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Abstract

In this thesis we consider the application of phase-space methods to Bose-Einstein conden-

sates; the work comprises of three main parts: Part I: A phase-space method for the Bose-Hubbard

model; Part II: An analogue model of an expanding universe in Bose-Einstein condensates. and

Part III: An analogue model of an acoustic Black Hole in Bose-Einstein condensates.

In part I we present a phase-space method for the Bose-Hubbard model based on the Q-

function representation. In particular, we consider two model Hamiltonians in the mean-field

approximation; the first is the standard “one site” model where quantum tunneling is approxi-

mated entirely using mean-field terms; the second “two site” model explicitly includes tunneling

between two adjacent sites while treating tunneling with other neighbouring sites using the mean-

field approximation. The ground state is determined by minimising the classical energy functional

subject to quantum mechanical constraints, which take the form of uncertainty relations. For each

model Hamiltonian we compare the ground state results from the Q-function method with the

exact numerical solution. The results from the Q-function method, which are easy to compute,

give a good qualitative description of the main features of the Bose-Hubbard model including the

superfluid to Mott insulator. We find the quantum mechanical constraints dominate the problem

and show there are some limitations of the method particularly in the weak lattice regime.

Analogue models of gravity have been motivated by the possibility of investigating phenomena

not readily accessible in their cosmological counterparts. In particular, the prediction of quasipar-

ticle creation in ultra-cold Bose gases in specific configurations can be viewed as an analogue to

either cosmological particle creation or the Hawking effect.

In part II of this thesis we investigate the analogue of cosmological particle creation in an

expanding universe by numerically simulating a Bose-Einstein condensate with a time-dependent

scattering length. In particular, we simulate a 2D homogeneous condensate using the classical

field method via the truncated Wigner approximation. We show that for several different expan-

sion scenarios the calculated particle production is consistent with the underlying theory. For

inflationary models we find the particle production for long wavelength modes coincides with the

analytic theory within the acoustic approximation, whereas the particle production is suppressed

for short wavelength (ie. free-particle like) modes. Moreover, particle production is enhanced for

faster expansions, approaching the analytic result for the sudden expansion in the limit of a very

fast expansion. For the case of a cyclic expansion, particle production peaks for a mode frequency

that is approximately half of the driving frequency as expected for parametric resonance.

In part III of this thesis we investigate an acoustic black hole in a Bose-Einstein condensate,

formed by two de Laval nozzles in a ring configuration — a system we refer to as the quantum

de Laval nozzle. Our model is formulated in one dimension with a sinusoidal potential. For non-

zero superfluid flow, this system can exhibit stable transonic flow with both black and white hole

sonic horizons. Stationary states are found by solving the time-independent Gross-Pitaevskii equa-
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tion subject to a phase quantisation constraint. By solving the projected Bogoliubov-de Gennes

equations for the system, we also find the discrete spectrum and quasiparticle modes. There are

dynamical instabilities for certain values of winding number and potential depth, for which it is

possible to construct pairs of normalisable modes. We further investigate the dynamics of the

system using a classical field method based on the truncated Wigner approximation. For a low

winding number and unstable configuration, we find exponential growth for the pair of unstable

modes, whereas there is no growth in these modes for a stable configuration. This can be inter-

preted as non-degenerate parametric amplification, valid for short times. In contrast, for a large

winding number, there is significant growth in modes for both stable and unstable configurations.

This is indicative of higher order processes neglected in the quasiparticle picture, which is further

reinforced by that fact that large winding number solutions require large nonlinearities. Finally, we

consider the connection of our results with the usual semi-classical prediction of the Hawking ef-

fect. For an unstable configuration, the normalised unstable modes couple equal and opposite real

frequencies, so that the growth in these modes represents the closest analogy with the Hawking

effect for our quantum system.
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Chapter 1

Introduction

The initial observation of Bose-Einstein condensation in dilute atomic gases in 1995, seventy years

after its prediction, has heralded in a new era in the study of many body quantum physics, that has

brought with it new challenges — and opportunities. From an experimental point of view this

has been accompanied by significant progress in the manipulation of ultra-cold atoms. It is now

possible to prepare a Bose-Einstein condensate in a wide range of trap configurations, and even to

tune the interactions between atoms. On the other hand, the fact that such systems are both weakly

interacting and near zero temperature, means there is a simple theoretical description available in

many regimes of interest. In particular, the mean-field Gross-Pitaevskii equation and extensions

thereof, as well as the Bogoliubov theory of elementary excitations, provide a more than adequate

description for many situations.

In this thesis, for the most part we will introduce theory as needed, but it is useful to give a brief

overview of Bose-Einstein condensates and the theoretical methods for describing such systems.

For more in-depth treatments, the reader is referred to the comprehensive review articles [1,2] and

texts [3, 4].

1.1 Bose-Einstein condensation

Bose-Einstein condensation is characterised by a macroscopic occupation of a single quantum

state, typically the ground state of the system. This quantum degeneracy can only be achieved at

very low temperatures where the de Broglie wavelength becomes comparable to the inter-particle

spacing. In this regime, particles are no longer distinguishable and are necessarily subject to the

rules of quantum statistics.

These rules arise from the fact that any physical observable must not depend on the interchange

of two identical particles. Such an operation therefore introduces a global phase factor into the

quantum many body wave function. Since exchanging the same particles again must reproduce the

original wave function, the phase factor can only assume the values ±1. Therefore all elementary

particles fall into one of two classes: fermions, for which the wave function is anti-symmetric (−)

and that obey Fermi-Dirac statistics; and bosons, for which the wave function is symmetric (+)

and that obey Bose-Einstein statistics. As it turns out, fermions obey the Pauli exclusion principle,

which forbids any two particles from occupying the same quantum state. On the other hand,

1
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any number of bosons can occupy the same quantum state and it is this feature which underpins

Bose-Einstein condensation.

A remarkable consequence of the spin-statistics theorem that emerges from relativistic field

theories is that the exchange symmetry of identical particles is related to their intrinsic angular

momentum or spin. Specifically, fermions have half-integer spin, whereas bosons have integer

spin. In fact this picture is also valid for composite particles such as atoms, which can be treated

as pointlike bosons/fermions depending on whether they have an even/odd number of constituent

fermions. In this case the relevant physical processes should not be so energetic as to reveal the

particle’s internal structure.

1.1.1 Historical development

The phenomenon of Bose-Einstein Condensation was first predicted by Einstein in 1925 [5], by

extending Bose’s work on the statistics of photons [6], to massive particles. Einstein showed that

below a certain temperature, a macroscopic fraction of the particles in an ideal Bose gas would

condense into the single quantum state of lowest energy, this now being known as a Bose-Einstein

condensate (BEC). In the derivation the phase transition was entirely due to quantum statistical

effects, not requiring interactions between the particles. However, because the predicted transition

temperature was so low, initially the idea of a BEC was relegated to a theoretical curiosity.

Following the discovery of superfluidity in liquid helium, London postulated in 1938 that

Bose-Einstein condensation was the underlying mechanism for superfluidity in 4He [7]. It has

subsequently been shown that as superfluid Helium is a strongly interacting system, only a small

fraction (∼ 10%) of the fluid exists in the condensate phase, even at T = 0. Therefore superfluid

Helium is not ideally suited for the study of Bose-Einstein condensation in its original conception.

The first microscopic theory of Bose-Einstein condensation was developed by Bogoliubov in 1947

for the case of a weakly interacting Bose gas [8]. Utilising the methods of second quantisation

and assuming the system was highly condensed, Bogoliubov derived a general form of the excita-

tion spectrum that included the effects of interactions. In 1956 Penrose and Onsager established

a useful criterion for Bose-Einstein condensation, defining it as the emergence of off diagonal

long range order in the one-particle density matrix [9]. In 1961 Gross [10] and Pitaevskii [11]

independently derived an equation that describes the equation of motion for the condensate wave

function (or mean-field order parameter). The Gross-Pitaevskii equation, as it is now known, is an

indispensible tool for describing BECs near zero temperature.

However, it was only in 1995, following advances in laser cooling and magnetic trapping

of atomic gases, that Bose-Einstein condensation was reported in trapped alkali gases by three

separate groups, namely by the JILA group with 87Rb atoms [12], the Rice group with 7Li atoms

[13] and the MIT group with 23Na atoms [14]. Bose-Einstein condensation has subsequently been

achieved in a number of other atomic species, notably in spin-polarised hydrogen [15], 85Rb [16],

metastable 4He [17, 18], 41K [19] and 133Cs [20].



3 1.2 Effective quantum field theory

1.1.2 Advances in experiments and theory

With continued advances in both experiment and theory, the field of Bose-Einstein condensation

has continued to develop rapidly, drawing on — and contributing to — many related disciplines.

Some of the fascinating directions this research has taken include: quantum phase transitions

in optical lattices [21], Bose-Einstein condensation of molecules (comprising pairs of fermionic

atoms) [22], vortices and superfluidity [23], atom lasers [24], soliton waves [25], low dimensional

systems [26] and proposals for analogue models of gravity [27].

1.2 Effective quantum field theory

The theoretical description of a BEC that is consistent with current experiments requires the inclu-

sion of some features that do not appear in the textbook formulation for an ideal Bose gas, namely:

interactions between atoms, and the effects of a trapping potential. The usual starting point for this

description is the second-quantised formalism of quantum field theory.

1.2.1 Second-quantised field theory description

We review the effective quantum field theory for a BEC. In the second-quantised formalism, the

effective Hamiltonian for a dilute Bose gas is:

Ĥ = Ĥ0 + ĤI (1.1)

where the single particle Hamiltonian is

Ĥ0 =

∫
dx ψ̂†(x)

[
− ~

2

2m
∇2 + Vext(x)

]
ψ̂(x), (1.2)

and the interaction Hamiltonian is

ĤI =
U

2

∫
dx ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x). (1.3)

Vext(x) is any external potential (eg. from a trap) and the two-body potential has been approxi-

mated via a contact potential by U = 4π~
2a/m in terms of the s-wave scattering length a, valid

in the cold collision regime. Within this approximation the speed of sound is given in terms of the

local condensate density n = N/V by

c =

√
Un

m
. (1.4)

The field operator ψ̂(x) annihilates a boson at position x and obeys the usual equal time

commutation relations

[ψ̂(x, t), ψ̂(x′, t)] = [ψ̂†(x, t), ψ̂†(x′, t)] = 0, (1.5)

[ψ̂(x, t), ψ̂†(x′, t)] = δ(x − x′).
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The corresponding Heisenberg equation of motion for the field operator is

i~
∂ψ̂(x, t)

∂t
= [ψ̂(x, t), Ĥ ]

=

[
− ~

2

2m
∇2 + Vext(x) + Uψ̂†(x, t)ψ̂(x, t)

]
ψ̂(x, t). (1.6)

Without further approximations, this equation cannot — using current computational resources

— be solved for a realistic system since the Hilbert space becomes prohibitively large even for a

system of just a few atoms.

1.2.2 Mean-field description

For the case of a weakly interacting Bose gas and for low temperatures T ≈ 0, a very useful

approximation arises from the fact almost all the atoms reside in a single quantum state, so the

system occupies only a fraction of the available quantum states. In this case it is useful to write

ψ̂(x, t) = ψ(x, t) + δϕ̂(x, t), (1.7)

where ψ(x, t) = 〈ψ̂(x, t)〉 is a mean-field term (the condensate wave function) and δϕ̂(x, t) is that

part of the quantum field associated with quantum and thermal fluctuations, with 〈δϕ̂(x, t)〉 = 0.

This is known as the Bogoliubov approximation.

Gross-Pitaevskii equation

This mean-field description itself may be treated with varying levels of approximation. In the very

simplest approximation fluctuations are neglected altogether, The resulting equation, known as the

Gross-Pitaevskii equation (GPE), is given by

i~
∂ψ(x, t)

∂t
=

[
− ~

2

2m
∇2 + Vext(x) + U |ψ(x, t)|2

]
ψ(x, t). (1.8)

This equation provides a description of the condensate in terms of a classical field, in much the

same way that electromagnetic fields have a classical description in Maxwell’s equations. The

corresponding energy functional is

E(ψ) =

∫
dx

(
~

2

2m
|∇ψ|2 + Vext(x)|ψ|2 +

U

2
|ψ|4

)
, (1.9)

where the first term is the kinetic energy of the condensate, the second term the potential energy

due to the external trap, and the final term is the mean-field interaction energy.

Bogoliubov theory

While the GPE has been extremely successful for describing mean-field effects (ie. classical dy-

namics), it necessarily fails in the description of phenomena where quantum or thermal fluctua-

tions play an important role. In fact, even at T = 0, the condensate is depleted due to interactions
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so that some atoms reside in excited states. This can be seen explicitly by considering the theory

of elementary excitations for a weakly interacting Bose gas, first formulated by Bogoliubov for the

homogeneous case [8]. Here it was shown that the many body Hamiltonian can be diagonalised by

an appropriately chosen canonical transformation of the particle operators. The resulting Hamil-

tonian represents a system of non-interacting quasiparticles, which exhibits a nonlinear dispersion

relation for the quasiparticle excitations. This approximation is expected to be valid when the

diluteness condition na3 � 1 is satisfied, which is consistent with the result that the depletion is

proportional to
√
na3 [28]. The formalism was subsequently extended to the case of an inhomo-

geneous case by Fetter [29]. An equivalent description is given by considering the linear response

of the system to small oscillations around the stationary solution of the GPE, which leads to the

so-called Bogoliubov-de Gennes (BdG) equations.

Symmetry breaking

The presence of a non-zero mean-field order parameter is associated with a breaking the U(1)

gauge symmetry of the many body Hamiltonian (1.1). This is evident from the GPE by considering

that the replacement of the field operator by its expectation value is the same as requiring ψ̂|ψ〉 =

ψ|ψ〉 which is the definition for a coherent state1, a state with an indefinite number of particles

(and a definite phase). The violation of the conservation of particle number is problematic in

principle, and has motivated the development of number conserving Bogoliubov theories [31,32],

which use the Penrose-Onsager criterion to define the order parameter.

1.3 Phase-space representations

An alternative route to a theoretical description of ultra-cold Bose gases, which has recently at-

tracted much attention, is the use of phase-space representations, adopted from the field of quan-

tum optics [30,33]. This has led to the development of methods for performing quantum dynamics

that are able to go beyond the GPE description by using a multimode classical field that includes

the condensate mode as well as noncondensate modes. We discuss these so-called classical field

methods in the following section, but it is useful to first introduce phase-space representations.

The field of quantum optics leads to various quasi-classical distributions [30] which can be

used to treat quantum processes using a c-number formalism. Specifically, these distributions

arise from expressing the density operator of the system in terms of Glauber coherent states |α〉.
For a one-mode system with density operator ρ̂, the most widely used of these are given by

Q-function: defined as

Q(α,α∗) =
1

π
〈α|ρ̂|α〉, (1.10)

and can be used to calculate anti-normally ordered moments

〈ânâ†m〉 =

∫
d2ααnα∗mQ(α,α∗). (1.11)

1A discussion on coherent states can be found in [30].
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Because the Q-function always exists and is positive, it can be thought of as a quasiproba-

bility distribution.

P-function: defined as

ρ̂ =

∫
d2αP (α,α∗)|α〉〈α|, (1.12)

and can be used to calculate normally ordered moments

〈â†nâm〉 =

∫
d2αα∗nαmP (α,α∗). (1.13)

However, it does not always exist as a positive well behaved function.

Wigner function: defined as

W (α,α∗) =
1

π2

∫
d2λ exp(−λα∗ + λ∗α)χW (λ, λ∗), (1.14)

where the characteristic function is

χW (λ, λ∗) = Tr{ρ̂ exp(λâ† − λ∗â)}, (1.15)

and can be used to calculate symmetrically ordered moments

〈
{
ânâ†m

}
sym

〉 =

∫
d2ααnα∗mW (α,α∗). (1.16)

However, while it always exists, is not always positive.

The positive P-function: P (α, β), a P-function defined in a doubled phase-space, always

exists and is positive, but practical calculations present some technical difficulties [30].

1.4 Classical field methods

The development of an effective quantum field theory for Bose gases that includes quantum fluc-

tuations as well as finite temperature effects is a challenging goal. However, considerable progress

has been made using so-called classical field methods, whereby the full quantum dynamics can

be replaced with the dynamics of a multimode classical field under appropriate conditions. These

methods are either based on heuristic arguments or rigorous phase space methods, or combinations

thereof.

1.4.1 Phase space methods

The essential idea underlying these methods is as follows. The many body density operator for

the system is expressed in terms of a coherent state basis using a classical quasiprobability distri-

bution based on any of the phase space representations given in the previous section. By making

use of well-known operator correspondences, it is then possible to map the master equation (or
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von Neumann equation) for the density operator to a partial differential equation (PDE) for the

quasiprobability distribution. The resulting classical equation of motion is an exact mapping of

the original problem, but is impractical to solve for multimode problems. However, it may be

possible to put this equation in a Fokker-Planck form, and in this case the evolution of the system

is entirely equivalent to solving a set of stochastic differential equations (SDE) for the phase space

variables — ie. the quantum dynamics has been replaced the dynamics of a classical field. Quan-

tum expectation values are found by calculating the corresponding moments using the appropriate

quasiprobability distribution. In practice this requires taking averages over an ensemble of many

trajectories of the classical field evolution. Significantly, the SDE includes the effects of quantum

fluctuations in the initial state, which is sampled from the quasiprobability distribution, and/or by

the presence of driving noise terms. Two of the more useful phase space methods for dynamics of

Bose-Einstein condensates are:

Truncated Wigner approximation

Based on the Wigner phase space representation, the truncated Wigner approximation

(TWA) was first applied to ultra-cold Bose gases by Steel et al. [34], and further developed

by many others [35–40]. In this method, the equation of motion for the Wigner distribution

is “truncated” by neglecting the third-order derivative terms, and the resulting Fokker-Planck

equation corresponds to a set of SDEs that take the form of the GPE, but with initial states

sampled from the Wigner distribution. This method has the obvious benefit that numerical

methods developed for solving the GPE are also applicable. As the method is approximate,

its validity has been the focus of some study [37, 41]. The validity of the method requires

the condition N � M (N is the number of atoms in the condensate, and M is the number

of system modes). In its canonical form [34] the TWA is suited to systems near zero tem-

perature, although it can be used for finite temperature treatments by sampling a thermal

distribution for the initial state [35]. Recently, the TWA was successfully applied to the

treatment of condensate collisions in order to describe the formation of s-wave scattering

haloes [41, 42]. In those studies, a projector was used so that the dynamical evolution was

closed, only involving modes from a low-energy subspace of the system, which is consistent

with the effective field theory. As we will make use of the TWA, we outline its derivation in

the following section, and discuss its validity in section 7.2.

Positive-P representation

The positive-P representation was first applied to the dynamics of ultra-cold Bose gases by

Steel et al. [34] and by Drummond and Corney [43]. This method leads to a Fokker-Planck

equation for the evolution of the positive-P distribution, which is mapped formally to a set

of SDEs with dynamical noise terms without requiring any approximation. Therefore the

positive-P method can — in principle — be used to exactly simulate the quantum dynamics

of the system. However, this method is prone to rather large divergences during evolution

and is therefore valid only for short simulation times. These problems are accentuated in

the absence of damping or when the system is strongly interacting. Recently, some progress

has been made in this regard by the introduction of Gauge-P representations [44–46], and it
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remains a promising avenue of study.

1.4.2 The Projected Gross-Pitaevskii equation

The idea of using the GPE to simulate the dynamics of a finite temperature system was first pro-

posed by Svistunov et al. [47–49], and was followed by a numerical study of evaporative cooling

in a BEC that used this approach by Marshall et al. [50]. These ideas were further developed by

Davis et al. [51–54] being formalised by the Projected Gross-Pitaevskii equation (PGPE). This

formalism separates the system into two subspaces: a coherent region (low energy, highly oc-

cupied modes) and an incoherent region (high energy, sparsely occupied modes). Modes in the

coherent region are treated by classical equations of motion, which is justified by neglecting the

commutators of the field operators for the highly occupied modes. Neglecting the incoherent re-

gion entirely then leads to the PGPE, where a projector is introduced to ensure the evolution is

closed in the low-energy subspace. The equilibrium properties of the system can be calculated

from a single trajectory by the assumption of ergodicity. It should be emphasised that the PGPE

and TWA methods are very closely related as both correspond to the evolution of a multimode clas-

sical field using the GPE. However, the interpretation of each method is distinct, and in practice

this may lead to a difference in the choice of initial conditions or in the calculation of observables.

1.4.3 The Stochastic Gross-Pitaevskii equation

The formulation of the Stochastic Gross-Pitaevskii equation (SGPE) by Gardiner et al. [39, 55–

57], has been motivated by developing a finite temperature field theory for Bose gases to describe,

for example, condensate growth and vortex nucleation. The method combines aspects of quantum

kinetic theory (see [58] and references therein), as well as the TWA and PGPE formalisms. The

essential idea is to separate the system into a condensate band (low-energy subspace for highly

occupied modes) and a noncondensate band (high-energy subspace for thermal component). The

coupling between the two bands is accounted for by the introduction of damping and noise terms.

A related approach by Stoof [59] also leads to a stochastic form for the system evolution, but

differs in some aspects such as the need to explicitly include the many body T-matrix for scattering

processes.

1.5 Truncated Wigner approximation

In the work presented in this thesis (parts II and III), we will investigate the dynamics of a BEC

near zero temperature, to which the truncated Wigner approximation is well suited. We therefore

outline the derivation of this method here. For clarity of presentation we will follow the derivation

of [34, 36, 39, 56], which uses the compact functional differentiation notation.

The classical field is defined by

ψ(x) ≡
∑

n

φn(x)αn (1.17)
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on a finite basis with wavefunctions φn(x) and phase space mode amplitudes αn. We further

define the functional differentiation operators

δ

δψ(x)
≡

∑

n

φ∗n(x)
∂

∂αn
, (1.18)

δ

δψ(x)∗
≡

∑

n

φn(x)
∂

∂α∗
n

. (1.19)

With the effective Hamiltonian (1.1), the equation of motion for density operator ρ̂ (the von Neu-

mann equation) is given by

i~
∂ρ̂

∂t
= [Ĥ, ρ̂]. (1.20)

With the above definitions, the following operator correspondences for the Wigner function can

be found [30]:

ψ̂ρ̂ ↔
(
ψ +

1

2

δ

δψ(x)∗

)
W (α,α∗), (1.21)

ψ̂†ρ̂ ↔
(
ψ∗ − 1

2

δ

δψ(x)

)
W (α,α∗), (1.22)

ρ̂ψ̂ ↔
(
ψ − 1

2

δ

δψ(x)∗

)
W (α,α∗), (1.23)

ρ̂ψ̂† ↔
(
ψ∗ +

1

2

δ

δψ(x)

)
W (α,α∗). (1.24)

Using these relations, equation (1.20) can be mapped to an equation of motion for the Wigner

function

i~
∂W

∂t
=

∫
dx

{
− δ

δψ(x)

(
− ~

2

2m
∇2 + Vext(x) + U(|ψ(x)|2 − δR(x,x))

)

+
U

4

δ
3

δ
2
ψ(x)δψ∗(x)

ψ(x)

}
W − c. c. (1.25)

where the restricted delta function is defined as

δR(x,x′) ≡
∑

n

φ∗n(x′)φn(x). (1.26)

Equation (1.25) contains a drift term (first order derivatives), and a “cubic noise” term (third order

derivatives), but lacks any diffusion terms (second order derivatives), and so is often referred to

as a generalised Fokker-Planck equation. The presence of third order derivative terms mean that

(1.25) cannot be converted to an equivalent set of SDEs using well known methods [60] without

further approximation. The standard approximation is to neglect (ie. “truncate”) the third order

terms so that the resulting stochastic differential equation is a Liouville equation, which in fact,

takes exactly the same form as the GPE (1.8). However, there are three important differences here:
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(i) Quantum fluctuations are included in the initial state by sampling the the Wigner distribution —

this amounts to adding classical noise corresponding to half a particle per mode; (ii) The moments

of the Wigner function give expectation values for symmetrically ordered operators, which are

found by averaging over many trajectories in phase space; and (iii) A projector has been included

by expressing the field (1.17) in a restricted basis, and in this case, the system dynamics are given

by the PGPE (see for example [39, 41, 56] where this has been formulated explicitly). We will

further discuss the TWA, including its validity and implementation, in chapter 7.

1.6 Thesis outline

Two of the themes that have emerged from the field of ultra-cold Bose gases are: (A) Quantum

phase transitions in highly correlated systems; and (B) Analogue models of gravity. This thesis

consists of three theoretical studies, logically divided between the two themes as follows: Part I:

A phase-space method for the Bose-Hubbard model (theme A); Part II: An analogue model of an

expanding universe in Bose-Einstein condensates (theme B); and Part III: An analogue model of

an acoustic Black Hole in Bose-Einstein condensates (theme B).

Although quite different in scope, all these studies share some important aspects with regards

to the approach we take. In particular, in both cases we will make use of the effective quantum

field theory for ultra-cold Bose gases, and moreover, use phase-space representations to map the

quantum theory to an approximate c-number formalism, valid in some regime of interest.

Part I: A phase-space method for the Bose-Hubbard model

In part I of the thesis, we investigate the ground state phase diagram of the Bose-Hubbard model,

which describes interacting bosons on an optical lattice. In chapter 1, we introduce the Bose-

Hubbard model, with particular relevance to ultra-cold Bose gases and the superfluid to Mott

insulator quantum phase transition. In chapter 3, we formulate the Bose-Hubbard model in terms

of a phase-space method, based on the Q-function. This one-site model treats all hopping terms

using the mean-field approximation. The energy function is reparameterised using the Q-function,

and minimised subject to uncertainty relations to give the ground state phase diagram. These re-

sults are compared to the usual mean-field treatment, and we show the qualitative features of the

phase transition are reproduced. In chapter 4, we introduce the two-site model, which explicitly

includes correlations between two neighbouring sites while treating all other hopping terms with

the mean-field approximation. Similarly to the one-site model, we find the ground state phase dia-

gram using the Q-function reparameterisation, and compare these results with the exact numerical

solutions to the same model Hamiltonian. We then compare our work with other investigations

and conclude.

Part II: An analogue model of an expanding universe in Bose-Einstein condensates

In part II of the thesis, we investigate an analogue model of an expanding universe in a BEC. A

simple model is formulated by considering a homogeneous condensate in two spatial dimensions
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with a time-dependent scattering length. The effective metric tensor for this system is that of a

Friedmann-Robertson-Walker type universe, which is familiar from inflationary cosmology, and

therefore leads to the notion of particle production.

In chapter 5, we introduce the concept of analogue models of gravity, with particular emphasis

on models in Bose-Einstein condensates. In chapter 6, we develop our expanding universe model,

and by using the acoustic approximation, can make analytic predictions for quasiparticle produc-

tion using Bogoliubov’s theory of linear excitations. Specifically we calculate the quasiparticle

production for a sudden, tanh and de Sitter expansion scenarios. We also consider the question of

particle production beyond the acoustic approximation, by including the so-called quantum pres-

sure term. This leads to the idea of Lorentz violation, and should lead to a suppression of particle

production for short wavelength modes. In chapter 7, we introduce the classical field method based

on the truncated Wigner approximation. We discuss the requirements of the method, and suggest

a suitable set of parameters with which to simulate our expanding universe model. In chapter 8,

we give results for the classical field method simulations of the expanding universe model. In

particular we show results for inflationary scenarios with de Sitter and tanh expansions, and also

for a cyclic universe model. We compare these results to the predictions made in chapter 6, then

then conclude by considering the experimental relevance of the results, and suggesting avenues

for further work.

Part III: An analogue model of an acoustic Black Hole in Bose-Einstein condensates

Part III continues the theme started in part II. We present an analogue model of an acoustic black

hole in a trapped Bose gas. The specific geometry is based on using two de Laval nozzles in a

ring, which is implemented by a periodic potential. We refer to this configuration as the quantum

de Laval nozzle.

In chapter 9, we introduce the quantum de Laval nozzle, and find its stationary solutions using

the time-independent GPE. We further show that this system does indeed exhibit both a black and

white hole horizon. In chapter 10, we solve the Bogoliubov-de Gennes equations for the system,

and show the presence of dynamical instabilities for certain values of the potential amplitude and

winding number. It is then possible to construct positive norm modes following the analysis of

Leonhardt et al. [61], which are used to analyse the evolution of the system. Single trajectory

dynamics, based on the truncated Wigner approximation, show that for a low winding number

there is exponential growth in the dynamically unstable modes. This instability is associated with

the Hawking effect, although the picture is not entirely clear for several reasons, namely: the

constraint of phase quantisation, the discreteness of the spectrum, and dynamics for large winding

numbers. We then conclude and suggest some possible extensions to this work.

1.7 Publications

The work from part I has been previously published [62], and is included here (in chapters 2–4)

with some modifications necessary for consistency of presentation. The work from part II (in

particular, from chapters 6 and 8) is currently in preparation for publication, as is the work from
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part III (chapters 9 and 10).
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A phase-space method for the Bose-Hubbard
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Chapter 2

Introduction to the Bose-Hubbard Model

2.1 Introduction

Quantum phase transitions in strongly correlated systems have recently attracted a lot of interest.

This has been encouraged by two significant developments: Firstly, it is now possible to trap cold

bosonic atoms in optical lattices. Secondly, the prediction [63] that a Bose-Hubbard Hamiltonian

could be realised with this configuration, and therefore the possibility of observing the transition

between superfluid and Mott insulator phases. Indeed this led to the subsequent development of

an experiment in which these predictions were verified [64], and has lent urgency to the quest for

a computationally simple description of the phenomena involved.

In experiments the transition from a superfluid to Mott insulator phase can be achieved by

increasing the lattice strength. It is desirable to find a description which can cover both of the two

regimes of qualitatively different behaviour: for a weak lattice where the atoms are delocalised —

ie. the superfluid phase; and for a strong lattice where the atoms are strongly localised and the

system is strongly correlated — if additionally there is an integral number of atoms per site it is

possible to enter the Mott insulator phase.

The dynamics of the Bose-Hubbard model in states for the strong lattice region presents

formidable technical difficulties. The so-called Gutzwiller approximation [63, 65, 66] has been

used in several treatments, but because it represents the wavefunction as a product of wavefunc-

tions at different sites, the description of intersite correlations is necessarily very approximate.

Progress has been made [67, 68] in regions near to the weak lattice regime by using a self-

consistent Bogoliubov method, in which the statistics of the quantum fluctuations are treated by

what amounts to a Gaussian ansatz. However, this method cannot be used near the strong lattice

regime because in this case the statistics are far from Gaussian.

In this part of the thesis, we introduce an approximate phase space representation for the Bose-

Hubbard Hamiltonian, based on the Q-function, which is applicable in both regimes of interest.

By utilising the mean-field approximation, we are able to find the ground state solutions, and

therefore determine the phase diagram. Before we embark on this programme, in the remainder of

this chapter, we introduce the ideas of quantum phase transitions in optical lattices, and then give

an overview of our work, which is presented in chapters 3 and 4.

15
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2.2 Optical lattices

Light fields — such as those provided by lasers — have become a useful tool for the manipulation

of atoms. In particular, an optical lattice is formed by the standing wave interference pattern of

two or more laser beams. The resulting periodic potential constitutes an array of microtraps that

may trap atoms in an artificial crystal structure. The trapping force is due to the ac-Stark shift,

whereby the atoms experience an energy shift due to an induced dipole moment (see [69, 70] and

references therein). For the resulting conservative potential, this must occur at laser wavelengths

that are far-detuned from any atomic resonance. For a red detuning, neutral atoms experience

a force in direction of increasing field — ie. they are attracted to the maxima of the laser field

intensity. For a blue detuning the effect is reversed, with atoms attracted to the minima of the

field. In one dimension for example, an optical lattice can be formed by two counter-propagating

laser beams, with the lattice spacing equal to half the laser wavelength.

Experiments with BECs in optical lattices have led to the observation of highly correlated

quantum states as described by the Bose-Hubbard model. In particular, approaching the Mott

insulator state, Orzel et al. found evidence of squeezed states in a one-dimensional optical lattice

[71]. This was soon followed by the landmark experiments by Greiner et al. in three-dimensional

optical lattices that demonstrated the Superfluid to Mott insulator transition [64], and also the

collapse and revival of the coherent matter wave by entering (and leaving) the Mott insulator

state [72]. The experiment in [64] also showed evidence for the excitation gap that occurs for the

Mott insulator state.

In general, the propagation of atoms in a periodic potential is represented by Bloch states

that exhibit an energy band structure for the system (for localised states it is appropriate to use

the Wannier function basis). For high occupation numbers, a multi-band Bose-Hubbard model

is required to describe interactions between atoms in different energy bands [73]. However, the

multi-band description complicates the theory of interacting atoms in an optical lattice, and so

it is often desirable to consider only the lowest energy band — that is, the ground state of the

optical lattice. Indeed, in the above experiments the condensate was loaded into the optical lattice

adiabatically (ie. the lattice was turned on slowly) so that the system remained in the ground state.

However, experiments with non-adiabatic loading have also been performed more recently [74].

2.3 The Bose-Hubbard model

The Bose-Hubbard model was first introduced by Fisher et al. to describe the superfluid to insu-

lator phase transition in liquid 4He [75], but is generally applicable to any system of interacting

bosons on a lattice. It is possible to derive the Bose-Hubbard Hamiltonian by starting with the

many body Hamiltonian (1.1), where the external potential includes components from the optical

lattice and from any additional trapping potential (Vext = Vlattice +Vtrap). The simplest form of the

model is given when the atoms are loaded adiabatically into the lattice, so that they remain in the

lowest vibrational state (that is, the lowest energy band of the lattice). Using a Wannier function
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basis, the resulting Bose-Hubbard Hamiltonian is given by [63]

HBH = −J
∑

〈i,j〉

a†i aj +
1

2
U
∑

i

n̂i(n̂i − 1) +
∑

i

εi n̂i (2.1)

where a†i and ai respectively are the creation and annihilation operators for a boson on the ith site

and n̂i ≡ a†i ai is the corresponding number operator. The first term of the Hamiltonian describes

the quantum tunneling (“hopping”) between neighbouring sites with an amplitude J which is only

non-zero when i and j are adjacent (〈i, j〉 indicates the summation only occurs over adjacent

sites). The second term represents the on-site interaction energy which is taken as repulsive with

U ≥ 0, as is the case for Rubidium atoms. The final term arises from the presence of a trapping

potential Vtrap, which leads to an on-site energy shift εi. Because the lattice spacing is typically

much smaller than the scale on which the trapping potential varies, it is reasonable to neglect this

term — which we will henceforth do — the main benefit being that the model becomes tractable.

As we will be formulating the model using the Q-function representation [30], and noting that

this distribution is adapted to antinormal ordering, we write the Bose-Hubbard Hamiltonian above

in the antinormal ordered form

HBH = −J
∑

〈i,j〉

aia
†
j + u

∑

i

aiaia
†
ia

†
i . (2.2)

where in order to simplify notation we have set u = U/2, and where we have neglected the on-site

energy due to an additional trap. We note that this Hamiltonian is easily related to its normally

ordered counterpart using the commutation relation [ai, a
†
j ] = δij .

2.3.1 Superfluid to Mott insulator transition

The Bose-Hubbard Hamiltonian exhibits solutions for two qualitatively different regimes:

a) Weak Lattice (u/J ≈ 0), when the atoms are delocalised, and are thus highly mobile; the

system is weakly correlated.

b) Strong Lattice (J/u ≈ 0), when the atoms are localised; the system is highly correlated. In

this case there are two subcases

i) Commensurate, when the number of atoms per site is integral, and the state is a product

of number states on each site. In this case there can be no mean-field.

ii) Incommensurate, when the number of atoms per site is non-integral, and in this case

there can be a mean-field.

In the case of an integral average site filling, as the strength of the lattice varies, a transition from

the delocalised to the localised situation takes place, and one passes from state with a non-zero

mean-field to a state with no mean-field. Conventionally, if there is no mean-field, one speaks of

a Mott insulator phase, while if there is a non-vanishing mean-field, the terminology superfluid
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phase is applied. At zero temperature, the “competition” between the tunneling energy J and on-

site interaction energy u determines a phase boundary between the Mott insulator and superfluid

phases — this is quantified by a critical value (J/u)c.

The onset of the Mott insulator phase is also characterised by the existence of an energy gap,

which represents the energy required to add a particle or hole excitation to the system. In the grand

canonical ensemble description, this can be expressed by the condition that ∂n/∂µ = 0 where n

is the mean atom number on a site, and µ is the chemical potential — the Mott insulator phase is

then said to be incompressible.

The superfluid – Mott insulator transition is an example of a continuous quantum phase tran-

sition, which is governed by quantum fluctuations — significant near zero temperature. The phase

transition is driven by changing some external parameter that appears in the system Hamiltonian,

rather than a change of temperature, as is the case with classical phase transitions. Here the

external parameter is the parameter J/u, which is easily tuned in experiments by increasing or

decreasing the depth of the optical lattice potential.

The Heisenberg uncertainty relation between number and phase largely determines the nature

of each quantum phase: In particular, the superfluid phase is characterised by large number fluc-

tuations on each site with an associated reduction in phase fluctuations, which are features of a

coherent state1. In contrast, the Mott insulator phase is characterised by a fixed number of atoms

on each site and large fluctuations in the phase between different sites, which represents a Fock

number state. In fact the transition to the Mott insulator phase is associated with the breaking of

U(1) symmetry [76].

2.3.2 Ground state solutions

In practice it is difficult to find exact solutions to the Bose-Hubbard model since the required

basis of states is unfeasibly large even for a modest lattice size [67]. In light of this, a number

of approximation methods have been used, with varying success, to describe the zero-temperature

phase diagram. We give an overview of these methods with particular emphasis on describing the

superfluid to Mott insulator phase transition, which occurs at commensurate occupations.

A standard method of dealing with excitations in a homogeneous Bose gas, the Bogoliubov ap-

proximation, has recently been applied by several authors to the case of atoms trapped in an optical

lattice [67,68,77]. However, while this method is appropriate for describing number squeezing in

the superfluid phase [67, 77], it does not correctly predict the superfluid to Mott insulator transi-

tion [68]. This is because the Bogoliubov approach fails to account for the large depletion of the

condensate that occurs in the immobile Mott insulator phase.

In contrast, Garcia-Ripoll et al. have shown the equivalence of the Bose-Hubbard and quan-

tum rotor models in the limit of commensurate occupations and strong interactions [78]. Using a

variational ansatz, these authors then showed the quantum rotor model is well suited to describing

the Mott insulator state as well as the transition to the superfluid phase, even though it cannot

1This description is not complete however, since the total number operator N̂ =
∑

i n̂i commutes with the Hamil-

tonian (2.1), and so the total atom number should be conserved — ie. the coherent state description is only an ap-

proximation. Strictly speaking, to find the superfluid order parameter one should calculate the superfluid fraction [75]

instead of using the symmetry breaking mean-field order parameter.
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represent the superfluid phase itself.

A more successful approach utilises a mean-field approximation based on the Gutzwiller

ansatz for bosons [63, 65, 66] in which the many-body wavefunction of N atoms occupying L

sites is given as a product of single-site states of the form

|ψ〉 =
L∏

l=1

(
∞∑

n=0

cn|n〉
)

(2.3)

Such a wavefunction can be used to describe a wide variety of states, and in particular, can rep-

resent both the superfluid and Mott insulator phases. In particular, in the limit where tunneling

dominates (u/J ≈ 0), the system is in the superfluid state and the wavefunction is of the form

|ψSF〉 ∝
(

L∑

l=1

a†i

)N

|0〉 (2.4)

This approximates a coherent state for large N , L where the statistics are Poissonian. In the

opposite limit where on-site interactions dominate (J/u ≈ 0) and in the case of commensurate

occupation, the system is in the Mott insulator state. The wavefunction is then given by a product

of Fock number states

|ψMI〉 ∝
L∏

l=1

(a†)n|0〉 (2.5)

with an occupation of n = N/L atoms per site. In this regime the number variation vanishes and

the statistics are far from Gaussian.

Using the Gutzwiller approximation the tunneling term can be treated using a mean-field ap-

proximation [63, 66, 68, 76]; this introduces a symmetry breaking term into the Hamiltonian that

accounts explicitly for the presence of the superfluid to Mott insulator transition. A vanishing

mean-field identifies the Mott insulating phase where intersite interactions are suppressed. For

this reason the mean-field is analogous to the superfluid order parameter. The main advantage of

the Gutzwiller ansatz is the approximation of the Bose-Hubbard Hamiltonian by the sum of single-

site Hamiltonians. However, this methodology necessarily approximates the intersite correlations

and therefore fails to account correctly for the superfluid to Mott insulator transition boundary.

As we shall show, a better approximation is to use the two-site ansatz which includes the corre-

lations between two adjacent sites while still treating tunneling to other sites with the mean-field

approximation.

The mean-field approximation has also been applied to the Bose-Hubbard model in a number

of other scenarios including the variational principle [63,75], time-dependent variational principle

[79,80] and using perturbative methods [81–85]. The latter case makes use of an important feature

of the Bose-Hubbard model: the existence of an energy gap in the Mott insulating phase. In the

superfluid phase this energy gap disappears so that the phase is compressible. The phase transition

boundary can then be calculated by considering a perturbative expansion of the ground state energy

around the particle/hole states.

The Bose-Hubbard model has also been investigated using exact numerical methods in small
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i i+1i-1

(a) One site model

i i+1 i+2i-1

(b) Two site model

Figure 2.1: Treatment of hopping terms in the Bose-Hubbard model for a lattice of dimension d =
1. The dashed arrows indicate those hopping terms Jaia

†
j included by a mean-field approximation,

whereas the solid arrows indicate those terms included explicitly in the Hamiltonian. We consider

two formulations: (a) The hopping terms between the ith site and its z = 2d nearest neighbours

are treated solely by a mean-field approximation; (b) The hopping terms between two adjacent

sites i and i+1 are included explicitly, whereas the hopping terms between each of these sites and

and their (other) nearest z′ = 2d− 1 neighbours are included using the mean-field approximation.

systems, with the Quantum Monte-Carlo (QMC) and Density Matrix Renormalisation Group

(DMRG) techniques. In particular, QMC simulations have been used to study the phase diagram

in both one [86–88] and two [89–91] dimensional lattices. More recently, this approach has been

made more efficient by adapting the Bose-Hubbard model to a stochastic Gutzwiller ansatz [92].

The DMRG approach was first developed by White to deal with lattice systems [93] and has

subsequently been applied to the one-dimensional Bose-Hubbard model with the infinite-system

algorithm [78,94,95] and the more accurate finite-system algorithm [96,97]. This method benefits

from truncation of the Hilbert space with the most probable states represented by the reduced

density matrix. The size of the system is grown by adding lattice sites at each iteration. The

method is numerically exact in that a desired accuracy can be achieved by varying the number of

states retained at each iteration; it has therefore been used as a useful basis of comparison for the

validity of other methods [78]. It should be noted that the standard formulation of DMRG is for

one dimensional systems. The adaption of the algorithm to higher dimensions is problematic not

least because it may require the representation of prohibitively large Hilbert spaces; therefore the

DMRG has yet to be adapted to the Bose-Hubbard model in dimensions higher than one.

2.3.3 Quantum phase diagram

Using the mean-field approximation, the Hamiltonian can be decoupled into a sum of single site

terms, and the ground state solutions are found by a straightforward calculation. For comparison

with our following results, we now calculate the phase diagram resulting from this procedure.

The mean-field approximation

In the mean-field approximation, one assumes that the effect of the the nearest neighbours on the

site i is given by a c-number mean-field E = 〈ai〉 which, by a choice of phase, we take as real,

and which is independent of i for a homogeneous system. Thus we can write

HBH → Hmf =
∑

i

{
−Z

2
E(a†i + ai) + uaiaia

†
ia

†
i

}
(2.6)
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Figure 2.2: Ground state phase diagram for the Bose-Hubbard model using a self-consistent mean-

field approach; the mean-field and chemical potential are both shown as a function of the relative

interaction strength Z/u and mean occupation number n (normal ordered).

where Z is proportional to the nearest neighbour value of J multiplied by the number of nearest

neighbours (see Figure 2.1a). As noted in Sachdev’s book [98], to solve the system one finds the

lowest eigenvalue of Hmf on a single site, for which the value of E must match that of 〈ai〉.
Thus, one assumes a value for the mean-field, computes the ground state eigenfunctions of the

Hamiltonian, whose mean-field should equal that initially assumed. Unlike the more conventional

method, we do this at fixed mean occupation of the site, not fixed chemical potential, and compute

the chemical potential from the energy. Since the solutions of this process are well known, it will

provide an interesting testbed for the phase space method we wish to propose.

Self-consistent mean-field results

The results obtained by this procedure are shown in Figure 2.2. The usual features of the su-

perfluid to Mott insulator transition are present. In particular, in the Mott insulator phase, the

mean-field vanishes for commensurate occupations when the relative interaction strength (Z/u)

is below a critical value. There is a corresponding energy gap evident in the chemical potential

which represents the energy required to add or remove a particle to the system; hence the Mott

phase is incompressible. When the density is incommensurate or the tunneling dominates, there is

a transition to the superfluid phase where the mean-field is non-zero.

2.3.4 Extensions to model

While the Bose-Hubbard Hamiltonian given by (2.2) encapsulates the essential physics of bosonic

atoms in an optical lattice, it neglects terms which may lead to additional features of the phase

diagram in certain regimes. Here we comment on a few such possible extensions and their conse-

quences:

Nearest-neighbour interactions: When nearest-neighbour interactions are included in the

Bose-Hubbard Hamiltonian, there is evidence for a compressible supersolid phase in two

dimensions [90,91]. Such a possibility was first considered by Fisher et al. [75]. This phase

is qualified by simultaneous diagonal (crystalline) and off-diagonal (superfluid) long range
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order. However it is worth noting that there is no evidence for this phase in simulations in

one dimension [87, 95, 97].

Disorder: The effects of disorder can be accounted for by a random on-site energy in

the Hamiltonian. The disordered model can lead to the prediction of an insulating Bose-

glass phase which is distinguishable from both the superfluid and Mott insulator phases

[75,86,88,89,96]. In particular, this phase has a superfluid density of zero (leading to local-

isation of the bosons) while exhibiting superfluid characteristics such as compressibility and

a vanishing energy gap. There is also evidence of an insulating Anderson glass phase for

the noninteracting system [86]. Finally, when the effects of on-site disorder are included, it

has been shown that the Mott insulator phase is only stable for commensurate occupations

less than some critical value [99].

Superlattices: A two-colour superlattice is formed when two optical lattices each with

a different lattice spacing (ie. formed by different laser wavelengths) are superimposed.

The resulting lattice exhibits a spatially periodic modulation of the lattice depth, and can

be described using a cell structure where each cell contains multiple lattice sites. This

arrangement introduces an onsite energy shift in the Bose-Hubbard Hamiltonian, and is

therefore related to studies of disordered systems. Investigations of ultracold bosonic atoms

in two-colour superlattices have revealed that the phase diagram also exhibits a Bose-glass

phase [100, 101].

2.4 Overview

In this part of the thesis we want to introduce approximate methods which should be applicable in

both the superfluid and the Mott insulator regimes, and to show their efficacy in the very simplest

method used for the Bose-Hubbard model, that of static mean-field theory. We propose a phase

space method from quantum optics based on the Q-function representation which involves an

approximate reparameterisation of the Bose-Hubbard Hamiltonian in terms of Gaussian variables.

The advantage of this methodology lies in the simple description of a wide range of quantum states

for the system.

We apply this method to two approximations of the Bose-Hubbard Hamiltonian which we

denote as the one site and two site models. A schematic of these models for one dimension is

given in Figure 2.1. The one site model treats all intersite correlations (ie. tunneling to adjacent

sites) by a mean-field term, which essentially decouples the total Hamiltonian into a sum of one

site Hamiltonians. The two site model extends this formulation by explicitly including intersite

correlations between two adjacent sites, while treating the interactions with neighbouring sites

using the mean-field approximation. The formalism and results for the one and two site models

are presented respectively in chapters 3 and 4, and in section 4.3 we conclude.

For the one site Q-function approach, we find rather good agreement over all regimes, with the

advantage that our phase space method can be evaluated very easily—in a matter of seconds on

any reasonable workstation. The accuracy is usually about 5%, with the qualitative behavior being
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accurately given. The essence of the result is that the ground state is essentially that wavefunction

which minimises the classical energy functional subject to the inequality constraints given by the

uncertainty principle in two different forms.

These results are compared with an exact numerical solution to the one site model using arbi-

trary one site states. In this case, the solution is found by reparameterising the energy in terms of

the number variance and finding the maximum mean-field for which the energy is minimised. The

formulation is equivalent to the application of the standard Gutzwiller ansatz.

The Q-function formulation is easily extended to the two site model when lattice homogeneity

is assumed. The correct description of the two site quantum statistics requires the inclusion of ad-

ditional constraints which are used to determine the ground state solution. The results here give a

good qualitative description of the overall features of the Bose-Hubbard model. However, a short-

coming of the parameterisation on two sites is highlighted by the failure of the method to correctly

predict the Mott insulator phase, as determined by a vanishing mean-field, when compared to the

results from sections 3.1, 3.2 and 4.2.

The two site model is also solved by exact numerical minimisation with the assumption of

lattice symmetry giving a reduced Hilbert space. Here, the ground state results show the pertinent

features of the Bose-Hubbard model, with a vanishing mean-field throughout the Mott insulator

phase, which is an improvement over the two site Q-function formulation. The results are com-

pared with other reports from the literature, including Density Matrix Renormalisation Group and

Quantum Monte-Carlo methods, which yield numerically exact results for one dimensional finite

lattices. We then conclude in section 4.3.
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Chapter 3

One site formulation

In the preceding chapter, we introduced the Bose-Hubbard model for bosonic atoms interacting

on a lattice. Even the simplest form the Bose-Hubbard Hamiltonian (2.1) leads to two vastly

different regimes, namely weakly correlated and strongly correlated states. In this chapter, we

therefore introduce an approximate method which should be applicable in both of these regimes.

This method uses a phase space representation for the one site Hamiltonian (2.6), based on the

Q-function, which was introduced in section 1.3. The ground state phase diagram is found by

minimising the resulting energy functional subject to quantum mechanical constraints. In section

3.1 we formulate the one site problem in terms of the Q-function, while in section 3.2 we provide

the exact numerical solution to same model Hamiltonian for comparison.

3.1 Q-functions for one site states

We develop a treatment in terms of the Q-function, following the theory given in Section 4.4.1 of

reference [30]. Since the Q-function is always positive and well-defined, and is thus a genuine

probability density to which we can apply probabilistic approximations, it can be used to describe

a wide range of states for the Bose-Hubbard model which interpolate between the extremes:

i) Weak lattice: in the case that the hopping dominates (J very large) the ground state is the

product of coherent states at each site.

ii) Strong lattice: in the other extreme, when the hopping is negligible, the ground state is the

product of eigenstates at each site. If the mean occupation per site is n and [n] denotes the

integer part of n, then the state at each site is a superposition of number states of the form√
λ|[n]〉 +

√
1 − λ|[n] + 1〉, where λ is chosen to give the correct mean occupation. These

states are not Gaussian.

The Gaussian or non-Gaussian nature of the statistics in the Bose-Hubbard model is very impor-

tant, and one of the virtues of the Q-function is that it is Gaussian when the quantum statistics is

also Gaussian [30].

Taking the density operator as the outer product ρ = |ψ〉〈ψ| for a state vector |ψ〉 and using

(1.10), the Q-functions for the three principal kinds of states are:

25
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Figure 3.1: Q-function for the superposition of n = 6 and n = 7 states in proportion 1:0,

0.85:0.15, 0.5:0.5, 0.15:0.85, 0:1; and for a coherent state with β =
√

6.

i) Number state: The Q-function for a number state is

Qn(α,α∗) =
1

π

e−|α|2|α|2n

n!
. (3.1)

Examples of this distribution appear in Figure 3.1 (a) and (e). The distribution has a charac-

teristic ring shape, which is clearly non-Gaussian.

ii) Superposition of number states The Q-function for the superposition of number states with

n− 1 and n atoms in proportions 1 − λ : λ is

Qsupλ(α,α∗) =
1

π

∣∣∣∣∣
√

1 − λ+ α

√
λ

n

∣∣∣∣∣

2
e−|α|2|α|2(n−1)

(n− 1)!
.

(3.2)

This is the kind of state expected with an incommensurate filling in the limit of no hopping.

The Q-function then varies between a ring shaped distribution for λ = 0, 1 to a rather

distorted Gaussian distribution at λ = 1/2; see Figures 3.1 (a)–(e).

iii) Coherent state In the superfluid case with mean filling per site n, where the hopping is

dominant, we expect an approximately coherent state with parameter β = exp(iθ)
√
n, for

some real θ, and then the Q-function has the Gaussian form

Qcoh,β =
1

π
exp

(
−|α− β|2

)
. (3.3)

This is plotted in Figure 3.1 (f).
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3.1.1 Parametrisation of the Q-function

The shape of the probability distributions in Figure 3.1 can be approximately parametrised by

writing the random variable a→ α with

α = (v + δ)eiθ (3.4)

where

a) v is a nonrandom positive real quantity;

b) δ is a Gaussian random variable with zero mean and variance σ;

c) θ is a Gaussian random variable with a mean which is in principle nonzero, but which by

choice of phase definition can be chosen to be zero, and with variance ∆. In this case, the

averages of powers of exp(iθ) are given by

〈epiθ〉 = exp
(
−p2∆/2

)
≡ cp

2

. (3.5)

Using properties of Gaussian variables this approximation leads to the values of the antinormal

ordered moments:

〈a〉 = vc (3.6)

〈aa†〉 = (v2 + σ) (3.7)

〈aa〉 = (v2 + σ)c4 (3.8)

〈aaa†〉 = (v3 + 3σv)c (3.9)

〈aaa†a†〉 = (v4 + 6v2σ + 3σ2) (3.10)

Note that the first of these moments (3.6) represents the mean-field. A straightforward extension

of this this parameterisation to L sites can be given by the substitution ak → (vk + δk)e
iθk for

k = 1, 2, ..., L; we make use of this for the two site problem presented in section 4.1.

Validity of parameterisation: values of the parameters in particular cases

The justification for the above parameterisation is made by comparing the parameterised and exact

moments calculated for relevant quantum states. In particular, to fit the kinds of distribution in

Figure 3.1 we determine the parameters v, σ and c by fitting the moments 〈a〉, 〈aa†〉 and 〈aaa†a†〉.
These are given in detail in A.1, where we show that for a wide variety of states we get very

tolerable approximations. Thus we can expect a good qualitative description of the system for an

arbitrary lattice strength. However, we note that the parameterisation is least accurate in the case

of an equal superposition of number states which we will find reflected in the ground state phase

diagram in the strong lattice regime.
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3.1.2 Determination of the ground state

Using the Hamiltonian (2.6) and the moments (3.6)–(3.10), the average energy in the Q-function

representation is

E(n, c, v) = −Zc2v2 + u(3n2 − 2v4). (3.11)

To find the ground state solution at a given interaction strength Z/u and mean occupation n, this

quantity is minimised with respect to the free parameters v and c, with the bounds v ≥ 0 and

0 ≤ c ≤ 1 as permitted by the Q-function parameterisation.

Constraints

The functional (3.11) is a classical distribution that has no local minima so that the minimum

must occur on the boundary. However the system should be governed by the quantum mechanical

nature of the problem, which we reintroduce in the form of two constraints on the minimisation

procedure, one derived from a restriction on the number variance, the other from the uncertainty

relation for the conjugate variables of phase and number.

The most significant of the constraints enforced by the quantum mechanical nature of the

problem are as follows.

Fractionality constraint If the mean occupation per site is non-integral, the variance of the oc-

cupation must be nonzero, and this has a major bearing on the problem, which we shall formulate

precisely. We will be considering cases where the mean occupation per site is fixed, so that

〈aa†〉 = n ≥ 1 (3.12)

so that

n = v2 + σ ≥ 1. (3.13)

Setting

N = aa† (3.14)

and using (3.6)-(3.10) the variance of the site occupations is

var[N ] ≡ 〈aa†aa†〉 − 〈aa†〉2

= 2n2 − n− 2v4. (3.15)

In n is non-integral, with fractional part δn, then the minimum variance for a given n occurs when

only the two occupation numbers which bracket the value n are represented, and then this gives a
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variance of δn(1 − δn), leading to the constraint

var[N ] ≥ δn(1 − δn). (3.16)

and using (3.15) we can write this as

0 ≤ v4 ≤ n2 − 1

2

(
n+ δn(1 − δn)

)
(3.17)

Phase-number uncertainty relations The uncertainty principle enters when we consider that

phase and number are conjugate variables. We can write a rigorous uncertainty relationship using

X =
a+ a†

2
; Y =

a− a†

2i
(3.18)

so that we have the commutation relations

[N,X] = −iY ; [N,Y ] = iX (3.19)

from which follow an uncertainty relation

〈δY 2〉var[N ] ≥ 1

4
〈X〉2 (3.20)

In our formulation we have chosen a zero mean phase so that 〈Y 〉 = 0 (see (A.13)) and thus

〈δY 2〉 = 〈Y 2〉. Using (A.13–A.17), and antinormally ordering all the products involved, we find

〈δY 2〉 =
n

2
(1 − c4) − 1

4
(3.21)

and thus

[
n

2
(1 − c4) − 1

4

] (
2n2 − n− 2v4

)
≥ 1

4
v2c2. (3.22)

Results

Minimising (3.11) with the constraints (3.17) and (3.22) leads to the ground state phase diagram

shown in Figure 3.3. These results compare well with the exact solution shown in Figure 2.2,

particularly with confirmation of the Mott insulator phase at commensurate occupations for a

strong lattice (small Z/u), and of the superfluid phase for a weak lattice (large Z/u).

The results are dominated by the interplay between the constraints, which is made evident

by considering Figure 3.2. In the strong lattice regime, the ground state solution is given at the

intersection of the fractionality constraint (3.17) which determines the upper bound for v, and the

phase-number uncertainty constraint (3.22), shown by the solid curve. Specifically for Z/u = 0.5,

and for an integer n = 1, this occurs at c = 0 and the resulting vanishing mean-field is indicative

of the Mott insulator phase; for a non-integer n = 1.5 the solution occurs for c 6= 0 so that there

is a non-zero mean-field corresponding to a superfluid component. Conversely for a weak lattice,
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Figure 3.2: Level curves of energy (3.11) in the Q-function representation for three different cases

are indicated by the dashed curves, with the energy decreasing for darker regions; the permissible

parameter space for v and c is given by the bounds v ≥ 0 and 0 ≤ |c| ≤ 1 (for purely illustrative

purposes we allow c to be negative here because the problem is symmetrical about c = 0) where v
is further bounded by (3.17). Since (3.11) has no local minima, the minimum energy occurs within

the shown bounded region and subject to the constraint (3.22) derived from the phase-number

uncertainty relation which is shown by the solid curve. The solution in each case is indicated by

a circle. In the first case (n = 1, Z/u = 0.5) this occurs for c = 0 so that the mean-field is zero;

in the second case (n = 1.5, Z/u = 0.5) this occurs for a non-zero c so that there is a mean-field.

In both these cases, the solution saturates the upper bound for v. Conversely, in the third case

(n = 1.5, Z/u = 10) where the lattice is weak, the solution occurs within the bounded region.

with n = 1.5 and Z/u = 10, the solution is determined solely by (3.22).

The fact that the quantum mechanical constraints dominate the problem is not unexpected as

the phase transition between the Mott insulator and superfluid is driven by quantum fluctuations.

We note that for the Q-function results at half-integer values of n, the mean-field remains

constant over some range of Z/u in the strong lattice regime. This contrasts with the numerically

exact results obtained by a self-consistent mean-field approach as shown in Figure 2.2 where the

mean-field is a monotonically increasing function of Z/u. This difference arises from the weaker

approximation of the Q-function parameterisation in the case of an equal superposition of number

states as shown in Figure 3.1 (c), and quantified in Appendix A.1.

3.2 Exact numerical minimisation of one site problem

The inequalities (3.22) and (3.17) restrict the mean-field to a certain maximum value, but this

maximum may not be optimal. Let us then pose the question: What is the largest value of the

mean-field for a given mean number and variance. This value determines the minimum energy

and permits the following basic strategy for finding the ground state phase diagram. Firstly, repa-

rameterise the mean-field in terms of the mean number occupation and number variance; and

secondly, minimise the energy with respect to the number variance at a fixed relative interaction

strength zt/u and mean occupation. The problem is then essentially reduced to a minimisation of

energy with respect to a single variable – the number variance.
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Figure 3.3: Ground state results for Bose-Hubbard model with Q-function representation; the

mean-field and chemical potential are shown as a function of relative interaction strength Z/u and

(anti-normal ordered) occupation n.

3.2.1 Formulation using one site states

Here we give an exact numerical procedure for determining the ground state of the Bose-Hubbard

model in the one site mean-field approximation. A one site quantum state can be written as a

superposition of number states

|s〉 =
∑

n

cn|n〉 (3.23)

where the usual normalisation condition (1 = 〈s|s〉) applies. In this basis the mean-field is

〈X〉 = 〈s|a+ a†

2
|s〉 = <

{∑√
n c∗n−1cn

}
(3.24)

The Hamiltonian (2.6) leads to the expression for the one site energy in the mean-field approxi-

mation

〈E〉 = −Z 〈X〉2 + u
(
2 + var[N ] + n2 + 3n

)
(3.25)

where n ≡ 〈a† a〉 is the (normal ordered) mean number and var[N ] = n2 − n2 is the number

variance of atoms on each site (note the normal and anti-normal ordered means are related by

〈a†a〉 = 〈aa†〉 − 1). Since the chemical potential term has been omitted in (2.2), we treat the

system using the canonical ensemble by taking a fixed number of atoms in the lattice, that is by

explicitly using the constraint of fixed mean occupation.

Clearly, the energy functional (3.25) is then minimised when the mean-field 〈X〉 is a maximum

and subject to the constraints of normalisation and fixed number mean and variance. In terms of

the one site state (3.23) these constraints are given by

φ1 =
∑

n

|cn|2 − 1 = 0 (normalisation) (3.26)

φ2 =
∑

n

|cn|2 n− n = 0 (fixed mean) (3.27)
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Figure 3.4: Mean number occupation n as a function of µ at ν = −500 for the one site model. The

Lagrange multiplier µ plays the role of (but is not equal to) the chemical potential; the horizontal

regions are indicative of the system near the incompressible Mott insulator phase where ∂n/∂µ =
0.

φ3 =
∑

n

|cn|2 n2 − n2 = 0 (fixed variance) (3.28)

Moreover, since the constraints are independent of phase, the mean-field (3.24) is maximised by

choosing the set of cn to be real and positive at fixed |cn|. To deal with the problem of constrained

optimisation we apply the method of Lagrange multipliers; the mean-field is maximised when

0 =
∂〈X〉
∂cn

− 1

2
λ
∂φ1

∂cn
+

1

2
µ
∂φ2

∂cn
+

1

2
ν
∂φ3

∂cn
(3.29)

Note the scalar factors that appear before the Lagrange multipliers (λ, µ and ν) are included for

convenience. Equation (3.29) along with equations (3.24) and (3.26)–(3.28) then lead to

√
n cn−1 +

√
n+1 cn+1 + (µn+ ν n2) cn = λ cn (3.30)

This is a Hermitian eigenvalue problem which has only one eigenvector solution with the set cn

all positive, since the solutions form an orthonormal basis (solutions with some cn vanishing may

cause ambiguities in principle however).

3.2.2 Numerical Solutions

Numerical solutions of (3.30) determine the maximum mean-field in terms of var[N ] and n. By

choosing a fixed Z/u and n the calculation of the ground state energy then amounts to a direct

minimisation of (3.25) with respect to the variance var[N ].

We outline the procedure as follows. First, for an appropriate range of the Lagrange multipliers

(µ, ν) the eigenvector solutions of (3.30) are used to calculate corresponding values of n, var[N ]

and the maximum mean-field 〈X〉. A fixed value of ν determines a n(µ) curve (see for example

Fig.3.4) which is inverted using linear interpolation - with an additional optimisation step - to give

µ on a uniform set of n points. That is, each value of n determines a curve in µ and ν from which
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the dependence of 〈X〉 on var[N ] is determined from solutions to (3.30). Since this relationship

is determined on a finite set of points, it is necessary in practice to use cubic interpolation to

determine 〈X〉 for arbitrary var[N ].

Calculations of 〈X〉 as a function of var[N ] are shown in Fig.3.5 for commensurate and in-

commensurate mean site occupations; the corresponding curves which arise from the uncertainty

relation (3.22) are shown to be very similar. Note that for commensurate mean occupations the

mean-field and variance simultaneously approach zero, corresponding to the Mott insulator phase

(a pure number state). In contrast, in the incommensurate case neither the mean-field nor variance

approach zero; even in the strong lattice regime there is a non-zero superfluid component, corre-

sponding to a superposition of two number states. Using these curves, the energy (3.25) can be

minimised with respect to var[N ]. This leads to ground state results that are the same numerically

as those of the self-consistent mean-field approach shown in Fig.2.2.

Although the difference in the two sets of curves shown in Fig.3.5 appears slight, it is entirely

responsible for the notable difference between the exact one site calculation (Fig.2.2) and the

approximate phase-space calculation (Fig.3.3). In the incommensurate case, the fact that the exact

curves drop rapidly as var[N ] → 1/4 is responsible for the sloping behaviour of the mean-field

arches shown in Fig.2.2 as opposed to the level behaviour shown in Fig.3.3.

Figure 3.5: Mean-field versus variance for commensurate (a) and incommensurate (b) mean site

occupations for the one site case. The mean occupation number is indicated on the right axis of

each plot.

Numerical calculations were performed using the MATLAB software package. The state space

was truncated with n ≤ 40 as this provided a good trade-off between computational efficiency

and accuracy (ie. this truncation introduced negligible error to solutions in the region of interest

n ≤ 10). Note, to cover a sufficient n and var[N ] range, (µ, ν) were chosen from the triangular

region with −800 ≤ ν ≤ −0.01 and 0 ≤ µ ≤ −40 ν. The minimisation procedure used the

MATLAB fminbnd (bounded minimisation) function, with a lower bound for the number variance

determined by the fractionality constraint (3.16).
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3.2.3 Calculating the phase transition boundary

To check the validity of the one site formulation near the transition point, it is useful to calculate

the position of the phase boundary between the superfluid and Mott insulator phases. This can

be done approximately by a perturbation method where the ground state energy is determined by

states near the transition point. We consider a normalised state of commensurate occupation n

near the transition point

|s〉 =
√

1 − 2λ |n〉 +
√
λ (eiθ1 |n− 1〉 + eiθ2 |n+ 1〉) (3.31)

where λ is a real and small; λ = 0 corresponds to the Mott insulating phase with a commensurate

occupation n. States with λ ≥ 0 characterise the superfluid phase where the mean-field is non-

zero. The corresponding one site energy (3.25) is given by

E = −λ(1 − 2λ) (
√
n cos θ1 +

√
n+ 1 cos θ2)

2

+u(2 + 2λ+ n2 + 3n) (3.32)

Note that in scaling by the factor 1/zt this form of the energy is dimensionless and we have

defined the ratio u ≡ u/zt for the relative interaction strength. The ground state is determined

by the minimum energy with respect to variations in the free parameters: λ, θ1 and θ2. Clearly

this occurs for θ1 = θ2 = 0 (the result θ1 = θ2 = π gives the same ground state energy and is

equivalent to a change in the sign of the mean-field) and when

∂E

∂λ
= 0 = −(1 − 4λ)(

√
n cos θ1 +

√
n+ 1 cos θ2)

2 + 2u (3.33)

The transition to a Mott insulator phase occurs in the limit λ → 0 when the mean-field goes to

zero. Applying this condition, the critical point for the transition is then given by

uc = 1
2(
√
n+

√
n+ 1)2 (3.34)

For values of the relative interaction strength above the critical value u > uc the ground state

solution saturates the bound at λ = 0 and the system remains in the Mott insulator phase.

Comparison to other work

In order to compare our results with those reported elsewhere we define the parameter

U c ≡ 2(u/zt)c (3.35)

to describe the relative interaction strength at the critical point. The factor of 2 is included because

the on-site interaction term u in the Hamiltonian (2.2) is equivalent to the term U/2 which has

been used elsewhere (see [68] and [66] for example).

Equation (3.34) then becomes U c = (
√
n +

√
n+ 1)2, an expression also found elsewhere

[68, 81]; this yields the following values for the transition: U c = 5.83 for n = 1, U c = 9.90 for
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n = 2, U c = 13.93 for n = 3.



Chapter 3: One site formulation 36



Chapter 4

Two site formulation

The one site formulation, presented in the preceding chapter, necessarily neglects correlations

between neighbouring sites in the mean-field approximation. In this chapter, we improve on this

situation by using a Hamiltonian that explicitly includes hopping between two adjacent sites while

still treating interactions with other neighbouring sites with the mean-field approximation. In

section 4.1 we formulate the two site problem in terms of the Q-function, while in section 4.2

we provide the exact numerical solution to same model Hamiltonian for comparison, as well as

comparing the one site and two site models, before concluding in section 4.3.

4.1 Q-function parameterisation on two sites

We formulate the two site problem as follows: consider two adjacent sites labeled by 1 and 2

corresponding to sites i and i + 1 respectively as shown in Fig. 2.1(b). Similarly to the one site

case (2.2) we can write the Bose-Hubbard Hamiltonian in a two site mean-field approximation as

Htwo site = −t
[
a1a

†
2 + a2a

†
1 + (2d−1)

(
1
2E(a1 + a†1) + 1

2E(a2 + a†2)
)]

+u (a1a1a
†
1a

†
1 + a2a2a

†
2a

†
2) (4.1)

for a homogeneous lattice of dimension d where E = 〈ak〉 (for k 6= 1, 2) is the mean-field

representing the interaction with nearest neighbours, which as with the one site model, by a choice

of phase is taken as real. Here t is the tunneling amplitude. (Note the change of notation from

chapters 2 and 3 where the tunneling amplitude was denoted by J .)

In this case the Q-function parameterisation becomes

a1 → α1 = (v1 + δ1)e
iθ1 (4.2)

a2 → α2 = (v2 + δ2)e
iθ2 (4.3)

We define the intersite correlation operators

b ≡ a1a
†
2; b† ≡ a2a

†
1 (4.4)

37
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The corresponding moments are

〈b〉 = 〈b†〉 = (v1v2 + w)g (4.5)

where we have set

w ≡ 〈δ1δ2〉 (4.6)

g ≡ 〈ei(θ1−θ2)〉 (4.7)

and assumed that the phase and number correlations are independent; although this assumption is

possibly not strictly valid, without it the formalism becomes significantly more complicated.

The two site Hamiltonian (4.1) leads to the expression for the average energy

E = 〈Htwo site〉
= −t

[
2(v1v2 + w)g + (2d− 1)(v2

1c
2
1 + v2

2c
2
2)
]

+3n2
1 − 2v4

1 + 3n2
2 − 2v4

2 (4.8)

which has been normalised by dividing through by u and defining the relative interaction strength

t ≡ t/u.

4.1.1 Constraints

Following the one site case, to find the ground state solution, the energy (4.8) is minimised sub-

ject to constraints arising from any applicable uncertainty relations. In particular, in addition to

the constraints (3.17) and (3.22) that have already been introduced for the one site statistics, we

can derive further constraints that account for the two site statistics by considering commutation

relations between bilinear operators.

Variances and covariance

In deriving the necessary constraints for the two site problem, we first consider the following

operators

N ≡ N1 +N2

2
(4.9)

M ≡ N1 −N2

2
(4.10)

The corresponding variances for each of these operators are given by

var[N ] = 1/4(var[N1] + var[N2] + 2 cov(N1, N2)) (4.11)

var[M ] = 1/4(var[N1] + var[N2] − 2 cov(N1, N2)) (4.12)
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where the number covariance function is given by

cov(N1, N2) ≡ 〈N1N2〉 − 〈N1〉〈N2〉
= 2(2v1v2w + w2) (4.13)

with the one site variances, var[N1] and var[N2], given analogously to (3.15).

Commutation relations

We define the following operators

V ≡ b+ b†

2
(4.14)

W ≡ b− b†

2i
(4.15)

〈V 〉 is the intersite correlation and gives a measure of particle exchange, or tunneling, between

adjacent sites. Eqs. (4.14) and (4.15) have the following commutation relations

[V,M ] = iW (4.16)

[M,W ] = iV (4.17)

[W,V ] = iM (4.18)

Quantum mechanical constraints

Using (4.16)–(4.18) and noting that 〈W 〉 = 0, we can write the corresponding uncertainty relations

(
〈V 2〉 − 〈V 〉2

)
var[M ] ≥ 1

4〈[δV, δM ]+〉2 (4.19)

var[M ]〈W 2〉 ≥ 1
4〈V 〉2 + 1

4〈[δM, δW ]+〉2 (4.20)
(
〈V 2〉 − 〈V 〉2

)
〈W 2〉 ≥ 1

4〈M〉2 + 1
4〈[δV, δW ]+〉2 (4.21)

with

〈V 2〉 =
1 + g4

2
(n1n2 + cov(N1, N2)) −

n1 + n2

4
(4.22)

〈V 〉 = (v1v2 + w)g (4.23)

〈W 2〉 =
1 − g4

2
(n1n2 + cov(N1, N2)) −

n1 + n2

4
(4.24)

Applying homogeneity

These constraints further simplify when homogeneity is assumed. In particular, if we assume the

ground state is symmetric to the 1 ↔ 2 interchange, we can set

v1 = v2 = v (4.25)
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(b) Intersite correlation, d=1
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(c) Mean-field, d=2
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(d) Intersite Correlation, d=2
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(e) Mean-field, d=3
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(f) Intersite Correlation, d=3

Figure 4.1: Ground state phase diagram for two site Bose-Hubbard model using the Q-function

representation in the mean-field approximation. The mean-field and intersite correlations are

shown as a function of the mean (anti-normal ordered) occupation n and the relative interaction

strength zt/u.
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c1 = c2 = c (4.26)

n1 = n2 = n (4.27)

Clearly then

〈M〉 = 0 (4.28)

Moreover, under the above interchange the following moments are equal

〈b†N2〉 = 〈bN1〉 (4.29)

〈bN2〉 = 〈b†N1〉 (4.30)

It follows that the anti-commutators in equations (4.19)–(4.21) are given by

[δV, δM ]+ = 0 (4.31)

[δM, δW ]+ = 0 (4.32)

[δV, δW ]+ = 0 (4.33)

Two site phase-number uncertainty relation

Similarly, the commutation relation (i = 1, 2)

[N,Yi] = 1
2 iXi (4.34)

leads to the constraint

var[N ]〈Y 2
i 〉 ≥

1

16
〈Xi〉2 (4.35)

Two site fractionality constraint

A lower limit on the two site variance var[N ] can also be given by considering two site states with

minimum variance. Such a state has the form

|s〉 =
√
α |[n], [n]〉 +

√
β/2 (|[n], [n] + 1〉 + |[n] + 1, [n]〉)

+
√
γ |[n] + 1, [n] + 1〉 (4.36)

where [n] = n− δn is the integer part of n, δn being the fractional part. We then have

var[Ni] =
β

2

(
1 − β

2

)
(4.37)

cov(N1, N2) = −β2/4 (4.38)

so that we can write the minimum variance

var[N ]min = 1
4β(1 − β) (4.39)
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Using (4.11) and applying homogeneity this leads to the fractionality constraint for the two site

variance

n2 − 1
2n− v4 + 2v2w + w2 ≥ 1

4β(1 − β) (4.40)

We note the following two cases

1. 0 ≤ δn ≤ 0.5 : In this case γ = 0 and β = 2δn.

2. 0.5 ≤ δn ≤ 1 : In this case α = 0 and β = 2(1 − δn).

4.1.2 The ground state solution

To find the ground state solution we assume homogeneity and minimise the two site energy (4.8)

at a given occupation n and relative interaction strength t with respect to the free parameters v,

c, w and g. This is done subject to the constraints (3.17), (3.22), (4.19)–(4.21), (4.35) and (4.40).

The parametrisation requires that

v ≥ 0 (4.41)

Additionally, by noting the variables c and g both take the form 〈eiφ〉, the following bounds apply

0 ≤ c ≤ 1 (4.42)

0 ≤ g ≤ 1 (4.43)

4.1.3 Results

The results of this calculation are shown in Fig.4.1. The solutions reproduce the general features

of the Bose-Hubbard model in the superfluid limit and for incommensurate occupations in the

limit of zero tunneling. However, in the case of a commensurate mean occupation, the Q-function

parametrisation on two sites does not correctly demonstrate the existence of the Mott insulator

phase. Specifically we find that for a three dimensional lattice, the mean-field only vanishes in the

limit of zt/u → 0. Moreover, in the one and two dimensional cases, the predicted Mott insulator

phase only occurs for very small values of zt/u. See sections 3.1, 3.2 and 4.2 for comparison; in

particular, the results from section 4.2 show a well defined Mott phase with a vanishing mean-field.

Improved agreement can be seen between the intersite correlations calculated by the Q-function

representation and the exact numerical results of section 4.2. In both cases the intersite correlations

vanish in the limit of zero tunneling for commensurate occupations.

4.2 Exact numerical minimisation of two site problem

Following the one site formulation discussed in section 3.2.1, we apply a two site generalisation of

the exact numerical calculation using arbitrary two site states. The formulation uses the assump-

tion that the lattice is translationally invariant so that we can apply symmetry for the two sites in

the ground state.
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The Hamiltonian (4.1) leads to an expression for the two site energy

〈E〉two site = −2t
[
〈V 〉 + (2d−1)〈X〉2

]

+2u
(
2 + var[N ] + n2 + 3n

)
(4.44)

where V is the intersite correlation operator given by (4.14) and

X̂ = 1
2(ai + a†i ) (4.45)

is the mean-field operator, which by homogeneity, does not depend on the site index.

Note that in the limit that 〈V 〉→ 〈X〉2 the two site energy tends to twice the one site energy.

This corresponds to the case where the two site state is factorisable |ψ12〉 → |ψ1〉 |ψ2〉 and the one

site behaviour is returned.

In general, for n and m atoms on sites 1 and 2 respectively, the two site quantum state can be

written as

|s〉 =
∑

n,m

cn,m|n,m〉

=
∑

N, p 6=0

CN, p

(∣∣1
2(N+p), 1

2(N−p)
〉

+
∣∣ 1
2(N−p), 1

2 (N+p)
〉)

+
∑

N, p=0

CN, 0|12N, 1
2N〉 (4.46)

where we have introduced the quantum numbers N = n+m and p = |n−m| ≤ N to account for

the lattice symmetry cn,m = cm,n (we should note this symmetry argument can only be applied

when the ground state exhibits homogeneity). The correlation function is

〈V 〉 = 〈aia
†
j〉

=
∑

n, m

cn, mcn+1, m−1

√
m(n+ 1)

=
∑

N, p≥0

CN, pCN, p+2

√
(N−p)(N+p+2)

+
1

2
δp, 1

∑

N

(CN, 1)
2(N+1) (4.47)

and the mean-field is

〈X〉 = 〈ai〉
=

∑

n, m

cn, mcn+1, m

√
n+ 1

=
1√
2

∑

N, p>0

CN, p

[
CN+1, p+1

√
N+p+2 +CN+1, p−1

√
N−p+2

]

+
1√
2
δp, 0

∑

N

CN, 0 CN+1, 1

√
N+2 (4.48)
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Since the second term in (4.44) is always positive, it is evident that, for a given n, d and t/u, the

ground state solution can be found by finding the maximum kinetic (hopping) energy

F = 〈V 〉 + (2d−1)〈Xi〉2 (4.49)

subject to the constraints

1. normalisation, 1 = 〈s|s〉

2. fixed mean occupation (per site), n = 1
2 〈a

†
1a1 + a†2a2〉

3. fixed variance (per site), n2 = 1
2〈a

†
1a1a

†
1a1 + a†2a2a

†
2a2〉

In terms of the symmetric state (4.46) these constraints are respectively given by

φ1 =


2

∑

N,p>0

C2
N,p +

∑

N

C2
N,0


− 1 = 0 (normalisation) (4.50)

φ2 =



∑

N,p>0

C2
N,pN +

1

2

∑

N

C2
N,0N


− n = 0 (fixed mean) (4.51)

φ3 =


1

2

∑

N,p>0

C2
N,p(N

2+p2) +
1

4

∑

N

C2
N,0N

2


− n2 = 0

(fixed variance) (4.52)

Using the method of Lagrange multipliers, F is then maximised when

0 =
∂F

∂CN, p
− 1

2
λ

∂φ1

∂CN, p
+ µ

∂φ2

∂CN, p
+ ν

∂φ3

∂CN, p
(4.53)

Vectorising the problem

We can write this set of simultaneous differential equations in matrix form when the set of co-

efficients CN, p is expressed as an ordered vector. To truncate the problem space in terms of a

maximum two site occupation Nmax (with a corresponding pmax), it is convenient to use an order-

ing for the quantum numbers p and N with increasing p (for each N value) within increasing N .

That is,

C = [C0,0, C1,1, C2,0, C2,2, C3,1, C3,3, C4,0, C4,2, C4,4 . . . CNmax,pmax
] (4.54)

The correlation and mean-field can then be written respectively in terms of the vector quadratic

forms

〈V 〉 = CTAV C (4.55)

〈X〉 = CTAXC (4.56)
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Figure 4.2: A contour plot of the mean occupation nwith respect to the Lagrange multipliers µ and

ν reveals the Mott lobes for commensurate occupations, shown for n = 1, 2, 3, where the solutions

to (4.65) are degenerate with respect to µ, indicating the incompressibility of the phase. The Mott

insulator phase does not exist for incommensurate occupations as shown by the remaining curves

at n = 0.5, 1.5, 2.5 and 3.5 from left to right in the figure. The dashed lines represent possible

(non-degenerate) trajectories for the Mott insulator phase as discussed in section 4.2.1.

where the construction of matrices AV and AX follows directly from equations (4.14) and (4.45).

In particular,

AV =




0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 2
√

2 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 2 2
√

3 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2
√

6 0

0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0
. . .




(4.57)
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and

AX =




0 1 0 0 0 0 0 0 0

0 0 1
√

2 0 0 0 0 0

0 0 0 0
√

2 0 0 0 0

0 0 0 0 1
√

3 0 0 0

0 0 0 0 0 0
√

2
√

3 0

0 0 0 0 0 0 0 1 2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
. . .




(4.58)

The constraints (4.50)–(4.52) can then be written as

φ1 = CTSC − 1 = 0 (4.59)

φ2 = 1
2C

T S DC − n = 0 (4.60)

φ3 = 1
4C

T S D′ C − n2 = 0 (4.61)

where S, D and D′ are diagonal matrices with elements given by

SNN ′pp′ = δNN ′ δpp′ (2 − δp0) (4.62)

DNN ′pp′ = δNN ′ δpp′ N (4.63)

D′
NN ′pp′ = δNN ′ δpp′ (N

2+p2) (4.64)

with the usual Kronecker delta function. Using these definitions, equation (4.53) can then be

written in matrix form as

(S−1/2AS−1/2 + S1/2BS−1/2)u = λu (4.65)

where

u = S1/2C (4.66)

A = AV +AT
V + (2d−1)〈X〉(AX +AT

X) (4.67)

B = µD + 1
2 ν D

′ (4.68)

This can be made linear in u (and therefore C) when the mean-field term 〈X〉 in (4.67) is

treated as a free parameter x; the resulting eigenvalue equation is solved iteratively in x so that

it is self-consistent with the calculated mean-field 〈X〉 = CTAXC. The eigenvector solution

u which maximises F at each iteration is nonnegative; in fact the nonnegative eigenvector, the

maximising solution, belongs to the maximum eigenvalue as we now show.
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Figure 4.3: Mean-field as a function of number variance for commensurate (a) and incommensu-

rate (b) occupations, both with d = 1. In contrast to the one site approximation, in the commen-

surate case the Mott insulator phase with vanishing mean-field can occur for a non-zero number

variance.

Determining the maximising solution

To see why this is the case we need to invoke the Perron-Frobenius theorem for nonnegative

matrices [102]. We first note that the r× r matrix G = S−1/2AS−1/2 + S1/2BS−1/2 in equation

(4.65) is nonnegative everywhere except along the leading diagonal where negative values are

possible when either µ or ν (or both) are negative. It is then always possible to construct a matrix

G′ = G+ γIr that is nonnegative everywhere for a sufficiently large γ, Ir being the r× r identity

matrix.

The eigenvectors of G′ and G are clearly the same with the eigenvalues of G′ given by

λ′i = λi + γ where λi is the ith eigenvalue of G corresponding to the ith eigenvector. The

Perron-Frobenius theorem states that the spectral radius ρ of a nonnegative matrix is an eigenvalue

corresponding to a nonnegative eigenvector1 . That is, ρ(G′) is the eigenvalue with the desired

nonnegative solution. We can relate this to the maximum eigenvalue of G when γ simultaneously

satisfies the following two conditions:

1. γ ≥ |min(G)| so that G′ is nonnegative

2. γ ≥ |min(λi)| so that all λ′i ≥ 0 and max(λi) + γ is necessarily the spectral radius of G′

For any bounded matrix G it is always possible to select such a value of γ; we can therefore

associate the correct solution for CN,p with the maximum eigenvalue of (4.65) which returns a

self-consistent mean-field.

1The spectral radius for an n × n matrix A with eigenvalues λi (1 ≤ i ≤ n) is defined as ρ(A) = max|λi|.



Chapter 4: Two site formulation 48

0
1

2
3

4
5

6

0

0.5

1
0

0.5

1

1.5

2

nzt/u

m
e
a
n
−

fi
e
ld

(a) Mean-field, d=1
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(b) Intersite correlation, d=1
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(c) Mean-field, d=2
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(d) Intersite correlation, d=2
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(e) Mean-field, d=3
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(f) Intersite correlation, d=3

Figure 4.4: Ground state results for the Bose-Hubbard model in the two site mean-field approxi-

mation. The mean-field and intersite correlations are shown as a function of the mean site occupa-

tion n and the relative interaction strength zt/u. A non-zero mean-field represents the superfluid

regime. The mean-field is zero below a critical value (zt/u)c for commensurate occupations, in-

dicating the onset of the Mott insulator phase. The intersite correlations are non-zero everywhere

except for commensurate occupations in the limit of no tunneling where zt/u = 0. The results are

qualitatively similar for 1, 2, and 3 dimensional lattices. However, a feature of the d = 1 phase

diagram is the weak suppression of the mean-field at half-integer occupations, which is seen more

seen more clearly in Fig.4.6. This may be an artifact of the two site approximation and requires

further study.
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(b) Mean-field, d = 2
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(c) Mean-field, d = 3
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(d) Correlation, d = 1
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(e) Correlation, d = 2
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(f) Correlation, d = 3
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(h) Variance, d = 2
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Figure 4.5: d = 1, 2, 3 results: mean-field, intersite correlation and variance for commensurate

occupations of n = 1, 2, 3. The dashed vertical lines indicate the corresponding positions (from

left to right) of the phase boundary between the superfluid and Mott insulator phases as calculated

using the perturbation theory outlined in section 4.2.3
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4.2.1 The ground state solution

The general procedure for finding the ground state solution follows the method used in the one

site formulation (see section 3.2). In particular, at a given mean occupation n, (4.65) determines

a locus of solutions which can be expressed as a function of number variance. Therefore, at a

given t/u and n, the two site energy can be reparameterised in terms of number variance; finding

the ground state phase diagram then only requires the minimisation of the energy with respect

to variance. In practice to perform this procedure efficiently, it is useful to first calculate a set

of solution states covering a suitable variance range, which act as initial conditions in the final

minimisation step.

In the results presented here, this was achieved by fixing n and initially choosing a large value

for the variance corresponding to the superfluid regime (specifically var[N ] = n for n ≤ 1 and

var[N ] = n/2 for n ≥ 1). The corresponding state was found by solving equation (4.65) using

the initial values x0 = 5, µ0 = 2 and ν0 = −1, which was found to be sufficient for the range of

parameters considered here. A lower variance was then selected and its corresponding state was

calculated, by using the previous solution to determine the initial conditions. By iteration it was

then possible to find solutions efficiently over a broad variance range.

However, although this general procedure works well for most of the parameter space, it fails to

converge (to a sufficient accuracy) in two limiting cases: for Mott-insulator states where the mean-

field is zero and there is degeneracy; and in the limit of the lowest possible variance, var[N ] =

δn(1 − δn), corresponding to the localised region where the Lagrange multipliers diverge at the

solution. It is therefore necessary to consider these cases separately.

Calculating Mott states

For commensurate occupations and below a critical value for the variance, the system is in the

Mott insulator state corresponding to a vanishing mean-field. In this case, the above approach is

numerically unstable for two reasons. Firstly, the algorithm fails to correctly converge to a zero

mean-field since the search direction cannot be determined. Secondly, the system states become

highly degenerate in µ in the Mott insulator state (corresponding to a incompressible phase) which

further prevents convergence (with respect to µ).

These problems are circumvented respectively by the following adjustments to the general

procedure. Firstly, explicitly setting the free-parameter x to zero in the equation (4.65), ensures

that any solution is self-consistent in the mean-field; this can be seen to be case by considering

how the mean-field term appears in the eigenvalue equation (see (4.55) and (4.67) in particular).

Secondly, setting µ = −r ν for a suitably chosen quantity r, restricts the parameter space to

the degenerate region, so that n remains fixed while var[N ] → 0 in the limit ν → ∞. These

trajectories are illustrated by the dashed curves in Fig.4.2. By enforcing this relationship between

µ and ν, we can therefore probe the Mott insulator states accurately.
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Solutions in the limit of zero tunneling

Considering (4.44) in the limit of zero tunneling where t/u → 0, the ground state is clearly de-

termined by states of the lowest possible variance. In this case, we found the method of Lagrange

multipliers leads to poor convergence as the Lagrange multipliers diverge at the solution. We

therefore consider a more direct method whereby we minimise the two site energy in terms of a

reduced parameter space, which correspond to the lowest allowed variance (var[N ] = δn(1−δn))

for a given mean occupation n.

Recall the lowest variance state is given by equation (4.36); in this basis, the hopping energy

(4.49) is given by

F = β/2([n] + 1)(1 + (2d− 1)(
√
α+

√
γ)2) (4.69)

The constraints (normalisation, fixed n and fixed variance) can be given as a set of linear equations

α+ β + γ = 1

[n]α+ ([n]+ 1
2)β + ([n]+1)γ = n

[n]2α+ ([n]2+[n]+ 1
2)β + ([n]2+2[n]+1)γ = var[N ] + n2 (4.70)

which when written as Ax = b, admits solutions of the form x = x0 + κ nullspace[A] where we

have taken

x0 =

α

β

γ

=

[n] + 1 − n

0

n− [n]

(4.71)

as a solution of the homogeneous system Ax = 0. There is an additional requirement on κ that

the coefficients are bounded with 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1. For a given occupation

n and dimension d, we can then maximise the hopping energy (4.69) with respect to the remaining

free parameter κ. The ground state phase diagram is then calculated easily for the case where

zt/u = 0; the resulting mean-field and intersite correlation are shown in figures 4.6(a) and 4.6(b)

respectively.

Numerical Solutions

Numerical calculations were performed using a state space truncated with N ≤ 20, corresponding

to 121 coefficients CN, p. The MATLAB function fsolve.mwas used to find the self-consistent

solution, for a given n and var[N ], by supplying the function with suitable initial values x0, µ0

and ν0 for the mean-field and Lagrange multipliers.

4.2.2 Results

Using the calculated states with maximum tunneling energy, the two site energy (4.44) was then

minimised with respect to var[N ] for a given n and Z/u. The results of this calculation are shown

in Figs. 4.4(a)-(f) for arbitrary mean occupations. To investigate the superfluid to Mott-insulator

transition more clearly, these results have also been reproduced for commensurate occupations in

Figures 4.5(a)–(i).
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Figure 4.6: The mean-field (a) and intersite correlation (b) using a reduced basis of three states

in the limit of zero tunneling (zt/u = 0) for d = 1, 3. The methodology is outlined in section

4.2.1. A feature of the d = 1 case is the weak suppression of the mean-field around half-integer

occupations. The d = 2 results, which been omitted for clarity, are very close to the d = 3 case.

This ground state phase diagram is qualitatively similar to the results for the one site model

(Fig.2.2); the most important feature of both models is the vanishing of the mean-field for com-

mensurate occupations above the critical transition point uc, corresponding to the Mott insulator

phase. Note that the Mott insulator to superfluid transition is clearly reproduced for commensu-

rate mean occupations, an improvement over the corresponding two site Q-function approxima-

tion (section 4.1) which can be attributed to the exact treatment of the intersite correlations in the

present treatment. We now consider a simple perturbative expansion from which the position of

the phase transition boundary can be easily calculated for the two site formulation.

4.2.3 Calculating the phase transition boundary

Following the one-site case, we consider the following states near the transition with commensu-

rate occupation n:

|s〉 =
√

1 − α− 2β |n, n〉 +

√
α

2
(|n− 1, n + 1〉 + |n+ 1, n − 1〉)

+

√
β

2

(
|n, n− 1〉 + |n− 1, n〉 + |n, n+ 1〉 + |n+ 1, n〉

)
(4.72)

This state is a superposition of the minimum set of number states that give a non-zero mean-field

and intersite correlation. The coefficients have been chosen to satisfy normalisation and a fixed

commensurate occupation n. The corresponding variance on one site is given by var[N ] = α+β.

Note that |s〉 represents a perturbation in α and β from the Mott insulator phase. With this state

the intersite correlation (4.47) is given by

〈V 〉 =
√

2(1 − α− 2β)α
√
n(n+ 1) +

β

2
(2n + 1) (4.73)
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d n = 1 n = 2 n = 3

1 4.75 8.02 11.26
2 5.56 9.43 13.27
3 5.71 9.69 13.63
10 5.82 9.88 13.90
106 5.83 9.90 13.93

Table 4.1: Critical value U c calculated for two site mean-field approximation using a perturbation

expansion around the Mott Insulator state

and the mean-field (4.45) is

〈X〉 =

√
β

2

(√
1 − α− 2β +

√
α

2

)
(
√
n+

√
n+ 1) (4.74)

In the ground state, the phase transition occurs for the minimum two site energy (4.44); clearly this

occurs with respect to the state (4.72) when ∂E12/∂α = 0 and ∂E12/∂β = 0 are both satisfied.

Moreover the phase transition occurs for β = 0 where the mean-field is zero. That is,

0 =
∂E

∂α

∣∣∣∣
β=0

=
(u
t

)
−
√
n(1 + n)(1 − 2α)√

2α(1 − α)
(4.75)

0 =
∂E

∂β

∣∣∣∣
β=0

=
(u
t

)
− 1

2(1 + 2n)

−1
2(2d − 1)(

√
n+

√
n+ 1)2(

√
1 − α+

√
α/2)2

+

√
2αn(n+ 1)√

1 − α
(4.76)

Numerically solving these equations leads to the results shown in table 4.1. Note that in the non-

physical limit of d→∞ the variance at the transition is var[N ] = α = 0. Considering equation

(4.76) the transition then occurs at Uc = 2(u/2dt)c = (
√
n +

√
n+ 1)2, the same value as in

the one-site model. This is not unexpected as the intersite correlation 〈V 〉 becomes negligible

compared with the mean-field contribution in the Hamiltonian (4.1).

There are some notable differences between the one and two site mean-field approximations,

which we discuss here. In particular, the inclusion of intersite correlations in the two site Hamilto-

nian, results in a non-zero number variance even in the Mott insulator phase where the mean-field

vanishes; this can be seen in Figs. 4.3 and 4.5. This contrasts with the one site results (see Fig.

3.5) where the mean-field and number variance are identically zero. Moreover, for the two site

model the calculated transition points U c, as shown in table 4.1, occur at lower values than for the

one site model. In particular, for n = 1 and d = 1, the two site model yields U c = 4.75, whereas

the one site model gives U c = 5.83.

These differences are most pronounced for the d = 1 case where the mean-field approximation
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is no longer valid, as has also been noted elsewhere [66]. At higher dimensions (d = 2, 3), where

the mean-field approximation is more accurate, the number variance is close to zero in the Mott

phase and the calculated transition points for the one and two site models are close. It is expected

that in the (non-physical) limit of infinite lattice dimensionality, the one and two site results will

converge.

4.2.4 Comparison to other work

The results for the two site Hamiltonian given in the previous section clearly demonstrate a partial

shift to lower values U c (ie. a weaker lattice) when compared to the one site results. This shift can

be attributed to the inclusion of intersite correlations in the model. To compare with our results

with those reported elsewhere it is useful to refer to table 4.2.

For the d = 1 case, numerically exact schemes, with Density Matrix Renormalisation Group

(DMRG) and Quantum Monte-Carlo (QMC) simulations, predict a much lower value for the phase

transition point U c in the Bose-Hubbard model. Using the DMRG technique with the infinite-

system algorithm, the transition point for n = 1 and d = 1 has been reported as Uc = 1.68 [94]

and U c = 1.81 [95]. Using the more accurate finite-system algorithm, the same transition has

been reported as U c = 1.92 [96] and U c = 1.68 [97]. Similarly, for QMC simulations without

lattice disorder, the transition has been reported as U c = 2.33 [88]. Also, perturbative expansions

using defect states have yielded similar results to the that of the QMC technique in one dimension.

In particular, the above transition has been reported as U c = 2.33 [82] and U c = 2.04 [83].

4.3 Conclusions

We have presented two model Hamiltonians for the Bose-Hubbard model using two different

mean-field approximations. The simpler one site model treats all intersite correlations using a

mean-field approximation that decouples the problem into the sum of one site Hamiltonians. The

second model is a two site extension where intersite correlations between two adjacent sites are

explicitly included while treating interactions with neighbouring sites using the mean-field ap-

proximation. Each model has been tackled using two methodologies: a treatment in terms of a

Q-function representation; and a numerically exact method using either the one or two site states.

In the case of the one site Hamiltonian, we find the Q-function representation agrees well with

the numerically exact treatment, but can be solved at a fraction of the computational cost. For the

two site Hamiltonian, the Q-function gives a good qualitative description but does not give a clear

Mott insulator to superfluid transition due to limitations of the parameterisation on two sites. It

is encouraging, however, that the Q-function approach gives the intersite correlations accurately

when compared with the two site exact solution. In contrast to the Q-function approach, the two

site exact solution yields a well-defined phase transition for commensurate mean occupations.

In this case, the critical relative interaction strength U c is smaller (corresponding to a weaker

lattice strength) for all commensurate values of n than for the one site model; this shift is most

pronounced for a one dimensional lattice.

What emerges from the Q-function approach is that the quantum mechanical constraints play
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Method Position of phase transition

boundary for d = 1, n = 1
(unless otherwise stated)

Authors Reference

Mean-field approxima-

tion using second order

perturbation expansion

U c = 2n+1+
√

(2n + 1)2 − 1,

n = 1: U c = 5.83
Oosten et al. [68]

Mean-field theory using

variational approach

U c = 2.0 Amico and Penna [80]

Mean-field theory using

variational approach

n = 1: U c = 5.83 Sheshadri et al. [81]

Perturbative expansion

using defect (parti-

cle/hole) states

d = 1, n = 1: U c = 2.33; d = 2,

n = 1: U c = 3.68
Freericks and Monien [82]

Perturbative expansion

using defect (parti-

cle/hole) states

U c = 2.04 (see table in refer-

ence for further calculated values

at different d and n)

Freericks and Monien [83]

Quantum Monte-Carlo U c = 2.33 (without disorder) Batrouni and Scalettar [88]

DMRG with infinite-

system algorithm

U c = 1.68 Pai et al. [94]

DMRG with infinite-

system algorithm

U c = 1.81 (without nearest-

neighbour interactions)

Kuhner and Monien [95]

DMRG with finite-

system algorithm

U c = 1.68 (without nearest-

neighbour interactions)

Kuhner et al. [97]

DMRG with finite-

system algorithm

U c = 1.92 (for zero disorder) Rapsch et al. [96]

Table 4.2: The calculated boundary of the Superfluid to Mott-insulator phase boundary as deter-

mined from the Bose-Hubbard model as solved using various methods in the literature. Note,

where appropriate, we have scaled the above values in terms of the variables defined in this work

due to differing notation for t and U in some references.
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a primary role in determining the ground state results for the Bose-Hubbard model. This is most

clearly illustrated by the one site formulation where the results are determined by the uncertainty

relation in two forms: a restriction on the minimum variance permitted by the quantum state; and

a relation between the number and phase fluctuations. In particular, the onset of the Mott insulator

phase is characterised by suppression of number fluctuations at the lower bound of the variance

constraint.

Exact numerical results with QMC or DMRG simulations on finite one dimensional lattices

by other authors indicate the actual position of the superfluid to Mott insulator transition occurs

for an even lower value of U c than is calculated by our two site model. It is expected that if we

were to extend our formalism to explicitly include the interactions between three or more sites, the

predicted value U c would shift to lower values in line with these other treatments. However, this

remains a computationally difficult problem due to the dramatic increase in the size of the Hilbert

space of the problem when more sites are included.
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An analogue model of an expanding universe in
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Chapter 5

Analogue models of gravity

Though analogy is often misleading, it is the least misleading thing we have.

Samuel Butler

5.1 Introduction

The unification of general relativity and quantum field theory into a theory of quantum gravity is

a significant goal in theoretical physics, yet it remains elusive. Considerable progress has been

made at the level of a semi-classical approximation, whereby quantum matter fields propagate in

a fixed classical gravitational field; the applicability of the approximation is expected to be good

at energy scales less than the Planck frequency where the background can be safely treated as a

continuum. The resulting theory, known as quantum field theory in curved spacetime (QFTCS),

predicts particle creation in strong gravitational fields. In particular, the prediction of thermal

emission from a black hole by Hawking is arguably the most celebrated – and surprising – result

to emerge from QFTCS. The experimental confirmation of the Hawking effect, however, remains

a formidable task due to the enormous scales involved and the relatively small size of the effect.

The development of analogue gravity models has therefore been motivated by the possibility of ob-

serving particle production in systems that could be realised in the laboratory, and so are amenable

to experimental inquiry.

The connection between the propagation of sound waves in a fluid and quantum field theory in

curved space was first made by Unruh in 1981 [103]. In this seminal publication, the analogue of

Hawking radiation was shown to occur when a sonic horizon is formed in an inviscid irrotational

fluid. In addition to numerous studies of these so-called sonic or acoustic black holes (see [27] and

references therein), other analogue models of gravity have since appeared in the literature, includ-

ing analogues of particle creation in expanding universes [104–111], and analogues for classical

effects such as superradiance from rotating black holes [112, 113]. The majority of such studies

focus on fluid systems in either static or time-dependent geometries, which have an analogy with

curved spacetime by the identification of an effective metric tensor. The propagation of sound

waves in the fluid then has a close analogy with the propagation of a massless scalar field in a

classical background.

The field of analogue gravity has lead to a large body of literature, including notably the

59
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appearance of two books [114, 115], several review articles [27, 116], and recently, a popular

account for Scientific American [117]. Reviews specific to the case of acoustic black holes have

also appeared [118,119]. We do not attempt a comprehensive review of the field here, and instead,

refer the interested reader to the above references.

5.2 Emergent spacetimes in Bose-Einstein condensates

A particularly promising candidate system for analogue gravity models are Bose-Einstein conden-

sates, a point which we will elaborate on in section 5.4. To motivate the discussion of analogue

models, we show how the mean-field description of Bose-Einstein condensates leads an effective

metric, which can describe a variety of emergent spacetimes.

5.2.1 Establishing the analogy

To see how analogue models of gravity emerge from the microscopic theory of Bose-Einstein

condensates, we proceed following [27, 120].

The analogy between curved space and Bose-Einstein condensates can be revealed starting

from the mean-field description of condensates, via the Gross-Pitaevskii equation (GPE):

i~
∂Ψ(x, t)

∂t
=

(
− ~

2

2m
∇2 + Vext

)
Ψ(x, t) + U |Ψ(x, t)|2Ψ(x, t) (5.1)

The complex order parameter Ψ(x, t) can be written in terms of a real density and phase

(known also as the Madelung representation) as

Ψ(x, t) =
√
n(x, t)eiθ(x,t) (5.2)

Substituting this into (5.1) and equating real and imaginary parts leads to the pair of equations

∂n

∂t
+

~

m
∇ · (n∇θ) = 0 (5.3)

and

~
∂θ

∂t
− ~

2

2m

∇√
n√
n

+ Vext + Un+
~

2

2m
(∇θ)2 = 0 (5.4)

Identifying the background velocity for the irrotational field as

v =
~

m
∇θ (5.5)

we can rewrite (5.3) and (5.4) respectively as

∂n

∂t
+ ∇ · (nv) = 0 (5.6)
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and

∂v

∂t
+ v · ∇v = − 1

m

(
− ~

2

2m

∇√
n√
n

+ Vext + Un

)
(5.7)

These equations are familiar from fluid dynamics; (5.6) is the continuity equation, whereas (5.7)

is a modified form of Euler’s equation.

Following [27, 120] we linearise about the fields n and θ by setting

n→ n0 + n1

θ → θ0 + θ1 (5.8)

Equations (5.3) and (5.4) then lead to

∂n1

∂t
=

~

m
(n1∇θ0 + n0∇θ1) (5.9)

~
∂θ1
∂t

− ~
2

2m
D̃2n1 + Un1 +

~
2

m
∇θ0∇θ1 = 0 (5.10)

where we have only retained terms up to first order in n1 and θ1. The differential operator D̃2 has

been introduced, which to first order, takes the form

D̃2n1 = −1

2
n
−3/2
0 (∇2√n0)n1 +

1

2
√
n0

∇2

(
n1√
n0

)
(5.11)

The operator D̃2 gives the first order correction from the inclusion of the quantum pressure term.

Rearranging (5.10) gives1

n1 = −~

[
U − ~

2

2m
D̃2

]−1(
∂θ1
∂t

+ v · ∇θ1
)

(5.12)

Substituting this into (5.9), to eliminate n1 entirely, yields the second-order differential equation

for the perturbed phase

−∂t

([
U − ~

2

2m
D̃2

]−1(
∂θ1
∂t

+ v · ∇θ1
))

+∇
(
n0

n
∇θ1 − v

[
U − ~

2

2m
D̃2

]−1(
∂θ1
∂t

+ v · ∇θ1
))

= 0 (5.13)

This can be written in the compact form

∂µ(fµν∂νθ1) = 0 (5.14)

1There is an assumption here, that the linear operator T = U − ~
2

2m
D̃2 is invertible, which is true only if the null

space of T is the zero vector space. This is certainly true for the homogeneous BEC as we will show in section 6.4.
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where we have introduced the symmetric matrix

fµν(x, t) =




f00
... f0j

. . . . . .

f i0 ... f ij


 (5.15)

with components

f00 = −
[
U − ~

2

2m
D̃2

]−1

f0j = −
[
U − ~

2

2m
D̃2

]−1

vj

f i0 = −vi

[
U − ~

2

2m
D̃2

]−1

f ij =
n0

m
δij − vi

[
U − ~

2

2m
D̃2

]−1

vj (5.16)

Note we have used the standard nomenclature where the Greek indices run from 0 to d and the

Roman indices from 1 to d for d spatial dimensions.

The equation for the phase fluctuations is formally analogous to the dynamics of a massless

and minimally coupled scalar field in a curved space-time when (5.14) can be rewritten as [121]

1√−g∂µ

(√−ggµν∂νθ1
)

= 0 (5.17)

where gµν is the effective metric tensor with determinant g. It is worth emphasising that although

the external potential Vext does not explicitly appear here, the field equation still depends on Vext

implicitly, as the the background geometry is determined by the stationary solutions of the GPE

(5.1). We now show how the mapping to (5.17) is exact when the acoustic approximation is

employed.

The acoustic metric

In the acoustic (or hydrodynamic) approximation the quantum pressure term is neglected. In this

case D̃2 is set to zero and the resulting matrix f takes the much simpler form

fµν(x, t) =
n0

c2




−1
... −vj

. . . . . .

−vi
... c2δij − vivj


 (5.18)

We have used the fact that the speed of sound in a condensate is given by c2 = Un0/m.

This is known as either the hydrodynamic or acoustic approximation — in this case all col-

lective excitations behave as sound waves with the usual linear dispersion form ω = ck — the
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quanta of excitations are thus phonons. An interesting consequence of Bogoliubov theory in Bose-

Einstein condensates is that in general the excitation spectrum displays nonlinear dispersion (see

section 6.4), being linear (ie. phononic) for low |k| and becoming quadratic (ie. free-particle

like) at large |k|. When nonlinear dispersion is incorporated into analogue models of gravity it is

equivalent to breaking Lorentz invariance [27]. We will return to this point in section 6.3.2.

The differential equation for the phase fluctuations given by (5.14) coincides with the field

equation (5.17) when

fµν =
√−ggµν (5.19)

Since det(gµν) = g−1 we can then write

det (fµν) = −(−g) d−1

2 (5.20)

From (5.18) we also find directly that

det (fµν) = −nd+1
o c−2 (5.21)

Combining (5.20) and (5.21), we can therefore write

√−g = n(d+1)/(d−1)
o c−2/(d−1) (5.22)

and additionally using (5.17) we also have for the effective contravariant (ie. inverse) metric tensor

gµν(x, t) =
(n0

c

) −2

d−1 1

c2




−1
... −vj

. . . . . .

−vi
... c2δij − vivj


 (5.23)

Inverting this gives the effective covariant metric tensor

gµν(x, t) =
(n0

c

) 2

d−1




−(c2 − v2)
... −vj

. . . . . .

−vi
... δij


 (5.24)

The corresponding line element for this geometry is

ds2 =
(n0

c

)2/(d−1) [
−(c2 − v2)dt2 − 2v · dxdt+ dx2

]
(5.25)

This is in the Painlevé-Gullstrand form up to a conformal factor2. Note that when there is no

background flow (v = 0) and the spacetime geometry is time-independent, (5.24) reduces to the

metric for a flat Minkowski spacetime (up to a conformal factor).

2For a discussion on the relationship between Painlevé-Gullstrand coordinates and the better known Schwarzschild

coordinate system see Visser [118].
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Effective field theory

Equation 5.17 is the massless Klein-Gordon equation. The metric (5.24) has the signature

(−+++) and so the effective spacetime represents a Lorentzian geometry; that is, the massless

Klein-Gordon equation is invariant to Lorentz transformations. It is interesting to note that a rela-

tivistic wave equation arises from the equations of motion for a non-relativistic fluid.

The hydrodynamic description (ie. long wavelength) description of a BEC leads to an effec-

tive field theory (EFT) for curved spacetime in the same sense that classical gravity is expected to

emerge as the low-energy EFT of a full theory of quantum gravity [122]. (The analogue gravity

EFT arising from a BEC does not impose a strict cut-off and so includes so-called trans-Planckian

physics — we return to this point in section 6.3.2). However, it should be noted that the emergent

spacetime is itself embedded in an low-energy EFT for the Bose system; here the cut-off is deter-

mined by the validity of replacing the two-body interaction potential by an effective potential that

is characterised by the s-wave scattering length. In practice, the cut-off is enforced by the the use

of a projector in mode space (see chapter 7).

We further emphasise that the above analogy only holds for massless spin-0 particles; in gen-

eral, it is possible to modify the formalism to include massive modes at the expense of dealing

with a more complex configuration, e.g. a two-component BEC [123]. Moreover, it is possible to

develop an analogue model of gravity for spin-1 fields, eg. in dielectric media [124] (see section

5.4 for more on dielectric models of analogue gravity).

Dynamics and Kinematics

The analogue gravity framework we have thus far established is able to reproduce many of the

kinematic aspects of general relativity; in particular, quantum field theory in curved spacetime

leads to the notion of particle production, as described by the Hawking effect for example. The

degree to which we can extend the analogy to dynamical aspects of general relativity is not clear.

Here, by “dynamical”, we mean a description of the evolution of the spacetime geometry itself,

as is governed by Einstein’s equations in general relativity. In the analogue context, the effective

metric arises from the physical theory of the underlying fluid, and there is not necessarily any

dependence on Einstein’s equations or analogue thereof. This point of view has been emphasised

by Visser [118,125]. However, there have been some efforts to further probe the analogy, of which

we mention three:

Lagrangian models: Barcelo et al. [126] have shown that the construction of the La-

grangian model (and corresponding action) for an acoustic geometry contains a term that is

proportional to the Einstein-Hilbert action, which arises from one-loop effects and the idea

of Sakharov’s “induced gravity”.

Ermakov system: Lidsey showed that a correspondence exists between a four-dimensional

Friedmann-Robertson-Walker spacetime and a two-dimensional Bose-Einstein condensate

in a harmonic trap, because both systems can be mapped to a one-dimensional Ermakov

system [127].
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Two-dimensional dilaton gravity: Cadoni has shown that it is possible to map a spherically

symmetric acoustic black hole to a two-dimensional dilaton gravity model, and therefore

define a mass, temperature and entropy for the system [128].

A related issue is the back-reaction of the quantum field on the geometry, which has been

neglected in the linearised theory above. In fluid analogues, the phononic excitations and effective

spacetime are both described by the microscopic theory of the constituent matter; for example,

for analogue models in Bose-Einstein condensates, the quantum theory of the underlying bosonic

atoms should be sufficient — in principle — to describe the kinematics and dynamics of the

system, including the effects of back-reaction.

The ability to derive an effective metric tensor does not automatically assure that the spacetime

is a stable quantity. After all, this picture neglects the dynamical evolution of the system. The

stability of the geometry should be checked by finding the normal modes of the effective field

theory, by including the effects of back-reaction, Lorentz violation and any external forces that

may be present.

The role of dimensionality

It is interesting to comment on the role of dimensionality at this point. Clearly the metric tensor

(5.24) is ill-defined for d = 1 and so we surmise there is no analogue model of gravity (or effective

spacetime) for this case, even though (5.14) adequately describes the dynamics of the system.

However, this is not the end of the story: it is still possible to model a (d + 1) dimensional

spacetime using an effectively lower dimensional description of the system by using dimensional

reduction; that is, by utilising the symmetries of the spatial geometry to integrate out one or more

degrees of freedom. This is a valid approach so long as the reduced description does not neglect

any of the essential physics of the original system, such as topological excitations (eg. rotons or

vortices).

In particular, in part III of this thesis, we investigate an acoustic black hole model in a ring

geometry by using a (1 + 1) dimensional formulation; in this case, we implicitly make use of

symmetry in the transverse dimensions to justify the reduced description.

Horizons and geometric acoustics

The effective metric (5.24) derived above, can be used to describe a variety of emergent spacetime

geometries. In particular, consider the case when the geometry is stationary (by making n0, c and

v independent of time). If there exists a closed surface3 where the flow becomes supersonic, being

subsonic on one side and supersonic on the other, the system is said to have a sonic horizon; sound

waves originating in the supersonic region cannot propagate against the flow, and the sound waves

are thus “trapped” in the supersonic region.

A sonic horizon is an example of a trapped surface [118]. In particular, an outer trapped sur-

face is a closed surface where the fluid velocity is everywhere ingoing and the normal component

is supersonic at the surface, so that a sound wave necessarily propagates inwards. An outer trapped

3In general this surface has spatial dimension d − 1
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Figure 5.1: Sonic horizons in a flowing fluid: the black and white hole horizons occur where

the normal component of the fluid velocity is equal to the local speed of sound; between the two

surfaces, a region called the ergoregion, the flow is supersonic. The behaviour of sound waves

at different points in the fluid flow is shown by “sound cones” (the wavefronts of sound waves

emitted from a point, defining the locus of null geodesics); the sound cones are tipped in the

direction of flow in the supersonic region so that all null geodesics necessarily propagate in the

direction of the flow. See the text for more details.

surface behaves like a black hole horizon, with the interior/exterior of the hole given by the super-

sonic/subsonic region. In contrast, for an inner trapped surface the fluid velocity is everywhere

outgoing with the normal component supersonic; sound waves must propagate outwards. There-

fore, an inner trapped surface behaves like a white hole horizon. Note that a white hole horizon

is the time-reversed case of a black hole horizon. The presence of both outer and inner trapped

surfaces (ie. sonic horizons) for a fluid flow is illustrated in Figure 5.1. A variety of analogue

spacetimes with sonic horizons has been analysed by Barcelo et al. [129].

This all follows naturally from the idea of geometric acoustics, which is discussed in detail

elsewhere [118, 130]. The propagation of sound waves is governed by the null geodesics of the

metric tensor, given by

ds2 = gµνdx
µ dxν = 0 (5.26)

which yields the ray equation

∥∥∥∥
dx

dt
− v

∥∥∥∥ = c (5.27)

The norm has been taken in Euclidean space. That is, a sound wave (ie. phonon) propagates with

speed c relative to a flow velocity v. The geodesic description is restricted to short wavelength

modes (ie. it describes the propagation of classical test particles in a spacetime), and so, it is

not strictly valid as a physical description of our system where the short wavelength modes fall

outside the acoustic regime. However, we retain the geodesic description, as it usefully connects

the concepts of sonic horizons to event horizons that appear in general relativity.
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In fact, a more rigorous consideration of spacetime geometries leads to a refinement of these

ideas. We note in particular the following cases for trapped surfaces (see, for example [118, 130,

131]):

Event horizon: the surface that separates regions where null geodesics can or cannot escape

to infinity. This definition depends on the entire future history of the universe and so is a

global property of the spacetime. Because the acoustic analogue reproduces the kinematic

aspects of gravity, the notion of an (absolute) event horizon here is not strictly applicable,

unless our model also includes a description of the dynamical evolution of the system. For

this reason, it is more appropriate to consider apparent horizons.

Apparent horizon: the outermost closed surface on which all outgoing future-directed null

geodesics have zero expansion. Inside the surface (ie. within the trapped region) outgoing

null geodesics are converging; that is, the wavefronts of sound waves are decreasing in area.

The concept of an apparent horizon is useful for acoustic geometries as it can be defined

instantaneously; it is a local property of the spacetime. In a stationary geometry, however,

the event horizon and apparent horizons are identical.

Ergoregion: the region of space where the timelike Killing vector ∂t is spacelike. Thus the

boundary of the ergoregion — the ergosphere — occurs where g00 = 0. In a cosmological

context, an ergoregion is any region where an observer cannot remain stationary relative to

the background; this concept is particularly relevant to rotating black holes (eg. Kerr black

holes) where the tangential velocity of the black hole may exceed the speed of light. For

an acoustic analogue, any region where the flow is supersonic is an ergoregion. In general,

the ergoregion and apparent horizon do not coincide; however, for a (1 + 1) dimensional

spacetime the ergoregion and apparent horizon are always the same.

In what follows, we consider quasi-stationary geometries; that is, we cannot formally define

an event horizon for the system, but apparent horizons may certainly exist.

5.3 Models of Analogue Gravity

In this thesis we consider two classes of models that can be described by the effective metric

(5.24): These are analogue models for cosmological and black hole geometries.

5.3.1 Cosmological Models

Expanding universe models

The prediction of particle production in an expanding universe originates from Parker’s work in

the 1960’s [132–134]. It is routinely believed that the large scale structure in the present universe

(eg. cosmic background radiation) may have therefore occurred during a period of rapid inflation

of the early universe. Accordingly, an important class of cosmological models are Friedmann-
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Robertson-Walker (FRW) spacetimes4 ; these are geometries that are described by the metric

ds2 = −c2dt2 + a2
FRW(t)dS2 (5.28)

where aFRW is the scale factor of the universe (we later introduce a related scale factor b(t)) and

dS2 is the line element for three-dimensional space that is both homogeneous and isotropic. In

general there are three possibilities for the spatial geometry: (i) flat; (ii) closed (spherical) and (iii)

open (hyperbolic). In what follows we consider only the case where the spatial geometry is flat;

there are two analogue models of an expanding universe in Bose-Einstein condensates that can

reproduce a flat FRW metric:

Physical expansion: A number of investigations have considered the formulation of an

analogue FRW cosmology based on the free expansion of a BEC [104–109, 135]. In this

configuration, the BEC is initially confined to a harmonic trap, having a Thomas-Fermi

profile in the hydrodynamic approximation. By a choice of suitable co-moving coordinates

(by a scaling transformation as in [136]), it is then possible to express the metric in the form

(5.28), at least approximately.

Effective expansion: An alternative – and conceptually simpler – scenario involves using

a time-dependent speed of sound, while the background remains stationary (ie. v = 0)

[109–111,135]. In BECs this would be achieved in practice by tuning the atomic interactions

via a Feshbach resonance [137, 138].

We elaborate on these models in chapter 6, and in particular, focus on the case of an effective

expansion, which we investigate in detail.

Bose nova

An example of a process that can be interpreted within the framework of cosmology and QFTCS,

but which bears no resemblance to any specific cosmological system, is the phenomenon of con-

densate collapse now commonly referred to as a Bose nova. The collapse of a Bose-Einstein

condensate was initially observed by Donley and co-workers by switching the interactions of a

condensate of 85Rb atoms from a repulsive to attractive via a Feshbach resonance [139]. For a

scattering length a, this corresponds to a signature change from a Lorentzian signature (for a > 0)

to an Euclidean signature (for a < 0). The characteristic feature of this effect is the emission

of atoms from the condensate by bursts of atoms and jet formation. Calzetta and Hu have subse-

quently analyzed this effect in the context of cosmology, as squeezing and parametric amplification

of vacuum fluctuations [140, 141]. It is interesting to note that this is an example of an unstable

system.

5.3.2 Acoustic Black Hole Models

The initial proposal by Unruh [103], and most subsequent efforts in analogue gravity, have focused

on the case of acoustic black hole models. We have already introduced the idea of sonic horizons

4Also called Friedmann-Lemaı̂tre-Robertson-Walker spacetimes.
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for fluid models in section 5.2.1; the effective metric (5.24) can exhibit sonic horizons if the flow

becomes supersonic (v > c) in some region.

We discuss a number of possible configurations for the formation of sonic horizons in fluid

systems, with particular emphasis on Bose-Einstein condensates.

Nozzles

A simple realisation of a sonic horizon can be made using a nozzle; this is implemented by a con-

striction of fluid flowing through some region so that the fluid accelerates. In particular, the most

suitable example is the de Laval nozzle which usually appears in the context of rocket propulsion.

A de Laval nozzle is formed by a converging-diverging constriction. Simple considerations from

fluid mechanics show that as the fluid approaches the waist of the nozzle, the fluid accelerates.

Under suitable conditions the fluid velocity may exceed the local speed of sound as it exits the

waist of the nozzle; the position of the sonic horizon, which is formed, adjusts itself to occur at

the waist of the nozzle.

In a normal fluid a de Laval nozzle could be formed by a physical constriction in a tube through

which the fluid flows. In a Bose-Einstein condensate it could be formed by an external confining

potential for example.

The possible use of a de Laval nozzle to form sonic horizons has been previously investigated

[114, 135, 142–145]. The stability of a system with sonic horizons may require a pair of such

nozzles so that the region of supersonic flow is bounded on each side by a region of subsonic

flow [135,142]. We will introduce a similar geometry in part III of this thesis (section 9.2), where

we develop a specific model of an acoustic black hole in Bose-Einstein condensates.

The boundary conditions of a nozzle geometry have a major influence on the resulting physics,

particularly in quantum systems such as Bose-Einstein condensates. In our model, we consider a

one-dimensional system with periodic boundary conditions, so that the geometry is toroidal (ie. a

ring system). This leads a non-trivial topology that exhibits a fixed winding number, similar to the

situation found in vortex geometries. Other nozzle models however, may use open or absorbing

boundary conditions, so that the flow can violate topological constraints [146, 147]. We return to

this point in chapter 9.

It is also worth commenting on the so-called critical black hole configuration. In this scenario,

the flow becomes sonic at a single point only, so that the system lacks an ergoregion. A recent

investigation by Barcelo et al. has shown that, in principle, a system that generates a critical black

hole in an analogue model — in either a finite time or in the asymptotic future with “sufficient

rapidity” — should also exhibit the Hawking effect with a Planckian spectrum [27].

Vortex geometries

Another class of acoustic black holes are described by vortex geometries [112, 113, 118, 148]. In

general, such a geometry consists of a fluid with both radial and tangential velocity components

with a sink at the origin. An outer trapping surface is formed if the ingoing radial velocity exceeds

the local speed of sound inside some surface. This is the analogue of an event horizon as the fluid



Chapter 5: Analogue models of gravity 70

is removed at the sink. Conversely, the surface where the tangential velocity exceeds the speed of

sound defines an ergoregion.

Vortex geometries with rotation are analogous to the case of rotating black holes (ie. Kerr

black holes). As such, in addition to Hawking radiation, the classical phenomenon of superra-

diance should be observable in such systems. Theoretical investigations of fluid systems have

confirmed that superradiant scattering of sound waves occurs in vortex geometries [112, 148]. A

more recent analysis has focused on the case of Bose condensed systems [113]. In that work

the hydrodynamic approximation was used and so the background flow was treated classically.

However, a full quantum treatment of superradiant sound scattering in acoustic black holes in

Bose-Einstein condensates has not yet been undertaken.

The case where there is only a radial velocity component still exhibits a sonic horizon, and

therefore also the possibility of Hawking radiation. This situation been investigated for the case

of Bose-Einstein condensates in a one dimensional configuration [149].

Propagating phase boundaries

Recently it has been suggested that a sonic horizon could also be formed by a shifting phase

boundary [150]. In this scenario, there are two stable phases for the fluid, with the system initially

prepared in the first of these phases. Under suitable circumstances, a bubble of the second phase

can nucleate and grow forming a propagating phase boundary at the interface of the two phases,

which acts as a sonic horizon for the second phase.

5.3.3 Classical and Quantum systems

Broadly speaking, physical systems for analogue gravity can be divided into two types:

• Classical systems: both the background geometry and field fluctuations are taken to be

classical quantities. This is the case for normal fluids or models based on electrodynamics.

• Quantum systems: both the background geometry and field fluctuations are quantised.

This is the case for quantum fluids such as Bose-Einstein condensates or superfluid Helium,

or for slow light analogues in dielectric media.

In fact, it should in principle be possible to observe Hawking radiation in classical systems. In

particular, the classical counterpart of Hawking radiation in a de Laval nozzle has been shown to

also occur [143, 145]. Additionally, the classical properties of an acoustic black hole formed by a

de Laval nozzle has been explored by Cardoso [144].

In the majority of studies of interacting quantum systems, a common approximation that is

employed is to use a semi-classical model where the background geometry is classical whereas

the field fluctuations are quantised. This is the same situation considered in the normal view of

quantum field theory in curved space. In part III of this thesis, we undertake a quantum treatment

of an acoustic black hole configuration in a Bose-Einstein condensate, which leads to interesting

modifications to the semi-classical result.
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5.4 Systems for Analogue Gravity

There are a number of specific systems that are candidates for analogue models of gravity. We

provide a brief overview of the most prominent of these systems, noting that a more comprehensive

review has been undertaken elsewhere [27].

5.4.1 Superfluid Helium

The possibility of using superfluid Helium for analogue models of gravity has received consider-

able attention (see [115] and references within). Superfluid Helium occurs as both fermionic 3He

and bosonic 4He isotopes, for which analogue models are available.

In particular, the formation of black and white hole pair by a soliton propagating faster than the

local speed of sound in superfluid 3He-A has been considered by Jacobson and Volovik [151,152].

Moreover, it is also possible to form an effective (2+1) dimensional spacetime at the interface

between two superfluids on which surface waves (known as ripplons) can propagate [153]. The

formation of sonic horizons at the interface of the 3He-A and 3He-B superfluid phases has been

investigated by Volovik [154, 155].

However, the analysis of these systems is complicated by the fact that superfluid Helium is a

strongly interacting system, and a mean-field description is difficult to formulate. This is com-

pounded by the fact that Landau instabilities can occur for flow velocities smaller than the speed

of sound, due to the existence of roton minima. Thus it may be very challenging to experimentally

construct stable sonic horizons in these systems.

5.4.2 Shallow water waves

A particularly simple system, which leads to an effective spacetime description, is that of surface

waves (gravity waves) in a shallow basin filled with a liquid, as proposed by Schützhold and

Unruh [156]. They showed that a viscosity free, incompressible and irrotational fluid in a shallow

basin leads to an effective metric for long wavelength waves (specifically, the wavelength is much

longer than the basin depth). When the analysis includes an arbitrary flow velocity and basin

depth, the effective spacetime is curved and supports black and white hole horizons. Although this

system is not suitable for exploring quantum effects such as Hawking radiation, it can be used to

investigate classical aspects of black holes, such as instabilities due to the mixing of positive and

negative norm modes at a horizon.

5.4.3 Slow light in dielectrics

A quite different system, which leads to an effective spacetime description, is that of “slow light”

in dielectric media [124, 157–159]. The basic idea is to make use of Electromagnetically-Induced

Transparency, which can dramatically reduce the group velocity of light pulses in a suitable ma-

terial. When in addition the medium is moving, this leads an effective metric that can emulate

curved spacetime geometries.

However, Unruh and Schutzhold [160] have shown that although slow light analogues can
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reproduce classical aspects of black hole geometries, they are not suitable for exploring quan-

tum effects, such as Hawking radiation. This is because the model does not lead to the correct

commutation relations for the field fluctuations, and so the vacuum state is not well defined.

5.4.4 Bose-Einstein condensates

Arguably, the most promising system for implementing analogue models of gravity is the Bose-

Einstein condensate. This possibility was first considered by Garay et al. [149, 161] for acoustic

black hole geometries, and further explored by Barcelo, Visser and Liberati [120, 135, 142].

In particular, BECs have a number desirable features with regards to analogue models:

Hydrodynamics: In the long wavelength limit, the equations of motion for a BEC take the

form of classical hydrodynamics for a superfluid. In fact, at zero temperature the macro-

scopic state can be simply described by two degrees of freedom (for each point in space), the

density and superfluid velocity (or equivalently, the phase). The resulting description is for

a irrotational, inviscid and barotropic fluid. Consequently, the formulation of an emergent

spacetime is greatly simplified (see the derivation in section 5.2.1).

Quantum theory: Bose-Einstein condensation in atomic vapours is a weakly interacting

system, for which the microscopic quantum theory is well understood. In particular, the ele-

mentary excitations of the system are given by considering the linearised fluctuations about

the ground state, which is given by a mean-field order parameter. The resulting Bogoliubov

theory is accurate near zero temperature. The significance of this result, is that it is valid

beyond the hydrodynamic approximation, and so describes the trans-Planckian physics for

the effective field theory. Moreover, the weakly interacting regime is amenable to powerful

simulation methods for quantum many-body systems, such as the classical field method;

this is introduced in chapter 7.

Temperature: Typically, Hawking radiation is a very small effect, and may not be ob-

servable in analogues based on classical fluids because of the presence of (larger) thermal

fluctuations that obscure the effect. However, the Bose-Einstein condensation in atomic

vapours necessarily requires temperatures close to absolute zero, so that the Hawking effect

may — in principle — be observable. For example, Barcelo et al. [135] have estimated that

it should be possible to achieve a Hawking temperature of TH ≈ 70 n K in such a system,

compared to a critical temperature for Bose-Einstein condensation of T ≈ 90 n K.

Experimental advances: Finally, we note that recent experimental advances for the control

of ultra-cold atoms mean that BECs can now be prepared and manipulated in a great many

configurations. Notably, the use of magnetic and optical traps can lead to a variety of ge-

ometries, whereas with the use of Feshbach resonances it is possible to vary the interaction

strength between atoms, even by many orders of magnitude. It is also worth noting that the

formation of sonic horizons may be facilitated by the relatively low speed of sound that oc-

curs in BECs. With continued advances the goal of implementing a specific analogue model

in the laboratory may be achievable in the near future.
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5.5 The Hawking Effect

We introduce the Hawking effect for cosmological black holes, which motivates the development

of the analogue models of black holes. We will present a specific model in part III of this thesis.

The most surprising and important prediction to emerge from semi-classical gravity is the

discovery that black holes in fact radiate with a temperature that depends on its mass, the original

calculation being carried out by Hawking [162, 163]. The result is particularly significant as it

occurs in a regime where both quantum theory and general relativity are prerequisites. (A number

of comprehensive reviews on the topic are available elsewhere; see for example [121, 164–167].)

Although we do not reproduce the entire calculation here, we outline the salient points with

regards to Hawking radiation and its derivation.

• Hawking radiation is the thermal emission of particles from a black hole at a temperature

TH given by

kBTH =
~

2πc
κ (5.29)

where κ is the surface gravity at the event horizon for the black hole.

• Hawking’s original derivation considered a massless scalar field near a spherically sym-

metric black hole formed by gravitational collapse, the geometry being described by the

Schwarzschild metric. In this case the surface gravity is inversely proportional to the mass

of the black hole.

• This calculation involved taking a positive frequency mode at late times, and propagating

it backwards in time to before the black hole was formed, the field initially being in a

vacuum state for zero scalar particles. The particle production was then calculated by finding

the Bogoliubov coefficients between the early (in modes) and late (out modes) times. (A

discussion of the Bogoliubov mode mixing formalism is given in section 6.3.)

• There are several equivalent views of Hawking radiation as a physical process. One is pair

production due to mixing between positive and negative energy modes at the horizon [163].

Another is quantum mechanical tunneling of particles through the horizon [168].

• The Hawking effect is consistent with thermodynamic considerations; the thermal emission

is balanced by a corresponding decrease in the mass of the black hole, so that the process

is often termed black hole evaporation. This is formalised by a generalised version of the

second law of thermodynamics where a black hole is assigned an entropy – called Bekenstein

entropy – this being proportional to its surface area [169].

Minimal conditions for Hawking effect

Visser has considered the minimum requirements to establish the Hawking effect in black holes

[125, 170]. In particular, he showed the Hawking effect does not depend on a description in terms

of either the Einstein equations or Bekenstein entropy – Hawking radiation is a purely kinematic
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effect that should occur in any Lorentzian geometry with an apparent horizon with non-zero sur-

face gravity and sufficiently slow evolution of the geometry. Note in particular, that an event

horizon (or absolute horizon) is not required to complete the formulation, removing the usual ne-

cessity to connect modes in the infinite future with modes in the infinite past. Thus, this result is

particularly relevant for analogue models of gravity, where the concepts of the Einstein equations,

Bekenstein entropy and absolute horizons need not necessarily apply.

5.6 Modifications to the analogy

5.6.1 Extensions to theory of Hawking Radiation

Although the prediction of Hawking radiation is considered to be one of the main accomplishments

of quantum field theory in curved spacetime, it relies on a number of assumptions that may turn

out to be false, which in turn could invalidate or at least modify the main result. We survey these

issues here, although a comprehensive review is provided in [171], and in the context of analogue

models in [117, 119].

Trans-Planckian problem

A major limitation of Hawking’s original derivation arises due to the inclusion of modes that prop-

agate with a frequency much higher than the Planck frequency. In particular, the out-going modes

are exponentially blue-shifted into the trans-Planckian regime for backwards time propagation to-

wards the event horizon. Conventional quantum theory cannot be expected to properly account for

these high frequency modes, and thus the standard quantisation of the field may not be appropriate.

It seems necessary that a robust theory of Hawking radiation should work for all scales.

Indeed the initial suggestion by Unruh of a fluid analogue for Hawking radiation was motivated

by this issue [103], and further analysed by Jacobson [172]. Subsequently, there have been a

number of attempts to address the trans-Planckian problem by using a modified dispersion relation

for the high frequency modes. In particular, Unruh applied this reasoning to the fluid model [173].

By implementing a modified dispersion relation in addition to a cutoff for the modes, he showed

there was no deviation from the usual thermal result for the Hawking effect. Other variations

on this approach have also reached similar conclusions [174–179]. More recently, Unruh and

Schutzhold have explored modifications to high frequency dispersion where the thermal result is

not reproduced [180]. It should be noted that the use of a modified dispersion relation amounts to

the formulation of a theory that is not Lorentz invariant.

In general, it is possible to categorise the dispersion of modes in different systems as follows

(employing the scheme from [181]):

1. Type I, no dispersion: This behaviour is exhibited by photons in conventional relativity, or

by phonons propagating in a fluid in the long wavelength limit.

2. Type II, subluminal dispersion: This behaviour is exhibited by phonons propagating in su-

perfluid Helium for example. We note several studies of Hawking radiation with subliminal

dispersion [173–175, 182].
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3. Type III, Superluminal dispersion: This behaviour is exhibited by phonons propagating in

a weakly interacting Bose-Einstein condensate for example. We note the following studies

of Hawking radiation with superluminal dispersion [177, 180].

Back-reaction

Quantum field theory in curved spacetime is usually formulated as a semiclassical theory of grav-

ity: the background spacetime geometry is a classical field upon which quantised fields propagate.

Moreover, the standard approach uses a linear field theory that neglects fluctuations in the back-

ground – that is, the back-reaction of quantum fields on the metric tensor is ignored. This point

of view is perhaps best summed up by Hawking himself, from his original paper on black hole

radiation [163]:

“This negative energy flux will cause the area of the event horizon to decrease and so

the black hole will not, in fact, be in a stationary state. However, as long as the mass

of the black hole is large compared to the Planck mass 10−5g, the rate of evolution

of the black hole will be very slow compared to the characteristic time for light to

cross the Schwarzchild radius. Thus it is a reasonable approximation to describe the

black hole by a sequence of stationary solutions and to calculate the rate of particle

emission in each solution. Eventually, when the mass of the black hole is reduced to

10−5g, the quasi-stationary approximation will break down.”

Evidently Hawking radiation is considered to be a kinematic effect; that is, when back-reaction is

neglected it does not depend on the overall dynamical evolution of the system. However, it is still

unclear what effect this approximation has on Hawking radiation. As a first step, it is possible to

incorporate back-reaction into the semi-classical framework by using a dynamical field equation.

This is equivalent to replacing the energy-momentum tensor Tµν with its quantum expectation

value in Einstein’s equations, and solving this self-consistently [183, 184]. Parikh and Wilzcek

[168] employed this approach by allowing the black hole mass to vary so that energy conservation

was enforced, resulting in higher order corrections to the usual thermal spectrum. A full treatment

of this problem would require a theory of quantum gravity, whereby spacetime itself would be

quantised and therefore on an equal footing with matter fields.

The problem of back-reaction is particularly relevant in analogue models of gravity. This is

the case for the following reasons:

• The emergent spacetime geometry and quantum fluctuations are both described by the same

underlying theory for the constituent matter – for example, for Bose-Einstein condensates

this would be the quantum theory of the atomic gas. Therefore in principle there should

be no conceptual difficulty with incorporating the back-reaction of the quantum field on the

effective metric.

• An experiment for analogue gravity in the laboratory constitutes a closed system, and so the

effects of any quantum fluctuations on the background should be necessarily included.
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• Although the usual semi-classical treatment considers a quantum field coupled to a classical

background, it may not be possible to carry over this line of reasoning to quantum fluids,

such as Bose-Einstein condensates. In this case, there may be additional conservation re-

quirements and some transitions may not be permitted. In particular, in a toroidal geometry,

there is a topological constraint of quantised circulation.

Despite these points, back-reaction is often neglected in analogue models of gravity; indeed

this point of view is valid as long as the background geometry is amenable to a mean field descrip-

tion. This amounts to a linear field theory where nonlinear fluctuation terms are neglected, so that

there are no interactions between the background and quasiparticle modes of the system.

There have been various attempts to incorporate back-reaction effects into analogue models

of gravity. Balbinot et al. [119, 185] have studied the effects of back-reaction in a sonic horizon

formed by a nozzle. They found a correction to the emission temperature, which decreases as time

evolves. This is in direct contrast to the situation in (cosmological) Schwarzschild black holes

where the temperature increases as the black hole evaporates. Schutzhold et al. [186] found the

semi-classical approach failed to account properly for effects of back-reaction in Bose-Einstein

condensates. Another approach is stochastic gravity whereby a stochastic term is included in

Einstein’s equations, which accounts for quantum fluctuations of the energy-momentum tensor

[187].

A closely related issue to back-reaction is that of the stability of the horizon itself. This has

been investigated by Liberati et al. [188] who showed that for the case of a classical fluid there is

a regularity condition required so that the surface gravity does not diverge at the horizon.

Interacting fields

Finally, it is worth mentioning that in general, quantum field theory in curved spacetime involves

free fields – that is, fields that do not interact. The extension of the theory to self-interacting fields

can be realised by the inclusion of a nonlinear term in the Lagrangian density, which leads to the

so-called φ4 theory [121].

5.6.2 Relevance to analogue models in BECs

In light of these issues, analogue models of gravity may provide an interesting avenue for ob-

serving the analogue of Hawking effect and therefore for investigating the validity of the original

arguments in its derivation. This is further reinforced by the fact that cosmological black holes are

inaccessible to observation, so that the experimental confirmation of the Hawking effect has not

yet been achieved. Moreover, while much of the above discussion has focused on the Hawking

effect we can also expect modifications to inflationary cosmology models — and their analogues

— due to some or all of the above issues.

It is worth re-iterating the assumptions in making the case for analogue gravity models in

Bose-Einstein condensates. The theory resulting from linearised quantum fluctuations leads to a

free-field theory — that is, the modes of the field are non-interacting. Moreover, the backreaction

of the quantum fluctuations on the condensate mode is neglected; this is equivalent to assuming
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the metric tensor is a classical quantity. Finally, the analogy is rigorous only within the acoustic

approximation — ie. for low momenta modes.

The classical field method that will be introduced in chapter 7 does not require these assump-

tions; here all modes of the system are included in the field evolution, and these modes are able to

interact via the nonlinear interaction term. Thus the classical field method allows us to explore the

validity of the assumptions of the free-field theory. Moreover, in a Bose-Einstein condensate, short

wavelength modes (of the order of less than the healing length) exhibit high-frequency dispersion

and therefore play the role of super-Planckian modes in QFTCS — this generally leads to a theory

that violates Lorentz invariance. The classical field method naturally incorporates these effects

since non-phononic modes are also represented by the field.

5.7 Motivation and outline

In the remainder of this thesis, we explore two different analogue models of gravity in Bose-

Einstein condensates. In particular: in part II we investigate an analogue model of a flat

Friedmann-Robertson-Walker universe undergoing an expansion; in part III we investigate a con-

figuration for an acoustic black hole formed by two de Laval nozzles in a ring, which exhibits both

black and white hole horizons. The motivation for these studies is to extend the typical analyses,

which are made in the acoustic approximation, by utilising the full (effective) quantum field theory

for BECs. To this end we make use of the linearised theory of excitations — known as Bogoliubov

theory — to characterise the quasiparticle excitations of the system, and apply the classical field

method for field dynamics. We expect therefore to model what would actually be observed for

a BEC in the experimental configurations required to implement either of the proposed analogue

models of gravity. It should be emphasised that while our results have an interpretation in terms

of analogue models, the formalism does not depend on such an interpretation.
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Chapter 6

Expanding universe models in Bose-Einstein

condensates

Anyone informed that the universe is expanding and contracting in pulsations of

eighty billion years has a right to ask, “What’s in it for me?”

Peter De Vries

6.1 Introduction

In the theory of quantum fields in classical backgrounds, some form of particle creation is expected

when the metric is time-dependent; a commonly cited example of this is cosmological particle

production in an expanding universe [121, 189]. It is possible to simulate the analogy of this

process in a Bose-Einstein condensate (BEC) when either: the external trapping frequency is

time-dependent [104–108]; or the scattering length (within the low momentum approximation of

the two-body interaction potential) is time-dependent [109–111]. These treatments are often based

on the acoustic (ie. hydrodynamic) approximation where it is assumed that all excitations of the

quantum field propagate as phonons with the same speed of sound. Moreover back-reaction of the

excitations on the background field and higher order interactions between excitations are neglected

in the linearised theory.

In general, the correct description of the dynamics of a BEC is a formidable problem due to the

vastness of the Hilbert space even for a system of just a few interacting atoms. In the lowest order

approximation, when all the bosonic atoms occupy a single quantum state, the ground state is well

described by the Gross-Pitaevskii equation (GPE) – in this case, the field operator is replaced by

a mean-field order parameter. Classical field methods (CFM) extend this formalism to include

quantum fluctuations whereby the dynamics of a multimode quantum field is approximated by

the trajectories of classical variables in phase space. One such method is the truncated Wigner

approximation (TWA), which is based on the Wigner representation of the density matrix. The

TWA has been investigated by a number of authors [34–37] and more recently has been applied to

a study of condensate collisions [41, 42].

In this part of the thesis we investigate the dynamics of a homogeneous BEC in two spa-

tial dimensions with a time dependent scattering length, and in particular, map this problem to a

79
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Friedmann-Robertson-Walker (FRW) universe undergoing an expansion. We compare the calcu-

lated particle production from the acoustic approximation with the results of numerical simula-

tions based on the TWA. There are several benefits to this approach. Firstly, the TWA includes

the effects of vacuum quantum fluctuations by sampling the Wigner distribution in the initial state.

Secondly, the field dynamics naturally include the nonlinear dispersion of the Bose system – in a

cosmological context, this represents Lorentz symmetry breaking of the effective spacetime which

leads to necessary modifications of the standard hydrodynamic theory. Finally, the numerical

simulations include the effects of back-reaction which is difficult to otherwise include without

resorting to higher order methods such as the self-consistent Hartree-Fock-Bogoliubov approach.

The outline of this part of the thesis is as follows: In this chapter we show how the acoustic

metric leads to an effective FRW universe and give results for particle production for three different

expansion scenarios; Chapter 7 introduces the TWA which we use to simulate the dynamics of the

Bose-Einstein condensate consistently with these scenarios; Chapter 8 compares the results of the

TWA with the model predictions, concludes and discusses avenues for further work.

6.2 Emergent FRW Universe

The analogy between the hydrodynamic description of a Bose-Einstein condensate and curved

spacetime was established in chapter 5. Although the metric tensor (5.24) includes a conformal

factor, this does not affect the dynamics of the field (in this case the mode functions need to be

renormalised for consistency with the Bogoliubov theory). Time dependence can enter in any of

the parameters n0, c and v. We focus on the case where the background flow is zero (v = 0), and

the system is homogeneous with a density n0 that is constant through space. With this choice of

parameters the effective metric (5.24) becomes

gµν =
(n0

c

) 2

d−1




−c2 ... 0

. . . . . .

0
... δij


 (6.1)

This represents a Friedmann-Robertson-Walker spacetime [109, 110], and corresponds to the

notion of an effective expansion that we introduced in section 5.3.1. Such geometries are confor-

mally flat and at any particular time the spatial geometry is simply that of Euclidean flat space.

The time dependence is contained entirely in the speed of sound given by

c(t)2 =
U(t)n

m
=

4π~
2

m2
n a(t), (6.2)

with atoms of mass m, scattering length a and number density n; we introduce the dimensionless

scaling function b(t) so that the interaction strength (or equivalently the scattering length) has the

time dependence

U(t) ≡ U0 b(t), (6.3)
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where U0 = U(t0) at an initial time t0; therefore we take b(t0) = 1. From (6.2) the time depen-

dence of the speed of sound is thus

c(t) = c0 b(t)
1/2 (6.4)

In practice a variation in the interaction strength is possible by using a Feshbach resonance

[137, 138]. If b(t) is decreasing with time we have an expanding universe model, whereas if

b(t) increases with time we have a contracting universe model.

The line element for the FRW universe we have described is given by

ds2eff = gµνdx
µdxν = Ω2

0

[
−c20b(t)α dt2 + b(t)α−1 dx2

]
, (6.5)

We have introduced the conformal factor

Ω2
0(n0, c0, d) =

(
n0

c0

) 2

d−1

(6.6)

which is independent of space and time, as well as the dimension-dependent exponent

α =
d− 2

d− 1
. (6.7)

In what respect do we have an expanding universe, given that the condensate is contained in

a fixed volume V ? A decrease in the scattering length corresponds to a decrease in the speed

of sound propagating in the condensate; therefore any acoustic excitations will propagate with

decreasing speed in the condensate as time passes. To an observer at rest in the effective spacetime,

a decrease of the speed of sound is thus indistinguishable to an isotropic expansion of the spatial

dimensions.

It is not straightforward to define either an apparent or event horizon in the model consid-

ered here as the system is homogeneous, and the background velocity is therefore the same (ie.

zero) everywhere. This is further complicated by the fact that the causal structure of the effec-

tive spacetime should be determined by the maximum signal velocity (ie. group velocity), which

is effectively infinite here owing the superluminal modes in a BEC. Analogue models that cer-

tainly do have horizons exist for systems where the background velocity depends on the radial

position — for example, when the trapping potential is switched off and the condensate is free to

expand [104–108]. In the present situation, where the scale factor aFRW(t) or equivalently b(t)

contains all the geometric structure for the spacetime, it is necessary to perform the usual analysis

in terms of cosmological horizons to determine the overall causal structure of the spacetime [190].

6.2.1 Two dimensional model

To facilitate the numerical calculations required by the classical field simulations that we present

in chapter 8, we continue with d = 2 spatial dimensions. The reduced mode space for d = 2

greatly decreases the computation time, but still leads to a satisfactory description of the system.

In particular, we expect the extension of the numerical simulations to d = 3 to lead to qualitatively



Chapter 6: Expanding universe models in Bose-Einstein condensates 82

similar results1. Moreover, while it has been shown [107, 108] that for d = 2, a condensate

undergoing free expansion leads to a scalar field equation that does not depend on the scaling

factor in co-moving coordinates2 — so that in this case there can be no particle production —

as we will see, the present model for a 2 + 1 dimensional FRW universe leads to a scalar field

equation that does allow particle production.

For 2 + 1 spacetime dimensions, α(2) = 0 and the line-element simplifies to

ds2eff =

(
n0

c0

)2 [
−c20 dt2 + b(t)−1 dx2

]
. (6.8)

A further time transformation is not required as laboratory time and proper time (for a comoving

observer) are of the same form. The scaling factor aFRW(t) for a FRW universe that is familiar

from cosmology (see equation 5.28) is related to b(t) by

aFRW(t) = b(t)−1/2 (6.9)

for d = 2. (We always explicitly specify the FRW subscript for the cosmological scale factor so

that this quantity is not confused with the s-wave scattering length.)

The reduction of the model to two dimensions requires a modification to the nonlinearity that

appears in the GPE (5.1), and therefore also the resulting field equation (5.14). To see this, we

assume the transverse z dimension is tightly confined with the trap lengths satisfying Lz � Lx,

Ly, and further that the Lz ∼ ξ for the transverse dimension where ξ is the healing length of the

condensate. The scattering is still determined by the three-dimensional scattering length so that

this is called a quasi-two dimensional geometry. However, the system remains in the ground state

of the transverse dimension because the energy required for transverse excitations is much larger

than for longitudinal excitations. The wavefunction is then separable as Ψ(x, t) = ψ(x, y, t)ζ(z).

Assuming the condensate is homogeneous the GPE can be rewritten as

i~
∂ψ(x, y, t)

∂t
=

(
− ~

2

2m
∇2 + Vext

)
ψ(x, y, t) + U2D|ψ(x, y, t)|2ψ(x, y, t) (6.10)

where the effective nonlinearity is U2D = U/Lz . This does not affect the form of the resulting

calculations for particle production, but should be noted when we determine suitable parameters

for our simulations in section 7.4.

1This is because the projected Gross-Pitaevskii equation, which the classical field method is based on, takes the same

form for d = 2, 3. While the extension of the classical field method to d = 3 spatial dimensions is straightforward,

in order to have investigated the range of different expansion scenarios we have considered in this thesis, would have

required a unfeasibly large computational time on one or a few workstations.
2The models considered in [107, 108] correspond to the case of a physical expansion as introduced in section 5.3.1.

The scaling factor there has a different physical significance from the scaling factor for the effective expansion that is

considered here.
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6.3 Field quantisation and particle production

An arbitrary field θ̂(t) can be quantised using the plane wave mode expansion:

θ̂(x, t) =
1√
V

∑

k

[
b̂ke

ik·xχk(t) + b̂†
k
e−ik·xχ∗

k(t)
]

(6.11)

where b̂k and b̂†k are the annihilation and creation operators respectively for the quasiparticle

modes.

In flat (Minkowski) spacetime we can associate the positive and negative frequency solutions

of (5.17) with annihilation and creation operators respectively. In curved spacetime, this associ-

ation is not always possible as the mode expansion need no longer be unique; in the language of

general relativity, the spacetime does not have a (globally) time-like Killing vector field so that

the positive frequency solution is not necessarily an eigenfunction of ∂t. A consequence of this is

that the choice of a Fock vacuum according to b̂|0〉 = 0 depends in general on the choice of co-

ordinates; that is, the measurement of particle content in curved spacetime is said to be “observer

dependent”.

The calculation of particle production follows the standard methodology [121,189]. We define

in and out regions respectively as asymptotically flat regions with t→ −∞ and t→ +∞. (While

the existence of asymptotically flat regions cannot be assumed for cosmological models, it should

certainly be possible to emulate this scenario in BEC experiments.) We can write a mode expan-

sion (6.11) for the in and out regions in terms of mode functions χin
k or χout

k respectively. Because

both sets of modes are a basis set for the field, they are related by the Bogoliubov transformation

χout
k = αkχ

in
k + β−kχ

in∗
−k (6.12)

Note the spacetime has translational invariance as a symmetry so the field (6.11) can be expanded

in the same set of plane wave modes eik·x for both the in and out regions, and therefore β−k = βk

also. By convention the mode functions are normalised according to the Klein-Gordon inner

product. In momentum space this takes the form

−iW [χk, χ
∗
k] = 1 (6.13)

where W [f1, f2] = f1(∂tf2) − (∂tf1)f2 is the Wronskian of two functions f1 and f2.

For each asymptotic region the vacuum state is defined by the requirement

bink |0in〉 = 0

bout
k |0out〉 = 0 (6.14)

The in and out mode operators are also related by

bout
k = αkb

in
k + β−kb

†in
−k

(6.15)
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The number of particles created is then given by the quantity

Nout
k = 〈0in|b†out

k bout
k |0in〉

= |βk|2 (6.16)

The standard procedure to calculate βk involves solving the field equation (5.14) for the in and out

regions by using (6.12) with the appropriate boundary conditions. In the acoustic approximation,

the form of the field equation (5.17) means that this procedure is mathematically equivalent3 to

solving the one dimensional Schrodinger equation for above-barrier scattering from a potential

[191].

It should be stressed that here particle production refers to the production of (massless)

quasiparticle excitations in the Bogoliubov basis, that approximately diagonalises the many body

Hamiltonian for the Bose gas (see section 1.2.1). As (6.15) couples modes of momenta k and −k

this process is often referred to as pair production and is associated with the formation of squeezed

states [166, 192].

Choosing a Fock vacuum

When the in and out regions of the expansion are not asymptotically flat, a vacuum state cannot

be unambiguously defined for either case. However, clearly the procedure to calculate particle

production outlined above requires a choice of Fock vacuum, and moreover, that choice should

lead to physically reasonable results. We therefore mention two choices that have been developed

to deal with this situation (although there are many more):

The instantaneous Minkowski vacuum: this is the state that corresponds to the instan-

taneous diagonalisation of the Hamiltonian at a given time (and is therefore also the state

that minimises the energy). This choice may be problematic in some cases as it can lead

to situations of infinite particle production even though the expansion may be smooth and

finite [189].

The adiabatic vacuum: this approximation can be used for modes that experience a suf-

ficiently slow expansion and is formulated in terms of the WKB approximation [121, 193].

However, the adiabaticity requirement means it has limited applicability.

In section 6.5.3 we calculate particle production for the case of a de Sitter expansion for which

there are no static regions — in this case we therefore utilise the instantaneous Minkowski vacuum

to calculate the particle production at a given time during the expansion. The problem of infinite

particle production does not occur in this case, and as we shall see from the classical field sim-

ulation results in chapter 8, particle production is further suppressed for short wavelength modes

because of superluminal dispersion.

3The correspondence follows by exchanging the time and spatial coordinates in the field equation.
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Commutation relations

In addition to identifying an effective metric — and therefore also a field equation — required to

make the analogy with QFTCS, another prerequisite is that in quantising the field the operators

should be annihilation and creation operators in the usual sense. That is, they should obey the

correct commutation relations so that we can define quanta of the field in the Fock basis. This has

indeed shown to be the case for the linear excitations of a BEC [160], and also follows from the

discussion in section 6.4.1

Relevant scales

There are two relevant scales for particle production in a FRW-type analogue model:

1. Hubble parameter - Following [109] for the metric (6.8) the Hubble parameter is given in

terms of the scaling function b(t) in laboratory time by

H ≡ ȧFRW

aFRW

= −1

2

ḃ

b
(6.17)

This quantity, which is time-dependent in general, corresponds to the rate of expansion

for the universe. If H & ωk for a mode frequency labeled by k the dynamics are Hubble-

dominated and we expect the mode to be to be non-oscillating, whereasH � ωk implies the

mode is oscillating and in the adiabatic regime. In the latter case this is what cosmologists

refer to as a parametrically excited mode. Clearly a large value for H is favourable to

particle production — however H can not be made arbitrarily large as the approximations

that lead to the effective field theory would then be violated [109, 194].

2. Healing length - In a Bose-Einstein condensate, the healing length is a measure of the small-

est distance that supports density fluctuations (ie. when a vortex core forms, the healing

length is comparable to the radius of the vortex core), and is given by

ξ =
~√
2mc

= ξ0 b(t)
−1/2 (6.18)

That is, if we define the cross-over from phonon to free-particle behaviour for the Bogoli-

ubov spectrum (6.46) as ~
2k2

c/2m ≡ Un then kc = 1/ξ. Modes for which k � 1/ξ

correspond to collective excitations of the condensate (phonons) and couple to the effective

time-dependent curved spacetime whereas modes with k � 1/ξ are particle-like and are rel-

atively unaffected by the effective spacetime geometry. Alternatively stated, the spacetime

appears locally flat and time independent to modes with short wavelengths.

Particle production into a mode k then proceeds as follows: during an expansion, while H &

ωk and k < 1/ξ, the mode evolves non-trivially and particle production will certainly occur. As the

expansion proceeds, particle production can “switch off” for two reasons: Either the healing length

increases until the mode becomes particle-like and particle production slows, ceasing altogether

when k � 1/ξ; alternatively, if the expansion slows, then after some time H . ωk so that the
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field begins to oscillate relatively freely, and additional particle production also ceases. In either

case, the mode no longer evolves, and the occupation number of the mode becomes constant.

In general, it can be difficult or impossible to analytically solve the field equation (5.14) for

the mode functions. Moreover, if the in region is not flat, there is no preferred choice for the

initial vacuum state. However, when the field evolution is sufficiently slow — ie. adiabatic —

the WKB approximation can be used to calculate particle production (see [193] and references

therein). It is worth noting that this approach leads to a Planckian spectrum in the lowest order

approximation [121].

A note on freezing

For our analogue model of an expanding FRW universe, in the acoustic approximation we have

ωk(t) = c(t)k, which decreases as the expansion proceeds (this is equivalent to the usual notion

of cosmological redshifting of modes that occurs during inflation). This means that depending

on the form of the expansion, a mode that is initially oscillating (H � ωk) may enter a Hubble-

dominated era (H � ωk) after a sufficiently long expansion — this is the mechanism for freezing

of modes that is familiar from inflationary cosmology. The term freezing does not necessarily

imply that particle production ceases, but rather, that the mode no longer oscillates.

The situation is quite different when nonlinear superluminal dispersion is included — in this

case, the healing length ξ also decreases for increasing time, which means that a mode that was

initially phononic will crossover into the adiabatic free-particle regime for a sufficiently long ex-

pansion. In this case therefore, the notion of freezing can only occur in a transient regime that

depends on the mode wave-vector k and the form of the scaling function b(t) (and therefore on the

Hubble parameter also).

6.3.1 Acoustic approximation

When the quantum pressure term is neglected in the equations of motion (5.9) and (5.10), the

correspondence between the massless and minimally coupled scalar field equation for a FRW

universe and the equations of motion for linearised fluctuations in the BEC is exact. The dynamics

of the low momentum modes are expected to fall into this regime, and therefore it is of interest to

examine this case first.

Expansion

It is useful to introduce X the expansion of the universe between two times t0 and tf in the

following way:

X =
U(t0)

U(tf )
=

1

b(tf )
(6.19)

Conformal time

We define a coordinate transformation from laboratory time t to conformal time η by

dη =
√
b(t) dt (6.20)
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The line element (6.8) then reads

dl2eff = Ω2
0 b(η)

−1
[
−c20 dη2 + dx2

]
, (6.21)

The equation of motion for the field obtained from (5.14) in conformal time becomes

∂2
η θ̂ −

1

2

ḃ(η)

b(η)
∂η θ̂ − c20 ∇2θ̂ = 0. (6.22)

Note that the coefficient of ∂η θ̂ is the Hubble parameter given by (6.17). The calculation of

particle production requires the solution of this field equation for the mode functions χ(η). This

task is assisted by reducing the field equation to standard form where the first order derivative

does not appear; this can be achieved (for instance) by introducing an auxiliary field of the form

ς̂(η) = b(η)θ̂, showing mathematically equivalent dynamics to θ̂. Alternatively we can consider

the transformation to auxiliary time as follows.

Auxiliary time

Defining the auxiliary factor by

Λ = Ω
2/3
0 b(t)−1/3, (6.23)

and the auxiliary time by

t̃ =

∫
c0b(t)

Ω0
dt (6.24)

the line element (6.8) transforms as

dl2eff = −Λ6dt̃2 + Λ3dx2 (6.25)

For a massless scalar field, the corresponding field equation is

∂2
t̃
θ̂ − Λ3∇2θ̂ = 0 (6.26)

Using the field mode expansion given by (6.11) we then get a time-dependent harmonic oscillator

for each mode

∂2
t̃
χk + ω̃2

k(t̃)χk = 0 (6.27)

where ω̃2
k(t̃) = Λ3k2 = Ω2

0b(t̃)
−1k2 is the oscillator frequency. While the auxiliary time approach

is useful in the acoustic approximation, it does not generally lead to the simple form (6.27) when

the quantum pressure term is included (see section 6.3.2).
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6.3.2 Beyond the acoustic approximation

The results of the previous section were given within the acoustic approximation, valid only for

long wavelength modes, whereby the quantum pressure term is omitted from the field equation

(5.14) and the resulting equations for the FRW analogue model given by (6.22) or (6.27). We can

extend the analysis to higher momenta modes by including the quantum pressure term; this leads to

a “superluminal” type dispersion relation for high frequency modes and an appropriately modified

field equation as we presently discuss. Moreover, this description corresponds to the presence of

“trans-Planckian” like modes, and leads to the idea of Lorentz violation. Such modified dispersion

relations have similarly been incorporated into some studies of inflationary cosmology — we

discuss this here also. In section 6.6 we will consider two specific forms of the scaling function

in this regime: the limiting case of a sudden transition (section 6.6.1) and a cyclic universe model

(section 6.6.2)

Nonlinear dispersion

For the homogeneous model presented here the differential term (5.11), accounting for the quan-

tum pressure term, takes the simple form

D̃2n1 =
1

2n0
∇2n1 (6.28)

That is, we can extract the Fourier component

(D̃2n1)k = − 1

2n0
k2nk (6.29)

and thus rearrange (5.10) to give

nk = − ~

U

[
ε0k

2Un0
+ 1

]−1

∂tχk (6.30)

where ε0k = ~
2k2/2m is the single-particle energy for a non-interacting gas.

We can then include the quantum pressure term by using (6.30) so that the field equation (5.14)

in momentum space becomes

∂2
t χk − 1

2

c20k
2

ωk(t)2
∂tb(t) ∂tχk + ωk(t)

2 χk = 0 (6.31)

where we have defined

ωk(t)
2 =

k2

2m

(
~

2k2

2m
+ 2U(t)n0

)
(6.32)

It should come as no surprise that we have recovered the Bogoliubov dispersion relation for a

weakly interacting Bose gas (compare εk = ~ωk with equation 6.46). In particular, we see that if

we set b(t) = const. then the field equation describes the dynamics of each Bogoliubov mode for

a time-independent Hamiltonian.
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In general, it is difficult to solve (6.31) for the mode functions, and to hence calculate par-

ticle production. This situation often persists even though it may be possible to reduce (6.31)

to standard form where the first order derivative term ∂tχk does not appear. We can, however,

make a qualitative statement about particle production for high momenta modes by considering

the crossover from phononic to free-particle modes as determined by the healing length (6.18).

For modes that satisfy k � kc, the field equation takes the approximate form

∂2
t χk +

(
ε0k
~

)2

χk = 0 (6.33)

That is, the time dependence from b(t) above is largely suppressed, and each mode with k � kc

evolves trivially as a time-independent harmonic oscillator, remaining in its’ initial vacuum state.

Therefore these modes experience no particle production.

Lorentz violation

Planck-scale Lorentz violation is a feature of some theories of quantum gravity that can be mod-

eled by the presence of a modified dispersion relation at the Planck scale [195]. In this sense, for a

BEC the healing length ξ provides the analogue of the Planck scale, characterising the cross-over

from phononic (k � 1/ξ) to free-particle (k � 1/ξ) like modes. Specifically, the field equa-

tion (6.31) is not Lorentz invariant because of the nonlinear superluminal dispersion of the modes

(6.32) at large momenta (this clearly evident from equation 6.33 where the second term varies as

∼ k4). On the other hand, for small momenta (ie. in the acoustic approximation) the dispersion

relation is linear in k and the field equation reduces to the Lorentz invariant form (6.22). It should

be stressed however, that the effective quantum field theory for the BEC is still valid as long as

atomic interactions can be characterised by the s-wave scattering length, which is true in general

for some cut-off in wave-vector kcut-off > 1/ξ.

We note that modified dispersion relations have been used to study the “trans-Planckian” prob-

lem in inflationary cosmology [196] — the results there showed that certain modifications to the

dispersion relation could lead to significant deviations for the spectrum when compared to the

unmodified dispersion relation (ie. the usual model of inflation).

6.4 Connection with Bogoliubov Theory

Thus far, we have derived a field equation for a scalar field propagating in an effective space-

time. The quanta of this scalar field must correspond to the linearised quantised excitations (ie.

phonons) of the quantum field for the theory to be consistent. Therefore, at this point, to make this

connection explicit, it is worth pursuing the theory of quantum excitations in BECs, which is well

described by Bogoliubov’s theory of excitations for a weakly interacting system.
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6.4.1 Bogoliubov Theory

To first order we can include quantum fluctuations by using Bogoliubov’s theory for a homo-

geneous dilute Bose gas, and thus calculate analytically the excitation spectrum [28, 197]. We

proceed by expanding the field operator in a plane-wave basis

ψ̂(x, t) =
1√
V

∑

k

eik·xâk(t) (6.34)

and substituting this in the (1.1). The resulting effective Hamiltonian is then

Ĥ = Ĥ0 + Ĥint (6.35)

Ĥ0 =
∑

k

ε0kâ
†
kâk (6.36)

Ĥint =
U0

2V

∑

kk′q

â†k+qâ
†
k′−q

âkâk′ (6.37)

When the number of atoms in the condensate is large (ie. the field is highly condensed) we can

make the replacements â0, â†0 →
√
N0 and the interaction part of (6.35) becomes

Ĥint =
U0

2V


N2

0 + 2N0

∑

k 6=0

(â†
k
âk + â†−k

â−k) +N0

∑

k 6=0

(â†
k
â†−k

+ â−kâk)


 (6.38)

where only terms of at least order N0 have been retained. We can write the total number operator

as

N̂ =
∑

k

â†kâk = N0 +
∑

k 6=0

(â†kâk + â†−kâ−k) (6.39)

Setting N = 〈N̂ 〉 we can eliminate N0 to get (again retaining only terms at least order N0)

Ĥ ≈ ĤBog =
U0N

2

2V
+

1

2

∑

k 6=0

[
(ε0k +

U0N

V
)(â†kâk + â†−kâ−k)

+
U0N

V
(â†kâ

†
−k + â−kâk)

]
(6.40)

This can be diagonalised using the Bogoliubov transformation

âk = ukb̂k + vkb̂
†
−k

â†−k = ukb̂
†
−k + vkb̂k (6.41)

when uk and vk are chosen appropriately. The new operators b̂k and b̂†k satisfy the commutation

relations for Bose field operators when

u2
k − v2

k = 1 (6.42)
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and with no loss of generality we can then write

uk =
1√

1 −A2
k

, vk =
Ak√

1 −A2
k

(6.43)

It is straightforward to show that for (6.40) to be diagonalised Ak must satisfy the condition

Ak =
1

U0n

[
−(ε0k + U0n) +

√
ε0k(ε0k + 2U0n)

]
(6.44)

where n = N0/V is the density. The resulting Hamiltonian

ĤBog = E0 +
∑

k 6=0

εkb̂
†
k
b̂k (6.45)

is diagonal with a constant E0 and where the quasiparticle excitations have the energy spectrum

εk =
√
ε0
k
(ε0

k
+ 2U0n) (6.46)

in terms of the single particle energy

ε0k =
~

2k2

2m
(6.47)

In the Bogoliubov approximation, the Bose field operator can be expanded as

Ψ̂(x, t) = e−iµt/~ (Ψ0(x) + δϕ̂(x, t))

= e−iµt/~

(
Ψ0(x) +

∑

k

Uk(x, t)b̂k(0) + V ∗
k (x, t)b̂†k(0)

)
(6.48)

Note that the time-dependence of each mode is fully contained in the mode functions Uk(x, t)

and Vk(x, t). When the Hamiltonian is time-independent (eg. U constant) the time-dependence

is purely oscillatory and the number of quasiparticles in each mode 〈b̂†
k
b̂k〉 is a constant of the

motion.

Alternatively when we linearise the density-phase representation of the field operator we find

δϕ̂(x, t) ≈ √
n0

(
n̂1

2n0
+ iθ̂1

)
(6.49)

If n̂1 and θ̂1 are Hermitian we can write

n̂1 =
√
n0(δϕ̂ + δϕ̂†) (6.50)

and

θ̂1 =
1

2
√
n0i

(δϕ̂ − δϕ̂†) (6.51)
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The commutation relations for the field operator (1.5) can be used to show that the density and

phase fluctuations satisfy the commutation relation

[n̂1(x), θ̂1(x
′)] = iδ(x − x′) (6.52)

Using the mode expansion (6.11) we expand the field θ1 in Fourier (plane-wave) modes as

θ̂1 =
∑

k

[χk(x)b̂k(t) + χ∗
k(x)b̂†k(t)]

=
1√
V

∑

k

[eik·xχkb̂k(t) + e−ik·xχ∗
kb̂

†
k
(t)] (6.53)

and similarly for n1

n̂1 =
∑

k

[nk(x)b̂k(t) + n∗k(x)b̂†
k
(t)]

=
1√
V

∑

k

[eik·xnkb̂k(t) + e−ik·xn∗kb̂
†
k(t)] (6.54)

The commutation relation (6.52) thus reduces to a Wronskian type condition for the normali-

sation of the modes:

nkχ
∗
k − n∗kχk = i (6.55)

We can expand δϕ̂, n̂1 and θ̂1 in the same set of plane wave modes, using the mode expansions

(6.53) and (6.54) and Uk(x, t) = uk(t) e
ik·x/

√
V and Vk(x, t) = vk(t) e

ik·x/
√
V , so that the

Fourier components are

uk(t) =
1

2
√
n0

nk(t) + i
√
n0 χk(t) (6.56)

vk(t) =
1

2
√
n0

nk(t) − i
√
n0 χk(t) (6.57)

Clearly these mode functions are consistent with the requirement that the Bogoliubov modes are

normalised by |uk|2 − |vk|2 = 1. We note that these are general expressions, which are valid

within the linearised theory of excitations no matter what form the mode functions take. That is,

they are valid for arbitrary forms of the scaling function b(t) so long as the mode functions nk(t)

and χk(t) can be found.
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6.4.2 Bogoliubov modes — Minkowski spacetime

Using (6.30) with the mode expansions (6.53) and (6.54), the commutation relation (6.52) is sat-

isfied when the mode functions take the form

χk =
1

2
√
n0

√
εk
ε0k
e−iωkt

nk = i
√
n0

√
ε0k
εk
e−iωkt (6.58)

These are the positive-frequency solutions for a time-independent Hamiltonian — that is, when

when U is constant — and correspond to an effective spacetime geometry that is Minkowski flat.

The mode functions (6.56) and (6.57) can therefore be written

|uk| = 1
2

(√
εk

ε0k
+

√
ε0k
εk

)
(6.59)

|vk| = 1
2

(√
εk

ε0k
−
√

ε0k
εk

)
(6.60)

6.4.3 Acoustic modes — Minkowski spacetime

To facilitate the computation of particle production we again consider the acoustic approximation,

which is valid for low momenta when ~
2k2/2m � Un0 so that the quantum pressure term can be

neglected. In this case (6.30) reduces to

nk = − ~

U
∂tχk (6.61)

The mode functions are then given by

χk =

√
U

2~ωk
e−iωkt (6.62)

and

nk = i

√
~ωk

2U
e−iωkt (6.63)

Using the general expressions (6.56) and (6.57) the mode functions are given by

|uk| =
1

2

(√
~ωk

2Un0
+

√
2Un0

~ωk

)
(6.64)

and

|vk| =
1

2

(√
~ωk

2Un0
−
√

2Un0

~ωk

)
(6.65)
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6.4.4 Quasiparticle production

The concept of particle production in our analogue model can be made explicit in terms of the

Bogoliubov theory outlined above. To calculate the quasiparticle number in each mode after a fi-

nite expansion of interval t it is necessary to project into the Bogoliubov basis that instantaneously

diagonalises the many-body Bose Hamiltonian at t. From a practical viewpoint, this measure of

particle production is correct if the scaling function b(t′) is constant for times t′ > t. In what

follows we take the initial condition as the quasiparticle vacuum at t = 0 so that b̂k(0)|0〉 = 0

and therefore Nk(0) = 0. Here the mode functions are determined by the solutions to the time-

independent case with U(t) = U0, which yields the mode functions for a Minkowski spacetime.

With this premise, we now demonstrate how to calculate the particle production for each mode

for a given expansion. The Bogoliubov theory of a weakly interacting Bose gas predicts a non-

zero depletion even at zero temperature; the real particle annihilation operator is given by the

time-dependent canonical transformation

âk(t) = uexp
k (t)b̂k(0) + vexp∗

k (t)b̂†−k(0) (6.66)

where uexp
k and vexp

k are solutions for the mode functions during the expansion — these must

coincide with Minkowski mode functions at t = 0 with U(t) = U0. The projection into the

Bogoliubov basis at t is

b̂k(t) = uout∗
k (t)âk(t) − vout∗

k (t)â†−k(t) (6.67)

where uout
k and uout

k are given using (6.56) and (6.57) and the Minkowski mode solutions (6.62)

and (6.63) with U(t) = U0/X in terms of of the expansion X. The particle production in each

mode at time t is then given by

Nk(t) = 〈b̂†
k
(t) b̂k(t)〉

= |uout∗
k (t)vexp∗

k (t) − vout∗
k (t)uexp∗

k (t)|2

= (|uout
k (t)|2 + |vout

k (t)|2)
(

1

4n0
|nexp

k (t)|2 + n0|χexp
k (t)|2

)

−2|uout
k (t)||vout

k (t)|
(

1

4n0
|nexp

k (t)|2 − n0|χexp
k (t)|2

)
− 1

2
(6.68)

where we have used (6.56) and (6.57). Evidently, the central task is to solve the field equation

(5.17) for the mode functions uexp
k and vexp

k for a given expansion b(t). This procedure will be

applied in section 6.5.3 to calculate the quasiparticle production for the case of de Sitter expansion

(in the acoustic approximation), and in section 6.6.1 for the case of sudden expansion (with high-

frequency dispersion).
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6.5 Quasiparticle production in acoustic approximation

We presently provide analytic solutions for quasiparticle production in the acoustic approxima-

tion for three different expansion scenarios: (i) Sudden transition; (ii) tanh expansion; and (iii)

de Sitter expansion. Scenarios (i) and (ii) both have asymptoticly flat in and out regions, so the

calculation of particle production follows the standard procedure from section 6.3. Scenario (iii)

however does not have asymptoticly flat in and out regions for a finite time expansion, and there-

fore we must resort to the Bogoliubov theory of the previous section to calculate the particle

production.

6.5.1 Sudden transition (2 + 1 dimensions)

A simple example of particle production is given by the limiting case of a sudden expansion.

Here, the interaction is instantaneously switched from U to U/X at some time t̃0 which we take

as t̃0 = 0 for convenience. The scaling function is given by

b(t̃) = 1 −
(

1 − 1

X

)
H(t̃) (6.69)

where H is the Heaviside step function. The case of a particle production for a sudden transition

has been previously explored by Jacobson for a parametric oscillator [166].

Using the normalisation condition (6.13) the positive frequency solutions to (6.27) are given

by

χ
in/out
k =

1√
2ω̃

in/out
k

e−iω̃
in/out

k
t̃ (6.70)

It is straightforward to calculate the Bogoliubov coefficients by applying the boundary conditions

from (6.12) and its first derivative for the Minkowski in and out modes at t0 = 0. We find

αk = 1
2

(√
ω̃in

k

ω̃out

k

+

√
ω̃out

k

ω̃in

k

)
(6.71)

and

βk = 1
2

(√
ω̃in

k

ω̃out

k

−
√

ω̃out

k

ω̃in

k

)
(6.72)

so that

Nout
k = |βk|2 = 1

4

(√
ω̃in

k

ω̃out

k

−
√

ω̃out

k

ω̃in

k

)2

(6.73)

Further noting for an expansion X that ω̃out
k /ω̃in

k = 1/
√
X, the particle production is then

Nout
k = 1

4

(
X1/4 −X−1/4

)2
(6.74)
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which yields, for example: Nout
k ≈ 0.4 for X = 10; Nout

k ≈ 2 for X = 100; and Nout
k ≈ 11 for

X = 2000.

Equation 6.74 provides an upper limit for the particle production in each mode. This quantity

does not depend on mode number — a feature that reflects the fact that all modes experience a

sudden change in the effective spacetime geometry. We shall see in section 6.3.2 that including the

quantum pressure term (ie. nonlinear dispersion) in our formulation leads to suppressed particle

production for increasing |k|.
It should be noted that the sudden transition corresponds to a delta function for the Hubble

parameter H at t̃ = 0; this is physically unfeasible as any change in the s-wave scattering length

via a Feshbach resonance would require a finite time in practice [194]; moreover, a very rapid

change in the scattering length is not possible since, in this case, the GPE would no longer be

valid [109] (ie. the low momentum approximation for the T-matrix scattering potential is no longer

valid). In spite of this, the sudden transition still provides a useful prediction for comparison with

the results of the classical field simulations.

6.5.2 tanh expansion (2 + 1 dimensions)

One non-trivial form of the metric tensor for which the particle production can be calculated

analytically is the case of a tanh function expansion, with asymptotically flat in and out regions.

This was first considered by Bernard and Duncan [198] and Birrel and Davies [121] for a massive

scalar field, and then by Barcelo et al. [109] for a massless scalar field. Similarly to [109] we

consider the case of tanh expansion, but for 2+1 dimensions.

In particular (6.27) can be solved exactly when the auxiliary factor Λ has the time-dependence

Λ3(t̃) =
Λ3

i + Λ3
f

2
+

Λ3
f − Λ3

i

2
tanh

(
t̃

t̃s

)
(6.75)

for some time constant t̃s that determines the rate of expansion. Noting that

Λ3 = Ω2
0

1

b(t̃)
(6.76)

the scaling function with respect to auxiliary time is

b(t̃) = Ω2
0

[
Λ3

0 + Λ3
f

2
+

Λ3
f − Λ3

0

2
tanh

(
t̃

t̃s

)]−1

= 2

[
1 +X + (X − 1) tanh

(
t̃

t̃s

)]−1

(6.77)

for an expansion X; we have implicitly assumed b(t̃i) = 1. We can also write

t =
Ω0

c0

∫
1

b(t̃)
dt̃

=
Ω0

2c0

[
(1 +X)t̃+ (X − 1)t̃s log

(
cosh

(
t̃

t̃s

))]
(6.78)
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This is not easy to invert but b(t̃) and t(t̃) define a parametric curve for b(t) — this relation is

required for implementing a tanh expansion in laboratory time simulations. With the conformal

factor given by (6.75) it is possible to calculate the particle production in each mode exactly. Using

the result in [109] we get

Nout
k =

sinh2
[
πkt̃sΩ0(

√
X − 1)/2

]

sinh
[
πkt̃sΩ0

]
sinh

[
πkt̃sΩ0

√
X
] (6.79)

Note, in the limit t̃s → 0 this reduces to the sudden transition result (6.73) as expected.

6.5.3 de Sitter universe (2 + 1 dimensions)

We outline the particle production for the case of a de Sitter universe in the acoustic approximation.

The case of the de Sitter universe is particularly relevant in cosmology. The inflationary model

of the early universe is thought to include a de Sitter phase of rapid expansion which accounts for

the inhomogeneities observed in the present universe [199]. The de Sitter spacetime is a solution

to the Einstein’s field equations with a positive cosmological constant, and has a high degree of

symmetry. It has been shown that an observer moving in a time-like geodesic will measure a

thermal spectrum — this being a manifestation of the Hawking effect. This result was first derived

by Gibbons and Hawking using the path integral formalism [200] and has been subsequently

verified by applying the method of Bogoliubov mode mixing [201].

Scaling function

To map the FRW analogue model to a de Sitter spacetime, the scaling function for the scattering

length in laboratory time (which is equivalent to proper time for two dimensions) is of the form

b(t) = e−t/ts (6.80)

with the scaling unit ts that determines the rate of expansion. In this case the Hubble parameter

(6.17) is given by H = 1/2ts.

We further consider the transformation to so-called conformal time (denoted η) by dη =√
b(t) dt. In this case we get

η = −2tse
−t/2ts , t ≥ 0 (6.81)

The following limits are evident: (i) η = −2 ts for t = 0; and (ii) η → 0 as t → +∞. We also

have:

b(η) =

(
η

2ts

)2

, −2ts ≤ η ≤ 0 (6.82)
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b(t)

tf

Region II Region IIIRegion 1

t0

1

X

1

Figure 6.1: Schematic of de Sitter expansion for the FRW analogue model; for region I (t < t0),

there is no expansion and the mode solutions are those of a Minkowski spacetime with U = U0;

for region II (t0 < t < tf ), there is a de Sitter type expansion and the mode solutions are non-

trivial; finally for region III (t > tf ) the expansion is turned off and the mode solutions are those

of a Minkowski spacetime with U = U0/X.

Mode solutions

The field equation (6.22) then yields the second-order differential equation for the mode functions

∂2χk

∂η2
− 1

η

∂χk

∂η
+ c20k

2χk = 0 (6.83)

This is a Bessel equation and the solution [202, equation 9.1.52] is given in terms of Bessel func-

tions of the first and second kind 4

χk = Ak η J1(−ωk(0)η) +Bk η Y1(−ωk(0)η) (6.84)

for some undetermined constants Ak andBk; we have defined the frequency ωk(0) = c0k at t = 0.

Using (6.63) and [202, equation 9.1.27] it can be shown that the density fluctuation mode function

is given by

nk = −2ts
~ωk(0)

U0
[AkJ0(−ωkη) +BkY0(−ωkη)] (6.85)

So that our analogue model corresponds to the classical field simulations we have run we

require that b(t) = 1 for t ≤ 0 — ie. η ≤ −2ts. Thus t = 0 (or η = −2ts) corresponds to

the in region with Minkowski mode functions. The limit t → ∞ (or η → 0) is the out region.

4With no loss of generality (as the Bessel equation is even in η), the arguments of J1 and Y1 are taken to be negative

with respect to η but positive overall in the region of interest – this facilitates computation as the Bessel functions are

then real quantities.
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Figure 6.2: Particle production for a de Sitter spacetime in the FRW analogue model: (a) t̄s =
1 × 10−4 and a range of expansions X as shown; (b) X = 2000 and a range of expansion rates

t̄s as shown. The dimensionless scaling unit is t̄s = ts ~/(mL2). In both cases the nonlinearity is

U0N0 = 105
~

2/(mL2) (dimensionless units are introduced in chapter 7).

The goal is to calculate the Bogoliubov coefficients αk and βk between these two regions and thus

determine the particle production. Our expectation is a thermal spectrum in the limit of large ts

which corresponds to the adiabatic regime.

Using [202, equation 9.1.16] it can be shown by matching the Minkowski and de Sitter modes

at t = 0 that

Ak =
π

2

√
U0ωk(0)

2~
(iY1(2tsωk(0)) − Y0(2tsωk(0))) (6.86)

Bk = −π
2

√
U0ωk(0)

2~
(iJ1(2tsωk(0)) − J0(2tsωk(0))) (6.87)

It can easily be verified using [202, equation 9.1.16] that these mode solutions satisfy the normal-

isation condition (6.55).

Particle production

The lack of a (globally) time-like Killing vector for the de Sitter universe means it is not possible

to unambiguously define a Fock vacuum at any time, and that therefore, the particle number of

each mode after some expansion is observer dependent. However, for our analogue model, we

circumvent this complication by associating an instantaneous Minkowski vacuum at each point in

time — that is, we project into the quasiparticle basis that diagonalises the many body Hamiltonian

to second order. This prescription has previously been outlined in section 6.4.4. Figure 6.1 shows

the scaling factor for the relevant temporal regions.

To proceed, for brevity, we define z ≡ −ωk(0)η = 2tsωk(0)e
−t/2ts and set z0 = z(t = 0) =

2tsωk(0). Additionally we introduce λ0 =
√

2U(0)n0/~ωk(0). Using the mode solutions (6.84)
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Figure 6.3: Equipartition of energy for a de Sitter spacetime in the FRW analogue model. In

both cases the expansion is X = 1 × 105 and the nonlinearity is U0N0 = 105
~

2/(mL2). The

dimensionless energy is ε̄k = εk mL
2/~2 (dimensionless units are introduced in chapter 7).

and (6.85) we then have

1

4n0
|ndS

k (t)|2 =
1

λ2
0

(πtsωk(0))
2

4

[ (
Y 2

1 (z0) + Y 2
0 (z0)

)
J2

0 (z(t)) +
(
J2

1 (z0) + J2
0 (z0)

)
Y 2

0 (z(t))

− 2 (J1(z0)Y1(z0) + J0(z0)Y0(z0)) J0(z(t))Y0(z(t))

]

(6.88)

and

n0|χdS
k (t)|2 = λ2

0

(πtsωk(0))
2

4X

[ (
Y 2

1 (z0) + Y 2
0 (z0)

)
J2

1 (z(t)) +
(
J2

1 (z0) + J2
0 (z0)

)
Y 2

1 (z(t))

− 2 (J1(z0)Y1(z0) + J0(z0)Y0(z0)) J1(z(t))Y1(z(t))

]
(6.89)

We can therefore use (6.68) to calculate the particle production explicitly – these results are shown

in Figures 6.2 (a) and (b). In particular, Figure 6.2 (a) shows the particle production for a fixed

rate of expansion ts = 1×10−4 and several different expansions X, whereas Figure 6.2 (b) shows

the particle production for a fixed expansion X = 2000 with several different rates of expansion

ts.

Limits

The particle production from the de Sitter expansion interpolates between two opposite limits: a

sudden expansion for ts → 0, and an analytically tractable asymptotic limit for 1 � 2tsωk(0) �
X1/2.
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Figure 6.4: Temperature from linear fit to equipartition for three different expansions X for the

FRW analogue model. The cosmological result from (6.93) is shown by the green solid curve.

The dimensionless temperature is T̄ = kBT ~
2/(mL2). The dimensionless scaling unit is t̄s =

ts ~/(mL2). The nonlinearity is U0N0 = 105
~

2/(mL2) (dimensionless units are introduced in

chapter 7).

Sudden expansion: In this case we have the Minkowski mode functions:

1

4n0
|nds

k (t)|2 → 1

4λ2
0

(6.90)

n0|χdS
k (t)|2 → 1

4
λ2

0 (6.91)

and the particle production from (6.68) reduces to the expression (6.74) we found previously

for a sudden expansion

Nk → 1

4

(
X1/4 −X−1/4

)2
(6.92)

This behaviour can be clearly seen in Figure 6.2 (b) where the particle number approaches

the sudden result for faster expansion rates (ie. smaller values of ts).

Asymptotic expansion:

When the rate of expansion is sufficiently slow and in the limit of a very large expansion

with 1 � 2tsωk(0) � X1/2, the particle production approaches the usual cosmological

result of a thermal spectrum [121], which in terms of ts is given by a temperature

kBT =
1

4πts
(6.93)

This can be seen in Figures 6.3 (a) and (b) which shows a plot of Nk vs 1/εk as calculated

from (6.68) and (6.46) respectively. If the system is in thermal equlibrium, then such a plot

should be linear according to equipartition of energy Nkεk = kBT . This is approximately

valid when 1 � 2tsωk(0) � X1/2, which is consistent with the condition for adiabatic
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expansion, where the system remains close to equilibrium throughout the expansion. Fur-

thermore, Figure 6.4 shows the fitted temperature from (6.68) as a function of expansion

rate ts for three different expansions X. For a very large expansion X = 1× 1012 the result

closely agrees with the result from (6.93)5.

6.6 Quasiparticle production beyond the acoustic approximation

In this section we consider quasiparticle production where the acoustic approximation is not en-

forced — we introduced this more general case in section 6.3.2. In general the usual calculations

become unmanageable in this regime, and so, we present only two expansion scenarios here: We

first calculate quasiparticle production for a sudden transition in section 6.6.1, for which an exact

solution can be easily found; In section 6.6.2 we additionally consider the cyclic universe model,

for which we are able to make some general statements with regards to quasiparticle production.

6.6.1 Sudden Expansion

The particle production for a sudden expansion can be calculated using the Bogoliubov theory

from section 6.4. The scaling function is given by (6.69) with the substitution for laboratory time

t̃ → t. The excitation of each mode is attributed to the quantum depletion corresponding to the

initial vacuum state with nonlinearity U0, projected into the Bogoliubov basis corresponding to the

final nonlinearity U0/X. We can thus calculate the number of Bogoliubov quasiparticles directly

using (6.41) assuming the initial state is the Bogoliubov vacuum defined by b̂ink |0〉 = 0. Using

(6.68) the result is

Nout
k = (uout

k vin
k − vout

k uin
k )2

=
(Ain

k −Aout
k )2

(1 −Ain 2
k )(1 −Aout 2

k )
(6.95)

where Ain
k and Aout

k is given by (6.44) with U = U0 and U = U0/X respectively. The particle

production from (6.95) is suppressed for modes of large momenta, as can be seen from (6.44) by

the observation that A
in/out
k → 0 as |k| → ∞ — this is consistent with the preceding discussion

of section 6.3.2.

This calculation can also be repeated using the usual methods of QFTCS as outlined in section

6.3 — similarly to the previous calculation for the sudden transition in the acoustic approximation

outlined in section 6.5.1 — but instead by using the field equation (6.31), which includes nonlinear

dispersion. The result is [204]

Nout
k = |βk|2 = 1

4

(√
ωin

k

ωout

k

−
√

ωout

k

ωin

k

)2

(6.96)

5We can relate this to the number of e-foldings, which is given by [203]

Ne(t) ≡ ln

(
aFRW(t)

aFRW(0)

)
= ln

√
X (6.94)

to give Ne(tf ) ≈ 14 for X = 1 × 1012.
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This takes the same form as the result from the acoustic approximation given by (6.73). However,

here ωin
k and ωout

k are the Bogoliubov mode frequencies given by (6.46), which includes nonlinear

dispersion, for the in and out regions respectively.

It is straightforward to show that (6.95) and (6.96) agree exactly for all |k|. We further note

that for small |k|, the Bogoliubov coefficients are uk ≈ vk and the Bogoliubov mode expansion

coincides with the mode expansion for the quantised phase fluctuations (6.11). Therefore in this

limit the acoustic result (6.74) agrees with (6.95).

6.6.2 Cyclic universe (2 + 1 dimensions)

The final scenario we consider is that of a cyclic (or oscillatory) universe. While models of a cyclic

universe certainly exist in the literature [205], they are not as firmly established as inflationary

models (such as the de Sitter universe). From a condensed matter point of view, an analogue model

of a cyclic universe is interesting because it leads to parametric excitation of the quasiparticle

modes, and in particular to parametric resonance [206]. Moreover, by taking b(tf ) = b(t = 0),

a cyclic universe is an interesting counter-point to the case of a sudden transition: in a sudden

transition the field does not evolve and any particle production is entirely attributed to a sudden

change in the effective spacetime (ie. we project into a new quasiparticle basis that depends on the

final nonlinearity U = U0/X); however, in a cyclic universe model, the initial and final effective

spacetimes are the same (so long as condensate does not evolve too far from the initial ground

state) and particle production occurs due to parametric excitation only.

The scaling function can be expressed as

b(t) =
1

X
+

1

2

(
1 − 1

X

)[
cos

(
2πmt

tf

)
+ 1

]
(6.97)

with b(0) = 1 and where we have defined m as the number of cycles of the oscillation (we note

that ts = tf/m is the period of each oscillation), and X is now defined as the amplitude of the

oscillation (rather than the final expansion).

Parametric resonance

The phenomena of parametric resonance has been previously investigated in Bose condensed sys-

tems [207,208], and in the context of an expanding universe model [209]. The condition for para-

metric resonance is close to ω(k) = Ω/2 where Ω = 2πm/tf is the driving frequency of some

external parameter [206], in this case the nonlinearity. Using the Bogoliubov excitation spectrum

ε(k) = ~ω(k) from (6.46) then gives a simple estimate of the peak wave-vector for resonance:

kresonance =

(
2m

~2

)1/2 [
((UaveN0)

2 + (~π/ts)
2)1/2 − UaveN0

]1/2
(6.98)

where Uave = 1
2(1 + 1/X)U0 is the average nonlinearity during the evolution. However, it is

worth noting that this result requires that ∆ = 1 − 1/X from (6.97) is a perturbative parameter

with ∆ � 1; we therefore henceforth refer to this as the perturbative resonance condition.
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The extension of the analysis to a strongly driven system (∆ . 1) has been considered in [207].

The general result is that the mode frequency region where parametric resonance occurs broadens

as ∆ increases; that is, for the parametric resonance peak broadens in momentum space with larger

expansion X.



Chapter 7

The classical field method

7.1 Introduction

Classical field methods, introduced in chapter 1, are a powerful tool for approximating the dy-

namics of quantum systems. Their application to Bose-Einstein condensates include the closely

related methodologies of the finite temperature Gross-Pitaevskii equation [53, 54], the truncated

Wigner approximation [34–37, 41, 42] and the positive-P method [34, 43].

Neglecting quantum and thermal fluctuations, the condensate dynamics are determined by

the Gross-Pitaevskii equation (GPE) given by (1.8). This is derived from the Heisenberg equa-

tion of motion (1.6) for the field operator ψ̂(x), by replacing ψ̂(x) with the mean-field or-

der parameter ψ(x) = 〈ψ̂(x)〉, which is interpreted as the wavefunction of the condensate.

This approximation arises from the assumption that the condensate is highly occupied so that

N0 =
∫
dx〈ψ̂†(x)ψ̂(x)〉 � 1. In the classical field approximation this description is extended by

also including the non-condensate modes from a low energy subspace of the system; these modes

are to be considered classical in that they are highly populated – this is akin to the Bogoliubov

approximation where the commutators can be neglected. We thus proceed by expanding the field

operator in some basis

ψ̂(x, t) =
∑

k

φk(x)âk(t) (7.1)

and replacing this in (1.6) by the classical field

ψ(x, t) =
∑

k∈C

φk(x)αk(t) (7.2)

where âk → αk for those modes where Nk = 〈â†kâk〉 � 1 is satisfied; we denote these modes

in the low-energy subspace by k ∈ C . For a homogeneous Bose gas in a box with periodic

boundary conditions the modes of the system (the eigenstates that diagonalise the single-particle

Hamiltonian) are plane wave states

φk(x) =
1√
V
eik·x (7.3)

105
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The low-energy subspace C is then determined by a momentum cut-off, below which all modes

are retained in the classical field. This is formalised by the use of a projector which is defined by

its action on some function f(x) as

P̂{f(x)} =
∑

k∈C

φk(x)

∫
dx′ φ∗k(x′)f(x′) (7.4)

Projected Gross-Pitaevskii equation

Neglecting all modes orthogonal to C the projected Gross-Pitaevskii equation (PGPE) is given by

i~
∂ψ(x)

∂t
= Ĥ0ψ(x) + U0P̂{|ψ(x)|2ψ(x)} (7.5)

A projector is required for the following reasons:

1. The classical field approximation naturally divides the system into a coherent region, which

is described by the propagation of a classical field, and an incoherent region which is ne-

glected in the present formalism. In equilibrium, the system is then described by a micro-

canonical ensemble since particle numbers are conserved by the Hamiltonian (1.1).

2. While the finite size of the spatial grid inherently defines a momentum cut-off, the split

operator Fourier methods used to propagate the classical field can introduce aliasing if a

projector is not applied explicitly.

3. Because the PGPE uses a contact potential to describe two-body interactions, and such a

description leads to ultraviolet divergences at large momenta, a cut-off is required.

7.2 The truncated Wigner approximation

A formal framework for the ideas outlined above is provided by the truncated Wigner approxima-

tion (TWA). We briefly outline the method but the reader is referred to [34–37, 41, 42] for further

details.

The TWA is a phase space method originating from the representation of the density operator

in terms of the Wigner function, which is familiar from quantum optics [30]. The master equation

for the multimode density operator can be formally mapped to a third order differential equation

for the Wigner function by the application of operator correspondences. The approximation in-

volved in the TWA is to neglect the third order derivative terms, which become small for highly

occupied modes. The resulting Fokker-Planck type equation has no diffusion term and is equiva-

lent to evolving a classical field of the form (7.2) with the GPE with two crucial modifications:

1. Quantum vacuum fluctuations are included in the initial state by adding classical noise sam-

pled from the Wigner distribution; the form of this noise depends on the Wigner function

for the ground state of the system. For a Bose-Einstein condensate at T = 0 the initial

amplitude of each mode is a random Gaussian variable that is distributed according to the

Wigner function for a coherent state.
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2. The moments of the the Wigner function give the expectation values for symmetrically

ordered operators. In practice calculating the expectation value of an observable O requires

an ensemble average over many trajectories in phase space. We denote such an expectation

value by 〈O〉W .

7.2.1 Initial states: vacuum noise

The initial condition is given by superposition of the ground state and noise sampled from the

Wigner distribution.

ψ(x, t = 0) = ψ0(x) + δψ(x) (7.6)

We can expand the noise term via a Fourier transform as

η(r) =
1√
V

∑

k 6=0

eik·rηk (7.7)

Bogoliubov vacuum

Within the truncated Wigner approximation the initial vacuum state1 is prepared by specifying

noise on each of the Bogoliubov modes:

δψ(x) =
∑

k 6=0

(Uk(x)βk + V ∗
k (x)β∗k) (7.11)

where Uk(x) and Vk(x) are the plane wave modes with amplitudes uk and vk respectively (as

defined in Sect. 6.4.1). βk are complex random variables that obey the Gaussian statistics [34,55]:

〈βpβq〉 = 〈β∗pβ∗q〉 = 0 (7.12)

〈β∗pβq〉 =
1

2
δp,q (7.13)

The initial state is thus constructed by populating the Bogoliubov modes with half a particle

per mode according to the TWA prescription, for the initial nonlinearity U0; for our cosmological

model this corresponds to the instantaneous vacuum state (Minkowski vacuum) in laboratory time

1White noise vacuum:

Another choice for the initial vacuum is to add noise to the real particle modes of the system using

ηk =
1√
V

∫
dr e−ik·rη(r) (7.8)

where ηk are complex random variables that satisfy the following Gaussian statistics

〈ηpηp〉 = 〈η∗

pη∗

p〉 = 0 (7.9)

〈η∗

pηq〉 =
1

2
δp,q (7.10)

This choice for the initial state is a poor description of the many body ground state as the quantum depletion is not

properly accounted for; in dynamics with the TWA this can therefore lead to heating as is evident by an transient

thermalisation of the system [34, 35]. In the limit of no interactions (U = 0) the Bogoliubov and white noise vacua

coincide.
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at t = 0.

The quantum and Wigner expectation values for the population of the k mode in the Bogoli-

ubov quasiparticle basis are related by

〈β∗kβk〉W = 〈{b̂†
k
b̂k}〉 = 〈N̂k〉 +

1

2
(7.14)

where the brackets require that the symmetrised operator should be taken. The vacuum state

therefore corresponds to half a particle per mode in the classical field.

7.2.2 Validity of the TWA

In the present application of the TWA, only the k = 0 condensate mode is macroscopically oc-

cupied, the other modes being initially unpopulated (for the quantum expectation value). The

requirement that Nk � 1 for each mode in the classical field is then violated. However a more

detailed treatment of the validity of the TWA leads to the criterion that N � M for a system

of N particles and M modes [37]. This criterion has been made explicit by Norrie et al. as the

requirement that the particle density exceeds the commutator for the restricted field operator [41].

It has been shown that for a homogeneous system these two criteria coincide [210]. Therefore the

TWA can still be applied when most of the modes are unoccupied as long as the average particle

density is sufficiently large.

Moreover the above choice for the initial state can lead to heating as is evident by an transient

thermalisation of the system [34,35]. In this case the classical field dynamics deviate from the Bo-

goliubov theory valid for a weakly interacting gas; the system evolves to thermal equilibrium via

the nonlinear interactions between Bogoliubov modes. This effect can be suppressed by evolving

the classical field only for short times and by choosing a regime where system is weakly interact-

ing (ie. U small). This is an important consideration for our simulations where any thermalisation

could obscure the effect of particle production.

7.2.3 Quasiparticle number

Following the discussion on Bogoliubov theory in section 6.4 the classical field for the homoge-

neous system can be expressed as

Ψ(x, t) = e−iµt/~

(
Ψ0(x) +

eik·x√
V

∑

k

ukβ−k(t) + vkβ
∗
k(t)

)
(7.15)
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where the time-dependent amplitudes are given from (6.41) by2

βk(t) = ukαk(t) − vkα
∗
−k(t) (7.17)

Referring to (7.14), the quasiparticle number in the TWA prescription is given by (where the

expectation value is implicitly assumed)

Nk(t) = 〈β∗k(t)βk(t)〉W − 1
2 (7.18)

We use this quantity to calculate the quasiparticle mode populations in our simulations; at each

time the mode functions uk and vk are determined from (6.43) using nonlinearity U(t). Hence

this result is consistent with (6.68), as it requires projection into the quasiparticle basis that instan-

taneously diagonalises (to second order in quasiparticle operators) the many body Hamiltonian

(1.1).

7.3 Numerical details

7.3.1 Dimensionless GPE

Our “universe” is specified by a box with dimensions Lx = γxL, Ly = γyL and Lz = γzL.

In what follows we assume γx = γy = 1 and with γz strictly less than one as required by the

quasi-two dimensional model. To facilitate numerical computation we introduce the dimensionless

parameters

x =
x

L
, ψ = ψ

Ld/2

√
N0

, t = t
~

mL2
(7.19)

With a time-dependent nonlinear interaction, the two-dimensional GPE (6.10) then takes the di-

mensionless form

i
∂ψ

∂t
=

[
−1

2
∇2

+ V ext + CNL(t)|ψ|2
]
ψ (7.20)

The dimensionless potential is

V ext =
Vext mL2

~2
(7.21)

2Time-dependent Bogoliubov transformation:

The equation of motion (ie. the GPE in momentum space) for the operators (6.41) also includes a phase factor from

the evolution of the condensate mode. Therefore in practice, to project into the Bogoliubov basis requires the time-

dependent transformation

βk(t) = ukαk(t)
α∗

0

|α0|
− vkα∗

−k(t)
α0

|α0|
(7.16)

where the condensate phase factor is given by α0/|α0| = e−iµt/~ .
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whereas the effective nonlinearity is (integrating over the z direction for the quasi-two dimensional

geometry)

CNL(t) =
U2D b(t)N0m

~2
=

4π a(t)N0

Lz
(7.22)

Note that the wave function is normalised to unity here. The corresponding dimensionless speed

of sound is

c =
mL

~
c =

√
CNL (7.23)

For completeness, we note the Bogoliubov excitation spectrum (6.46) in dimensionless units is

given by

εk =

√√√√k
2

2

(
k

2

2
+ 2CNL

)
(7.24)

We take V ext = 0 for the homogeneous system. In dimensionless units the spatial coordinates

span the region −1
2 ≤ x ≤ 1

2 . For convenience we henceforth drop the bar notation (unless

otherwise specified).

7.3.2 The projected RK4IP algorithm

Equation (7.20) is propagated using the 4th order Runge Kutta algorithm in the interaction picture

[211]. For the results presented here the time step was chosen so that the total normalisation

change during each trajectory was ∆norm ≤ 10−9 (for our choice of total particle number, this

corresponds to a total loss or gain of much less than one particle for the entire field). We take the

condensate volume in dimensionless units as the region −1
2 ≤ x ≤ 1

2 . The field is discretised on

a grid of 128× 128 points. The projector retains all modes with |k| ≤ 32× 2π. The classical field

then contains M = 3209 modes.

In practice, the mode populations Nk(kx, ky) were resampled on polar coordinates |k| and φ

and then averaged over angle3.

Further details of the numerical algorithm are provided in Appendix B.

7.4 Suitable parameter regime

It is appropriate, at this point, to determine a viable set of parameters for the classical field simu-

lations. The choice of simulation parameters is constrained by three main factors:

• The criterion for the validity of the classical field method (ie. the truncated Wigner approx-

imation).

3Technical note: when averaging over angle in momentum space we have sampled |k| at 32 points; the first and

last points are excluded from the resulting distribution since the linear interpolating function used for resampling is

inaccurate (1) when |k| ≈ 0 and the mode population is large; and (2) at the edge of the projected region where the

mode populations are explicitly set to zero.
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• The requirement that all modes of the system are in the phononic regime at the start of the

simulation. In this regime the particle production is significant.

• A set of parameters that are experimentally relevant.

The criteria for the validity of the TWA, has been discussed in section 7.2.2. In particular,

for our simulations, we are required to choose a condensate population with N0 � M = 3209.

Noting that in our simulations the classical field is normalised to 1, the requirement that the system

is weakly interacting is satisfied when the nonlinearity CNL is small compared with the condensate

population N0.

Furthermore we wish to investigate a regime where a significant fraction of the modes are

phononic (as determined by k < 1/ξ) so that we can compare our results with the analytic calcu-

lations in the acoustic approximation. In computational units the phonon to free-particle cross-over

is determined by k
2
c/2 = CNL(0). That is, we require a large initial nonlinearity.

Recent experimental observations indicate that 85Rb condensates have the most widely tunable

interactions via a Feshbach resonance. We refer in particular to experimental results from the

JILA group [16, 212]. In their results (see [16]) a stable condensate of 104 atoms was formed

with a variation of the scattering length from zero to 4000a0. The associated diluteness factor

na3 ∼ 10−2 indicates such a system has significant interactions but can still be considered to be

weakly interacting. We will justify this remark by showing that classical field simulations with

this diluteness factor exhibit dynamics that are satisfactorily described by Bogoliubov theory of a

weakly interacting Bose gas.

7.4.1 Simulation parameters

We employ the parameters from [16], but use a larger atom number ofN0 = 107 while considering

the same (peak) number density N0/V ≈ 1012 cm−3. We also take the maximum possible initial

scattering length to be a = 4000a0 at t = 0.

With these parameters in mind we calculate the dimensionless parameters required for the

classical field simulation. From (7.22) and assuming Lz ≈ γzV
1/3 we can estimate the (dimen-

sionless) initial nonlinear interaction strength is

CNL =
4πa

γzV 1/3
N0 ≈ 1.24 × 105

γz
(7.25)

The anisotropy parameter should be taken γz < 1 for the quasi-two dimensional geometry — we

do not impose a specific value, but note that we are free to choose a value of the scattering length

less than ∼ 4000a0. Therefore to meet all the above requirements we select CNL(t = 0) = 1×105

and N0 = 107 for the simulation results presented in this part of the thesis. While a stable

condensate with this atom number has not yet been achieved experimentally, it gives a diluteness

factor less than na3 ∼ 10−2 as found in [16], and so should in principle be possible.

With a large value for N0, the thermalisation that can occur in the TWA at large nonlinearities

is suppressed. The quasiparticle production demonstrated is then due solely to the effects of ex-

panding the effective spacetime. Additionally we note that the TWA is valid for short times only
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— this allows us to explore systems undergoing rapid expansion and for which there is appreciable

particle production.

Before we embark on the application of the classical field method to expanding universe mod-

els (in the next chapter), we characterise the simulation results for a time-independent Hamiltonian

(ie. static geometry). We will therefore be able to comment on the validity of the Bogoliubov the-

ory for our range of simulation parameters. We first show how the temperature and elementary

excitations of the system can be extracted from the classical field.

7.5 Estimating the temperature

We can estimate the temperature of the system from the momentum distribution as follows.

The Bogoliubov Hamiltonian (6.40) represents a system of non-interacting quasiparticles and

suggests that the system cannot approach thermal equilibrium. However, the quantum field (via

the classical field method) is propagated according to the full Hamiltonian (6.35) which implic-

itly includes interactions between quasiparticles and therefore the system does indeed thermalise

after some time as long as excited modes are occupied (ie. the system is not in the ground state

corresponding to the quasiparticle vacuum).

In thermal equilibrium, the mean number of quasiparticles in mode k is given by the Bose-

Einstein distribution

Nk = 〈b̂†
k
b̂k〉 =

1

eεk/kBT − 1
(7.26)

where εk is given by the Bogoliubov dispersion relation (6.46). The Bogoliubov Hamiltonian

(6.40) commutes with the quasiparticle number operator so that there are a well defined number

of quasiparticles and we can write the mean number of particles in mode k [213]

Np
k = 〈â†kâk〉

= u2
kNk + v2

k(N−k + 1)

=
Nk +A2

k(N−k + 1)

1 −A2
k

(7.27)

Equipartition of energy

Following Davis [53,214], the temperature T can be estimated by assuming equipartition of energy

so that

〈Nk〉W =
kBT

Ek − µ
(7.28)

where Ek = εk + λ is the energy for each Bogoliubov mode in a condensate with eigenvalue λ,

and µ is the chemical potential (in the limit of zero temperature we recover µ = λ). Here 〈Nk〉W
refers to the quasiparticle population calculated in the Bogoliubov basis. We can then write [53]

εk = kBT

(
1

〈Nk〉W
− 1

〈N0〉W

)
(7.29)
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Defining the dimensionless temperature as T̄ = kBT/εLN , where εL = mL2/~2, we then get

εk = T̄

(
N

〈Nk〉W
− N

〈N0〉W

)
= T̄ f(〈Nk〉W ) (7.30)

Performing a linear fit of εk vs f(〈Nk〉W ), the slope then determines the dimensionless tempera-

ture T̄ .

Bose-Einstein distribution

To check that equipartition gives accurate results, we can instead perform the same analysis using

the Bose-Einstein distribution as our starting point. In this case

〈Nk〉W =
1

e(Ek−µ)/kBT − 1
+

1

2
(7.31)

and so

εk = T̄ log

(〈Nk〉W + 1/2

〈Nk〉W − 1/2

)
− log

(〈N0〉W + 1/2

〈N0〉W − 1/2

)
= T̄ f(〈Nk〉W ) (7.32)

7.5.1 Ensemble averaging and ergodicity

The evolution of the PGPE with initial Wigner noise represents a single trajectory of the system

through phase space. To calculate expectation values of any operators we would therefore require

an ensemble average over many trajectories. However, this may require a prohibitively large

computational time. To avoid this issue, one can appeal to the ergodic hypothesis that states the

time average of the system at equilibrium in a single trajectory is the equal to the ensemble average

over many trajectories.

7.6 Power Spectral Density

It is well known that for a Bose-Einstein condensate the elementary and collective excitations are

formally equivalent [215, 216]. We therefore recover the Bogoliubov dispersion relation (6.46)

(or (7.24) in dimensionless units) by calculating the power spectrum of the fluctuations about the

homogeneous ground state as follows.

The density fluctuations are

∆n(x, t) = |ψ(x, t)|2 − |ψ0(x)|2 (7.33)

where ψ0(x) = 1 is the (normalised) ground state wave-function of the GPE for the homogeneous

case. Transforming to momentum space

∆nk(t) =
1√
V

∫

V
dx e−ik·x∆n(r, t) (7.34)
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Figure 7.1: Number of atoms in the condensate vs time for different sets of parameters: each result

is for a single trajectory with either a Bogoliubov (quasiparticle) initial vacuum or a white noise

(momentum) vacuum. Other parameters are Nx = Ny = 128.

The power spectral amplitude is

G(k, ω) =
1

T

∫ T

0
dt e−iωt∆nk(t) (7.35)
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Figure 7.2: Equipartition of energy: linear fit of (7.30) to give temperature T̄ . The initial state

includes vacuum fluctuations for a white noise vacuum (ie. 1/2 particle per momentum mode). Er-

godicity has been assumed and the results are therefore time averaged over the final 50 simulation

time points. Parameters are: (a) CNL = 104, N0 = 105; (b) CNL = 105, N0 = 107.

with corresponding power spectral density given by

P (k, ω) = G∗(k, ω)G(k, ω) (7.36)

To find the spectrum for k = |k|, we further average over angle in momentum space by resampling

the distribution in polar coordinates to give P (k, ω).

7.7 Results for Homogeneous BEC

We present the results of classical field simulations for the case of a homogeneous Bose-Einstein

condensate where all external parameters are time-independent. Our motivation here is to establish

that the quasiparticle vacuum represents an acceptable ground state for the range of simulation

parameters we utilise in the expanding universe model simulations presented in the next chapter.

7.7.1 Condensate depletion

Clearly if the initial state for the classical field simulation is the correct ground state, the sys-

tem will evolve away from this state towards equilibrium (via interactions between quasiparticle

modes) — this can lead to depletion of the condensate mode. Figures 7.1(a)-(c) show the conden-

sate density for three different sets of parameters. In particular, Figure 7.1(a) has CNL = 1× 104,

N0 = 1 × 105, Figure 7.1(b) has CNL = 1 × 104, N0 = 1 × 106, and Figure 7.1(c) has

CNL = 1 × 105, N0 = 1 × 107. In all cases, the initial state with a white noise vacuum leads to

further depletion of the condensate, whereas the effect with the Bogoliubov quasiparticle vacuum

is minimal. Moreover, for the the case of CNL = 1 × 105 and N0 = 1 × 107 the Bogoliubov



Chapter 7: The classical field method 116

|k|

w
k

 

 

0 50 100 150

−3

−2

−1

0

1

2

3

x 10
4

−5

−4

−3

−2

−1

0

(a) CNL = 1 × 103

|k|

w
k

 

 

0 50 100 150

−3

−2

−1

0

1

2

3

x 10
4

−5

−4

−3

−2

−1

0

(b) CNL = 1 × 104

|k|

w
k

 

 

0 50 100 150

−1

−0.5

0

0.5

1

x 10
5

−5

−4

−3

−2

−1

0

(c) CNL = 1 × 105

Figure 7.3: Calculated dispersion relation from (7.36). The numerical results are given by an

density plot of the log of the power spectrum (renormalised so that the peak value is unity) with

the darker regions indicating higher density. Results are ensemble averaged over 10 runs with

parameters N0 = 107, Nx = Ny = 128. For comparison, also shown is the analytic result (white

dashed curve) from the Bogoliubov theory (7.24), and the phonon branch of the spectrum ω ∼ ck
(blue solid curve).
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quasiparticle vacuum leads to negligible depletion of the condensate. We further note that the

simulation time of t = 1 × 10−2 used here exceeds the simulation time for most of the results

presented in the next chapter (the exception is the tanh expansion model).

7.7.2 Temperature estimates for white noise vacuum

We have seen that when the initial state includes Gaussian white noise the system undergoes a

transient thermalisation. This reflects the fact that this initial state does not correspond to the

quasiparticle vacuum for the interacting system. We can calculate the temperature of the system

using the equipartition of energy as outlined in section 7.5. We present two examples to demon-

strate the efficacy of the procedure. For these results we utilise the ergodic hypothesis and so time

average over the last 50 simulation time points to give the quasiparticle distribution. Figure 7.2

shows the linear fit of (7.30) to give the dimensionless temperature T̄ . The case of CNL = 104

and N0 = 105 leads to a larger temperature compared to the case of CNL = 105 and N0 = 107,

which is consistent with the corresponding depletion of the condensate mode.

7.7.3 Elementary excitations

We plot the intensity of the power spectrum (7.36) in Figure 7.3 for three different nonlinearities,

and with the analytic expression for the Bogoliubov dispersion relation given by (7.24) — the

agreement is excellent and we can surmise that the Bogoliubov theory is accurate for the regime

in which we are working. The solid blue curve represents the phonon branch of the spectrum with

ω ∼ ck, which dominates for the highest value of the nonlinearity as per Figure 7.3(c). In contrast

for the lowest value of the nonlinearity shown in Figure 7.3(a) the dispersion is approximately

quadratic as the single-particle energy dominates over the interaction energy.

The recovery of the Bogoliubov dispersion relation from the power spectral density reflects

the fact that the collective and elementary excitations are equivalent in a Bose-condensed system

[216].

7.8 Conclusions

We have introduced the classical field method based on the truncated Wigner approximation; this

tool is used to simulate the FRW expanding universe models introduced in chapter 6, with results

presented in the next chapter. The choice of parameters CNL = 105 and N0 = 107 for these

simulations has been justified on both physical and technical grounds. In particular, the initial

state that is constructed using a Bogoliubov quasiparticle vacuum is suitable for these simulations

as the effects of thermalisation are minimal — this is an important consideration since quasipar-

ticle production in an expanding universe model can be a small effect, which otherwise might be

obscured by a thermal component arising from the initial state.
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Chapter 8

Expanding Universe simulations

8.1 Introduction

We present the numerical results of classical field simulations based on the TWA for the expansion

scenarios outlined in Section 6.5 — namely the de Sitter expansion, tanh and cyclic expansion

scenarios, with the sudden transition as a limit of an infinitely fast de Sitter or tanh expansion.

The results are compared to the analytic predictions in the acoustic approximation, and also to

the sudden transition prediction that includes the nonlinear dispersion of the modes (see equation

6.95).

8.2 Quasiparticle production results

In the results shown, we have calculated the quasiparticle populations for each mode as a function

of time; this was accomplished by projecting from the single particle basis to the Bogoliubov

basis using the expression (7.18), and using the nonlinearity CNL(t). Thus the basis for counting

quasiparticles corresponds to projecting into the instantaneous Minkowski vacuum at each time.

8.2.1 de Sitter universe

For an expansion corresponding to the de Sitter universe, the scaling function b(t) takes the form

(6.80). Figure 8.1 shows the results for an expansion of X = 2000 and four different rates of

expansion ts = 1 × 10−5, 5 × 10−5, 1 × 10−4 and 1 × 10−3.

For comparison, the sudden transition result for X = 2000 from (6.96) is shown at the final

time by the red dashed curve. This gives the upper limit on the permissible particle production in

each mode.

Also shown is the time tc when each mode crosses from phonon to particle-like behaviour due

to the expansion of the universe, as determined by k2/2 = CNL(tc) – this is indicated by the blue

points on each plot.

An intuitive picture of the effect of quasiparticle production is demonstrated by Figure 8.2,

which gives the field density at the initial and final times for the case of ts = 1× 10−5. The small

scale fluctuations given by the initial quasiparticle (Bogoliubov) vacuum are amplified to a larger

119
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(a) ts = 1 × 10−5 (b) ts = 5 × 10−5

(c) ts = 1 × 10−4 (d) ts = 1 × 10−3

Figure 8.1: de Sitter expansion: time dependence of Bogoliubov mode populations. Parameters

areCNL(t = 0) = 1×105,N0 = 107 andX = 2×103. The blue points on each curve show where

each mode crosses over from phonon to free-particle behaviour (as defined by k
2
c/2 = CNL). The

green dashed curve shows the analytic prediction in the acoustic approximation from (6.68). The

red solid curve shows the analytic prediction for a sudden transition from (6.95).

scale after expansion has occurred.

8.2.2 Modified de Sitter expansion

In an actual experiment, it is unfeasible to implement the de Sitter expansion we have described

previously in section 6.5.3. A sudden switch on of the expansion would require a discontinuous

variation in the external magnetic field for an initially prepared condensate, which would lead to

higher order scattering processes. In this case the effective field theory that our model depends on

becomes invalid. Moreover, any variation in an external parameter necessarily requires a finite –

albeit small – time.

To address this issue we consider a lead in time tI where the nonlinearity smoothly varies from

a constant initial value CNL(0) to the de Sitter expansion starting at t = tI and lasting for a time

tII . Moreover we add a lead out time tIII where the scaling function varies continuously from the

end of the de Sitter expansion at t = tI+tII to a constant value at the final time tf = tI+tII+tIII .

Such a modified de Sitter expansion could be implemented with the piecewise scaling function:
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Figure 8.2: de Sitter model: density plot for renormalised wavefunction at beginning (t = 0) and

at end (t = tf ) of expansion. Parameters are ts = 1 × 10−5, CNL(t = 0) = 1 × 105, and

N0 = 107.

t ≤ tI (parabolic):

b(t) =
−1

(2ts + tI)tI
t2 + 1 (8.1)

tI ≤ t ≤ tI + tII (de Sitter):

b(t) =
2ts

2ts + tI
e(tI−t)/ts (8.2)

tI + tII ≤ t ≤ tI + tII + tIII (parabolic):

b(t) =
e−tII/ts

2ts + tI

[
1

tIII
(t− tI − tII)

2 − 2(t− tI − tII) + 2ts

]
(8.3)

The definition of the expansion X gives

b(tI + tII + tIII) =
1

X
(8.4)

or from (8.3)

2ts − tIII

2ts + tI
e−tII/ts =

1

X
(8.5)

We consider two cases for a modified de Sitter expansion. For convenience we choose the

lead-in and lead-out times such that tI = tIII = γts.

Case (i) ts fixed: In this case we fix ts so that

tf = ts

[
log

(
2 − γ

2 + γ
X

)
+ 2γ

]
(8.6)

Case (ii) tf fixed: In this case we fix tf so that

ts = tf

[
log

(
2 − γ

2 + γ
X

)
+ 2γ

]−1

(8.7)
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(a) ts = 1 × 10−5 (b) ts = 5 × 10−5

(c) ts = 1 × 10−4 (d) ts = 1 × 10−3

Figure 8.3: Modified de Sitter expansion: time dependence of Bogoliubov mode populations.

Parameters are CNL(t = 0) = 1 × 105, N0 = 107 and X = 2 × 103. The lead in and lead out

times are given by tI = tIII = 1
2ts. The blue points on each curve show where each mode crosses

over from phonon to free-particle behaviour (as defined by k
2
c/2 = CNL). The red solid curve

shows the analytic prediction for a sudden transition from (6.95).

Figure 8.3 shows results for a modified de Sitter expansion with the scaling function given by (8.6)

with γ = 1/2 and all other parameters the same as the de Sitter results given in Figure 8.1. The

results are nearly identical to those given in Figure 8.1 indicating that the modified scale factor

does not invalidate the de Sitter results. The slight reduction of particle production in the modified

de Sitter case can be attributed to the slightly slower expansion that results from using (8.6); that

is, tf ≈ 8.1ts for the modified de Sitter expansion compared with tf ≈ 7.6ts for the standard de

Sitter expansion (both cases have the same expansion X = 2 × 103).

8.2.3 tanh Expansion

In this case scaling function b(t) is given by the parametric curve in t̃ by equations (6.77) and

(6.78). The form of b(t) tends to exhibit a rapid early change followed by a long tail as it ap-

proaches its final value b(tf ). Due to the computational expense in running simulations for long

times, we took the final simulation time as t̃f = t̃s tanh−1(0.999). The final value of the scal-
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(a) t̃s = 1 × 10−1 (b) t̃s = 5 × 10−1

Figure 8.4: tanh expansion: time dependence of Bogoliubov mode populations. Parameters are

CNL(t = 0) = 1 × 105, N0 = 107 and X = 103. The blue points on each curve show where

each mode crosses over from phonon to free-particle behaviour (as defined by k
2
c/2 = CNL). The

green dashed curve shows the analytic prediction in the acoustic approximation from (6.79). The

red solid curve shows the analytic prediction for a sudden transition from (6.95).

ing function b(tf ) then reached ≈ 99.9% of its target value 1/X. This minor discrepancy had a

negligible effect on the results shown.

Figure 8.4 shows the results for an expansion ofX = 1000 and two different rates of expansion

t̃s = 0.1 and 0.5. Similarly to the de Sitter expansion results, the sudden result for X = 1000

is shown by the red solid curve and the phonon to particle-like crossover is indicated by the blue

points. Moreover, the green dotted curve shows the particle production for each mode according

to the prediction for the acoustic approximation given by (6.79).

8.2.4 Cyclic universe

In this case, we consider the oscillating scaling function given by (6.97). In particular, we consider

two subcases: a single cycle (m = 1), which corresponds to a single expansion and contraction

for the effective spacetime; and multiple cycles (m > 1), which correspond to m expansion and

contractions. The peak wave-vector kresonance for parametric resonance from (6.98) is shown by

the position of the red solid line in each case.

Single cycle (m = 1)

We further consider two specific sets of parameters: (i) m = 1, X = 2000 and ts = 1 × 10−5;

m = 1, X = 2000 and ts = 1 × 10−4. The corresponding simulation results are given by

Figures 8.5(a) and (b). In both cases there is a transient phase where there is dramatic quasiparticle

production in the time-dependent Bogoliubov basis; however, the net quasiparticle production at

the end of the cycle (t = tf ) is small in both cases, and in particular is very close to zero for the

faster cycle in Figure 8.5(a). Note that for ts = 1 × 10−5 the resonance condition occurs for a
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(a) ts = 1 × 10−5 (b) ts = 1 × 10−4

Figure 8.5: Cyclic universe: Nonlinearity vs time (left) and time dependence of Bogoliubov mode

populations (right) for a single cycle (m = 1) and for two different periods ts. Parameters are

CNL(t = 0) = 1 × 105, N0 = 107 for both cases. The red solid line shows the position of the

peak wave-vector for parametric resonance from the analytic prediction (6.98).

wave-vector larger than the cut-off for the projector (ie. kresonance > kcut-off).

Multiple cycles (m > 1)

The excitation of the field due to parametric resonance is much greater when there are multiple

cycles of the scaling factor, and we can therefore consider a smaller driving amplitude X. In

particular, we consider three specific sets of parameters for this subcase: (i) m = 5, X = 100

and ts = 1 × 10−4; (ii) m = 10, X = 2 and ts = 1 × 10−4; and (iii) m = 10, X = 2 and

ts = 2 × 10−4. The corresponding simulation results are given by Figures 8.6(a)-(f). Clearly the

mode population is peaked near the resonance condition.

For the two cases with m = 10 and X = 2, the field density at the initial and final times are

given by Figures 8.7 and 8.8; the parametric resonance leads to the amplification of large scale

fluctuations on the length scale that corresponds to the peak mode frequency. This can be clearly

seen as the density fluctuations for the final simulation time in Figure 8.8 are on a longer scale

than those shown in 8.7.

8.3 Discussion

8.3.1 Inflationary universe models

The healing length increases as the expansion proceeds; a mode k that starts as phononic (k <

1/ξ(0)) will at a later time tc cross-over to a particle-like regime (k ∼ 1/ξ(tc)). According to the

discussion of section 6.3 we expect particle production to be dominant before this time, the mode

populations becoming fixed after this time. This prediction is bourne out in the results shown in

Figures 8.1 and 8.4.

Moreover, as is clear in these results, the sudden transition prediction given by (6.96) sets an
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Figure 8.6: Cyclic universe: Nonlinearity vs time (left) and time dependence of Bogoliubov mode

populations (right) for three different scenarios. Parameters are CNL(t = 0) = 1 × 105, N0 =
107 for all cases. The red solid line shows the position of the peak wave-vector for parametric

resonance from the analytic prediction (6.98).

upper limit on the particle production in each mode. A sudden transition corresponds to ts → 0

in the de Sitter expansion case, or t̃s → 0 in the tanh expansion case; in this limit the classical
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Figure 8.7: Cyclic model: Density plot for renormalised wavefunction at beginning (t = 0) and at

end (t = tf ) of expansion. Parameters arem = 10,X = 2, ts = 1×10−4, CNL(t = 0) = 1×105,

and N0 = 107.
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Figure 8.8: Cyclic model: Density plot for renormalised wavefunction at beginning (t = 0) and at

end (t = tf ) of expansion. Parameters arem = 10,X = 2, ts = 2×10−4, CNL(t = 0) = 1×105,

and N0 = 107.

field does not evolve, but the Bogoliubov basis that diagonalises the Hamiltonian changes. The

results clearly indicate that the particle production approaches the sudden transition prediction in

both scenarios when the expansion rate is largest – see Figures 8.1(a) and 8.4(a). The discrepancy

for small |k| in the tanh expansion case is due to nonlinear interactions, which are neglected in

the free field theory of Section 6.3. We elaborate on this point below.

8.3.2 Thermal equilibrium and the adiabatic regime

There are two factors which can lead to a thermal spectrum for the occupation numbers of quasi-

particles. Firstly, if the expansion is adiabatic, the particle production leads to a thermal spec-

trum [121]. This is the case even when the underlying theory is for a free-field as in section 6.2.

Secondly and more generally, the CFM is based on the field dynamics for the Hamiltonian (6.35)

which implicitly includes higher order terms not present in the approximate Bogoliubov Hamilto-

nian (6.40); therefore the Bogoliubov modes are interacting — albeit weakly — and even in the

absence of damping the system will eventually approach thermal equilibrium due to ergodicity.

In the CFM the temperature for a weakly interacting system can be estimated by assuming
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Figure 8.9: Equipartition of energy at the final time for de Sitter expansion with four different

expansion rates. Parameters are CNL(t = 0) = 1 × 105, N0 = 107 and X = 2 × 103.

equipartition of energy. Following Davis et al. [53], this gives:

〈Nk〉W =
kBT

Ek − µ
(8.8)

where Ek = εk + λ is the energy for each Bogoliubov mode in a condensate with eigenvalue λ,

and µ is the chemical potential. Here 〈Nk〉W refers to the quasiparticle population calculated in

the Bogoliubov basis. We can then write

εk = kBT

(
1

〈Nk〉W
− 1

〈N0〉W

)
(8.9)

Defining the dimensionless temperature as T̄ = kBT/εLN , where εL = mL2/~2, and rearranging

(8.9) gives

T̄ = ε̄k

(
N

〈Nk〉W
− N

〈N0〉W

)−1

(8.10)

That is, if the system is in thermal equilibrium the function T̄ (|k|) should be constant.

In Figure 8.9 we plot this function for the de Sitter expansion results with ts = 1 × 10−5, 5 ×
10−5, 1 × 10−4 and 1 × 10−5, and at the final time in each case for X = 2000. For the fastest

expansion with ts = 1 × 10−5, T̄ is approximately linear, indicating the system is not in thermal

equilibrium. This is expected since the fastest expansion rate approaches the sudden expansion

case, for which the particle production is not thermal as we have previously seen for the acoustic

approximation (see Figure 6.3). For the slowest expansion with ts = 1× 10−3, there is negligible

particle production so that the mode populations are fixed at the initial value of half a particle per

mode for the classical field. In this case it follows from (8.10) that T̄ ∼ ε̄k as evident in the plot.

In contrast, we note for the two intermediate expansion rates (ts = 5 × 10−5 and 1 × 10−4),

T̄ is relatively flat for small |k| which corresponds to the regions in Figure 8.1 where the particle

production is most significant. In these cases, the slower expansions result in an approximately



Chapter 8: Expanding Universe simulations 128

thermal spectrum for the phononic modes, which is consistent for adiabatic expansion in the free-

field theory. For the larger |k| modes, no particle production occurs, and the mode populations are

frozen at the initial value of half a particle per mode in the classical field. If the field was further

evolved at the final nonlinearity CNL(t = 0)/X, the system should eventually reach thermal

equilibrium via ergodicity. This effect is evident in the tanh expansion results (Figure 8.4) where

the nonlinearity CNL asymptotically approaches a non-zero final value. In particular, the nonlinear

mode mixing accounts for the discrepancy between the analytic predictions for the free-field theory

and the particle production in the low |k| modes. This effect is more pronounced in Figure 8.4(b)

where the system evolves for a much longer time.

8.3.3 Cyclic universe model

The mode spectrum that results from the implementation of a cyclic universe model is markedly

different to the case of inflationary expansion (ie. de Sitter, tanh or sudden expansions). Specifi-

cally, there is a non-zero wave-vector at which the mode population peaks, which is given by the

condition for parametric resonance as discussed in section 6.6.2. The results for a cyclic universe

are given for a single cycle by Figures 8.5(a) and (b), and for multiple cycles by Figures 8.6(a)-(f).

For the subcase of a single cycle (m = 1) there are two observable effects:

• A peak in quasiparticle number midway through the cycle, which corresponds to the usual

notion of particle production due to expansion as in the inflationary models. This is an

artifact of projecting the quasiparticle number into the time-dependent Bogoliubov basis

with nonlinearity U = U0/X.

• The net quasiparticle number at the end of the cycle is determined by projecting into the

Bogoliubov basis with nonlinearity U(tf ) = U(0). That is, the effective spacetime is the

same at the start and end of the cycle (providing quasiparticle production does not lead to

appreciable depletion of the condensate). Any quasiparticle production is then attributed

to parametric excitation, which peaks for the wave-vector corresponding to the resonance

condition (6.98). For the cycle with a longer period (ts = 1×10−4), shown in Figure 8.5(b),

the resonant wave-vector is within the projected mode-space (ie. kresonance < kcut-off) and

there is non-zero quasiparticle production at the end of the cycle. In contrast, for the cycle

of shorter period (ts = 1 × 10−4), shown in Figure 8.5(a), the resonant condition occurs

for modes outside the projected mode-space (ie. kresonance > kcut-off) and there is negligible

quasiparticle production for the system modes.

Quasiparticle production is more dramatic for the case of multiple cycles as we can see from

the results in Figures 8.6(a)-(f). In particular, referring to the discussion in section 6.6.2, for the

first case with m = 5 and X = 100, the parametric resonance leads to a broad peak which can be

attributed to the large value of X. By contrast, for the second case with m = 10 and X = 2 the

peak is narrower due to the smaller value of X. A thermal component is also evident in both cases

for low momenta modes, due to interactions between the quasiparticle modes. This component

is expected to grow with longer evolution times as the modes continue to interact (noting that the

magnitude of CNL is significant throughout the evolution).



129 8.4 Conclusions

8.4 Conclusions

In summary, we have run classical field simulations for analogue models of inflationary cosmology

(de Sitter and tanh expansions) and also for a cyclic universe model. For the inflationary models

the calculation of quasiparticle production Nk shows the following trends:

(i) Nk is enhanced for faster expansions (small ts) and larger expansions (large X). In the

limit of a very fast expansion, the results approach the sudden result from (6.95), which is

expected since the field does not evolve for a sufficiently fast change in the nonlinearity.

Quasiparticle production is always suppressed below the sudden prediction.

(ii) Nk is larger for small momenta, since each mode is strongly coupled to the effective-

spacetime in this case. Alternatively stated, the field equation (5.14) becomes adiabatic

for large momenta, so that these modes are not strongly excited by the expansion. Hence

the classical field simulations demonstrate the effects of Lorentz violation for the effective

spacetime. As expected, the analytic predictions within the acoustic approximation agree

favourably with the quasiparticle production for small momenta.

Finally, for the case of a cyclic universe, quasiparticle production is entirely attributed to para-

metric excitation of the modes as there is no net change to the effective spacetime. In particular,

parametric resonance is observed for a mode ω(k) = Ω/2 where Ω is the driving frequency.

The parametric resonance peak broadens in momentum space for larger driving amplitude ∆ as

expected from the analysis in [207].

Our calculations (both analytical and numerical) clearly indicate that quasiparticle production

should occur in a number of different scenarios, but it is worth commenting on relevant experi-

mental studies that have appeared in the literature, and to then suggest possible extensions to our

simple model.

8.4.1 Possible experimental implementation

While a specific experiment corresponding to the analogue FRW model we have described has not

yet been implemented, there has been significant progress in experiments which might ultimately

lead to this goal. In particular, the two main features required by our model are: (i) a homogeneous

BEC in a box trap; and (ii) a time-varying scattering length.

In particular, some progress has been made in experimental implementations of a box trap

for BECs, including a square well potential with high barriers on an atom chip [217] and a novel

optical trap [218]. It should be noted, however, in both these experiments the resulting hard-wall

potential confined the condensate in only one dimension. On the other hand, the implementation

of a time-varying scattering length is easily achievable in a number of different atomic species by

making use of a Feshbach resonance [137, 138]. As noted in section 7.4, a promising candidate

in this regard is 85Rb which allows widely tunable interactions [16, 212]. However, it should

be emphasised that there are additional complications near a Feshbach resonance from either the

inelastic processes of three-body recombination (TBR) [219], molecule formation [139] or the

existence of Efimov states [220]. It should be possible to avoid these issues in experiments by
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avoiding tuning the interactions too closely to the Feshbach resonance, or by expanding on a time

scale too fast for TBR to have an appreciable effect.

Irrespective of the exact details for the experimental realisation of the FRW analogue model

— ie. for a homogeneous condensate in a box trap — we should apply either (or both) of the

conditions: (i) that the potential at the edge of the box satisfies Vbox � Un, or (ii) that the

time-scale of expansion should be very small compared with the trapping frequency so that the

condensate remains in the ground state of the trap.

Finally, it is worth commenting that there is already experimental evidence for excitation of

a condensate (ie. quasiparticle production) due to a time-varying scattering length. In one such

experiment by Claussen et al. [221], Bose condensed 85Rb atoms were subjected to an increase in

scattering length, followed by a hold time and then a reduction in scattering length. In that work

the resulting depletion of the condensate increased with decreasing rise time, except for small hold

times (thold ≤ 15µs) and small rise times (trise . 20µs). The time scale over which the scattering

length was modified was too small for the condensate shape to adjust dynamically. This exper-

iment would therefore correspond to a contraction and expansion of an effective spacetime, and

the dependence of the condensate particle loss on the rise time is consistent with our predictions

of quasiparticle production. This effect has been reproduced in numerical simulations by using

a generalised Gross-Pitaevskii equation [222], although it was necessary to include the effects of

TBR there because of the relatively long hold times.

8.4.2 Outlook

The FRW analogue model we have considered is based on several simplifying assumptions, the

two most significant being homogeneity of the condensate and the two-dimensional box geometry.

The preceding discussion therefore motivates several directions in which the formalism could be

extended to deal with any realistic experiments that would implement a FRW analogue model of

an expanding unverse:

1. In an experimental implementation of the FRW analogue model, the actual trapping po-

tential may differ from a two-dimensional box trap — specifically, an implementation will

likely require a three-dimensional system with a non-zero potential. The extension of the

classical field simulations from two to three dimensions is straightforward since the PGPE

(7.5) takes the same form in either case. Moreover, it is straightforward to include a re-

alistic trap into the classical field simulations by specifying the non-zero potential in the

PGPE. However, due to the significant increase in size of the mode space for three dimen-

sions, these simulations would necessarily require a considerable computational effort (ie.

running trajectories in parallel on a cluster of workstations).

2. As an alternative to the condensate in a box scenario, we might consider the case of a BEC

in a harmonic trap where the trapping frequency and scattering length are simultaneously

modified in such a way that the condensate density is approximately constant at the center

of the trap. Thus the FRW analogue model we have considered could be approximately

reproduced near the center of the trap.
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3. It may be necessary to include the effects of TBR to accurately describe the dynamics close

to a Feshbach resonance. The inclusion of TBR into the TWA has been previously described

by Norrie et al. [223].

4. Finally, the presence of a thermal cloud will certainly affect the results of any experiment,

possibly obscuring the signal of quasiparticle production due to expansion. Finite tem-

perature effects may be included by using the classical field method whereby the phase

space is separated into a coherent region (highly occupied modes) and an incoherent region

(weakly occupied modes). This has been formalised in terms of either the finite temperature

GPE [53] or the stochastic GPE [55].

Whether or not any of the above modifications are incorporated into the model, however,

one should remain wary that the analogy to a FRW-type universe is preserved in some regime of

interest.
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Part III

An analogue model of an acoustic Black Hole in

Bose-Einstein condensates
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Chapter 9

The quantum de Laval nozzle

The mathematical facts worthy of being studied are those which, by their analogy with

other facts, are capable of leading us to the knowledge of a physical law.

Jules H. Poincare

9.1 Introduction

9.1.1 Background

One of the more interesting realisations of an analogue model of gravity is the formation of sonic

horizons in a fluid. The general consensus is that, within certain approximations, such systems

should exhibit Hawking radiation in analogy with cosmological black holes. In this part of the

thesis, we will introduce and analyse a specific proposal for an acoustic black hole in a Bose-

Einstein condensate: the quantum de Laval nozzle. Our treatment utilises methods of many-body

quantum field theory, including effects beyond the mean-field description. Indeed a fundamental

issue for the prediction of Hawking radiation is the role of quantum noise inasmuch as the vacuum

state allows processes that lead to particle production.

9.1.2 Hawking Radiation in analogue models

In chapter 5 we introduced the idea of analogue gravity, which includes the possibility of observing

the analogue of the Hawking effect in fluid systems exhibiting sonic horizons, an idea first put

forward by Unruh [103]. In that paper, using an analysis similar to Hawking’s original analysis

for cosmological black holes [162, 163], Unruh showed an acoustic black hole should emit sound

waves with a Planckian spectrum at the Hawking temperature

kBTH =
~gH

2πcH
(9.1)

where gH is the surface gravity at the black hole horizon and cH is the speed of sound at the

horizon. (Note that this form of the Hawking temperature is from Visser [118] although it is

identical to the result from Unruh [103].) The derivation required the quantisation of a scalar

field propagating in a classical fluid, analogous to a classical gravitational field. The study of

135
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acoustic black holes in classical fluids has subsequently been developed by a number of authors

[118, 130, 173, 188, 224].

The translation of this prediction to Bose-Einstein condensates (BECs), is motivated not least

by the observation that the long wavelength description of the system is given by hydrodynamical

equations of motion — this is the acoustic approximation. There are other good reasons that BECs

are promising candidates for analogue models, which we have previously discussed in section

5.4.4. To date, several groups have undertaken theoretical investigations of sonic horizons and the

Hawking effect in BECs, most notably:

Garay and co-workers [149, 161]: Garay et al. first considered the possibility of using

BECs as a candidate system for studying sonic horizons [149, 161]. In particular, they

analysed two configurations that have sonic horizons: (i) a black and white hole horizon pair

formed in a effectively one-dimensional ring geometry; and (ii) a sink-generated acoustic

black hole in an infinite one-dimensional condensate. For the ring geometry, they used a

periodic ansatz for the condensate density of the form

ρ(θ) =
N

2π
(1 + b cos θ) (9.2)

where N is the total number of atoms in the condensate, b is some parameter such that

b ∈ [0, 1], θ is the azimuthal angle around the ring, and where periodicity requires an

integer winding number. Using this ansatz, they performed a linear stability analysis with

the GPE and found regions in parameter space that exhibited dynamical instabilities, which

are associated with quasiparticle creation. However, they suggest that [149] “Evaporation

through an exponentially self-amplifying instability is not equivalent, however, to the usual

kind of Hawking radiation”.

Barcelo and co-workers [135, 142]: Barcelo et al. have proposed using a pair of de Laval

nozzles to produce a region of supersonic flow bounded by two subsonic regions [135,142].

In particular, the flow becomes supersonic after the first nozzle, whereas it becomes subsonic

after the second nozzle. This configuration is equivalent to a black hole-white hole horizon

pair. They found a single nozzle leads to an estimate for the Hawking temperature of

kBTH = ~
cH

2π
√
AH

√
3A

′′

H

4
(9.3)

valid in the acoustic approximation, where c is the speed of sound, A is the cross-sectional

area of the nozzle and the subscript H for values on the right hand side mean the corre-

sponding value should be evaluated at the horizon. An estimate of the size of the effect in

Bose-Einstein condensates then gives a Hawking temperature of TH ≈ 70 nK, which may

in principle be observable.

Leonhardt and co-workers [61, 225]: Subsequent to the work of Garay et al. [149, 161],

Leonhardt et al. [61] formulated a general theory of elementary excitations for unstable

BECs. In particular, they extended the usual Bogoliubov theory for inhomogeneous con-
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densates (see [29, 226]) to include the case when dynamical instabilities were present, and

further outlined how to construct normalisable modes for the unstable case by taking linear

combinations of the unstable modes. They then considered a one-dimensional model for a

sonic horizon based on the relation

u = −c+ αz (9.4)

valid close to the horizon. Here u is the flow velocity, c is the speed of sound, α is the ve-

locity gradient at the horizon (and therefore related to the surface gravity), and z is a spatial

coordinate with the horizon at z = 0. Moreover, a positive/negative value for α corresponds

to a sonic black/white hole horizon respectively. Using the WKB (ie. semiclassical) approx-

imation and the acoustic (ie. hydrodynamic) approximation, they showed that a sonic white

hole horizon has a discrete spectrum of instabilities.

In a related paper [225] the same authors argue that the Hawking effect can be regarded

as quantum depletion, seemingly in the absence of dynamical instabilities, and specifically

that the interaction of elementary excitations via Landau-Baliaev damping plays the role of

black hole evaporation.

Giovanazzi and co-workers [146]: Giovanazzi et al. [146] have considered the formation

of a sonic horizon from an external potential applied to a BEC confined in a waveguide .

Using the hydrodynamic approximation, they find the conditions for which a quasistation-

ary sonic horizon forms, and therefore predict a Hawking temperature that depends on the

horizon details and the mass of the constituent atoms.

9.1.3 Outline

The above investigations notwithstanding, it is still not entirely clear whether the prediction of

the Hawking effect is valid for acoustic black hole geometries in quantum systems such as BECs.

Inspired by this issue, in this final part of the thesis, we will introduce and analyse a specific geom-

etry for an acoustic black hole in a BEC, formed by two de Laval nozzles in a ring configuration

— a system we refer to as the quantum de Laval nozzle. While there certainly exist previous stud-

ies of de Laval nozzle geometries in the context of acoustic black holes, specifically for classical

fluids [143,145] and for BECs [135,142], the analyses in these studies are either classical or semi-

classical in nature. Our analysis utilises the effective quantum field theory for weakly interacting

Bose gases. We make no assumptions a priori with regards to an analogue model for the system,

except for the requirement of a sonic horizon. The results are therefore valid independently of

their interpretation in terms of an analogue model for an acoustic black hole, although we will

comment on the connection of this study with the prediction of the Hawking effect for analogue

models, and in particular for BEC systems.

The outline of this part of the thesis is as follows. In this chapter, we introduce the quantum

de Laval nozzle, a geometry that exhibits sonic horizons, and connect this with the notion of the

analogue of the Hawking effect. We then find the transonic stationary states for our system by

specifying a non-zero phase quantisation. In the next chapter, we solve the Bogoliubov-de Gennes
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equations to find the elementary excitations of our system. We are therefore able to characterise

the stability of the system for a large range of parameters. The presence of dynamical instabilities

provides — we believe – the closest connection to the Hawking effect as a dynamical process.

The effect is then demonstrated by evolving the system using a phase space method based on the

truncated Wigner approximation. We then discuss our results, conclude and suggest avenues for

further enquiry.

9.2 The de Laval nozzle

The de Laval nozzle is introduced, and it is shown how this configuration can lead to sonic horizons

due to transonic flow. We then propose a periodic arrangement of two such nozzles, which should

lead to a stable configuration for a closed system.

9.2.1 Nozzle equation

We outline a generalised derivation of the well-known nozzle equation for the Laval Nozzle; see

[227, 228] for example. We start with the equations of motion for a compressible fluid of local

density ρ, velocity v, pressure p and in a external field of force F (the usual case is F = g for a

uniform gravitational field).

Continuity is given by:

∂ρ

∂t
+ ∇ · (ρv) = 0 (9.5)

Euler’s equation is given by:

∂v

∂t
+ v · ∇v = −∇p

ρ
+ F (9.6)

Consider a de Laval nozzle that narrows to a waist1 and then widens – the cross-sectional

area is denoted A. Moreover, we impose an external potential V (x) so that the external force is

F = −∇V (x)/m.

For simplicity, we further consider an effective one dimensional geometry where A and V

only depend on the x coordinate. For a steady state (dropping the time derivatives), continuity

(9.5) becomes

ρAv = constant (9.7)

The differential form is

dv

v
+
dA

A
+
dρ

ρ
= 0 (9.8)

1the term throat is also used in the literature to denote the narrowest point of the nozzle
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Noting that c2 ≡ dp/dρ for isentropic flow, Euler’s equation (9.6) in differential form is

v dv + c2
dρ

ρ
+
dV (x)

m
= 0 (9.9)

Combining equation (9.8) with (9.9) then yields the nozzle equation:

dv

v
=

(
c2

c2 − v2

)(
dV (x)

mc2
− dA

A

)
(9.10)

We are now in a position to consider two specific cases.

Constant external potential V

The usual de Laval nozzle corresponds to the case where the external potential can be neglected.

In this case (9.10) becomes

dv

v
= −

(
c2

c2 − v2

)
dA

A
(9.11)

The physical consequences of the nozzle equation are thus as follows:

1. The situation where v = c is clearly only permitted where dA = 0, that is at the waist of

the nozzle.

2. For subsonic flow (v < c):

When dA < 0 the velocity is increasing.

When dA > 0 the velocity is decreasing.

3. For supersonic flow (v > c):

When dA < 0 the velocity is decreasing.

When dA > 0 the velocity is increasing.

The consequence of this behaviour is that if the flow has a finite velocity (and is therefore stable),

it must adjust so that v = c at the waist of a nozzle. Therefore if a subsonic flow approaches the

waist, becoming supersonic at the waist, the flow is supersonic after exiting the waist. Conversely,

if a supersonic flow approaches the waist, becoming subsonic at the waist, the flow is subsonic

after exiting the waist.

Constant cross-sectional area A

Alternatively, we consider a constant A and include an external potential V . In this case (9.10)

becomes

dv

v
=

(
c2

c2 − v2

)
dV

mc2
(9.12)

Similarly to above, the physical consequences of this form of the nozzle equation are as follows:
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1. The situation where v = c is clearly only permitted where dV = 0, that is at the waist of

the nozzle.

2. For subsonic flow (v < c):

When dV < 0 the velocity is decreasing.

When dV > 0 the velocity is increasing.

3. For supersonic flow (v > c):

When dV < 0 the velocity is increasing.

When dV > 0 the velocity is decreasing.

Similarly to the discussion above, we can assign the point where dV = 0 as the waist of the nozzle,

the flow adjusting so that v = c at the waist. If a subsonic flow approaches the waist of a nozzle,

becoming supersonic at the waist, the flow is supersonic after exiting the waist. Conversely, if a

supersonic flow approaches the waist, becoming subsonic at the waist, the flow is subsonic after

exiting the waist.

9.2.2 The quantum de Laval nozzle

In a toroidal geometry to achieve steady flow which is transonic, two de Laval nozzles are required

in tandem, the flow becoming supersonic at the waist of the first, and then subsonic at the waist

of the second. This configuration corresponds to the formation of both a black and white hole

horizon.

To implement such a nozzle we consider the one dimensional problem where the current j =

nv is constant and where there is external potential of the form

V (x) = V0 cos2
(

2πx

L

)
(9.13)

which has periodicity 2 over the region −L/2 ≤ x ≤ L/2.

For a BEC confined by such a potential, the stationary states (and so the effective spacetime

geometry) are found by solving the time-independent Gross-Pitaevskii equation subject to phase

quantisation. This may lead to modifications of the usual hydrodynamic solutions, and we there-

fore denote this configuration as the quantum de Laval nozzle (QdLN).

To extend the above analysis to three (or two) spatial dimensions it is necessary to include

variations in both A and V . Formally the one dimensional configuration is reached by starting

from the equations of motion and integrating over the transverse dimensions. The validity of the

resulting one dimensional equations require the assumption that the spatial extent of the conden-

sate in the transverse dimensions is small compared with the circumference of the torus, but is

large enough to ensure phase coherence over the condensate (ie. larger than the healing length)

and for the scattering to be three-dimensional (ie. larger than the scattering length a).



141 9.3 Estimated Hawking temperature

9.3 Estimated Hawking temperature

Treating the effective spacetime geometry as a classical quantity, so that a continuum of modes are

available, we are able to apply the usual reasoning to estimate the Hawking temperature for our

system. Specifically, following Visser [118,170] we define the surface gravity for an sonic hole as

g = −1

2

d(c2 − v2)

dx
(9.14)

An analytic prediction for the Hawking temperature (9.1) for a nozzle with a spatially varying

cross-sectional area has been found previously [135, 142]. A similar analysis for a nozzle formed

by an external potential can be made by considering the nozzle equation (9.12). In this case the

surface gravity at the horizon is given by

gH = ±cH
√

−3∇2V |H
4m

(9.15)

where L’Hospital’s rule has been used and where ∇2V |H denotes the Laplacian of V is evaluated

at the horizon. The estimated Hawking temperature from (9.1) is then

kBTH =
~

4π

√
−3∇2V |H

m
(9.16)

Using the periodic potential (9.13) and considering the phonon part of the spectrum with ~ωk ≈ kc

we find

ωpeak =

√
3V0

8mL2
(9.17)

so that the Hawking radiation spectrum peaks at the wavelength

λpeak = 2πcH

√
8mL2

3V0
(9.18)

This result is based on the equations of motion for a classical fluid, where the quantum pressure

term has been neglected — this is the hydrodynamic approximation. The prediction of a thermal

spectrum at the temperature given by (9.16) only applies to the phononic part of the spectrum.

9.4 Stationary states

In this section we find stationary solutions for the QdLN, which exhibits a black and white hole

pair; this formulation includes the quantum pressure term and enforces the periodicity of the sys-

tem.
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9.4.1 Equations of motion

The model is formulated using the one dimensional Gross-Pitaevskii equation (GPE)

i~
∂ψ(x, t)

∂t
=

(
−~

2∂2
x

2m
+ V (x) + U1D|ψ(x, t)|2

)
ψ(x, t) (9.19)

which is obtained from (1.8) by assuming the the transverse wavefunction is in the harmonic

oscillator ground state given by φ(r) = (1/πr2⊥)1/2e−r2/2r2

⊥ . The effective nonlinearity is U1D =

U/(4πr2⊥) which is valid assuming the scattering length a is much smaller than the transverse

dimension r⊥ so that the scattering is effectively three dimensional. Assuming the wavefunction

can be written as a macroscopic order parameter

ψ(x, t) =
√
n(x, t)eiΘ(x,t) (9.20)

with current density

j ≡ ~

2mi
(ψ∗∇ψ − ψ∇ψ∗) (9.21)

This definition gives the velocity

v =
~

m
∂xΘ (9.22)

Substituting into (9.19) the equations of motion are

∂n

∂t
+ ∂x(nv) = 0 (9.23)

and

−~
∂Θ

∂t
= − ~

2

2m
√
n
∂2

x

√
n+ V (x) + U1Dn+

1

2
mv2 (9.24)

When the interaction term dominates, the density varies slowly, and the Laplacian term ∂2
x (ie. the

quantum pressure term) can be dropped; then using (9.22) this last equation can be rewritten as

m
∂v

∂t
= −∂x

(
V (x) + U1Dn+

1

2
mv2

)
(9.25)

9.4.2 Ground state

For steady state flow we take the one dimensional stationary solution of the form

ψ(x, t) =
√
n(x) eiϑ(x)e−iµt/~ (9.26)

If we take the stationary solution of (9.23) and (9.24) using (9.26), and take the fixed current

condition, we can write:

n ≡ s2 (9.27)

v = j/s2 (9.28)

µs = − ~
2

2m

d2s

dx2
+ V (x)s+ U1Ds

3 +
mj2

2s3
(9.29)
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Solutions to this nonlinear Schrödinger equation then allow us to specify the wavefunction by:

ϑ(x) =
m

~

∫
j dx

s(x)2
(9.30)

ψ(x) = s(x) exp
(
iϑ(x)

)
(9.31)

To ensure the complex wavefunction is single-valued on the periodic domain, we must also

apply the phase quantisation condition:

∆ϑ =
m

~

∫ L/2

−L/2
v(x)dx = 2πw0 (9.32)

for an integer winding number given by w0 (a topological quantum number).

9.4.3 Solutions in hydrodynamic approximation

Assuming the interactions dominate (ie. the nonlinear term is large), the density varies slowly and

the Laplacian term can be dropped — this is the hydrodynamic approximation. In this case the

time-independent GPE can be written as a cubic, either in terms of the density:

n3 +

(
V (x) − µ

U1D

)
n2 +

mj2

2U1D

= 0 (9.33)

or (using v = j/n) in terms of the velocity :

v3 + 2

(
V (x) − µ

m

)
v +

2jU1D

m
= 0 (9.34)

No flow (j = 0):

In this case v = 0 and there is one non-trivial solution

n =
µ− V (x)

U1D

(9.35)

We normalise to the single-particle wavefunction so that
∫
n dx = 1, the chemical potential µ

being adjusted to enforce this condition. The normalisation condition is given by

∫ L/2

−L/2

µ− V0 cos2(2πx/L)

U1D

dx = 1 (9.36)

which gives

µ =
U1D

L
− V0

2
(9.37)

The density then takes the analytic form

n =
1

L
+

V0

U1D

(
1

2
− cos2(2πx/L)

)
(9.38)
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Figure 9.1: The chemical potential as a function of flow velocity at the waist (x = 0) as given by

(9.34); when µ > µcrit there are two real positive solutions. The dashed line indicates the transonic

condition where c = v and a crossover is possible from the subsonic to supersonic regimes (or vice

versa). Dimensionless parameters are C = 500, V0 = 100 and w0 = 10 (the current is determined

implicitly by this choice of parameters).

Non-zero flow (j > 0):

For the case where there is non-zero flow (j > 0), we find solutions using (9.34) since the equa-

tions have a simpler form in this case.

We must select our parameters appropriate to ensure we can find a configuration with a

crossover between subsonic and supersonic regimes. The solutions to a cubic of the form

v3 + a2v
2 + a1v + a0 = 0 are characterised by defining the quantities [202]

q = 1
3a1 − 1

9a
2
2 , r = 1

6(a1a2 − 3a0) − 1
27a

3
2

and then noting that

q3 + r2 > 0 → 1 real and 2 complex roots

q3 + r2 = 0 → all roots real, at least 2 equal

q3 + r2 < 0 → all roots real

From the cubic (9.34) we can write

q3 + r2 =
8

27

(
V (x) − µ

m

)3

+

(
jU1D

m

)2

(9.39)

Clearly a crossover from the subsonic to supersonic branches at a particular point, xtrans say,

will only occur when q3 + r2 = 0. Moreover stable flow will only occur throughout the region
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when the subsonic and supersonic solutions are real everywhere (ie. q3 + r2 ≤ 0). From (9.39), it

is only possible to satisfy both these constraints when the transonic point occurs at the maximum

value of the potential V (xtrans) = V0. That is, the maximum of the potential acts as the waist of

the Laval nozzle.

Choosing q3 + r2 ≤ 0, so that there are always at least two real solutions, we can express the

solutions analytically as:

vn(x) =

√
8(µ− V (x))

3m
cos

(
θ(x) + 2π

3

)
negative (9.40)

v−(x) =

√
8(µ− V (x))

3m
cos

(
θ(x) + 4π

3

)
subsonic (9.41)

v+(x) =

√
8(µ− V (x))

3m
cos

(
θ(x)

3

)
supersonic (9.42)

with

θ(x) = cos−1

(
−jU1D

m

[
3m

2(µ− V (x))

]3/2
)

(9.43)

We can re-express the condition for transonic flow as either of the following choices of param-

eters:

1. If we specify U1D, V (x) and µ the critical current is

jcrit =

√
8

27U2
1Dm

(µ− V0)
3/2 (9.44)

For j > jcrit we have q3 + r2 > 0 and the flow is unstable.

2. Alternatively if we specify U1D, V (x) and j (and assuming these quantities are real and

positive) the critical chemical potential is

µcrit =
3

2
(jU1D)2/3m1/3 + V0 (9.45)

For µ < µcrit we have q3 + r2 > 0 and the flow is unstable.

Finding transonic solutions

We can find a transonic solution by taking the chemical potential µ = µcrit(xtrans) so that there is a

crossover from the subsonic to supersonic branches; the transonic solution is then constructed by

conjoining the subsonic (v−) and supersonic (v+) solution branches. Without loss of generality,

we take the subsonic branch to span the interval x ∈ [−L/2, 0]. More specifically, we have the

following prescription:

1. For a given V (x), U1D and an initial value of j calculate the critical chemical potential

(9.45) for crossover at V (xtrans) = V0
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(a) J = 0.99J(w0 = 10)
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Figure 9.2: velocity (v) and speed of sound (c) for two real and positive solutions to cubic given

by (9.41) and (9.42); in both cases parameters are C = 500, V0 = 100 and µ = µcrit = 5.99× 103

for the case when J = J(w0 = 10). The third solution of the cubic is negative, giving a negative

density, and is therefore omitted. When J > J(w0 = 10) the solutions become complex indicating

an unstable flow. Note that for the critical case (b) the current corresponds to a winding number

of w0 = 10, whereas for the subcritical case (a) phase quantisation is violated.

2. Use (9.40)-(9.42) and (9.43) to specify the subsonic and supersonic solution branches.

3. Combine the subsonic branch in the interval −L/2 ≤ x ≤ 0 and the supersonic branch in

the interval 0 ≤ x ≤ L/2.

4. Calculate the density and normalisation for this hybrid solution using j = n(x)v(x)

5. Iteratively adjust j so that the hybrid solution satisfies the phase constraint (9.32) for a given

winding number w0.

Note that the normalisation of the resulting solution is determined by the choice of parameters

V0, U1D and w0. It is worth commenting that the existence of the transonic solution entails a

spontaneous breaking of the parity symmetry; that is, although V (x) = V (−x), the transonic

solution has n(x) 6= n(−x).
We now use the transonic solution to the hydrodynamic problem as a starting point to finding

the stationary solutions of the GPE including the so-called quantum pressure term.

9.4.4 Dimensionless units

Before proceeding further, it is useful to introduce dimensionless units. Defining the computa-

tional units for length, time and s, respectively as

x0 = L (9.46)

t0 = mL2/~ (9.47)

s0 =
√
N0/x0 (9.48)
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we introduce the dimensionless units

s = s/s0 (9.49)

x = x/x0 (9.50)

t = t/t0 (9.51)

Note that s is the dimensionless wavefunction normalised to unity. The equation of motion (9.29)

can then be written as

µ s = −1

2

d2s

dx2 + V 0 cos2(2πx)s+ Cs3 +
J

s3
(9.52)

with

κ = mL2/~2 (9.53)

µ = κµ (9.54)

V 0 = κV0 (9.55)

C =
κU1DN0

L
(9.56)

J2 =

(
κmL2

N2
0

)
j2 (9.57)

and where κ is the unit of energy. Note that these units and the choice of potential ensure period-

icity over the range −1/2 ≤ x ≤ 1/2.

To facilitate numerical computation, we state the dimensionless form of several useful quan-

tities. With the above choice of units the dimensionless velocity is v = (mL/~)v which using

v = j/s2 gives

v =

√
2J

s2
(9.58)

Likewise the dimensionless speed of sound is c = (mL/~)c which using c =
√
U1Dn/m gives

c =
√
Cs2 (9.59)

The phase is given by

ϑ(x) =

∫
v dx (9.60)

Finally, the dimensionless form of the Hawking temperature (9.16) is given by

T =
gH

2πcH
(9.61)

We can calculate this quantity from our stationary solutions by numerically evaluating (9.14) at

the horizon.

In what follows we drop the bar notation for the dimensionless quantities; the subsequent use

of either natural or dimensionless units will be clear from the context in which they appear.



Chapter 9: The quantum de Laval nozzle 148

9.4.5 Solving for the eigenstates

To calculate stationary solutions of the time-independent Gross-Pitaevskii equation (9.19) we

utilise a numerical method based on constrained optimisation. In particular, we formulate the

problem as the the minimisation of the Gross-Pitaevski functional for a fixed nonlinearity C , po-

tential depth V0 and current J , subject to a phase quantisation constraint in terms of a fixed winding

number w0. Related methods of finding ground state solutions for the time-independent GPE are

well documented by Blakie [229].

Optimisation method

Here the time-independent GPE is solved using a variational procedure with any additional con-

straints such as normalisation or phase circulation; in particular here we formulate problem as

stated above in terms of s(x) and specified current J (which corresponds to a given phase quanti-

sation). In particular, using (9.52), (9.58) and (9.60) and we recast the problem as a set of algebraic

equations:

[
1

2

d2

dx2
+ µ− V (x) − Cs(x)2 − J

s(x)4

]
s(x) = 0

∫ +L

−L

J

s(x)2
dx− 2πw = 0 (9.62)

Note, the normalisation condition
∫
n dx has been relaxed but will be re-instated after the

optimisation by rescaling the nonlinearity C . The phase circulation constraint ensures a single-

valued wavefunction ψ = s(x)eiϑ(x) everywhere, including the boundary. By constructing the

vector

X = {si, µ} (9.63)

on the discrete spatial grid (with index i for each point) we can write (9.62) as the matrix equation

f(X) = 0 (9.64)

This equation is solved using the fsolve function from MATLAB, which is based on the Marquardt-

Levenberg algorithm. The initial condition X0 for the algorithm is supplied by the solution to the

hydrodynamic problem as discussed in section 9.4.3. The fixed parameters of the problem are

then given by C , V0 and w0. In contrast, the quantised current J is determined by the solution to

the hydrodynamic problem, and the chemical potential µ is determined by the optimisation proce-

dure. As an additional step, the final solution is renormalised to a single-particle wavefunction by

setting ψ → ψ/
√
n0 and C → Cn0 where n0 =

∫
s(x)2 dx is the density for the solution to the

optimisation procedure.
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Figure 9.3: The potential (9.13) with V0 = 100 (in dimensionless units, which have been intro-

duced in section 9.4.4).

Imaginary Time Propagation

For completeness, although we do not utilise this method here, it is also worthwhile mentioning

the method of imaginary time propagation (ITP) for finding stationary solutions. Here, a Wick

rotation τ → −it transforms the GPE (9.19) into a diffusion equation so that during evolution the

lowest eigenstate is damped at the slowest rate; hence this procedure is also known as the method of

steepest descent. To preserve norm, the wavefunction requires renormalisation at every time step.

The implementation of ITP for stationary states with persistent currents, which do not correspond

to a global minimum, is problematic. In particular, it is difficult to enforce a topological condition

on the solution such as a fixed winding number as the damped evolution drives the solution towards

a true ground state (with zero current). Moreover, for the QdLN the problem cannot be recast in the

rotating frame as translational invariance symmetry is broken by the periodic potential. We note

however, that ITP has been used elsewhere to establish a non-zero current using a time-dependent

potential [230].
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Figure 9.4: Stationary state for w0 = 3 and V0 = 100; corresponds to µ = 5.93 × 102 and

C = 3.51 × 102.



Chapter 9: The quantum de Laval nozzle 150

−0.5 0 0.5
6

7

8

9

x

|y
|2

 

 

hydrodynamic

GPE

−0.5 0 0.5
50

60

70

80

x

v
e
lo

c
it
y

 

 sound

flow

Figure 9.5: Stationary state for w0 = 10 and V0 = 100; corresponds to µ = 5.99 × 103 and

C = 3.95 × 103.
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Figure 9.6: Stationary state for w0 = 50 and V0 = 100; corresponds to µ = 1.48 × 105 and

C = 9.87 × 104.

9.5 Stationary solution results

We can vary the parameters — winding number w0 and potential depth V0 — to find a range of

transonic solutions for the QdLN. The winding number constraint specifies the current J whereas

normalisation of the solution to the single-particle wave function determines the nonlinearity C .

We show solutions, using a potential with V0 = 100 as shown in Figure 9.3, for three different

winding numbers: (i) w0 = 3 in Figure 9.4; (ii) w0 = 10 in Figure 9.5; and (iii) w0 = 50 in

Figure 9.6. In each case, both the hydrodynamic and GPE stationary solutions are shown, as well

as the resulting flow velocity and speed of sound for GPE stationary solution. The ergoregion
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(v > c) is given approximately by the right hand region 0 ≤ x ≤ 0.5. The result of using the

GPE (which includes the quantum pressure term) to find the stationary states is a small adjustment

in the positions of the black and white hole horizons when compared to the hydrodynamic case.

By construction, in the hydrodynamic case, the black hole horizon occurs at xtrans = 0, whereas

the white hole horizon occurs at xtrans = ±0.5. For the case of the largest winding number

w0 = 50, shown in Figure 9.6, it is evident that this adjustment for the GPE stationary solutions

is approximately zero because the hydrodynamic and GPE stationary solutions are approximately

equal. We further note the presence of “ripples” in the ergoregion for the GPE stationary solutions,

which are due to the quantum dispersion term, and which are larger in relative magnitude for low

winding numbers2.
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x 10
5

w
0

C

Figure 9.7: Nonlinearity C as function of winding number w0 for stationary solutions of QdLN

with V0 = 100. Note that the nonlinearity depends only very weakly on V0, and reproducing this

plot for any V0 ≤ 2000 gives a quantitatively similar result.

The GPE stationary solutions are renormalised so that the nonlinearity C is not a free parame-

ter of the system (see section 9.4.5). In fact, numerical solutions indicate that C increases with w0

but depends only very weakly on V0. We show the nonlinearity as a function of winding number

in Figure 9.7 with V0 = 100.

We have also calculated the estimated Hawking temperature for a range of parameters, as

shown in Figure 9.8. Here the data points have been calculated from (9.61) by a numerical estimate

of the surface gravity gH for the GPE stationary solution, whereas the solid lines are given directly

from the estimate (9.16) for the hydrodynamic theory. It is interesting to note that while the

Hawking temperature is relatively insensitive to w0, it increases with V0. We emphasise that this

estimate is based on the semi-classical picture of the system, and does not account for the quantised

spectrum exhibited by the QdLN. We will comment further on the implications of this in the next

2Further investigation reveals the number of oscillations nosc increases with either w0 or V0. One should be mindful

that the GPE stationary solution is well represented by the numerical grid. In practice, using the Nyquist criterion, we

have the requirement that the spatial grid should have at least nx ≥ 4nosc points.
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Figure 9.8: Estimated Hawking temperature as function of winding number w0 for range of po-

tential depths V0. The data points have been calculated from ((9.61)) by a numerical estimate of

the surface gravity gH . The solid curves are given by the estimate from (9.16).

chapter.

9.6 Progress towards an experimental implementation

To date, investigations of acoustic black holes have primarily focused on the advancement of the

theory. However, there has been impressive progress in the experimental manipulation of ultracold

atoms, as exemplified by recent experiments with rotating condensates, atoms in optical lattices,

low dimensional systems and atom chip traps. It therefore seems likely that further improvements

in technology will mean that acoustic black holes may be experimentally realised in BECs in the

near future. We briefly report on progress on experiments in BECs, which may have a practical

application in forming acoustic black holes in the laboratory, and for measuring their properties.

In particular, we consider techniques that are relevant for the implementation of the QdLN.

9.6.1 Toroidal geometries

The experimental realisation of a toroidal trap geometry for ultracold atoms, first demonstrated by

using two current-carrying loops [231], has been subsequently improved using magnetic waveg-

uides [232], a microchip trap [233] and a four loop configuration [234]. The primary motivation

for these experiments is the possibility of performing Sagnac atom interferometry.

Additionally, there have been proposals for generating persistent currents in toroidal geome-

tries by either adiabatic stirring using a rotating paddle (as formed by an optical potential) [230],
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or the method of phase imprinting [235].

9.6.2 Measurement techniques

The detection of Hawking radiation in analogue systems may require the development of new

measurement techniques. In particular, we note the following proposals that may prove relevant

to this cause:

• Schutzhold [236] has proposed a method of detecting phonons based on Raman transitions

whereby Bogoliubov excitations of one atomic species are transferred to single particle ex-

citations of another atomic species, which can then be counted using fluorescence measure-

ments.

• Modugno et al. [208] have proposed a scheme for detecting phonons of a condensate in

a toroidal geometry, which is based on parametric excitation of excitations via periodic

modulation of the confining potential. The resulting pattern formation should be visible and

lead to a determination of the Bogoliubov excitation spectrum and quantised circulation.
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Chapter 10

Stability of the quantum de Laval nozzle and

the Hawking effect

In this chapter we investigate the stability of the quantum de Laval nozzle, which we introduced

in the previous chapter. The linear excitations of the system are found by solving the Bogoliubov-

de Gennes equations. We find both stable and unstable configurations, the latter case exhibiting

complex eigenvalues in the excitation spectrum. Following Leonhardt et al. [61], we construct

normalisable modes for the dynamically unstable modes and can therefore utilise the classical

field method to investigate system dynamics. The connection is made with the Hawking effect,

and in particular, we discuss our results with respect to previous investigations of acoustic black

holes in fluid models.

10.1 Bogoliubov theory

10.1.1 The Bogoliubov-de Gennes equations

The linear excitations of the condensate are described by the Bogoliubov-de Gennes (BdG) equa-

tions, which are derived from the classical equations of motion for the order parameter. Our dis-

cussion follows the references [213, 237, 238]. Consider a solution with small oscillations around

a stationary state

ψ(x, t) = e−iµt/~

(
φ0(x) +

∑

i

[
ui(x)βie

−iωit + v∗i (x)β
∗
i e

iωit
]
)

(10.1)

where βi and β∗i are the amplitudes for the oscillations (for the quantum field, these quantities are

replaced by the bosonic annihilation and creation operators for the excitations, given by b̂i and b̂†i
respectively) and where φ0(x) is the solution to the time-independent Gross-Pitaevskii equation

(GPE) given by (9.19). Substituting this form into the time-dependent GPE and only keeping

terms linear in ui(x) and vi(x) yields the familiar BdG equations

(LGP − µ+ U1D|φ0|2)ui(x) + U1Dφ
2
0vi(x) = ~ωiui(x)

−U1Dφ
∗2
0 ui(x) − (LGP − µ+ U1D|φ0|2)∗vi(x) = ~ωivi(x) (10.2)

155
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We have introduced the Gross-Pitaevskii operator

LGP ≡ −~
2∂2

x

2m
+ V (x) + U1D|φ0|2 (10.3)

with (LGP − µ)φ0 = 0. The orthogonality and symmetry relations are chosen by the requirement

that the many body Hamiltonian for the interacting Bose gas is diagonal (to quadratic order) in the

quasiparticle operators. These are

∫
dx (u∗i (x)uj(x) − v∗i (x)vj(x)) = δij (10.4)

∫
dx (ui(x)vj(x) − vi(x)uj(x)) = 0 (10.5)

∫
dx (ui(x)φ

∗
0(x) + vj(x)φ0(x)) = 0 (10.6)

Orthogonal excitations

In the form (10.2) there is no guarantee that the mode functions are orthogonal to the condensate

wavefunction φ0. This constraint can be imposed by the introduction of the projectors

Q̂ = 1 − |φ0〉〈φ0| (10.7)

Q̂∗ = 1 − |φ∗0〉〈φ∗0| (10.8)

The excitations orthogonal to the condensate then have the mode functions [238]

ui(x) = Q̂ui(x) = ui(x) − ciφ0 (10.9)

vi(x) = Q̂∗vi(x) = vi(x) + ciφ
∗
0 (10.10)

In position space, and using (10.6), the constants ci are given equivalently by the integrals

ci =

∫
dx′φ∗0(x

′)ui(x
′) = −

∫
dx′φ0(x

′)vi(x
′) (10.11)

This leads to the so-called modified BdG equations

(LGP − µ+ U1D|φ0|2)ui(x) + U1Dφ
2
0vi(x) = ~ωi(ui(x) + ciφ0) (10.12)

−U1Dφ
∗2
0 ui(x) − (LGP − µ+ U1D|φ0|2)∗vi(x) = ~ωi(vi(x) − ciφ

∗
0) (10.13)

Applying the projectors (10.7) and (10.8) appropriately, noting that Q2 = Q for the projectors,

and writing the equations in matrix form gives

L
(
ui(x)

vi(x)

)
= εi

(
ui(x)

vi(x)

)
(10.14)
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where the operator L is given by [237]

L ≡


 LGP − µ+ U1DQ̂|φ0|2Q̂ U1DQ̂φ

2
0Q̂

∗

−U1DQ̂
∗φ∗20 Q̂ −

(
LGP − µ+ U1DQ̂|φ0|2Q̂

)∗


 (10.15)

We have made use of the fact that LGP is Hermitian. The solutions to this equation are the eigen-

values εi and normal modes ui(x) and vi(x) of the system.

Properties of L and dynamical stability

While L is not itself Hermitian, it does exhibit certain symmetries that allow us to remark on its

eigenvalue spectrum. The operator L has the following properties [237]

σx Lσx = −L∗ (10.16)

σz Lσz = L† (10.17)

in terms of the familiar Pauli matrices

σx =

(
0 1

1 0

)
, σz =

(
1 0

0 −1

)
(10.18)

These properties can be used to check the accuracy of the construction of L when we solve the

BdG equations numerically for our analogue model. The property (10.17) implies that ε∗k is also

an eigenvalue of L 1, so that the usual condition for dynamical stability, given by

Im(εi) ≤ 0 for all i, (10.19)

can be reformulated as the condition

Im(εi) = 0 for all i (10.20)

From (10.2) it is straightforward to show that [29]

(εi − ε∗i )

∫
dx
(
|ui(x)|2 − |vi(x)|2

)
= 0 (10.21)

That is, a mode (ui(x), vi(x)) is normalisable according to (10.4) only if its corresponding eigen-

value εi is real. If this is true for all modes, the many body Hamiltonian (1.1) takes the diagonal

form to quadratic order in the quasiparticle operators [29, 226]

HBog = E0 +
∑

i

εi

(
b̂†i b̂i −

∫
dx|vi(x)|2

)
(10.22)

corresponding to a set of non-interacting quasiparticle modes.

1This fact can also be seen directly from taking the complex conjugate of (10.2) while noting that the quantities U1D

and V (x) are real here.
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Landau instability

Consider a homogeneous condensate with a persistent current. The stationary state, which is a

solution to the GPE, is given by φ0 =
√
n0e

iqx for a quasimomentum q. As seen from appendix

C, the excitation spectrum is Doppler shifted to yield

εk =
~

2kq

m
±
√

~2

2m
k2

(
~2

2m
k2 + 2U0n0

)
(10.23)

where we have labeled each plane-wave mode by its momentum k. Noting that the corresponding

flow velocity is v = ~∂xθ/m = ~q/m, the condition for all eigenvalues εp to be non-negative

is v < c where c is the speed of sound. Thus is the usual Landau criterion for energetic stability

with v = c being the critical velocity [239–241]. When v > c, the low momenta modes acquire

negative eigenvalues, and the system becomes energetically unstable with respect to these modes;

the system can lower its energy by creating quasiparticle excitations of negative energy in the

presence of dissipation. In this case the system is thermodynamically unstable (or energetically

unstable).

It is worth noting (as discussed also in [149] and references within) that the timescale for dis-

sipation via this mechanism can be made long at low temperatures. When the system is perturbed

by an inhomogeneous potential, dynamical instabilities may also be present — this will lead to

dramatic growth of the unstable modes, by depleting the condensate. This effect will be the focus

of our analysis.

Normalisable modes for dynamical instabilities

The operator L (10.15) is not Hermitian and can therefore exhibit complex eigenvalues, which are

associated with dynamical instabilities; these are distinct from the energetic (ie. Landau) insta-

bilities arising from real negative eigenvalues. An immediate consequence of (10.21) is that the

Bogoliubov modes with complex eigenvalues have zero norm according to the standard construc-

tion, and therefore cannot be associated with bosonic operators in the field expansion. However it

is still possible to construct normalisable modes using the prescription from Leonhardt et al. [61]

(see also [149]), which we now outline. As we shall see, these new modes do correspond to well

defined bosonic modes.

In the present discussion, we only consider dynamically unstable modes — ie. modes with

complex eigenvalues. It is useful to employ Dirac notation. In particular, the right eigenvector of

the operator L, associated with the eigenvalue εj , is defined by

|zR
j 〉 ≡

(
uR

j (x)

vR
j (x)

)
(10.24)

which is a solution to

L|zR
j 〉 = εj|zR

j 〉 (10.25)
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Note that for clarity we have dropped the bar notation employed earlier, although it implicitly as-

sumed henceforth that the mode functions are those from (10.9) and (10.10), which are orthogonal

to the condensate. Using property (10.16) leads to the expression

L(σx|zR
j 〉)∗ = −ε∗j(σx|zR

j 〉)∗ (10.26)

Similarly, the left eigenvector of L is defined as

|zL
j 〉 ≡

(
uL

i (x)

vL
i (x)

)
(10.27)

with

〈zL
i |L = εi〈zL

i | (10.28)

using property (10.17) leads to

L(σz|zL
i 〉) = ε∗i (σz|zL

i 〉) (10.29)

and additionally using property (10.16) gives

L(σxσz|zL
i 〉)∗ = −εi(σxσz|zL

i 〉)∗ (10.30)

Evidently, the BdG eigenvalues of the system occur in the conjugate pairs (εi, ε
∗
i ) or (−εi,−ε∗i ),

which is a consequence of the fact that the many body Hamiltonian (1.1) is Hermitian. We can

construct normalisable modes as linear combinations of the above eigenvectors as follows:

|Zi〉+ =
1√
2

[
|zR

i 〉 + σz|zL
i 〉
]

(10.31)

and

|Zi〉− =
1√
2

[
(σxσz|zL

i 〉)∗ − (σx|zR
i )∗〉

]
(10.32)

with

|Zi〉± ≡
(

U±
i (x)

V±
i (x)

)
(10.33)

To determine the normalisation of such modes, we first note using (10.25) and (10.28) leads to the

result

(εi − εj)〈zL
i |zR

j 〉 = 0 (10.34)

This means we can choose 〈zL
i |zR

j 〉 = ±δij . Moreover, providing we choose modes with

〈zL
i |zR

j 〉 = δij , the new modes |Zi〉± have positive norm. That is, they satisfy the normalisa-
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tion conditions

∫
dx
(
U±∗

i (x)U±
j (x) − V ±∗

i (x)V ±
j (x)

)
= δij (10.35)

and

∫
dx
(
U±

i (x)V ±
j (x) − V ±

i (x)U±
j (x)

)
= 0 (10.36)

which are of the same form as the (10.4) and (10.5) given previously for the dynamically stable

modes. The resulting modes (10.31) and (10.32) are thus normalisable, and moreover, taking these

modes with the set of modes for dynamically stable modes forms a complete orthonormal basis;

this is a direct consequence of the fact that (10.31) and (10.32) are linear superpositions of modes

that are orthonormal to the dynamically stable modes.

The creation and annihilation operators for the new modes satisfy the commutation relations

for bosonic operators, but show up as non-diagonal terms in the Hamiltonian subspace for the

dynamically unstable modes as [61]

Ĥ2 =
∑

j

Re(εj)

[
(b̂†j+b̂j+ − b̂†j−b̂j−) −

∫
dx (|V +

j |2 − |V −
j |2)

]

+
∑

j

i Im(εj)

[
(b̂j+b̂j− − b̂†j+b̂

†
j−) +

∫
dx (U+

j V
−
j − U+∗

j V −∗
j )

]
(10.37)

where the sum is taken over only the dynamically unstable modes, and where b̂j± is the anni-

hilation operator and b̂†j± the creation operator corresponding to the mode |Zj〉±. Dynamically

unstable modes are therefore associated with non-degenerate parametric amplification [33], which

leads to growth in the unstable modes at the expense of the condensate mode. For short time

dynamics, the complex eigenvalue will generate exponential growth in each unstable mode. It

is this effect that has been suggested to provide the closest analogy with the Hawking effect for

BECs [61, 149]. However, this picture neglects higher order interactions that may be present in

the full Hamiltonian, and therefore is likely to fail for dynamics on long time scales. We will

investigate this further in section 10.3.

10.2 Spectrum of the QdLN

Having now established the theory of elementary excitations for a BEC, we use this to find the

excitation spectrum of the QdLN, using the stationary transonic solutions found in the preceding

chapter.

10.2.1 Numerical calculation of Bogoliubov modes

For the case of the QdLN the excitation spectrum and modes must be found by solving (10.14).

To implement this numerically, we use the dimensionless parameters introduced in section 9.4.4.
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Figure 10.1: Stability diagram of quantum de Laval nozzle: Largest imaginary component of

eigenvalue for the Bogoliubov modes for a range of winding numbers as a function of V0. The

values of the imaginary eigenvalue component and V0 are both given in the dimensionless units

introduced in section 9.4.4. Each solution was found using a spatial grid of 256 points.

In these units the BdG operator (10.15) becomes

L =


 LGP − µ+ CQ̂|φ0|2Q̂ CQ̂φ2

0Q̂
∗

−CQ̂∗φ∗20 Q̂ −
(
LGP − µ+ CQ̂|φ0|2Q̂

)∗


 (10.38)
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with the Gross-Pitaevskii operator

LGP ≡ −1

2
∂2

x + V 0 cos2(2πx) + C|φ0|2 (10.39)

where φ0 is the stationary transonic solution for the QdLN, which has been renormalised to a

single-particle wavefunction. The dimensionless eigenvalue of the BdG operator is given by εi =

κεi. Henceforth we drop the bar notation.

The diagonalisation of (10.38) can be carried out in a plane wave basis by calculating the cor-

responding matrix elements for each term in (10.14). This procedure must be performed for each

set of parameters V0 and w0. To perform the diagonalisation for the results presented here we

used the eig.m function from Matlab. The numerical accuracy of the construction of the L op-

erator was also checked by using the symmetry properties (10.16) and (10.17). For a dynamically

unstable configuration, we construct normalisable modes using the procedure outlined in section

10.1.1. We additionally sort the eigenvalues in ascending order by Re(εi) and label the modes

accordingly.

10.2.2 Results

Figure 10.1 shows the stability diagram for the QdLN that results by performing the diagonalisa-

tion for a range of parameters, V0 and w0. For each point we have calculated the maximum of the

absolute value for the imaginary part of all eigenvalues. The essential features we observe are: (i)

there are regions exhibiting dynamic instabilities; (ii) these regions become narrower and smaller

in magnitude, but more closely spaced for larger values of the winding number w0, whereas they

become broader and larger in magnitude as the potential depth V0 increases.

Figures 10.2 (a)-(d) show the eigenvalue spectrum for the first few modes for four different

sets of parameters. In particular: (a) shows the spectrum for w0 = 3 and V0 = 140; (b) shows

the spectrum for w0 = 3 and V0 = 163.7; (c) shows the spectrum for w0 = 10 and V0 =

100; and (d) shows the spectrum for w0 = 10 and V0 = 139.2. While all cases have negative

eigenvalues, indicating energetic (Landau) instabilities due to non-zero flow, only cases (b) and

(d) correspond to dynamical instabilities also. Following the theory of the previous section, the

onset of a dynamical instability is associated with a pair of modes (labelled by j and k say) with

complex eigenvalues that satisfy Re(εj) = −Re(εk). In particular, for the lower winding number

w0 = 3, Figure 10.2 (b) indicates that modes 1 and 6 are unstable with Re(ε1) = −Re(ε6). On the

other hand, for the larger winding number w0 = 10, Figure 10.2 (d) indicates that modes 5 and 6

are unstable with Re(ε5) = −Re(ε6).

We also show the corresponding mode functions ui(x) and vi(x) that result from the solutions

of the BdG equations. In particular, Figure 10.3 shows the mode functions for w0 = 3 and

V0 = 163.7 and (d) Figure 10.4 shows the mode functions for w0 = 10 and V0 = 139.2, both

which have dynamical instabilities. We further note, although not shown here, that for w0 = 3,

the mode functions for V0 = 140 (dynamically stable) are very similar to the V0 = 163.7 case

(dynamically unstable), and likewise the mode functions for w0 = 10 and V0 = 100 (dynamically

stable) are very similar to the V0 = 139.2 case. We have also verified in all cases that for the
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(c) V0 = 100, w0 = 10
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Figure 10.2: Eigenvalue spectrum (all negative eigenvalues and same number of lowest positive

eigenvalues) of QdLN found from solutions of BdG equations. The red lines show the moduli of

the negative eigenvalues and the blue lines show the positive eigenvalues. Eigenvalues have an

imaginary component as indicated, only for a pair of eigenvalues that satisfies εi = −εj exactly.

Solutions have been found using a spatial grid of 1024 points.

high energy modes |ui(x)|2 ≈ 1 and |vi(x)|2 ≈ 0. That is, the high energy modes correspond

to single particle excitations as expected from Bogoliubov theory. However, the plots show that

the mode functions exhibit a rich structure for the low energy modes, not least being the sort of

“localisation” of modes that is associated with the acoustic black hole geometries. This is clearly

demonstrated in Figure 10.4 for the case where w0 = 10 and V0 = 139.2. In particular, for modes

i ≤ 4, ui(x) is localised in the region 0 ≤ x ≤ 0.5, which corresponds to the supersonic region,

whereas vi(x) is localised in the region −0.5 ≤ x ≤ 0, corresponding to the subsonic region.

For modes i ≥ 7 we find the reverse is true in general, although the localisation occurs to a lesser

extent. Modes i = 5, 6 (the dynamically unstable modes) indicate a crossover between these two

regimes.
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Figure 10.3: Dynamically unstable configuration: Orthogonal mode functions for V0 = 163.7 and

w0 = 3. Modes 1 ≤ i ≤ 10 are shown. In the first column |ui(x)|2 is given by the blue curve,

and |vi(x)|2 is given by the red curve. In the second column Re(ui(x)) is given by the solid blue

curve, and Im(vi(x)) is given by the dashed green curve. In the third column Re(v∗i (x)) is given

by the solid red curve, and Im(v∗i (x)) is given by the dashed orange curve. Solutions have been

found using a spatial grid of 1024 points.
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Figure 10.4: Dynamically unstable configuration: Orthogonal mode functions for V0 = 139.2 and

w0 = 10. Modes 1 ≤ i ≤ 10 are shown. In the first column |ui(x)|2 is given by the blue curve,

and |vi(x)|2 is given by the red curve. In the second column Re(ui(x)) is given by the solid blue

curve, and Im(vi(x)) is given by the dashed green curve. In the third column Re(v∗i (x)) is given

by the solid red curve, and Im(v∗i (x)) is given by the dashed orange curve. Solutions have been

found using a spatial grid of 1024 points.
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10.3 Dynamics

Thus far, we have found the elementary excitations for the QdLN and found that this indicates

dynamically unstable configurations for certain sets of parameters. In order to verify that such

configurations do indeed lead to exponential growth in the unstable modes, we must check the

dynamics of the system (that is, to check the perturbation theory is valid). To this end we use the

classical field method, based on the truncated Wigner approximation (TWA), that was introduced

in chapter 1 and further developed in chapter 7. We consider simulations for two different winding

numbers, w0 = 3 and w0 = 10, which lead to qualitatively different behaviour for the mode

dynamics.

10.3.1 Truncated Wigner approximation

The procedure for performing quantum field theory simulations using the TWA requires evolving

a multimode classical field (7.2) using the projected GPE (7.5). The initial field is given by

ψ(x, t = 0) = ψ0(x) +
∑

i>0

(ui(x)βi + v∗i (x)β
∗
i ) (10.40)

where ψ0(x) is a stationary state of the GPE (ie. the transonic solutions of the QdLN), and where

ui and vi are the corresponding orthogonal mode functions (recall we have dropped the bar no-

tation) from (10.9) and (10.10). The normalised modes for any dynamical instabilities are con-

structed as outlined in the section 10.1.1. The complex random variables βi satisfy Gaussian

statistics given by (7.12) and (7.12) that amount to adding to half a particle per mode to the sta-

tionary state — this corresponds to the quasiparticle vacuum.

There is an assumption inherent in this approach: when dynamical instabilities are present

the system cannot be in a stationary configuration (although it may be quasi-stationary), and the

choice of a quasiparticle vacuum for the initial state may not be valid. However, in practice,

the formation of a dynamically unstable QdLN configuration would likely require moving from

a stable configuration to an unstable one by moving through parameter space (ie. by changing

w0 and/or V0). One possible route to achieving this would be to start with a homogeneous flow

in a toroid at the critical velocity v = c, and then to switch on the (double de Laval nozzle)

potential V (x) by adiabatically ramping V0 from zero to its final value. In this case the system

should remain in its vacuum state until the dynamical instability is encountered. Moreover, for

the parameters considered in this chapter, we have verified that the mode functions for a value

of V0 close to — but not on — an instability are quantitatively similar to those for the instability

itself. This seems to suggest that the quasiparticle vacuum for the dynamically unstable modes

should provide a good approximation to the case where the unstable configuration is reached via

an adiabatic process.
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10.3.2 Quasiparticle projection

The projection into the Bogoliubov basis, found by inverting (10.1), is given by

βi(t) =

∫
dx
(
u∗i (x)ψ(x, t) − v∗i (x)ψ

∗(x, t)
)

(10.41)

The quasiparticle number in each mode is then

Ni(t) = 〈β∗i (t)βi(t)〉W − 1

2
(10.42)

where the 〈·〉W indicates an ensemble average over many TWA trajectories. We note that in some

instances, however, when the interpretation is clear, we calculate the quasiparticle numbers using

single trajectory simulations.

10.3.3 Numerical details

For the evolution of the projected GPE we have used the projected RK4IP algorithm, which is

outlined in Appendix B. We employ the dimensionless units introduced in section 9.4. For the

simulations presented here we have used the following parameters:

• N0 = 106, the total number of atoms in the condensate.

• M = 1024, the number of modes for the system in the low energy subspace of the projector.

This requires nx = 2M = 2048 points for the spatial grid.

This choice of parameters satisfies the criterion N0 �M for the validity of the TWA (see discus-

sion from section 7.2.2). Unless otherwise stated, for all simulations we chose a time step for the

RK4IP algorithm that ensured the change in total field normalisation during each trajectory was

∆N/N < 10−6.

Although it would be desirable to further extend our analysis to large winding numbers, there

are several difficulties associated with this. In particular, referring to Figure 9.7, the nonlinearity

increases with winding number, so that simulations would require decreasing the time step for

convergence2 . Moreover, the Nyquist criterion means that to represent the non-trivial phase vari-

ation of the condensate wavefunction requires a spatial grid with nx ≥ 2w0 points. An even more

stringent requirement will be necessary to represent the structure of the mode functions ui(x) and

vi(x).

10.3.4 Results for w0 = 3

For a winding number of w0 = 3, the quasiparticle mode occupations have been calculated from

single trajectory simulations for two cases: (i) Figure 10.5 shows results for V0 = 140, and

(ii) Figure 10.6 shows results for V0 = 163.7. Referring to the results in section 10.2, the first

2To see this more clearly, consider the homogeneous case with non-zero circulation. In this case the dimensionless

chemical potential of the condensate is µ = C, for which the simulation time step must satisfy ∆t � 1/C to account

for the phase variation of the condensate wavefunction.
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Figure 10.5: Bogoliubov mode populations for single trajectory from TWA evolution for parame-

ters V0 = 140, w0 = 3, corresponding to a dynamically stable configuration. The simulation end

time is t = 1.

Figure 10.6: Bogoliubov mode populations for single trajectory from TWA evolution for parame-

ters V0 = 163.7, w0 = 3, corresponding to a dynamically unstable configuration. The simulation

end time is t = 1. The dynamically unstable modes (i = 1, 6) are indicated by the dark red curves.

case corresponds to a dynamically stable configuration, whereas the second case corresponds to a

dynamically unstable configuration. In the latter case, modes i = 1,6 are unstable, and we observe

exponential growth in these modes, which is absent in the stable configuration. The growth is

seeded by the Gaussian noise in the initial state. This result confirms the expectation that the
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Figure 10.7: Bogoliubov mode populations for single trajectory from TWA evolution for parame-

ters V0 = 163.7, w0 = 3, corresponding to a dynamically unstable configuration. The simulation

end time is t = 5. The dynamically unstable modes (i = 1, 6) are indicated by the dark red curves.

mode dynamics for the unstable modes are governed — at short times — by the Hamiltonian

(10.37) for a non-degenerate parametric amplifier. Note that there is also some growth in modes

i = 2, 3, 4, 5. We have also checked the occupation numbers for modes i > 10 and found these to

be negligible compared with the modes shown in the plots i ≤ 10.

We have also investigated the behaviour of the dynamically unstable configuration for longer

times. Single trajectory results for a simulation time of t = 5 are shown in Figure 10.7. Here

we observe growth in the unstable modes (i = 1, 6) until t ∼ 2.75 where there is a peak in the

mode populations, followed by a decay of occupation numbers. There is also significant growth

(and decay) in the stable modes i = 2, 3, 4, 5, although the onset of this growth is delayed

when compared with the unstable modes. Therefore the system undergoes a period of excitation

followed by an apparent revival of the initial unexcited state. This is also evident in the coordinate

space density plots for the same simulation given in Figures 10.8 (a) and (b). In particular, plot

(a) shows large scale density fluctuations for 2 . t . 3.5. Plot (b) shows the density relative

to the initial state, from which it is clear that the density fluctuations are localised in the region

0 ≤ x ≤ 0.5 corresponding to the supersonic region for the system. It seems plausible that

such excitations and revivals should continue to repeat, which would result in a “ringing” type

excitation of the condensate. However, due to the significant computational time required, we did

not check this prediction.

The revival of system is most likely due to nonlinear mode mixing, which is neglected in

the non-degenerate parametric amplifier picture. In particular, the back-reaction of quasiparticle

modes on the condensate should become significant for large mode occupations. Moreover, the

topological constraint imposed by the periodicity of the system (ie. by a fixed winding number)
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Figure 10.8: Coordinate space density vs time for unstable configuration with w0 = 3 and V0 =
163.7: (a) gives the normalised density of the field by n(x, t) = |ψ(x, t)|2/N0; (b) gives a intensity

plot of the change in density from the initial state by ∆n(x, t) = n(x, t) − n(x, 0). Note that in

plot (a) the high frequency noise has been filtered out during post-processing of the data.

means that the decay of circulation for the superfluid flow is forbidden. This accounts for the

fact that the system cannot reach a quasi-stationary state corresponding to a different value of w0,

without a corresponding change in V0. Indeed such quasiperiodic behaviour is a feature of the

Fermi-Pasta-Ulam problem for nonlinear systems, which has been studied previously in BECs

[242].

10.3.5 Results for w0 = 10

For a winding number w0 = 10, we similarly compare results for two different cases: (i) Figure

10.9 shows results for V0 = 100, and (ii) Figure 10.10 shows results for V0 = 139.2. Referring to

the results in section 10.2, the first case corresponds to a dynamically stable configuration, whereas

the second case corresponds to a dynamically unstable configuration. In the latter case, modes

i = 5,6 are unstable. Because the single trajectory results exhibit highly oscillatory behaviour

for the majority of modes, indicative of nonlinear mode mixing, we have calculated the mode

occupations by averaging over 40 trajectories. Moreover, to investigate the short time dynamics

we have chosen a simulation time of t = 0.1.

In contrast to the w0 = 3 case, for w0 = 10 the results for the stable and unstable con-

figurations are quantitatively similar. Here both configurations have significant growth for the

populations of modes i = 5, 6, 13, as well as modest growth in other modes as shown. There-

fore, the results cannot be fully interpreted in terms of non-degenerate parametric amplification of
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Figure 10.9: Bogoliubov mode populations from TWA evolution for parameters V0 = 100, w0 =
10, corresponding to a dynamically stable configuration. The simulation end time is t = 0.1. The

quasiparticle number has been calculated by averaging over 40 trajectories.

Figure 10.10: Bogoliubov mode populations from TWA evolution for parameters V0 = 139.2,

w0 = 10, corresponding to a dynamically unstable configuration. The simulation end time is

t = 0.1. The quasiparticle number has been calculated by averaging over 40 trajectories. The

dynamically unstable modes (i = 5, 6) are indicated by the dark red curves.

the unstable modes. We should emphasise that for the two values of V0, the modes i = 5, 6 are

dynamically unstable only for V0 = 139.2, and the growth in these same modes for V0 = 100 is

therefore unexpected.



Chapter 10: Stability of the QdLN and the Hawking effect 172

Anomalous mode growth

Perhaps more significant is the dramatic growth of mode i = 13, which cannot be accounted for

by either Landau or dynamical instabilities, since for that mode the eigenvalue is both real and

positive. We will henceforth refer to this as an anomalous mode. It is of some interest to examine

the eigenfunctions for this mode, which can be seen in Figure 10.11. A distinctive feature of this

mode is immediately apparent: both u13(x) and v∗13(x) are approximate plane waves. Specifically,

the positive frequency plane wave component for u13(x) is right travelling (with the superfluid

flow), whereas the negative frequency plane wave component for v13(x) is left travelling (against

the superfluid flow). Moreover, it is evident that u13(x) is blueshifted in the ergoregion (v > c),

whereas v13(x) is redshifted in the ergoregion. Also of note, is that modes i = 17, 20 also

experience some growth. Referring to Figure 10.11, the mode functions in those cases are also

approximately plane waves, although to a lesser extent than for the i = 13 case, as surmised from

the varying density.

To further illuminate the issue we also plot the first 20 eigenvalues for the unstable config-

uration (V0 = 139.2 and w0 = 10) in Figure 10.12. Here we clearly see the relatively large

imaginary components for the unstable modes i = 5,6, and further note that Re(ε5) = −Re(ε6)

as required by the symmetries of the BdG equations for a dynamical instability. It is interesting to

note that modes i = 12,13 are almost degenerate with Re(ε12) ≈ Re(ε13), which may be evidence

that configuration is close to another dynamical instability, and may account for the large growth

seen in mode i = 13. (It should be noted, however, that this is not the same as the condition

Re(ε12) = −Re(ε13).)

10.3.6 Discussion

The exponential growth in the unstable modes for w0 = 3 is consistent with the picture from

Leonhardt et al. [61] that dynamical instabilities lead to a non-degenerate parametric amplification

process. However, for a larger winding number ofw0 = 10 we have observed significant growth in

modes i = 5, 6 for both stable and unstable configurations. Moreover, there is anomalous growth

for mode i = 13, that should be stable in both configurations according to the linear stability

analysis.

The explanation for these qualitatively different regimes of behaviour, for winding numbers

w0 = 3 and w0 = 10, is most likely due to the difference in nonlinearities for both cases. For

the stationary solutions for the QdLN, found in the previous chapter, only w0 and V0 are free

parameters — the nonlinearity C is fixed by the condition for transonic flow (for the renormalised

wavefunction). In particular, for w0 = 3 we have C = 3.55 × 102, whereas for w0 = 10 we

have C = 3.95 × 103. Therefore it seems reasonable that the for w0 = 3 the dynamics might be

dominated by linear processes (ie. quadratic bosonic operator terms in the Hamiltonian), while for

w0 = 10 nonlinear processes (ie. higher order terms in the Hamiltonian) become important even

for short timescales, due to the larger value of C . Further investigation of the nonlinear regime is

outside the scope of the current work, but may be addressed at a later time.
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Figure 10.11: Dynamically unstable configuration: Mode function densities for V0 = 163.7 and

w0 = 3. Modes 11 ≤ i ≤ 20 are shown. In the first column |ui(x)|2 is given by the blue curve,

and |vi(x)|2 is given by the red curve. In the second column Re(ui(x)) is given by the solid blue

curve, and Im(vi(x)) is given by the dashed green curve. In the third column Re(v∗i (x)) is given

by the solid red curve, and Im(v∗i (x)) is given by the dashed orange curve.
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Figure 10.12: First 20 eigenvalues εi for configuration with V0 = 139.2 and w0 = 10. The blue

circles (left axis) give |Re(εi)| whereas the green crosses (right axis) give |Im(εi)|. Note that

Re(εi) < 0 for modes i ≤ 5 and Re(εi) > 0 for modes i ≥ 6.

10.4 Connection with Hawking effect

10.4.1 Hawking effect in the QdLN

Despite previous studies, the question of whether the Hawking effect will occur for a black hole-

white hole configuration in a BEC — such as the QdLN geometry — has not yet been satisfactorily

resolved. Based on our results for the QdLN, we believe the closest analogy to the Hawking effect

is given by the growth in dynamically unstable modes, as described by non-degenerate parametric

amplification [61].

Our argument proceeds as follows. The dynamical instabilities can be described by the non-

degenerate parametric amplification Hamiltonian (10.37). The symmetry of the BdG equations

means that the dynamical instability must occur for a pair of eigenvalues such that εi = −εj .

The physical role of the instability is thus to deplete the condensate, while creating correlated

pairs of excitations with positive and negative energies. For the narrow regions of instability we

have found, only two modes participate in this process. Therefore, while the statistics for non-

degenerate parametric amplification may be thermal for the outgoing radiation [33], the spectrum

is not Planckian as with the semiclassical result [103, 118]. It should be emphasised that this

picture is only valid at low winding numbers and for short times, when nonlinear processes do not

dominate the dynamics.

This point of view is reinforced by the derivation of the Hawking effect as a tunneling process

by Parikh and Wilczek [168]. This process occurs when pairs of positive and negative energy

particles are created near the horizon, with either the positive energy particle tunneling out of the

black hole horizon, or the negative energy particle tunneling into the black hole. The process is

subject to energy conservation, which leads to corresponding decrease in the black hole size (and

an increasing emission temperature).
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For the QdLN there are two necessary modifications to the semiclassical result for Hawking

radiation, owing to the geometry and quantised nature of the system. These are:

Quantised circulation: The winding number w0 must be conserved for the superfluid flow,

and this inhibits certain transitions of the system. Since the stationary state is fully deter-

mined by the parameters w0 and V0, the system cannot relax to stationary state for a lower

value of w0 due to quasiparticle growth without a corresponding change in V0.

Discrete spectrum: The spectrum for the trapped periodic system is discrete. The pres-

ence of dynamical instabilities depends on the values of w0 and V0. For a small value of w0

there are only a few available negative eigenvalues, and so the opportunities for the quantum

degeneracy which appear to be required for a dynamical instability are diminished. Thermo-

dynamic instability (ie. negative eigenvalues) without quantum degeneracy does not lead to

quasiparticle creation under Hamiltonian evolution, and therefore cannot be associated with

the Hawking effect. The result is not so clear for large winding numbers, where nonlinear

processes become important, and where there are a greater number of negative eigenval-

ues available that might lead to instabilities. It is worth noting that when the horizon area

of a cosmological black hole is quantised, this similarly leads to a discrete spectrum for

emission [243].

10.4.2 Open issues

To further justify our point of view, we must relate our work to the semiclassical prediction of the

Hawking effect for analogue fluid models. In particular, there are a number of assumptions and

approximations for the semiclassical treatment, which may not be valid for the QdLN, which is a

quantum system. We note in particular the following outstanding issues:

1. Approximate geometries

As discussed in section 9.1, the investigations from Garay et al. [149, 161] and Leonhardt

et al. [61, 225] each used an approximate ansatz to describe a sonic horizon geometry.

Therefore, the stability analysis for each geometry was not based on stationary solutions of

the GPE, and so the results found there are necessarily approximate even within mean field

theory (which itself is approximate).

2. Hydrodynamics and geometric acoustics

The original prediction of the Hawking effect in a fluid model [103, 118] depends on two

assumptions. Firstly, the acoustic approximation (or hydrodynamic approximation) should

be valid so that we only consider modes in a regime where the dispersion is linear. Secondly,

that geometric acoustics apply — that is, a mode’s wavelength is short compared to the scale

over which the geometry changes.

Acoustic approximation: The well-known result from applying Bogoliubov theory to a

weakly interacting Bose gas is that the excitation spectrum exhibits superluminal disper-

sion. Specifically, for the homogeneous system the low energy modes have linear disper-

sion (ie. phonon-like excitations), whereas the high energy modes have quadratic dispersion



Chapter 10: Stability of the QdLN and the Hawking effect 176

(ie. particle-like excitations). Standard derivations of the Hawking effect [162,163,170], as

well as predictions for analogue fluid models [103, 118] assume a linear dispersion relation

— ie. for an analogue model, that the acoustic approximation is valid. In fact, the effect

of modified dispersion relations (MDRs) on the prediction of Hawking radiation has been

investigated extensively [173–180]. The results from these studies indicate that the Hawk-

ing effect is relatively insensitive to the high frequency dispersion of the modes, and this

resolves the so-called Trans-Planckian problem (see chapter 5). Specifically this result also

applies to fluid models with acoustic horizons [172, 173].

Geometric acoustics: In the geometric acoustics limit, the propagation of short wavelength

modes is determined by null geodesics of the effective spacetime — ie. in some sense, the

mode behaves as a classical particle. This approximation is true when the mode’s wave-

length is short compared the scale over which the geometry changes. The significance of

geometric acoustics is that the WKB (or semiclassical) approximation can then be used in

the derivation of the Hawking effect (see [61, 103, 168, 170] for example).

In a classical fluid with linear dispersion, the assumption of geometric acoustics is reason-

able since all modes are phononic, and this underlies the prediction of a Planckian spectrum

for the analogue Hawking effect [103, 118]. On the other hand, for a trapped BEC, the

spectrum is discrete and exhibits superluminal dispersion, so that it may not be possible to

find a regime where both the acoustic approximation and geometric acoustics are satisfied.

Moreover, as we have seen, for the inhomogeneous system the mode structure is non-trivial,

which may lead to some modifications to the predictions of the classical fluid theory.

3. Black hole-white hole configuration

Corley and Jacobson [244] have shown that black hole-white hole configurations lead to a

black hole laser instability. In particular, if the dispersion is superluminal, there is expo-

nential growth of Hawking radiation for a bosonic field due to repeated scattering between

an outer and inner horizon. It should be emphasised that for this effect to occur the disper-

sion does not require complex frequency components. Barcelo et al. [245] have undertaken

a numerical study of a black hole-white hole configuration and shown that when periodic

boundary conditions are imposed, the instability may not occur in some cases. This result is

consistent with the previously mentioned studies from Garay et al. [149,161] and Leonhardt

et al. [61, 225].

4. Back-reaction

The problem of back-reaction for an acoustic black hole has been previously addressed by

Balbinot et al. [185]. There, by analysing a single de Laval nozzle geometry, it was shown

that the emission temperature of an acoustic black hole decreases with time, in contrast

with cosmological black holes where the temperature increases with time. This effect is

associated with a slowing of the background flow.

For a BEC, the Bogoliubov theory gives the linear excitations of the system, and therefore

necessarily neglects the back-reaction of quasiparticle modes on the condensate mode, as
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well as neglecting any higher order processes between the modes such as Beliaev damping

[3]. Therefore, although the quasiparticles of the system may be described adequately by

Bogoliubov theory, the long term dynamics might be dominated by nonlinear processes due

to back-reaction. These effects are included in the effective Hamiltonian (1.1) for a weakly

interacting BEC.

10.4.3 Interpretation of Hawking effect for the QdLN

Our investigation of the QdLN addresses all of the above issues on some level. The linear stability

analysis and dynamics is based on the effective quantum field theory for the BEC, and therefore

includes features neglected in the semiclassical treatment of analogue fluid models. In particular,

we can address the issues from above:

1. Approximate geometries

Our analysis of the QdLN uses stationary solutions of the GPE, which are found numerically

without any approximation.

2. Hydrodynamics and geometric acoustics

The stability analysis and dynamical simulations for the QdLN are both based on the GPE,

which includes the quantum pressure term. Therefore the hydrodynamic approximation is

not required or enforced. Moreover, the analysis includes modes of all wavelength scales

(up to a cut-off) and so we do not make use of the geometric acoustics approximation.

However, it is worth considering in what regime the semiclassical derivation of the Hawking

effect might be applicable for the QdLN. In this case the description of the BEC is given by

classical fluid dynamics.

Recovering the hydrodynamic regime: When C , V0 � 1, we can see from the GPE (9.19)

that the quantum pressure term can be neglected and the system is adequately described

by hydrodynamics. In fact, as the nonlinearity increases with winding number w0, this

means we require a large value of w0. However, for the periodic system, the quantisation of

circulation cannot be relaxed.

Geometric acoustics: For geometric acoustics to be valid, the wavelength of the mode

should be less than the scale over which the geometry changes — that is, for the QdLN

we require λ ≤ L. We can estimate the required system parameters from the semiclassical

result for the Hawking temperature. In particular the peak wavelength λpeak for the Hawking

spectrum is given by (9.18). This requirement that λpeak/L ≤ 1 leads to the inequality

1 ≤ 2π

(
jU1D

m

)1/3( 8m

3V0

)1/2

(10.43)

That is, the geometric acoustics approximation is valid for a large current j and nonlinearity

U1D (ie. a large winding number) and/or a small value for the potential depth V0.

3. Black hole-white hole configuration
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The QdLN corresponds to a black hole-white hole configuration. In this case two de Laval

nozzles are required for hydrodynamic stability, the flow becoming supersonic at the first

nozzle and subsonic at the second. Moreover, the periodicity of the system enforces a fixed

winding number w0 for the flow circulation. The resulting stability analysis indicates re-

gions of instability depending on the values of w0 and V0. This is consistent with previous

studies of acoustic black holes in periodic systems [149, 245]. It does not seem that the

black hole laser instability studied by Corley and Jacobson [244] is relevant to the QdLN,

because in that study periodic boundary conditions were not used.

4. Back-reaction

We have performed classical field simulations for the QdLN; this requires the propagating

the multi-mode classical field according to the projected GPE (7.5). The dynamics there-

fore includes nonlinear interactions between the quasiparticle modes, which are necessar-

ily neglected in the linear stability analysis. Therefore our method includes the effects of

back-reaction since the quasiparticle modes interact with each other — as well as with the

condensate mode — via the nonlinear interaction term. The constraint of phase quantisation

(ie. a fixed winding number) means that the system cannot relax to quasi-stationary state

that differs from the initial one. This observation is verified by the long time simulations for

the unstable configuration with w0 = 3.

10.4.4 Limitations of classical field method

It should be emphasised that there are some limitations of the classical field method that we have

used to investigate the QdLN, and that our analysis may therefore not provide the full picture. In

particular, when the nonlinearity is large (ie. for large winding number solutions of the QdLN) we

expect the Bogoliubov theory for quasiparticles to break down. This means that the quasiparticle

vacuum, which is included in the initial state for the TWA simulations, may lead to thermalisation

(ie. heating) of the system [34, 37], and that the Bogoliubov quasiparticle picture will no longer

be valid. Moreover, the Bogoliubov quasiparticle description is only valid near zero temperature,

which restricts the applicability of our theory. An extension of the model to finite temperatures

is possible by including damping and noise terms, which leads to the stochastic Gross-Pitaevskii

equation [39, 55–57]. A related issue, is that the TWA can only be used to describe short time

dynamics for the system. This is the case because the third order terms in the equation of motion

for the Wigner function, are neglected for the TWA. These third order terms are proportional to

the nonlinearity (see equation 1.25) and so we expect the TWA to be valid for long time dynamics

only when the nonlinearity becomes small. The validity of the TWA for long time dynamics

been investigated by Sinatra et al. [37], which led to the condition |Tclass − T | � T where Tclass

is the equilibrium temperature of the classical field. Finally, it is worth mentioning that when

the nonlinearity is large, the effects of three-body recombination should be included in the TWA

simulations. See Norrie et al. [223] where this has previously been done.
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10.5 Conclusions

10.5.1 Summary

In this part of the thesis, we have introduced and analysed the quantum de Laval nozzle (QdLN),

a configuration for a Bose-Einstein condensate that exhibits both a black and white sonic horizon.

We summarise our results as follows:

• We introduce the quasi-stationary configuration for the QdLN, which is based on a periodic

potential in a ring geometry. Using hydrodynamic theory we find transonic solutions, which

are then used to find transonic stationary solutions of the Gross-Pitaevskii equation.

• We have performed a stability analysis for the transonic solutions, using the Bogoliubov-de

Gennes equations, from which we have found the discrete eigenvalue spectrum and quasi-

particle modes for the system. Moreover, there are regions of instability for certain values

of the geometry parameters: the winding number w0, and the potential depth V0.

• In particular, we have focused on two different regimes: (i) a low winding number w0 = 3

with either V0 = 140 for a dynamically stable configuration, or V0 = 163.7 for a dynami-

cally unstable configuration; (ii) a larger winding number w0 = 10 with either V0 = 100 for

a dynamically stable configuration, or V0 = 139.2 for a dynamically unstable configuration.

• We have investigated the dynamics of each of these configurations using the truncated

Wigner approximation for the simulations. Specifically, we have calculated the quasipar-

ticle mode populations as a function of simulation time. The single trajectory results for

the w0 = 3 case with V0 = 163.7 (unstable) leads to exponential growth in the unstable

modes, which can be interpreted as non-degenerate parametric amplification. In contrast

for V0 = 140 (stable) there is negligible growth in these modes. The results for the larger

winding number w0 = 10, does not lead to a similarly straightforward interpretation. For

both V0 = 100 (stable) and V0 = 139.2 (unstable) there is appreciable growth in several

modes. This is indicative of higher order processes, neglected in the Bogoliubov quasipar-

ticle picture. This suggestion is reinforced by the observation that for the w0 = 10 case the

nonlinearity is C = 3.95 × 103, which is significantly larger than the w0 = 3 case where

the nonlinearity is C = 3.55 × 102.

• We have discussed the connection of our results with the usual derivation of the Hawking

effect for analogue fluid models. Although the QdLN exhibits a rich mode structure in all

regimes of interest, dynamical instabilities only appear for certain values of w0 and V0.

We are able to construct normalisable Bogoliubov modes for the dynamical instabilities,

which couple equal and opposite real frequencies. This can lead to exponential growth

for those modes and this represents the closest analogy with the Hawking effect for our

quantum system. Moreover, for a large winding number we observe: (i) the number of

unstable regions increases (due to the higher number of negative energy modes), although

they become narrower; and (ii) the nonlinearity increases so that the system approaches

the hydrodynamic regime. The combination of these effects indicates it may be possible
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to (approximately) describe the system by a classical fluid in some regime, for which the

prediction of a thermal spectrum from Unruh [103] and Visser [224] becomes relevant.

10.5.2 Outlook

The QdLN is a fascinating system from a theoretical point of view. Although we have considered

some important aspects of the system, there are certainly opportunities for further inquiry. We

therefore suggest several directions any future theoretical studies could take:

• The QdLN exhibits a rich spectrum and structure for the quasiparticle modes. Even at rela-

tively modest winding numbers (ie. w0 = 10) the dynamics appear highly nonlinear. From

our preliminary investigation in this regime, it is not yet clear what underlying nonlinear

processes contribute to the mode dynamics, which could be the subject of further investiga-

tion.

• To explore previously unaccessible regimes the numerical procedure used here could be im-

proved by the use of larger numerical grids. In particular, it is of considerable interest to

examine the QdLN with large winding numbers, which corresponds to the hydrodynamic

regime. In this case the non-trivial phase variations and the large nonlinearities would re-

quire large spatial and temporal grids respectively.

• The quasi-one dimensional model presented here could be extended to two or even three

dimensions. The additional degrees of freedom may allow some lattitude in the choice of

transonic stationary solutions, not available in the one dimensional case. However, it is

anticipated that the numerics will become difficult in this case because the total number of

grid points will need be large to correctly resolve the Bogoliubov mode functions. (Recall

that for the one dimensional case, finding the spectrum from the BdG equations requires the

diagonalisation of a matrix with 2nx × 2nx elements.)
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Q-function for different states

A.1 Values of parameters in particular cases.

To fit the kinds of distribution in Fig.3.1 we determine the parameters v, σ and c by fitting the

moments 〈a〉, 〈aa†〉 and 〈aaa†a†〉.

Parameters for a number state

The exact values for the quantities (3.6–3.10) in the case of a number state |m〉 are

〈a〉 = 0 (A.1)

〈aa†〉 = m+ 1 (A.2)

〈aa〉 = 0 (A.3)

〈aaa†〉 = 0 (A.4)

〈aaa†a†〉 = (m+ 1)(m+ 2) (A.5)

leading to the choice

v4 = m2 +
3

2
m+

1

2
(A.6)

σ = m+ 1 −
√
m2 +

3

2
m+

1

2
(A.7)

≈ 1/4 as m→ ∞ (A.8)

c = 0. (A.9)

The two quantities (A.3,A.4) are given exactly by this choice.
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Parameters for a superposition of two number states

For an equal superposition of the kind (3.2) that

v4 = n2 +
n

2
− 1

8
(A.10)

σ = n+
1

2
−
√
n2 +

n

2
− 1

8
(A.11)

c =

√
n

2v
. (A.12)

The exact computation of the quantities (3.6–3.10) yields in this case

〈a〉 =
1

2

√
n (A.13)

〈aa†〉 = n+
1

2
(A.14)

〈aa〉 = 0 (A.15)

〈aaa†〉 =
1

2
(n+ 1)

√
n (A.16)

〈aaa†a†〉 = (n+ 1)2 (A.17)

The first, second and last of these are fitted exactly, leading to the approximate values

〈aa〉 ≈ (v2 + σ)c4

=

(
n+

1

2

)
n2

16(n2 + n/2 − 1/8
(A.18)

〈aaa†〉 ≈ (v3 + 3σv)c

=
1

2

√
n

(
3

(
n+

1

2

)
− 2
√
n2 + n/2 − 1/8

)

(A.19)

Even for n = 1 these are very tolerable approximations; (A.18) is diminished by comparison with

〈aa†〉 by a factor of c4 ≈ 0.045, compared to the exact value of 0. For large n (A.19) becomes

equal to the true value (A.16), and even for n = 1 the true and the model results differ by less than

8%.

Parameters for a coherent state

For a coherent state |β〉, where β ≡ m is taken to be real, the quantities take the form

〈a〉 = β (A.20)

〈aa†〉 = β2 + 1 (A.21)

〈aa〉 = β2 (A.22)

〈aaa†〉 = β(β2 + 2) (A.23)

〈aaa†a†〉 = β4 + 4β2 + 2 (A.24)
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from which we can compute

v4 = β4 + β2 +
1

2
(A.25)

σ = β2 = 1 −
√
β4 + β2 +

1

2
(A.26)

c =
β

v
≈ 1 − 1

2β2
as β → ∞ (A.27)

It is easy to check that for large β the quantities (A.22,A.23) are correctly given, and they are of

course correct for β = 0. For β = 1, we find that 〈aa〉 = 0.8 instead of the exact value of 1, and

〈aaa†〉 = 2.84, instead of the exact value of 3.

A.2 A rigorous lower bound on the energy

As a spinoff from our methodology of section 3.1, we find that we can also develop a rigorous

lower bound for the energy as a function of the mean-field, and we can evaluate the predictions

given by assuming the lower bound is equal to the ground-state energy.

To see this we note the mean energy, which is given by (3.25) in the mean-field approximation,

is parameterised by number variance var[N ] and the mean-field 〈X〉. Then we know that var[N ]

satisfies the two inequalities (3.16) and (3.20), which we can combine together as

var[N ] ≥ max

( 〈X〉2
4〈Y 2〉 , δn(1 − δn)

)
. (A.28)

We can develop a lower bound on 〈Y 2〉 by noting that

〈Y 2〉 = n− 1

2
− 〈X2〉 ≤ n− 1

2
− 〈X〉2, (A.29)

so that we can deduce from (A.28) that

var[N ] ≥ max

(
〈X〉2

4(n − 1
2 − 〈X〉2)

, δn(1 − δn)

)
, (A.30)

and that the mean energy (3.25) satisfies the lower bound

〈E〉 ≥ −Z〈X〉2 + u

{
2 + n2 + 3n+ max

(
〈X〉2

4(n − 1
2 − 〈X〉2) , δn(1 − δn)

)}
.(A.31)

This bound is parameterised by the mean-field 〈X〉 only, so the rigorous lower bound is given by

the value, Xmin(u, n), of 〈X〉 which gives the minimum value, Emin(u, n), the right hand side

of (A.31), and subject to the restriction that 〈X〉 ≤
√
n− 1 (the equality holding for a coherent

state). These are easy to evaluate, and resulting chemical potential and mean-field are plotted

in Fig.A.1. The results are less accurate than the phase space method (see Fig.3.3), but are still

surprisingly good.
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Figure A.1: Ground state phase diagram calculated using rigorous lower bound on energy (A.31)

in Q-function representation



Appendix B

Numerical methods

In this appendix we outline the numerical algorithm for integrating the projected Gross-Pitaevskii

equation, which is used in parts II and III of this thesis, for simulating the dynamics of a Bose-

Einstein condensate via the truncated Wigner approximation. The algorithm is based on the

Fourth-order Runge Kutta in the Interaction Picture (RK4IP) algorithm as developed previously

by Caradoc-Davies [211]. The projector is incorporated into the algorithm following Norrie [210].

Note that in the following discussion, all parameters are rescaled to be dimensionless.

B.1 Projected Gross-Pitaevskii equation

The projected Gross-Pitaevskii equation (PGPE) given by (7.5) can be written in dimensionless

form as:

i
∂ψ

∂t
= D̂ψ + P̂{N̂ψ} (B.1)

D̂ = −1

2
∇2 (Dispersive term) (B.2)

N̂ = Vext + C|ψ|2 (Nonlinear term) (B.3)

Expanding the field in some basis:

ψ̂(x, t) =
∑

j∈L

φj(x)αj(t) (B.4)

where L represents a low-energy subspace of the system, the projector is given by its action on

some function f(x) as:

P̂{f(x)} =
∑

j∈L

φj(x)

∫
dx′ φ∗j(x

′)f(x′) (B.5)
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B.2 Plane-wave basis

It is useful to introduce the plane-wave basis with the field given by a discrete Fourier transform

ψ(x, t) =
1√
V

∑

k∈L

eik·xαk(t) (B.6)

and the mode amplitude by an inverse (continuous) Fourier transform

αk(t) =
1√
V

∫
dx e−ik·xψ(x, t) (B.7)

The advantage of using the plane-wave basis is two-fold:

• There exist efficient algorithms for performing the discrete Fourier transforms, which result

from the numerical representation of (B.6) and (B.7) — we discuss this further in section

B.5 below. Moreover, when the numerical grid for coordinate space is sufficiently dense, it

is appropriate to implement the projector by a cut-off kcut in momentum space, as the single

particle states match the eigenstates of the system for momenta k ∼ kcut.

• The action of the Laplacian operator is diagonal in momentum space. That is:

D̂ψ ≡ −1

2
∇2ψ =

1√
V

∑

k∈L

1

2
k2eik·xαk (B.8)

In the plane-wave basis the PGPE transforms to the equation of motion for the mode amplitudes

as

∂αk

∂t
= −i

[
1

2
k2αk +

1√
V

∫
dx
{
e−ik·x(Vext + C|ψ|2)ψ

}]
(B.9)

The projector explicitly requires that k ∈ L here.

B.3 Interaction picture

The solution of (B.9) is facilitated by transforming to the interaction picture [28]. We can trans-

form to the interaction picture by

αIP
k (t) = ei(t−t′)k2/2 αk(t) (B.10)

The PGPE in momentum space in the interaction picture is then

∂αIP
k

∂t
= −iei(t−t′)k2/2 1√

V

∫
dx
{
e−ik·x(Vext + C|ψ|2)ψ

}
(B.11)

Therefore the free rotation of each mode has been removed by the transformation — this leads to

increased stability for the numerical algorithm, which we now outline.
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B.4 Projected RK4IP algorithm

For an ordinary differential equation of the form:

dy

dt
= f(y, t) (B.12)

the fourth-order Runge-Kutta formula is given by [246]

h1 = ∆t f (yn, ti) (B.13)

h2 = ∆t f (yi + h1/2, ti + ∆t/2) (B.14)

h3 = ∆t f (yi + h2/2, ti + ∆t/2) (B.15)

h4 = ∆t f (yi + h3, ti + ∆t) (B.16)

yi+1 = yi + [h1 + 2(h2 + h3) + h4] /6 +O(∆t5) (B.17)

This gives the propagation of the field f(y, t) from ti to ti+1 where the time-step is given by

∆t = ti+1 − ti.

The solution of (B.11) using the above algorithm can be optimised by choosing the reference

time as t′ = ti +∆t/2 so that h2 and h3 are evaluated at the origin of the interaction picture. This

leads to the optimised algorithm:

αIP
k (ti) = e−i∆tk2/4αk(ti) (B.18)

h1 = −i∆te−i∆tk2/4 1√
V

∫
dx
{
e−ik·x(Vext(ti) + C(ti)|ψ1|2)ψ1

}
(B.19)

h2 = −i∆t 1√
V

∫
dx
{
e−ik·x(Vext(ti + ∆t/2) + C(ti + ∆t/2)|ψ2|2)ψ2

}
(B.20)

h3 = −i∆t 1√
V

∫
dx
{
e−ik·x(Vext(ti + ∆t/2) + C(ti + ∆t/2)|ψ3|2)ψ3

}
(B.21)

h∗4 = −i∆t 1√
V

∫
dx
{
e−ik·x(Vext(ti + ∆t) + C(ti + ∆t)|ψ4|2)ψ4

}
(B.22)

αk(ti+1) = e−i∆tk2/4

(
αIP

k (ti) +
1

6
(h1 + 2(h2 + h3))

)
+

1

6
h∗4 (B.23)

where we have defined the following:

ψ1 =
1√
V

∑

k∈L

eik·xαk(ti) (B.24)

ψ2 =
1√
V

∑

k∈L

eik·x
(
αIP

k (ti) + h1/2
)

(B.25)

ψ3 =
1√
V

∑

k∈L

eik·x
(
αIP

k (ti) + h2/2
)

(B.26)

ψ2 =
1√
V

∑

k∈L

eik·xe−i∆tk2/4
(
αIP

k (ti) + h3

)
(B.27)

Note that to provide the most general form of the algorithm, both Vext and C are written as time-
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dependent terms. However, for many situations of interest these terms are time-independent.

B.5 Numerical grids

The numerical implementation of the projected RK4IP algorithm requires a choice of discrete grid

for the coordinate (x) and momentum (k) spaces. The practical implementation of the transforms

between coordinate and momentum space uses Fast Fourier Transforms (FFTs) [247], which are

most efficient for a uniform grid with N = 2n points for some positive integer n. Moreover,

FFTs are periodic so that the end points of the grid should not be repeated. If we consider a one-

dimensional system on a domain [−L/2, L/2], we therefore have the following choice of grids:

1. Left aligned: xj ∈ [−L,−L+ ∆x, ..., L− 2∆x,L− ∆x]

2. Right aligned: xj ∈ [−L+ ∆x,−L+ 2∆x, ..., L − ∆x,L]

3. Centre aligned: xj ∈ [−L+ ∆x/2,−L+ 3∆x/2, ..., L − 3∆x/2, L − ∆x/2]

where ∆x = L/N . We henceforth choose the left aligned grid for convenience. The correspond-

ing momentum space grid is

kj ∈
2π

L
[0, 1, 2, . . . , N/2 − 2, N/2 − 1,−N/2,−N/2 + 1, . . . ,−2,−1] (B.28)

The extension to two or three dimensions is straightforward, although it should be noted that the

FFT algorithm requires the same number of points for each dimension with Nx = Ny = Nz . The

fft and (inverse) ifft functions in Matlab are based on the FFTW library [247]. In this case,

the numerical implementation of (B.6) and (B.7) is given respectively by

ψ(xj) =

√
V

∆V
ifft[α(kj)] (B.29)

and

α(kj) =
∆V√
V
fft[ψ(xj)] (B.30)

where ∆V is the volume element for the discretised grid and where ψ(xj) and α(kj) are arrays.

B.6 Numerical stability and accuracy

In order to ensure that the projected RK4IP algorithm leads to numerically accurate solutions,

there are several diagnostics that should be checked, as well as guidelines for choosing a suitable

time step.
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B.6.1 Checking stability

Convergence

Numerical convergence can be checked by comparing the solution from a single time step to the

case where the time step is halved and the field recomputed after two half steps. If the projected

RK4IP converges these solutions should be the same to within numerical precision. By comparing

whole and half time step solutions for a long simulation time (ie. consisting of many time steps m

and 2m respectively) we can check the global convergence of the algorithm.

Preserved quantities: norm and energy

It is straightforward to show that the GPE is associated with conservation laws for the normali-

sation and energy of the field [3]. In particular, the GPE preserves the normalisation of the field

N =
∫
dx|ψ|2 (this is consistent with the fact that the many-body Hamiltonian commutes with

the number operator). Therefore the convergence of the algorithm can be ensured by choosing

a time step small enough to give a constant normalisation. Moreover, for the time-independent

Hamiltonian, the energy must be conserved, which serves as an another useful diagnostic check.

B.6.2 Time step

The time dynamics of the condensate mode is determined by a term of the form ∼ e−iµt (µ is the

dimensionless chemical potential). Therefore to represent this phase factor accurately the Nyquist

criterion means we require a time step:

∆t� π

µ
(B.31)

A secondary requirement is given by noting that the shortest time scale for excitations is given by

the evolution of the free particle modes. Therefore we have:

∆t� 2π

k2
(B.32)

In general it is necessary to choose a time step that satisfies both (B.31) and (B.32).
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Appendix C

Bogoliubov-de Gennes equations for PGPE

We calculate the excitation spectrum (the dispersion curve) for a homogeneous condensate with

steady flow, starting with the projected Gross-Pitaevskii equation (PGPE). The projected subspace

in this case is given by the momentum grid1.

The projected GPE is given by

i~
∂ψ

∂t
=

[
− ~

2

2m
∇2 + Vext

]
ψ + P̂

{
U0|ψ|2ψ

}
(C.1)

The wavefunction is given in an arbitrary basis set φn by

ψ(x, t) =
∑

n

cn(t)φn(x) (C.2)

The action of the projector on some function F (x) is given by

P̂F (x) =
∑

k

φk(x)

∫
φ∗k(x

′)F (x′)dx′ (C.3)

where k ∈ G for a discrete momentum grid G. In the one dimensional case −k ≤ k ≤ +k where

k = max(|k|). Following the usual linear response theory, we take

ψ(x, t) = e−iµt/~(φ0(x) + δφ(x, t)) (C.4)

where the ground state wavefunction φ0 satisfies the time-independent GPE. Linearizing (C.1) we

get

i~ ˙δφ =

[
− ~

2

2m
∇2 + Vext − µ

]
δφ+ U0P̂

{
2|φ0|2δφ + φ2

0δφ
∗
}

(C.5)

1This is not the same projector that is defined by the subspace orthogonal to the ground state wavefunction
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Homogeneous condensate with steady flow

Consider a one dimensional homogeneous system with Vext = 0 and periodic boundary condi-

tions; the ground state wavefunction with momentum q takes the form

φ0(x) =
√
n0e

iqx (C.6)

Equation (C.5) becomes

i~ ˙δφ =

[
− ~

2

2m
∇2 − µ

]
δφ+ U0P̂

{
2n0δφ+ n0e

i2qxδφ∗
}

(C.7)

A component k′ = k+ q of δφ couples to a term 2q− k′ = q− k via the final term. Therefore we

can write

δφ(x, t) =
∑

j

(
u(x)e−iwjt + v∗(x)eiwjt

)
(C.8)

=
∑

j,k

(
ck+qe

−i(wjt−(k+q)x) + s∗q−ke
i(wjt−(k−q)x

)
(C.9)

Substituting (C.8) into (C.5) and equating coefficients of e−iωt and eiωt respectively we get

(dropping subscripts j)

~ω
∑

k

ck+qe
i(k+q)x

= [LGP + U0n0 − µ]
∑

k

ck+qe
i(k+q)x + U0n0P̂

{
∑

k

sq−ke
i(k+q)x

}
(C.10)

−~ω
∑

k

sq−ke
i(k−q)x

= [LGP + U0n0 − µ]
∑

k

sq−ke
i(k−q)x + U0n0P̂

{
∑

k

ck+qe
i(k−q)x

}
(C.11)

with the GP operator for the homogeneous case

LGP ≡ − ~
2

2m
∇2 + U0n0 (C.12)

Noting that LGPφ0 = µφ0 gives

µ =
~

2q2

2m
+ U0n0 (C.13)

and only keeping components eipx within the projected subspace can then write

~ωcp+q =

(
~

2

2m
(p2 + 2pq) + U0n0

)
cp+q +ApU0n0sq−p (C.14)
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−~ωsq−p =

(
~

2

2m
(p2 − 2pq) − U0n0

)
sq−p +BpU0n0cp+q (C.15)

For convenience we have introduced

Ap = 1, p ≤ k − q

= 0, otherwise (C.16)

Bp = 1, p ≥ −k + q

= 0, otherwise (C.17)

Equations (C.14) and (C.15) then lead to two different forms of the dispersion relation

Anomalous region: p > k − q or p < −k + q

(
~ω − ~

2pq

m

)2

=

(
~

2

2m
p2 + U0n0

)2

(C.18)

Normal region: −k + 2q ≤ p ≤ k − 2q

(
~ω − ~

2pq

m

)2

=
~

2

2m
p2

(
~

2

2m
p2 + 2U0n0

)
(C.19)

This shows that the action of the projector means that the dispersion relations are discontinuous at

p = −k+ q and p = k − q. Note that q = 0 returns the usual form of the dispersion relation for a

stationary homogeneous condensate.
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