotheres novaezelandiae on condition of their host mussels are investigated. Finally, 

the concentration of bivalve larvae in the water column is related to gonad mass and 

condition of these mussel species.  

 

Mussel condition 

 

Condition of mussels is typically expressed through condition index (hereafter 

referred to as CI), which has been widely applied in aquaculture as a useful indicator of 

bivalve growth and health (Smaal & van Stralen, 1990; Camacho et al., 1995). The index 

allows marine scientists and aquaculturists to follow seasonal changes of nutrient 

reserves of the animals and thus evaluate the commercial quality of bivalves (Crosby & 

Gale, 1990; Hickman & Illingworth, 1980). CI is typically presented as the meat content  
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of the shellfish relative to total size of the animal. The meat content fluctuates according 

to environmental conditions, and as mussels undergo seasonal cycle of growth, glycogen 

is accumulated as the main energy source. As a result, the meat yield (i.e. tissue volume) 

will gradually improve and the condition of the animal will increase. During the 

reproduction phase however, mussels heavily utilise their reserves in order to meet the 

energetic requirements of gametogenesis and spawning. As a result, spawning leads to a 

decrease in flesh weight and lower CI. Thus, the volume of tissues will increase or 

decrease, reflecting conditions to which mussels are subjected. This would be particularly 

true about self-seeding communities, where the offspring production happens directly at a 

cost of adult condition. However, in many other communities, condition of adult mussels 

may not necessarily be directly reduced as a result of spawning, as larvae can be advected 

into a community from elsewhere (Palmer et al., 1996). 

 

The shell weight is relatively constant compared to flesh weight (Bayne, 1973), 

therefore any variation in tissue weight will alter the tissue weight to shell weight ratio, 

which consequently will increase or decrease throughout the year. This principle lies at 

the basics of various experimental methods for assessing bivalve condition, as specified 

by Davenport & Chen (1987) and Crosby & Gale (1990). The authors give a thorough 

review of various methods for calculating condition indices for mussels. They also note 

that freezing is a desirable and convenient handling method, which is flexible and makes 

the measurements less rushed. Freezing of the samples makes estimation of the total 

volume accurate and reduces the variance of the parameter measured. However, freezing 

can render the tissues too soft and macerated, which may create difficulty when trying to 

separate different body parts of the animal (McKinnon, 2002).  

 

Mussels are not the only bivalve group in which condition has been investigated. 

Oysters, scallops, cockles and clams may too experience variation in condition, 

depending on environmental parameters.  Westley (1959) was the first man to discuss the 

methods of calculating condition index, and calculated condition for two oyster species, 

Crassostrea gigas and Osterea luida in Washington State. Haven (1960), who looked at 

seasonality of condition index of Crassostrea virginica in New York State, concluded 
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that the differences in levels of condition index were associated with the bottom 

characteristics and changes in water salinity. Cyclicity in condition index and glycogen 

content in Jamaican mangrove oysters Crassostrea rhizophorae were studied by 

Littlewood & Gordon (1988), who noted that condition was not reflected in glycogen 

content but was related to periods of post-spawning towards the end of each rainy season. 

Marsden & Pilkington (1995) investigated spatial and temporal variations in condition of 

New Zealand cockles Austrovenus stutchburyi. In that study, mean condition index 

fluctuated seasonally and it increased with higher salinity and higher chlorophyll a levels, 

depending on the site (marine or more estuarine). Hawkins and Rowell (1987) found that 

the presence of the sediment in the gut of the soft-shell clam Mya arenaria influenced the 

meat yield and subsequently the condition index. Rheault & Rice (1996) and Shriver et 

al. (2002) studied the bay scallop Argopecten irradians, whose growth rates and 

condition were linearly correlated with the average chlorophyll ration consumed. 

 

Mussel gonad mass 

 

When food concentration is high, mussels store the nutrients as glycogen, mainly 

in their adductor muscle and the gonad. Throughout most of the year gonad activity is 

minimal. With the onset of gametogenesis however, the energy reserves can be utilised in 

order to meet the requirements of the reproductive cycle. With glycogen levels being 

gradually reduced, the volume of gonad mass (hereafter referred to as GM) also 

decreases, thus leading to a decrease in the overall mussel condition. Thus, on a seasonal 

basis, CI increases during the period of energy storage and gametogenesis, and declines 

during spawning activity of mussels (Gosling, 2003). Further, the volume of gonad tissue 

is also of interest when the animal is under nutritional stress, because the gonad tissue can 

be reabsorbed and used to supplement an inadequate diet, thus further affecting mussel CI 

(Emmet et al., 1987). 
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Bivalve recruitment 

 

Intertidal communities are typically influenced by physical variables (including 

aspect of the shore, water temperature and salinity, and wave exposure) and biological 

variables (including food supply, predation and competition) (Connell, 1972; Paine, 

1974; Barnes & Hughes, 2002). More recently however, larval supply to these 

communities, and subsequent larval settlement and recruitment, have been studied as 

additional factors affecting those intertidal communities (Connell, 1985a, b; Menge, 

1991; Petraitis, 1991; McQuaid & Phillips, 2000). Settlement, defined as the process 

during which the larva descends from the plankton to the sea bottom and attaches itself to 

the suitable substrate with the byssus, is difficult to measure in the field and is usually 

inferred from recruitment data (Gosling, 2003). Recruitment has been defined as the 

process of successful colonisation after a specified amount of time (days or even weeks) 

during which some post-settlement larval mortality will have occurred (Seed & 

Suchanek, 1992). The process of larval settlement to a community often depends on near-

shore hydrology affecting the transport of the larvae to the settlement sites, weather 

conditions prior to settlement, larval abnormalities, lack of adequate settlement substrate 

and larval mortality through predation (Farrell et al., 1991; Roughgarden et al. 1991; 

Ebert et al., 1994; Wing et al., 1995; Navarette et al., 2002; Gosling, 2003).  

 

Larval settlement is a complex process. Bayne (1964) described the primary and 

secondary settlement of Mytilus edulis larvae in North Wales. His observations revealed 

that young plantigrades originally could first attach themselves to filamentous algae 

(primary settlement) and subsequently detach from them. A migratory phase would 

follow (secondary settlement) when plantigrades re-entered the water column and were 

transported by currents to sites of secondary attachment. This pattern was repeated 

several times until the final place of settlement. Pascual & Zampatti (1995) observed 

similar behaviour in the larvae of the oyster Ostrea puelchana: “The pediveliger larva 

actively explores the substratum, crawling back and forth on its foot over each particle of 

surface, stopping on certain substrata for variable periods of time, occasionally resuming 

swimming, and crawling further again, until final cementing”. However, Mytilus larvae 
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have been reported to settle directly from the water column onto adult mussel beds in 

Ireland (McGrath et al., 1988), Spain (Cáceres-Martinez et al., 1993) and Sweden 

(Kautsky, 1982). A similar phenomenon has been described for the greenshell mussel 

Perna canaliculus in New Zealand (Buchanan & Babcock, 1997) and the brown mussel 

Perna perna in South Africa (Lasiak & Barnard, 1995). Direct measurement of 

settlement in nature is difficult and usually settlement data are inferred from recruitment 

data, measured by counting the spat on natural substrates (such as filamentous algae) or 

artificial substrates. While the type of cultch (the substrate for settling larvae) used most 

often in hatcheries is mollusk shells, for experimental purposes various types of artificial 

substrates have been widely used. These include: plastic plates, asbestos, concrete, 

mortar, wood, glass, polystyrene, rope and domestic scour pads (e.g. Cranfield, 1970; 

Henschel et al., 1990; McGrath et al., 1994; Knuckey, 1995; Dobretsov & Miron, 2001; 

Phillips & Gaines, 2002). Unlike natural substrates, artificial materials have a relatively 

constant surface and texture, which makes quantifying the recruitment over fixed time 

periods easier (Gosling, 2003). 

 
Dynamics in intertidal mussel communities 

 

In investigating rocky intertidal communities, populations of mussels can be 

generally studied in terms of constant processes of gain and loss of individuals (Fig. 3.1), 

where loss to the population results from numerous factors, including human exploitation 

of mussels, vertebrate (e.g. fish or avian) and invertebrate (e.g. whelk, starfish or crab) 

predation, inter- and intraspecific competition among mussels, and effects of physical 

factors impacting mussel communities, such as wave action and desiccation. The 

population gain component is essential for developing the full picture of the dynamics in 

intertidal communities of mussels, with the new individuals gained predominantly 

through larval settlement and recruitment and, to an extent, through the immigration of 

mussel non-larval stages, for example from neighbouring communities. Because this 

component provides vital knowledge of how the communities are fuelled and replenished 

with new individuals, it needs to be investigated so that a link between larval and adult 

stages can be created.  
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Both of the components discussed above are affected by the environmental 

parameters, of which temperature, salinity, chlorophyll a concentration and turbidity are 

among the most widely studied. Temperature and salinity can be linked to various phases 

of bivalve lives, including gametogenesis and reproduction, larval settlement and 

recruitment, and subsequent growth and condition. Seston quality, often expressed as 

chlorophyll a concentration, expresses the concentration of phytoplankton on which filter 

feeders rely as food. It also points to dietary conditions in which those animals live, 

because a variety of suspended particles present in the water column, such as detritus, 

bacteria and phytoplankton, differently contribute to the nutrient acquisition by 

invertebrates (Gosling, 2003). 

 

 
POPULATION 

 

immigrat ion of  
non-larval stages 

larval settlement  
and recruitment  

human exploitation  

predation 

competition  

desiccation 

wave action GAIN LOSS 

 
 

Figure 3. 1. Schematic representation of the dynamics in rocky intertidal mussel communities.  

 

Seston quantity can be referred to as turbidity, and typically it is defined as the 

amount of suspended sediment particles in water (Mylvaganam & Jakobsen, 2000). Thus, 

chlorophyll a provides the qualitative measure of seston in the water column, while 

turbidity is a quantitative seston measure. When combined, the two parameters can 

provide the information about the amount of particles suspended in the water column, as 
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well as their potential nourishment value to seston-feeding bivalves. Therefore, from the 

ecological perspective, a study of seawater parameters is a powerful tool, helpful in 

understanding the differences underlying structure of rocky intertidal communities, the 

distribution and the dynamics among their members.  

 

The present study attempts to quantify the recruitment of mussel larvae on an 

artificial substrate at several experimental sites inside Wellington Harbour, and to 

evaluate the influence of the environmental factors affecting such recruitment. Further, to 

link information from larval settlement and recruitment study with subsequent adult 

stages of mussel lifecycle, condition index, gonad mass and pea crab infestation were 

investigated in adult stages. In order to achieve this, a sampling programme was designed 

to take account of spatial and temporal variability in larval abundance and adult 

condition. 

 

3.2. Materials and Methods 

 

Water column characteristics 

  

In order to obtain environmental parameters data, four Richard Brancker Research 

Ltd XR-420 loggers were used in this study. Because it was desirable to obtain the water 

column data from a maximum variety of environmental regimes within Wellington 

Harbour, as well as for practicality reasons (the loggers could only be safely deployed on 

underwater pilings), four experimental sites were selected for deployment of the CTDs:  

The Front Lead light (this logger, hereafter referred to as Seatoun logger, was moved to a 

nearby Falcon Shoal light in April 2003 due to renovation works at the Front Lead), 

Evans Bay (at Miramar wharf), Matiu-Somes Island (the northern wharf) and at Petone 

wharf. The Front Lead and Falcon Shoal logger will be hereafter referred to as the 

Seatoun logger, due to its proximity to Seatoun (Fig. 3.3). It was ascertained that the data 

loggers were as close to the experimental sites as possible, so that the water column 

characteristics provided by the loggers would be a fair reflection of the conditions at the 

experimental sites. The loggers were set to record water column data of temperature [˚C], 
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salinity measured in Practical Salinity Units [PSU], chlorophyll a [μg l-1] and turbidity 

measured in Formazin Turbidity Units [FTU]. Each logger took a mean reading of the 

environmental variables over 10-second period every hour. Environmental data were 

obtained at the experimental sites between April 2002 and November 2003. Data from 

each data logger were downloaded onto a computer and subsequently analysed. Due to a 

lack of wharf pilings at Kau Point, no CTD was deployed there. 

Data analysis 

 

Two CTD data sets were created and analysed. The first CTD data set contained 

data relevant to the Condition Index experiment, obtained between August 2002 and May 

2003. The second CTD data set contained data relevant to the Larval Settlement and 

Recruitment experiment, obtained between August 2002 and September 2003 (the 

analysis and results of this data set are discussed in chapter 2, data set a). In order to 

investigate the spatial and temporal differences in each water column parameter, a 

repeated-measures ANOVA was performed on each data set. In the analysis, the four 

parameters were specified as dependent variables, while site and month were specified as 

crossed factors. As described in previous chapter, Gamma (γ), a non-parametric 

correlation coefficient, was employed to investigate the correlation between water 

parameters at each site. 

 

Condition Index 

 

Twenty mussels of each species (P. canaliculus, A. maoriana and M. 

galloprovincialis) were collected from the low tide mark each month from June 2001 

until May 2003 at each of four sites: Seatoun, Kau Point, rocks north of Matiu-Somes 

Island, and Evans Bay (Fig. 3.2). Hickman & Illingworth (1980) and Marsden & 

Weatherhead (1999) report that collecting mussels from different tidal heights can 

influence the value of CI of P. canaliculus, therefore care was taken to collect all mussels 

from the low intertidal zone. The animals were taken to the Island Bay Marine 

Laboratory (IBML) and dissected. Gonad tissue was excised from the somatic tissue and 

then those tissues were dried separately at 60°C for 24 – 48 hours (depending on the size 
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of the mussel) and weighed again. All weight measurements were made using an 

Ainsworth ACA 100 KS balance to an accuracy of 0.0001g. The shell length of each 

mussel was recorded using standard Vernier callipers to an accuracy of 1.0 mm. The CI 

was calculated according to Hickman and Illingworth (1980):  

 

 

CI = DFW x 100 / (WWW – WSW) 

 

Where DFW = dry flesh weight (added dry gonad weight and somatic tissue weight)

 WWW = whole wet weight of the animal     

 WSW = wet shell weight 

 

 

Figure 3. 2. Map of Wellington Harbour (adapted from Molloy & Smith, 2002). Condition Index 
experiment was conducted at MSI – Matiu-Somes Island, SE – Seatoun, EVB – Evans Bay and KP – Kau 
Point. Bivalve larval settlement experiment was conducted at MSI – Matiu-Somes Island, SE – Seatoun, 
EVB – Evans Bay and PET– Petone. 
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Data analysis 

 

CI data were log10-transformed in order to meet the requirements of normality of 

distribution and homogeneity of variances. Analysis of Covariance (ANCOVA) was 

performed on log10-transformed data to test for differences in CI throughout all months in 

all species and at all sites. CI data were specified as a dependent variable, while gonad 

mass and shell length data were specified as covariates, and site, month and species were 

specified as crossed factors. In order to investigate spatial and temporal variation of 

species-specific CI, a series of post-hoc Honest Significant Difference (Tukey HSD) tests 

was performed. Subsequently, Pearson coefficient was employed to investigate species-

specific correlation between CI and shell length (hereafter referred to as SL), CI and GM, 

and CI and water column characteristics. In order to avoid spurious correlations possibly 

driven by site and month effects in this analysis, residuals of CI, GM and SL were used 

instead of the raw data.  

 

Gonad mass 

 

GM data were collected for each dissected mussel, and subsequently analysed. 

Gonad tissues of the animals were processed in the same manner as the somatic tissues 

(see section 3.2.1 above).  

 

Data analysis 

 

GM data were log10-transformed in order to meet the requirements of normality of 

distribution and homogeneity of variances. ANCOVA was performed on log10-

transformed GM data to investigate the differences in gonad mass throughout all months 

in all species at all sites. In the analysis, GM was specified as a dependent variable, CI 

and SL data were specified as covariates, and site, month and species specified as crossed 

factors. In order to investigate spatial and temporal variation of species-specific GM, a 

series of post-hoc Honest Significant Difference (Tukey HSD) tests was performed. 
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Subsequently, Pearson correlation coefficient was employed to investigate the 

relationship between GM of each species and the water column parameters. 

 

Pea crab infestation 

 

During the experiment, the presence of the pea crab Pinnotheres novaezelandiae 

in each mussel was recorded. The carapace width was measured to an accuracy of 1.0 

mm and the pea crabs were weighed to an accuracy of 0.0001 g.  

 

Data analysis 

 

A series of ANOVA tests was employed to test for species-specific differences in 

CI of infested and healthy mussels. All analyses were performed on transformed CI data. 

 

Bivalve settlement and recruitment 

 

Experimental settlement pads were constructed of nylon shade cloth previously 

folded five times to form a square 200 x 200 mm (0.04 m2). Nylon shade cloth has been 

reported as a good artificial substrate, attracting mussel spat (Manning, 1985; Helson & 

Gardner, 2004). An assemblage of three pads tied together with cable ties formed a set. 

Each set was then tied to a rope, which was then tied around a wharf pile in the intertidal 

zone. It was decided later to move the sets below chart datum after a number of pads had 

been lost due to rough weather. Also, catches of mussel spat in subtidal sites have been 

reported as more reliable because they are less dependent on weather conditions (Hayden, 

1994a, b). One set of pads was deployed at each four sites (Fig. 3.2): Petone wharf, 

Matiu-Somes Island northern wharf, Evans Bay (Burnham wharf) and Seatoun wharf. 

The pads were replaced monthly. The experiment was conducted from April 2002 to 

December 2003. Pads were not conditioned in seawater, as this process has been shown 

to be unnecessary for artificial substrates (McGrath et al., 1994). Upon retrieval, pads 

were left for 24 hours in a solution of fresh water and 2% formalin. Subsequently, mussel 

larvae were removed from each pad with a moderate flow of fresh water, which was then 
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filtered through a 125 μm sieve. The larvae retained on the sieve were transferred into 

jars and labelled. The contents of each jar were then treated with a 1% solution of 

formalin and stained with Rose Bengal. Rose Bengal helped to distinguish between 

mussel spat (stained red) and inorganic material (unstained). Before counting the larvae, 

each sample was homogenised by inverting the jar and swirling the contents. Five sub-

samples of 5 ml each were then taken from each jar, to enable the larvae to be counted 

under a microscope at 10 times magnification. Finally, the total number of mussel larvae 

was extrapolated from the five sub-samples. Veliger-stage larvae were distinguished from 

other molluscs using criteria given by Redfearn (1982), Hayden (1994a, b), Redfearn et 

al. (1986), Booth (1977, 1983) and Tortell (1980). Due to the high density of larvae 

settling in numerous samples and the difficulty in distinguishing separate taxa (Chanley 

& Andrews, 1971; Booth, 1977), no attempt was made to classify larvae into separate 

species.  

 

Data analysis 

 

Bivalve larval settlement data were log10-transformed and subsequently tested for 

distribution normality and homogeneity of variance. A factorial ANOVA was performed 

to test for differences in the number of settling larvae among sites and months. 

Subsequently, Multiple Regression was employed to investigate the relationship between 

larval data and the CTD data. Log10-transformed larval density data were specified as a 

dependent variable, while log10-transformed water column data (i.e. temperature, salinity, 

turbidity and chlorophyll a) were specified as independent variables.  

 

Monthly rainfall data (collected at Shandon Golf Club near the Hutt River and in 

Wellington City near Regional Council Centre) were provided by Greater Wellington, 

Environmental Division. 
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3.3. Results 

Condition Index, Gonad Mass And Pea Crab Infestation 
 

Water column characteristics  (August 2002-May 2003) 
 

Temperature data displayed a typical seasonal cycle, similar at all sites (Table 3.1, 

Fig. 3.3). Maximum mean monthly temperature was recorded at Evans Bay in January 

2003 (17.8 ºC), while the lowest temperature was recorded at Matiu-Somes Island at 

August 2002 (10.7 ºC).  

 

Table 3.1. Descriptive statistics of the water column parameters (August 2002-May 2003).  

Parameter Site N Mean Min. Max. SD 
Temp. [ºC] Setoun 30 14.366 10.925 17.011 2.040 
 Evans Bay 30 14.556 10.890 17.836 2.196 
 M-S Island 30 14.518 10.679 17.497 2.380 
Salinity [PSU] Seatoun 30 30.264 21.672 34.453 4.249 
 Evans Bay 30 34.586 29.244 36.154 2.166 
 M-S Island 30 33.291 31.577 34.112 0.842 
Chl. a [μg l –1] Seatoun 30 3.101 0.408 8.412 2.555 
 Evans Bay 30 7.955 1.079 14.141 3.975 
 M-S Island 30 1.006 0.271 4.150 1.091 
Turb.  [FTU] Seatoun 30 6.901 1.088 20.209 5.335 
 Evans Bay 30 10.655 2.320 15.520 3.779 
 M-S Island 30 14.932 2.644 23.478 6.004 
M-S Island = Matiu-Somes Island 

 

Turbidity data did not show any clear pattern (Table 3.1, Fig. 3.4). Turbidity 

varied significantly at all sites, with the maximum mean monthly value recorded at 

Matiu-Somes Island in November 2002 (23.5 FTU), at Seatoun in January 2003 (20.21 

FTU), and at Evans Bay was recorded in February 2003 (15.52 FTU). The lowest mean 

monthly turbidity value was recorded at Seatoun in March 2003 (1.03 FTU), followed by 

Evans Bay in January 2003 (2.32 FTU) and Matiu-Somes Island in September 2002 (2.64 

FTU).  

 

Concentration of chlorophyll a was shown as the highest at Evans Bay for most of 

the experiment, with similar levels only initially recorded at Seatoun, while the 
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chlorophyll a concentration was systematically lowest at Matiu-Somes Island (Table 3.1, 

Fig. 3.5). The highest mean monthly chlorophyll a concentration was recorded at Evans 

Bay in April 2003 (14.1 μg l -1), while the lowest value was obtained at Matiu-Somes 

Island in December 2002 (0.3 μg l -1). 

 

A trend of gradual increase in salinity was detected, in which sites lying towards 

the inner areas of Wellington Harbour, such as Evans Bay and Matiu-Somes Island were 

surrounded by more saline water, while outer areas of Wellington Harbour, such as 

Seatoun, had greatly reduced salinity (Table 3.1, Fig. 3.6). The highest mean monthly 

salinity was obtained at Evans Bay in April 2003 (36.2 PSU), while the lowest value was 

recorded at Seatoun in March 2003 (21.7 PSU). 

 

Temperature at experimental sites, August 2002 - May 2003.
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Figure 3. 3. Temperature at all sites, August 2002 – May 2003. Points represent mean monthly values + 
95% confidence interval. 

 



Chapter Three                               Condition Index, Gonad Mass, Pea Crabs and Larval Settlement 

 
 
 

80

Turbidity at experimental sites, August 2002 - May 2003.
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Figure 3. 4. Turbidity at all sites, August 2002 – May 2003. Points represent mean monthly values + 95% 
confidence interval. 

 

 

Chlorophyll a  at experimental sites, August 2002 - May 2003.
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Figure 3. 5. Chlorophyll a at all sites, August 2002 – May 2003. Points represent mean monthly values + 
95% confidence interval. 
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Salinity at experimental sites, August 2002 - May 2003.
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Figure 3. 6. Salinity at all sites, August 2002 – May 2003. Points represent mean monthly values + 95% 
confidence interval. 

 

As shown by Gamma correlation coefficient, at Seatoun turbidity was 

significantly correlated to salinity (Table 3.2), at Evans Bay turbidity was correlated to 

temperature and salinity, and chlorophyll a was correlated to salinity (Table 3.3), and at 

Matiu-Somes Island salinity was correlated to turbidity and chlorophyll a (Table 3.4).  

 

Table 3.2. Gamma values for water parameters at Seatoun. 

Variable Temperature Turbidity Chlorophyll a Salinity 
Temperature - p=0.121 p=0.58 p=0.121 
Turbidity γ =-0.200 - p=0.836 p<0.001* 
Chlorophyll a γ =-0.244 γ =-0.002 - p=0.058 
Salinity γ =-0.200 γ =0.556 γ =0.244 - 
* Significant after Bonferroni correction for multiple testing. 
 

Table 3.3. Gamma values for water parameters at Evans Bay. 

Variable Temperature Turbidity Chlorophyll a Salinity 
Temperature - p=0.025 p=0.389 p=0.389 
Turbidity γ =-0.289 - p=0.605 p<0.001* 
Chlorophyll a γ =0.111 γ =0.067 - p<0.001* 
Salinity γ =0.111 γ =0.467 γ =0.60 - 
* Significant after Bonferroni correction for multiple testing. 
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Table 3.4. Gamma values for water parameters at Matiu-Somes Island. 

Variable Temperature Turbidity Chlorophyll a Salinity 
Temperature - p=0.863 p=0.863 p=0.863 
Turbidity γ =0.022 - p=0.058 p=0.025 
Chlorophyll a γ =-0.022 γ =0.244 - p=0.010 
Salinity γ =0.022 γ =0.289 γ =0.333 - 

 

Repeated measures ANOVA revealed significant differences in all water column 

characteristics among all sites and months, as well as a significant site*month interaction, 

which indicated that all water column parameters varied differentially according to site 

and month (Table 3.5). The overall model was accepted (Table 3.6). 

 

Table 3.5. MANOVA model for differences in water characteristic. 

Effect λ-value F Effect df Error df p-value 
Site 0.182 110.8 8 658.000 <0.001 
Month 0.028 54.7 36 1234.653 <0.001 
Site*Month 0.116 13.1 72 1296.071 <0.001 
 
Table 3.6. MANOVA - the overall model. 

Parameter R2 SS df MS F p-value 
Temperature  0.926 1.520 29 0.052 143.108 <0.001 
Turbidity 0.737 60.140 29 2.074 32.035 <0.001 
Chlorophyll a 0.780 101.634 29 3.505 40.486 <0.001 
Salinity 0.795 1.496 29 0.052 44.290 <0.001 
 

Condition Index 
 

ANCOVA (R2=0.707, F=45.696, df=289, p<0.001) revealed significant 

differences in CI for all species, among all sites and months (Table 3.7). All interaction 

terms were significant, including two-way interactions month*site, site*species and 

month*species, and a three-way interaction month*site*species, which indicated that CI 

varied significantly according to site, month and mussel species. Shell length (SL) and 

GM were also found to be significant.  
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Table 3.7. General ANCOVA for differences in CI among all mussel species, sites and months. 

Effect SS df MS F p-value 
GM 11.206 1 11.206 1221.523 <0.001 
SL 2.364 1 2.364 257.738 <0.001 
Month 18.312 23 0.796 86.787 <0.001 
Site 1.352 3 0.451 49.125 <0.001 
Species 10.059 2 5.029 548.234 <0.001 
Month*Site 12.780 69 0.185 20.190 <0.001 
Month*Species 6.608 46 0.144 15.659 <0.001 
Site*Species 1.360 6 0.227 24.715 <0.001 
Month*Site*Species 10.429 138 0.076 8.238 <0.001 
 

The Least Significant Difference post-hoc Tukey test revealed that Aulacomya 

maoriana had the highest condition, followed by Perna canaliculus and Mytilus 

galloprovincialis. This pattern was observed at all sites except for Evans Bay, where 

Perna canaliculus had the highest condition, followed by Aulacomya maoriana and 

Mytilus galloprovincialis (Fig. 3.7). 

 

Species- and site-specific variation in CI.
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Figure.3.7. CI in all three mussel species at all four sites. Points represent mean monthly values (N=20) 
with 95% confidence interval error bars. 
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Aulacomya maoriana 
 

CI of the ribbed mussel displayed significant spatial and temporal variation (Fig. 

3.8), generally with lower CI in cooler seasons and higher CI in warmer seasons. On 

average, CI was within the range 10-20, although the highest monthly average was 

recorded in November 2002 at Seatoun (55.8), Kau Point (51.14) and Matiu-Somes 

Island (29.56). The highest monthly average CI at Evans Bay was recorded in May 2002 

(18.52). The lowest monthly average value of CI at Seatoun was recorded in August 2002 

(8.07), at Matiu-Somes Island in October 2001 (9.71), Evans Bay in December 2002 

(7.54) and at Kau Point in August 2002 (9.59). 

 

Pearson correlation coefficient revealed a significant relationship between CI and 

SL at all sites, and a significant CI-GM correlation at all sites except for Kau Point (Table 

3.8). 

Table 3.8. Aulacomya maoriana, CI vs. SL and CI vs. GM correlation. 

CI vs. SL    CI vs. GM 
Site R p-value R p-value 
Seatoun -0.314 <0.001* 0.148 0.002* 
Kau Point -0.515 <0.001* 0.059 0.26 
Evans Bay -0.443 0.647 0.11 0.024 
Matiu-Somes Is. -0.15 0.003* 0.42 <0.001* 
* Significant after Bonferroni correction for multiple testing. 

 

Further, Pearson coefficient showed a significant correlation of CI to temperature, 

turbidity and salinity at Evans Bay, but none of these parameters was correlated to CI at 

Matiu-Somes Island. At Seatoun, CI was significantly correlated only to salinity (Table 

3.9).  

Table 3.9. Aulacomya maoriana, CI vs. CTD correlation (August 2002-May 2003). 

Site Temperature Turbidity Chlorophyll a Salinity 
R=0.096 R=0.056 R=0.132 R=0.191 Seatoun p=0.088 p=0.318 p=0.018 p=0.001* 
R=-0.257 R=0.292 R=-0.027 R=0.221 Evans Bay p=0.001* p=0.001* p=0.718 p=0.003* 
R=-0.025 R=-0.03 R=0.102 R=0.001 Matiu-Somes 

Island p=0.755 p=0.706 p=0.198 p=0.902 
* Significant after Bonferroni correction for multiple testing.
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Aulacomya maoriana , CI variation
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Figure 3. 8. Aulacomya maoriana, general variation of CI. Points represent mean monthly values (N=20) 
with 95% confidence interval error bars. 

 

Mytilus galloprovincialis 
 

CI of the blue mussel was generally within the range 5-15 (Fig. 3.9). However, 

the maximum mean monthly CI values recorded at Seatoun and Kau Point, well above 

that range, were recorded in November 2002 (35.42 and 26.67, respectively). The 

minimum mean monthly CI value at Seatoun was recorded in June 2002 (7.76) and at 

Kau Point in July 2002 (5.66). At Evans Bay the maximum mean monthly CI was 

recorded in June 2002 (13.94) and the minimum value in December 2002 (7.87), while at 

Matiu-Somes Island the maximum and minimum mean monthly CI values were recorded 

in August 2002 (15.20) and May 2002 (8.12), respectively.  

 

Pearson correlation revealed a significant CI-GM and CI-SL correlation at all 

sites (Table 3.10).  CI was also significantly correlated with temperature and chlorophyll 

a only at Seatoun and Evans Bay (Table 3.11). 
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Mytilus galloprovincialis ,  CI variation
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Figure 3. 9. Mytilus galloprovincialis, general variation of CI. Points represent mean monthly values 
(N=20) with 95% confidence interval error bars. 

 

Table 3. 10. Mytilus galloprovincialis, CI vs. SL and CI vs. GM correlation. 

            CI vs. SL    CI vs. GM 
Site R p-value R p-value 
Seatoun 0.204 <0.001* 0.493 <0.001* 
Kau Point -0.348 <0.001* 0.134 0.006* 
Evans Bay 0.57 <0.001* 0.7 <0.001* 
Matiu-Somes Is. 0.57 0.001* 0.665 <0.001* 
* Significant after Bonferroni correction for multiple testing. 

 

Table 3.11. Mytilus galloprovincialis, CI vs. CTD correlation (August 2002-May 2003). 

Site Temperature Turbidity Chlorophyll a Salinity 
R=0.201 R=0.022 R=0.307 R=-0.082 Seatoun p<0.001* p=0.693 p<0.001* p=0.148 
R=-0.211 R=0.036 R=-0.428 R=-0.149 Evans Bay p=0.004* p=0.627 p<0.001* p=0.044 
R=-0.019 R=0.093 R=0.03 R=0.059 Matiu-Somes 

Island p=0.806 p=0.217 p=0.693 p=0.437 
* Significant after Bonferroni correction for multiple testing. 
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Perna canaliculus 
 

Although the general CI range for the greenshell mussel was 10-15 (Fig. 3.10), 

the maximum mean monthly values peaked in November 2002 at Seatoun (20.05), Kau 

Point (23.04) and Matiu-Somes Island (20.03). The maximum mean monthly CI at Evans 

Bay was recorded in May 2002 (19.05). The minimum mean monthly CI values at each 

site were: 8.59 at Seatoun (December 2001), 7.49 at Kau Point (May 2002), 6.73 at 

Matiu-Somes Island (October 2001) and 8.30 at Evans Bay (October 2001). Pearson 

coefficient revealed a significant CI-SL correlation at Kau Point and Matiu-Somes Island, 

and a significant CI-GM correlation at all sites (Table 3.12). 

Perna canaliculus ,  CI variation
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Figure 3. 10. Perna canaliculus, general variation of CI. Points represent mean monthly values (N=20) with 
0.95 confidence interval error bars. 

 
Table 3.12. Perna canaliculus, CI vs. SL and CI vs. GM correlation. 

                                      CI vs. SL                                                          CI vs. GM 
Site R p-value R p-value 
Seatoun -0.043 0.37 0.3 <0.001* 
Kau Point -0.478 <0.001* 0.213 <0.001* 
Evans Bay 0.084 0.074 0.427 <0.01* 
Matiu-Somes Is. 0.281 <0.001* 0.54 <0.01* 
* Significant after Bonferroni correction for multiple testing. 
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As shown by the Pearson coefficient, CI was correlated to salinity and chlorophyll 

a only at Seatoun, while at Evans Bay CI was correlated only to chlorophyll a (Table 

3.13).  

Table 3.13. Perna canaliculus, CI vs. CTD correlation (August 2002-May 2003). 

Site Temperature Turbidity Chlorophyll a Salinity 
R=-0.084 R=0.114 R=0.379 R=0.27 Seatoun p=0.132 p=0.043 p<0.001* p<0.001* 
R=-0.139 R=0.021 R=-0.289 R=-0.092 Evans Bay p=0.056 p=0.774 p<0.001* p=0.206 
R=-0.056 R=0.174 R=0.111 R=0.157 Matiu-Somes 

Island p=0.438 p=0.015 p=0.123 p=0.029 
* Significant after Bonferroni correction for multiple testing. 
 

Gonad Mass 
 

ANCOVA (R2=0.670, F=38.442, df=289, p<0.001) revealed significant 

differences in GM among species, sites and months, with all interaction terms significant, 

indicating that GM varied according to site, month and species (Table 3.14). SL and CI 

were significant covariates.  

 

Table 3.14. General ANCOVA for differences in GM among all mussel species, sites and months. 

Effect SS df MS F p-value 
CI 142.352 1 142.352 1221.523 <0.001 
SL 194.346 1 194.346 1667.682 <0.001 
Month 67.692 23 2.943 25.255 <0.001 
Site 34.666 3 11.555 99.155 <0.001 
Species 101.470 2 50.735 435.356 <0.001 
Month*Site 85.842 69 1.244 10.675 <0.001 
Month*Species 30.735 46 0.668 5.733 <0.001 
Site*Species 13.614 6 2.269 19.470 <0.001 
Month*Site*Species 74.430 138 0.539 4.628 <0.001 
 

The Least Significant Difference post-hoc Tukey test revealed that generally 

Aulacomya maoriana had the highest gonad mass, followed by Mytilus galloprovincialis 

and Perna canaliculus. However, at Kau Point and Matiu-Somes Island there was no 

difference in GM between Aulacomya maoriana and Mytilus galloprovincialis (Fig. 

3.11). 
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Species- and site-specific variation in GM
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Figure 3.11. GM in all three mussel species at all four sites. Points represent mean monthly values (N=20) 
with 95% confidence interval error bars. 

 

Aulacomya maoriana 
 

GM of the ribbed mussel reflected variation in CI, and generally was elevated at 

all sites in winter 2001, winter 2002 and spring 2002 (Fig. 3.12). The highest mean 

monthly GM values at Seatoun, Kau Point and Evans Bay were recorded in November 

2002 (0.53g, 0.56g and 0.77g, respectively), while the maximum GM at Evans Bay was 

recorded in June 2001 (0.45g). Minimum mean monthly GM values obtained at each site 

were: 0.02g at Seatoun (August 2002), 0.02g at Kau Point (November 2001 and July 

2002), 0.03g at Matiu-Somes Island (July 2002) and 0.03g at Evans Bay (November 

2001).  

 

Pearson coefficient revealed a significant correlation between GM and 

chlorophyll a at Seatoun and Evans Bay, and between GM and salinity at Seatoun and 

Matiu-Somes Island (Table 3.15). When employed to explore a GM-SL correlation, 
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Pearson coefficient was significant for data obtained at Kau Point and Matiu-Somes 

Island (Table 3.18). 

 

Aulacomya maoriana ,  GM variation
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Figure 3. 12. Aulacomya maoriana, general variation of GM. Points represent mean monthly values (N=20) 
with 95% confidence interval error bars. 

  

Table 3.15. Aulacomya maoriana, GM vs. CTD correlation (August 2002-May 2003). 

Site Temperature Turbidity Chlorophyll a Salinity 
R=-0.045 R=0.040 R=0.288 R=0.284 Seatoun p=0.424 p=0.476 p<0.001* p<0.001* 
R=0.19 R=-0.078 R=-0.205 R=-0.112 Evans Bay p=0.011 p=0.299 p=0.006* p=0.135 

R=-0.011 R=-0.082 R=0.148 R=0.225 Matiu-Somes 
Island p=0.886 p=0.303 p=0.061 p=0.004* 
* Significant after Bonferroni correction for multiple testing. 
 

Mytilus galloprovincialis 
 

For the blue mussel, general variation in GM reflected the variation of CI, and 

was marked with a steady increase until June 2002 and subsequent decrease, followed by 

another increase in November 2002 (Fig. 3.13). Maximum mean monthly GM values at 

Seatoun (0.52g), Kau Point (0.34g) and Matiu-Somes Island (0.70g) were recorded in 
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November 2002, while the maximum GM at Evans Bay (0.27g) was recorded in 

September 2001. Minimum mean monthly GM values at each site were: 0.02g at Seatoun 

(December 2001 and August 2002), 0.02g at Kau Point (October and November 2001), 

0.03g at Matiu-Somes Island (July 2002) and 0.01g at Evans Bay (January 2002).  

 

Pearson coefficient revealed significant correlation between GM and temperature 

and chlorophyll a at all sites, and between GM and salinity at Seatoun and Evans Bay 

(Table 3.16). GM was significantly correlated to SL at Kau Point, Evans Bay and Matiu-

Somes Island (Table 3.18). 

 

Table 3.16. Mytilus galloprovincialis, GM vs. CTD correlation (August 2002-May 2003). 

Site Temperature Turbidity Chlorophyll a Salinity 
R=-0.16 R=0.043 R=0.326 R=0.18 Seatoun p=0.005* p=0.444 p<0.001* p=0.001* 
R=-0.201 R=0.21 R=-0.515 R=-0.203 Evans Bay p=0.007* p=0.781 p<0.001* p=0.006* 
R=0.214 R=0.085 R=0.21 R=0.103 Matiu-Somes 

Island p<0.004* p=0.263 p=0.005* p=0.174 
* Significant after Bonferroni correction for multiple testing. 

 

Mytilus galloprovincialis ,  GM variation
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Figure 3. 13. Mytilus galloprovincialis, general variation of GM. Points represent mean monthly values 
(N=20) with 95% confidence interval error bars. 
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Perna canaliculus 
 

GM of the greenshell mussel displayed spatial and temporal variation (Fig. 3.14). 

The maximum mean monthly GM value at Seatoun was recorded in November 2002 

(0.58g), at Kau Point in November 2002 (0.58g), at Matiu-Somes Island in November 

2002 (0.69g) and at Evans Bay in June 2001 (0.68g). The minimum mean monthly GM 

values were: 0.02g at Seatoun (December 2001), 0.03g at Kau Point (November 2001), 

0.04g at Matiu-Somes Island (July 2002) and 0.02g at Evans Bay (December 2001). 

Pearson coefficient revealed significant correlation between GM and temperature, 

chlorophyll a and salinity at Seatoun, GM, salinity and turbidity at Evans Bay, and 

between GM and all four water column parameters at Matiu-Somes Island (Table 3.17). 

Table 3.18 shows the correlation between GM and SL for all species at all sites. 

 

Table 3.17. Perna canaliculus, GM vs. CTD correlation (August 2002-May 2003). 

Site Temperature Turbidity Chlorophyll a Salinity 
R=-0.276 R=0.159 R=0.338 R=0.272 Seatoun p=0.001* p=0.005* p<0.001* p<0.001* 
R=0.041 R=-0.111 R=-0.073 R=-0.136 Evans Bay p=0.571 p=0.127 p=0.315 p=0.062 
R=0.113 R=0.203 R=0.402 R=0.234 Matiu-Somes 

Island p=0.118 P=0.005* p<0.001* p<0.001* 
* Significant after Bonferroni correction for multiple testing. 

 

Table 3.18. Correlation between GM and SL in all species. 

Site A.  maoriana M. galloprovincialis P. canaliculus 
R=0.464 R=0.36 R=0.465 Seatoun 
p<0.001* p<0.001* p<0.001* 
R=0.259 R=0.522 R=0.58 Kau Point 
p<0.001* p<0.001* p<0.001* 
R=0.539 R=0.465 R=0.623 Evans Bay 
p<0.001* P<0.001* p<0.001* 
R=0.51 R=0.404 R=0.613 Matiu-Somes Island 

p<0.001* p<0.001* p<0.001* 
* Significant after Bonferroni correction for multiple testing. 
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Perna canaliculus ,  GM variation
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Figure 3.14. Perna canaliculus, general variation of GM. Points represent mean monthly values (N=20) 
with 95% confidence interval error bars. 

 

 

Table 3.19. Site- and species-specific differences in the water column parameters, CI, GM and SL.  

Parameter Differences among sites/species p-value 
 
Temperature 

 
Evans Bay > Matiu-Somes Island > Seatoun 

 
<0.001 

Turbidity Matiu-Somes Island > Evans Bay > Seatoun <0.001 
Chlorophyll a Evans Bay > Seatoun > Matiu-Somes Island <0.001 
Salinity Evans Bay > Matiu-Somes Island > Seatoun <0.001 
 
CI 

 
Matiu-Somes Island >> Kau Point = Seatoun > Evans Bay <0.001 

GM Matiu-Somes Island >> Kau Point = Seatoun = Evans Bay <0.001 
SL Evans Bay > Matiu-Somes Island >> Kau Point > Seatoun <0.001 
   
CI A. maoriana > P. canaliculus > M. galloprovincialis <0.001 
GM A. maoriana > P. canaliculus > M. galloprovincialis <0.001 
SL P. canaliculus > M. galloprovincialis > A. maoriana <0.001 
 

 

Monthly rainfall data (collected at Shandon Golf Club near the Hutt River and in 

Wellington City near Regional Council Centre) were provided by Greater Wellington, 

Environmental Division (Fig. 3.15). Missing data were replaced with their interpolated 

means (Underwood, 1997). The data displayed generally similar rainfall at both sites 

(Wellington site mean 66.9 + 42.08 mm, the Hutt River site mean 83.98 + 54.56 mm). 
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Rainfall data at the Hutt River and Wellington City, Jan 2001 - Dec 2003

 Hutt River site   City site

Ja
n-

20
01

M
ar

-2
00

1

M
ay

-2
00

1

Ju
l-2

00
1

S
ep

-2
00

1

N
ov

-2
00

1

Ja
n-

20
02

M
ar

-2
00

2

M
ay

-2
00

2

Ju
l-2

00
2

S
ep

-2
00

2

N
ov

-2
00

2

Ja
n-

20
03

M
ar

-2
00

3

M
ay

-2
00

3

Ju
l-2

00
3

S
ep

-2
00

3

N
ov

-2
00

3

0

50

100

150

200

ra
in

fa
ll 

[m
m

]

 

Figure 3.15. Rainfall data in Wellington area (January 2001 – December 2003) 

 

Pea crab infestation 
 

Presence of the pea crab Pinnotheres novaezelandiae was noted in all species 

examined throughout the present study. In total, 189 pea crabs were found in 5760 

mussels. No multiple infestations were recorded. The overall infestation rate therefore is 

3.28%. 

Aulacomya maoriana 
 

26 pea crabs infestations were found in this species (Table 3.20). ANOVA 

(R2=0.011, F=22.133, df=1, p<0.001) revealed significant differences in condition of 

healthy and infested mussels (Table 3.23, Fig. 3.16). The overall infestation rate of this 

species is 1.35%. 
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Table 3.20. Aulacomya maoriana - pea crab infestation. 

 Seatoun Kau Point Evans Bay Matiu-Somes Is. 
N 2 1 19 4 
Mean wt. [g] 0.313 0.579 0.355 0.319 
Min. 0.255 - 0.006 0.033 
Max. 0.371 - 0.832 0.529 
SD 0.082 - 0.222 0.212 
Mean carapace width [mm] 6.5 11 6.789 6.25 
Min. 5 - 4 3 
Max. 8 - 11 10 
SD 2.121 - 2.043 2.872 
 

Mytilus galloprovincialis 
 

89 blue mussels were infested with pea crabs (Table 3.21). ANOVA (R2=0.01, 

F=19.385, df=1, p<0.001) revealed significant differences in condition of healthy and 

infested mussels (Table 3.23, Fig. 3.16). The overall infestation rate of this species is 

4.64%. 

Table 3.21. Mytilus galloprovincialis - pea crab infestation. 

 Seatoun Kau Point Evans Bay Matiu-Somes Is. 
N 6 8 68 7 
Mean wt. [g] 0.311 0.444 0.434 0.622 
Min. 0.201 0.099 0.066 0.116 
Max. 0.428 1.111 1.497 1.428 
SD 0.11 0.34 0.325 0.45 
Mean carapace width [mm] 6.167 6.375 6.985 7.714 
Min. 4 3 3 4 
Max. 8 12 14 15 
SD 1.472 2.774 2.69 4.231 
 

Perna canaliculus 
 

74 green mussels were infested with pea crabs (Table 3.22). ANOVA (R2=0.002, 

F=4.742, df=1, p<0.001) revealed significant differences in condition of healthy and 

infested mussels (Table 3.23, Fig. 3.16). The overall infestation rate of this species is 

3.85%. 
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Table 3.22. Perna canaliculus - pea crab infestation. 

 Seatoun Kau Point Evans Bay Matiu-Somes Is. 
N 6 13 39 16 
Mean wt. [g] 0.554 0.95 0.53 0.879 
Min. 0.087 0.363 0.122 0.314 
Max. 1.385 1.638 1.75 1.677 
SD 0.49 0.399 0.342 0.355 
Mean carapace width [mm] 8.5 11 8.205 10.563 
Min. 4 7 4 5 
Max. 14 15 17 15 
SD 3.782 2.799 2.949 3.265 

 

 

Table 3.23. Comparison of mean CI of infested and healthy mussels.  

Infested mussels    Healthy mussels 
 Mean CI SD N Mean CI SD N p-value 
A. maoriana 11.253 6.373 26 15.914 9.404 1894 <0.001 
M. galloprovincialis 9.401 3.12 89 11.772 5.989 1831 <0.001 
P. canaliculus 11.431 2.915 74 12.561 4.434 1846 0.029 

 

Larval Settlement And Recruitment 
 

Water column characteristics – Larval settlement and recruitment (August 2002-
September 2003) 
 

Results of the analysis of this data set are described in previous chapter.  

 

Larval densities at recruitment 
 

Mussel larvae were always present in the water column and were settling on the 

experimental substrate throughout the entire period of this study (Fig. 3.17). At Seatoun, 

two recruitment peaks were recorded: In August 2002 (with the average of 755 larvae per 

pad) and in June 2003 (2367 larvae). At Evans Bay three peaks of larval recruitment were 

recorded: In August 2002 (2249 larvae), February 2003 (2022 larvae) and in May 2003 

(2931 larvae). Similarly, three peaks of larval recruitment were recorded at Petone: 

August 2002 (1671 larvae), March 2003 (1891 larvae) and in May 2003 (9851 larvae). At 
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Matiu-Somes Island, two peaks of larval recruitment were recorded: in August 2002 (532 

larvae) and May 2003 (2688 larvae). 

 

Factorial ANOVA (R2=0.965, F=56.406, df=83, p<0.001) revealed significant 

differences in larval densities among all experimental sites and months, as well as a 

significant site*month interaction, indicating that larval settlement and recruitment varied 

according to location and time (Table 3.24). Multiple Regression (Table 3.25) revealed 

significant correlation between larval densities and the water column parameters at all 

experimental sites. However, the overall regression model was not accepted at Petone. At 

Seatoun, larval density was significantly correlated with turbidity, chlorophyll a and 

salinity. At Petone, larval density was not correlated with any variable. At Evans Bay, 

larval density was significantly correlated with temperature, turbidity and salinity. At 

Matiu-Somes Island, the larval density was significantly correlated only with chlorophyll 

a. 

Comparison of CI between healthy and infested mussels
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Figure 3. 16. CI of infested and healthy mussels. Points represent mean, species-specific CI values with 
95% confidence interval error bars. 
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Table 3.24. Factorial ANOVA for differences in larval density among sites and months 

Effect SS df MS F p-value 
Month 922.96 20 46.15 155.04 <0.001 
Site 115.70 3 38.57 129.57 <0.001 
Month*Site 147.79 60 2.46 8.28 <0.001 

 

Table 3.25. Site-specific correlation between CTD and larval settlement data (St. err.=standard error). 

Site/Parameter β St. err. β t-value p-value 
Seatoun  (R2=0.397, F (4,43)=7.068, p<0.001)     
Temperature -0.099 0.132 -0.746 0.459 
Turbidity -0.439 0.159 -2.768 0.008* 
Chlorophyll a -0.421 0.150 -2.814 0.007* 
Salinity 0.888 0.188 4.712 <0.001* 
Petone (R2=0.174, F (4,40)=2.109, p=0.097)     
Temperature -0.019 0.189 -0.102 0.920 
Turbidity -0.501 0.211 -2.378 0.022 
Chlorophyll a 0.238 0.194 1.224 0.228 
Salinity 0.354 0.215 1.648 0.107 
Evans Bay (R2=0.414, F (4,37)=6.528, p<0.001)     
Temperature -0.355 0.141 -2.518 0.016 
Turbidity -0.503 0.193 -2.605 0.013 
Chlorophyll a 0.017 0.159 0.104 0.918 
Salinity 0.706 0.223 3.165 0.003* 
Matiu-Somes Is. (R2=0.267, F (4,46)=4.186, p=0.006)     
Temperature -0.055 0.134 -0.413 0.681 
Turbidity 0.151 0.142 1.062 0.294 
Chlorophyll a 0.293 0.138 2.124 0.039* 
Salinity 0.242 0.139 1.740 0.089 
* Significant after Bonferroni correction for multiple testing. 

 

Table 3.26. Site-specific differences in the water column parameters and larval settlement. 

Parameter Differences among sites p-value 
Temperature Evans Bay > Matiu-Somes Island > Seatoun > Petone <0.001 
Turbidity Matiu-Somes Island > Seatoun  > Evans Bay > Petone <0.001 
Chlorophyll a Evans Bay > Seatoun > Petone > Matiu-Somes Island <0.001 
Salinity Evans Bay > Matiu-Somes Island >Petone > Seatoun   <0.001 
Larval settlement Evans Bay > Petone > Matiu-Somes Island > Seatoun   <0.001 
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Larval settlement at all sites

 Seatoun    Evans Bay    Petone    Matiu-Somes Island

Apr-2002
Jun-2002

Aug-2002
Oct-2002

Dec-2002
Feb-2003

Apr-2003
Jun-2003

Aug-2003
Oct-2003

Dec-2003
-2000

0

2000

4000

6000

8000

10000

12000
la

rv
al

 c
ou

nt

 

Figure 3.17. Larval densities at settlement – comparison among sites. 

 

3.4. Discussion 

 

Condition index and gonad mass 

 

Condition in bivalves is shaped by numerous factors, including food quality and 

quantity, water parameters, such as temperature and salinity, bivalve population density, 

pollution, height on the shore and emersion time, genotypic characteristics or presence of 

parasites. Often there are marked cross-correlations among those variables, which 

prevents the clear identification of a single environmental factor determining mussel 

condition (e.g. Chaparro & Winter, 1983; Lucas & Beninger, 1985; Hawkins & Bayne, 

1991; Koehn, 1991; Marsden & Pilkington, 1995; Rheault & Rice, 1996).  Results from 

the present study clearly show that mussel condition varied according to the location and 

was linked to the environmental parameters in Wellington Harbour. Both condition index 

and mussel gonad mass were highest at Matiu-Somes Island, followed by Kau point, 

Seatoun and Evans Bay (Table 3.19), and both of these mussel characteristics were 

clearly linked to the water column parameters at all of the experimental sites. The effects 

of fluctuating nutrient runoff after rain, particularly noticeable in this experiment in 

spring 2002, were manifested through the elevated condition and gonad mass in 
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November 2002, which presumably resulted from one of the Hutt River high-turbidity 

plumes carrying high volumes of organic particles (see rainfall data Fig. 3.15). This 

frequently occurring riverine input can alter hydrological conditions in Wellington 

Harbour (McConchie et al., 2000), and so affect the ecology of its inhabitants.  General 

range of condition index varied in all three species investigated in the present study and 

reflected species-specific gonad mass, with both condition index and gonad mass being 

highest in Aulacomya maoriana, followed by Perna canaliculus and Mytilus 

galloprovincialis (Table 3.19).  Mussel condition and gonad mass also varied temporally, 

with all species displaying higher condition and gonad mass in cooler seasons and 

decrease in warmer seasons (Figs. 3.8-3.10 and 3.12-3.14). This most likely was a result 

of a seasonal cycle occurring in the mussel gonad. In this cycle, gametogenesis takes 

place in winter and spawning activity subsequently occurs in spring-summer, which 

points at the influence of temperature on gonad cycle. Indeed, the gonad activity in all 

three species was clearly affected by the environmental parameters (mainly chlorophyll a 

and salinity), with most of them significantly correlated with gonad mass at all sites 

(Tables 3.15-3.17). In mussels, condition index depends on the gonad mass, and as the 

gonad mass increases in warmer seasons, so does condition index. In the present study, 

all mussel species displayed a trend of gonad restoration between summer and autumn 

2002 (December 2001- April 2002) (Figs. 3.12-3.14), which was subsequently followed 

by massive spawning activity detected at all sites in winter 2002 (Fig. 3.17). A similar 

pattern was reported for green mussels P. canaliculus (Buchanan, 2001) and the blue 

mussels M. galloprovincialis (Villalba, 1995; Helson & Gardner, 2004). Gonad mass data 

available from this study confirm those findings and also that fact that the ribbed mussel 

in Wellington Harbour A. maoriana follows a similar pattern. Zandee et al. (1980) and 

Gabbott & Peck (1991) examined biochemistry of the mantle in Mytilus edulis in relation 

to gametogenesis. The authors observed controlled autophagy in the connective tissue as 

a way of mobilising energy stores for gamete formation. In winter, as glycogen stores 

start to decrease, the energy gained from this process is used for development of eggs and 

the synthesis of lipids in eggs. Simultaneously, the levels of protein and lipids are 

increasing and will remain high until the time of spawning and massive shedding of eggs 

containing large reserves of protein and lipids. By summer, high levels of glycogen and 
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protein are re-built but lipid concentrations are still low and recovering slowly, as 

glycogen is deposited in the mantle tissue. 

 

The quality and quantity of seston in coastal waters have been shown to vary in 

space and season. Phytoplankton from the water column is believed to be the principal 

energy source for bivalves, whereas the degree to which detritus is exploited depends 

largely on sorting mechanisms of the gill (retention efficiency of the particles) (Gosling, 

2003). Bivalve physiological status has been documented to be clearly dependent on the 

ambient food levels (e.g. Navarro et al. 1991; Stuart, 1982; Fréchette & Grant, 1991). In 

the present study, spatial variability of mussel condition was revealed, in which mussels 

from inner areas of Wellington Harbour (represented here by Evans Bay and Matiu-

Somes Island) had significantly higher condition than mussels from the outer areas, such 

as Kau point and Seatoun. A similar regional variation was reported by Hickman et al. 

(1991) who detected a pattern of condition in the greenshell mussel Perna canaliculus 

along the main channel of Pelorus – Kenepuru Sound in New Zealand. In that study, 

mussel condition was consistent with chlorophyll a levels decreasing from inner to the 

outer Sound. The authors did not find a strong correlation between condition and 

chlorophyll a, however, but the results pointed to available food (measured as particulate 

carbon, PC) as the primary factor controlling mussel condition. Smaal & Stralen (1990) 

reported similar findings for mussels sampled at inward and seaward parts of an estuary. 

The condition index of Mytilus edulis from that study was higher in western part of the 

Scheldt estuary (the Netherlands) compared to its central area. Chlorophyll a 

concentration and primary production were also higher in the western part. However, 

there was no significant correlation between mussel condition and chlorophyll a 

concentration, but there was a highly significant correlation between condition and 

primary production. The authors conclude that in years with lower primary production 

mussels suffered lower condition. They also suggested that the lack of a direct link 

between condition and chlorophyll a may be explained by higher turnover of 

phytoplankton by suspension feeders (including the mussels), particularly in seasons of 

high primary production (spring-summer), which would make the detection of 

chlorophyll more difficult. A seasonal pattern for condition of the mussel Mytilus edulis 



Chapter Three                               Condition Index, Gonad Mass, Pea Crabs and Larval Settlement 

 
 
 

102

and chlorophyll a was also evident in a study performed by Rosenberg & Loo (1983) 

who concluded that food quality is a limiting factor for the mussel Mytilus edulis. As 

seston concentration decreased during winter, the resulting poor quantity of food 

available to mussels was reflected in lowered mussel energy content and ultimately in 

lower condition.  

 

Pea crab infestations 

 

In bivalves, pea crabs live inside the mantle cavity, often placed on the gills, 

where they collect food particles previously filtered by their host (McLay, 1988). The 

nature of the relationship between the crabs and their bivalve hosts has been so far 

unresolved, with some authors (e.g. Bierbaum & Ferson, 1986; Stevens, 1992) reporting 

adverse effects of pea crabs on bivalve condition, while other workers (Goodbody, 1960; 

Haven, 1960; Pearce, 1962; Hsueh, 2003) consider the relationship to be commensal or 

even symbiotic. Results from the present study suggest a parasitic relationship, because 

condition index was significantly reduced in infested mussels, compared to healthy 

mussels (Table, 3.23, Fig. 3.16), indicating that the pea crabs caused damage to their 

hosts. However, given a high variability in condition of infested mussels demonstrated 

here by the size of error bars (Fig. 3.16), it would appear that some individuals had 

actually higher condition when infested with the pea crab. Damage done to a bivalve host 

can include slower growth (Bierbaum & Ferson, 1986), erosion of gill tissue and fibrous 

growth on the mantle (Jones, 1977), lower meat weight and effectively lower condition 

index (Tablado & Gappa, 1995), and reduced gonad area and effectively reduced 

reproductive capability (O’Beirn & Walker, 1999). Although the pea crab Pinnotheres 

novaezelandiae was found in all three species, the overall infestation rate was low (3.28 

%). Therefore, from the perspective of the entire Wellington Harbour mussel population, 

the effects of the pea crab are negligible.  
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Larval settlement and recruitment 

 

The numbers of mussels recruiting onto the experimental substrate in this study 

exhibited significant spatial and temporal variability. These results are consistent with 

similar variability in settlement and recruitment reported by other researchers for a 

number of mussel species, including Mytilus edulis in England (Dare, 1976), Ireland 

(Snodden & Roberts, 1997) and the USA (Petraitis, 1991), Mytilus galloprovincialis in 

Italy (Ceccherelli & Rossi, 1984), New Zealand (Helson & Gardner, 2004) and Spain 

(Cáceres-Martinez et al., 1993; Molares & Fuentes, 1995), Perna perna in South Africa 

(Lasiak & Barnard, 1995), and Perna viridis in India (Rajagopal et al., 1998a, b). In the 

present study, recruitment of mussel larvae occurred throughout the year, consistent with 

the data presented by other New Zealand researchers (e.g. M. galloprovincialis in Helson 

& Gardner, 2004; M. galloprovincialis and P. canaliculus in Meredyth-Young & Jenkins, 

1978; P. canaliculus in Buchanan & Babcock, 1997 and Alfaro et al., 2001). This 

phenomenon in New Zealand waters has been described as the result of continuous 

spawning (“trickle spawning”) by Booth (1983), who also reported the presence of 

Mytilus edulis aoteanus (now Mytilus galloprovincialis) and Perna canaliculus larvae in 

the water column in Wellington Harbour throughout the entire year.  

 

In the present study, three peaks of mussel larvae density were recorded at all 

sites in the same periods in August 2002, February 2003 and June 2003, resulting from 

spawning events in winter 2002, summer 2002/2003 and autumn 2003, respectively. Such 

prolonged reproductive activity and spawning periods clearly give mussels ecological 

advantage over other community members, thus ensuring that more offspring will be 

produced, potentially securing the mussel dominance in the communities. While in 

Wellington Harbour mussels are clearly able to spawn on more than one occasion a year, 

in many other temperate environments only single major peaks of larval recruitment have 

been described as a common phenomenon in mussel reproductive ecology. In European 

waters, for example in the Ria de Vigo (NW Spain), Cáceres-Martinez et al. (1993) found 

that Mytilus galloprovincialis underwent one major spawning event in spring. Similarly, 

Chipperfield (1953) and Dare (1976) recorded high larval abundances in British waters in 
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May-June. Mussel populations can, however, produce larvae continually throughout the 

entire year. Cáceres-Martinez & Figueras (1998) found mussel larvae in the Ria de Vigo 

on every sampling occasion and reported two major peaks of larval abundance in March-

April and May-June in two consecutive years of their study. Harris et al. (1998) reported 

similar temporal variation along the coast of South Africa, where mussel larvae were 

recruiting predominantly in June-July, December-January and March-April. In New 

Zealand, Helson & Gardner (2004) reported recruitment of mussel larvae on every 

sampling occasion in Wellington Harbour with the highest recruitment densities in 

winter. Results from the present study are also consistent with those reported by Alfaro et 

al. (2001), who reported a similar spawning season for mussels (June-December) and the 

continuing appearance of mussel spat outside the season (i.e. trickle spawning) in Ninety 

Mile Beach, northern New Zealand. At Taylor’s Mistake near Christchurch, New 

Zealand, Kennedy (1977) reported intensive spawning in Mytilus edulis aoteanus and 

Aulacomya maoriana as water temperatures were rising from 8ºC to 19ºC and gonad 

condition declined. The author also reports that Perna canaliculus spawns at the same 

time as Mytilus edulis aoteanus and Aulacomya maoriana, from late August to early 

February. 

 

Typically, water temperature, salinity and food abundance (often expressed as 

water turbidity and chlorophyll concentration in the water column) are identified as key 

factors to the mussel reproductive cycle (e.g., Carriker, 1961; Bayne, 1965; Hrs-Brenko, 

1978; Hines, 1979; Pechenik et al., 1990; Starr et al., 1990; Rajagopal et al., 1998b). 

These parameters are often synergistic in their effects on ecology of marine invertebrate 

communities. For example, food availability can interact with temperature and influence 

the energy budget of mussels, their spawning ability and ultimately larval success, 

because upon the utilisation of protein, lipid and glycogen reserves in the planktotrophic 

eggs, the developing planktotrophic larva depends on plankton for food. Thus, conditions 

of insufficient food quality or quantity combined with stressful temperatures that increase 

metabolism and the subsequent demand for resources needed to cover the metabolic costs 

will result in less viable larvae or malnourished adults with reduced condition and 

reproductive output, as opposed to non-stressed individuals (Calabrese, 1969; Bayne, 
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1973; Kingston, 1974; Widdows, 1978a, b; Newell et al., 1982, Sprung, 1984, 1985; 

Pechenik et al., 1990; Ardizzone et al., 1996). In invertebrates, phytoplankton bloom-

induced spawning serves as a good example of the interplay between temperature and 

food abundance in an aquatic environment. Starr et al. (1990) suggest that the close 

timing between phytoplankton bloom and the release of planktonic larvae gives the 

invertebrates the advantage of securing the food supply to the larvae and ensuring that 

larval mortality due to zooplankton predation may be minimal (during phytoplankton 

bloom many species are spawning simultaneously, increasing the volume of larvae in the 

water column and thus reducing the probability of predation-related mortality of larvae).  

 

In the present study, larval settlement was correlated with salinity at Evans Bay, 

chlorophyll a concentration at Matiu-Somes Island, and by synergistically acting 

turbidity, chlorophyll a and salinity at Seatoun (Table 3.25). These results are at odds, 

given the synergistic effects of salinity and bottom-up factors (i.e. turbidity and 

chlorophyll a) on larval settlement at Seatoun and the fact that some of the highest peaks 

in larval settlement were recorded at Evans Bay and Petone. At the time of the peak 

settlement at Seatoun (June 2003), turbidity was reduced, but elevated salinity and 

chlorophyll remaining after a secondary peak of chlorophyll concentration that took place 

a month earlier might have triggered spawning in mussels at this site. The synergistic 

effects of salinity and temperature affecting larval settlement have been also documented 

by Hrs-Brenko (1978), who reported the optimal salinity range for larval development in 

Mytilus galloprovincialis in the Adriatic Sea as being between 30 and 35‰.  The salinity 

range supporting larval development and metamorphosis was shown to depend heavily 

on varying temperature, with the best larval development occurring in moderate 

temperatures. In Portugal, Chícharo & Chícharo (2001) reported a significant seasonal 

interplay between larval and post-larval abundances and environmental parameters in a 

coastal lagoon. Their study revealed a correlation among temperature, chlorophyll a 

levels and salinity. The correlation between the concentration of Ruditapes decussatus 

larvae and temperature was also found to be a major factor affecting larval abundance. 

Further, salinity and levels of chlorophyll a proved important, although the authors did 

not consider salinity as a factor limiting larval abundance because salinity values in the 
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lagoon were close to typical open sea salinity, with a very small freshwater input. 

Chlorophyll a was also excluded as a limiting factor because of the productive nature of 

the lagoon, with abundant chlorophyll and suspended and dissolved organic matter. 

  

 Because in the present study mussel larvae were settling on the artificial substrate 

in Wellington Harbour throughout the entire sampling period (Fig. 3.17), it is clear that 

the temperatures in the Harbour (8-20ºC) are unlikely to limit gametogenesis and 

spawning. It is possible, however, that recruiting larvae were advected into Wellington 

Harbour from elsewhere, thus contributing to the numbers of larvae recorded. Judging 

from the conspicuous peaks of larval abundances at certain times of the year, the 

temperature range in the Harbour that stimulates gametogenesis would appear in late 

autumn (April-May), when the water temperature drops to 11-12ºC and gamete 

maturation takes place, and last until spring (September-October) at water temperatures 

reaching 14-15ºC. Such a trend was recorded at all experimental sites, in addition to the 

middle peak of larval abundance recorded in February 2003, when environmental 

conditions in the Harbour were conducive to spawning and larvae development. The link 

between temperature and larval success is created by chlorophyll concentration, because 

temperature is needed by plankton for photosynthesis. Therefore higher temperature 

stimulates photosynthetic activity of phytoplankton cells and results in greater 

concentration of chlorophyll. This, in turn, stimulates spawning and aids with the 

subsequent larval settlement. Similar results were reported from India, where Manoj & 

Appukuttan (2003) found a direct relationship between temperature and larval 

development in Perna viridis. The larval growth and settlement rates in that study 

increased with an increase in temperature. The authors suggested that at lower 

temperatures the lack of growth in larvae could be caused by their inability to activate the 

enzymatic system necessary for food digestion, whereas at high temperatures larval 

mortality can result from the destruction of algal cells and the subsequent bacterial build-

up in the hatchery rearing system. An inverse relationship between water temperature and 

the duration of the larval phase was reported by Pascual & Zampatti (1995), who found 

that an increase in temperature stimulated larval development and settlement at a smaller 

size in Ostrea puelchana. When the temperature increased from 19-20ºC to 23-25ºC, the 
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planktonic lifespan became shorter (from 20-22 days to 17 days) and the pediveligers 

were smaller at the time of settlement (310 and 284 μm, respectively). In the field, the 

authors reported a positive relationship between phytoplankton bloom and invertebrate 

spawning activity, when the increased algal concentration stimulated gamete release. 

 

A clear gradient detected in the abundance of settling mussel larvae towards the 

inner reaches of Wellington Harbour, was accompanied by a similar gradient of condition 

index and gonad mass in adult mussels. In the present study, condition index of the blue 

mussel M. galloprovincialis, greenshell mussel P. canaliculus and ribbed mussel A. 

maoriana improved towards the inner areas of the Harbour. In particular, condition index 

was highest in A. maoriana. Also, the environmental variables (most noticeably 

chlorophyll a concentration and salinity) were clearly significant for the gonad mass. 

Further, the gonad development directly affected the adult condition and (at least 

partially) contributed to the larval densities detected on the artificial collectors. 

Significant correlation of the numbers of larvae settling on the artificial substrate and 

condition of adults signified the synergistic effect of the environmental parameters 

(Bayne, 1973; Widdows, 1973). Generally, the water column parameters, such as 

temperature, salinity and chlorophyll a (particularly decreased between January and May 

2003) were lower at Seatoun, compared with other sites (Fig. 3.3-3.6), which might be 

the reason for the consistently lowest rate of settlement at this southernmost site, as well 

as the reduced adult condition (Table 3.26). Inside the Harbour, however, some of the 

highest recruit densities were recorded at Evans Bay, where the temperature, salinity and 

chlorophyll a concentration were consistently higher than at other sites, and further 

towards the northern parts of the Harbour, where the highest adult condition was found 

(Matiu-Somes Island) and the highest larval abundance (Petone).  

 

Heath (1977) reported that the flow rate decreases inside the Harbour from 0.46-

0.50 m s-1 in the entrance channel to 0.03 m s-1 in the main part, and to less than 0.015 m 

s-1 in Lambton Harbour.  Further, there is evidence (Vernier-Bonnet et al., 1997; Todd et 

al., 1998; McQuaid & Phillips, 2000) that under the most common wind conditions 

larvae in the water column would show little exchange with bays further than 2 km away. 
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It is possible, therefore, that what appears to be a high settlement rate of mussel larvae in 

Evans Bay could be simply a result of their retention by slow currents and the prevailing 

north-westerly winds in that bay. However, further detailed study of the hydrology of 

Wellington Harbour is needed to verify that hypothesis.  

 

Mussel larvae have a planktonic duration of 2–4 weeks (Seed & Suchanek, 1992; 

Jeffs et al., 1999; McQuaid & Phillips, 2000) and therefore many of them may not have 

sufficient time to fully develop in Wellington Harbour, which has an estimated total 

flushing time of only 10 days (Heath, 1971). As a result, those larvae will be carried 

outside the Harbour into Cook Strait well before they are competent to settle at harbour 

sites (Helson & Gardner, 2004). Further, since mussels are almost entirely absent from 

the Wellington South Coast (Gardner, 2000) and mussel populations on the nearby Kapiti 

Coast are poorly developed, Wellington Harbour appears to be the only major source of 

mussel larvae in this region. As yet, the source of the larvae transported from outside into 

the Harbour and subsequently settle there is unknown. Larvae originating from regions 

outside Wellington might be brought here by three separate currents (described in chapter 

one) originating in subtropical and sub-Antarctic waters, which experience mixing in 

north-western Cook Strait (Gilmour, 1960; Bowman, 1983a, b). However, the presence of 

a large and well-developed mussel population inside the Harbour and the striking absence 

of similar communities immediately outside the Harbour make the Harbour community 

an isolated one. This state could be intensified by the hydrological conditions in Cook 

Strait, where the strong flow possibly carries the larvae away from the Harbour. Because 

the flow in Cook Strait is turbulent and fluctuates rapidly in both speed and direction, 

with the subsurface flow velocities of roughly similar magnitude to the surface velocities, 

estimated at 18 cm sec–1 (Gilmour, 1960; Heath, 1969; Heath, 1971; Bowman et al., 

1983a), it is possible that the Wellington Harbour mussel community is even further 

separated from other larvae-supplying communities, and could therefore be a self-seeding 

population. Since larval dispersal direction and ranges can be estimated from 

hydrographic and genetic markers data (McQuaid & Phillips, 2000), up-to-date research 

investigating the hydrology of Wellington Harbour and the rate of water exchange 
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between it and Cook Strait needs to be undertaken. Currently, the lack of such data makes 

it difficult to speculate about the self-seeding nature of Wellington Harbour.  
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CHAPTER FOUR:  

INTERTIDAL MUSSEL COMMUNITY DEVELOPMENT  

 

4.1. Introduction 

 

Intertidal systems are dynamic environments, constantly subjecting their 

inhabitants to varying conditions of temperature, humidity and salinity, as well as 

physical disturbance from storms and wave action (Creese & Kingsford, 1998; Madarasz, 

2003). While varying levels of temperature, salinity and nutrients reaching intertidal 

communities can result from hydrodynamic regimes, the dynamics of intertidal 

populations are also closely linked to biological processes (e.g. predation, settlement or 

competition for resources). These biological processes, in turn, can depend on the 

harshness of the environment, which will eventually lead to spatial and temporal 

variability within such populations and communities (Underwood & Chapman, 2000; 

Thompson et al., 2002). The importance of oceanographic processes in structuring 

intertidal and shallow subtidal communities has become clearer, in particular within the 

recent decades, through the fact that such processes may drive constant among-site 

differences in community composition (Roughgarden et al., 1988; Menge, 1992; Witman 

et al., 1993; Roughgarden et al., 1994; Menge et al., 1997a, b; Connolly & Roughgarden, 

1998). Thus, coastal areas characterized by gyres, eddies, upwelling events or advective 

currents may be able to retain high concentrations of phytoplankton and zooplankton, 

which are transported onshore and utilized heavily by filter feeders, thereby contributing 

greatly to the biomass of those invertebrate communities. By fuelling the growth of filter 

feeder communities, high phytoplankton abundance is also believed to contribute to the 

reduced abundance of macrophytes, which are less competitive than filter feeders. 

Subsequently, as filter feeders dominate a coastal area, predators are attracted to them in 

greater numbers, which leads to higher predation rates, eventually keeping the 

invertebrate growth in check. Thus, pelagic and benthic systems are coupled in the 

following way: gyres/eddies → higher concentration of phytoplankton → higher 

settlement and growth of invertebrates → higher predation rate (Menge et al., 1999). 
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Community regulation 

 

Traditionally, the composition of mussel communities is believed to be a product 

of the biotic interactions among various community members, and between the 

community and the resources it acquires from its environment (Metaxas & Scheibling, 

1996). Typically, two groups of factors are held responsible for regulating such 

communities: Bottom-up and top-down factors.  

 

Bottom-up factors are related to levels of nutrients, plant-derived detritus and 

primary production (of phytoplankton or macrophytes) that affect higher trophic levels 

within a community. Increased levels of nutrients can “cascade up” food webs and affect 

higher trophic levels, thus leading to higher abundance of herbivores and predators in an 

aquatic community (Hall et al., 1970; Hunter & Price, 1992). Mussel recruitment can also 

be considered as a bottom-up factor, since it can significantly affect the future 

development of the community. However, because other distinct processes, of which we 

may not have sufficient knowledge, may be linked to larval settlement (e.g. larval 

nutrition or larval transport), at present larval recruitment should be considered separately 

from nutrients and primary productivity as bottom-up factors affecting marine 

communities (Menge et al., 1999). To establish how bottom-up processes influence an 

aquatic community a study would have to be designed in which levels of nutrients would 

be manipulated and community response recorded (Neill & Peacock, 1980). However, 

marine systems are too open for such manipulations to be feasible, therefore alternative 

studies are needed, in which nutrient levels and a subsequent community response are 

simultaneously recorded. Accordingly, it is believed that an increase in nutrients would 

stimulate larval growth rate, abundance and survival, possibly leading to a similar 

increase in growth, abundance and survival of the community, eventually giving way to 

top-down processes (Menge, 1992; Forde & Raimondi, 2004).  

 

Top-down processes (also known as “trophic cascades”) refer to effects of higher 

trophic levels on lower trophic levels within a mussel community, such as effects of 

predation or grazing (Hairston et al., 1960; Menge, 1992). As such, top-down factors 
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affect abundance, distribution and diversity of invertebrates and/or algae controlled by 

predators and/or grazers (Paine, 1966; 1974; 1980, Dayton, 1971; Menge et al., 1986). 

Controlled manipulations, such as caging experiments where predators are excluded from 

a community, are the most direct ways of examining top-down effects (Menge, 1992). 

The response of mussel community to predator manipulation can be thoroughly 

estimated, provided the study was of sufficient duration to allow the mussels to colonise 

the substrate, but in short-term studies the results can be misleading, because they may 

not have allowed for the fact that mussels can colonise the substrate sporadically or with 

delay (Menge, 1997). For example, in an experiment involving starfish removal from a 

mussel bed on the Pacific coast of Washington, Paine (1966) observed a mussel 

dominance of the substrate after 2 years. Similarly, Menge et al. (1986) reported little 

change in prey community structure in Panama after a year of predator exclusion, but a 

great shift in substrate colonization from algal stage, through barnacle domination to 

oyster domination in experimental plots after 3 years. In both cases, if the studies had 

been terminated too soon the results would have been incomplete or misleading. 

 

Natural mussel communities are multi-factorial, with bottom-up and top-down factors 

dynamically linked and affecting communities at the same time, hardly ever acting in 

isolation. It is now believed that bottom-up factors shape the future structure of a 

community, determining the number of trophic levels, which in turn will be important for 

the community structure and the influence of top-down effects. As such, higher 

concentrations of nutrients stimulate consumer biomass and support more trophic levels, 

eventually leading to increased consumer pressure on lower trophic levels (Menge, 

1992). Studies stressing the significance of bottom-up effects (e.g. Duggins et al., 1989; 

Bosman & Hockey, 1986, Wooton, 1991) and top-down effects on prey communities 

(e.g. Fairweather, 1985; Dungan, 1986), where variation in the top-down effects was 

attributable to environmental stress resulting from wave action or desiccation, serve as 

good examples demonstrating the importance of these factors for aquatic communities. 
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The role of physical disturbance 

 

In rocky intertidal assemblages mussels often monopolize the substrate by 

creating dense beds or mats. While such beds offer shelter from drag and acceleration of 

water currents to other members of bed-associated fauna (Hunt & Scheibling, 2002), such 

mussel beds can be often dislodged from the substrate by waves or pounding logs 

(Denny, 1987; Herlyn & Millat, 2000) or the shearing forces of waves (Harger & 

Landenberger, 1971), thus leaving large areas of the substrate empty and available for 

recolonisation (Denny, 1987). Patches of bare substrate can also be created by substrate 

movement (Osman, 1977). Wave exposure has been regarded as an important indicator of 

community structure, because it affects the pathways of mussel succession, activity of 

mobile predators and effectively trophic relations within the mussel community (Menge 

& Sutherland, 1976, 1987). One single important effect wave exposure has on mussel 

communities is the way it regulates their ability to attach and stay attached, thus affecting 

community composition and the distribution of its members. When one mussel is 

detached from the bed, hydrodynamic forces of drag and lift can often remove several 

individuals, thus exposing large areas of the substrate to potentially new colonizers 

(Schiel, 2004). 

 

The role of biological interactions 

 

With the removal of competitively dominant mussels by physical or biological 

disturbance, previously competitively inferior species that had been unable to establish 

themselves and persist in a community, can now colonise rocky substrate. As this 

succession takes place, major biological factors come into play: Competition among 

species for resources (such as space and nutrition), predation and grazing.  

 

Competition 
 

Competition, one of the ecological processes structuring communities (Paine, 

1971, Chase et al., 2002) can potentially alter intertidal communities in three ways: by 
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one species preventing other species from settling from the water column onto the 

substrate (pre-emptive competition), by one community inhabitant directly eliminating 

another one, for example by killing it (interference competition), or when several species 

need the same space to feed but the amount of food to support them is insufficient 

(exploitative competition) (Underwood, 2000). Examples of these types of competition 

on rocky intertidal shores include preventing barnacles from settling by algal fronds 

sweeping the rocky surfaces (Connell, 1961a, b), fast-growing barnacles gradually 

eliminating slower-growing algae (Dayton, 1971), or mussels smothering other 

community members by settling directly onto them (Paine, 1974; Menge, 1976). 

 
Predation  
 

 Abundance of predators has traditionally been regarded as crucial in the 

development of marine communities (Paine, 1974; Menge & Sutherland, 1976, 1987). 

While competition occurs most often among groups of organisms sharing resources 

within the same trophic level (e.g. mussels and barnacles competing for space and food), 

predation links different trophic levels, where predators and prey share different 

resources (e.g. mussels and whelks) (Connell, 1975). In intertidal systems, predation can 

alter the pathways of succession, in particular when mussel are involved, as predators can 

reduce the number of individuals competing for the same resources and thus reduce the 

competition itself. As a result, competitively inferior organisms are able to co-exist with 

the competitively dominant mussels within the assemblage (Paine, 1971).  

 

Physical and biological factors are often found interplaying, thus shaping the 

vertical distribution of algae and animals in intertidal communities. Physical factors may 

influence patterns of distribution and abundance of intertidal populations directly (by 

limiting growth of the members of the communities) or indirectly (by mediating the 

activity of predators) (Benedetti-Cecchi et al., 2000). 
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The importance of the water column parameters 

 

Temperature, salinity, chlorophyll a concentration and turbidity are among the 

most widely studied seawater parameters. Temperature and salinity can be linked to 

various phases of bivalve lives, including gametogenesis and reproduction, larval 

settlement and recruitment, together with subsequent growth and condition. Seston 

quality, often expressed as chlorophyll a concentration, suggests the concentration of 

phytoplankton on which filter feeders rely as food. It also points to dietary conditions in 

which those animals live, because a variety of suspended particles present in the water 

column, such as detritus, bacteria and phytoplankton, differently contribute to the nutrient 

acquisition by invertebrates (Gosling, 2003). On the other hand, seston quantity can be 

referred to as turbidity and is typically defined as the amount of suspended sediment 

particles in the water column (Mylvaganam & Jakobsen, 2000). Thus, chlorophyll a 

provides the quantitative measure of seston in the water column, while turbidity is a 

qualitative seston measure. When combined, the two parameters can provide information 

about the amount of particles suspended in the water column, as well as their potential 

nutritional value to seston-feeding organisms, such as bivalves. Therefore, from the 

ecological perspective, a study of seawater parameters is a powerful tool, helping us 

understand differences underlying structure of rocky intertidal communities, the 

distribution of their members and the intra-community dynamics among those members. 

 

Most published experimental studies investigating rocky intertidal assemblage 

structure concentrate on dynamics of communities dominated by one or two mytilid 

species. A large part of this work has been done on North American intertidal shores 

(e.g., Menge, 1976, 1992; Bertness & Grosholz, 1985; Wootton, 1993; Lively et al., 

1993; Menge et al., 1994; Berlow & Navarette, 1997; Connolly & Roughgarden, 1998) 

and, to a lesser degree, in European systems (e.g., Ardizzone et al., 1996; Buschbaum, 

2000). Similar reports of rocky intertidal communities from New Zealand include studies 

by Poore (1968) and Menge et al. (1999, 2003). Investigations of community dynamics 

with two mytilids species within a rocky intertidal system include reports by Henschel et 

al. (1990) from South Africa, Bertness and Leonard (1997) from North America, and 
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Paine (1971) and Boyle et al. (2001) from New Zealand. While investigations of the 

dynamics among three or more co-existing mussel taxa and the structure of such 

communities are interesting, few studies are available in which such studies have been 

conducted (for example, Bustamante & Branch, 1996). Following the community 

development in multi-species mussel assemblages uncovers the often-complex ecological 

mechanisms, thus allowing us to create detailed models of the intertidal system 

community structure. 

 

This chapter presents results of a long-term examination (24 months) and focuses 

on the dynamics of rocky intertidal communities in a complex system dominated by three 

sympatric mussel species: two species endemic to New Zealand: the ribbed mussel 

Aulacomya maoriana and the greenshell mussel Perna canaliculus, and the blue mussel 

originating from the Mediterranean, Mytilus galloprovincialis. The work presented here 

is unique in that it differs from other published reports from systems dominated by most 

often one, occasionally two mussel species. The present study was conducted in a 

speciose environment supporting three co-existing mussel species, where succession 

within intertidal communities consequently includes numerous algal and invertebrate taxa 

that colonise the substrate and subsequently are excluded by dominant competitors. 

Naturally, the mechanisms of succession and competition in such a system are expected 

to be more complex, especially where there are numerous dominant species involved.  

Long-term examination of such a complex, multi-site and multi-species environment 

allows us to gain enhanced knowledge of the often subtle and difficult to detect stages of 

succession and resource partitioning in intertidal systems. Further, given a complex 

hydrology of Wellington Harbour and its effect on the water column parameters, a study 

of the mechanisms of succession and competition are of special interest as they can shed 

more light on the dynamics of the intertidal zone communities supporting numerous 

dominant species. While previous work described intertidal, mussel-dominated 

community continuation, this study concentrates on the multi-species mussel community 

recovery following the mimicked physical disturbance, and establishes a link between the 

rate of such recovery and food abundance in an intertidal system. 
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In the present study, a series of experiments was performed in Wellington 

Harbour in order to quantify the successional pathways and structure of intertidal 

communities typically dominated by three sympatrically occurring mytilids. Complete 

clearing of substrate combined with a set up of experimental cages was chosen as a 

method of mimicked disturbance (Connell, 1961b; Dayton, 1971). This approach gave 

the advantage of simultaneous comparison of disturbance at three experimental sites (Fig. 

4.1) and elimination of possible effects from survivors (Foster et al., 2003). In particular, 

estimates were calculated for the following guilds of intertidal community invertebrate 

members: algae, barnacles, mussels, grazers (such as limpets) and predators (such as 

whelks). Proportion of bare, unutilized substrate was also included in this study. Further, 

the interplay between succession mechanism in rocky intertidal communities and the 

water column characteristics in Wellington Harbour was also investigated. 

 

4.2. Materials and Methods 

 

Water column data 

 

In order to obtain environmental data two Richard Brancker Research Ltd XR-

420 loggers were used. Data were obtained at Evans Bay and Seatoun between August 

2002 and September 2003 (Fig. 4.1), and subsequently processed and analyzed as 

described in chapter two. 
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Figure 4.1. Location of experimental sites in Wellington Harbour (adapted from Molloy & Smith, 2002). 

Caging experiments were conducted at: EVB – Evans Bay, SE – Seatoun and KP – Kau Point. The water 

column data were collected at: EVB – Evans Bay, FL – Front Lead light and FSL – Falcon Shoal light. 

 
Caging experiment 

 

To quantify the rate of intertidal community recovery, development and the 

subsequent recolonisation of the rocky substrate by algal and invertebrate taxa, a 

factorial-designed, caging experiment was conducted between November 2001 and 

October 2003 (month, site and cage treatment as fixed factors). Because it was desirable 

to obtain information about the rate of community recovery according to localized 

hydrological and wave exposure regimes from as many sites as possible, but the number 

of locations suitable for this experiment was limited, the following experimental rocky 

intertidal sites were selected: Seatoun, Kau Point and Evans Bay (Fig. 4.1). At each of 

these sites the exposure to prevailing winds and resulting wave action is different. In 

Wellington, there is a strong dominance of northerly (~60%) and southerly (~30%) 

winds. Although southerlies are less frequent and less gusty, they are about twice as 

strong as northerlies, most likely a result of the great wind acceleration on the Kaikoura 
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coast (McConchie, 2000). For this reason, southerly-generated oceanic swells and waves 

carry more energy than northerly-generated waves and therefore intertidal communities at 

south-facing sites within Wellington Harbour receive a large amount of wave pounding, 

which can affect the processes of development and dynamics within such communities 

(Dayton, 1971; Underwood et al., 1983; Bustamante et al., 1997). Evans Bay is protected 

from destructive southerly swells and significantly protected from northerly-generated 

surge, thus it is the most sheltered site in this experiment. Seatoun receives some of the 

energy carried by southerly swells and is also exposed to northerly winds, although not as 

much as Kau Point, which receives the full strength of both southerly and northerly winds 

and therefore is the most exposed site in this study. Thus, in terms of exposure to wave 

action, these sites can be ranked as follows: Kau Point > Seatoun > Evans Bay.  

 

At each of these sites, sixteen 200 x 200 mm plots were randomly selected in the 

mid-intertidal zone. While it was desirable to select plots that would be within equal 

distance from each other, the rock configuration did not always allow for this, therefore 

some plots had to be placed closer together so that all plots would still remain within the 

mid-intertidal zone. The plots were completely cleaned of all epibionts with a wire brush, 

so that any subsequent substrate colonization would start from zero where no pre-

clearance (i.e. “already present” colonization) bias would be present. Subsequently, three 

experimental treatments were applied at each site with each treatment replicated four 

times. Each treatment consisted of an open cage (Fig. 4.2), a full cage (Fig. 4.3), and a 

“no roof” cage (Fig. 4.4). A boundary was cleared around the plots to prevent movement 

of adjacent individuals into the cages. Cage-free frames (Fig. 4.5) were nailed into the 

rocky substrate and were used as controls (also replicated four times) (Menge, 1976, 

Honkoop et al., 2003). Cages were constructed from plastic baskets (20 x 20 mm, 90 mm 

high, mesh size 3 mm). Each cage was attached to a plastic frame (250 x 250 mm, 50 mm 

wide), which was secured into the rock with stainless nails. The cages were then secured 

onto the plastic frames with brass nuts and bolts (Ø 5 mm, 35 mm in length) and the 

whole assemblage was then sealed at the bottom with a mixture of mortar and a quick-

setting agent Sika-4a, to prevent movement of species under the frame into or out of the 

experimental plots.  
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The open cage treatment (Fig. 4.2) allowed predators into the experimental plots. 

When compared with the control frame and the full cage treatment (Fig. 4.5 and 4.3), the 

open cage treatment allowed for examination of the effects of (mostly invertebrate) 

predation on taxa colonizing the previously cleared substrate. This treatment, when 

compared with the “no roof” treatment (Fig. 4.4), also allowed for testing of desiccation 

effects by affecting the humidity under the cage, thus altering the desiccation conditions 

within the experimental plots. The key points of interest behind such a selection of the 

experimental treatments were:  

 

1. How quickly each of the three mussel species (A. maoriana, M. galloprovincialis 

and P. canaliculus) recruited onto the substrate, depending on the caging 

treatment, 

2. What other algal and invertebrate taxa would recruit onto the experimental 

substrate, depending on the treatment, 

3. How long each of the communities would require to fully recover from the 

mimicked disturbance (i.e. substrate clearance). 

 

 

Figure 4.2. Open cage exposed at low tide. 
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Figure 4.3. Full cages exposed at low tide. 

 
 

 

Figure 4.4. “No roof” cage exposed at low tide. 
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Figure 4.5. Control frame exposed at low tide. 

 

While caging experiments aiming to estimate the effects of predation on intertidal 

mussel community, such as the present study, can introduce artifacts to the experimental 

treatment, they nevertheless provide an estimation of predation, in particular when the 

predator behaviour and ecological dynamics are concerned (Alfaro & Carpetner, 1999). 

From the experimental design point of view, the potential artifacts of such enclosure 

experiments need to be recognized when the interventions required are grossly invasive 

and obvious, as was the case in the present study (Peterson & Black, 1994). According to 

the current epistemological practice, if the intervention is applied identically across all 

experimental treatments and controls so that only the experimental treatment itself varies, 

then any artifactual effect introduced by caging would also be held constant. Thus, the 

comparison between and among the experimental treatments and controls would be 

unaffected by these artifacts. Further, to evaluate the direction and magnitude of biases 

introduced by caging, controls need to be included in the experimental design. Results 

from the controls can then be used to estimate the direction and magnitude of the artifact 

caused by caging and to estimate the conditions under which the experiment was 

conducted (Kennelly, 1983; Peterson & Black, 1994). 
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Percent cover estimates 

 

For the period of 24 months, from November 2001 until October 2003, at monthly 

intervals (except June and July 2002), cages were removed from the base frame and each 

plot was photographed with a SONY digital camera (model DSC-S75, picture resolution 

2048 x 1536 pixels). Digital pictures were subsequently downloaded onto a portable 

computer and calibrated using SigmaScan Pro (version 4.0, Jandel Scientific). From each 

picture, percent cover of bare rock and organisms settling on it were estimated by hand-

tracing of individual patches of fauna and flora. While the exact measurements of the 

numbers and sizes of the photographed taxa can provide a good indication of the 

colonisation and evolution of the population examined over time, percent over was a 

preferred method of recolonisation measurement over length/growth measurements, as 

the latter method could not be reliably estimated from the digital images as a result of the 

photographed taxa often growing on the substrate at a wrong angle towards the camera to 

allow for thorough length/growth measurements. Species identifications were obtained by 

reference to appropriate literature (e.g. Leslie, 1968; Morton & Miller, 1968; Miller & 

Batt, 1973; Gunson, 1983; Bradstock, 1985; Hawkins & Jones, 1992; Adams, 1994 and 

1997; Morton, 2004) or were provided by individual authorities from photographs or 

specimens.  

 

 Data analysis 

 

Raw invertebrate and algal percent cover data were tested for normality of 

residuals, normality of distribution and homogeneity of variance, and subsequently 

arcsine square root-transformed. In order to investigate the spatial and temporal variation 

in percent cover of each species, a MANOVA was employed. Despite the fact that not all 

transformed data strictly followed normal distribution, this method was chosen because it 

has been described as being fairly robust against deviations from normality of distribution 

(Quinn & Keough, 2002). Further, the choice of MANOVA when dealing with non-

normally distributed variables can be justified when the data contains a high number (n > 

100) of observations (Zar, 1984). For this analysis, all algal and invertebrate species, as 
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well as bare substrate, were specified as dependent variables, with site, month and 

treatment specified as crossed factors.  Subsequently, a similar repeated-measures 

ANOVA technique was repeated for all functional and the most commonly observed 

groups of recruiting organisms (i.e. algae, barnacles, mussels, whelks and limpets), 

including bare substrate. Next, a similar MANOVA technique was performed separately 

for each site in order to detect differences in percent cover of the functional groups and 

the recolonising species among months and treatments. Further, a correlation analysis 

was performed on the CTD data and percent cover data of the functional groups obtained 

from Evans Bay and Seatoun. Correlation analysis was not performed on Kau Point 

percent cover data because no CTD was deployed at that site.  

 

Finally, a multiple regression technique was employed. In the analysis, percent 

cover of each mussel species (Mytilus galloprovincialis, Aulacomya maoriana and Perna 

canaliculus) was specified as a dependent variable, with barnacles, algal, whelk, and 

limpet species, as well as bare substrate, specified as independent variables. This analysis 

was performed for each site. Results of this analysis are presented in Pareto charts by 

displaying the absolute t-values and showing respective significance levels of each 

independent variable previously specified in the analysis. All statistical analyses were 

performed using Statistica software version 6.0 (StatSoft Inc., USA, 2001). 

 

4.3. Results 

 

Water column properties 
 
Results of the analysis of the environmental data at set Seatoun and Evans Bay are 
described in chapter two. 

 

Caging experiment - percent cover estimates 
 

25 intertidal species within 7 phyla and 10 classes were identified and 

subsequently analyzed in this experiment (Table 4.1). The three barnacle species 
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Chamaesipho columna, Ch. brunnea and Elminius modestus were grouped together 

because the image resolution was often not sufficient to distinguish among the species.  

 

Table 4.1. Algal and invertebrate species for which percent cover data were obtained. 

Phylum Class Species Common name 
Phycophyta Chlorophyceae Ulva lactuca Sea lettuce 
  Enteromorpha sp. Green alga 
 Rhodophyceae Corallina officinalis Coralline turf 
  Non-geniculate coralline sp. Coralline paint 

  Porphyra sp. 
Polysiphonia rudis 

Red alga 
Red alga 

 Phaeophyceae Cystophora retroflexa Brown alga 
Cnidaria Anthozoa Actinia albocincta Orange-and-white anemone 
  Corynactus haddoni Haddon’s anemone 
Ectoprocta Gymnolaemata Watersipora subtorquata Bryozoan 
Annelida Polychaeta Pomatoceros cariniferus Tube worm 
Mollusca Gastropoda Haustrum haustorium Dark rock shell 
  Buccinulum sp. Lined whelk 
  Lepsiella scobina Oyster borer 
  Cellana radians Radiate limpet 
  Cellana denticulata Denticulate limpet 
  Cellana ornata Ornate limpet 
 Bivalvia Mytilus galloprovincialis Blue mussel 
  Aulacomya maoriana Ribbed mussel 
  Perna canaliculus Greenshell mussel 
Arthropoda Crustacea Chamaesipho columna Columnar barnacle 
  Chamaesipho brunnea Brown barnacle 
  Elminius modestus Modest barnacle 
  Petrolisthes elongatus Porcelain crab 
Echinodermata Asteroidea Patiriella regularis Cushion star 
    
 

A repeated-measures ANOVA was employed to test for differences in percent 

cover of bare substrate, barnacles, and individual algal, mussel, whelk and limpet species 

recolonising the substrate. The analysis revealed significant differences among sites, 

months and treatments (Table 4.2). All terms were statistically significant, indicating that 

percent cover of the recolonising species differed among sites as a function of treatment 

(i.e. full cage, “no roof” cage, open cage and control) and time. 
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Table 4.2. Results of MANOVA for differences in percent cover of bare substrate, algal and invertebrate 
species among sites, treatments and months. 

Effect λ-value Effect df Error df F p-value 
Site 0.209 36 1550.00 51.067 <0.01 
Month 0.207 378 10685.07 3.435 <0.01 
Treatment 0.375 54 2310.01 16.625 <0.01 
Site x Month 0.103 756 12932.49 2.511 <0.01 
Site x Treatment 0.285 108 4448.75 10.074 <0.01 
Month x Treatment 0.155 1134 13530.44 1.351 <0.01 
Site x Month x Treatment 0.039 2268 13935.36 1.219 <0.01 
 

The overall model was not accepted for one algal species (Porphyra sp.) and two 

invertebrate species, the greenshell mussel P. canaliculus and the predatory gastropod H. 

haustorium (Table 4.3).  

Table 4.3. Overall model fit of MANOVA for  individual species of algae, barnacles, mussels, whelks, 
limpets and bare substrate ( N-g = non-geniculate coralline species). 

Species R R2 SS model df model F p-value 
Bare substrate 0.829 0.687 123.231 263 6.608 <0.001 
Barnacles 0.822 0.676 65.382 263 6.285 <0.001 
C. officinalis 0.784 0.614 13.441 263 4.798 <0.001 
Enteromorpha sp. 0.752 0.565 25.030 263 3.917 <0.001 
C. retroflexa 0.667 0.445 1.699 263 2.413 <0.001 
N-g coralline sp. 0.667 0.444 11.634 263 2.409 <0.001 
M. galloprovincialis 0.680 0.462 21.204 263 2.585 <0.001 
U. lactuca 0.638 0.407 7.739 263 2.064 <0.001 
L. scobina 0.628 0.395 0.086 263 1.966 <0.001 
Buccinulum sp. 0.587 0.344 0.294 263 1.580 <0.001 
C. ornata 0.585 0.343 0.722 263 1.569 <0.001 
C. radians 0.583 0.340 0.189 263 1.550 <0.001 
A. maoriana 0.579 0.335 0.855 263 1.516 <0.001 
P. rudis 0.550 0.302 2.150 263 1.304 0.003 
C. denticulata 0.542 0.293 0.203 263 1.250 0.011 
H. haustorium 0.524 0.275 0.053 263 1.141 0.089 
Porphyra sp. 0.511 0.261 0.846 263 1.062 0.267 
P. canaliculus 0.473 0.224 0.209 263 0.867 0.916 

 

A MANOVA was employed to test for differences in percent cover of functional 

groups of recruiting organisms (such as algae, barnacles, mussels, limpets and whelks) 

and bare substrate. In the analysis, site, treatment and month were specified as crossed 

factors (Table 4.4).  The three two-way interaction terms were all statistically significant 

(p<0.01). There was a significant interaction term between all factors 

(site*treatment*month), indicating that the mean number of organisms recolonising the 
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experimental plots differed among sites as a function of treatment and time. The overall 

model for each group of organisms was accepted (Table 4.5).  

 

Table 4.4. MANOVA for differences in percent cover of groups of algae, invertebrates and bare substrate 
among sites, treatments and months. 

Effect Value Effect df Error df F p-value 
Site 0.360820 12 1718.0 95.173 <0.01 
Month 0.110570 138 5016.590 16.681 <0.01 
Treatment 0.646860 18 2430.104 22.480 <0.01 
Site x Month 0.239585 276 5125.453 5.035 <0.01 
Site x Treatment 0.631977 36 3774.894 11.551 <0.01 
Month x Treatment 0.517081 414 5146.540 1.449 <0.01 
Site x Month x Treatment 0.375485 828 5159.450 1.106 0.0263 
 

 

Table 4.5. Overall model fit of MANOVA for groups of algae, invertebrates and bare substrate. 

Group R R2 SS model df model F p-value 
Bare substrate 0.883 0.780 182.396 287 10.703 <0.01 
Barnacles 0.829 0.687 69.736 287 6.629 <0.01 
Mussels 0.703 0.494 25.428 287 2.948 <0.01 
Algae 0.689 0.474 39.578 287 2.718 <0.01 
Whelks 0.659 0.434 1.208 287 2.312 <0.01 
Limpets 0.608 0.371 0.321 287 1.774 <0.01 
 

Seatoun: Relationship among species of colonizers and bare substrate 
  

A MANOVA was performed on arcsine square root-transformed data to test for 

differences in percent cover of functional algal and invertebrate groups, including bare 

substrate. The analysis revealed statistically significant differences in percent cover 

among months and treatments (Table 4.6). The two-way interaction was also significant, 

indicating that percent cover of each group under each treatment was a function of time 

(p<0.001). The overall model for each group of organisms was accepted (Table 4.7). 

Table 4.6. Seatoun: Results of MANOVA for differences in percent cover of bare substrate and functional 
groups of algae and invertebrates among treatments and months. 

Effect λ-value Effect df Error df F p-value 
Month 0.084 126 1509.499 6.391 <0.001 
Treatment 0.435 18 733.048 13.939 <0.001 
Month x Treatment 0.148 378 1557.173 1.549 <0.001 
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Table 4.7. Seatoun: Overall model fit of MANOVA for groups of algae, invertebrates and bare substrate. 

Group R R2 SS model df model F p-value 
Bare substrate 0.809 0.655 26.875 87 5.758 <0.001 
Mussels 0.707 0.500 2.978 87 3.030 <0.001 
Algae 0.694 0.482 11.250 87 2.827 <0.001 
Whelks 0.627 0.393 0.646 87 1.968 <0.001 
Barnacles 0.592 0.350 5.954 87 1.637 0.002 
Limpets 0.583 0.340 0.220 87 1.566 <0.001 

 

The analysis was repeated to test for differences in percent cover of bare 

substrate, as well as individual algal, mussel, whelk and limpet species and barnacles that 

were gradually recolonising the substrate, thus marking the community recovery (Table 

4.8). The analysis revealed statistically significant differences in percent cover of 

individual species among months and treatments. The two-way interaction was 

significant, indicating that percent cover of each group under each treatment was a 

function of time (p<0.01). 

 

Table 4.8. Seatoun: Results of MANOVA for differences in percent cover of bare substrate, algal and 
invertebrate species among treatments and months. 

Effect λ-value Effect df Error df F p-value 
Month 0.019 357 3342.616 3.260 <0.01 
Treatment 0.249 51 739.142 8.630 <0.01 
Month x Treatment 0.008 1071 4170.565 1.323 <0.01 
 

The overall model was not accepted for the alga Porphyra sp., the greenshell 

mussel Perna canaliculus, two whelk species, Lepsiella scobina and Haustrum 

haustorium, and two limpet species, Cellana denticulata and Cellana radians (Table 4.9).  

 

Table 4.9. Seatoun: overall model fit of MANOVA for  individual species of algae, barnacles, mussels, 
whelks, limpets and bare substrate ( N-g = non-geniculate coralline species). 

Species R R2 SS model df model F p-value 
Bare substrate 0.798 0.637 28.076 87 5.336 <0.001 
C. officinalis 0.762 0.580 10.548 87 4.190 <0.001 
M. galloprovincialis 0.714 0.510 3.053 87 3.153 <0.001 
C. retroflexa 0.655 0.430 1.597 87 2.285 <0.001 
N-g coralline sp. 0.643 0.413 4.183 87 2.138 <0.001 
Barnacles 0.624 0.389 7.357 87 1.933 <0.001 
P. rudis 0.614 0.377 1.298 87 1.839 <0.001 
C. ornata 0.573 0.328 0.385 87 1.484 0.009 
U. lactuca 0.572 0.327 1.000 87 1.474 0.010 
A. maoriana 0.568 0.322 0.178 87 1.444 0.014 
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Species R R2 SS model df model F p-value 
Buccinulum sp. 0.567 0.322 0.219 87 1.441 0.015 
C. denticulata 0.547 0.299 0.142 87 1.294 0.063 
H. haustorium 0.538 0.290 0.034 87 1.237 0.103 
Porphyra sp. 0.521 0.271 0.542 87 1.130 0.231 
C. radians 0.521 0.271 0.072 87 1.129 0.234 
P. canaliculus 0.494 0.244 0.010 87 0.980 0.535 
L. scobina 0.492 0.242 0.014 87 0.971 0.556 
 

Seatoun: Effects of caging treatments  
 

Seatoun: Control plots 
 

Control plots at Seatoun were very quickly dominated by algae, which reached its 

highest mean monthly cover of 25.92% in May 2002 and remained at about 20 % until 

November 2002 (Fig. 4.6). However, after that algal cover declined to about 10%. The 

lowest algal cover in control plots was recorded in August 2003 (4.80%). Barnacle cover 

was slow to increase, eventually reaching 10% in December 2002, which was also when 

algal cover started to diminish in the experimental plots. From that point, barnacles 

outcompeted algae, reaching their peak monthly cover of 29.43% in April 2003, after 

which they started to decline. Percent cover of mussels in control plots remained very 

low (well below 10%) throughout the entire experiment, and the highest mussel cover of 

5.11% was recorded in August 2002. Cover of bare substrate systematically decreased 

until November 2002, when it reached 41.07%. Subsequently, it increased to 75.86% in 

December 2002 and remained at a level 60-80% until the end of the experiment. 
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Seatoun, control 

 algae    barnacles   mussels   bare substrate
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Figure 4. 6. Seatoun, control plots: Percent cover data for algae, barnacles, mussels and bare substrate. 
Points represent mean monthly values with 95% confidence interval error bars. Note different y-axis scales. 

 

Seatoun: “No roof” treatment 

 

Algae quickly colonised the “no roof” plots (Fig. 4.7), reaching their peak 

monthly cover in May 2002 (19.59%), which lasted until August 2002 (19.28%). 

Subsequently, algal cover declined to less than 10% for the rest of the sampling period, 

with the lowest value of 1.55% recorded in October 2003. Mean monthly cover of 

barnacles was very low until September 2002, when it rose to 18.81% and, after a brief 

fluctuation, remained at about 20% until January 2003. During that period, barnacle 

cover peaked at 22.15% in November 2002. Between February and June 2003 barnacle 

cover, as well as algal and mussel cover, declined, which was accompanied by an 

increase in bare substrate cover. After that, barnacle cover stabilized at about 15%. 

Percent cover of mussels remained well below 10% throughout the entire experiment, 

and the highest mussel cover of 4.66% was recorded in November 2002. Percent cover of 

bare substrate reached its lowest value in September 2002 and subsequently was 

increasing until March 2003 (89.99%) and started to decline again, reaching 74.77% in 

October 2003.  
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Seatoun, "no roof" treatment
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Figure 4. 7. Seatoun, “no roof” treatment: Percent cover data for algae, barnacles, mussels and bare 
substrate. Points represent mean monthly values with 95% confidence interval error bars. Note different y-
axis scales. 

 
Seatoun: Open cage treatment 
 

Algal cover in the open cage plots was systematically increasing throughout the 

experiment (Fig. 4.8). Algae reached 65.55% in June 2003 and, after a brief decline to 

14.63% in August 2003, peaked at 68.69% in October 2003. Mean monthly cover of 

barnacles was very low (less than 10%) throughout the entire experiment, and it reached 

a maximum of 6.54% in February 2002. For most of the sampling period, mussel cover 

was less than 10% and it reached greater values on only two occasions: in January 2003 

(11.86%) and in May 2003 (11.38%). Bare substrate cover declined to 23.54% in May 

2002 and subsequently increased to 88.13% in September 2002. After that, bare substrate 

cover was generally declining and it reached the minimum value of 9.69% in August 

2003.  
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Seatoun, open cage treatment
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Figure 4. 8. Seatoun, open cage treatment: Percent cover data for algae, barnacles, mussels and bare 
substrate. Points represent mean monthly values with 95% confidence interval error bars. Note different y-
axis scales. 

 

Seatoun: Full cage treatment 

 

Algal cover in full cage plots was slow to increase (Fig. 4.9) and it reached the 

maximum value (7.58%) in February 2003. After that, algal cover remained at about 10% 

until the end of the experiment. Barnacle cover, after an initial slow increase, peaked at 

17.17% in October 2002. Subsequently, it experienced a brief decline to 7.74% in 

December 2002 and increased again to 16.23% in February 2003, stabilizing at about 

20% for the rest of the sampling period. Mussel cover increased, but was less than 10% 

for most of the experiment. However, mussel cover peaked at the end of the sampling 

period in September 2003 (at 12.92%) and October 2003 (12.24%). Bare substrate cover 

was slow to decrease until August 2002 (96.60%). After that, bare substrate cover 

declined to 78.88% in October 2002 and, after a brief increase to 82.76% in December 

2002, it continued to decline until the end of the experiment, when it was 66.72%.   
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Seatoun, full cage treatment
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Figure 4. 9. Seatoun, full cage treatment: Percent cover data for algae, barnacles, mussels and bare 
substrate. Points represent mean monthly values with 95% confidence interval error bars. Note different y-
axis scales. 

 

Seatoun: CTD-Percent cover correlation 
 

A Product-Moment correlation analysis performed for CTD data and percent 

cover data of functional groups taken from control plots (i.e. bare substrate, algae, 

barnacles, mussels, whelks and limpets) revealed that percent cover of both barnacles and 

whelks was significantly correlated to chlorophyll a concentration and salinity. Further, 

the analysis revealed a statistically significant correlation between limpets and turbidity 

(Table 4.10). 

Table 4.10. Seatoun: Product-Moment correlation analysis for CTD and functional groups percent cover 
data.  

Variable Algae Barnacles Mussels Whelks Limpets Bare substrate 
R=-0.231 R=-0.312 R=-0.294 R=0.119 R=-0.294 R=-0.248 Temperature 
p=0.003* p<0.001* p<0.001* p=0.125 P<0.001* p=.001* 
R=0.328 R=0.266 R=0.453 R=0.149 R=-0.134 R=0.335 Turbidity 
p<0.001* p<0.001* p<0.001* p=0.054 P=0.085 p<0.001* 
R=0.103 R=0.423 R=0.149 R=-0.014 R=0.348 R=0.362 Chlorophyll  a 
p=0.186 P<0.001* p=0.055 p=0.854 p<0.001* P<0.001* 
R=0.333 R=0.406 R=0.324 R=-0.035 R=0.100 R=0.446 Salinity 
p<0.001* p<0.001* p<0.001* p=0.655 p=0.198 p<0.001* 

* Significant after Bonferroni correction for multiple testing. 
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Seatoun: Multiple Regression analysis   
 

Aulacomya maoriana 
 

Multiple Regression analysis revealed a statistically significant (R2=0.136, 

F=3.299, df=16, p<0.001) interaction between percent cover of the ribbed mussel and the 

percent cover of the mussel Mytilus galloprovincialis, an alga Polysiphonia rudis, and a 

limpet Cellana denticulata. (Table 4.11). The Pareto chart in Fig. 4.10 presents the 

absolute t-values and the significance of these independent variables in relation to A. 

maoriana. 

Table 4.11. Aulacomya maoriana, Seatoun: Results of the Multiple Regression between the ribbed mussel 
and other members of the community (N-g. coral. sp.=non-geniculate coralline species). 

Variable SS df MS F t-value p-value 
M. galloprov. 0.022 1 0.022 15.543 3.942 <0.001 
P. rudis 0.016 1 0.016 11.234 3.352 0.001 
C. denticulata 0.006 1 0.006 4.254 2.062 0.040 
L. scobina 0.005 1 0.005 3.365 1.834 0.067 
C. officinalis 0.004 1 0.004 2.908 -1.705 0.089 
C. ornata 0.002 1 0.002 1.410 1.187 0.236 
Porphyra sp. 0.001 1 0.001 0.970 0.985 0.325 
U. lactuca 0.001 1 0.001 0.937 0.968 0.334 
C. retroflexa 0.001 1 0.001 0.875 0.935 0.350 
N-g. coral. sp. 0.001 1 0.001 0.356 0.597 0.551 
H. haustorium 0.001 1 0.001 0.600 -0.775 0.439 
Bare substrate 0.001 1 0.001 0.532 -0.729 0.466 
C. radiata 0.001 1 0.001 0.469 -0.685 0.494 
Barnacles 0.001 1 0.001 0.364 0.603 0.547 
P. canaliculus 0.000 1 0.000 0.324 0.569 0.570 
Buccinulum sp. 0.000 1 0.000 0.089 0.299 0.765 
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Seatoun, Aulacomya maoriana
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Figure 4.10. Pareto chart for A. maoriana at Seatoun. 

 

Mytilus galloprovincialis 
 

Multiple Regression analysis (R2=0.279, F=8.097, df=16, p<0.001) indicated that 

blue mussel percent cover at Seatoun (Table 4.12) was significantly correlated with 

percent cover of an alga Corallina officinalis, barnacles, a mussel A. maoriana, a whelk 

Buccinulum sp. and the ornate limpet Cellana ornata. The Pareto chart in Fig. 4.11 

presents the absolute t-values and the significance of these independent variables in 

relation to M. galloprovincialis. 

 

Table 4.12. Mytilus galloprovincialis, Seatoun: Results of the Multiple Regression between the blue mussel 
and other members of the community (N-g. coral. sp.=non-geniculate coralline species). 

Variable SS df MS F t-value p-value 
C. officinalis 0.591 1 0.591 45.844 6.770 <0.001 
Barnacles 0.335 1 0.335 25.994 5.098 <0.001 
A. maoriana 0.200 1 0.200 15.543 3.942 <0.001 
Buccinulum sp. 0.066 1 0.066 5.127 2.264 0.024 
C. ornata 0.052 1 0.052 3.998 -1.999 0.046 
C. radians 0.037 1 0.037 2.843 1.686 0.093 
N-g. coral. sp. 0.026 1 0.026 2.020 1.421 0.156 
Bare substrate 0.012 1 0.012 0.911 0.954 0.340 
C. denticulata 0.010 1 0.010 0.772 -0.878 0.380 
C. retroflexa 0.008 1 0.008 0.631 0.794 0.428 
L. scobina 0.004 1 0.004 0.282 -0.530 0.596 
P. rudis 0.004 1 0.004 0.281 -0.530 0.596 
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Variable SS df MS F t-value p-value 
P. canaliculus 0.003 1 0.003 0.270 -0.519 0.604 
H. haustorium 0.003 1 0.003 0.230 -0.479 0.632 
Porphyra sp. 0.003 1 0.003 0.200 0.447 0.655 
U. lactuca 0.000 1 0.000 0.002 0.041 0.967 
 

Seatoun, Mytilus galloprovincialis

0.042
0.448
0.480
0.520
0.530
0.531

0.794
0.879
0.955

1.421
1.686

2.000
2.264

3.942
5.098

6.771

p=0.05
t-value 

Ulva lactuca
Porphyra sp.

Haustrum haustorium
Perna canaliculus
Polysiphonia rudis
Lepsiella scobina

Cystophora retroflexa
Cellana denticulata

Bare substrate
Non-geniculate coralline sp.

Cellana radiata
Cellana ornata
Buccinulum sp.

Aulacomya maoriana
Barnacles

Corallina officinalis

 
Figure 4.11. Pareto chart for M. galloprovincialis at Seatoun. 

 

Perna canaliculus 
 
 

Multiple Regression analysis revealed a statistically significant (R2=0.088, 

F=2.011, df=16, p=0.012) interaction between the percent cover of the greenshell mussel 

and the percent cover of the alga Cystophora retroflexa (Table 4.13). The Pareto chart in 

Fig. 4.12 presents the absolute t-value and the significance of this species in relation to P. 

canaliculus. 

  

Table 4.13. Perna canaliculus, Seatoun: Results of the Multiple Regression between the greenshell mussel 
and other members of the community (N-g. coral. sp.=non-geniculate coralline species). 

Variable SS df MS F t-value p-value 
C. retroflexa 0.002 1 0.002 20.911 4.573 <0.001 
Porphyra sp. 0.000 1 0.000 2.051 1.432 0.153 
Buccinulum sp. 0.000 1 0.000 1.998 -1.414 0.158 
N-g. coral. sp. 0.000 1 0.000 1.894 1.376 0.170 
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Variable SS df MS F t-value p-value 
P. rudis 0.000 1 0.000 0.794 -0.891 0.373 
A. maoriana 0.000 1 0.000 0.324 0.569 0.570 
C. officinalis 0.000 1 0.000 0.303 0.550 0.583 
C. ornata 0.000 1 0.000 0.291 0.539 0.590 
M. galloprov. 0.000 1 0.000 0.270 -0.520 0.604 
C. denticulata 0.000 1 0.000 0.204 -0.452 0.651 
Bare substrate 0.000 1 0.000 0.049 0.220 0.826 
L. scobina 0.000 1 0.000 0.042 -0.205 0.838 
H. haustorium 0.000 1 0.000 0.026 -0.161 0.872 
C. radiata 0.000 1 0.000 0.017 -0.128 0.898 
U. lactuca 0.000 1 0.000 0.001 0.031 0.975 
Barnacles 0.000 1 0.000 0.000 0.013 0.990 
 

Seatoun, Perna canaliculus
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Figure 4.12. Pareto chart for P. canaliculus at Seatoun. 

 

Kau Point: Relationship among species of colonizers and bare substrate  
 

A MANOVA was performed on arcsine square root-transformed data to test for 

differences in percent cover of functional algal and invertebrate groups, including bare 

substrate. The analysis revealed statistically significant differences in percent cover 

among months and treatments (Table 4.14). The two-way interaction was also significant, 

indicating that percent cover of each group under each treatment was a function of time 

(p=0.005). 



Chapter Four   Mussel Community Development 

 144

Table 4.14. Kau Point: Results of MANOVA for differences in percent cover of bare substrate and 
functional groups of algae and invertebrates among treatments and months. 

Effect λ-value Effect df Error df F p-value 
Month 0.097 126 1509.499 5.945 <0.01 
Treatment 0.288 18 733.048 22.501 <0.01 
Month x Treatment 0.211 378 1557.173 1.226 0.005 

 

The overall model for each group of organisms was accepted (Table 4.15) 

. 

Table 4.15. Kau Point: Overall model fit of MANOVA for groups of algae, invertebrates and bare 
substrate. 

Group R R2 SS model df model F p-value 
Mussels 0.860 0.739 7.205 87 8.606 <0.001 
Bare substrate 0.771 0.595 19.452 87 4.458 <0.001 
Barnacles 0.742 0.550 0.808 87 3.706 <0.001 
Limpets 0.641 0.411 0.402 87 2.113 <0.001 
Whelks 0.618 0.382 0.073 87 1.873 <0.001 
Algae 0.558 0.312 4.083 87 1.375 0.029 
 

The analysis was subsequently repeated to test for differences in percent cover of 

bare substrate, as well as individual algal, barnacle, mussel, whelk and limpet species 

(Table 4.16). The analysis revealed statistically significant differences in percent cover of 

individual species among months and treatments. The two-way interaction was also 

significant, indicating that percent cover of each group under each treatment was a 

function of time (p<0.001). 

 

Table 4.16. Kau Point: Results of MANOVA for differences in percent cover of bare substrate, algal and 
invertebrate species among treatments and months. 

Effect λ-value Effect df Error df F p-value 
Month 0.047 357 3342.616 2.437 <0.001 
Treatment 0.107 51 739.142 16.248 <0.001 
Month x Treatment 0.010 1071 4170.565 1.249 <0.001 
 

The overall model was not accepted for the non-geniculate coralline species, three 

algal species: Ulva lactuca, Porphyra sp. and Polysiphonia rudis, the greenshell mussel 

Perna canaliculus, the whelk species Haustrum haustorium, and the limpet species 

Cellana denticulata (Table 4.17).  
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Table 4.17. Kau Point: overall model fit of MANOVA for  individual species of algae, barnacles, mussels, 
whelks, limpets and bare substrate ( n-g = non-geniculate coralline species). 

Species R R2 SS model df model F p-value 
M. galloprovincialis 0.784 0.615 5.744 87 4.843 <0.001 
Bare substrate 0.782 0.611 23.405 87 4.776 <0.001 
Barnacles 0.733 0.537 0.820 87 3.515 <0.001 
Enteromorpha sp. 0.721 0.520 0.874 87 3.288 <0.001 
L. scobina 0.655 0.430 0.067 87 2.286 <0.001 
A. maoriana 0.644 0.414 0.465 87 2.145 <0.001 
C. radians 0.624 0.390 0.111 87 1.937 <0.001 
Buccinulum sp. 0.566 0.320 0.047 87 1.427 0.017 
C. ornata 0.555 0.308 0.266 87 1.349 0.038 
N-g coralline sp. 0.538 0.290 3.510 87 1.238 0.102 
C. denticulata 0.497 0.247 0.052 87 0.997 0.496 
H. haustorium 0.494 0.244 0.018 87 0.980 0.534 
U. lactuca 0.471 0.222 0.772 87 0.866 0.782 
P. canaliculus 0.464 0.215 0.070 87 0.831 0.844 
Porphyra sp. 0.458 0.210 0.203 87 0.806 0.881 
P. rudis 0.439 0.193 0.675 87 0.725 0.960 
 

Kau Point: Effects of caging treatments 
 

Kau Point: Control plots 

 

After an increase to 18.31% in December 2001, algal percent cover stabilized at 

around 20% until April 2002 (Fig. 4.13) and subsequently declined. Algal cover was at 

its lowest in August 2002 (3.64%) but after that it increased and peaked at 22.94% in 

October 2003. Barnacle cover remained very low throughout the entire experiment 

(<5%), peaking at 4.33% in August 2003. Mussel cover was also low (<5%), and peaked 

in June 2003 at 3.94%. Bare substrate cover declined to 77.55% in January 2002 but 

recovered to 94.41% in August 2002. Subsequently, bare substrate cover systematically 

declined to the minimum observed value of 68.35% in October 2003. 
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Kau Point: “No roof” treatment 

 

Algal cover increased and peaked at 10.98% in September 2002 (Fig. 4.14). 

Subsequently it declined to 2.47% in May 2003 and then rose again until October 2003, 

when it reached 10.96%. Barnacle cover was low for the entire study, peaking at 2.26% 

in September 2003. Mussel cover increased for the entire experiment, peaking at 23.68% 

in September 2003. The steady increase of mussel cover and initial increase of algal 

cover was reflected in a steady decline of bare substrate cover. Bare substrate cover was 

reduced to 82.15% in October 2002 and, after stabilizing at about 80-90% between 

October 2002 and June 2003, it declined further to 64.06% in October 2003.  

 

Kau Point: Open cage treatment 

 

For the first year of the experiment algal cover fluctuated over short periods of 

time (Fig. 4.15), peaking in December 2001 at 11.94%, May 2002 at 12.16% and in 

November 2002 at 10.11%. Subsequently, algal cover declined to less than 2% by 

December 2002 and it remained at this level until the end of the experiment. Barnacle 

cover was low for the entire experiment, peaking at 1.01% in November 2002. Mussel 

cover increased steadily until November 2002, when it peaked at 11.95%. Subsequently, 

mussel cover declined to less than 5%, reaching a second peak value of 3.26% in 

September 2003. Bare substrate cover declined until November 2002 to its minimum 

value of 69.60%. After a brief increase to 94.69% in January 2003 it stabilized at ~70% 

until the end of the experiment.  
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Kau Point, control
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Figure 4. 13. Kau Point, control plots: Percent cover data for algae, barnacles, mussels and bare substrate. 
Points represent mean monthly values with 95% confidence interval error bars. Note different y-axis scales. 

 

 
Kau Point, "no roof" treatment
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Figure 4. 14. Kau Point, “no roof” treatment: Percent cover data for algae, barnacles, mussels and bare 
substrate. Points represent mean monthly values with 95% confidence interval error bars. Note different y-
axis scales. 
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Kau Point: Full cage treatment 

 

Under full cage treatment, algal cover increased steadily, reaching a maximum of 

17.63% in July 2003, after which it declined to 13% for the rest of the experiment (Fig. 

4.16). Barnacle cover remained low for the entire experiment and reached 2.62% in 

December 2002 and 2.36% in May 2003. Mussel cover increased steadily, reaching 

15.56% in November 2002 and, after a brief decline to 11.73 in December 2002, it 

peaked at 19.34% in September 2003. Bare substrate cover gradually declined to 61.26% 

in October 2002. Subsequently, it increased to 79.79% in December 2002 and then 

declined to the minimum of 58.16% in July 2003. It remained at ~60% for the rest of the 

sampling period. 

 

Kau Point, open cage treatment
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Figure 4. 15. Kau Point, open cage treatment: Percent cover data for algae, barnacles, mussels and bare 
substrate. Points represent mean monthly values with 95% confidence interval error bars. Note different y-
axis scales. 
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Kau Point, full cage treatment
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Figure 4. 16. Kau Point, full cage treatment: Percent cover data for algae, barnacles, mussels and bare 
substrate. Points represent mean monthly values with 95% confidence interval error bars. Note different y-
axis scales. 

 

Kau point: Multiple Regression analysis 
 

Aulacomya maoriana 
 

Multiple Regression revealed a significant (R2=0.238, F=6.554, df=16, p<0.001) 

correlation between the percent cover of the blue mussel and the percent cover of three 

algal species: Porphyra sp., C. officinalis and P. rudis; barnacles, and two mussel 

species: M. galloprovincialis and P. canaliculus (Table 4.18). The Pareto chart in Fig. 

4.17 presents the absolute t-values and the significance of these independent variables in 

relation to A. maoriana. 

Table 4.18. Aulacomya maoriana, Kau Point: Results of the Multiple Regression between the ribbed 
mussel and other members of the community (N-g. coral. sp.=non-geniculate coralline species). 

Variable SS df MS F t-value p-value 
M. galloprovincialis 0.097 1 0.097 37.927 6.159 <0.001 
C. officinalis 0.070 1 0.070 27.437 5.238 <0.001 
P. canaliculus 0.014 1 0.014 5.394 -2.323 0.021 
Barnacles 0.014 1 0.014 5.331 -2.309 0.022 
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Variable SS df MS F t-value p-value 
P. rudis 0.012 1 0.012 4.769 -2.184 0.030 
Porphyra sp. 0.011 1 0.011 4.184 -2.045 0.042 
Bare substrate 0.007 1 0.007 2.650 1.628 0.104 
L. scobina 0.005 1 0.005 1.842 1.357 0.176 
U. lactuca 0.004 1 0.004 1.565 -1.251 0.212 
Enteromorpha sp. 0.003 1 0.003 1.292 1.137 0.256 
C. denticulata 0.002 1 0.002 0.701 -0.837 0.403 
C. ornata 0.002 1 0.002 0.609 0.781 0.436 
N-g. coral. sp. 0.001 1 0.001 0.226 -0.475 0.635 
Buccinulum sp. 0.000 1 0.000 0.123 -0.351 0.726 
C. radiata 0.000 1 0.000 0.093 0.305 0.761 
H. haustorium 0.000 1 0.000 0.000 -0.005 1.000 
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Figure 4. 17. Pareto chart for A. maoriana at Kau Point. 

 

Mytilus galloprovincialis 
 

Multiple regression analysis revealed significant (R2=0.411, F=14.624, df=16, 

p<0.001) correlation between the percent cover of the blue mussel and the percent cover 

of barnacles, the non-geniculate coralline species, a mussel Aulacomya maoriana, a 

whelk Lepsiella scobina and a limpet Cellana ornata (Table 4.19). The Pareto chart in 

Fig. 4.18 presents the absolute t-values and the significance of these independent 

variables in relation to M. galloprovincialis. 
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Table 4.19. Mytilus galloprovincialis, Kau Point: Results of the Multiple Regression between the blue 
mussel and other members of the community (N-g. coral. sp.=non-geniculate coralline species). 

Variable SS df MS F t-value p-value 
Barnacles 1.650 1 1.650 100.514 10.026 <0.001 
A. maoriana 0.623 1 0.623 37.927 6.159 <0.001 
C. ornata 0.570 1 0.570 34.690 -5.890 <0.001 
N-g coral. sp. 0.274 1 0.274 16.708 4.088 <0.001 
L. scobina 0.089 1 0.089 5.406 -2.325 0.021 
Porphyra sp. 0.052 1 0.052 3.180 1.783 0.075 
C. officinalis 0.046 1 0.046 2.811 1.677 0.095 
C. denticulata 0.045 1 0.045 2.769 -1.664 0.097 
C. radiata 0.045 1 0.045 2.736 -1.654 0.099 
P. canaliculus 0.015 1 0.015 0.912 -0.955 0.340 
Bare substrate 0.010 1 0.010 0.638 -0.799 0.425 
P. rudis 0.007 1 0.007 0.443 -0.666 0.506 
Buccinulum sp. 0.004 1 0.004 0.224 -0.474 0.636 
U. lactuca 0.003 1 0.003 0.159 0.399 0.690 
H. haustorium 0.002 1 0.002 0.144 -0.380 0.704 
Enteromorpha sp. 0.000 1 0.000 0.000 -0.009 0.993 
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Figure 4. 18. Pareto chart for M. galloprovincialis at Kau Point. 
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Perna canaliculus 
 

Despite a significant relationship between the percent cover of the greenshell 

mussel and the percent cover of the ribbed mussel A. maoriana and an alga C. officinalis 

(Table 4.20), the Multiple Regression analysis model was not statistically significant 

(R2=0.072, F=1.634, df=16, p=0.059). The Pareto chart in Fig. 4.19 presents the absolute 

t-values and the significance of these two independent variables in relation to P. 

canaliculus. 

 

Table 4.20. Perna canaliculus, Kau Point: Results of the Multiple Regression between the greenshell 
mussel and other members of the community (N-g. coral. sp.=non-geniculate coralline species). 

Variable SS df MS F t-value p-value 
C. officinalis 0.006 1 0.006 6.612 2.571 0.011 
A. maoriana 0.005 1 0.005 5.394 -2.323 0.021 
Porphyra sp. 0.002 1 0.002 2.684 -1.638 0.102 
N-g. coral. sp. 0.002 1 0.002 1.868 1.367 0.173 
C. denticulata 0.002 1 0.002 1.717 -1.310 0.191 
C. ornata 0.001 1 0.001 1.167 -1.080 0.281 
Buccinulum sp. 0.001 1 0.001 1.028 -1.014 0.311 
M. galloprovincialis 0.001 1 0.001 0.912 -0.955 0.340 
U. lactuca 0.001 1 0.001 0.789 -0.888 0.375 
Bare substrate 0.001 1 0.001 0.716 0.846 0.398 
C. radiata 0.001 1 0.001 0.670 -0.819 0.414 
Barnacles 0.000 1 0.000 0.305 0.552 0.581 
Enteromorpha sp. 0.000 1 0.000 0.096 -0.311 0.756 
H. haustorium 0.000 1 0.000 0.170 -0.412 0.681 
P. rudis 0.000 1 0.000 0.149 0.386 0.700 
L. scobina 0.000 1 0.000 0.111 -0.334 0.739 
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Kau Point, Perna canaliculus
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Figure 4. 19. Pareto chart for P. canaliculus at Kau Point. 

 

Evans Bay: Relationship among species of colonizers and bare substrate  
 

A MANOVA was performed on arcsine square root-transformed data to test for 

differences in percent cover of functional algal and invertebrate groups, including bare 

substrate. The analysis revealed statistically significant differences in percent cover 

among months and treatments (Table 4.21). The two-way interaction was not significant, 

indicating that percent cover of each group under each treatment was not a function of 

time (p=0.213). 

Table 4.21. Evans Bay: Results of MANOVA for differences in percent cover of bare substrate and 
functional groups of algae and invertebrates among treatments and months. 

Effect λ-value Effect df Error df F p-value 
Month 0.142 84 1033.375 7.870 <0.001 
Treatment 0.670 12 690.833 9.405 <0.001 
Month x Treatment 0.397 252 1045.342 1.079 0.213 

 

The overall model for each group of organisms was accepted (Table 4.22).  
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Table 4.22. Evans Bay: Overall model fit of MANOVA for groups of algae, invertebrates and bare 
substrate. 

Group R R2 SS model df model F p-value 
Bare substrate 0.774 0.599 35.737 87 4.538 <0.001 
Barnacles 0.770 0.592 29.005 87 4.407 <0.001 
Algae 0.661 0.437 17.642 87 2.354 <0.001 
Mussels 0.601 0.362 11.580 87 1.719 0.001 
 

The analysis was subsequently repeated to test for differences in percent cover of 

bare substrate, barnacles, as well as individual algal and mussel species (Table 4.23). The 

analysis revealed statistically significant differences in percent cover of individual 

species among months and treatments. The two-way interaction was also significant, 

indicating that percent cover of each group under each treatment was a function of time 

(p<0.001). 

 

Table 4.23. Evans Bay: Results of MANOVA for differences in percent cover of bare substrate, algal and 
invertebrate species among treatments and months. 

Effect λ-value Effect df Error df F p-value 
Month 0.092 189 2146.515 3.776 <0.001 
Treatment 0.426 27 748.294 9.402 <0.001 
Month x Treatment 0.088 567 2307.306 1.274 <0.001 

 

The overall model was not accepted for two algal species: Porphyra sp. and 

Corallina officinalis, and two mussel species: The greenshell mussel Perna canaliculus 

and the ribbed mussel Aulacomya maoriana (Table 4.24).  
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Table 4.24. Evans Bay: overall model fit of MANOVA for  individual species of algae, barnacles, mussels, 
whelks, limpets and bare substrate ( n-g = non-geniculate coralline species). 

Species R R2 SS model df model F p-value 
Bare substrate 0.774 0.599 37.788 87 4.528 <0.001 
Barnacles 0.771 0.594 27.875 87 4.434 <0.001 
U. lactuca 0.685 0.469 5.759 87 2.675 <0.001 
Enteromorpha sp. 0.655 0.428 13.816 87 2.274 <0.001 
M. galloprovincialis 0.621 0.385 11.390 87 1.902 <0.001 
C. officinalis 0.498 0.248 0.004 87 1.000 0.488 
Porphyra sp. 0.492 0.242 0.056 87 0.969 0.559 
P. canaliculus 0.458 0.210 0.116 87 0.804 0.883 
A. maoriana 0.433 0.187 0.154 87 0.699 0.975 
 

Evans Bay: Effects of caging treatments 
 

Evans Bay: Control plots 

 

Algae quickly colonised the experimental plots and dominated the substrate until 

May 2002, when they were outcompeted by barnacles (Fig. 4.20). Algal cover peaked at 

33.95% in September 2002 and remained at a similar level until January 2003. 

Subsequently, algal cover gradually declined to 7.97% in October 2003. Barnacle cover 

increased and peaked twice, at 78.39% in November 2002 and at 76.27% in February 

2003. Subsequently, barnacle cover declined to 46.04% in June 2003 and then increased 

again, until it reached 60.56% at the end of the experiment. Mussel cover increased for 

the entire experiment, and peaked at 39.50% in October 2003. Bare substrate cover 

declined rapidly to 46.55% in February 2002 and, after a brief increase to 69.70% in 

April 2002, it continued to decline to about 10-20% for the rest of the sampling period, 

reaching 9.92% in October 2003. 
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Evans Bay, control
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Figure 4. 20. Evans Bay, control plots: Percent cover data for algae, barnacles, mussels and bare substrate. 
Points represent mean monthly values with 95% confidence interval error bars. Note different y-axis scales. 

 

Evans Bay: “No roof” treatment 

 

Algal cover peaked at 63.93% in March 2002, after which it gradually declined to 

1.57% in October 2003 (Fig. 4.21). On the other hand, barnacles were slow to recolonise 

the substrate, reaching their maximum cover of 52.36% in January 2003. Subsequently, 

barnacle cover declined and by the end of the experiment it was 27.96%. Mussel cover 

increased and reached the maximum value of 27.14% in October 2003. Bare substrate 

cover, after a rapid initial decline to 7.21% in May 2002, increased briefly to 48.73% in 

August 2002. Bare substrate cover declined again to 18.58% in January 2003 and 

subsequently increased to 42.92% in May 2003, before it reached 24.84% at the end of 

the experiment. 
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Evans Bay, "no roof" treatment
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Figure 4. 21. Evans Bay, “no roof” treatment: Percent cover data for algae, barnacles, mussels and bare 
substrate. Points represent mean monthly values with 95% confidence interval error bars. Note different y-
axis scales. 

 

Evans Bay: Open cage treatment 

 

Algal cover generally exhibited an increasing trend, although it declined rapidly on a 

number of occasions (Fig. 4.22). Eventually, algal cover reached a maximum of 69.27% 

in August 2003. Barnacle cover fluctuated over short periods of time and it peaked twice: 

in November 2002 (48.13%) and February 2003 (52.91%) after which it declined to 

26.90% in October 2003. Mussel cover remained low for the entire experiment, reaching 

6.60% in November 2002 and a maximum of 7.09% in August 2003. Bare substrate 

cover displayed a general decline, with the minimum of 8.89% in March 2003, after 

which it recovered briefly to 59.48% in June 2003 and decreased again to 24.75% in 

October 2003. 
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Evans Bay, open cage treatment
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Figure 4. 22. Evans Bay, open cage treatment: Percent cover data for algae, barnacles, mussels and bare 
substrate. Points represent mean monthly values with 95% confidence interval error bars. Note different y-
axis scales. 

 

Evans Bay: Full cage treatment 

 

After an initial and rapid increase to 47.59% in January 2002, algal cover declined 

to less than 10% until a slight increase to 8.74% in May 2003 and 8.76% in July 2003 

(Fig. 4.23). Algal cover declined further to 3.81% in October 2003. Barnacle cover 

exhibited significant variation over short periods of time. It increased to 57.03% in March 

2002, peaking at 65.17% in January 2003, before declining to 20.24% in April 2003. It 

then increased again to 57.56% in August 2003, before it declined again to 36.96% in 

October 2003. Mussel cover exhibited a slow and steady increase, peaking at 60.17% in 

October 2003. Bare substrate cover decreased rapidly to 18.38% in May 2002, before it 

stabilized at about 20% until March 2003. Subsequently, it declined to 1.24% in April 

2003 and, after achieving a value of 23.98% in June 2003, it eventually reached 6.77% in 

October 2003.  
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Evans Bay, full cage treatment
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Figure 4. 23. Evans Bay, full cage treatment: Percent cover data for algae, barnacles, mussels and bare 
substrate. Points represent mean monthly values with 95% confidence interval error bars. Note different y-
axis scales. 

 

Evans Bay: CTD-Percent cover correlation 
 

A Product-Moment correlation analysis performed for CTD data and percent cover 

data of the functional groups (i.e. bare substrate, algae, barnacles and mussels) revealed a 

significant correlation between temperature and the percent cover of algae, mussels and 

bare substrate, between turbidity and the percent cover of algae, as well as between the 

chlorophyll a and percent cover of algae (Table 4.25). 

Table 4.25. Evans Bay: Product-Moment correlation analysis for CTD and functional groups percent cover 
data.  

Variable Algae Barnacles Mussels Bare substrate 
R=0.415 R=-0.159 R=-0.236 R=0.052 Temperature 
p<0.001* p=0.054 p=0.004* p<0.001* 
R=-0.259 R=-0.037 R=0.052 R=-0.101 Turbidity 
p=0.002* p=0.657 p=0.531 p=0.223 
R=0.223 R=0.055 R=-0.073 R=0.125 Chlorophyll  a 
p=0.007* p=0.505 p=0.379 p=0.131 
R=-0.055 R=0.098 R=-0.103 R=-0.141 Salinity 
p=0.508 p=0.235 p=0.213 p=0.087 

* Significant after Bonferroni correction for multiple testing. 
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Evans Bay: Multiple Regression analysis 
 

Aulacomya maoriana 
 

Multiple Regression analysis revealed a significant (R2=0.623, F=81.316, df=7, 

p<0.001) relationship between the greenshell mussel and the alga Enteromorpha sp. and 

two mussel species: A. maoriana and P. canaliculus (Table. 4.26). The Pareto chart in 

Fig. 4.24 presents the absolute t-values and the significance of these independent 

variables in relation to A. maoriana. 
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Figure 4. 24. Pareto chart for A. maoriana at Evans Bay. 

 

Table 4.26. Aulacomya maoriana, Evans Bay: Results of the Multiple Regression between the ribbed 
mussel and other members of the community. 

Variable SS df MS F t-value p-value 
P. canaliculus 0.467 1 0.467 519.336 22.789 <0.001 
M. galloprovincialis 0.016 1 0.016 18.013 4.244 <0.001 
Enteromorpha sp. 0.004 1 0.004 4.102 2.025 0.044 
Bare substrate 0.003 1 0.003 3.470 1.863 0.063 
Barnacles 0.001 1 0.001 0.631 -0.794 0.428 
Porphyra sp. 0.000 1 0.000 0.036 -0.190 0.849 
U. lactuca 0.000 1 0.000 0.000 -0.015 0.988 
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Mytilus galloprovincialis 
 

Multiple Regression revealed a significant (R2=0.299, F=20.929, df=7, p<0.001) 

interaction between the percent cover of the blue mussel and the percent cover of the alga 

Enteromorpha sp.; two mussel species: A. maoriana and P. canaliculus; barnacles and 

bare substrate (Table 4.27). The Pareto chart in Fig. 4.25 presents the absolute t-values 

and the significance of these independent variables in relation to M. galloprovincialis. 

Table 4.27. Mytilus galloprovincialis, Evans Bay: Results of the Multiple Regression between the blue 
mussel and other members of the community. 

Variable SS df MS F t-value p-value 
Bare substrate 3.659 1 3.659 60.716 -7.792 <0.001 
Enteromorpha sp. 1.731 1 1.731 28.725 -5.360 <0.001 
A. maoriana 1.086 1 1.086 18.013 4.244 <0.001 
Barnacles 0.942 1 0.942 15.634 3.954 <0.001 
P. canaliculus 0.250 1 0.250 4.141 -2.035 0.043 
Porphyra sp. 0.113 1 0.113 1.870 -1.367 0.172 
U. lactuca 0.020 1 0.020 0.330 -0.574 0.566 
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Figure 4. 25. Pareto chart for M. galloprovincialis at Evans Bay. 
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Perna canaliculus 
 

Multiple Regression analysis revealed a significant (R2=0.607, F=76.079, df=7, 

p<0.001) correlation between the greenshell mussel and two other mussel species, A. 

maoriana and M. galloprovincialis (Table 4.28). The Pareto chart in Fig. 4.26 presents 

the absolute t-values of these independent variables in relation to P. canaliculus. 
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Figure 4. 26. Pareto chart for P. canaliculus at Evans Bay. 

 

 
Table 4.28. Perna canaliculus, Evans Bay: Results of the Multiple Regression between the ribbed mussel 
and other members of the community. 

Variable SS df MS F t-value p-value 
A. maoriana 0.329 1 0.329 519.336 22.789 <0.001 
M. galloprovincialis 0.003 1 0.003 4.141 -2.035 0.043 
Enteromorpha sp. 0.000 1 0.000 0.641 -0.801 0.424 
Bare substrate 0.000 1 0.000 0.419 -0.648 0.518 
U. lactuca 0.000 1 0.000 0.037 0.192 0.848 
Barnacles 0.000 1 0.000 0.009 0.094 0.925 
Porphyra sp. 0.000 1 0.000 0.000 0.007 1.000 
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4.4 Discussion 

 
Bottom-up effects 
 

Water column data obtained in this experiment show spatial and temporal 

variability of water parameters between Seatoun and Evans Bay in Wellington Harbour. 

Simultaneously, as indicated by Figs. 4.6, 4.13 and 4.20, the rate of the intertidal 

community recovery was most pronounced at Evans Bay, intermediate rate was observed 

at Kau Point, and the slowest rate at Seatoun. Although Evans Bay appeared as the area 

of Wellington Harbour with significantly more saline, chlorophyll-rich, turbid and 

warmer water (Figures 2.3-2.6 in chapter 2), these bottom-up factors were clearly linked 

to the community development at Seatoun (Table 4.10). Temperature was negatively 

correlated to all significant groups of colonizers, but turbidity was positively correlated to 

algal, barnacle and mussel abundance, as well as bare substrate cover. Chlorophyll a 

concentration was positively correlated to barnacle, limpet and bare substrate cover at 

that site. Similarly, salinity was positively correlated to algal, barnacle, mussel and bare 

substrate cover. At Evans Bay however, the bottom-up effects were most important for 

algae, as this group was significantly correlated with temperature and chlorophyll a, but 

negatively with turbidity (Table 4.25). Also, temperature at this site was negatively 

correlated with mussel cover and positively with bare substrate cover. These results 

establish a link between the development of intertidal communities and the water column 

parameters regulating the dynamics in such communities within Wellington Harbour. 

Greater inputs of organic particles at Seatoun, expressed jointly as turbidity and 

chlorophyll a levels, as well as increase in salinity, was clearly vital to greater algal, 

barnacle and mussel cover. This suggests that these bottom-up factors fuelled the 

community dynamics at Seatoun and the competition for space and exclusion taking 

place among these three invertebrate guilds. However, as shown by Figures 4.6-4.9, the 

amount of free space at the end of the experiment at Seatoun was still significant, and 

these results are somewhat at odds with the widely accepted theoretical assumption that 

competition occurs only when the resource (i.e. space) is in limited supply (Nybakken, 

2001). While it is possible that such contradiction resulted from some experimental bias, 

such as a non-additive cage effect (e.g. Peterson & Black, 1994, Chapman, 2000), a role 
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of other, habitat-related factors cannot be ignored. This result possibly was a combination 

of community dynamics (including competition for space that occur at Seatoun), and 

adverse environmental conditions (i.e. physical disturbance). At Seatoun, the intertidal 

communities are constantly exposed to high-energy southerly swells moving large 

volumes of shingle and suspended sediments that subsequently scour the rocks (pers. 

obs.), thus presumably slowing down the competition and the overall succession rate in 

the local community. At Evans Bay, recruitment of algae and their subsequent substrate 

colonisation were clearly stimulated by temperature and chlorophyll, but negatively 

affected by turbidity (Table 4.25). This confirmed the results of the water column 

parameters analysis (see chapter 2), in which Evans Bay was marked as the warmest and 

most chlorophyll-rich site. While temperature stimulated the settlement and recruitment 

of algal propagules, the recolonisation of the substrate by algae was simultaneously 

inhibited by turbidity (i.e. water cloudiness), which means that the algal recruits were not 

receiving enough light necessary for the photosynthetic activity. However, the fact that 

other links between the water column parameters and percent cover of intertidal 

community members were not detected at Evans Bay makes the estimation of the bottom-

up factors at this site difficult. Given the fact that the water circulation in the inner 

Harbour is much slower than in the outer Harbour (Heath, 1977), one can expect that 

organic particles present in Evans Bay might be retained there for longer periods of time. 

Also, without a major, natural freshwater outlet, seawater in Evans Bay can maintain its 

high salinity, whereas Seatoun can occasionally experience significant salinity dips. 

Further, local hydrology and the influence of the high turbidity, freshwater plume coming 

out of the Hutt River cannot be ignored. The plume enters Evans Bay very infrequently 

but often travels as far south as Seatoun, carrying high volumes of organic particles that 

can be potentially utilized by members of intertidal communities.  

 

Results from the present study reflect the importance of coastal productivity, 

combined with bottom-up factors, such as salinity and temperature in regulation of 

invertebrate communities in the intertidal zone reported elsewhere. Sanford & Menge 

(2001) point at the importance of nearshore primary productivity and its influence on the 

dynamics of intertidal communities in Oregon, USA. The authors hypothesize that 
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bottom-up factors, including phytoplankton abundance, are important in the regulation of 

intertidal communities, in particular during the upwelling relaxation. In that study, 

barnacles (Balanus glandula and Chthamalus dalii) attained larger sizes at a site with 

consistently higher chlorophyll a concentration, but the authors noted that high growth 

rates continued even after chlorophyll concentration had decreased. Simultaneously, 

zooplankton concentration and water temperature were elevated, thus leading the authors 

to the conclusion that the increased barnacle growth might be related to combined effects 

of several additional bottom-up factors, such as zooplankton abundance and temperature. 

The mechanism behind the increased invertebrate growth following increase in 

temperature most likely results from the increase in filtering activity, food intake and 

subsequent assimilation (e.g. Sanford et al., 1994). Further, inhabitants of rocky intertidal 

communities, such as barnacles (Young & Gotelli, 1988; Anderson, 1994) and mussels 

(Davenport et al., 2000; Zeldis et al., 2004) have been described as capable of capturing a 

variety of foods, including crustacean and bivalve larvae suspended in the water column.  

 

As signaled before, local hydrology can be of a significant importance to the 

intertidal communities. High-turbidity, riverine plume originating from the Hutt River 

can potentially provide high concentrations of nutrients to such communities, thus 

stimulating their growth. Local hydrology and availability of nutrients were also 

described as crucial bottom-up factors in a study of invertebrate growth and substrate 

colonization performed by Menge et al. (2003). The authors used a comparative-

experimental approach similar to the one employed in the present study, where local-

scale experimentation was replicated at multiple sites spanning larger scale on the west 

and east coast of the South Island, New Zealand. Examination of the structure of 

intertidal communities suggested that particular hydrological conditions, such as 

upwelling, followed by intense water mixing that brought nutrients to the water surface, 

and subsequent elevated concentration of nutrients stimulated invertebrate growth. At 

sites with high nutrient subsidies mussel and barnacle abundance were greatest, following 

equally high recruitment.  
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Top-down effects  
 

Bottom-up inputs are often strongly associated with top-down effects, thus rocky 

intertidal communities are effectively regulated by both factors.  In the present study, the 

top-down effects were limited, and only manifested through the chlorophyll a-stimulated 

cover of barnacles and herbivores (i.e. limpets) at Seatoun (Table 4.10). Such relationship 

potentially resulted in competition for space between the two groups, as the cover of both 

barnacles and limpets was clearly increasing with chlorophyll levels. Similar top-down 

effects of herbivores on the intertidal community regulation were described in the South 

Island, New Zealand, by Menge et al. (1999). In that system, high nutrient levels on the 

west coast stimulated activity of grazers such as C. radians and C. ornata, which in turn 

had impact on algal cover. In the present study, whelks were commonly observed at 

Seatoun, although their percent cover was not significantly correlated to prey cover 

(Table 4.10). Another group of predators potentially foraging is crabs. Crabs have been 

reported as able to feed both in the intertidal and subtidal zone, by migrating from the 

subtidal into intertidal areas at high tide (Hunter & Naylor, 1993). Because crabs are 

mostly active in spring and summer (Aagaard et al., 1995), and given the fact that the 

experiment was commenced in austral spring, it is possible that crabs had some effect on 

the invertebrate recruitment onto the experimental substrate in the present study. 

However, no evidence of crab predation on shells of recruiting mussels was seen (i.e. 

chipped shells). It is also possible that the size of the open cages would prevent crabs 

from accessing the prey. Sea stars are uncommon in the intertidal zone in Wellington 

Harbour, and have been reported as mainly limited to the subtidal zone (Beadman et al., 

2003; Menge et al., 2003). During the entire experiment only one sea star Stichaster 

australis was seen at Seatoun. It is also possible that birds, such as sea gulls and 

oystercatchers common in Wellington area, preyed intertidally on invertebrates recruiting 

onto the experimental substrate (Seed, 1969), although the height of the open and “no 

roof” cages (90 mm) probably made the access to prey difficult, thus discouraging the 

avian predators.  
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Algae, barnacles and mussels: patterns of intertidal succession and competition 

 

Availability of clear substrate often leads to colonization by opportunistic species 

(for example, filamentous green and red algae), characterized by short life span, short 

development to reach maturity, high death rates and the ability to reproduce more than 

once per year. Often, these species are soon replaced by other, more competitive, 

dominant and slower-growing species, such as mussels or algae, which eventually 

colonise the entire available space (Luckens, 1976). Timing of the space clearance 

following the disturbance is vital, because the first species that will colonise the available 

surface are the species whose propagules are ready to settle. The very concept of 

succession assumes that there is a quantitative difference between initial and climax 

stages of the community, where the changes in the number and kind of colonizing species 

are detectable (Poore, 1968). 

 

In the present study, substrate was cleared in November (austral spring), giving 

way for recolonisation mostly to short-lived algae, such as Enteromorpha sp. or Ulva sp. 

The patterns of succession and the intertidal community recovery varied among sites and 

were fastest at Evans Bay, where first signs of recruitment of pioneering algae appeared 

as soon as three months after the substrate clearance. Unlike at Seatoun and Kau Point, 

the succession at Evans Bay visibly proceeded from algae, later outcompeted by 

barnacles that eventually were smothered by mussels that dominated the substrate. When 

excluded from the substrate by mussels, barnacles were gregariously settling on mussel 

shells instead. At Seatoun and Kau Point however, as pointed out before, the substrate 

recolonisation was much slower and most of the remaining substrate was still bare at the 

end of the experiment. While at Evans Bay some plots experienced 100% recovery to the 

pre-clearance levels with mussels totally occupying the substrate, none of the plots at 

Seatoun and Kau Point had such high recovery rate even after 24 months of the 

experiment. These results can be attributed to numerous factors, including localized 

hydrology (exposure to destructive, high-energy swells at Seatoun and Kau Point but not 

at Evans Bay; slower water exchange with the rest of the Harbour and longer water 

retention at Evans Bay) directly associated with bottom-up effects (i.e. local hydrology 
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conditions of Evans Bay resulting in higher temperature, salinity and chlorophyll levels), 

which in turn significantly affected community recovery and succession. 

 

During this experiment, competition was observed at Evans Bay between the 

ephemeral algae, such as Enteromorpha sp. and Ulva lactuca, and later arriving 

barnacles, which subsequently outcompeted those algal species. Hawkins (1981) 

examined the relationship between barnacles and algae in the absence of grazers on 

intertidal shores in England and proposed a successional mechanism in which barnacle 

shells served as a refuge for diatoms and green alga Ulothrix, presence of which seemed 

to facilitate the establishment of later successional algae, such as Fucus. Foster et al. 

(2003) reported that ephemeral algae, such as Enteromorpha spp., Ulva spp., Porphyra 

spp. and Urospora spp. colonised the substrate and could grow rapidly. Subsequently, 

sessile consumers arrived, such as barnacle species Balanus glandula and Chthamalus 

spp., grazing gastropods Littorina sp. and limpets Tegula funebralis (although they did 

not manage to outcompete the algal pioneers). At Evans Bay however, they did (and to a 

lesser extent at Seatoun and Kau Point), as the succession from algal stage, through 

barnacles to mussels was clearly noticeable at that site and it followed a pattern similar to 

the one reported by Menge (1976) and Lubchenco & Menge (1978). These authors 

concluded that the mussel M. edulis could overgrow several species of macroalgae and 

smother barnacles, eventually claiming the entire available space. A very similar 

successional mechanism has been revealed in Wellington Harbour, where algal species 

give way to barnacles, which are in turn outcompeted by mussels. Simultaneously, 

mussel shells are utilized by settling barnacles as the secondary substrate available for 

secondary barnacle settlement.  

 

Barnacle walls, filamentous algae or already established mussel clumps have been 

described as mediators of mussel recruitment, without which mussel larvae seem to be 

unable to successfully recruit and colonise the cleared substrate in the intertidal zone 

(Navarrette & Castilla, 1990). In this process, mussel larvae depend on barnacles as 

facilitators, although, as signaled before, during the succession in the intertidal zone 

mussels are capable of taking over the entire free surface, excluding barnacles that they 
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had previously needed for successful recruitment. This phenomenon, known as the 

competitive exclusion principle, depends on the size and the number of clear substrate 

patches in the barnacle bed. More space for mussel recruitment will be available if 

barnacle beds are disrupted in several small patches, than if only few larger patches are 

present (Navarrette & Castilla, 1990; Lohse, 1993). Competitive exclusion was detected 

in the present study, in particular at Evans Bay, where barnacle cover was systematically 

diminishing due to severe competition for space from mussels. At some point, however, 

barnacle percent cover started to increase due to barnacles settling on mussel shells, using 

them as a secondary substrate. This process can serve as an example of the successive 

facilitation and exclusion theory (Buschbaum, 2001), simultaneously taking place in the 

rocky intertidal zone. During their secondary settlement, barnacles in Evans Bay 

preferred certain areas of mussel shells, such as siphonal apertures of living mussels, 

whereas fragments of shells or shells of dead mussels were avoided (Buschbaum, 2001).  

In such process, barnacle larvae exploit physical and chemical cues, such as surface 

contours, water currents carrying food near the siphonal apertures, or biofilms developing 

on the mussel shells (Crisp & Barnes, 1954; Crisp & Meadows, 1963). The transition 

from barnacles to mussels observed at Evans Bay could also depend on the presence of 

algal canopy, because algae can create conditions of increased moisture and shelter from 

the sun and, to an extent, from predatory whelks.  

 

The effect of treatment on mussel cover 

 

 Caging experiments in which invertebrate communities are protected from 

predators demonstrate that predation has predictable, long-term consequences on 

developing mussel communities (Osman & Whitlatch, 2004). Freed from predation, such 

communities are no longer regulated in their species diversity and are soon dominated by 

the most competitive member. Mussels have been shown in this process as capable of 

excluding other species, such as algae and barnacles, from the primary space (e.g. Paine, 

1966, 1974; Harger, 1972, Menge et al., 1986) and simultaneously providing for those 

species secondary substratum on their shells (Paine, 1976; Menge et al., 1986). In the 

present study, mussels were shown as able to increase their cover inside the experimental 
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plots when protected from their predators by the full cage treatment. This tendency to 

dominate available substrate and exclude other community members was particularly 

swift and pronounced at Evans Bay (Fig. 4.23), although percent cover at Seatoun and 

Kau Point also significantly increased under conditions of full protection from predators 

(Figs. 4.9 and 4.16, respectively). However, mussels exposed to (mainly invertebrate) 

predation under the open cage treatment did not manage to dominate the experimental 

plots and exclude other community members (see Figs. 4.8 for Seatoun, 4.15 for Kau 

Point and 4.22 for Evans Bay), which points at predation as a factor structuring species 

diversity in the intertidal communities. These results confirm outcomes reported by other 

researchers at other locations. In a similar experiment, Menge (1976) tested for 

competition between barnacles and mussels in New England. The author used full cage 

treatment to prevent a whelk Thais lapillus from accessing its prey Semibalanus 

balanoides and Mytilus edulis. Sideless cages (i.e. open cage treatment) were used to 

control for shading effects of cages and marked, undisturbed areas were used as controls. 

Menge reported a mechanism of competition very similar to the one found in the present 

study at Evans Bay, namely that the interspecific competition between barnacles and 

mussels was discernible only when both guilds were freed from predator pressure, under 

full cage treatment, and M. edulis would eventually outcompete B. balanoides for space. 

A facilitation-exclusion mechanism between barnacles and mussels was thus revealed, 

because in conditions when whelks were present, mussels were controlled and barnacles 

could persist, thus facilitating mussel recruitment into the community. The author 

concluded that predation is the dominant biological interaction that structures 

communities. Navarrete (1996) studied the impact of predation by whelks Nucella 

canaliculata and Nucella emarginata on a mid-intertidal successional mussel community 

in Oregon, USA. In that study, persistent exclusion of whelks using full cage treatment 

lead to changes in mussel abundance, community composition and species diversity. 

Further, a significant increase in the cover of mussels Mytilus trossulus was found, while 

Mytilus californianus experienced a slower and smaller increase in abundance. Results 

from the present study reflect this, as Mytilus galloprovincialis in Wellington Harbour 

can clearly outcompete other mid-intertidal community members, including the two 

sympatric mussel species Aulacomya maoriana and Perna canaliculus. Navarrete (1996) 
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evaluated artifacts introduced by cages, such as shading, by setting up open cages that 

provided shading and simultaneously allowing whelks and other invertebrates in and out 

of the experimental plots. In addition, open cages like these stop bird predation. 

However, the author did not find a significant difference in mussel abundance between 

open cages and marked controls, which suggests that desiccation exerts less pressure on 

mussels than predation.  

 

At wave-exposed sites, the energy and nutrient transfer onto the shore can be 

greater than at protected sites, and can thus stimulate intertidal community development, 

competition and predation (Menge, 1976). This theoretical assumption appears to be at 

odds with the results from the present study, where the intertidal community at more 

exposed sites (Seatoun and Kau Point) developed less successfully and more slowly than 

the intertidal community at the most sheltered site (Evans Bay), where the succession 

from bare substrate to the mussel-dominated substrate was fastest. It is possible therefore 

those communities that are less disrupted and simultaneously can experience high 

nutrient inputs (i.e. concentrations of chlorophyll), such as Evans Bay in this study, can 

develop better. On the other hand, site-specific comparisons presented in Pareto charts 

and the results of Multiple Regression suggest that the dynamics between mussels and 

other intertidal community members were most intense at the most exposed site (Kau 

Point), where all three mussel species (A. maoriana, M. galloprovincialis and P. 

canaliculus) were interacting with as many as 13 other intertidal algal and invertebrate 

species (Tables 4.18-4.20; Figs. 4.17- 4.19), which would support Menge’s (1976) claim 

that the community dynamics decreases with decreasing exposure to wave shock. 

However, the intensity and scale of the dynamics between each mussel species and other 

community members were also intense at Evans Bay, the most sheltered site, where 

mussels interacted with 11 other intertidal species (Tables 4.26-4.28; Figs. 4.24–4.26). M. 

galloprovincialis and A. maoriana were revealed as the two mussel species that 

experienced most of the interaction with other community members from all guilds at all 

sites, while percent cover of P. canaliculus remained relatively uncorrelated with other 

community members. 
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 Results obtained in the present study partially confirm the findings of similar 

experiments at other locations (e.g. Harger 1972; Paine, 1974, 1976; Menge, 1976; 

Menge et al., 1986; Buschbaum, 2001; Foster et al., 2003; Menge et al., 2003). In this 

experiment, type of cage treatment had a significant effect on the recovery rate of mussel 

communities at all experimental sites. For the three mussel species investigated here, 

overall recolonisation rate of available substrate was markedly higher under conditions of 

protection from predators and desiccation (the full cage treatment), or under conditions of 

protection from predators, but not from desiccation (the “roof missing” treatment), which 

suggests that protection from predators gave mussel recruits greater chance to establish 

themselves on the substrate than just protection from desiccation. In addition to this, the 

open cage treatment, correcting for the effects of shading (Navarrete, 1996), had an effect 

for all three species in most cases. There are exceptions to this, however. For example, 

there was little difference in percent cover of mussels between the control and the “no 

roof” treatment at Seatoun (Figs. 4.6 and 4.7) and Evans Bay (Figs. 4.20 and 4.21).  

 

Summary 

 

Present results confirm the findings of similar experiments conducted elsewhere 

in that mussels are dominant members of intertidal communities, able to outcompete 

other community members, including other mussel species. However, these findings 

significantly add to our knowledge of dynamics in intertidal communities dominated by 

mussels since most of such predator exclusion, substrate recolonisation experiments have 

involved one or two mussel species, whereas the present study describes three mussel 

taxa. Further, by investigating succession and competition within a dynamic and speciose 

environment such as Wellington Harbour, the present study sheds more light onto the 

often complex nature of these ecological mechanisms. Finally, the present study 

extensively examined temporal and spatial community recovery, linking the findings to 

the environmental factors, such as the water column parameters and hydrology regimes. 

 

M. galloprovincialis, commonly found throughout the entire intertidal zone in 

Wellington Harbour, was the most successful and competitive species, recruiting onto the 
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cleared substrate at the highest rate, thus colonizing the plots in the most efficient way. 

The blue mussel took the greatest advantage of the conditions of protection from 

predators and desiccation, hence the highest percent cover recorded in full cage 

treatment. 

 

A. maoriana, also common in the intertidal zone, was the second most efficient 

colonizing mussel species. A number of ribbed mussel recruits were found in open cage 

plots, where normally they would be expected to be consumed by predators. One possible 

explanation for this phenomenon could be that those recruits, although readily available 

to predators, might not have been of sufficient food value (i.e. expected energy unit 

gained per handling time), therefore a whelk would have to expend more energy than it 

would gain from consuming those mussels. 

 

P. canaliculus, limited in its distribution mainly to the low-intertidal zone 

(although some green mussel individuals were recorded in the mid-intertidal),  recruited 

very poorly onto the experimental plots, most likely being the result of the inability of 

recruits of this species to cope with desiccation at the tidal height of cage deployment. 

Therefore, drawing any meaningful conclusions related to the effects of experimental 

treatments for this species is difficult. 

 

The mid-intertidal zone in Wellington Harbour studied in this experiment was 

revealed as a complex, multi-species system, with complex community responses 

following the substrate clearance. No simple description for this system can be offered. 

After 24 months of the experiment, Evans Bay was shown as the site where the 

community recovery was fastest, while at Seatoun the recovery rate was slowest. 

Although the percent cover results for each experimental treatment are not clear-cut, the 

percent cover of mussels at Evans Bay was highest, although uncorrelated to the bottom-

up factors, while at Seatoun the bottom-up factors were most pronounced but the mussel 

percent cover was lowest, which suggests that the impact of physical disturbance 

processes significantly slows down the community recovery at that site.  
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CHAPTER FIVE:  

MUSSEL STRENGTH OF ATTACHMENT  

AND TOLERANCE TO DESICCATION 

 

5.1. Introduction 

 

From the perspective of rocky intertidal communities, wave exposure has been 

regarded as an important factor, structuring community successional pathways, activity of 

mobile predators and trophic relations among taxa within such communities. In aquatic 

environments, waves are associated with rapid water accelerations, sometimes reaching 

400 m s–2. Mussels subjected to wave action and high water velocities experience two 

types of forces: drag and lift. Drag forces push the animals downstream, acting on their 

sides that are exposed to the flow, while lift forces (also acting on the exposed sides) tend 

to pull them across the flow, away from the substrate.  Consequently, the extent to which 

these forces are effective depends on the size and shape of the animals (Denny, 1993, 

1995). Filter feeders, such as mussels and barnacles, and sessile predators, such as sea 

anemones, benefit from wave action since water movement can enhance their food 

supply. However, high exposure to waves often results in a wave-induced stress, 

potentially limiting growth, survival and feeding activity of intertidal marine biota 

(Menge & Sutherland, 1976, 1978; Palumbi, 1984; Carrington Bell & Denny, 1994; 

Hammond & Griffiths, 2004). Typically, in an intertidal system, larger individuals are 

able to produce more offspring and thus contribute to the next generation, while smaller 

mussels produce fewer offspring. In a wave-swept environment, however, these 

relationships are inverted and now larger individuals are at risk of being removed from 

the community by hydrodynamic forces of drag and lift, while smaller and more 

streamlined ones experience less drag and lift, and are therefore more likely to survive 

and continue to reproduce. Thus, in a wave-exposed, rocky intertidal system, 

hydrodynamic forces control marine organisms and set a balance between their survival 

and reproductive output (Fig. 5.1). Through the course of evolution these organisms have 

adapted to their environment in such a way that larger individuals, despite their higher 

resistance to the water flow and the risk of being dislodged by wave-associated forces, 
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are able to increase their resistance to hydrodynamic elements with the increase in size. 

Nevertheless, with double increase in size, larger mussels now are forced to cope with 

eightfold increases in accelerational forces growing faster than the organisms’ strength, 

thus making the organisms even more likely to be dislodged from the colony (Denny, 

1995). 

mussel size 

chance of 
survival 

reproductive 
output 

wave 
exposure 

 

Figure 5. 1. Schematic representation of the competing factors in a wave-swept rocky environment 
(adapted from Denny, 1995). 

 

Desiccation is another physical factor imposing physiological constraints on 

growth and survival of members of rocky intertidal communities. As soon as marine 

organisms are exposed to air, they lose water by evaporation. In order to survive in the 

intertidal zone, the members of intertidal communities have evolved mechanisms 

preventing serious water loss and heat shock, such as reducing heat gain from the 

environment and increasing heat loss from the body (Benedetti-Cecchi et al., 2000). 

Relatively large body size can help reduce heat gain, as large body size also reduces 

surface area relative to volume and thus less area for gaining heat. However, in some 

intertidal organisms (such as mussels, barnacles and limpets), the ability to cool 

themselves by evaporating water and simultaneously avoiding desiccation has been found 

(Nybakken, 2001). This can be done by trapping an amount of water inside the animal’s 

mantle cavity, while keeping the shell valves tightly closed (mussels, barnacles), or 

remaining in close contact within a scar of the substrate and sealing the gap between the 

scar and the animal’s shell with a fold of the mantle (limpets) (Davis, 1969). Typically, 
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mussels living higher on the shore experience more severe desiccation stress than mussels 

lower on the shore, therefore they are less likely to survive (Fig. 5.2). 

survival 

height on 
shore  

 

 

Figure 5. 2. Schematic representation of factors involved in survival of mussels exposed to desiccation. 

 

Synergistic interactions of several factors, such as desiccation and wave exposure, 

are usually involved in shaping the intertidal invertebrate distribution patterns. While 

desiccation regulates the community structure in the upper intertidal ranges and can alter 

the pathways of succession due to the fact that some organisms unable to tolerate heat 

indefinitely and are forced to give way to other, more resilient ones (for example 

mussels), wave action has the strongest effect on biomass and size structure of 

invertebrate communities at low- and mid-intertidal levels, (Bustamante et al., 1997; 

McQuaid et al., 2000).  

 

This chapter investigates the role two important physical factors play in intertidal 

community regulation: wave action and desiccation. Both of these factors affect mussel 

distribution within the zone (see chapter 1), and thus can affect the species diversity and 

community composition (Barnes & Hughes, 2002). Wave action (or log pounding) can 

remove individuals, move high loads of sediments or suppress growth, so that mussel 

populations living under significant wave action consist of smaller individuals (McQuaid 

et al., 2000). As described in the previous chapter, wave action can lead to formation of a 

new patch of clear substrate that suddenly becomes available for recolonisation (Petraitis, 

1995). Mussels’ ability to cope with aerial exposure and desiccation also decides about 

population- and community-level interactions (Helmuth, 1999), often resulting in higher 

parts of the intertidal zone inhabited by smaller individuals (Griffiths, 1981). Thus, 
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thermal stress has been considered to be among the most important abiotic factors of 

mussel distribution, setting up their vertical limits (Denny & Paine, 1998). The present 

chapter investigates how strength of attachment to the rocky substrate in three sympatric 

mussel species is affected by wave action at sites facing north and south in Wellington 

Harbour.  In a separate experiment, individuals from the same three mussel species were 

exposed to aerial temperatures and desiccation stress at various height levels within the 

intertidal zone in Wellington Harbour. In both experiments, mussel response to the 

stressful agents both at north- and south-facing sites was investigated. 

 

Study system 

 

As a body of water with highly variable exposure to winds, and wave action as a 

result of this, Wellington Harbour constitutes a model system for studying strength of 

attachment of intertidal mussels. In Wellington, there is a strong dominance of northerly 

and southerly winds, with roughly twice as many northerlies as there are southerlies. 

Typically, northerly winds are very gusty, while the velocity of southerlies is more 

constant due to the uninterrupted passage of the southerly winds over water. Although 

southerlies are less frequent and less gusty, they are about twice as strong as northerlies, 

most likely a result of the great wind acceleration on the Kaikoura coast (McConchie, 

2000). For this reason, southerly-generated oceanic swells and waves carry more energy 

than northerly-generated waves and therefore intertidal mussel communities at south-

facing sites within Wellington Harbour receive high amount of wave pounding, which 

can affect the processes of development and dynamics within such communities (Dayton, 

1971; Underwood et al., 1983; Bustamante et al., 1997).  
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Figure 5.3. Location of experimental sites in Wellington Harbour (adapted from Molloy & Smith, 2002). 
Strength of mussel attachment experiments (blue) were conducted at: BB – Balaena Bay, SE – Seatoun, 
KPN – Kau Point north, PH – Point Howard, SB – Scorching Bay and KPS – Kau Point south. Desiccation 
experiment (red) was conducted at FL – Front Lead light.  

 

5.2. Materials and Methods  

 

Effects of wave exposure on mussel strength of attachment 

 

In order to investigate the influence of wave exposure on mussel survival, a series 

of measurements of the mussel strength of attachment (SoA) to the rocky surface was 

conducted. Since quantifying wave exposure at sites was logistically impractical, they 

were subjectively classified as north- or south-facing prior to sampling. Classification 

was based on the aspect of mussel beds to the prevailing sea conditions (McQuaid et al., 

2000). No mean wave height data were collected. Three south-facing sites (Scorching 

Bay, Kau Point South and Point Howard) and three north-facing sites (Seatoun, Kau 

Point North and Balaena Bay) were selected (Fig. 5.3). Measurements of SoA were 

conducted using a spring balance (e.g. Gardner & Skibinski, 1991; Willis & Skibinski, 
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1992) and a set of laboratory stand jaws, tightened around each individual mussel and 

pulled perpendicular to rock with the spring balance (Fig 5.4). In order to avoid 

experimental bias associated with the SoA measurements, only mussels growing on flat 

rocky surface were examined in this experiment (mussels growing in cracks and crevices 

were excluded). The number of byssal threads was not recorded. The stainless steel 

spring balance (Rapala VMC Corp, MN, USA; model ProGuide 50lb.) was equipped 

with a marker slide that remained at the maximum reading after the mussel had been 

removed from the rock. The spring balance was factory-calibrated to the accuracy of 200 

g. The measurements of SoA were expressed in kg (effectively the force) required for the 

mussels to be removed from the substrate.  

 

On each sampling occasion, 30 mussels of each species (Aulacomya maoriana, 

Mytilus galloprovincialis and Perna canaliculus) were selected at each site and detached 

from the rock with the equipment described above. Subsequently, shell length (SL) of 

each individual was recorded. All measurements were conducted in the low intertidal 

zone. The measurements of SoA were repeated seasonally, between austral winter (June 

2002) and austral spring (October 2003). Because the seasonality of SoA and the aspect 

effect were of interest, data were obtained for the following austral seasons: winter 2002 

(June 2002), spring 2002 (September 2002), summer 2002 (December 2002), autumn 

2003 (April 2003), winter 2003 (July 2003) and spring 2003 (October 2003).  

 

Data analysis 

 

Data were tested for normality of distribution and homogeneity of variances. 

Subsequently, since the distribution normality requirements were not met, SL data were 

log10-transformed and SoA data were square root-transformed. In order to investigate 

spatial (site), temporal (seasonal), species- and aspect-specific (south-facing vs. north-

facing sites) differences in SoA of all three mussel species, two separate ANCOVA 

techniques were employed. In the first analysis, transformed SoA data were specified as a 

dependent variable, while all sites, all seasons and all three mussel species were specified 

as independent factors, while transformed SL data were specified as a covariate. In order 
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to investigate spatial and temporal variation of species-specific SoA, a series of post-hoc 

Honest Significant Difference (Tukey HSD) tests was performed. Subsequently, the 

second ANCOVA was performed. In the analysis, transformed SoA data were specified 

as dependent variable, while season, species and the sites aspect (north- and south-facing) 

data were specified as crossed factors. As with the first ANCOVA, a series of post-hoc 

Honest Significant Difference (Tukey HSD) tests was performed in order to investigate 

spatial and temporal variation of species-specific SoA. Pearson coefficient was employed 

to investigate species-specific correlation between SoA and shell length. In order to avoid 

spurious correlations possibly driven by site and season effects in this analysis, residuals 

of SoA and SL were used instead of the raw data.  

 

 

 

Figure 5.4. Spring balance and stand jaws used to measure the strength of mussel attachment in this study. 
The arrow indicates the marker slide. 

 

Effects of desiccation on mussel survival  

  

The effect of desiccation on the survival of mussels in the intertidal zone exposed 

to varying desiccation levels was investigated. An experiment was conducted in which 

groups of mussels were placed at different tidal levels around a piling structure (i.e. Front 

Lead light) in the main shipping channel in Wellington Harbour (Fig. 5.3). On each 
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sampling occasion, a group of 60 mussels (20 mussels per species) were taken from the 

intertidal zone on the piling structure at Front Lead light and placed in each of 6 nets that 

were subsequently tied at different tidal heights within the intertidal zone around a pile at 

Front Lead light (Fig. 5.5). Each net was assigned to five experimental levels (hereafter 

referred to as treatments): 0.3m, 0.6m, 0.9m, 1.2m and 1.5m above the chart datum. An 

additional net with the same number of mussels from the same three species was placed 

below chart datum, therefore acting as a control net. Chart datum can be defined as 

reference depth of water at the lowest astronomical spring tide to which all depths and 

drying heights on a chart are related. Chart datum is not a horizontal surface, but may be 

considered as such over a limited local area  (www.epa.qld.gov.au/environmental_management, 

www.poal.co.nz/glossary). Thus, each net contained 20 green mussels, 20 blue mussels and 

20 ribbed mussels. Such arrangement of experimental nets was repeated on the north- and 

south-facing piles at Front Lead, as the mussel survival was expected to vary according to 

different levels of solar radiation on the north- and south-exposed sides. The 

experimental nets were left for one month. Upon each visit to Front Lead, each net was 

opened and survival of each mussel was checked by pressing the shell valves or inserting 

wire inside the mantle cavity. If a gaping mussel did not close its valves in response to 

pressing, it was counted as dead. Similarly, a lack of reaction to insertion of a wire inside 

the mussel’s mantle cavity also qualified it as dead. Thus, for the purposes of statistical 

analysis mussels were assigned to two groups: those who survived (Y) and those who did 

not (N). Desiccation tolerance data were obtained for the following austral seasons: 

summer 2002 (January 2002), autumn 2002 (April 2002), winter 2002 (August 2002), 

spring 2002 (November 2002), summer 2002 (January 2003) and autumn 2002 (April 

2003).  

 Quantitative solar radiation data for Wellington Harbour were provided by 

Greater Wellington, Environmental Division. The data were collected only at one site in 

Wellington region – Waterloo in Lower Hutt. The data present the global solar radiation 

in the region, and as such do not reflect the north- and south-related distinction. 
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Data analysis 

 

Mussel SL data were collected from the nets deployed on north- and south-facing 

sides of Front Lead, hereafter referred to as “facing north” and “facing south” sites. The 

SL data were tested for normality of distribution and homogeneity of variances. Since the 

normality requirements were not met, the data were log10-transformed. Subsequently, the 

Logistic Regression analysis was performed on mussel survival data, where Y in the data 

set denoting an alive mussel was given value 1 in the analysis, while N in the data set 

denoting a dead mussel was given value 0 in the analysis.  Thus, a binary data set was 

created for the analysis. Logistic Regression employed here investigated the relationship 

between the response variable (1 vs. 0) and the following independent variables: site, 

season, tidal height and species treated as categorical factors and log10-transformed SL 

data as a covariate. Logistic Regression is useful for situations in which the presence or 

absence of a characteristic depends on a set of factors. It is similar to a linear regression 

but is more appropriate to a data set with binomial data, as was the case in this study. The 

analysis introduces a so-called Wald statistic and a p-value for that statistic. The Wald 

statistic is a test of significance of the regression coefficient based on maximum 

likelihood estimates. Subsequently, the Product-Moment correlation coefficient was 

employed to estimate the correlation between the shell length of each species and the 

residuals, thus revealing the probability of survival of each mussel according to its shell 

length after allowing for site, season and treatment effects. Finally, LD50, lethal dose of 

exposure to desiccation at which half of individuals died, was estimated for each species 

at all treatment heights on north- and south-facing shores.  

 



Chapter Five                                                       Strength of Attachment and Desiccation Tolerance 

 192

 
Figure 5.5. Front Lead: a view of the north-facing side. 

 

5.3. Results 

Effects of wave exposure on mussel attachment 
 

First ANCOVA (R2=0.483, F=26.789, df=108, p<0.001) revealed significant 

differences in SoA among sites, seasons and mussel species (Table 5.1, Fig. 5.6). All 

interaction terms were significant, indicating that SoA varies differentially according to 

location within the Harbour, the season and the mussel species.  

 

Table 5.1. ANCOVA results for differences in SOA among sites, species and seasons, with shell length 
(SL) as a covariate. 

Effect SS df MS F p-value 
SL 39.1077 1 39.10765 260.637 <0.001 
Season 51.5394 5 10.30788 68.698 <0.001 
Site 29.8344 5 5.96688 39.767 <0.001 
Species 49.3317 2 24.66586 164.388 <0.001 
Season*Site 59.5335 25 2.38134 15.871 <0.001 
Season*Species 14.2808 10 1.42808 9.517 <0.001 
Site*Species 14.0704 10 1.40704 9.377 <0.001 
Season*Site*Species 21.8965 50 0.43793 2.918 <0.001 

 
Second ANCOVA (R2=0.402, F=59.201, df=36, p<0.01) revealed significant 

differences in mussel SoA among all seasons, all sites and between sites facing north and 

south. Also, all interaction terms were significant (i.e. season*species, season*aspect, 

species*aspect and season*species*aspect) (Table 5.2). Significant differences in SoA 



Chapter Five                                                       Strength of Attachment and Desiccation Tolerance 

 193

revealed according to site aspect, with generally greater SoA in all three species on south-

facing shores. P. canaliculus was shown as the species with the highest SoA, followed by 

A. maoriana and M. galloprovincialis. This pattern was present in all seasons for which 

measurements were recorded.  

 
Table 5.2. ANCOVA results for differences in SOA among species, seasons and site aspect, with shell 
length (SL) as a covariate. 

Effect SS df MS F p-value 
SL 39.284 1 39.284 231.650 <0.001 
Season 52.203 5 10.441 61.566 <0.001 
Species 54.778 2 27.389 161.506 <0.001 
Site aspect 12.562 1 12.562 74.074 <0.001 
Season*Species 12.831 10 1.283 7.566 <0.001 
Season*Aspect 33.062 5 6.612 38.991 <0.001 
Species*Aspect 2.932 2 1.466 8.644 <0.001 
Season*Species*Aspect 4.256 10 0.426 2.510 0.005 
 

Aulacomya maoriana 
 

While the mean seasonal SoA across all sites was 3.63 + 1.63 kg, spatial and 

temporal variability of SoA was evident (Table 5.3, Fig. 5.6). The lowest mean seasonal 

SoA of A. maoriana was recorded at Scorching Bay in winter 2003 (2.16 kg), while the 

highest mean seasonal SOA value was recorded at Kau Point south in spring 2003 (5.84 

kg). The mean seasonal SL across all sites was 43.26 + 6.03 mm. The highest mean 

seasonal SL was recorded at Balaena Bay in summer 2003 (53.5 + 6.59 mm), while the 

lowest mean seasonal SL was recorded at Point Howard in winter 2002 (35.97 + 6.99 

mm). Post-hoc LSD Tukey test indicated that SoA of the ribbed mussel was generally 

higher at south-facing sites (F=14.326, p<0.001) (Fig. 5.7), although the mean SL of this 

species was greater at north-facing sites (F=32.29, p<0.001) (Fig. 5.8). Pearson 

coefficient revealed positive SL-SoA correlation (R=0.225, p<0.001), indicating that SoA 

of this species increases with the increasing size of mussels. 

. 
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Table 5.3. Aulacomya maoriana: Descriptive statistics of SoA at all sites and seasons (mean +SD). 
BB=Balaena Bay, KPN=Kau Point north, KPS=Kau Point south, PH=Point Howard, SB=Scorching Bay, 
SE=Seatoun 

Season Site N 
SoA 
[kg] 

Mean 

SoA 
[kg] 
SD 

SL 
[mm] 
Mean 

SL 
[mm] 
SD 

Season Site N 
SoA 
[kg] 

Mean 

SoA 
[kg] 
SD 

SL 
[mm] 
Mean 

SL 
[mm] 
SD 

Winter BB 30 3.593 1.357 42.300 5.559 Autumn BB 30 3.760 1.966 42.933 5.278 
2002 KPN 30 3.520 1.374 41.700 4.865 2003 KPN 30 4.833 1.929 44.367 6.800 
 KPS 30 4.893 1.365 44.567 5.482  KPS 30 4.087 1.838 43.933 5.496 
 PH 30 2.620 1.011 35.967 6.995  PH 30 2.927 1.479 40.900 6.578 
 SB 30 2.773 1.025 38.967 4.056  SB 30 3.280 1.592 41.100 5.095 
 SE 30 3.987 1.337 43.133 4.167  SE 30 3.587 2.406 44.433 4.091 
Spring BB 30 4.200 1.390 43.300 5.784 Winter BB 30 3.593 1.357 42.300 5.559 
2002 KPN 30 4.063 1.452 45.000 3.184 2003 KPN 30 3.520 1.374 41.700 4.865 
 KPS 30 5.067 1.693 43.633 3.961  KPS 30 2.953 1.468 36.967 3.586 
 PH 30 4.040 0.983 42.567 5.544  PH 30 4.740 1.638 42.567 4.216 
 SB 30 4.273 1.274 39.633 5.957  SB 30 2.157 1.085 42.133 4.644 
 SE 30 4.393 0.980 43.433 3.540  SE 30 3.487 2.155 42.967 2.810 
Summer BB 30 3.200 1.022 53.500 6.590 Spring BB 30 2.247 0.660 38.167 4.990 
2003 KPN 30 2.550 1.078 47.533 5.184 2003 KPN 30 3.467 1.132 49.367 4.575 
 KPS 30 3.717 1.343 44.167 3.905  KPS 30 5.840 1.827 44.967 3.978 
 PH 30 2.767 1.244 40.533 5.865  PH 30 4.433 1.029 41.633 3.737 
 SB 30 2.650 0.832 51.067 4.975  SB 30 4.093 1.461 47.433 3.739 
 SE 30 2.967 0.982 44.767 5.131  SE 30 2.387 0.880 43.667 5.750 
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General SoA variation in all mussel species
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Figure 5. 6. Seasonal, site- and species-specific variation in SoA. Points represent mean seasonal values 
(N=30) with 0.95 confidence interval error bars. North-facing sites are on the left of the figure; south-
facing sites are on the right. 
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Aulacomya maoriana:  SoA vs. site aspect
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Figure 5.7. Aulacomya maoriana SoA at sites facing north and south. Points represent mean values with 
0.95 confidence interval error bars. 
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Figure 5. 8. Aulacomya maoriana: mean SL according to site aspect (N=facing north, S=facing south). 
Points represent mean values with 0.95 confidence interval error bars. 

 

Mytilus galloprovincialis 
 

While the mean seasonal SoA across all sites was 3.44 + 1.69 kg, spatial and 

temporal variability of SoA was evident (Table 5.4, Fig. 5.6). The lowest mean seasonal 

SoA of M. galloprovincialis was recorded at Kau Point north in summer 2003 (1.92 
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+1.07 kg), while the highest mean seasonal SoA value was recorded at Scorching Bay in 

spring 2002 (5.61 + 1.58 kg). The mean seasonal SL across all sites was 51.06 + 7.32 

mm. The highest SL of the blue mussel was recorded at Scorching Bay in spring 2003 

(59.1 + 6.7 mm), while the lowest SL was recorded at Point Howard in spring 2002 (44.3 

+ 4.69 mm). Post-hoc LSD Tukey test indicated that SoA of the blue mussel was greater 

at the south-facing sites (F=72.602, p<0.001, respectively) (Fig. 5.9), although there was 

no significant difference in the mean SL according to the site aspect (F=2.26, p=0.133) 

(Fig. 5.10). Pearson coefficient revealed a positive and significant correlation between 

SoA and SL (R=0.331, p<0.01), suggesting that SoA increased with the increasing size of 

mussels. 

Mytilus galloprovincialis:  SoA vs. site aspect
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Figure 5.9. Mytilus galloprovincialis: SoA at sites facing north and south. Points represent mean values 
with 0.95 confidence interval error bars. 

 

Table 5.4. Mytilus galloprovincialis: Descriptive statistics of SoA at all sites and seasons (mean +SD). 
BB=Balaena Bay, KPN=Kau Point north, KPS=Kau Point south, PH=Point Howard, SB=Scorching Bay, 
SE=Seatoun 

Season Site N 
SoA 
[kg] 

Mean 

SoA 
[kg] 
SD 

SL 
[mm] 
Mean 

SL 
[mm] 
SD 

Season Site N 
SoA 
[kg] 

Mean 

SoA 
[kg] 
SD 

SL 
[mm] 
Mean 

SL 
[mm] 
SD 

Winter BB 30 2.067 1.234 49.967 7.261 Autumn BB 30 2.517 1.661 58.400 8.058
2002 KPN 30 3.173 1.707 47.400 7.881 2003 KPN 30 4.013 2.546 45.233 5.361
 KPS 30 4.347 1.676 47.100 4.326  KPS 30 3.107 1.274 53.300 5.207
 PH 30 3.333 1.181 47.167 4.542  PH 30 2.253 1.362 49.800 5.616
 SB 30 4.033 1.448 54.867 4.848  SB 30 3.040 1.222 56.967 5.499
 SE 30 4.100 1.286 50.433 7.960  SE 30 2.553 0.996 53.633 3.615
Spring BB 30 3.547 1.509 52.633 7.088 Winter BB 30 2.067 1.234 49.967 7.261
2002 KPN 30 4.000 1.475 49.667 6.402 2003 KPN 30 3.173 1.707 47.400 7.881
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Season Site N 
SoA 
[kg] 

Mean 

SoA 
[kg] 
SD 

SL 
[mm] 
Mean 

SL 
[mm] 
SD 

Season Site N 
SoA 
[kg] 

Mean 

SoA 
[kg] 
SD 

SL 
[mm] 
Mean 

SL 
[mm] 
SD 

 KPS 30 5.020 1.370 51.267 7.080  KPS 30 4.467 1.720 48.667 6.535
 PH 30 4.450 1.323 44.300 4.699  PH 30 2.947 1.579 50.467 4.232
 SB 30 5.607 1.584 54.967 5.714  SB 30 3.100 1.584 55.633 4.937
 SE 30 4.900 1.452 50.433 4.847  SE 30 3.313 1.855 47.200 6.122
Summer BB 30 2.500 1.880 52.667 9.679 Spring BB 30 2.640 1.165 45.233 7.074
2003 KPN 30 1.917 1.075 52.933 6.491 2003 KPN 30 3.047 1.035 55.200 8.700
 KPS 30 2.767 0.971 51.367 4.319  KPS 30 5.287 0.964 50.200 6.206
 PH 30 2.750 1.230 49.800 5.898  PH 30 4.320 0.895 46.200 4.895
 SB 30 3.583 1.532 58.733 6.812  SB 30 4.567 1.145 59.100 6.666
 SE 30 2.400 0.621 51.600 5.411  SE 30 2.867 1.334 48.167 7.106

 

 
Mytilus galloprovincialis:  SL vs. site aspect
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Figure 5. 10. Mytilus galloprovincialis: mean shell length according to site aspect (N=facing north, 
S=facing south). Points represent mean values with 0.95 confidence interval error bars. 

 

 

Perna canaliculus 
 

While the mean seasonal SoA across all sites was 5.80 + 2.27 kg, spatial and 

temporal variability of SoA was evident (Table 5.5, Fig. 5.6). The lowest mean seasonal 

SoA of P. canaliculus was recorded at Point Howard north in winter 2002 (3.37 + 1.09 

kg), while the highest mean seasonal SoA value was recorded at Balaena Bay in spring 

2002 (7.77 + 2.49 kg). The mean seasonal SL across all sites was 68.18 + 13.47 mm. The 

highest SL of the green mussel was recorded at Scorching Bay in spring 2003 (80.70 + 

8.46 mm), while the lowest SL was recorded at Point Howard in spring 2002 (59.86 + 
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16.98 mm). While SoA of the green mussel for most of the experiment was greater at the 

north-facing sites (Fig. 5.11), post-hoc LSD Tukey test indicated that the overall SoA was 

greater at the south-facing sites (F=8.348, p=0.004) – a result most likely driven by a 

large difference in SoA of this species in spring 2003. The mean SL was greater at north-

facing sites (F=6.24, p=0.013) (Fig. 5.12). Pearson coefficient revealed a positive and 

significant correlation between SoA and SL (R=0.344, p<0.01), indicating that SoA 

increased with the increasing size of mussels. 

 

Table 5.5. Perna canaliculus: Descriptive statistics of SoA at all sites and seasons (mean +SD). 
BB=Balaena Bay, KPN=Kau Point north, KPS=Kau Point south, PH=Point Howard, SB=Scorching Bay, 
SE=Seatoun 

Season Site N 
SoA 
[kg] 

Mean 

SoA 
[kg] 
SD 

SL 
[mm] 
Mean 

SL 
[mm] 
SD 

Season Site N 
SoA 
[kg] 

Mean 

SoA 
[kg] 
SD 

SL 
[mm] 
Mean 

SL 
[mm] 
SD 

Winter BB 30 6.387 2.064 74.767 17.027 Autumn BB 30 5.447 2.451 73.300 13.641
2002 KPN 30 5.860 1.984 64.700 11.998 2003 KPN 30 7.293 2.900 63.000 10.309
 KPS 30 6.153 1.924 59.867 12.586  KPS 30 6.237 2.528 64.500 13.235
 PH 30 3.371 1.092 59.857 16.985  PH 30 4.460 1.574 61.300 10.134
 SB 30 5.057 1.465 69.700 8.591  SB 30 5.200 1.903 68.767 8.361 
 SE 30 5.110 1.955 63.200 12.524  SE 30 5.060 2.067 63.733 8.702 
Spring BB 30 7.777 2.488 68.033 12.483 Winter BB 30 6.387 2.064 74.767 17.027
2002 KPN 30 5.583 1.445 71.800 16.984 2003 KPN 30 5.860 1.984 64.700 11.998
 KPS 30 6.860 1.941 64.400 16.368  KPS 30 5.500 1.833 61.333 9.034 
 PH 30 6.793 2.083 65.900 12.466  PH 30 5.927 2.330 70.367 11.758
 SB 30 6.283 2.146 64.833 9.560  SB 30 4.213 1.686 65.267 10.161
 SE 30 6.873 1.680 69.900 10.293  SE 30 4.827 2.809 71.467 12.381
Summer BB 30 6.983 2.321 77.167 16.303 Spring BB 30 3.547 1.510 68.633 20.765
2003 KPN 30 5.833 2.253 72.733 10.599 2003 KPN 30 4.927 1.688 68.533 17.079
 KPS 30 5.483 1.500 70.567 11.773  KPS 30 7.773 1.990 70.033 11.494
 PH 30 6.333 1.863 64.222 9.564  PH 30 7.433 1.841 69.967 14.092
 SB 30 5.450 2.014 80.700 8.457  SB 30 6.780 2.377 72.967 11.361
 SE 30 4.650 1.762 61.433 8.427  SE 30 3.627 1.443 70.067 14.453
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Figure 5.11. Perna canaliculus: SoA at sites facing north and south. Points represent mean values with 0.95 
confidence interval error bars. 
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Figure 5. 12. Perna canaliculus: mean shell length according to site aspect (N=facing north, S=facing 
south). Points represent mean values with 0.95 confidence interval error bars. 

 

Effects of desiccation on mussel survival 
 

Logistic Regression (Table 5.6) pointed at all the factors as highly significant in 

determining the survival of mussels in this experiment. The analysis revealed that the 

green mussel P. canaliculus is the species most vulnerable to, and therefore least able to 

cope with desiccation and therefore with the lowest probability of survival (25%), the 
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blue mussel M. galloprovincialis as the most desiccation-tolerant of all the species 

investigated and therefore with the highest probability of survival (50%), and the ribbed 

mussel A. maoriana as a species more robust than P. canaliculus but less than M. 

galloprovincialis, with survival probability between 45 and 50%. The probability of 

survival for all species was higher on the south-facing side at Front Lead than on the 

north-facing side (Fig. 5.13). Judging by the site aspect, both Aulacomya maoriana and 

Mytilus galloprovincialis could greatly increase the chances of their survival at higher 

levels if they were facing south, while such site aspect made very little difference for 

Perna canaliculus of which very few individuals survived above certain tidal height, 

regardless of whether they were facing south or north (Fig. 5.14). As judged by the Wald 

statistic values, tidal height was the most significant factor affecting mussel survival, 

followed by SL and species (1029.279, 309.76 and 95.501, respectively). On a seasonal 

basis, the species-specific probability of survival (Figures 5.15, 5.17 and 5.19) was 

greater for cooler seasons and lower in warmer seasons, reflecting the greater amount of 

solar radiation (and presumably desiccation stress associated with it) in summer and 

lower in winter.  

 

Table 5.6. Logistic Regression – general analysis. 

Factor df Wald statistic p-value 
Tidal height 5 1029.279 <0.001 
SL (covariate) 1 309.760 <0.001 
Species 2 95.501 <0.001 
Season 5 59.417 <0.001 
Site 1 56.466 <0.001 
 

Aulacomya maoriana 
 

Logistic Regression revealed that site, season and tidal height are significant factors, 

and that shell length is a significant covariate for survival of this species (Table 5.7). The 

probability of survival increased significantly with decreasing tidal height. When 

emerged, the ribbed mussel survived better on the south-facing side than on the north-

facing side, at any treatment height (Fig. 5.15). LD50 was higher on the south-facing side 

(0.75 m), and lower on the north-facing side (0.65 m).  
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The seasonal probability of survival was also consistently higher if mussels were 

located on the south-facing side at Front Lead, except for autumn 2003, when data 

collected from north-facing side indicated greater survival there. The lowest probability 

of survival was recorded in summer 2003 and on the south-facing side it was 30%, while 

on the north-facing side it was 13% (Fig. 5.16). 
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Figure 5. 13. Probability of survival for all three species on north- and south-facing side at Front Lead. 
Points represent mean values with 0.95 confidence interval error bars. 
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Site aspect- and species-specific probability of survival
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Figure 5.14. Site aspect- and species-specific probability of survival. Points represent mean values with 
0.95 confidence interval error bars. 
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Figure 5. 15. Aulacomya maoriana: probability of survival vs. site aspect and tidal height. Points represent 
mean values with 0.95 confidence interval error bars. 
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Aulacomya maoriana:  probability of survival vs site aspect and season
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Figure 5.16. Aulacomya maoriana: probability of survival vs. site aspect and season. Points represent mean 
values with 0.95 confidence interval error bars. 

 

The Product-Moment correlation analysis revealed a significant, negative 

correlation between shell length and the probability of survival (R=-0.310, p<0.01, t=-

12.359, N=1440).  

Table 5.7. Aulacomya maoriana: Logistic regression results 

Factor df Wald statistic p-value 
Tidal height 5 395.4624 <0.001 
SL (covariate) 1 108.1855 <0.001 
Season 5 51.5553 <0.001 
Site (north or south) 1 10.7583 <0.01 

 

Mytilus galloprovincialis 
 

Logistic Regression revealed site, season and tidal height as significant factors, as 

well as shell length as a significant covariate for this species (Table 5.8)  

 

The probability of survival for M. galloprovincialis significantly increased with 

decreasing tidal height. When exposed to desiccation, the blue mussel survived better on 

the south-facing side than on north-facing side, at all treatment heights (Fig. 5.17). LD50 

was higher on the south-facing side (0.87 m) and lower on the north-facing side (0.62 m). 
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Table 5.8 Mytilus galloprovincialis: Logistic regression results 

Factor df Wald statistic p-value 
Tidal height 5 369.9058 <0.001 
SL (covariate) 1 123.1161 <0.001 
Season 5 48.9130 <0.001 
Site (north or south) 1 38.9549 <0.001 

 

 

The probability of survival for any given season was also significantly greater if 

mussels were deployed in nets facing south. The lowest probability of survival for the 

blue mussel was recorded in summer 2003, when only 35% of mussels facing north 

survived, compared with 45% of mussels facing south in the same season (Fig. 5.18). The 

Product-Moment correlation analysis revealed a significant, negative correlation between 

the shell length and the probability of survival (R=-0.313, p<0.01, t=-12.517, N=1440). 

 

 
Mytilus galloprovincialis:  probability of survival vs. site aspect and tidal height
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Figure 5. 17. Mytilus galloprovincialis: probability of survival vs. site aspect and tidal height. Points 
represent mean values with 0.95 confidence interval error bars. 
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Mytilus galloprovincialis:  probability of survival vs. site aspect and season
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Figure 5. 18. Mytilus galloprovincialis: probability of survival vs. site aspect and season. Points represent 
mean values with 0.95 confidence interval error bars. 

 

Perna canaliculus 
 
 

Logistic Regression revealed site, tidal height and season as significant factors, as 

well as shell length as a significant covariate (Table 5.9). The survival of P. canaliculus 

was greatest on south-facing side than on north-facing (Fig. 5.19). However, for this 

species the survival probability declined more rapidly than in the previous two species, to 

about 40% at the first tidal height treatment (0.3 m). LD50 was higher on the south-facing 

side (0.35 m) and lower on the north-facing side (0.20 m). When investigated on a 

seasonal basis, the probability of survival was lower on the south-facing side on two 

occasions, in autumn and winter 2002 (Fig. 5.20). Despite this, the highest probability of 

survival throughout the sampling period was still obtained for mussels facing south (33% 

in spring 2002), as opposed to mussel placed in nets facing north, where the highest 

survival probability was 32% (recorded in winter 2002). The Product-Moment correlation 

analysis revealed a significant, negative correlation between the shell length and the 

probability of survival (R=-0.299, p<0.01, t=-11.902, N=1440). 
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Perna canaliculus:  probability of survival vs. site aspect and tidal height
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Figure 5. 19. Perna canaliculus: probability of survival vs. site aspect and tidal height. Points represent 
mean values with 0.95 confidence interval error bars. 

 

 

Perna canaliculus:  probability of survival vs. site aspect and season
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Figure 5. 20. Perna canaliculus: probability of survival vs. site aspect and season. Points represent mean 
values with 0.95 confidence interval error bars.
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Table 5.9. Perna canaliculus: Logistic regression results 

Factor df Wald statistic p-value 
Tidal height 5 208.3630 <0.0001 
SL (covariate) 1 88.7493 <0.0001 
Season 5 20.8406 <0.0001 
Site (north or south) 1 15.3008 <0.001 
 

Solar radiation data provided by Greater Wellington, Environment Division 

displayed a seasonal trend, in which Wellington Harbour receives more solar radiation in 

summer than in winter (Fig. 5.20). 
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Figure 5.21. Seasonal differences in solar radiation for Wellington Harbour. Points represent mean values 
with 0.95 confidence interval error bars. 

 

5.4. Discussion 

 

 Effects of wave forces and desiccation are the two physical factors generally held 

most responsible for generating horizontal and vertical zonation of mussels, thus 

structuring rocky intertidal shores (Dayton, 1971; Price, 1982; Underwood et al., 1983, 

Bustamante et al., 1997). Results from the two experiments described in this chapter 



Chapter Five                                                       Strength of Attachment and Desiccation Tolerance 

 209

show that the three mussel species from Wellington Harbour can respond and adapt to 

varying environmental conditions of wave action and desiccation stress.  

 
Wave exposure 
 

Mussel SoA investigated in the present study varied mostly according to mussel 

size and species. Larger mussels had greater SoA, with P. canaliculus having consistently 

highest SoA and A. maoriana lowest SoA, with M. galloprovincialis having intermediate 

SoA values (Fig. 5.6). Seasonal and spatial variation was also pronounced, with SoA 

increasing in winter-spring seasons (most likely a result of greater frequency of storms 

and stronger waves in winter, forcing mussels to increase their attachment) and being 

generally higher at south-exposed sites. Differences in SoA detected in the present study 

among the three mussel species in Wellington Harbour can be regarded as a proof of 

interspecific competition, because individuals of the species with better attachment to the 

substrate can withstand greater wave pressures and associated water velocities, thus 

surviving in the colony and contributing more to the next generation. Similar species-

specific variation in SoA was reported by Gardner & Skibinski (1991), who compared 

SoA of two mytilid species in SW England. The authors reported that M. 

galloprovincialis had higher SoA than M. edulis, and concluded that physical factors can 

act selectively on mussels, depending on their size.  

 

Results from the present study partly reflect findings reported in other studies 

regarding the relationship between shell size, strength of attachment and degree of 

exposure to wave action. In all three mussel species investigated here, shell length was 

significantly and positively correlated with the strength of attachment, and greater 

strength of attachment was found on south-facing shores (Figs. 5.7, 5.9 and 5.11). This 

suggests that mussels growing on south-exposed shores experienced greater forces of 

hydrodynamic drag and lift, therefore required greater strength of attachment to the 

substrate, otherwise they were at risk of dislodgement by waves.  

 

In Wellington, although prevailing winds are the northerlies that blow for roughly 

twice as much time as southerlies, southerly winds are stronger, and generate more 
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powerful waves (McConchie et al., 2000). Thus, the wave exposure is greater on south-

facing sites and the results of the analyses of mussel strength of attachment support this. 

In A. maoriana examined in the present study, SoA was statistically higher at south-

facing sites, but upon the inspection of Fig. 5.7 it becomes clear that the site aspect-

specific differences were not large. M. galloprovincialis also had higher SoA on south-

facing shores (Fig. 5.9), while SoA of P. canaliculus was significantly greater at north-

facing sites (Fig. 5.11). The relationship between mussel SL and the site aspect followed 

this pattern in M. galloprovincialis, i.e. mussels with greater SoA were larger and they 

were predominantly found at south-facing sites (Fig. 5.10). However, this pattern 

appeared to be uncoupled in A. maoriana, where SoA was greater on south-exposed 

shores but larger mussels were found on north-exposed shores (Fig. 5.8). In P. 

canaliculus (Fig. 5.12) greater SoA was found on north-exposed shores and so SL of this 

species was greater at sites facing north, which is clearly at odds with the fact that in 

Wellington Harbour mussels are more exposed to waves on south-facing shores. A 

possible explanation of this contradiction comes from Hammond & Griffiths (2004), who 

point out that under high wave exposure mussel size can be reduced and growth can be 

slower, due to reduced food intake in conditions of heavy wave action, when shell 

remains closed for long periods of time. Harger (1970) and Raubenheimer & Cook 

(1990) also agree that mussel size is influenced by wave exposure, but argue that at sites 

with greater wave action hydrodynamic forces of drag and lift control mussel shell 

length. As a result, at such sites mussels can have reduced size due to greater energy 

resources being allocated to byssus production and remaining attached to the substrate. 

Similar result has been reported by Alvarado & Castilla (1996) from Chile where larger 

mussels Perumytilus purpuratus were found at sites of decreasing exposure to waves. In 

that study, the differences in shell size apparently resulted from varying wave exposures, 

while temporal differences were due to changes in the number of recruits entering the 

population. This would confirm the initial assumption that in Wellington Harbour a 

variable wave exposure is present, associated with both northerly and southerly winds.  

 

Further, the relationship between shell size and wave exposure can be confounded 

by juvenile recruitment altering the mean shell size at both north- and south-facing sites. 
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For mussels, the influence of wave action on their ecology starts as early as the larval 

stage. While having little control over nature of habitat on which they establish 

themselves, mussel larvae can respond and adapt to changing degrees of wave action. 

Larvae with thick shells, settling in a sheltered habitat would be disadvantaged, as they 

would expend unnecessarily more energy on the shell production providing them with 

protection from strong waves, while larvae with thin shells would not be protected well 

enough to withstand destructive forces of waves at exposed sites (Raubenheimer & Cook, 

1990).  

 

During conditions of strong wave action, mussels cease to feed and grow, and the 

mantle edge is slightly withdrawn into the shell, thus delaying the accretionary growth at 

the shell margin. However, areas of strong wave action and water flow can be rich in 

dissolved calcium coming from calcium-rich marine debris, which stimulates shell 

growth, unlike sheltered areas, where the reduced concentration of dissolved calcium will 

result in smaller shells (Seed, 1969; Raubenheimer & Cook 1990).  On the other hand, 

Bustamante & Branch (1996) and Freites et al. (1999) support the “greater wave 

exposure = greater body size” hypothesis and argue that strong wave action can 

potentially enhance the quantity and turnover of food particles for filter-feeders, 

providing the bivalves living in wave-exposed locations with the benefit of more 

nourishment and energy to stay attached to their substrate, unlike bivalves from sheltered 

sites). However, the authors predict that wave exposure cannot benefit mussels 

indefinitely, as at some stage the animals will start to expend considerably more energy 

to remain attached to the surface if wave action becomes extremely strong, leading to 

reduced energetic input into somatic and gonadal growth. This polynomial relationship 

between mussel size and wave exposure has been described for M. galloprovincialis in 

South Africa (Hammond & Griffiths, 2004), where the invasive mussel experienced the 

highest percent cover, mean length, biomass and mussel bed depth at intermediate wave 

exposure conditions. In conditions of shelter from waves and in extreme wave exposure 

the above ecological parameters declined, suggesting reduced bivalve growth under 

extreme wave exposure, where the animals apparently were channeling more resources to 

the byssus production in order to stay attached to the substrate. In sheltered areas, the 
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food supply was reduced, resulting in smaller mussels, while in extremely exposed sites 

mussels would partly close the valves of their shells to reduce the effects of too strong 

wave pounding, which also lead to reduced food intake and eventually to smaller 

mussels. However, Hammond & Griffiths (2004) note that reduced size of mussels found 

at extremely exposed sites might result from larger mussels being dislodged by strong 

waves, thus altering the size distribution at those sites.  

 

Desiccation 

 

Tidal cycles have profound consequences for the distribution, abundance and 

interactions among intertidal organisms, of which many are sessile and sedentary, and 

therefore unable to change their position on the rocky substrate in relation to the tidal 

level (Denny & Paine, 1998). From the ecological perspective, the emersion time is of 

particular importance, as intertidal invertebrates are exposed to stressful aerial 

temperatures and breaks in feeding, and the duration of such periods directly influences 

the level of stressful conditions the animals have to withstand. A relationship between the 

height on the shore and subsequent survival of intertidal community members, with 

greater mortality of invertebrate and algal species observed higher on the shore points 

directly at the effects of desiccation (Menconi et al., 1999; Helmuth, 2002). With longer 

breaks in feeding activity, sessile invertebrates, such as mussels, can suffer slower growth 

and reduced size. Further, mussels that are present higher on shore experience less 

thermal relief from water spray generated by waves lower on the shore, and thus suffer 

thermal damage to their tissues (McQuaid et al., 2000).  

 

The survivorship of the three mussel species investigated here depended 

significantly on the shell size of the animals, treatment (i.e. shore level), season, and site 

aspect (facing north or south) (Table 5.5). In all three species, an inverse relationship was 

found between shell length of mussels and their survival, which indicates that smaller 

mussels were able to cope with desiccation. The reason for this most likely lies in the fact 

that larger mussels have to utilize more energy to meet the demand of metabolic costs of 

the heat protection mechanisms and anaerobic respiration. Also, in larger mussels, the 
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concentration of anaerobic end-products is greater, further adding to the stress the animal 

experiences. A similar inverse relationship between rates of desiccation and size of 

surviving mussels was also reported by Kennedy (1976). In that study, the success in 

colonizing higher intertidal ranges and air-exposed intertidal habitats was related to the 

ability of small mussels to tolerate desiccation, especially in hot, windy weather. 

However, the author notes that small mussels are susceptible to desiccation and can often 

be found in a mussel clump buffered by larger individuals. It is possible, therefore, that 

small mussels are able to cope with desiccation at higher shore levels (as this study has 

shown), but only in the presence of buffering larger individuals. However, the reason 

why larger mussels did not cope with desiccation stress in the present study remains 

unclear and requires further investigation. 

 

In all species examined in this study, mussels survived better on the south-facing 

side at Front Lead and the LD50 values demonstrate that (Figs. 5.15, 5.17 and 5.19). P. 

canaliculus has been shown as the most vulnerable species, with very few mussels able to 

cope with exposure to air. M. galloprovincialis and A. maoriana displayed better ability 

to withstand desiccation stress, with M. galloprovincialis LD50 values slightly higher than 

those of A. maoriana. This confirms the distribution patterns of these mussel species 

observed in situ, where P. canaliculus typically is limited to the lower intertidal range, 

while A. maoriana individuals can often be seen inside M. galloprovincialis clumps at 

higher shore levels, where they benefit from the conditions of higher moisture and are 

buffered by M. galloprovincialis individuals from desiccation stress.  

 

Mussels have been described as ectotherms, i.e. organisms for which body 

temperature is determined by external conditions, and during aerial exposure it is driven 

by numerous climatic factors, such as visible solar radiation, infrared radiation, wind 

speed, cloud cover and air and ground temperatures (Helmuth, 1999, 2002). During aerial 

exposure, the body temperature in mussels increases to the point when intracellular 

proteins are damaged, putting the animal at risk of heat shock and potential death. 

However, if given time, mussels can adapt to these conditions (Viarengo et al., 1995). 

Heat stress proteins (hsp) play an important role in thermal acclimation in mussels. The 
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main function of hsp is to prevent the accumulation of heat-denatured intracellular 

proteins during the thermal stress and, to a degree, reversing the thermal damage by 

stabilizing and re-folding already thermally denatured proteins (Gosling, 2003). Trapping 

a small amount of water inside the closed shell is another adaptive mechanism that helps 

mussels to cool down and withstand aerial exposure. However, this leads to a severely 

reduced oxygen uptake (down to as low as 4-17% of the aquatic rate) and a build-up of 

oxygen debt, which, if prolonged, can also put the mussel’s survival at risk. 

Subsequently, anaerobic end-products, such as alanine, succinate and proprionate, can 

accumulate in mussel tissues, (Widdows et al., 1979). These processes of maintaining the 

protein pool and temporal cooling with the trapped amount of water inside closed valves 

come with a metabolic cost. From an ecological perspective, this cost directly affects the 

mussel physiology, and determines whether particular species of mussels can survive and 

reproduce in a particular habitat. Thus, this metabolic cost acts as a powerful force in 

mussel habitat selection (Hofmann & Somero, 1995; Helmuth & Hofmann, 2001). 

 

Often, the survivorship of intertidal mussels fluctuates seasonally, depending on 

the aerial temperatures, and it increases in colder months, presumably due to increased 

proportion of cloudy days when the amount of direct sunlight is reduced, and greater 

spray coming from wave action, generated by more frequent storms. Season was also a 

significant factor affecting the probability of mussel survival in this study. All three 

species survived better in cooler seasons, most probably a result of higher storm 

frequency, greater spray and cloud cover reducing direct solar radiation. Both A. 

maoriana and M. galloprovincialis survived in greater numbers in autumn 2002 and 

autumn 2003 (Figures 5.16, 5.18), while P. canaliculus experienced greater survival in 

winter and spring 2002 (Fig. 5.20). A similar seasonality of desiccation effects and 

subsequent mussel survivorship at different shore levels has been reported for M. 

trossulus (Hofmann & Somero, 1995), M. edulis (Tsuchiya, 1983) and P. canaliculus 

(Marsden & Weatherhead, 1998).  

 
In the southern hemisphere, intertidal communities experience more solar 

radiation throughout the year on the north-facing shores, while on the south-facing shores 
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solar radiation is less intense. As a result, desiccation-induced stress is more severe in 

invertebrate communities facing north, while these communities that are south-exposed 

exist in less stressful conditions. The conditions of heat exposure and water loss are 

closely related to warmer seasons, when the amount of direct solar radiation is greater. 

Therefore, one would expect mussels growing on the north-exposed shores to suffer more 

from heat exposure and water loss and die sooner than their conspecifics on the south-

facing shores. This effect is more pronounced in summer than in winter when the cloud 

cover is greater and the amount of direct solar radiation is reduced. Results obtained in 

the present study appear to follow this pattern, as mussels placed on the southern site of 

Front Lead coped with desiccation better than mussels placed on the north-facing side, 

and subsequently survived in greater numbers. Moreover, the examination of season-

specific mussel survival (Figs. 5.16, 5.18 and 5.20) in the light of the seasonal solar 

radiation in Wellington Harbour (Fig. 5.20) confirms the importance of the solar radiation 

received by intertidal communities and its role in structuring mussel survival. 

 

 
In summary, intertidal mussel communities examined in this chapter were shown 

as greatly dependent on the interplay of wave action and aerial exposure (i.e. desiccation 

stress). These factors have been described as two crucial agents determining the 

community structure, species presence, abundance and distribution (Young, 1983; 

Eckman & Duggins, 1993; Carrington & Denny, 1994; Schiel, 2004). Results from the 

present study also point at wave action and desiccation as selective forces regulating the 

mussel communities. Wave-induced stress can significantly influence mussel strength of 

attachment, thus altering biological activities and influence composition of rocky 

intertidal communities (Palumbi, 1984; Hammond & Griffiths, 2004). Structure and 

zonation of mussel populations also depends on shore height and associated emersion 

stress. From the ecological perspective, mussels were shown as able to compete for space 

on the rocky substrate through better ability of some species to withstand exposure to 

waves and air and thus exclude other, less tolerant species (for example M. 

galloprovincialis vs. P. canaliculus).  Mussel sizes can decrease at higher shore levels 

due to temperature extremes and desiccation, and associated high metabolic costs of 
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persisting at such heights, while the effects of wave exposure are visible lower on the 

shore and disappear at higher levels. This interplay of physical factors indicates that 

effects of desiccation override the effects of wave exposure towards the top of the 

intertidal zone and thus are vital in creating zones of invertebrates in rocky intertidal 

communities (McQuaid et al., 2000). 
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CHAPTER SIX:  

ROCKY INTERTIDAL COMMUNITY ORGANIZATION 

 
6.1. Community organization model 

 
Marine ecology is the scientific study of marine organisms under the influence of 

processes that determine their distribution and abundance, the transfer of energy and 

matter between the organisms and their environment, and the interactions of those 

organisms among themselves (Lawton, 1994). From this perspective, rocky intertidal 

communities have long been of widespread interest to ecologists and have often served as 

model systems for the development of community theory (Connell, 1961; Luckens, 1970; 

Griffiths & Hockey, 1987; Tokeshi & Romero, 1995). The structure and development of 

rocky intertidal communities, including Wellington Harbour mussel communities, can be 

described in terms of combined biotic and abiotic effects. In the present study, both the 

biotic effects of predation, grazing, inter- and intraspecific competition, and the abiotic 

effects of desiccation and wave exposure, such as unpredictable weather conditions or 

floating logs creating patches of bare substrate, were shown as important for the 

development of the intertidal communities.  

 

A gradient of environmental factors present in Wellington Harbour (see chapter 2) 

is a result of the general north-south orientation of the Harbour. This gradient impacts 

intertidal mussel communities (i.e. the prevailing wind direction is from the northwest, 

and the amount of direct solar illumination is greater on the north-facing shores, which 

implies greater exposure to desiccation on the north-facing shores, whereas the degree of 

wave exposure is greater on the south-facing shores). Mussel populations can respond to 

these forces. This was seen, for example, in the spatial variability of mussel strength of 

attachment to the rocky substrate, which was generally greater on the south-facing sites 

because of greater forces of hydrodynamic drag and lift associated with greater wave 

action that mussels at those sites have to withstand. Although no physiological responses 

of mussels to desiccation were investigated in this study, it is possible that individuals 

exposed to severe desiccation had a greater concentration of the heat-shock protein (hsp) 
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in their tissues, thus increasing the energetic costs associated with the hsp synthesis and 

ultimately the probability of mortality (Somero, 2002).  

 

During the course of this study, water column parameters were revealed as 

significant bottom-up factors, important for biochemical cycles of mussel condition, 

gonad mass and spawning in adults, as well as settlement and recruitment of larval 

mussel stages. Mussels from the inner areas of the Harbour have greater condition index, 

gonad mass and were generally larger. A link exists between mussel condition and their 

strength of attachment, as these two characteristics displayed similar seasonal variation. 

This was particularly noticeable in spring 2002 and 2003, when increased strength of 

mussel attachment accompanied a simultaneous decrease in condition. This can be a 

plastic response of mussels to environmental cues, associated with higher frequency of 

stormy weather in winter, which stimulated byssus production, or a sign of the energetic 

trade-off between costs associated with gametogenesis in mussels and their strength of 

attachment. In the latter case, the balance associated with the allocation of energetic 

resources to mussel tissues is upset, as more resources are allocated to survival of the 

animals on the substrate (i.e. byssus production). However, Carrington (2002) suggests 

that the seasonal shift in allocation of energy in mussels takes place regardless of the 

environmental factors and benefits gametogenesis rather than the strength of attachment.  

 

The caging experiment conducted in the intertidal zone demonstrated that the time 

needed for the communities to return to their original state and to recover from physical 

disturbance varies significantly. Communities near the Harbour entrance (i.e. at Seatoun) 

require significantly more time to recover, whereas communities inside the Harbour (i.e. 

at Evans Bay) recover faster. Simultaneously, intraspecific competition and competitive 

exclusion among algae, barnacles and mussels were most prominent at Evans Bay, which 

further suggests that the conditions for development of the intertidal communities are 

better in the inner areas of Wellington Harbour. 
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1. Community dominated by the most competitive species and associates 
 
 
 

2. Disturbance, dominant species destroyed and associates removed. Clear substrate patch formation 
 
 
 

3. Recolonisation of substrate by young recruits of opportunistic and dominant species 
 
 
 
 
 

3A. HARSH 
ENVIRONMENT 

 
 

Young recruits usually killed 
 
 
 
 

Occasional spells of good 
weather 

 
 
 

The individuals of young 
dominant species which happen 
to be present survive and reach 
the size refuge 

3B. INTERMEDIATE 
ENVIRONMENT 

 
 

Young recruits survive well 
because of physical conditions 
that are harsh enough to reduce 
the effectiveness of natural 
predators but non-lethal to the 
prey 

 
 
 

Interspecific competition and 
Competitive Exclusion principle 

 
 
 

Dominant species survives 

3C. BENIGN 
ENVIRONMENT 

 
 

Young recruits usually killed by 
natural predators 

 
 
 

Occasional spells of bad 
weather, natural predators 

reduced 
 
 
 

The species which is the prey of 
the reduced predator reaches a 
size refuge

 
 

 
 
 
 
 
 
 
 
 

 
 

5. Community dominated by the most competitive species and associates 
 
 

Fig. 6.1. A community development model with mechanisms showing the competitive dominance 
exclusion (adapted from Connell, 1975). 

4. The dominant species that 
survives on the substrate 
is now able to suppress, 
outcompete and exclude 
other members of the 
community 
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Following Connell (1975), a community development model, in which a 

community is gradually taken over by a competitively dominant species following 

substrate clearance, can be therefore proposed for Wellington Harbour rocky intertidal 

system. Mussel communities investigated in the present study are clearly dominated by 

the blue mussel Mytilus galloprovincialis, the most resilient and competitive species, 

displaying a plastic response to the variability of the environmental parameters. In the 

model, gradients of physical conditions are the factors of primary importance for 

community development. The present study demonstrates that environmental regimes in 

Wellington Harbour are significant factors for mussel communities, and that they vary 

from relatively sheltered and benign to exposed. These include a hydrological regime, 

wave exposure regime and desiccation regime.  

 

In harsh conditions, for example in the upper intertidal ranges exposed to severe 

desiccation, or in areas with strong wave action or abrasion, many recruits cannot survive 

or become established. As a result, large proportions of the previously cleared substrate 

are continuously colonised and vacated. Firm establishment of a recruiting species is 

possible only after a spell of favourable weather. Thus, the resulting populations are 

dominated by only the most resilient and competitive species, often unchecked by its 

natural predators, also unable to withstand the harshness of the environment (Menge, 

1976; Menge & Sutherland, 1987) (steps 3 – 3A, Fig. 6.1). In the present study, Seatoun 

and Kau Point were the two sites with harsh environmental conditions; in particular in 

terms of abrasion and the exposure to wave action, unlike Evans Bay, where the local 

intertidal communities are sheltered from destructive, high-energy southerly swells. 

Consequently, mussel communities at all those sites respond differently, according to 

those environmental regimes: while the available substrate was quickly utilized at Evans 

Bay, large proportions of the cleared substrate was still unoccupied at Seatoun and Kau 

Point after 24 months of the experiment. Mytilus galloprovincialis was shown as the 

mussel species most able to establish itself and cope with the adverse conditions, while 

other mussel species, Aulacomya maoriana and Perna canaliculus, were not common. 
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When the environmental conditions are benign, competition among colonizing 

species is reduced due to the influence of predators, now more effective in controlling 

their prey and preventing the young dominants from growing to invulnerable size. Unless 

the environmental conditions and the degree of harshness are suddenly altered by an 

unpredictable situation, such as a short spell of bad weather, or an attack of natural 

enemies or parasites, this prey-predator balance becomes altered and allows the dominant 

species to escape competition, grow to invulnerable size and exclude other species from 

the community. Effectively, the community returns to its original state, where it is 

colonised by the dominant species and associated species living in its shelter, such as 

highly diverse mussel bed sub-communities consisting of structurally complex matrix of 

numerous plant and invertebrate species, layers of accumulated sediment, and mussel 

shells (Suchanek, 1992) (steps 3 – 3C, Fig. 6.1). Evans Bay was the only site investigated 

in this study with relatively benign conditions (see above). Although no predators were 

documented in the digital photographs taken regularly at this site, whelk activity was 

often noticed at Evans Bay on other occasions. However, the most common mussel 

species colonizing substrate at Evans Bay, Mytilus galloprovincialis, did not appear 

vulnerable to whelk predation. The fact that this species, followed mainly by Aulacomya 

maoriana, was the quickest to utilize the cleared substrate most likely was once again a 

result of its competitiveness and adaptability. At the sites with adverse environmental 

conditions (Seatoun and Kau Point) the blue mussel was the most common coloniser 

because it was the only species that could withstand those conditions, while at the benign 

site (Evans Bay) the blue mussel was the most common coloniser because it was also the 

quickest coloniser, outcompeting the other two species in the substrate utilization. 

 

In intermediate environmental conditions, the mortality of recruits is lower and 

their natural enemies are less effective, which gives the young recruits a chance to persist 

and escape being consumed. As a result, these young individuals are able to reach high 

population densities and start competing with one another for space (Menge & Olson, 

1990). This process of interspecific competition will eventually result in one dominant 

species occupying the whole available substrate. Thus, the community returns to the 

original state in which it is dominated by one species and its associates (steps 3 – 3B, Fig. 
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6.1). None of the sites investigated in the present study would fit the “intermediate 

environmental conditions” description from Connell’s model because in Wellington 

Harbour such a site would need to be sheltered from the northerly and southerly exposure 

(which is not the case). Nevertheless, the fact that all rocky intertidal communities in 

Wellington Harbour are dominated by just one species, the blue mussel Mytilus 

galloprovincialis, strongly suggests that the model is valid in this system. Further, as 

shown in this study, the blue mussel becomes the dominant species through constant 

competition with other community members and through their exclusion. Such state 

seems to be further fuelled by the water column parameters (see chapter 2), shown to be 

consistently elevated at Evans Bay but somewhat reduced and highly variable at Seatoun. 

 

Shore aspect needs to be incorporated in the community development model, 

because it is important for the substrate recolonisation and often determines which 

species will succeed in claiming the available area. Predators are often unable to cope 

with desiccation and are more abundant in the lower intertidal zone. Some of them, such 

as starfish, are large and can consume significant quantities of invertebrate prey 

competing for space with algae (Menge, 1972). Thus, algae are favoured in the low 

intertidal range, as their competitors and enemies are reduced. This is consistent with the 

universal scheme of intertidal shores proposed by Stephenson & Stephenson (1949), 

where plants, rather than invertebrates, dominate the sublittoral fringe. On the other hand, 

large predators are less common at higher shore levels and are often replaced there by 

muricid and naticid snails preying heavily on sedentary and sessile prey, such as mussels. 

Grazing mollusks, such as limpets, are less controlled by whelks, so they are less likely to 

be reduced to the levels found lower on the shore. This situation results in the mid-

intertidal rocky communities that consist of mixed groups of invertebrate and algal 

species occupying the substrate. 

 

Similarly, oceanographic conditions and mechanisms responsible for delivering 

the propagules have impact on the composition of rocky intertidal communities 

(Henschel et al., 1990). The supply of propagules is a crucial limiting factor, which 

depends on exposure to waves and the variable ability of intertidal organisms to tolerate 
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wave action, along with the current physiological state of the community members. 

Therefore, if a population fluctuation is to be successfully forecast, models of community 

organization, such as the one described above, need to take into account the pelagic larval 

environment (Roberts, 1997; Guichard et al., 2003). 

 

Direct vs. indirect effects in intertidal community organization  
 

Direct effects among species typically include two species (often two competing 

species) and involve an interaction in which the activity of one species will cause a 

change in the other species. Theoretically, this interaction would occur even if the 

interacting species were kept in isolation (Wootton, 2002). As the rocky intertidal 

communities change over space and time, in particular following severe disturbance, 

direct and indirect effects among recruiting species can be studied (Van Tamelen, 1987). 

In rocky intertidal systems, such as Wellington Harbour, succession often proceeds from 

small-bodied organisms to large-bodied ones. These display an early peak in diversity, 

which is then followed by a gradual decline in species number as more space within the 

community is claimed by the competitively dominant species, such as mussels. However, 

the dynamics of the early and mid-successional stages can be complex and variable, and 

many interactions between early and later-arriving sessile species can potentially alter the 

dynamics of later species (Berlow, 1997). In the present study, a number of direct effects 

were shown, including competitive exclusion of algae from bare substrate by barnacles, 

exclusion of barnacles by mussels, and mutual effects of percent cover among the three 

mussel species (as revealed by Multiple Regression in chapter four). Reduced condition 

in adult mussels as a consequence of being infested with pea crabs can also be treated as 

a direct effect of pea crabs on mussels.  

 

Indirect effects among species, however, are usually more difficult to detect and 

often are discovered when experiments produce unexpected results, which indicates that 

longer experiments are required before indirect effects can be seen (Sih et al., 1985; 

Menge, 1997). The interplay between two species can sometimes have an additional, 

indirect, effect on some other member of a community. Although indirect effects can 
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complicate interpretation of experimental outcomes, they are important from a 

management and conservation perspective, as the effects of species loss or environmental 

disturbance are difficult to predict, and therefore the implementation of management 

strategies can be problematic for ecological theory of community structure (Connell, 

1983; Wootton, 1992, 2002; Underwood, 1999).  In the present study, an indirect effect 

of mussel settlement facilitation among barnacles suppressing algae was detected. 

Through competitive exclusion of algae, barnacles thermally buffered mussel recruits and 

simultaneously provided them with the secondary substrate within the barnacle matrix.  

 

The role of facilitation in the intertidal community organization 
 

Direct and indirect effects in rocky intertidal community organization are closely 

linked with positive and negative effects among the community members. During the 

succession phase in rocky intertidal communities, three general ecological mechanisms 

can be identified (Connell & Slatyer, 1977): interspecific facilitation, inhibition and 

tolerance. Traditionally, facilitative interactions among species have been neglected, as 

ecological theory has emphasized the competitive and consumer processes instead, 

despite mounting evidence that positive interactions in aquatic ecosystems are 

widespread (Stone & Weisburd, 1992; Berlow, 1997; Bertness & Leonard, 1997; 

Callaway & Walker, 1997; Forde & Raimondi, 2004). Facilitation occurs when a species 

that already is residing in the developing community enhances the establishment of a new 

species, for example the facilitative effect of barnacles on mussel settlement found in 

Evans Bay (chapter four). Living in high-density clumps offers certain advantages, such 

as co-operative defence against natural enemies, where mussels inside clumps are 

protected from predation and desiccation, as well as being thermally buffered by 

surrounding individuals. This facilitative mechanism was observed in mixed-species 

mussel clumps of M. galloprovincialis and A. maoriana in Wellington Harbour in the 

present study (see chapter three). Similarly, juvenile algae or sessile invertebrates living 

in high-density assemblages in intertidal communities are also sheltered from predators, 

competitors and physical stress, such as wave exposure, through screening by adult 

conspecifics – a phenomenon also noticed in the present study. It therefore becomes clear 
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that groups of individuals are better able to tolerate stressful desiccation than solitary 

individuals, and so the vertical range of a species is established by the groups of 

organisms present at a given shore level, not by a single individual (Denny et al., 1985; 

Bertness, 1989). Inhibition occurs when an established species depresses the recruitment 

of a newcomer, for example interaction between limpets and barnacles, and mussels and 

barnacles competing for space in the present study. Interspecific tolerance occurs when 

the establishment of a newly arriving species does not affect the species already resident 

in a community (Jernakoff, 1983; Van Tamelen, 1987).  

 

In general, where environmental conditions are benign, competition and exclusion 

among algal and invertebrate guilds occur. However, when conditions become harsh and 

stressful, facilitation can take over. One possible explanation for this phenomenon is that 

in a benign, low intertidal habitat a single individual has greater chances of survival on its 

own and does not need to be facilitated, whereas it becomes very vulnerable in the harsh 

conditions of the upper intertidal zone. Therefore, a group of individuals might better 

withstand physiological stresses than a solitary organism through buffering one another. 

Thus, one could expect to find positive interspecific interactions in the harsh 

environmental conditions higher in the intertidal zone (Bertness & Leonard, 1997; 

Stachowicz, 2001). Stephens & Bertness (1991) report that in the benign conditions of 

the low intertidal zone and on hard substrate, mussels outcompete barnacles for space, 

but at the same time can facilitate barnacle survival by buffering them from disturbance 

and desiccation. Buschbaum (2000) reports that mussel shells can act as a secondary 

substratum for settling barnacle recruits. Similarly, mussel recruits have been known to 

require a facilitator already present on the substrate, such as a filamentous alga, barnacles 

or adult conspecifics, before they can successfully settle (Navarrete & Castilla, 1990). 

 

According to current ecological theory, each species within an ecosystem 

occupies a fundamental niche, which can be described as the range of environmental 

conditions within which the species can persist, as long as negative interspecific 

interactions (i.e. competition, predation and parasitism) are absent (Nybakken, 2001).
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Fig. 6.2. Graphic representation of the incorporation of facilitation theory into community regulation 
theory. In the gray areas: community species diversity reaches a maximum under conditions of intermediate 
physical disturbance, mortality and stress from predation (B). Diversity decreases at low stress and 
disturbance due to a competitive dominant excluding other species from a community (A). the decrease of 
diversity in high-disturbance conditions results from the fact that only few species are able to withstand 
highly stressful conditions (C). When present, facilitation effects extend and heighten the community 
diversity curve (white area) through habitat amelioration in intermediate and high disturbance conditions 
(adapted from Hacker & Gaines, 1997). 



Chapter Six   Mussel Community Organisation 

 231

Within this fundamental niche, a realized niche exists, within which the species can 

survive and utilize resources. There are, however, certain practical limitations on this. 

The realized niche is the restricted functional space that is actually available for the 

species after exclusion from the substrate by competitors and enemies. Taking into 

account the facilitation and habitat amelioration effects, it has to be understood that the 

realized niche becomes greater than the spatial range predicted by the fundamental niche, 

as the environmental conditions in which the facilitated species now exists are more 

benign than before facilitation occurred  (Bruno et al., 2003). Further, from the 

perspective of community diversity, positive interactions increase species diversity by 

facilitating species that normally would be unable to persist in that community, 

particularly where the community is exposed to high physical disturbance, stress or 

predation. Facilitative effects appear to be strongest under conditions of intermediate and 

high disturbance, as the species diversity in a community can be extended in such 

conditions (Hacker & Gaines, 1997). Thus, not only does facilitation increase the number 

of species in a community that are able to survive adverse conditions, but it also 

positively affects species co-existence through the reduction of competitive exclusion 

(Fig. 6.2). 

 

Mussels as ecosystem engineers 
 

Ecosystem engineering is common in mussel communities (Table 6.1). Despite 

the fact that not all effects of engineers are positive for the rest of community members, 

in general it enhances species diversity (Jones et al., 1997). As ecosystem engineers, 

mussels physically alter, maintain and create habitat for other species (Jones et al., 1994; 

Iwasaki, 1995; Seed, 1996). However, not all species can be regarded as ecosystem 

engineers. Lawton (1994) suggests that a species can become an ecosystem engineer if it 

has large per capita effects on the surrounding environment, lives in high density over 

large areas for long periods of time, and affects resource utilisation. Through their ability 

to dominate intertidal communities and exclude other community members, mussels 

establish high-density colonies that can spread over large parts of the rocky substrate, 

forming vertically continuous layers (Gosling, 2003). Such mussel communities are also 
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particularly important with regard to benthic-pelagic coupling because mussels are the 

major intertidal suspension feeders which link pelagic water column production (seston = 

particulate food) and benthic production (i.e. intertidal animal biomass).  

 

Perhaps the best example of the ecosystem engineering activity of mussels is their 

ability to invade new habitats. For example, genera such as Mytilus and Perna have been 

described as being highly invasive. Originating from the Mediterranean, M. 

galloprovincialis is gradually taking over the intertidal shores in South Africa (Grant & 

Cherry, 1995; Branch & Steffani, 2004). Accidentally introduced, the Mediterranean 

mussel is now present in wild mussel populations along the west coast of South Africa 

and southern Namibia. This species has found a wide realized niche in which it displays 

high productivity and fast growth, with the presence of a planktotrophic larva, allowing it 

to colonise new habitats quickly. 

 

Table 6.1. Examples of mussel marine ecosystem engineering activity (adapted from Jones et al., 1994). 

Organism Habitat Activity Impact Reference 
Ribbed mussels 
Geukensia demissa 

Rhode Island 
Spartina salt 
marsh 

Secrete byssal 
threads and form 
dense mussel 
beds 

Stabilize substrate, bind 
and protect sediment from 
erosion and disturbance 

Bertness 
1984 

Mussels Mytilus 
californianus 

Rocky intertidal 
shores in Pacific 
Northwest of 
North America 

Form dense 
mussel beds and 
trap sediment 

Stimulate development of 
rich infauna and provide 
secondary substrate 

Suchanek, 
1992 

Mussels Musculista 
senhousia 

Intertidal shores 
of the 
Mediterranean, 
Australasia and 
the Pacific North 
American coasts 

Invade new 
habitatas and 
form thick 
mussel mats 

Alter infaunal diversity, 
inhibit the spread of 
seagrass Zostera marina 

Crooks & 
Khim, 1999 

Mussels Brachidontes 
rodriguezii 

Temperate rocky 
intertidal shores 
of Argentina 

Form dense 
mussel beds and 
trap sediment 

Stimulate development of 
rich infauna and provide 
secondary substrate 

Adami et 
al., 2004 

Mussels Mytilus 
galloprovincialis,  
Aulacomya maoriana 
and 
Perna canaliculus 

Wellington 
Harbour rocky 
intertidal 
communities 

Colonise new 
substrate, 
secrete byssal 
threads and form 
dense mussel 
beds 

Exclude other community 
members, create 
secondary substrate and 
shelter associates from 
wave action, desiccation 
and predation 

Present 
study 
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In addition, M. galloprovincialis in South Africa is relatively free from local 

predators, free from native parasites, and resilient to local ones. However, in New 

Zealand M. galloprovincialis is not regarded as an invader but is thought to be native 

(Hilbish et al., 2000; Gardner, 2004). The brown mussel Perna perna has been 

successfully colonizing shores in the Gulf of Mexico, after it was introduced by 

international shipping, probably from Venezuela (Hicks & Tunnell, 1993; Hicks et al., 

2001). Under the environmental conditions prevailing in the Gulf of Mexico, this species 

also exhibits a high growth rate, reproductive effort and recruitment, with values similar 

to those recorded for endemic populations of this species. Living in dense aggregations, 

these mussels eventually dominate entire communities, a phenomenon reversible by a 

short term only through unpredictable and significant disturbance. 

 

6.2. Open vs. closed intertidal populations 

 

The development cycle in many marine animals includes a pelagic larval stage, 

which can be exported and dispersed by water currents away from the natal community. 

From this perspective, intertidal communities are often believed to be interconnected and 

able to produce a common larval “pool”, from which each community can potentially 

derive its recruits and to which it can contribute its own larvae (Warner & Cowen, 2002). 

In this state of community openness, recruitment is not linked to local production of 

larvae, and local community dynamics depend entirely on recruitment and post-

recruitment mortality (Caley et al., 1996). However, certain physical and biological 

factors can determine whether a community is an open or a closed one. Effects associated 

with water flow (e.g. flow variability, coastal complexity and site isolation), certain 

biological characteristics of adults (e.g. fecundity, spatial and temporal patterns of 

spawning, and patterns of larval release) and larval behaviour (e.g. pelagic larval 

duration, swimming ability and degree of advancement when hatching) can all result in 

retention or return to parental populations, thus further contributing to self-recruitment of 

communities (Sponaugle et al., 2002; Largier, 2003). 
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Physical factors 

 

Coastal complexity often interacts with the water flow and generates turbulent 

patterns of circulation, such as eddies, fronts and convergences (Wolanski & Hamner, 

1988). At small spatial scales (1 to 10 km), the topography- and tidally-induced water 

circulation around prominent coastal features, such as reefs or headlands, has been found 

to enhance larval retention directly by increasing the water residence time of local larvae 

(Black et al., 1991). This is particularly true for larvae with short pelagic periods (i.e. less 

than several days). For larvae with longer pelagic periods, however, this feature is likely 

to be less important because small-scale circulation patterns, such as eddies, often stop as 

soon as the tidal flow reverses (Black & Gay, 1987). At mesoscales (10 to 100 km), the 

effects of coastal complexity on larval retention become clearer, as numerous headlands 

and embayments can alter water circulation and create large eddies in the lee of the 

headlands, thus stimulating larval retention (Wing et al., 1995, 1998). At larger spatial 

scales, currents can flow along coastlines uninterrupted, resulting in high potential for 

greater larval dispersal. Major currents meet only at a headland or cape, thus generating 

gyres and large eddies. In this situation, entire populations of aquatic organisms, and as a 

result their larvae, can be closed, thus possibly leading to self-seeding (Sponaugle et al. 

2002). The more isolated a site, the more likely the chance that its population is 

maintained through self-recruitment, as it is unlikely that an isolated population would be 

supported by a distant source of larvae. For contiguous sites, some exchange of larvae 

would usually occur, resulting in increased recruitment subsidies and possibly no change 

in the locally derived numbers of larvae (Cowen et al., 2000). Self-recruitment at such 

sites may be between 30 and 60% (Swearer et al., 1999). However, the external sources 

of larvae and the processes of the larval input are very difficult to identify, and relevant 

studies are scarce, therefore at present we cannot generalize any further.   

 

Biological factors 

 

For a number of populations of the same species, adult fecundity can influence 

local self-recruitment, in particular when individual fecundity varies.  Thus, larger 
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individuals will be able to contribute more offspring, which may return to the parental 

population. Offspring dispersal depends on temporal patterns of larval release by adults 

and physical conditions at the time the larvae enter the environment (Sponaugle et al., 

2002). Where there are greater numbers of offspring, zooplanktotrophic predators can be 

swamped, which further contributes to the survival of marine larvae (Morgan, 1990). 

Pelagic larval duration, or the time a larva spends in the water column, is inversely 

related to the probability of that larva returning to its natal population (Sponaugle et al., 

2002). For example, larvae of mussels with a pelagic duration range between 2 and 4 

weeks (Helson & Gardner, 2004) can be advected from the parental sites and exchanged 

with other populations. However, larvae with longer pelagic periods have the ability to 

respond actively to favourable and temporally variable environmental cues, which can 

greatly increase the chances of larval return to natal populations. Active larval behaviour 

also includes vertical positioning, horizontal swimming and sensory capabilities. In most 

coastal environments, the water flow is vertically stratified, which means that the benthic 

boundary layer moves more slowly than the layers above it (Sponaugle et al., 2002). 

Invertebrate larvae may be able to exploit this phenomenon and remain in the local 

population by staying within the benthic boundary layer (Butman, 1987). Moreover, 

vertical migration of larvae may help to deliver them to suitable settlement habitats. 

Further, certain oceanographic mechanisms, such as eddies and gyres, can increase both 

concentrations of the chemical compounds (such as nutrients, proteins, manitol from 

algae, tannins from terrestrial plants, monosaccharides, amino acids and fatty acids) and 

environmental stimuli (such as salinity and temperature) to which larvae may become 

sensitive. Increased concentration of such stimuli makes them more easily detected by the 

larvae, and this would further increase the likelihood of local larval retention (Kingsford 

& Gray, 1996; Kingsford et al., 2002). Unique local combinations of salinity and 

temperature in both horizontal and vertical planes are characteristic of riverine plumes, 

such as that frequently present in Wellington Harbour from the Hutt River (Mann & 

Lazier, 1996). For marine larvae, such steep gradients of salinity, turbidity and 

temperature in local freshwater runoffs, often combined with information on current 

direction and water source, could provide a powerful cue, possibly further attracting the 

larvae to the parental population (Barnett & Jahn, 1987). However, current knowledge of 
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how environmental cues stimulate larval concentration is fairly limited and mainly 

speculative, and more work remains to be done on this subject.  

 

6.3. Wellington Harbour rocky intertidal mussel assemblages  

 

In Wellington Harbour, mussel communities display diverse ecological traits, 

commonly stimulated by the physical characteristics of the water environment. As far the 

vertical distribution of the three intertidal mussel species is concerned, the present study 

shows that the greenshell mussel P. canaliculus cannot prosper in areas above the low-

intertidal. This species is unable to withstand the harsher environmental conditions of the 

mid- and high-intertidal region, of which desiccation is probably the critical factor in 

determining the vertical distribution of this species on the rocky intertidal shore. M. 

galloprovincialis and A. maoriana are often found in mixed clumps, especially in the 

mid-intertidal. This is probably a result of the higher desiccation tolerance of both 

species. However, the fact that, of all three species, only M. galloprovincialis is found in 

the higher ranges of the intertidal zone suggests that this species is the most resilient. It 

also appears that A. maoriana additionally benefits from the shading and protection from 

heat provided by M. galloprovincialis, as it was frequently seen surrounded by 

individuals of M. galloprovincialis, where thermal buffering and moisture content are 

higher. However, the ability to colonise the higher intertidal ranges comes with a price. 

For M. galloprovincialis that is physiological in nature, as this species does not attain 

certain physiological indexes as high as the other two species. The condition index of M. 

galloprovincialis was considerably lower compared with the condition of P. canaliculus 

and A. maoriana, which had very similar values. In the case of P. canaliculus, the high 

condition index was most likely a direct result of living in the low-intertidal zone 

associated with higher food availability and feeding rates, as this species is immersed and 

therefore feeding for considerably longer periods of time. For A. maoriana, the benefit of 

being thermally buffered and therefore less exposed to in situ desiccation, as well as a 

possible small energetic costs associated with maintenance of a smaller body size, are 

probably important factors contributing to higher condition in this species. 
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The spatial and temporal variability in mussel condition detected in this study was 

accompanied by a similar variability in the numbers of larvae recruiting to experimental 

substrata. There was an inverse relationship between the condition of adult mussels and 

the concentration of recruits, as the increasing number of mussel larvae in the water 

column was reflected by a general decline in mussel condition. This phenomenon can be 

explained in terms of mussel physiology, stimulated by water temperature. As the water 

temperature gradually increases at the end of winter and in spring, more energy is 

allocated to gamete formation and gamete release. This means that fewer energetic 

resources are available for maintenance of somatic tissues. As a result, bodily stores of 

glycogen are depleted. This effectively becomes a stressful situation, leading to a 

decrease in the volume and weight of somatic tissues (Marsden & Weatherhead, 1999). 

The pattern of high larval concentration and low body condition is clearly reversed later 

in the seasonal cycle, when increasing condition values mark the end of the reproductive 

season. This is also the time when the glycogen resources of mussels are restored and 

body tissues are rebuilt, thus leading to increase in tissue weight.  

 

Results obtained in this study, where warmer, more saline waters and higher 

chlorophyll a concentration systematically affect certain Harbour areas, suggest that the 

Harbour is not as homogeneous as previously thought. Further, the conspicuous and 

frequent plume, rich in organic particles entering the Harbour from the Hutt River 

significantly alters the environmental regimes as it travels south. Thus, it appears that the 

environmental parameters are of primary importance in intertidal communities, because 

they establish a framework on which species composition and diversity is created and 

perpetually maintained (McQuaid & Branch, 1984; Gosling, 2003; Rupp & Parsons, 

2004).  
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