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Abstract Invasive species cause severe ecological

and economic impacts in their introduced ranges.

Vespula wasps, native to Eurasia, are a major threat to

New Zealand native ecosystems. Understanding fac-

tors that influence the success of wasp invasion is

pivotal for the development of control strategies. Here,

we compare genetic diversity and structure of Vespula

germanica and Vespula vulgaris between regions of

their native and introduced ranges using microsatellite

markers. Our study found lower diversity and lack of

genetic structure for both invasive Vespula species

within New Zealand. The significant reduction in

allelic richness, gene diversity and effective popula-

tion size illustrate a major bottleneck in New Zealand

V. germanica and V. vulgaris populations. Strong

signatures of population structure were found for both

Vespula species with two clusters being identified as

optimal k, approximately corresponding to the native

and the invaded ranges. Our results highlight the fact

that the lack of genetic diversity does not impede

successful invasions in V. germanica and V. vulgaris

and encourage further research into mechanisms that

promote the success of invasive social insects. Over-

all, this study provides insights into the genetics of

invasive Vespula wasps that can be useful for the

development of efficient management strategies.
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Introduction

Biological invasions result in severe impacts on

ecosystems, the economy and human health (Clavero

and Garcı́a-Berthou 2005; Pimentel et al. 2005; Pyšek

and Richardson 2010). Social insects like wasps, ants

and termites are a particularly harmful group of

invaders; their social lifestyle, high dispersal and

reproduction rates as well as strong competitive

abilities and the potential of rapid spread throughout

the invaded range facilitate the invasion process

(Moller 1996; Chapman and Bourke 2001; Suarez

et al. 2002; Kenis et al. 2009).

Reduced genetic diversity through founder events,

measured through reduced heterozygosity and number

of alleles, is expected to result in decreased fitness in

the invaded range (Nei et al. 1975; Allendorf and

Lundquist 2003; Reed and Frankham 2003). Yet, the

majority of studies demonstrates high invasion success

despite severe bottlenecks (Golani et al. 2007; Dlu-

gosch and Parker 2008; Puillandre et al. 2008; Burne

et al. 2017; Zhang and Evans 2017). In contrast, some

studies found high levels of genetic diversity in

invasive populations, suggesting that a large founding

population and/or multiple introductions lead to

invasion success (Kolbe et al. 2004). Examples for

elevated genetic diversity within the invaded range

include the invasive brown anole, Anolis sagrei, and

the European paper wasp, Polistes dominula, both

introduced to the United States (Johnson and Starks

2004; Kolbe et al. 2004) and the mosquitofish,

Gambusia affinis, invasive in New Zealand (Purcell

et al. 2012). A recent study on the mosquito Aedes

albopictus, invasive in several islands in the Indian

Ocean, indicates that genetic diversity is likely to

increase with increasing time since establishment

(Sherpa et al. 2018).

The effective population size (Ne) is a powerful

parameter to determine the rate of change in the

composition of a population caused by genetic drift,

the level of variability in a population, and the

effectiveness of selection relative to drift (Wright

1931; Charlesworth 2009). Ne describes the amount of

the gene pool that is passed on to the next generation; it

determines within-species diversity and potential

degree of inbreeding (Charlesworth 2009; Wang

et al. 2016) and thus, is key for assessing the viability

of invasive populations (Zayed 2004; Zayed et al.

2007; Luikart et al. 2010; Laugier et al. 2016).

Reduced genetic diversity through founder effects

during the invasion process can result in low Ne which

leads to high levels of genetic drift and reduces the

population’s ability to adapt to changing environments

(Reed and Frankham 2003; Zayed et al. 2007).

Departures from the ideal of random mating alter Ne

(Sugg and Chesser 1994). For example, multiple

mating or polyandry increases Ne in reptiles (Davis

et al. 2001; Pearse and Avise 2001; Moore et al. 2008),

mammals (Shurtliff et al. 2005) and land snails

(Murray 1964; but see also Karl 2008), while

complementary sex determination leads to the pro-

duction of infertile diploid males (Whiting 1933; Beye

et al. 2003), which is expected to result in even lower

Ne than predicted under haplodiploidy only (Zayed

2004). Exceptions to this theory are the invasive Asian

honey bee, Apis cerana, which overcame the genetic

depletion during the invasion of Australia due to

natural selection of rare csd alleles (Gloag et al. 2017)

and the solitary bee, Lasioglossum leucozonium,

which successfully invaded North America despite

extremely reduced levels of genetic variation, a

significant bottleneck and lack of population structure

(Zayed and Packer 2007). Thus, genetic variability

may be conserved through mechanisms of natural

selection, which compensates even for severe bottle-

necks in hymenopterans (Gloag et al. 2017).

Vespula wasps, native to Eurasia, are highly

efficient invaders and the economic and ecological

impacts in their invaded ranges are numerous. Social

behaviour, a polyphagous diet and the initiation of

colonies by a single mated queen are considered the

reasons for their exceptional global invasion success

(Moller 1996; Hanna et al. 2014; Lester and Beggs

2019). Vespula wasps have become invasive in

Argentina, Oceania, South Africa and the United

States including all major islands of Hawaii (Visscher

and Vetter 2003; Beggs et al. 2011) and recent studies

show that climate change is likely to increase the

invasion pressure by Vespula wasps on a global scale

(Parmesan 2006; Hulme 2009).

The highest densities of Vespulawasps in the world

are found in New Zealand South Island’s honeydew-

beech forests (Nothofagus spp.) (Moller et al. 1991;

Beggs et al. 1998). Invaded ecosystems undergo

numerous negative shifts including the decline of

native taxa (Beggs et al. 2011; Gardner-Gee and Beggs

2013; Lester et al. 2013; Burne et al. 2017). As social

wasps use invertebrate prey to rear their larvae, high
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densities of Vespula wasps restructure insect commu-

nities (Toft and Rees 1998; Beggs and Rees 1999).

Two Vespula species invaded New Zealand. The

German wasp (Vespula germanica) established on the

North Island of New Zealand around 1945 (Clapperton

et al. 1989). The common wasp (Vespula vulgaris)

was first recorded in New Zealand in 1921 (Donovan

1984) becoming widespread and very abundant since

the 1970s. Mitochondrial DNA (mtDNA) suggests

that England and Scotland were the most likely

sources of V. germanica wasps into New Zealand

(Brenton-Rule et al. 2018) whereas the New Zealand

population of V. vulgaris seem to have originated from

England and Ireland (Lester et al. 2014). An assess-

ment of the effective population size of V. germanica

and V. vulgaris within New Zealand and a comparison

with those in their native ranges are lacking.

We hypothesised that genetic bottlenecks during

the introduction of V. germanica and V. vulgaris into

New Zealand reduced the effective population size,

heterozygosity and number of alleles considerably

when compared to those in the native range (Dlugosch

and Parker 2008). If we find evidence of a bottleneck,

then higher levels of overall genetic diversity in the

native range are expected when compared to the New

Zealand introduced range of both Vespula species. We

genotyped 10 and 14 microsatellite loci for V.

germanica and V. vulgaris, respectively, to determine

whether: (1) New Zealand populations were founded

by a small number of individuals; (2) genetic diversity

reflects a population bottleneck, and (3) these wasp

populations are genetically structured within their

invaded and native ranges.

Materials and methods

Wasp collection

Foraging wasps, V. germanica (n = 44) and V.

vulgaris (n = 40) were collected throughout their

native range in Europe and invaded ranges. Samples

for V. germanica from the native range included

specimens from Austria (n = 2), Belgium (n = 2),

England (n = 2), France (n = 3), Germany (n = 1),

Italy (n = 1), Portugal (n = 2), Scotland (n = 3), Spain

(n = 2), Sweden (n = 1) and Switzerland (n = 1). The

invasive range was represented by V. germanica

individuals from Australia (n = 1), New Zealand

(n = 20) and South Africa (n = 3). Vespula vulgaris

samples from the native range included specimens

from Belgium (n = 10) and Germany (n = 10) and

from the invasive range in New Zealand (n = 20).

Sampling in New Zealand for both species includes six

offshore islands on the northern east coast of the North

Island (Fig. 1). Specimen collection information is

presented in Supplemental Table S1. Individuals were

collected and immediately placed in 99% ethanol, and

frozen upon arrival to the laboratory until DNA

extraction. Following the criteria of Brenton-Rule

et al. (2018), we considered the United Kingdom (UK)

samples (England and Scotland) separated from

mainland Europe. First, because the UK is geograph-

ically separated from the mainland. Secondly, it is the

known source of the Vespula spp. invasions into New

Zealand (Lester et al. 2014; Brenton-Rule et al. 2018).

Genetics

We extracted DNA from whole wasps using a

modified chloroform protocol (GENEzol reagent,

Geneaid Biotech, Taiwan was used in combination

with b-mercaptoethanol, Sigma Aldrich, St Louis, MI,

USA). We tested microsatellite primers previously

developed for other vespine wasps in V. germanica

and V. vulgaris (Thorén et al. 1995; Foster et al. 2001;

Daly et al. 2002; Hasegawa and Takahashi 2002; Arca

et al. 2012). Primer pairs were initially tried on six V.

germanica individuals (30 loci assayed of which 24

amplified) and seven V. vulgaris individuals (31 loci

assayed of which 27 amplified) from New Zealand.

We finally assayed the multilocus genotype of 44 V.

germanica individuals for 10 variable loci (of the 24

loci that amplified, 6 were non-variable and 8

presented excessive stuttering therefore these 14 loci

were discarded) and of 40 V. vulgaris individuals at 14

variable loci (of the 27 loci that amplified successfully,

8 were non-variable and 5 loci presented excessive

stuttering and were discarded; Supplemental

Table S2). We screened one worker per nest as

nestmates are related and not independent from one

another (Goodisman et al. 2001). A M13 tag

(TGTAAAACGACGGCCAGT) was added to the 50-
end of the forward primer of each locus. Each locus

was amplified in 10 lL PCRs that contained 1 lL of

template DNA, 0.2 lM forward primer, 0.8 lM
reverse primer, 0.8 lM M13 primer (labelled with

FAM, NED, PET or HEX), 0.8 uL Bovine Serum
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Albumin (Sigma Aldrich), ultra-pure water and

1 9 MyTaq Mix (Bioline, London, UK). Multiplex

PCR thermocycling conditions and primer annealing

temperatures are reported in Supplemental Tables S2

and S3. Genotyping was performed on an ABI 3130x1

Genetic Analyzer (Applied Biosystems, Foster City,

CA, USA) at Massey Genome Service (Massey

University, Palmerston North, New Zealand). Alleles

were sized using the internal size standard GeneScan

500 LIZ (Applied Biosystems) and scored by hand

using Geneious v.10.2.3 (Kearse et al. 2012). To avoid

dye shifts (Sutton et al. 2011) we assigned one dye per

locus (FAM, NED, PET or HEX) and whenever

possible genotyped all individuals for one locus in the

same run. Possible scoring errors caused by null

alleles, stutter and allelic dropout were assessed with

Microchecker v2.2.3 (van Oosterhout et al. 2004). To

estimate genotyping errors, 10% of the samples were

re-amplified and genotyped at least once for quality

control. We found no inconsistencies between repli-

cates. Allelic scores for V. germanica are presented in

Supplemental Table S4 and for V. vulgaris in Supple-

mental Table S5.

Analysis of genetic diversity

Allele frequencies, observed (Ho) and expected (He)

heterozygosities at the assayed microsatellite loci

within the native or introduced V. germanica and V.

vulgaris populations were estimated using GenAlEx

v.6.5 (Peakall and Smouse 2012). Allelic richness per

locus and population as an unbiased measure of the

number of alleles adjusted by sample size was

estimated using FSTAT v.2.9.3 (Goudet 1995). Gene

diversity was also calculated with FSTAT for both

species. We used Wilcoxon signed-rank test to

compare allelic richness and gene diversity between

the invaded and native ranges for both species.

Fig. 1 Sampling locations of Vespula germanica and V. vulgaris in the native European range (left) and the introduced range in New

Zealand (right). The V. germanica samples collected from Australia and South Africa are not shown
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Possible deviation from Hardy–Weinberg equilibrium

(HWE) and linkage disequilibrium (LD) between all

locus pairs and by population (1000 dememorisations,

1000 batches, and 10,000 iterations per batch) were

analysed using Genepop v.4.2 (Rousset 2008). Sig-

nificance levels (p = 0.05) for departure from HWE

and LD were corrected for multiple comparisons.

Analysis of genetic structure

We estimated the degree of population differentiation

within V. germanica and V. vulgaris by calculating FST

and RST in Arlequin v.3.5.2.2 (Excoffier and Lischer

2010). A Bayesian clustering approach was used to

assign individuals to admixture proportions based

solely on allele frequencies without including a priori

information as implemented in the program STRUC-

TURE v.2.3.4 (Pritchard et al. 2000; Hubisz et al.

2009). Data were analysed using the admixture model

assuming correlated frequencies with a 100,000 burn-

in period and a million Markov Chain Monte Carlo

iterations, the possible number of populations

(k) ranged from 1 to 10 for V. germanica and from 1

to 12 for V. vulgaris; analyses were repeated 10 times

to ensure consistency across runs. We used the Evanno

et al. (2005) method to determine the optimal number

of genetic clusters (k) given the data as implemented in

STRUCTURE HARVESTER web v0.6.94 (Earl and

vonHoldt 2012).

We performed a factorial correspondence analysis

(FCA) of multilocus genotypes to visualise the genetic

variation at the individual level as implemented in

GENETIX v.4.05 (Belkhir et al. 1998).

We estimated contemporary effective population

sizes (Ne) for V. germanica and V. vulgaris popula-

tions with the software NeESTIMATOR v.2 (Do et al.

2014) using the linkage disequilibrium method. This

method evaluates non-random associations formed

among alleles at different loci that occur when Ne is

low and thus genetic drift influences allelic frequen-

cies (Luikart et al. 2010). We used the random mating

model and 95% confidence limits were obtained by

jackknifing over loci. To test the effects that low-

frequency alleles have on effective population size

estimates, rare alleles (alleles with frequency\ Pcrit)

were excluded (Sonsthagen et al. 2017). We estimated

Ne with Pcrit values from the lowest frequency of

0.01–0.09 and without frequency restriction. If Ne

estimates vary across a range of Pcrit values, this

suggests a history of gene flow and/or the presence of

first-generation dispersers. If Ne remains stable across

a range of Pcrit values, this indicates isolated popu-

lations (Waples and England 2011; Sonsthagen et al.

2017).

Results

Genetic diversity

Vespula germanica

All loci in the native population were in Hardy–

Weinberg equilibrium (HWE) although five loci in the

introduced population deviated significantly from

HWE after sequential Bonferroni correction (Holm

1979). All loci pairs were in linkage disequilibrium

(LD) for V. germanica in the native and the invasive

populations following Bonferroni correction. Micro-

checker found no evidence of scoring errors or large

alleles dropout. However, there is evidence of null

alleles for the native population at locus List-2007

(estimated frequency of 0.1388). For the introduced

population, null alleles were detected for six loci

(Rufa-5 with an estimated frequency of 0.2307, List-

2007: 0.1204, List-2011: 0.1841, List-2019: 0.1325,

VMA-6: 0.15 and R4-114: 0.159); which might

explain the deviation from HWE. The null allele

frequencies at these loci was estimated to be low

(\ 0.25) and previous research demonstrated that low

frequency null alleles have little influence on the

detection of genetic differentiation (Carlsson 2008;

Rico et al. 2017), therefore, we decided to retain these

seven loci.

Observed (Ho) and expected (He) heterozygosities

ranged from 0.108 to 0.536 in the native range and

0.071–0.347 in the invaded range, respectively. Alle-

les per locus ranged from 1 to 12 in V. germanica

(mean = 4.1, Table 1). The native population pre-

sented a larger number of alleles (mean = 5.1) when

compared to the introduced population (mean = 3.2,

Table 2). The number of private alleles was also larger

for the native population with a total of 24 private

alleles from 7 loci (mean = 2.4) while for the intro-

duced V. germanica population, only 5 private alleles

were found each corresponding to a different locus

(mean = 0.5, Table 1).
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Introduced populations of V. germanica show

extremely low levels of genetic diversity. Allelic

richness was significantly reduced in the introduced

population when compared to the native population

(Table 2; Wilcoxon sign-rank test, n = 10,

p = 0.028). The same pattern was observed for gene

diversity (Table 2; Wilcoxon sign-rank test, n = 10,

p = 0.037).

Table 1 Indices of genetic

diversity for native and

invasive populations of

Vespula germanica and V.

vulgaris

Values correspond to mean

(standard error)

Vespula germanica Vespula vulgaris

Native Invasive Native Invasive

No. alleles 5.100 (1.1) 3.200 (0.4) 5.714 (0.8) 3.500 (0.5)

Private alleles 2.400 (0.7) 0.500 (0.1) 2.786 (0.6) 0.571 (0.2)

Ho 0.536 (0.1) 0.325 (0.1) 0.593 (0.07) 0.442 (0.09)

He 0.498 (0.1) 0.347 (0.07) 0.563 (0.06) 0.383 (0.07)

Ne 3.398 (0.8) 1.731 (0.2) 3.174 (0.5) 1.987 (0.2)

n 20 24 20 20

Table 2 Number of alleles

sampled, gene diversity and

allelic richness (AR) per

locus and population (native

versus introduced) of

Vespula germanica (top)

and V. vulgaris (bottom)

aFor V. germanica, AR

estimates are based on a

corrected sample size of 15

diploid individuals and for

V. vulgaris, AR estimates

are based on a corrected

sample size of 10 diploid

individuals

Locus # alleles sampled Gene diversity Allelic richness (AR
a )

Native Introduced Native Introduced Native Introduced

Vespula germanica

Rufa-5 5 4 0.687 0.404 4.692 3.638

Rufa-19 8 3 0.844 0.538 7.703 2.923

List-2004 9 4 0.866 0.657 8.618 3.864

List-2011 1 2 0.000 0.166 1.000 1.989

VMA-6 12 6 0.909 0.586 11.273 5.426

R4-114 3 2 0.303 0.093 2.750 1.923

List-2007 5 4 0.675 0.268 4.749 3.245

List-2019 3 2 0.099 0.159 2.500 1.984

VMA-7 2 2 0.097 0.085 1.942 1.884

Rufa-15 3 3 0.629 0.607 3.000 3.000

Average 5.1 3.2 0.511 0.356 4.823 2.987

Vespula vulgaris

Rufa-5 5 1 0.276 0.000 3.385 1.000

Rufa-19 10 3 0.877 0.493 8.823 2.884

List-2003 10 6 0.833 0.501 10.000 4.844

List-2004 7 5 0.658 0.551 5.485 4.013

List-2011 3 1 0.521 0.000 2.500 1.000

VMA-6 10 7 0.887 0.800 8.550 6.151

R4-114 2 1 0.295 0.000 1.996 1.000

List-2012 5 4 0.662 0.579 4.269 3.309

List-2013 6 3 0.748 0.305 5.014 2.490

List-2014 4 4 0.601 0.507 3.447 3.472

List-2017 3 2 0.188 0.053 2.385 1.526

List-2018 9 6 0.831 0.744 7.682 5.205

R1-169 4 3 0.247 0.417 3.091 2.588

VMA-3 2 3 0.503 0.529 2.000 2.526

Average 5.7 3.5 0.581 0.391 4.902 3.000
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Vespula vulgaris

No significant LD was detected among paired loci

comparisons by population and no deviations from

HWE were observed after Bonferroni correction. The

V. vulgaris data shows no evidence of scoring errors,

large allele dropout or null alleles for either popula-

tion. Ho and He ranged from 0.184 to 1.000 in the

European native range. In the New Zealand invaded

range, Ho and He varied from 0.000 to 0.895. Alleles

per locus ranged from 2 to 10 in the native population

(mean = 5.7) and from 1 to 7 in the invaded popula-

tion (mean = 3.5, Tables 1, 2). As expected, the

number of alleles was larger in the native than in the

invasive population of V. vulgaris with the native

population having a larger number of private alleles

(mean = 2.786) than the invasive population (mean =

0.571, Table 1).

As found for the congener species, V. vulgaris

showed significantly reduced allelic richness in the

introduced range when compared to the native range

wasps (Table 2; Wilcoxon sign-rank test, n = 14,

p = 0.001). Gene diversity was also significantly

lower in the invaded range than in the native range

(Table 2;Wilcoxon sign-rank test, n = 14, p = 0.006).

Genetic structure

Vespula germanica

A strong signature of population structure was found

for V. germanica with frequency differences detected

among microsatellite loci (FST = 0.166, p\ 0.0001;

RST = 0.101, p = 0.017). The STRUCTURE HAR-

VESTER analysis of Dk indicated that the optimal

k was 2, Dk = 371.678 (Fig. 2; Suppl. Fig. S1) corre-

sponding roughly to the native European population

and the invasive localities. Secondary optima were

detected at k = 5, Dk = 9.074 and at k = 7,

Dk = 2.255.

At k = 2, samples collected in the introduced

ranges of New Zealand and Australia clustered with

the five samples collected from the United Kingdom (3

from Scotland, 2 from England) confirming that the

United Kingdom is the origin of the New Zealand and

Australian introductions. However, the samples col-

lected in the introduced range in South Africa grouped

with samples from European countries (Austria,

Belgium, France, Germany, Italy, Spain, Portugal,

and Sweden) suggesting that continental Europe is the

most likely origin for the South African V. germanica

introduction (Fig. 2).

At k = 5, wasps were assigned to five admixture

proportions. Samples from mainland Europe were

mostly assigned with equal probability to two propor-

tions. The five samples from the United Kingdom

grouped into a third proportion with high probability

as did four of the New Zealand wasps and the only

Australian wasp. The remaining 16 New Zealand

wasps grouped on a fourth proportion and the three

South African samples clustered together in the fifth

admixture proportion (Fig. 2).

At k = 7, additional population structuring was

evident. Samples from mainland Europe were

assigned with equal probability to four admixture

proportions. The five samples from the United King-

dom grouped into a fifth proportion together with one

Australian and four New Zealand wasps. Sixteen New

Zealand wasps grouped on a sixth proportion and the

three South African samples clustered together in one

of the four admixture proportions identified for the

European samples (Fig. 2).

The first two axes of FCA for V. germanica

explained 16.56% and 10.70% of the total variance

observed (Fig. 4a) with the three South African

samples grouping apart from the rest of the individ-

uals. When excluding the South African samples, axis

1 explained 13.09% and axis 2 9.22% of the variance,

with the introduced population clustering tightly

together (Fig. 4b).

Vespula vulgaris

Population differentiation was high amongmicrosatel-

lite loci for this species as well (FST = 0.108,

p\ 0.0001; RST = 0.109, p = 0.002). STRUCTURE

HARVESTER uncovered an optimal k at 2, Dk =

198.902. These two admixture proportions repre-

sented the native population (proportion 1: Belgium

and Germany, Fig. 3) and the New Zealand invasion

(proportion 2, Fig. 3) with the exception of one sample

collected in the Karori suburb of Wellington that

seemed to have originated from either Belgium or

Germany. These results suggest that the main V.

vulgaris invasion into New Zealand has not occurred

from Belgium or Germany but from a population not

sampled for this study. Suboptimal k were detected at

k = 3, Dk = 21.153 and k = 5, Dk = 4.444.
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At k = 3, the samples from Belgium and Germany

and one sample from the Karori suburb of Wellington

grouped with approximately equal probability into

two admixture proportions whereas the New Zealand

samples clustered in a third independent group

(Fig. 3).

At k = 5, the European samples, plus the Karori

sample, were assigned equally to four admixture
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outputs for Vespula
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proportions. Fifteen New Zealand wasps collected

from offshore islands and other northern localities of

the North Island grouped together in a fifth proportion

while four other New Zealand samples: three collected

from Nelson Lakes in the South Island and one

collected in Rotokakahi Lake, Rotorua, North Island

were assigned to the five proportions previously

identified (Fig. 3).

The FCA shows higher genetic diversity in samples

from the native range than in the introduced popula-

tions, with the first two axes explaining 8.96% and

7.16% of the observed variance, respectively

(Fig. 4c).
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Effective population sizes (Ne)

A signature of a reduced effective population size for

the invasive population of V. germanica was observed

based on the linkage disequilibrium method (Fig. 5a).

Both native and introduced populations presented

relatively stable values of Ne across Pcrit values, with

the introduced population presenting narrow confi-

dence limits. The native population upper bound

confidence interval was infinity.

Native V. vulgaris represent a large and stable pop-

ulation across Pcrit, suggestive of a panmictic popu-

lation with substantial levels of gene flow across its

natural range. The introduced V. vulgaris population

however, presents small estimates of effective popu-

lation size with very narrow confidence intervals

(Fig. 5b).

bFig. 4 Factorial correspondence analysis of individual multi-

locus genotypes.Multilocus scores are computed in the bivariate

space defined by the first two factorial components. a FCA

performed on all 44 V. germanica individuals based on 10

microsatellite loci, b same analyses for V. germanica excluding

the 3 South African samples, and c results for all Vespula

vulgaris individuals (n = 40) based on 14 microsatellite loci
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Fig. 5 Changes in contemporary effective population sizes

(Ne) estimates for V. germanica (top) and V. vulgaris (bottom)

as a function of excluding rare alleles (Pcrit). The solid lines

represent the point estimate of Ne, and dashed lines are the

associated 5% and 95% confidence limits. Upper 95%

confidence limits for the native population of V. germanica

was ? for all estimates. The native population of V. vulgaris

presented values of Ne = ? for all values of Pcrit except 0.07,

with upper 95% confidence limits = ? for all estimates
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Discussion

We compared levels of genetic diversity within the

native and the invaded range of V. germanica and V.

vulgaris and found a strong reduction in genetic

diversity in the invaded range of New Zealand for both

species, as predicted. Vespula germanica in the

invaded range showed 70% of the expected heterozy-

gosity and 63% of the allelic richness found in the

native range. Vespula vulgaris in the invaded range

had 68% of the expected heterozygosity and 61% of

the allelic richness found in the European samples. For

both species, only 20–21% of private alleles present in

the native range were found in the invaded range, a

reduction of 80%. Our findings indicate a strong

genetic bottleneck for V. germanica and V. vulgaris in

their invaded range of New Zealand and suggest that

New Zealand populations were founded by a small

number of individuals. The reduction of genetic

diversity through bottleneck effects in invasive Ve-

spula wasps is in line with studies on other invasive

social wasps (Goodisman et al. 2001; Husseneder et al.

2012; Tsuchida et al. 2014; Arca et al. 2015; Chau

et al. 2015; Cheng et al. 2016; Takeuchi et al. 2017).

A similar relation between reduced genetic diver-

sity, particularly allelic richness, and invasion success

has been observed in other invasive social insects,

such as ants and termites. There are well-known

examples of bottleneck effects in populations of the

Formosan subterranean termite, Coptotermes for-

mosanus, which is invasive in the United States

(Vargo and Husseneder 2009; Husseneder et al. 2012).

The Argentine ant, Linepithema humile, successfully

invaded parts of Europe, South Africa, the United

States, and New Zealand despite displaying low levels

of genetic diversity (Tsutsui et al. 2000; Giraud et al.

2002; Suarez et al. 2008; Cheng et al. 2016). Allelic

richness in Argentine ant colonies was reduced by

55.5% in Hawaii (Tsutsui and Case 2001) and 40% in

New Zealand (Corin et al. 2007).

There is a possible link between low genetic

diversity and changes in social phenotypes which

leads to invasion success in invasive social hymenop-

teran (Chapman and Bourke 2001). Some invasive

Vespula species develop perennial, polygynous nests

in their invaded ranges (Spradbery 1973; Akre and

Reed 1981; Plunkett et al. 1989; Donovan et al. 1992;

Leathwick and Godfrey 1996; Visscher and Vetter

2003). The mechanisms underlying the occurrence of

multi-year Vespula colonies with multiple queens are

poorly understood, yet the lack of thermal constraints

has been considered to be a major factor (Visscher and

Vetter 2003). Additionally, recent studies on Vespula

pensylvanica suggest that ancestral weak nestmate

discrimination may facilitate the adaptation of polyg-

yny in the invaded range (Loope et al. 2018). Another

change in social phenotype that might facilitate the

invasion success of Vespula wasps is gene flow

induced by queen movement and resulting in an

increased exchange of genetic information between

meta-populations. Colonies in the introduced ranges

have been found to contain more workers that have

been produced by multiple, foreign queens (Goodis-

man et al. 2001; Hanna et al. 2014). In addition,

polyandry is likely to have helped Vespula wasp

invasion in New Zealand; only a single multi-mated

queen might have successfully established a whole

new population (Goodisman et al. 2007; Schmid-

Hempel et al. 2007; Arca et al. 2015; Dobelmann et al.

2017). Further, V. germanica and V. vulgarismight be

successful invaders despite drastic genetic bottlenecks

due to their haplodiploid sex determination system,

which exposes recessive, deleterious mutations to

selection (Schmid-Hempel et al. 2007). Thus, off-

spring of such purged lines might be able to tolerate

high levels of genetic load and inbreeding (Schmid-

Hempel et al. 2007; Zayed et al. 2007; Gloag et al.

2017).

While genetic structure of V. germanica and V.

vulgaris populations differed between the native and

the invaded ranges, genetic differentiation of New

Zealand wasps was low. In both species, the genetic

variation within New Zealand was not sufficient to

distinguish between meta-populations. Low levels of

genetic structure found in our study contrast with

studies on invasive Vespula wasp populations in

Australia (Goodisman et al. 2001) and Hawaii (Chau

et al. 2015) but are in line with work on invasive paper

wasp populations, Polistes spp., in New Zealand

(Tsuchida et al. 2014). The difference between our

results and the findings from the Hawaiian Islands and

Australia might be due to weaker dispersal barriers

among sample sites in New Zealand. Low levels of

genetic structure in New Zealand may indicate

ongoing gene flow within New Zealand wasps or

underline strong founder effects during the introduc-

tion of Vespula wasps.

123

J. M. Schmack et al.



Contrary to other studies on genetic structure in

invasive social wasps (Hoffman et al. 2008; Chau et al.

2015), V. germanica showed some genetic structure

within its native range, with populations from main-

land Europe being genetically different from the

United Kingdom wasps. However, because we could

not secure V. vulgaris specimens from the United

Kingdom, we were not able to detect if there is the

same differentiation in its native range as observed for

V. germanica. Previous studies found that in its native

range, V. pensylvanica seem to be panmictic with large

populations and unrestricted gene flow (Chau et al.

2015), in agreement with our estimates of effective

population size for V. vulgaris in its native range.

Our study confirms that V. germanica populations

in New Zealand originated from a source population in

the United Kingdom (England and Scotland) in

agreement with mitochondrial DNA data (Brenton-

Rule et al. 2018). The South African V. germanica

introduction, however, seems to have its origin

somewhere in mainland Europe; suggesting an intro-

duction that was independent from the New Zealand

invasion and not introduced into South Africa from the

New Zealand stock. Further research with increased

samples from both, South Africa and Northern Euro-

pean countries is necessary to determine the country of

origin of the South African introduction.

A study using mitochondrial DNA data showed that

the V. vulgaris populations found in New Zealand

likely originated in England and Ireland (Lester et al.

2014). We could not secure samples from these

countries for our current study. We can confirm that

neither Belgium nor Germany are the source popula-

tions. However, one sample collected in a suburb of

Wellington seems to have originated from either

Belgium or Germany, suggesting an independent

invasion event in theWellington region, likely through

maritime traffic as the Wellington harbour is a busy

transport hub.

We found a reduction of effective population sizes

(Ne) for both, V. germanica and V. vulgaris, in their

invaded ranges in agreement with allelic richness and

other population differentiation estimates.

This is the first study to compare both Vespulawasp

species from their native and introduced ranges as well

as six offshore islands on the east coast of New

Zealand. The population structure analyses did not

identify these islands as discrete from mainland New

Zealand wasp populations therefore we have little

evidence for considering them as genetically isolated

from the mainland. Further research to understand the

colonisation patterns of Vespula wasps into offshore

islands and to gain insights into the effect of

geographic factors on dispersal patterns of invasive

wasps would be beneficial. It is a key question for

conservation management whether each island inva-

sion is an independent colonisation process or if

invasive species establish in an area by ‘hopping’ from

island to island (Parkes et al. 2017; Russell et al.

2017). For example, a recent point of discussion for

conservation management in New Zealand is if

establishing marine reserves around islands could

prevent introductions or reintroductions of invasive

species into unique island ecosystems (Department of

Conservation and Ministry of the Environment 2000;

Secretariat of the Convention on Biological Diversity

2004; Edgar et al. 2017; Sala and Giakoumi 2018).

Studies on the population genetic patterns of

invasive populations are key for developing a sound

understanding of the evolutionary mechanisms under-

pinning invasion success and the development of

control strategies including novel techniques such as

gene editing. Overall, insights into the invasion of V.

germanica and V. vulgaris across New Zealand’s

mainland and offshore islands may provide essential

knowledge on invasion processes and help manage

invasions by social wasps.
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Pyšek P, Richardson DM (2010) Invasive species, environ-

mental change and management, and health. Annu Rev

Environ Resour 35:25–55

Reed DH, Frankham R (2003) Correlation between fitness and

genetic diversity. Conserv Biol 17:230–237. https://doi.

org/10.1046/j.1523-1739.2003.01236.x

Rico C, Cuesta JA, Drake P, Macpherson E, Bernatchez L,

Marie AD (2017) Null alleles are ubiquitous at

microsatellite loci in the Wedge Clam (Donax trunculus).

PeerJ 5:e3188. https://doi.org/10.7717/peerj.3188

Rousset F (2008) GENEPOP’007: a complete re-implementa-

tion of the GENEPOP software for Windows and Linux.

Mol Ecol Resour 8:103–106

Russell JC, Meyer J, Holmese ND, Pagad S (2017) Invasive

alien species on islands: impacts, distribution, interactions

and management. Environ Conserv 44:359–370. https://

doi.org/10.1017/S0376892917000297

Sala E, Giakoumi S (2018) No-take marine reserves are the most

effective protected areas in the ocean. ICES J Mar Sci

75:1166–1168. https://doi.org/10.1093/icesjms/fsx059

Schmid-Hempel P, Schmid-Hempel R, Brunner PC, Seeman

OD, Allen GR (2007) Invasion success of the bumblebee,

Bombus terrestris, despite a drastic genetic bottleneck.

Heredity 99:414–422. https://doi.org/10.1038/sj.hdy.

6801017

Secretariat of the Convention on Biological Diversity (2004)

The ecosystem approach. Secretariat of the Convention on

Biological Diversity. ISBN: 92-9225-023-x

Sherpa S, Rioux D, Pougnet-Lagarde C, Després L (2018)

Genetic diversity and distribution differ between long-

established and recently introduced populations in the

invasive mosquito Aedes albopictus. Infect Genet Evol

58:145–156

Shurtliff QR, Pearse DE, Rogers DS (2005) Parentage analysis

of the canyon mouse (Peromyscus crinitus): evidence for

multiple paternity. J Mammal 86:531–540. https://doi.org/

10.1644/1545-1542(2005)86[531:PAOTCM]2.0.CO;2

Sonsthagen SA, Wilson RE, Underwood JG (2017) Genetic

implications of bottleneck effects of differing severities on

genetic diversity in naturally recovering populations: an

example from Hawaiian coot and Hawaiian gallinule. Ecol

Evol 7:9925–9934. https://doi.org/10.1002/ece3.3530

Spradbery JP (1973) Wasps: an account of the biology and

natural history of solitary and social wasps. University of

Washington Press, Seattle

Suarez AV, Holway DA, Liang D, Tsutsui ND, Case TJ (2002)

Spatiotemporal patterns of intraspecific aggression in the

invasive Argentine ant. Anim Behav 64:697–708

Suarez AV, Robinson GE, Toth AL, Smith CR (2008) Genetic

and genomic analyses of the division of labour in insect

societies. Nat Rev Genet 9:735–748. https://doi.org/10.

1038/nrg2429

Sugg DW, Chesser RK (1994) Effective population sizes with

multiple paternity. Genetics 137:1147–1155

Sutton JT, Robertson BC, Jamieson IG (2011) Dye shift: a

neglected source of genotyping error in molecular ecology.

Mol Ecol Resour 11:514–520. https://doi.org/10.1111/j.

1755-0998.2011.02981.x

Takeuchi T, Takahashi R, Kiyoshi T, Nakamura M, Minoshima

Y, Takahashi J (2017) The origin and genetic diversity of

the yellow-legged hornet, Vespa velutina introduced in

Japan. Insect Soc 64:313–320. https://doi.org/10.1007/

s00040-017-0545-z

Thorén PA, Paxton RJ, Estoup A (1995) Unusually high fre-

quency of (CT)n and (GT)n microsatellite loci in a yel-

lowjacket wasp, Vespula rufa (L.) (Hymenoptera:

Vespidae). Insect Mol Biol 4:141–148

Toft RJ, Rees JS (1998) Reducing predation of orb-web spiders

by controlling common wasps (Vespula vulgaris) in a New

Zealand beech forest. Ecol Entomol 23:90–95. https://doi.

org/10.1046/j.1365-2311.1998.00100.x
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