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Abstract 

Introductions of ants into new areas can dramatically influence resident ant 

populations. A recent ant introduction to New Zealand is the Australian 

myrmicine, Monomorium sydneyense Forel. The effects of this ant on the 

resident ant fauna of Tauranga were assessed, as well as the role of 

temperature and food concentration on competitive dynamics. Aspects of 

foraging characteristic and intraspecific behaviour were studied in order to 

aid management decisions, should population control by toxic baiting be 

required. There was a significant difference in community structure in M. 

sydneyense invaded communities compared to uninvaded ones, although the 

abundance of no individual species was significantly affected or was 

displaced by M. sydneyense. Temperature was found to play a strong role in 

the competitive dominance of M. sydneyense. Monomorium sydneyense 

dominated a larger proportion of baits at warm temperatures, however it 

secured significantly less foods at cooler temperatures. Temperature 

preference trials in the laboratory supported field observations as M. 

sydneyense displayed a preference for warmer temperatures, compared to 

Pheidole rugosula Forel which showed no preference for any of the 

temperatures tested. Monomorium sydneyense showed a distinct preference 

for the protein based food resources that were offered, including the ant bait 

X-Stinguish®. Foraging distance trials showed that M. sydneyense workers 

were never observed foraging more than 2.8 m from their nest. The 

probability of only 50% of baits being occupied by M. sydneyense at a 

distance of 1 m from a nest suggests that intensive baiting would be required 
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to manage populations of this ant, highlighting that the population 

management of M. sydneyense would be difficult. Aggressive behaviour was 

displayed between workers from different nests, suggesting that there is a 

reduced likelihood of this ant attaining high population densities in New 

Zealand. 
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Chapter 1 -  

General introduction 

 

Invasions 

 

Introduced organisms can have a range of effects in a new area ranging from 

a mere addition to the flora or fauna, to severe disruption of the host 

ecosystem (Bond and Slingsby 1984; Christian 2001; Cole et al. 1992). 

Transportation of these exotic organisms has often been facilitated through 

their close association with humans (Collingwood et al. 1997; Vitousek et al. 

1997), which increases their chance of dispersal past barriers that previously 

hindered their natural spread (Holt 1996). Dispersal and subsequent arrival of 

an organism into a new habitat does not automatically equate to successful 

establishment. Many organisms that arrive fail to establish self sustaining 

populations (Kareiva 1996; Simberloff and Gibbons 2004). Characteristics of 

the invader and the new environment must be compatible before the 

introduced organism becomes a permanent resident (Elton 1958; Heger and 

Trepl 2003; Holway et al. 2002b; Lester 2005; Moyle and Light 1996; 

Shigesada and Kawasaki 1997). For species that do establish in the new area, 

their influence is greatest on species that require similar resources (Andersen 

1997; Brown 2000). Consequently the management of some of these exotic 

species by eradication has been conducted to prevent further disruptions to 

the flora and fauna of the invaded environment (Causton et al. 2005; Harris 

2001). 
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Ants are particularly successful at establishing populations outside of their 

native range, as demonstrated by the presence of five species that appear in 

the ‘100 of the world’s worst invasive species’ list (Lowe et al. 2000.). Many 

species have a suite of characteristics conducive to their establishment 

outside of new ranges after they arrive. Many have the ability to establish 

functioning colonies with a low number of individuals, thus only needing a 

small number of propagules to arrive in the new habitat (Hee et al. 2000). 

Other invasive species display unicolonial behaviour whereby workers from 

spatially separate nests show reduced aggression toward each other and 

cooperate rather than compete with one another for resources, allowing more 

time and energy to be focused on foraging and worker production than on 

nest defence (Holway et al. 2002a; Holway et al. 1998). This behaviour can 

be influenced by genetic variation between and within populations (Suarez et 

al. 1999; Tsutsui et al. 2003; Tsutsui et al. 2000) and environmental cues 

(Suarez et al. 2002 ; but see Giraud et al. 2002) or by a change in the amount 

of food sources in the environment (Sorvari and Hakkarainen 2004). 

Furthermore, factors such as escape from enemies, empty niche, omnivory, 

and general nest site requirements (Herbers 1993; Holway et al. 2002a; 

Passera 1994; Vega and Rust 2001) can also promote successful 

establishment of ants outside of their home range.  

 

Generally, the organisms most affected by ant introductions are the resident 

ant species (Christian 2001; Erickson 1971; Gómez and Oliveras 2003).  The 

numerical superiority of introduced ant species over resident ant species has 

been cited as a mechanism by which the resident species can be displaced 
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(McGlynn 1999a). Community composition of ant species is thought to be 

based on competitive outcomes (Fox et al. 1985; Greenslade 1971; Holway 

1999; Morrison 2002; Savolainen and Vepsäläinen 1988), but see 

(Roughgarden 1983; Schoener 1982) and environmental compatibility 

(Andersen 2000; Holway et al. 2002b; Human et al. 1998). Ant community 

structure may not be easily predicted from numerical supremacy or fighting 

ability alone. Daily or seasonal temperature fluctuations may also affect the 

outcome of competitive interactions between co-occurring species, due to 

differences in the temperature tolerances of some species influencing forager 

number (Campos and Schoereder 2001; Cerdá et al. 1997; Cerdá et al. 1998; 

Fellers 1989). Additionally, species with low resource needs (Fox 2002; 

Tilman 1982) or species that have different food utilisation traits, for example 

epigeic (above ground foraging) or hypogeic (below ground foraging) ants, 

may be able to maintain populations in the presence of behaviourally 

dominant species (Palmer 2003; Savolainen and Vepsäläinen 1988). 

 

New Zealand ant fauna 

 
Pacific islands receive a large number of ant introductions (McGlynn 1999b). 

It is thought that oceanic islands are more easily invaded than continental 

land masses because of a lack of biotic resistance from the native species  

(Elton 1958; Wilson 1961; but see Levine 2000; Levine and D’Antonio 1999) . 

New Zealand has a small native ant fauna, most of which are thought to be 

derived from Australian ant species (Brown 1958). There are an estimated 37 

established ant species in New Zealand, 26 of which are considered to be 
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introduced (Don et al. 2005). One recently successfully established ant is the 

Australian native, Monomorium sydneyense Forel. 

 

Monomorium sydneyense is placed in the Myrmicinae subfamily (Formicidae: 

Myrmicinae) and is categorised in the Generalized Myrmicinae functional 

group (Bisevac and Majer 1999). It was found at the Port of Tauranga during 

an invasive ant survey in 2001 (unpublished MAF 2003) and at the Port of 

Napier in 2004 (Lester pers. comm.). These are the only two areas known to 

have colonies of M. sydneyense. Monomorium sydneyense is a small 

monomorphic ant species approximately 1.7 mm long. It is typically a ground 

nesting species that is found throughout Australia, including Tasmania 

(Heterick 2001). Currently there are many colour morphologies associated 

with this species, from dark brown to yellow therefore M. sydneyense may be 

multiple species or sub species under the same species name (Heterick 

2001). Therefore, if there is only one M. sydneyense colour morph present in 

New Zealand, it may have a more restricted climatic range than would 

otherwise be suggested from the distribution records in Australia, which 

include all of the colour morphologies. Monomorium sydneyense has been 

observed to co-occur with the behaviourally aggressive Argentine ant 

Linepithema humile (Mayr) and the coastal brown ant Pheidole megacephala 

(Fabricius) in Australia (Heterick et al. 2000), species that are often regarded 

as superior competitors with other ants (Bond and Slingsby 1984; Brightwell 

2002; Holway et al. 2002a; Vega and Rust 2001). 
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Research aims 

This study was conducted to investigate whether M. sydneyense could 

potentially reduce the abundance of, or even displace, ants in a 

representative New Zealand environment. My study site was at Sulphur Point 

in Tauranga because it is where M. sydneyense has been recorded at the 

longest. I examined the role of the spatial dispersion of a food resource and 

temperature on competitive outcomes at food resources. Additionally, aspects 

of foraging distance, food preference and aggression behaviour between 

spatially separate nests of M. sydneyense was investigated.  

 

Firstly in Chapter 2 I investigated the effect of M. sydneyense on the resident 

ant species. I compared species richness and abundance in sites with M. 

sydneyense to adjacent sites without M. sydneyense. No comparisons could 

be made at the same site before and after the arrival of M. sydneyense as no 

data has previously been published on the resident ant fauna of Sulphur Point 

before the introduction of M. sydneyense.  

 

In my second research chapter, Chapter 3, I studied possible mechanisms 

that would promote coexistence of the resident ant species with M. 

sydneyense. I investigated the effect of temperature on the competitive 

dynamics of the ants present at Sulphur Point and I examined the role of 

resource concentration on species richness in the area.  
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In Chapter 4, I studied aspects of the biology of M. sydneyense, focussing on 

foraging behaviour and intraspecific interactions that would be useful for 

management decisions should there be a need to manage populations of this 

species.  

 

Finally, in Chapter 5 I discuss the implications of my findings. As I have 

written chapters two, three and four as individual research papers for 

publication there is inevitable repetition in the introduction, methods and 

discussion sections between these chapters. 
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Chapter 2 -  

Changes to the Tauranga ant community composition as a result of invasion 

by Monomorium sydneyense Forel (Hymenoptera: Formicidae). 

 

Introduction 

As biological invaders, several ant species rank among the most successful 

invaders in the world (Lowe et al. 2000). Many ants have managed to 

overcome natural borders that previously hindered an expansion from their 

home range due to a close association with humans (Collingwood et al. 1997; 

Elton 1958; Vitousek et al. 1997). Characteristics such as polyphagy (Holway 

and Suarez 1999), general nest site requirements (Hee et al. 2000; Herbers 

1993), polygyny (multiple queens in a nest) and unicolonality (multiple 

cooperative nests) (Tsutsui and Suarez 2003) have subsequently contributed 

to the successful establishment and spread of some exotic ants. Some exotic 

ant species have had disastrous outcomes on the biology of areas because of 

their introduction. Effects in their new range have included reducing pollinator 

efficacy through competition for food (Bond and Slingsby 1984; Buys 1987; 

Cole et al. 1992; Visser et al. 1996), and displacement of key species causing 

major changes in ecosystem function (Christian 2001; Cole et al. 1992; 

O'Dowd et al. 2003). 

 

Commonly, the organisms that are most adversely affected by ant invasions 

are the resident ant species (Christian 2001; Erickson 1971; Gómez and 

Oliveras 2003), often accomplished by competitive displacement due to the 
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numerical superiority of the introduced ant species over the resident species 

(McGlynn 1999a). Competitive displacement is most likely to occur when co-

occurring ants have similar or overlapping dietary or nesting needs 

(Savolainen and Vepsäläinen 1988), such as ants in the same functional 

group (Andersen 2000) 

 

The placement of Australian ants into functional groups has aided our 

understanding of ant community structure and environmental health 

(Andersen 1995; Brown 2000; Hoffmann and Andersen 2003; Majer et al. 

2004). Ants are assigned to groups primarily based on their tolerances to 

temperature stress and physical disturbance and secondarily by their 

competitive behaviour (Andersen 1995). Functional group theory predicts that 

co-occurring ants categorised in the same functional group should have the 

greatest influence on the behaviour of each other and less influence on ants 

belonging to different functional groups (Andersen 1995; Andersen 2000; 

Brown 2000). There have been seven different functional groups 

distinguished. These groups have been listed in order of the usual competitive 

superiority over the following groups: ‘Dominant Dolichoderinae’, ‘Subordinate 

Camponotini’, ‘Generalized Myrmicinae’, ‘Opportunists’, ‘Cryptic species’, 

‘Climate Specialists’ and ‘Specialist Predators’ (Fig. 2.1). ‘Dominant 

Dolichoderinae’ are generally found in areas with low temperature and 

disturbance stress. They are usually behaviourally dominant over the other 

functional groups. ‘Subordinate Camponotini’ are often temporally segregated 

from competitive interactions with other functional groups because of their 

usual nocturnal habit. ‘Generalized Myrmicinae’ can often tolerate moderate 
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temperature stress and physical disturbance. They are occasionally 

competitively superior to ‘Dominant Dolichoderinae’. ‘Opportunists’ are 

subordinate to the above groups and are often found in high thermal stress or 

highly disturbed environments. ‘Cryptic species’ are often found in low 

numbers in leaf litter. ‘Climate Specialists’ are found in environments with 

large thermal stresses, often categorised into either ‘Hot-’ or ‘Cold- Climate 

Specialists’. Temperatures may be too high or too low, allowing them to 

forage without competition from ‘Dominant Dolichoderinae’ or ‘Generalized 

Myrmicinae’ in the area. ‘Specialist Predators’ often forage singularly and do 

not interact much with the other functional groups (Andersen 2000). 

 
 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 - Functional groups adapted from Andersen (2000). Arrows indicate the general 
flow of competitive dominance. Dominant Dolichoderinae are competitively superior to all 
other functional groups. ‘Dominant Dolichoderinae’ and ‘Subordinate Camponotini’ are 
competitively superior to the other functional groups. The bottom box of ‘Climate specialists’, 
‘Cryptic species’ and ‘Specialist Predators’ are generally subordinate to all other groups and 
are not superior to one another. 

Subordinate Camponotini 
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Opportunists 
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A recent arrival to New Zealand is the small Australian myrmicine ant 

Monomorium sydneyense Forel (Formicidae: Myrmicinae). It was first 

recorded at Sulphur Point, Tauranga during an invasive ant survey at the Port 

of Tauranga in 2001 (MAF 2003 unpublished) and is now established in New 

Zealand (Lester 2005). It is found throughout its home range in Australia, 

including Tasmania (Heterick 2001). It can be assumed to tolerate the lower 

temperatures that are found in New Zealand. Heterick (2001) suggests that 

there are some different colour morphologies that have been included under 

the species name Monomorium sydneyense. Therefore its Australian 

distribution may not be a good predictor for its spread in New Zealand. 

 

Lester’s (2005) study is the first published record of M. sydneyense 

establishment outside of Australia. Although there are no published data 

concerning effects that it has had on ants in other countries, it has been found 

occurring with the invasive Argentine ant, Linepithema humile (Mayr) and 

coastal brown ant Pheidole megacephala (Fabricius) in Australia (Heterick et 

al. 2000). Its ability to survive in the presence of such highly competitive 

species suggests that it may be a good competitor. 

 

I examined the response of the ant community of Sulphur Point to the 

presence of M. sydneynese. To date, no data have been published on the ant 

fauna of Sulphur Point before the arrival of M. sydneyense. Consequently, in 

this study, I compare differences between invaded and adjacent uninvaded 

sites rather than a preferred before and after study. Firstly, I hypothesised that 
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there would be differences in the ant community diversity and abundances of 

species in invaded and uninvaded sites. Secondly ants categorised in the 

same functional group as M. sydneyense would be negatively affected by its 

presence. This result would be indicated by a decline in abundance of these 

species in invaded sites compared to their abundances in uninvaded sites. 

The ant community diversity and abundance of species was compared at 

different times through the year to investigate whether there was an effect of 

season, indicated by temperature, on the ant communities in the invaded and 

uninvaded sites. 

 

Methods 

Study site 

 

This study was conducted from December 2003 to December 2004 at Sulphur 

Point, Tauranga, New Zealand (37˚ 39' S, 176˚ 11'E) (Fig. 2.2). The majority 

of Sulphur Point is reclaimed land consisting of the marine sediments dredged 

up from the adjacent shipping channel. Consequently the soil found on the 

reclaimed point is a loamy-sand containing portions of shells, which is 

consistent with the marine sediments of Tauranga harbour (Healy 1994). 

Sulphur Point has an approximate area of 90 hectares, two thirds of which is 

occupied by the Port of Tauranga. The remaining land has been set aside for 

recreational purposes, half of which is grassed and the other half asphalted. 
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Tauranga experiences a sub-tropical climate, characterised by warm humid 

summers and mild winters with daytime temperature maxima ranging from 22-

26˚C in the summer months (December- February) to 12-17˚C during the 

winter months (June- August). On average Tauranga receives 2200 sunshine 

hours per year (NIWA 2005) and annually precipitation ranges from 1250 to 

1500 mm per year, with the monthly average slightly increasing during the 

winter months (de Lilse and Kerr 1963). 

 

 
 

Figure 2.2 - Sulphur Point, Tauranga. Indicating the distribution of M. sydneyense captured in 
pitfall traps from December 2003 – 2004. Monomorium sydneyense present (  )   M. 
sydneyense absent (    ). 

 

Effect of Monomorium sydneyense on the resident ant species 

I compared an area invaded by M. sydneyense with an adjacent uninvaded 

area for differences in the species abundance and diversity of the ant 

communities by pitfall trap sampling. I placed pitfall traps along a transect 

originating from the area that was known to contain nests of M. sydneyense in 
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December 2003. Ensuring that the pitfall trap sites remained constant 

throughout the course of the survey, I repeated my sampling in March, 

August, October and December 2004 to determine whether there was any 

seasonal variation in the abundance of ants. The initial transect contained 13 

pitfall traps and of these four were in the uninvaded area. To increase the 

number of traps in the uninvaded area two extra pitfall traps were added in 

March 2004 (n = 15), and a further three in August, October and December 

2004 (n = 18). Data on the air temperature at a height of four metres, for the 

different months that the pitfall surveys were conducted, were obtained from 

the Tauranga Aerodrome's NIWA climate station, 2.7 km from my study site. 

 

The pitfall traps were spaced approximately 60 m apart along the western 

edge of a planted area. The planted area had a length of 870 m with an 

average width of 15 m and had a constant orientation of north to south, 

parallel with the western fence of the Port of Tauranga. The planted area 

comprised predominantly of New Zealand native coastal plants; 

Meterosideros excelsa, Dodonea viscosa, Myoporum leatum, and various 

Hebe and Coprosma spp. Included in this vegetation were some exotic 

planted species; Araucaria heterophylla and Pinus spp. The pitfall traps were 

plastic cups that were 65mm in diameter at the top tapering to 43 mm at the 

base and were 90mm deep. Each trap was filled one third with 30% ethylene 

glycol and water with 2-3 drops of dishwashing detergent added to break 

surface tension. They were left in the field for a period of 96 hours after which 

time they were collected and brought back to the laboratory. All ants in the 

traps were counted and identified to species level using dichotomous keys 
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provided by Landcare Research (2005), Heterick (2001) and Brown (1958). 

Functional groups were assigned to the ants captured (Andersen 1997; 

Bisevac and Majer 1999; Heterick et al. 2000). 

 

Statistical Analysis 

 

I analysed the similarity in species diversity and species abundances in pitfall 

traps between invaded and uninvaded sites using an Analysis of Similarities, 

ANOSIM. This method produced a ‘Global R’ value with an associated 

significance value. Significance values (P < 0.05) indicated that Global R 

values were different from the Null hypothesis, that there was no difference in 

the diversity and abundance of ants captured in pitfall traps between invaded 

and uninvaded sites. Many species were absent from pitfall traps throughout 

the year, consequently, analysis was carried out on log10 (x+1) transformed 

numerical data of the species collected, where x was the count of the species. 

The data were analysed using Bray-Curtis similarities measure. This method 

ensured that results were biased toward common ant species captured rather 

than being strongly influenced by the presence or absence of rare species 

(Clark and Warwick 2001). 

 

I performed a non-metric multidimensional scaling ordination (NMDS) to 

graphically illustrate the results of the ANOSIM. NMDS plots are two 

dimensional graphical representations of ranked pair-wise comparisons 

between samples. Samples with similar species abundance and diversity are 

placed as points close together in multidimensional space. Samples that are 
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increasingly dissimilar to each other are placed further apart. Since the NMDS 

plots are two dimensional representations of this placement in 

multidimensional space stress values were associated with the NMDS plots 

indicating the amount of distortion (stress) needed to create the plot. Stress 

values ≥ 0.2 imply that the NMDS does not accurately represent the true 

distances between points in multidimensional space. Values close to 0.1 

indicate a good two dimensional representation and values < 0.01 indicate a 

near perfect two dimensional representation of the ordination (Clark and 

Warwick 2001). 

 

A Similarities Percentages analysis, SIMPER, was undertaken to determine 

the contribution of each species to variations in the ANOSIM. Whilst not a 

statistical test, SIMPER can support other statistical analyses by identifying 

species that had the strongest influence on results of previous tests. SIMPER 

evaluates the average similarity within groups and dissimilarity between 

groups and ranks the contribution that a species makes to an ANOSIM. 

Additionally, the dissimilarity/ standard deviation (diss/SD) statistic shows the 

variation within a group, where values ≤ 1.4 indicate that there is little within 

group variation, thus are a good discriminating species (Clark and Warwick 

2001). Analyses were performed using Primer v. 5 (PRIMER-E Ltd 2002) 

 

Effect of Monomorium sydneyense on individual species 

To assess whether ant species diversity and abundance differed between 

invaded and uninvaded plots and through time, I compared the abundances of 

the five most commonly observed ant species: Paratrechina vaga (Forel), 
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Tetramorium grassii Emery, Pheidole rugosula (Forel), Iridomyrmex anceps 

(Roger), and Monomorium antarcticum captured in the invaded and 

uninvaded pitfall traps. A quasi- Poisson regression, Generalized Linear 

Model (GLM) was used for comparisons of the counts of the ants in each 

pitfall trap, using R v. 2.0.1 (The R foundation for Statistical Computing 2004). 

 

Results 

A total of 15 ant species, from 11 genera and four subfamilies were collected 

in the pitfall traps at Sulphur Point (Table 2.1). Thirteen species were classed 

as exotic species to New Zealand. The most represented functional group 

was the Opportunist group, followed by the Generalized Myrmicinae, Cryptic, 

Dominant Dolichoderinae and Specialist Predators (Table 2.1). The pitfall 

traps captured one worker of the non-established Paratrechina longicornis 

(Latreille) a potential pest species. Species such as Cardiocondyla minutior 

Forel, Strumigenys perplexa (Smith), Monomorium fieldi Forel (formally known 

as Monomorium antipodum Forel in New Zealand) (Gunawardana 2005) and 

Hypoponera eduardi (Forel) were predominantly or only observed in invaded 

sites (Table 2.1). Monomorium sydneyense was found at 10 of the 18 sites 

along the pitfall transect (Fig. 2.2). 



 

 25 

 
 
Table 2.1 Ant species captured in the pitfall traps with their total abundances in invaded and 
uninvaded sites, including their current origin status in New Zealand. The functional group 
abbreviations are; DD, Dominant Dolichoderinae; GM, Generalized Myrmicinae; O, 
Opportunist; C, Cryptic species and SP, Specialist Predators (Brown 2000).  
 

 

Effect of Monomorium sydneyense on the resident ant community 

The ANOSIM showed a significant difference in species diversity and 

abundance between invaded and uninvaded sites for the duration of the study 

(P = 0.010). Analysis of Similarities results differed through time with a 

significant difference in ant community composition between invaded and 

uninvaded sites in October (P = 0.009) and December 2004 (P = 0.043) but 

not in December 2003 (P = 0.066), March 2004 (P = 0.351) and August 2004 

(P = 0.811) (Fig. 2.3; Table 2.2). 

 Status Functional Abundance 

Species  Group Invaded Uninvaded 

SUBFAMILY DOLICHODERINAE     
Iridomyrmex anceps (Roger) exotic DD 186 79 
Technomyrmex albipes (Smith) exotic O 0 3 
Ochetellus glaber (Mayr) exotic O 5 3 
     
SUBFAMILY FORMICINAE     
Paratrechina longicornis (Latreille) exotic O 0 1 
Paratrechina vaga (Forel) exotic O 836 610 

     

SUBFAMILY MYRMICINAE     
Cardiocondyla minutior Forel exotic O 52 3 
Monomorium antarcticum (F. Smith) native GM 28 44 
Monomorium fieldi Forel native GM 33 0 
Monomorium sydneyense Forel exotic GM 370 0 
Orectognathus antennatus Smith exotic SP 0 1 
Pheidole rugosula (minor) Forel exotic GM 338 507 
Strumigenys perplexa (Smith) exotic C 7 1 
Tetramorium bicarinatum (Nylander) exotic O 1 0 
Tetramorium grassii Emery exotic O 440 299 
     
SUBFAMILY PONERINAE     
Hypoponera eduardi (Forel) exotic C 6 0 
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Table 2.2 Analysis of similarity (ANOSIM) on log(x+1) transformed data of pitfall traps 
between M. sydneyense invaded and uninvaded sites. Global R values outside of the range 
+0.15 -> -0.15 indicate that groups are not similar to each other as indicated by the 
significance value. Significant values are in bold 
 
 

Month Global R sig. 
   
December 2003 0.258 0.066 
March 2004 0.036 0.351 

August 2004 -0.067 0.811 
October 2004 0.247 0.009 

December 2004 0.202 0.043 

All Months 0.283 0.010 

 
 

SIMPER analysis on all of the months combined, December 2004 and the 

October samples indicated that P. rugosula, T. grassii and I. anceps had the 

strongest influence on the results (Table 2.3). Two thirds of the variation 

between invaded and uninvaded sites was consistently attributed to these 

three species. There was little within group variation in the number of these 

three species captured in the pitfall traps, as indicated by the large values for 

the dissimilarity/ standard deviation statistic except for P. rugosula and I. 

anceps in October and P. rugosula in December 2004 (Table 2.3). There 

appeared to be an influence of air temperature on the abundances of the ants 

captured in the pitfall traps (Fig. 2.4). Abundances of all of the species 

included increased with the rise in temperature though there was some 

variation. Pheidole rugosula appeared to have higher abundances in areas 

without M. sydneyense, though T. grassii and P. vaga showed little variation 

in the numbers of ants in invaded and uninvaded sites (Fig. 2.4). 
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Table 2.3 SIMPER analysis on log(x+1) transformed data explaining the percent to which 
each species had an influence on the differences in ant abundance and diversity observed 
between the M. sydneyense invaded and uninvaded sites. Values of 1.4 and above for 
Dissimilarity/ sd column indicate that that species is a good discriminating species. SIMPER 
analysis was carried out on October, December 2004 and all months combined as differences 
were significant in the ANOSIM analysis. 
 

  
Average abundance in 
pitfall traps   

 Species Invaded Uninvaded Diss/sd 
% 
contribution 

October 
2004      

 Pheidole rugosula 4.90 15.63 1.16 26.23 
 Tetramorium grassii 4.80 7.75 1.40 24.75 
 Iridomyrmex anceps 3.60 2.88 1.36 17.53 
 Paratrechina vaga 9.20 11.38 1.40 11.72 
 Monomorium antarcticum 0.40 2.13 0.82 10.77 

December 
2004      

 Pheidole rugosula 9.60 25.75 1.37 26.66 
 Iridomyrmex anceps 10.00 3.13 1.66 21.80 
 Tetramorium grassii 7.20 8.75 1.50 20.83 
 Paratrechina vaga 23.50 24.38 1.38 9.04 
 Monomorium antarcticum 1.30 1.00 0.85 8.84 
 Monomorium fieldi 3.20 0.00 0.60 8.49 

Combined 
Months      

 Pheidole rugosula 6.81 16.06 1.40 23.68 
 Tetramorium grassii 8.81 8.69 1.52 22.63 
 Iridomyrmex anceps 3.80 3.03 1.66 16.19 
 Paratrechina vaga 17.00 16.61 1.49 9.01 
 Monomorium antarcticum 0.06 1.42 1.05 8.81 
 Cardiocondyla minutior 1.08 0.11 1.18 8.31 
 Monomorium fieldi 0.66 0.00 0.57 4.59 
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Figure 2.3 Two dimensional non-metric MDS plot of the log(x+1) transformed numerical data. 
Points represent individual pitfall traps whereby points close to each other are more similar in 
species diversity and abundance than points that are further away. Figures 3 d, e, and f have 
significant differences at the <0.05* and <0.01** levels in species diversity and abundance 
between M. sydneyense invaded plots (●) and uninvaded plots (○). 

 

 

 

Effect of Monomorium sydneyense on individual species 

The presence of Monomorium sydneyense did not have a statistically 

significant affect on the abundances any of the individual species tested (Fig 

2.5; Table 2.4). There was a significant effect of month on the abundances of 

P. vaga (P < 0.001), T. grassii (P < 0.001), I. anceps (P = 0.003) and M. 

sydneyense (P = 0.020) caught in the pitfall traps (Fig. 2.5; Table 2.4). 

Densities of P. rugosula did not change significantly through time (Fig. 2.5 f; 

Table 2.4). A significant M. sydneyense x time interaction on the abundance 

of M. antarcticum indicated that the effects of M. sydneyense on the 

** ** * 
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abundance of M. antarcticum differed over time, although no clear effect of M. 

sydneyense on M. antarcticum abundances was observed as dynamics in 

December 2003 were very different from December 2004 (Fig. 2.5 b). 

 
Table 2.4 Poisson regression (GLM) on the effect of the presence of Monomorium 
sydneyense and sample time on the abundances of five most common ant species collected 
in pitfall traps from December 2003 to December 2004. Included is the effect of sample time 
on the abundance of M. sydneyense. Degrees of freedom are in parentheses. Significant 
values are highlighted in bold. 
 

                                                                                            Interaction 
 
Species Time  (4) M. sydneyense   (1) Time x M. sydneyense  (4) 
Paratrechina vaga 0.001 0.620 0.520 
Tetramorium grassii 0.001 0.420 0.750 
Pheidole rugosula 0.170 0.130 0.950 
Iridomyrmex anceps 0.003 0.980 0.210 
Monomorium antarcticum 0.586 0.377 0.032 

Monomorium sydneyense 0.002 - - 

 

 
 

Figure 2.4 The mean number of ants (± S. E.) captured in invaded areas and uninvaded 
areas compared with the mean temperature measured during the pitfall surveys. Points 
represent surveys that are ordered left to right: August, October, December, March 2004 and 
December 2003. 
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Figure 2.5 Abundances of ants caught in pitfall traps each month in M. sydneyense invaded 
sites (●) and uninvaded sites (○). Bars represent ± 1 standard error. The large variation 
between the two December surveys may be due to the low sample size in December 2003. 

 

 

Discussion 

Effect of Monomorium sydneyense on the resident ant community 

Comparisons of ant species abundance and diversity between invaded and 

adjacent uninvaded areas showed that there were differences between the 

two areas throughout the study period. This was not continuous throughout 

the year as demonstrated by differences only observed in October and 

December 2004 but not in December 2003, March or August. This may be a 
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result of differences in sample size, but it seems likely that weather conditions 

influenced the ant communities (Gordon et al. 2001). There were a smaller 

number of pitfall traps in December 2003 (n = 13) and March (n = 15) than in 

the other months (n = 18) and 12 hours of rainfall was recorded during the 

pitfall trapping in December 2003. These two factors, sample size and rainfall 

would have influenced the results by reducing ant foraging activity. Had these 

issues not have arisen, I would have expected differences to be detected in 

the December 2003 survey. Differences were significant at the P < 0.10 level 

when all of the months were considered. Similar species diversity and 

abundances between invaded and uninvaded sites in August may have been 

due to the lower number of ants foraging at that time, likely related to the low 

mean temperature recorded during the survey (Briese and Macauley 1980).  

 

Previous studies have revealed that temperature can strongly regulate the 

diversity and abundance of foraging ants (Andersen 1992; Bestelmeyer 2000; 

Campos and Schoereder 2001; Cerdá et al. 1997; Markin et al. 1975; 

Whitford 1999).  There was a large seasonal variation in the numbers of P. 

vaga, T. grassii, I. anceps and M. sydneyense captured in the pitfall traps, as 

indicated by the GLM. This may have been influenced by differences in the 

mean temperature for each sample period. Greater abundances of foraging 

species in the summer months may have allowed for differences in species 

diversity and abundances to be detected between invaded and uninvaded 

sites in December 2004 and October 2004 but not in March and August, 

whilst the small sample number could have influenced the December 2003 

data. 
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Effect of Monomorium sydneyense on individual species 

There was no difference in the abundances of the five most common species 

in invaded and uninvaded areas. Paratrechina vaga and T. grassii are 

categorised as ‘Opportunists’, therefore are not likely to be influenced by the 

presence M. sydneyense (Brown 2000). The abundances of these species 

varied seasonally but did not vary between invaded and uninvaded areas. 

They are likely to be competitively subordinate to M. sydneyense, though their 

tolerances to temperature stress, which may allow them to escape from 

competitive interactions with M. sydneyense (Andersen 2000; Briese and 

Macauley 1980; Brown 2000). Iridomyrmex anceps (Roger), as a Dominant 

Dolichoderinae is predicted to be competitively dominant over all functional 

groups (Andersen 2000; Brown 2000), therefore should not be influenced by 

the presence of M. sydneyense. This result appears to be the case as the 

abundances of I. anceps did not differ between invaded and uninvaded sites. 

 

Since functional group theory predicts that ant species categorised in the 

same group to compete the most intensely for resources (Andersen 2000; 

Brown 2000), I hypothesised that the presence of Monomorium sydneyense 

would have the greatest effect on resident ant species that were categorised 

its functional group, the Generalized Myrmicinae group. In Tauranga there 

were three other species categorised in this group: P. rugosula, M. 

antarcticum and M. fieldi. Pheidole rugosula exhibited decreased abundances 

in the pitfall traps in invaded areas consistently throughout the study, though 

the effect of M. sydneyense was not significant on this species. Monomorium 

antarcticum did show some differences in abundance between present and 
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absent sites however, this effect was dependant on the month that the sites 

were sampled. Monomorium fieldi was only found in M. sydneyense invaded 

areas, though with the low numbers of this species it is difficult to conclude 

whether this indicates co-existence.  

 

The influence of P. rugosula, T. grassii and I. anceps on the dissimilarity 

between invaded and uninvaded sites in the SIMPER analysis would suggest 

that M. sydneyense is having an effect on their abundance. Only P. rugosula 

showed some reduction in abundance in invaded sites, although this 

reduction was not statistically significant. The abundances of T. grassii and I. 

anceps showed no pattern between invaded and uninvaded sites. There may 

be other factors not taken into account that have influenced the abundances 

of these species, such as variations in the availability moisture in the area 

(Holway 1998). 

 

There were disparities between the ANOSIM and GLM on the influence of M. 

sydneyense on the ant community of Sulphur Point. Differences were found 

between invaded and uninvaded area in the ANOSIM but not in the GLM. All 

species captured in the pitfall traps, except M. sydneyense, were included in 

the ANOSIM analysis. This ensured that all differences in abundance and 

diversity between the invaded and uninvaded areas were influencing results, 

unlike the GLM, which only focussed on the five most common species, one 

at a time. 
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Monomorium sydneyense has only recently been discovered in New Zealand 

however, it is not known when it arrived in this country. My results suggest 

that M. sydneyense is having an  influence on ant community composition, but 

has not significantly reduced the abundances of any one ant species at 

Sulphur Point. Introduced organisms can have a ‘lag phase’ early in their 

introduction, when the organism adjusts to the new environment and 

consolidates its establishment before spreading (Crooks and Soulé 1999; 

Simberloff and Gibbons 2004). After such time it may have a negative effect 

on some of the resident organisms (O'Dowd et al. 2003; Simberloff and 

Gibbons 2004). If M. sydneyense does have a lag phase there is potential for 

larger impacts of this species after some time has passed. There were large 

variations in the numbers of ants captured in pitfall traps seasonally. 

Generally there were differences in ant abundance captured with temperature. 

This was expected as often the temperature can influence ant foraging activity 

(Fellers 1989; Whitford 1999).  

 

Monomorium antarcticum and M. fieldi, two native species were found co-

existing with M. sydneyense. Neither species were displaced or showed 

consistently reduced abundances in the presence of M. sydneyense. My 

results suggest that M. sydneyense will have a limited influence on these two 

species in ecosystems similar to Sulphur Point. Since this is likely to be the 

early stages of the M. sydneyense introduction to New Zealand there is 

potential to reassess its influence on the resident ant community by surveying 

the uninvaded ant community adjacent to the invaded area before, and if it 

spreads, after invasion. 
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Chapter 3 -  

Influence of temperature and spatial dispersal of food resources on the 

coexistence of competing ant species at Sulphur Point, Tauranga. 

 

Introduction 

Intra- or inter- specific interactions between ants from different colonies 

frequently occur when workers are foraging for food. If the species occur at 

the same food they can either; share the resource, fight for it, or relinquish 

such resources (Fellers 1987; Wilson 1971). Behaviourally dominant ants will 

often overwhelm subordinate ants at an existing food resource and displace 

them from food (Holway 1999; Human and Gordon 1996). Alternatively some 

species can coexist in small numbers at the food in the presence of a more 

dominant species (Wilson 1971). Ants are often better at either finding and 

removing foods, or displacing other species from the foods, otherwise known 

as the dominance discovery trade- off theory (Davidson 1998; Hölldobler and 

Wilson 1990; Holway 1999). Some invasive ants, such as the Argentine ant 

(Linepithema humile (Mayr)) have the ability to break this trade-off often 

finding food quickly and displacing other ants due to their high abundances 

(Holway 1999; Human and Gordon 1996). Abiotic factors such as a change in 

temperature can influence the competitive dynamics between ants in an area 

(Cerdá et al. 1997; Cerdá et al. 1998; Fellers 1989). The dominance hierarchy 

can change from one where the behaviourally dominant ant is at the top of the 

hierarchy to one where the most heat tolerant ant species is at the top of the 
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hierarchy because it is the only ant able to forage at extreme temperatures 

(Cerdá et al. 1997). 

 

The concentration of food resources in an area can influence species diversity 

and abundance (Root 1973). Root’s (1973) resource concentration hypothesis 

states that herbivores that find a concentrated resource will be likely to remain 

at that resource, consequently there may be a decrease in herbivore  richness 

due to displacement by specialist herbivores. Cain et al. (1985) found that the 

dispersion of a food affected the ability of cabbage white larvae (Pieris rapae 

(L.)) to find collards (Brassica oleracea L.). Pieris rapae were able to find 

more collards when they were spaced at regular intervals than when they 

were aggregated. 

 

Foraging activity due to temperature differences differs between species 

(Briese and Macauley 1980; Campos and Schoereder 2001; Cerdá et al. 

1997; Hölldobler and Wilson 1990). Species diversity and abundance at foods 

can fluctuate diurnally and seasonally because of temperature differences 

allowing subordinate ant species access to foods due to the reduced foraging 

activity (Andersen 1992; Briese and Macauley 1980; Cerdá et al. 1997; 

Fellers 1989). Holway et al. (2002b) found through a series of temperature 

mortality experiments that species had different tolerances to high 

temperatures. Consequently, ants such as the Argentine ant have the ability 

to dominate food resources at warm temperatures, but when temperatures 

become too hot other ants that can tolerate those higher temperatures can 
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access those foods without competition from L. humile (Thomas and Holway 

2005).  

 

In this chapter, I tested the effect of food dispersion and temperature on 

competitive ability of ants in the field, particularly in relation to the competitive 

characteristics of Monomorium sydneyense Forel, a recent ant arrival to New 

Zealand. Additionally, I examined the temperature preferences of species by 

allowing ants to move between chambers with differing temperatures in the 

laboratory. The hypotheses tested were that with an increase in the spatial 

dispersion of a food resource a greater number of ant species would be 

present during trials because more foods would be free from competitors thus 

allowing them to be discovered by less competitive species. Secondly, the 

numerically dominant ant species present at a food resource would change 

with increasing temperature. Finally, I predicted that different ant species 

would show a preference for different temperatures, as indicated by a short 

time to food discovery in a laboratory experiment. 

 

Methods 

Field work was undertaken at Sulphur Point, Tauranga, New Zealand (37˚ 39' 

S, 176˚ 11'E), from December 2003 until December 2004. Tauranga has a 

sub-tropical climate with warm humid summers and mild winters. The average 

daily temperature ranges from 22-26˚C in the summer, with the hottest 

months being January and February, to 12-17˚C during the winter, with July 

being the coldest month (NIWA 2003), rainfall however, is spread evenly 
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between all months of the year (de Lilse and Kerr 1963). This part of the point 

is reclaimed land made up from the dredged harbour channel. 

 

The experiments were conducted in a grassed area 70 x 40 metres in area 

located less than 100 metres from the sea. It is bordered by the Port of 

Tauranga, the Tauranga Yacht Club, a Marina and a retail store. Trials were 

conducted on ant colonies that were located along the edge of the grassed 

area were it came into contact with asphalt, as nests were easier to find along 

the grass edge. 

 

Effect of food concentration and temperature 

Differences in the proportion of food baits occupied by resident ants due to a 

change in the spatial dispersion of the food and changes in temperature were 

investigated. The species tested were M. sydneyense, Pheidole rugosula 

Forel, Paratrechina vaga (Forel) and Iridomyrmex anceps (Roger) as these 

four species were observed to co-occur at multiple sites (n = 5). In each trial, 

approximately six grams of peanut butter (see chapter 4) was placed in a 50 

cm radius half circle from the edge of the asphalt. The number of spots of the 

peanut butter was either 1 (n = 29), 8 (n = 31) or 64 (n = 29). A spatial 

dispersion of ‘1’ meant that all six grams of the peanut butter was clumped in 

one spot, whereas a rate of ‘64’ meant that the six grams of peanut was 

spread out between 64 spots within the 50 cm radius half circle. All of the food 

items were uniquely identified so that the presence or absence of ant species 

at the individual food items could be recorded every 10 minutes for two hours. 
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Soil surface temperature was also recorded every 10 minutes for the two 

hours. Temperatures were recorded using an electronic thermometer with a 

probe that was placed under grass next to the trial site. All trials were 

performed on the grass and not on the asphalt. 

 

Predictions were made regarding the proportion of baits occupied from the 

response; binary, presence/ absence (1/ 0) data, at the end of the two hour 

trials due to independent explanatory variables; ant species, dispersion rate, 

trial site and temperature. These predictions were made using a binary logistic 

regression in SPSS v. 11.0 (Lead Technologies Inc. 1991- 2000). 

 

Binary logistic regression models the data to give predicted values ‘exponent 

of beta‘ Exp (β) due to the deviation of modelled data from a reference 

category. For the categorical variables of species, spatial dispersion and site, 

the reference categories, from which all deviations are measured against are; 

species = M. sydneyense, dispersion rate = 1 and site = 1. For example, if the 

predicted odds ratio (EXP (β)) is 15 for one of the ant species, when 

comparisons are made between the proportion of baits occupied between the 

species only, the odds that it is present at the food is 15 times as large as the 

odds of M. sydneyense being present. An Exp (β) value of one implies that 

the predicted proportion of foods occupied by the species is not different from 

the reference species, M. sydneyense. Conversely, an Exp (β) value of 0.5 

means that the odds are half that of M. sydneyense of being present at the 

food. 
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A quasi- Poisson regression was done to test for differences in ant species 

richness during a trial due to the spatial dispersion of the food by comparing 

the maximum number of species recorded during each dispersion trial at the  

five sites R v. 2.0.1 (The R foundation for Statistical Computing 2004). 

 

Temperature preference 

The temperature preference of M. sydneyense and P. rugosula was assessed 

using laboratory colonies in an experimental temperature gradient setup.  

Iridomyrmex anceps and P. vaga were not tested as colonies of these species 

suffered high mortality in the laboratory before the experiments started. I 

tested temperature preference by modifying Walter’s (2003) experiment, 

allowing ants to move freely between different temperature chambers instead 

of humidity chambers. A gradient of temperatures (20, 24, 28, 32, 36 ºC) was 

offered to the ants by connecting five chambers of different temperatures with 

10 cm lengths of 4 mm diameter plastic tubing (Fig. 3.1). Each temperature 

chamber was a sealed plastic specimen jar 54 mm deep by 41 mm in 

diameter that was partially encased and sealed into a water tight piece of PVC 

drainpipe. There were five plastic pipes that served as extensions of separate 

water baths for the temperature control in each chamber. Humidity in the 

temperature chambers was kept above 80% RH for the duration of the trial by 

adding 10 mL of a saturated salt solution of sodium chloride to the base of 

each chamber (O'Brian 1948). A plastic cap, 12 mm deep by 25 mm in 

diameter, was placed into the saturated salt solution in each chamber. It was 

filled with silica gel to prevent water vapour from condensing on the inside of 
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the plastic. Gauze mesh was put in each chamber above the liquid to prevent 

ants from drowning in the solution.  

 

 

Figure 3.1 Temperature preference setup. A saturated salt solution is at the base of each 
chamber with a gauze platform above to stop the ants from drowning in the liquid 

 

 

Fifty ants from a parent colony were spread evenly between the five 

temperatures. In addition to this one queen from the parent colony was placed 

randomly into one of the temperature treatments at the beginning of the trial. 

All ants were able to move freely between the temperature chambers. I 

recorded the number of live ants in each chamber after eight hours. All queen 

ants were returned to their nests at the end of the trial to ensure the survival 

of the laboratory colonies. Therefore queens had the potential of being used 

more than once in the trials. Trials were replicated eight times for each 

species, using new ants from their respective parent colonies for each trial. 

 

To test for different temperature preferences between the species, 

comparisons were made between the percent of live ants in each temperature 

chamber between species by a two- way ANOVA on angular (Arc-sin) 

transformed percentage data (Dytham 2003). The preferred temperature for 

20ºC 24ºC 36ºC 32ºC 28ºC 
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an individual species was assessed by a one- way ANOVA on angular 

transformed percentage data on the percent of live ants in each chamber. 

This was followed with post hoc Tukey tests. I used SPSS v. 11.0 (Lead 

Technologies Inc. 1991- 2000) for the analysis. 

 

Results 

Effect of food concentration and temperature 

 

The odds, Exp (β), that Pheidole rugosula (Forel) and Paratrechina vaga 

(Forel) would occupy a bait were significantly greater than the odds for M. 

sydneyense (P. rugosula; Exp (β) = 47.2, P = 0.003; P. vaga, Exp (β) = 29.0, 

P = 0.037) (Table 3.1). There were differences in the proportion of foods that 

were predicted occupied with increasing surface temperature (P < 0.001), 

dispersion rate of food (P = 0.003), and site (P < 0.001). There was a 

significant interaction of species, temperature and dispersion rate on the 

predicted proportion of a food being occupied (P = 0.003) (Fig. 3.2). The odds 

of bait occupation by different species at different bait dispersion rates did not 

differ from odds that reference species (M. sydneyense) would occupy a food 

at the dispersion rate of ‘1’ (All P > 0.05) (Table 3.1).  
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Table 3.1 Binary logistic regression on the predicted probability that a species would occupy 
a bait dependant on temperature, site and dispersion rate of the food item. Significant values 
are in bold. 
  

 β S.E. Wald df sig. Exp(β) 

       
Temperature 0.153 0.012 170.124 1 0.000 1.166 
Species - - 11.747 3 0.008 - 
P. rugosula 3.854 1.300 8.789 1 0.003 47.183 
I. anceps 0.456 2.028 0.51 1 0.822 1.578 
P. vaga 3.369 1.618 4.338 1 0.037 29.053 
       
Dispersion - - 11.921 2 0.003 - 
8 -0.710 0.487 2.128 1 0.145 0.492 
64 -1.177 0.459 6.571 1 0.010 0.308 

       
Site - - 158.711 4 0.000 - 
Site 2 -0.829 0.116 51.261 1 0.000 0.436 
Site 3 -0.202 0.106 3.678 1 0.055 0.817 
Site 4 0.015 0.113 0.017 1 0.895 1.015 
Site 5 -1.485 0.145 104.359 1 0.000 0.226 
       
Species* temperature - - 11.805 3 0.008 - 
P.rugosula * temperature -0.136 0.057 5.752 1 0.016 0.873 
I. anceps * temperature -0.062 0.083 .559 1 0.455 0.940 
P. vaga * temperature -0.189 0.077 6.026 1 0.014 0.828 

       
Species * dispersion - - 21.076 6 0.002 - 
P. rugosula * 8 0.396 1.360 0.085 1 0.771 1.486 
I. anceps * 8 3.432 2.216 2.399 1 0.121 30.946 
P. vaga *  8 -1.570 2.182 0.518 1 0.472 0.208 
P. rugosula * 64 0.763 1.290 0.350 1 0.554 2.145 
I. anceps * 64 -1.388 2.118 0.429 1 0.512 0.250 
P. vaga * 64 0.982 1.891 0.270 1 0.604 2.669 
       
Species*dispersion*temperature - - 19.696 6 0.003 - 
P.rugosula *  8 *  temperature -0.016 0.059 0.075 1 0.784 0.984 
I. anceps  * 8 * temperature -0.167 0.093 3.218 1 0.073 0.846 
P. vaga * 8 * temperature 0.005 0.100 0.002 1 0.964 1.005 
P. rugosula * 64 * temperature -0.016 0.056 0.086 1 0.770 0.984 
I. anceps * 64 * temperature 0.023 0.086 0.073 1 0.787 1.024 
P.vaga * 64 * temperature -0.184 0.098 3.507 1 0.061 0.832 

 

There was a significant interaction of species and temperature (P = 0.008) 

indicating that there were differences in the proportion of baits occupied by 

the ant species with a change in surface temperature (Fig. 3.2). The odds of 

bait occupation dropped for P. rugosula and P. vaga with the increase in 
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temperature compared to M. sydneyense (P. rugosula, Exp (β) = 0.87, P = 

0.016; P. vaga, Exp (β) = 0.83, P = 0.014). Iridomyrmex anceps (Roger), 

however, was not predicted to occupy a proportionally different amount of 

foods than M. sydneyense with an increase in temperature (Table 3.1). In one 

trial M. sydneyense and P. rugosula were observed to repeatedly displace 

each other from baits when there was a change in the amount of insolation. 

With cloud cover P. rugosula quickly displaced M. sydneyense from the 

peanut butter, however, when the cloud was not in front of the sun M. 

sydneyense rapidly returned to the foods that it occupied by displacing P. 

rugosula. 

 

Figure 3.2 Mean proportion (± S.E.) of baits occupied by the four main species at different 
temperatures and spatial dispersal rates. All trials have been combined for two ranges of 
temperatures recorded during each trial. Some ant species occupied baits simultaneously 
thus proportions are greater than 1 for some dispersion rates. 
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There were a significantly lower proportion of foods predicted to be occupied 

as the food dispersion rate increased from ‘1’ to ‘64’ (Exp (β) = 0.3; P = 0.010) 

(Fig. 3.3 a), but the proportion predicted to be occupied at a spatial dispersal 

rate of ‘8’ did not differ from those at a dispersal rate of ‘1’ (Table 3.1, Fig. 3.3 

a). These effects were different for the different species indicated by the 

interaction of species and dispersal rate (P = 0.002). Although predicted 

occupation by each species did not differ from expected occupation by M. 

sydneyense at a dispersion rate of ‘1’ (Table 3.1). 

 

 

Figure 3.3 The effect of concentration of the food on (A) the proportion of foods occupied (± 
S. E.) by any ant at the conclusion of a trial and (B), the number of species (± S. E.) present 
during a trial. 1- All food clumped at one site, 8- partially dispersed between 8 sites within the 
trial area, 64- fully dispersed between 64 sites within the trial area. 

 

 

Poisson regression on the maximum number of species recorded during the 

dispersion trials showed that there was a significant effect on the species 

richness recorded during the trials (P < 0.001) (Fig. 3.3 b, Table 3.2). An 

average number of 2.0 ± 0.20 (± S. E.) species occurred during the trials 

when all of the food was clumped at one spot, but an average of 2.7 ± 0.24 

and 3.3 ± 0.24 species were present when the food was dispersed between 8 
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and 64 sites respectively. There was a site effect on the number of ant 

species present, but there was no interaction of dispersal rate and site (Table 

3.2). 

 
 
 
Table 3.2 Quasi- Poisson regression on the number of ant species present during a trial 
dependant on the site that the trial was done and the spatial dispersal of the food. Significant 
values are in bold 
 
 df deviance sig. 
    
Dispersal 2 9.43 < 0.001 

Site 4 15.821 < 0.001 

Dispersal * site 8 1.403 0.932 

 

Temperature preference 

The percentage of ants in each of the temperature chamber after eight hours 

differed between M. sydneyense and P. rugosula (two- way ANOVA: F (4, 70) = 

3.993, P = 0.006) (Fig. 3.4, Table 3).  Monomoria sydneyense showed a 

preference for the 36ºC chamber as a higher percentage of ants were 

observed in that chamber (one- way ANOVA: F (4, 39) = 6.172, P = 0.001) than 

in the 20, 24 and 28ºC chambers (post- hoc Tukey tests, all P < 0.05). 

Pheidole rugosula on the other hand showed no clear preference for any of 

the temperatures (one- way ANOVA: F (4, 39) = 2.336, P = 0.075) (Fig. 3.4). 

The workers had variable responses due to the presence of a queen in a 

chamber. In both species observations were made of large numbers of the 

workers staying close to the queen, however, other trials indicated that the 

workers were not influenced by the queen’s presence. 
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Table 3.3 Two way ANOVA on angular transformed percentage data of the percent of ants in 
each temperature chamber at the end of the trial. Significant figures are in bold.  
Source Type III SS df mean sq F sig. 
      
Temperature 2159.75 4 539.937 4.586 0.002 

Species 12.859 1 12.859 0.109 0.742 
Temperature*species 1880.312 4 470.078 3.993 0.006 

 
 
 
 
 

 
Figure 3.4 Mean proportion (± S.E.) of ants in each temperature chamber in the laboratory 
after 8 hours 

 

Discussion 

The spatial dispersion of the food resource and changes in the surface 

temperature had an influence on the proportion of food items in the area that 

were occupied by the different species. The increase in the spatial dispersal 

of the food in the area led to a higher number of species being present during 

the trials consistent with Root’s resource concentration hypothesis (1973). A 

higher proportion of foods were unoccupied as a result of the food being 
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spread out within the area. There was a difference in the proportion of foods 

predicted to be occupied with an increase in temperature. As the temperature 

increased in the field trials M. sydneyense was predicted to occupy more of 

the foods that were present than P. rugosula and P. vaga. Laboratory data 

from temperature preference trials supported this as M. sydneyense had a 

preference for the warm, 36 °C, temperature chambers. 

 

Effect of food concentration and temperature 

The resource concentration hypothesis (Root 1973) suggests that as a 

resource is spread out, becoming less aggregated, there is an increase in 

species diversity because non- specialist herbivores are displaced from the 

food resource. I found that there was a higher mean number of ants present 

during trails where the bait was very spread out ‘64’ than when the food was 

clumped ‘1’. Disregarding species dominance an increase in the spread of a 

resource increases the likelihood of it being found (Cain et al. 1985). The 

actual abundance of food can influence species richness (Marques et al. 

2000). Increasing the dispersion resulted in proportionately less of the food 

resource being occupied. This may have lessened the impact of competition 

for behaviourally subordinate ants by dominant ants in the area because there 

was an abundance of food available for the subordinate species to acquire. 

Ants have different foraging strategies, some recruit a large number of 

foragers to discovered food resources and others do not (Andersen 1995; 

Fellers 1987; Wilson 1971). With an increase in the spread of the food 

resource more ant species were able to discover the food because species 

such as M. sydneyense and P. rugosula that recruit in large numbers to food 
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resources close to the nest were concentrating foraging on the foods that they 

had discovered (Andersen 2000). There was however, an effect of site on the 

number of ant species present during the trials suggesting that there were 

some differences in the species richness between the sites. I did observe a 

Monomorium antarcticum (F. Smith) at one of the sites and Tetramorium 

grassii Emery was observed at another site. 

 

Pheidole rugosula and P. vaga were predicted to occupy significantly more 

food items than M. sydneyense. With an increase in temperature they were 

predicted to occupy proportionately less of the food items. Only I. anceps had 

a similar response as M. sydneyense to a rise in the temperature. This 

suggests that there is a change in the numerically dominant ant species due 

to differences in foraging activity at different temperatures, similar to (Campos 

and Schoereder 2001; Cerdá et al. 1997), from P. rugosula and P. vaga at 

cooler temperatures to M. sydneyense and I. anceps at warmer temperatures. 

 

Temperature preference 

Results from the temperature preference trials suggest that Pheidole rugosula 

did not have a preference for any of the temperatures tested, though it may be 

limited by temperatures above 32 °C. Monomorium sydneyense on the other 

hand, may have higher foraging activity at around 36 °C. There was a variable 

response in the number of workers in chambers that contained a queen. 

Observations were made of both high and low abundances of workers present 

in chambers containing queens. It is possible that the reproductive ability of 
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the queen could account for these observations. It is less likely that a sterile or 

unmated queen will be as attractive to workers as an egg laying queen.   

 

Daily and seasonal temperature differences have been suggested as a 

mechanism by which the observed ant community composition can change 

(Briese and Macauley 1980; Campos and Schoereder 2001; Cerdá et al. 1997; 

Fellers 1989; Thomas and Holway 2005). It is likely that subordinate ants in 

Tauranga would not face as much competition from M. sydneyense if they 

foraged at cool temperatures when the foraging activity of M. sydneyense is 

likely to be lower. In Chapter 2, I found that there were differences in the 

abundances and diversity of ant species foraging in the warmer months, but 

not in the cooler months. An increase in the foraging activity of M. sydneyense 

at warmer temperatures may account for these observed differences. 

 

Multiple food resources rather than aggregated resources in the Tauranga 

ecosystem may allow subordinate ants to coexist with dominant species, as 

resources not being used by the dominant ant were available for subordinate 

species. Different ant species have different food preferences (Hölldobler and 

Wilson 1990; Sanders and Gordon 2003). This is a mechanism by which ants 

can coexist with dominant species as they do not compete for food (Campos 

and Schoereder 2001). It is possible that these trials were influenced by 

differences in food preference. 

 

The results presented here suggest that the resident ant species are 

coexisting with M. sydneyense because of the inability of M. sydneyense to 
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secure all of the food in an area when dispersed rather than when it is 

clumped. Additionally, M. sydneyense appears to have a higher foraging 

activity at warmer temperatures that would allow other species to find and use 

food at cooler temperatures. It is apparent that the concentration of food and 

differences in foraging activity due to differences in temperature is influencing 

the competitive dynamics of ants in Tauranga.  
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Chapter 4 -  
Foraging characteristics and intraspecific behaviour of Monomorium 

sydneyense (Hymenoptera: Formicidae): Implications for population 

management. 

Introduction 

 

Many ant species are successful invaders. They can threaten the native 

biodiversity (Christian 2001; O'Dowd et al. 2003). They can also cause 

economic losses (Mooney 1999; Williams 2001) in the areas that they invade. 

When the biological or economic costs by the invading species are deemed to 

be too great, control options of the organism may be sought. These range 

from management of population sizes of the organism to the eradication of the 

organism from the area (Cromarty et al. 2002). Eradication, where feasible, is 

often considered a better option because of a reduced impact on the other 

organisms in the eradication area (Clout and Veitch 2002). New Zealand has 

had many introduced organisms that have been subject to population 

management, such as possums (Jolly 1993) and goats (Parkes 1993) or 

eradication as in Argentine ants Linepithema humile (Mayr) (Harris 2001)  and 

Australian giant bulldog ants Myrmecia brevinoda Forel (Lester and Keall 

2005). 

 

New Zealand has a predominantly exotic ant fauna. Twenty six of the 37 

established species are considered to be introduced (Don et al. 2005). Two of 

the five ant species that are listed on the 100 of the world’s worst invasive 
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species list (Lowe et al. 2000) are established in New Zealand; the Argentine 

ant, Linepithema humile and the coastal brown ant, Pheidole megacephala 

(Fabricius). Species such as the red imported fire ant, Solenopsis invicta 

Buren and the yellow crazy ant, Anoplolepis gracilipes (Smith) have been 

found in New Zealand but have failed to establish (Lester 2005). These 

species have had devastating effects on the flora and fauna in the areas that 

they have invaded (Holway et al. 2002a; O'Dowd et al. 2003; Porter and 

Savignano 1990). The success of these species has been aided by factors 

such as unicolonality, whereby different nests of these ant cooperate, rather 

than compete for resources (Holway et al. 2002a; Holway et al. 1998). The 

flow on effect of this is that a larger amount of energy is used towards further 

food procurement instead of food defence leading to greater densities of 

these ants (Holway et al. 2002a). This numerical dominance has been cited 

as a major factor influencing positive competitive outcomes for the more 

numerous species (McGlynn 2000; Wetterer et al. 1999). 

 

The best option for control of an exotic organism, short of keeping it out of the 

area, is to detect it early and act quickly (Simberloff 2002b). Ants, such as P. 

megacephala and the tropical fire ant Solenopsis geminata (Fabricius) have 

been successfully eradicated from Australia Kakadu National Park by toxic 

baiting (Hoffmann and O'Connor 2004) and currently an eradication attempt of 

the little fire ant Wasmannia auropunctata (Roger) is taking place on 

Marchena island in the Galápagos Islands (Causton et al. 2005). A previous 

successful eradication of an ant in New Zealand was carried out on M. 

brevinoda, by using Chlordane® a persistent organochlorine pesticide 



 

 54 

followed by sealing of the area with asphalt (Lester and Keall 2005). The most 

recent eradication attempt of an exotic ant in New Zealand was undertaken on 

a 10 ha infestation of the Argentine ant on Tiritiri Matangi, an island near 

Auckland. A toxic protein based bait, poisoned with fipronil was used (Harris 

2001). 

 

Monomorium sydneyense Forel, an Australian myrmicine ant, was discovered 

in Tauranga in 2001 (NPPRL 2003) and in Napier 2004. The publications that 

include this ant mostly describe the taxonomy (Heterick 2001) or its 

occurrence with other species (Bisevac and Majer 1999; Heterick et al. 2000). 

There are no publications regarding its incursion into other countries, 

therefore it is not known whether this ant warrants population control or 

eradication. A recent review of pest status of this ant, based on factors such 

as incursion rates, invasive history and biological traits to name a few 

suggested that this ant is not a large threat when compared to other ant 

species (Harris 2005). Previous chapters have suggested that M. sydneyense 

has the ability to reduce the densities of other ants in invaded sites, however, 

no ants were ever excluded from the invaded areas. There are no previous 

data on the food preference, foraging distance or the intraspecific behaviour 

of M. sydneyense  and such data would be required for management by 

density control or a successful eradication if it was found to be needed 

(Simberloff 2002a; Simberloff 2002b). 

 

Here, I assessed the food preference, foraging distance and the intraspecific 

behaviour as well as 24 hour foraging activity of M. sydneyense. This work 



 

 55 

was achieved through a series of experiments in the field, thus providing 

realistic data due to the inclusion of factors related to its interactions with the 

other ant species present in the area. Specifically, I asked the following 

questions; firstly, what is the preferred food type of M. sydneyense, 

carbohydrate or protein based and is the bait X-stinguish® developed for the 

Argentine ant, Linepithema humile (Mayr) suitable for this species? Secondly 

what is the foraging range of this ant in field conditions and finally do workers 

from separate nests of M. sydneyense act aggressively toward each other? 

 

Methods 

The trials were carried out in Tauranga, New Zealand (37˚ 39' S, 176˚ 11'E). 

Trials were undertaken at Tauranga because it has the longest history of M. 

sydneyense’s incursion. Tauranga has a sub-tropical climate, characterised 

by warm humid summers and mild winters. Daytime temperatures range from 

22-26˚C in the summer to 12-17˚C during the winter (NIWA 2005). The annual 

rainfall average ranges from 1250 mm to 1500 mm of rain each year with the 

monthly averages fairly constant throughout the year (de Lilse and Kerr 1963). 

 

The study area was in a grass field 70 by 40 metres in area, situated 100 m 

from the sea. There was little shade offered by trees in the area thus spatially 

there was little variation in weather conditions within the area. 

 

Monomorium sydneyense nests in Tauranga were examined in March and 

December 2004. Site observations were made during the collection of the 
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nests including the amount of shading and nest characteristics. Queen 

number and the presence of brood in the nest were also recorded. There 

were no counts of worker number in the nests made at the time of collection. 

 

Food preference 

Nests for food preference trials were located in soil along an asphalt verge by 

following workers of M. sydneyense back to their nests. Choice experiments, 

similar to the cafeteria experiments by Sanders and Gordon (2003) were 

performed in December 2003 to examine the preferred food resource of M. 

sydneyense. I offered four foods to the ants; sugared smooth peanut butter 

and tuna in oil as predominantly protein based foods and 25% sugar water as 

a carbohydrate. I also offered the non-toxic form of X-Stinguish® ant bait 

(Landcare Research) which contains both protein and carbohydrate and could 

be of use for control of these ants in New Zealand. These four foods were 

simultaneously placed on the ground 10cm from the colony entrances in a 

random order in direct contact with the asphalt. Bait cards were not used 

because preliminary trials showed that these were disturbed by the windy 

conditions at Sulphur Point. The foods all had a diameter of 1 cm to reduce 

the effect of food size on the trials. Since the sugar water was a liquid it was 

offered in a test tube that was 1 cm in diameter. The liquid was held in the 

tube by stopping the end with cotton wool plug, through which the ants could 

consume the sugar water. I recorded the number of ants present at the four 

baits every 10 minutes for two hours. Ants that were touching the food were 

included in the counts. This was replicated 10 times. At the end of each trial I 

removed and cleaned off any remaining food and removed any residue with 
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water. A one- way ANOVA was performed on log10 (x+1) transformed counts 

of M. sydneyense at the four foods offered to determine if there was a 

difference in numbers of workers present at the different baits after two hours. 

 

Foraging Distance 

The proportion of foods occupied and the predicted probability of a M. 

sydneyense nest finding and recruiting to a food at known distance from the 

nest after one and four hours was examined in December 2003, March and 

October 2004. The preferred food from the preference trial (peanut butter) 

was used to attract the ants. The distances tested were 0.15m, 0.25m, 0.5m, 

0.75m, 1.0m, 1.5m, 2.0m, and 3.0m. Two of these distances, which were 

assigned randomly for each trial, were tested simultaneously to increase the 

rate of data collection. The direction of the placement of each food was 

randomly assigned in a 180º half circle from the asphalt to ensure that the 

food was always placed in the grassed area. Distances were measured from 

the nest entrance for nest with a single entrance. Distances for nests with 

multiple entrances were measured from the approximate mid point between 

all entrances found. Distances between nest entrances of a colony ranged 

from 2 cm up to 40 cm. The food was placed against the soil and covered with 

grass to reduce the amount of interference by birds in the area. Each trial 

started when the food was placed on the ground and the foods were 

examined after one hour and four hours. Ants were deemed to have recruited 

to the food if there were more than 10 individuals touching the food. To 

ensure that the ants had recruited from the trial colonies I followed foraging 

trails back to the nest. Foods that were recruited to by other M. sydneyense 
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nests or other ant species were recorded as not found by M. sydneyense. At 

the conclusion of each trial the remaining food, grass and soil with traces of 

peanut butter were removed. The trials were repeated 24 times for all of the 

distances except for 0.75 m, which was only repeated 12 times because this 

distance was added after the first sampling month. Due to rain the total 

number of completed trials for each distance were; 0.15m (n = 23), 0.25m (n = 

22), 0.5m (n = 24), 0.75m (n = 12), 1.0m (n = 23), 1.5m (n = 23), 2.0m (n = 

22), and 3.0m (n = 21) Binary logistic regression was performed on the 

probability of M. sydneyense being present or absent at the food. Factors 

included in the analyses were distance, month, time of day (am or pm) and 

the site at which the trial was conducted. 

 

Intraspecific behaviour 

 

Intraspecific behaviour between workers for M. sydneyense from different 

nests at Sulphur Point and the surrounding area, up to 6.3 kilometres, away 

was examined to elucidate whether the Tauranga population displays 

multicolonial (competitive) or unicolonial (cooperative) behaviour. Unicolonial 

behaviour allows inferences to be made on whether workers from different 

nests will compete for, or cooperate at, food resources. The behavioural 

assays between the colonies were conducted following methods by Suarez et 

al. (1999), whereby aggression levels between pairs of worker ants from 

different colonies are scored every two minutes for a total of 10 minutes. 

Scores ranged from zero to four. A score of 0 indicated that the ants ignored 

each other and a score of 1 was assigned to ants that stopped and there was 
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some antennation or feeding observed. I scored a 2 to pairs where one or 

both of the ants touched each other then ran away (avoid). A score of 3 

indicated that pairs locked mandibles, bit or held the others appendages and 

a 4 indicated that pairs fought intensely including stinging or prolonged biting. 

Tests between nest pairs were replicated five times for all but four of the pairs 

which were only replicated four times due to time constraints. I considered 

scores of 2 and above to be signs of aggression. 

 

Ants for the behavioural trials were collected by aspirating them up on the 

outward journey from the nest, ensuring that the ants were actually from the 

target nest and that they were fresh and less likely to be transporting food 

which could have influenced the assays. Collected ants from each nest were 

held in separate fluon coated (Australian Entomological supplies, Bangalow, 

NSW, Australia) plastic vials (52mm tall 25mm diameter). They were held for 

five minutes before the behavioural trials began. One ant from each colony 

was put into one plastic fluon coated vial as above. The fluon created a 

slippery surface, inhibiting the climbing ability of the ants and increasing the 

chance of interactions occurring between the individuals. The maximum 

aggression score was recorded for every two minute block. At the end of each 

trial the ants were discarded and the chambers were cleaned out with 70% 

ethanol and left for five minutes to dry before using again. Trials between ants 

from the same nest were done as above as controls to test for an effect of the 

trial setup on the interactions observed. I tested whether aggression level 

between pairs of colonies was related to distance apart by using a linear 

regression. Testing both the maximum aggression level attained for any pair 
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within the nest replicates and the average of the maximum aggression levels 

between all worker pairs within a nest pair. All of the above statistical 

analyses were performed using SPSS v. 11.0 (Lead Technologies Inc. 1991- 

2000). 

 

Diel foraging behaviour of the ants 

 

Monopolisation of food by M. sydneyense during a 24 hour period was 

investigated in December 2003, March, August, October and in December 

2004 by monitoring the species abundance at a continuous food resource for 

a period of 24 hours. Peanut butter was placed 10 cm from M. sydneyense 

nest entrances in direct contact with the soil surface. As birds interfered with 

the peanut butter in preliminary trials, it was placed under flagging tape and 

loose grass to prevent bird interference with the trials. Trials began at 17:00 

and ant abundance and soil surface temperature at the baits was recorded 

every two hours for 24 hours so that a total of 12 counts were made at each 

food. As there were a large number of Pheidole rugosula Forel workers 

interacting with M. sydneyense I recorded their abundances also. No 

statistical analyses were performed as there were a small number of samples 

December 2003 (n = 2), March (n = 2), August (n = 2), October (n = 3) and in 

December 2004 (n = 6). Soil surface temperature was recorded using an 

electronic thermometer with the probe of the thermometer placed under grass 

next to the trial area. Food was not replenished during the trials. 
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Results 

Location of nests 

Monomorium sydneyense nests were most often collected in areas where 

there was little shading by trees, although one nest was dug up between roots 

of a Hebe spp shrub that shaded the nest from the morning until midday. In 

areas not shaded by vegetation nests were discovered at the soil surface 

under a circular lid of a tin can lid approximately 10 cm in diameter and under 

a small rock 20 cm long 10 cm wide and 7 cm deep. A colony of M. 

sydneyense was discovered nesting in a piece of bark with similar dimensions 

to the small rock above on the soil surface and one nest was found under a 5 

mm thick piece of hard board, 6.3 km from Sulphur Point. Monomorium 

sydneyense workers were observed foraging on bare earth, halfway up the 

north-western side of Mt. Maunganui, though no nests were found. All five 

nests collected in March and December had brood present and six queens 

were present in one of the nests. There were multiple queens present in four 

of the nests collected and no queen was found in the fifth nest. This queen-

less colony had approximately 500 workers present one month after it was 

collected. Winged M. sydneyense queens were observed in one of the 

laboratory colonies in February that had been collected in December 2003.  

 

Food preference 

 

Large numbers of M. sydneyense foragers were observed during the food 

preference trials. Up to 387 ants were counted foraging at one time from one 

nest. The peanut butter attracted the most ants (202 workers). Monomorium 
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sydneyense was observed defending the foods from Pheidole rugosula by 

raising their gasters and exuding at the tip of their stings. Significant 

differences were observed in the numbers of M. sydneyense foragers 

attracted to the multiple foods offered (F3, 428 = 40.105, P < 0.001). There were 

larger numbers of foragers at the peanut butter, X-Stinguish® and tuna than 

at the sugar water (Tukey, P < 0.001) (Fig. 4.1). Peanut butter and X-

Stinguish® attracted similar numbers of foragers (Tukey, P = 0.188) and they 

both attracted more foragers than the tuna (Tukey, P < 0.001). There was a 

decrease in numbers of ants present at the X-Stinguish® and tuna baits after 

one hour as both baits had dried out (Fig. 4.1). 

 

 
 

Figure 4.1 The preferred food of Monomorium sydneyense based on the mean number of 
workers (± S. E.) at the foods every 10 minutes. 
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Foraging distance 

 

Some nests were found to have up to three entrances that were up to 0.6 m 

apart, though whether they were entrances to one nest or entrances to 

separate nests was unknown as I could not dig up the nests. Workers were 

observed running between the different entrances. The predicted probability 

from the binary logistic regression that M. sydneyense would be present at the 

peanut butter, after one hour was significantly dependant on the distance that 

the food was from the nest (P < 0.001). There was no effect of month (P = 

0.347), time of the day (P = 0.161), or site (P = 0.512) on the proportion of 

foods occupied by M. sydneyense after one hour. After four hours both the 

distance that the peanut butter was from the nest (P < 0.001) and month that 

the trial was done (P = 0.015) had an influence on the proportion of the foods 

being recruited to by M. sydneyense. Distance was the main predictor of 

presence at the food after four hours for both March (P < 0.001) and October 

(P = 0.014), however, the day the trial was conducted, not the distance that 

the food was from the nest was the most significant predictor of presence at 

the food in December (P = 0.013). Monomorium sydneyense was never 

recorded recruiting to the food placed 3.0 m from the nest entrance (Fig. 4.2). 

Even at close distances such as 0.15 m away M. sydneyense did not find the 

food all of the time (Fig. 4.2). It was estimated that 0.60 - 0.80 of the baits 

would be occupied at 0.15 m after one hour and 0.80 - 0.85 occupied after 

four hours (Fig. 4.2) for all of the months combined. When the peanut butter 

was approximately 1 metre away from the nest only 50% of the baits were 

predicted to be occupied. 
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Figure 4.2 Probability of recruiting to peanut butter at increasing distance after 1 hour (a-c) 
and 4 hours (d-f) hours (± S. E.). The predicted logistic regression response modelled from 
the data is displayed as a curve (-). No predictions were made for December four hours (d) as 
distance was not the main predictor of probability of finding the food. 

 

Intraspecific aggression 

 

Substantial levels of intraspecific aggression were observed between M. 

sydneyense colonies (Fig. 4.3) There was no relationship between distance 

between colonies and the level of average aggression (r2 = 0.007; P = 0.604) 

or maximum aggression (r2 = 0.037; P = 0.347) attained. Maximum 

aggression data showed that there was aggressive behaviour between 12 of 
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the 18 pairs, a score of two or higher, observed between colony pairs as close 

as 0.9 m apart and up to 6.3 km apart (Fig. 4.3 b, Table 4.1 b). Averaged data, 

however, showed that consistent aggression was only displayed between two 

colony pairs. One pair were 5.7 m apart and the other 131 m apart (Fig. 4.3 a, 

Table 4.1 a) and one nest was involved in both of the trials. No aggression 

was displayed between the control colonies, aggression between separated 

individuals collected from the same nest during the trials (Fig. 4.3 Table 4.1). 

 

 

Figure 4.3 Paired aggression assays between Monomorium sydneyense colonies. Distance 
C represents controls where individuals from the same colony were paired against each other 
after 5 minutes apart. Aggression score of 0- ignore, 1- antennation or trophallaxis, 2- avoid 
each other, 3- pulling and biting, 4- prolonged fighting and stinging. 
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Diel foraging behaviour of the ants 

 

Monomorium sydneyense was observed foraging on foods offered for the 

entire 24 hour period in December 2003, October and December 2004 (Fig. 

4.4 a, d and e).  Pheidole rugosula was observed foraging for the entire 24 

hour period in March, October and December 2004 (Fig. 4.4 b, d and e). No P. 

rugosula nests were observed at the sites examined in December 2003. Soil 

surface temperature appeared to be lowest at approximately 05:00 and 

warmest at around 13:00. Unexpectedly foraging activity of both ant species 

did not increase with temperature in October and December 2004. Food was 

found to be quite dry at the end of the 24 hour period. There were a very low 

number of ants recorded in August (Fig. 4.4 c).  

 

 

Figure 4.4 The mean number (± S. E.) of M. sydneyense and P. rugosula foraging on peanut 
butter every 2 hours for 24 hours. The food was placed approximately 15 cm from nests of 
both species. Pheidole rugosula was not present at the sites tested in December 2003. 
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Discussion 

Many of the M. sydneyense nests that were collected were discovered in the 

open because they were easier to see and excavate. It appears that M. 

sydneyense has general nesting preferences as they were discovered on the 

soil surface under a metal lid, a rock and under cardboard, as well in a piece 

of bark and in soil. Multiple queens were found in the majority of the nests 

though it is unknown whether they all contributed to the worker population, or 

whether they were related to each other. Findings from the temperature 

preference trial in chapter 3 suggests that not all of the queens were 

contributing to the worker population as occasionally workers did not 

assemble around the queen unlike other trials.  The occurrence of winged 

females in the M. sydneyense one of the laboratory nests and the occurrence 

of nests up to 6.3 km in Tauranga suggests that this ant may have winged 

dispersal, however human mediated transport cannot be ruled out. 

 

Food Preference 

 

By committing larger numbers of foragers, M. sydneyense displayed a 

preference for the protein- based foods of peanut butter, and tuna over the 

carbohydrate based sugar water. X-Stinguish® ant bait, which also contains 

protein, attracted a larger numbers of workers than the sugar water. One M. 

sydneyense colony had 387 ants foraging on all of the four baits offered 

simultaneously, 202 of which were on the peanut butter. X-Stinguish® and 

tuna baits often dried out after one hour which resulted in fewer ants attending 

those foods. Monomorium sydneyense was observed actively defending the 
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foods from P. rugosula suggesting that they may have similar food 

preferences, as predicted by functional group theory (Andersen 1997; 

Andersen 2000) and could compete for a toxic bait if laid. Hartley and Lester 

(2005) also found that M. sydneyense had a preference for protein based 

foods (peanut butter, soy bean oil mixture and fatty sausage meat) over a 

carbohydrate one (20 % sugar water). Moreover they found that M. 

sydneyense had a strong preference for X-Stinguish®. The ant bait X-

Stinguish® may be suitable for baiting of M. sydneyense as in my trials it 

attracted the same number of ants as the peanut butter and the most ants in 

Hartley and Lester’s (2005) trials. They offering the X-Stinguish® in plastic 

pottles which would have slowed down the rate at which it dried out increasing 

the time available for retrieval. An advantage that X-Stinguish® has is that it 

also contains carbohydrates therefore if M. sydneyense changed its protein/ 

carbohydrate preference during the year, as has been observed in other ant 

species (Hölldobler and Wilson 1990), X-Stinguish® would still be likely to 

attract M. sydneyense foragers.  

 
 

Foraging Distance 

 

The relatively short foraging distance of M. sydneyense, no further than 3.0 m 

from the colony, means that food must be fairly close to the nest for M. 

sydneyense to find it, however, M. sydneyense was not always predicted to 

find the food at the short distance of 0.15 m. The probability that M. 

sydneyense would occupy the peanut butter at a distance of 0.15 m was 0.8. 

This was a surprising result as it is not a great distance from a nest. I 
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observed nests of P. rugosula that were as close as 10 cm from M. 

sydneyense nests. There were trials where food was situated closer to P. 

rugosula nests than it was to M. sydneyense nests and P. rugosula was 

observed controlling nine of the foods in the foraging distance trials. 

Simultaneous placement of two baits may have had an effect on the 

probability of M. sydneyense finding food at large distances. 

 

There were large differences in the probability that M. sydneyense would still 

be at the peanut butter after four hours even though it was recorded as being 

present after one hour in December (Fig 2 a and d). The weather at this time 

of the year was characterised by warm days with peaks in heat from midday 

to early afternoon. As many of the trials started around 09:00, the final count 

after four hours was at 13:00, which coincided with the warmest part of the 

day. Temperatures up to 45º C were recorded on the soil surface at this time. 

Studies have shown that hot surface temperatures can limit the foraging 

behaviour of some species (Cerdá et al. 1997; Thomas and Holway 2005; 

Whitford 1999). Only Iridomyrmex anceps (Roger), another Australian ant 

species, was observed although in low abundances on the surface during this 

period. When artificial shading of M. sydneyense nests was performed at this 

temperature workers were observed exiting the nest and running along 

previous foraging trails until the artificial shading was removed. This result is 

similar to findings by Markin et al. (1975) on the foraging behaviour of 

Solenopsis invicta. It appears that the foraging activity of M. sydneyense may 

be limited by high surface temperatures. 
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If control of M. sydneyense by toxic baiting such as X-Stinguish® was to be 

undertaken, the bait would have to be spread at a rate so that all of the nests 

would be able to find the bait. The data suggest that placing baits at a 

distance no greater than 0.30 m apart so that M. sydneyense nests in the 

baiting area are no more than 0.15 m from the bait should ensure that at least 

60% of the baits will be occupied by M. sydneyense after one hour if the 

baiting was conducted in spring. In summer (December) the probability of bait 

occupation is 0.7 when the food is 0.5 m from the colony, therefore baits could 

be placed every metre at this time of the year with a large proportion expected 

to be occupied by M. sydneyense. It is apparent that, even with such a high 

density of baits, multiple baiting dates would be needed to control this ant. 

 

Intraspecific aggression 

The aggression assays conducted between individuals from different nests of 

Monomorium sydneyense suggests that there is some intraspecific 

aggression within this population, but that aggression is not correlated with 

distance, a result similar to introduced populations of the Argentine ant 

(Suarez et al. 1999). Aggression was recorded at least once between workers 

from 12 of the 18 colony pairs implying that colonies may not cooperate at 

food sources (Holway et al. 1998). Consistent aggression was only displayed 

between workers from two nests pairs, one pair was 0.9 m apart the other 

nest pair was 6.3 km apart. Workers from one nest were involved in both of 

those interactions which could be an indication that that nest is genetically 

different to the other two nests (Tsutsui et al. 2003). Previous work by Suarez 
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et al. (1999) and Tsutsui et al. (2000) have linked a lack of intraspecific 

aggression with low genetic variation within introduced populations (Tsutsui et 

al. 2003; Tsutsui et al. 2000). This has lead to increases in population 

densities because of instead of fighting for resources they cooperate saving 

energy that would have been used for defensive behaviours (Holway et al. 

1998).  

 

Harris (2001) suggested that since the Argentine ants from one nest 

cooperate with Argentine ants from other nests, the concentration of the 

poison in a bait could be reduced because the ants would live longer allowing 

them to consume more of the poison therefore distribute more of it throughout 

the cooperating nests. The fact that M. sydneyense workers from separate 

nests displayed aggression towards each other, suggests that poison would 

not be spread by workers to separate nests. Therefore bait would have to be 

placed close together to ensure that every nest is likely to be close to the bait. 

 

Diel foraging behaviour of the ants 

Monomorium sydneyense was observed foraging for the entire 24 hour period 

during October and December surveys, though the abundance of this ant did 

not increase with an increase in temperature. Since the food was not replaced 

during the trials by the end of the trials it was noticed that there was often little 

of the food left and that what was left was often dry. This would have had an 

influence on the number of foragers present at the baits during the warmer 

hours of the day 18 hours after the start of the trial. 
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Conclusions 

If baiting was required for the control or eradication of M. sydneyense a 

protein based attractant would be the best medium by which to transport a 

poison to colonies. I would recommend that baiting be carried out in the 

summer months when the surface temperature is likely to rise above 20° C as 

foraging activity appears to be greatest then. It appears that X-Stinguish® is a 

suitable ant bait if the desiccation rate can be reduced, for example offering it 

in containers as was done by Hartley and Lester (2005). Bait could also be 

placed out in the late afternoon as M. sydneyense should be active during the 

night, dependant on the temperature. Small distances between bait 

applications would be required to ensure that the bait would have a high 

chance of being discovered. At a distance of 0.5 m from the nest the bait 

would have approximately 0.7 chance of being occupied by M. sydneyense in 

December. Larger distances between bait placements would not be 

recommended as there is less chance of the food being occupied by M. 

sydneyense as they do not forage great distances. Since M. sydneyense does 

not appear to display coexistence between separate nest it would be unlikely 

that a toxic bait would be spread from one nest to another again suggesting 

that a lot of bait would be required to control this species.   
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Chapter 5 -  

General discussion 
 
In this thesis, I investigated whether M. sydneyense has had an influence on 

the ant community of Sulphur Point Tauranga by comparing ant community 

structure at sites invaded by M. sydneyense to adjacent sites not invaded by 

M. sydneyense. Additionally, I examined the role of food concentration and 

temperature differences on the competitive dynamics of ants in the area by 

manipulating the concentration of a resource and measuring temperature. I 

related the proportion of the foods occupied by different species to differences 

in the spatial dispersion and temperature. I also researched aspects of the 

population biology and nesting characteristics of M. sydneyense. Specifically, 

I measured the foraging distance of workers from a nest and predicted the 

probability of ants from a nest occupying a food resource related to the 

distance that the food was from the nest. I also offered multiple food 

resources, including an ant bait currently used for ant population control, X-

Stinguish ® (Harris 2001), to reveal whether M. sydneyense has a preference 

for either protein or carbohydrate based food resources. Additionally, I 

examined the 24 hour foraging behaviour of this species to investigate 

whether it forages for food throughout the entire night. Finally I tested whether 

workers from separate nests of M. sydneyense display aggression toward 

each other. The results presented in this thesis should aid population 

management decisions of this species should it be needed. 
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The influence of Monomorium sydneyense on the Tauranga ant 

community composition 

Introduced ants generally have a strong influence on the resident ant species 

(Christian 2001; Gómez and Oliveras 2003). In chapter two, I found that there 

were differences in the species diversity and ant abundances of ant 

communities where M. sydneyense was present compared to ant 

communities where M. sydneyense was absent. This effect was only apparent 

in the warmer months of the year. I expected the greatest differences of 

abundance of resident ant species to displayed by ants categorised in the 

same group as M. sydneyense because these ants should all have similar 

resource requirements (Andersen 1995). Ants categorised in the same 

functional group as M. sydneyense (Generalized Myrmicinae) were not 

significantly negatively influenced by the presence of M. sydneyense. In fact 

no ant species at Sulphur Point had significantly reduced abundances from 

areas where M. sydneyense was present or was absent from invaded areas.  

 

The influence of temperature and spatial dispersal of food 

resources on competitive dynamics 

Variations in the temperature tolerances of dominant ant species can allow for 

coexistence of other ant species (Andersen 1992; Cerdá et al. 1997; Thomas 

and Holway 2005). Concentration of food resources can influence both the 

species richness (Root 1973) and the likelihood of an organism finding a 

resource (Cain et al. 1985). I investigated the influence of temperature and 

the effect of food concentration on competitive dynamics in chapter three. An 
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increase in the surface temperature led to increases in the proportion of foods 

that were predicted to be occupied by M. sydneyense. Without an effect of 

temperature M. sydneyense was predicted to occupy a lower proportion of 

baits than P. rugosula or P. vaga. Temperature preference trials also showed 

that M. sydneyense had a preference for warmer temperatures, whilst P. 

rugosula showed no distinct preference for any temperature examined in this 

study. Species richness increased as the food resource was dispersed at a 

greater rate, likely due to a lower proportion of those foods being occupied 

with the increased dispersion.  

 

The lower foraging activity by M. sydneyense at cooler temperature, as 

indicated by a reduction in the number of workers at foods at lower 

temperatures may act as a mechanism by which other ants can coexist as 

there is a reduction in competition by M. sydneyense. Increasing the spatial 

food dispersion of a food resource may allow more ant species to coexist as 

there is a greater number of foods that are unoccupied that can be utilised by 

subordinate species.  

 

Foraging characteristics and intraspecific behaviour of 

Monomorium sydneyense 

Knowledge of the population biology of an organism is essential for successful 

population management (Simberloff 2002a; Simberloff 2002b). In my final 

research chapter I studied aspects of the foraging characteristics and 

intraspecific behaviour of M. sydneyense. I found that Monomorium 

sydneyense had a preference for the protein-based food items that were 
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offered and they did not forage far from the nest to find the food. Monomorium 

sydneyense was observed actively defending the foods from P. rugosula 

suggesting that they may have similar food preferences, therefore would be 

likely to compete for food resources. There was evidence of polygyny 

(multiple queens in a nest) from the collected nests. It also appeared that M. 

sydneyense has general nesting requirements as nests were discovered in 

full sun and part shade, under solid objects, in soil and in bark pieces on the 

soil surface. There is evidence that populations of M. sydneyense at Sulphur 

Point are multicolonial. Aggression was recorded between 12 of the 18 colony 

pairs. This could reduce the chance of M. sydneyense attaining large 

population numbers because of more time and energy would be spent 

defending resources from neighbouring conspecific nests than on foraging for 

further resources (Holway et al. 1998; Holway et al. 2002b; Passera 1994).    

 

The overall implications of this work are that M. sydneyense has the strongest 

influence on the ant community of Sulphur Point in the warmer months due to 

the increased foraging activity of this ant. In December it is active for the 

majority of the 24 hour period, the exception being the hottest part of the day 

around 13:00. During the warmer months it is likely that M. sydneyense would 

procure a large portion of food resources by numerical dominance due to their 

heightened foraging activity. Although the majority of these resources would 

need to be close to the nests as it does not forage far. As the temperatures 

cool subordinate ants may experience reduced competition from M. 

sydneyense allowing them to satisfy their resource needs. Additionally the 
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short foraging distance of this ant ensures that food will be available to other 

ants in the ecosystem at the current nest density of M. sydneyense. 

 

Since aggression was displayed between the majority of the nest pairs tested, 

M. sydneyense colonies may not cooperate for resources and instead will 

fight with each other for them. If toxic baiting of this ant was conducted, baits 

would need to be placed short distances apart to ensure that at least 70% of 

the baits would be occupied by M. sydneyense. It is likely that P. rugosula 

would compete with M. sydneyense for the bait. Since foraging activity of M. 

sydneyense was greater in December population control by toxic baiting 

would be best conducted at this time.  

 

This study suggests that M. sydneyense may not be a serious threat to the 

ant fauna of Sulphur Point, Tauranga. The ant fauna of Sulphur Point is 

predominantly exotic so possible effects on New Zealand native ant fauna are 

not known.  Monitoring the responses of native ants to the presence of M. 

sydneyense is required to predict influences that this introduced species may 

have on the native ant populations 

 

Is population management of Monomorium sydneyense feasible? 

The current distribution records of M. sydneyense show that it has only been 

recorded in two areas of New Zealand, Tauranga and Napier. It is quite 

possible that this ant is already present in other areas throughout New 

Zealand though has yet not been recorded. I quickly found nests of 
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Monomorium sydneyense 6.3 km from the port of Tauranga, which is the 

likely incursion point for this infestation. These nests were located within 10 m 

of the East Coast main trunk railway line suggesting that they may have 

spread further via the railway system. The presence of Monomorium 

sydneyense workers on north western slope of Mount Maunganui, Tauranga 

suggests that M. sydneyense nest foundation may be via nuptial flight, 

whereby at least one queen has crossed the Tauranga harbour, an 

approximate 2 km wide body of water and established a new nest, however, it 

is also possible that a queen, or part of a M. sydneyense nest may have been 

transported there by humans inadvertently .  

 

Functional group theory predicts that M. sydneyense and P. rugosula will 

have similar environmental tolerances because they are both categorised in 

the same functional group (Andersen 2000; Brown 2000). Pheidole rugosula 

has been present in New Zealand approximately 50 years (Berry et al. 1997). 

It has had time to spread throughout the country. Current records indicate that 

there are populations of this ant in Christchurch and Nelson (Landcare-

research 2005). Theoretically M. sydneyense also has the potential to occur in 

temperate climates of New Zealand as it has been found in Tasmania, 

Australia (Heterick 2001), especially if it has a close association with humans 

because climatic limitations may not apply (Gordon et al. 2001).  

 

My data suggest that M. sydneyense has had an impact on the ant fauna of 

Tauranga. This impact has not resulted in significant decreases of any 

particular species, rather all of the species present have been influenced 
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through its introduction. No ant species were found to be extirpated by M. 

sydneyense. If M. sydneyense invades other areas similar to Sulphur Point, it 

may not have a negative impact on the resident native ant species. Though if 

it invades native forest, it is possible that M. sydneyense will have different 

effects to those that were observed at Tauranga.  

 

Based on the data that I have collected the population management or 

eradication of M. sydneyense by toxic control is not a viable option. It appears 

that it is already well established in New Zealand and probably has wider 

distribution than is currently recorded. Undiscovered populations would serve 

as source populations from which reinvasion would occur if an eradication 

attempt was performed. An intensive baiting program would need to be 

implemented. Baits would need to be placed no more than 1 m apart 

preferably in containers of some description to prevent desiccation of the bait. 

It is likely that this baiting would need to be performed multiple times to 

ensure that all of the nests in the baiting area are exposed to the poison. Such 

baiting would expose many invertebrates to toxins and would likely be an 

expensive undertaking. Similarly, for the population management of M. 

sydneyense an intense amount of baiting would be required.    

 

Future Directions 

Further information on the population biology of M. sydneyense is needed. 

Information on the dispersal method of this ant could influence the feasibility 

of baiting. If M. sydneyense nests are founded by budding, where one or more 
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queens and some workers walk to a new place ant start a nest, the natural 

dispersal rate may be slow (Suarez et al. 2001), increasing the viability of 

baiting. Conversely, if new nest foundation occurs by nuptial flight, whereby 

queens are mated and fly a distance before starting a new nest, the dispersal 

rate of this ant may be quite fast, further reducing baiting success. A study 

into the temperature- dependant development of M. sydneyense eggs through 

to adults (degree day models) would allow assumptions to be made on the 

potential future New Zealand distribution of M. sydneyense as well as its 

potential of invading intact native forests (Hartley and Lester 2003).  

 

Assessing the influence of M. sydneyense on the native ant fauna is essential 

to accurately predict the outcome of M. sydneyense invasion on these species. 

Coupled with degree day models, laboratory trials whereby M. sydneyense 

and native ant colonies with the same number of workers compete for food 

resources at different temperatures would aid this assessment.  

 

It is likely that a low number of propagules of M. sydneyense arrived and 

established the current population. Interestingly, it would be expected that the 

ants would be highly related, so why do workers from different nest act 

aggressively towards each other? Genetic insights into the relatedness 

between queens and workers within and between nests in New Zealand and 

in Australia would be valuable in assessing whether all queens present in a 

nest contribute to the worker number in the colonies and whether there has 

been any loss in genetic variability as a consequence of M. sydneyense’s 

dispersal to New Zealand.  
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