
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

���
Computer Science

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@mcs.vuw.ac.nz

Evaluating Scalable Vector

Graphics for Software

Visualisation

Matthew Duignan

February 19, 2003

Submitted to the Victoria University of Wellington in
partial fulfilment of the requirements for the degree of

Master of Science in Computer Science.

Abstract

Software visualisation employs various representations of software to help pro-
grammers better understand program code. However, there are many technologies
that can be used to deliver software visualisations. These different software vi-
sualisation media have varying capabilities, and determining which medium is
best suited for a particular software visualisation application can be a complex
task. To this end, this thesis presents a principled model for evaluating software
visualisation media. This model is then applied in the evaluation of the new
“Scalable Vector Graphics” (SVG) standard, to determine if it is suited for use in
a developing web-based software visualisation architecture. While the evaluation
finds that SVG can realise a broad range of software visualisations, it is clear that
it falls short in making the development of software visualisations as easy as it
could. This thesis presents a way forward for creating complex software visualisa-
tions with SVG through the development of a domain-specific SVG library. The
foundation for this library is illustrated and discussed.

Acknowledgments

Many thanks to Robert Biddle for his patience and advice as well as Ewan Tempero, Mike
McGavin, Stuart Marshall, Kirk Jackson, and the rest of the elvis group for the many enjoy-
able hours of discussion. A big thank you to Paul and Jens for letting me live in their office
and completely hog the best computer — and to Tim, sorry you couldn’t play any games!
Thanks to Sharni for being understanding and letting me get away with being distracted
and grumpy, as well as reading this whole thesis. A big thank you to Joan Skinner, Paul
Duignan, Craig Anslow and Peter Glensor for helping with proof-reading. Thanks to my
friends for your support. Lastly, thank you to all of my family who have been so supportive,
and humoured me when I wanted to show you what I was doing!

i

Contents

1 Introduction 1

2 Background 3
2.1 Object-oriented programming . 3
2.2 Information visualisation . 4
2.3 Software visualisation . 5
2.4 VARE . 6

2.4.1 Program Mapping Visualisation . 6
2.4.2 PMV to VARE . 7
2.4.3 Architecture . 7
2.4.4 Communication . 8
2.4.5 Finding a medium for software visualisation over the web 13
2.4.6 The Unified Modelling Language . 13

2.5 Scalable Vector Graphics . 15
2.5.1 Bitmap versus vector graphics . 16
2.5.2 SVG in practice . 17
2.5.3 The future of SVG . 20
2.5.4 Competing vector graphics formats . 20

2.6 Evaluating SVG . 20

3 Evaluation Model 21
3.1 A basis for evaluating software visualisation media 21

3.1.1 Information visualisation . 22
3.1.2 Software visualisation . 22
3.1.3 Ease of programming . 24
3.1.4 Limitations . 24

3.2 Model framework . 25
3.2.1 Qualitative evaluation . 25

3.3 Basic information visualisation capabilities . 26
3.3.1 Graphical capability . 26
3.3.2 Interaction . 29
3.3.3 Performance . 32

3.4 Software visualisation specific and higher-level capabilities 32
3.4.1 Integration . 32
3.4.2 Higher-level capabilities . 34
3.4.3 Support for current software visualisations 36

ii

4 Exploring SVG 38
4.1 Learning SVG . 38

4.1.1 The SVG specification . 38
4.1.2 On-line tutorials . 38
4.1.3 On-line examples . 39

4.2 Constructing software visualisations with SVG 42
4.2.1 UML visualisations . 42
4.2.2 Extended UML visualisations . 46
4.2.3 Statistical visualisation . 50

4.3 VARE integration . 50
4.3.1 AT — The Process Abstraction Tool 53
4.3.2 Building a transformer . 53

5 Evaluation 63
5.1 Basic information visualisation capabilities . 63

5.1.1 Graphical capability . 63
5.1.2 Interaction . 65
5.1.3 Performance . 66

5.2 Software visualisation-specific and higher-level capabilities 67
5.2.1 Integration . 67
5.2.2 Higher-level capabilities . 68
5.2.3 Support for current software visualisations 69

5.3 Points of interest . 69
5.3.1 SVG creation . 69
5.3.2 Streaming SVG . 71
5.3.3 The importance of scripting . 71
5.3.4 Creating objects from symbols . 73
5.3.5 Layout constraints . 73

5.4 Alternatives to SVG . 74
5.4.1 Macromedia Flash . 74
5.4.2 VRML and X3D . 75
5.4.3 Java . 75

5.5 SVG’s strengths . 75
5.6 SVG’s weaknesses . 76
5.7 Possible improvements for SVG . 77

5.7.1 Layout constraints . 77
5.7.2 Entity construction . 77
5.7.3 Upcoming improvements . 78

6 Building on SVG 81
6.1 Graphics APIs . 81
6.2 An SVG graphics API . 83
6.3 An SVG software visualisation library . 84
6.4 Library details . 85

6.4.1 Creating Nodes and Links . 86
6.4.2 Dynamic diagrams . 88
6.4.3 Object-oriented ECMAScript . 89
6.4.4 A UML class node . 89

6.5 SVG node-link library in action . 91
6.6 Discussion . 95

iii

6.6.1 Possible improvements . 95
6.6.2 Contributions . 96

7 Conclusions 97
7.1 Conclusions for VARE . 97

7.1.1 Contribution to VARE . 97
7.1.2 Implications for VARE . 98

7.2 Meta analysis — evaluating the model . 99
7.3 Summary of evaluation . 100
7.4 Future work . 100
7.5 Contributions . 101

Bibliography 103

iv

Chapter 1

Introduction

Mackinlay et al.[7] make the distinction between using vision to communicate, and using
vision to think. We can make a similar distintion in software visualisation. Software visu-
alisation can be used to document software for learning (using vision to communicate), and
to aid in the design process (using vision to think). Using software visualisation to docu-
ment software aids both the maintenance and reuse of program code by making it easier to
understand. Using software visualisation as part of the design process helps designers to com-
prehend the complexity of the systems they are building, and helps them to see the patterns
and relationships as they emerge. To utilise visualisation for these ends requires software
technology capable of high-quality graphics, interaction and dynamic display. What is more,
visualisations should be able to be generated automatically from the underlying software,
demanding that the visualisation technology integrates with other technologies involved in
extracting software information and mapping it to graphics.

The Visualisation Architecture for REuse (VARE) being developed by our research group
at Victoria University of Wellington seeks to specify a system for the support of code reuse
through using visualisation as documentation[4]. This architecture is designed to support
web-based code repositories by providing a means to “test drive” code and view visualisations
over the web. VARE is in need of a software technology to deploy these visualisations over
the web.

“Scalable Vector Graphics” or SVG[61], is a new standard for describing graphics in the
eXtensible Markup Language (XML)[60]. On first examination, SVG seems to fill many of
the requirements for VARE’s needs. It can be deployed over the web, supports interaction
and animation, and it can display high-quality graphics. However, SVG needs to be examined
more thoroughly.

This thesis develops a model for evaluating software visualisation “media”. This model
itemises a set of capabilities which are desirable in a software visualisation display technology.
The model is then used as a basis for evaluating SVG for software visualisation, with the end
goal of discovering how appropriate SVG is for use in VARE.

This thesis also has the goal of testing various elements of the VARE architecture. This

1

includes testing VARE’s method for the programmatic generation of software visualisations,
building from the work that has already been done by our research group[4][38].

The evaluation methodology for SVG undertaken in this thesis is as follows:

• Step One: Develop a model of required capabilities for a software visualisation display
technology.

• Step Two: Examining SVG’s general capabilities.

• Step Three: Construct software visualisation examples in SVG to test software visual-
isation specific capabilities.

• Step Four: Evaluate SVG’s capabilities against the capabilities identified in the evalu-
ation model.

The organisation of this thesis is as follows:

• Chapter 2: Covers the background of information and software visualisation, and gives
a description of the VARE architecture. This chapter also explains the rationale for
this thesis.

• Chapter 3: Introduces, argues for, and explains the evaluation model that I have de-
veloped. (Step one of the methodology).

• Chapter 4: Covers the steps that were taken in exploring the details of SVG. This chap-
ter includes both learning SVG as well as creating real software visualisation examples.
(Steps two and three of the methodology).

• Chapter 5: Contains the comparison of SVG’s capabilities as identified in chapter 4,
with the capabilities identified in the model developed in chapter 3. (Step four of the
methodology).

• Chapter 6: Examines how SVG could be augmented without requiring changes to its ex-
isting standard. This examination takes into account the weaknesses that were identified
in chapter 5. This chapter then describes the development of one such augmentation,
an SVG software visualisation library, and discusses the results.

• Chapter 7: Draws conclusions from the findings of chapters 5 and 6 for both SVG and
VARE.

2

Chapter 2

Background

One of the biggest strains for software developers today is trying to understand existing
program code. Programmers must face this task in several situations. The most obvious
of these are in maintaining code and when reusing code. For the task of maintaining code,
programmers need to rapidly come to understand the general architecture of a system, while
gaining thorough knowledge of the interactions and behaviour of those specific components
to which changes need to be made. In the case of code reuse, programmers want to gain
access to code which solves a specific problem or performs a certain task. To accomplish
this they need to locate the code, and discover exactly what it does. Often they will also
be required to investigate parts of that code in detail, to discover if it must be modified to
serve the demands of their application. In those cases where the code was written by the
programmer who is doing the maintenance or reuse, they may come back to their code with
only distant memories of how it works. Worse still, programmers will often have to deal
with code written by someone else. In these situations, how do programmers learn how the
code works? The common-sense answer is that they read the source code. The problem
with this is that while the original author(s) had the benefit of a developed multi-leveled
mental model of the software while they worked, the newcomer has to construct a model as
they go. The overview that the programmer needs before delving deeper will be difficult to
construct through studying source code alone. Even a cursory examination of the scores of
source code files that might make up a single component of a system can be laborious and
painful. Such an examination is also likely to fail to give the reader a good understanding
of overall relationships and global structure. Is constructing this sort of higher-level mental
model best served through textual code and textual documentation, or can we do better?

2.1 Object-oriented programming

Object-oriented programming aims to alleviate this problem by helping programmers capture
the mental models of programs that they hold in their minds, and represent them in a concrete
form in the semantics and syntax of their programming languages. In the object-oriented

3

paradigm, all functionality is captured in “Objects” which act as active entities in a program’s
execution. All interaction between Objects is mediated by message passing. The predefined
messages that an Object will recognise and respond to are called “methods”. A “method-
call” on an object may be a request for that object to do some specific work. At this point,
this object can then do work itself or delegate its responsibility by calling methods on other
objects. However, while enabling programmers to capture this structure in the syntax of
their programming language helps with the problems described above, this is only one part
of a more comprehensive solution. Once programmers are thinking and coding with objects,
why can they not also look at them to see how they work as we can with objects in the real
world?

2.2 Information visualisation

The development of information visualisation as an active field of research, and the success
of the resulting visual tools, leads us to believe that the graphical medium can unlock the
powerful potential of the human visual system. Using visualisation to communicate or store
information is not a new practice. The mapping of the earth and the heavens on paper is an
ancient example of visualisation. However, visualising more abstract information (i.e. other
than spatial representations) was not begun in earnest until the work of Charles de Fourcroy’s
“Poleometric Table” in 1782, and the publication of “The Commercial and Political Atlas”
by William Playfair in 1786 .

Figure 2.1: An example of early information visualisation from William Playfair’s “The
Commercial and Political Atlas”.

Information visualisation is used for both communicating information, and as an aid to think-
ing about and understanding information. Mackinlay et al.[7](p.1) make the distinction be-

4

tween using vision to think and using vision to communicate. Visualisation is a powerful
communication device due to the high bandwidth of our visual system[69](p.xviii). Visuali-
sation helps us think because it allows us to extend our memories, group related information
together visually, and find patterns in complex data[30].

The fields of scientific visualisation and information visualisation have developed greatly
as our capability to generate high quality graphics on commodity computer hardware has
increased. Being able to rapidly generate and interact with data in a visual form has created
new opportunities in extending our analytical capabilities. When we bring this to bear on the
problem that programmers face with understanding code, we are led to the field of software
visualisation.

2.3 Software visualisation

The term software visualisation describes the application of information visualisation to the
software domain. One early software visualisation tool was “SeeSoft”. SeeSoft was designed
to help programmers see trends in the physical layout of their code[19]. This corresponds to
Mackinlay et al.’s first notion of using vision to think. Software visualisation can also help
programmers to think by using visualisations in software design. Indeed, up till now, this
has been the major success of software visualisation. Standards like ER (Entity Relation-
ship) diagrams for visualising data structures, and UML (Unified Modelling language)[24]
for visualising object-oriented systems have made significant inroads into real world software
development. Such standards allow programmers to see the higher-level structure of pro-
grams visually. These visualisations aim to answer the following questions. What are the
components of the system? How do they interact? How can they interact?

Figure 2.2: SeeSoft in action.

The other use of visualisation is what can be referred to as “visualisation as documentation”
as used in the VARE architecture[4] described in the following section. This corresponds to

5

Mackinlay et al.’s second notion of using vision to communicate. But unfortunately, providing
visualisations of existing software for visualisation as documentation has proved to be much
more difficult than using it in software design. The reasons for this are twofold. Firstly,
software is often developed without formal software visualisations. Perhaps the design is
fleshed out on scraps of paper, or solely in the developers’ heads. Secondly, even if the original
software developers do create visualisations during the design of a system, software still tends
to change significantly, both in the implementation and in the following maintenance periods.
This makes the visualisations inconsistent with the actual reality of the final system.

An additional problem for visualisation as documentation is how to address the distributed
nature of software reuse. With the increasing availability of free and reusable software compo-
nents on the Internet, we are moving into an environment of increasing potential for software
reuse. The development of standard libraries for generic and common reuse is one example
of this, but there is still more potential for the specific and specialised code that is becoming
available to play a useful role in reuse. But before we get this far, we have to ask; how can
we find code that we can reuse, how do we check if it works in the way we require, and what
resources are there to help us understand the code to the level of detail that we require?
These are the questions that the VARE framework attempts to address.

2.4 VARE

The Visualisation Architecture for REuse (VARE) is a developing architecture designed by
our research group to support web-based code reuse through visualisation[4]. VARE is an
attempt to address the current deficiencies of stand-alone web-based code repositories. Web-
based code repositories allow access to potentially vast collections of program code. Such
code could vary from small classes to accomplish small tasks, through to entire frameworks for
system development. While having access to such repositories presents amazing possibilities
for the software development world, the speed at which programmers can understand the
design and behaviour of a code component becomes crucial. VARE aims to allow users to
examine code behaviour remotely, and provides the architecture to present them with high
quality visualisations of the way the code behaves. Without such capabilities, web-based
code repositories (for reuse) are in danger of becoming almost impossible to use.

2.4.1 Program Mapping Visualisation

The VARE architecture is based on the foundation of the Program Mapping Visualisation
model (PMV) developed by Stasko[52], and Roman and Cox[13] and later formalised by
Noble[45]. This conceptual model deals with the creation of visualisations programmatically
from source code, or from a running program. The basic idea is to take a program, and
extract information for visualisation purposes. This allows prospective users of code to cre-
ate visualisations automatically without needing to know how a program works in advance.

6

Figure 2.3: The Program Mapping Visualisation model of software visualisation creation.

Additionally, software developers can create visualisations as documentation for their own
projects with a minimum of effort, and without extensive graphic knowledge.

The PMV model divides the process into the three core components suggested by its name:
program, mapping, and visualisation. The program component is not the program being
visualised itself, but is instead the component responsible for providing the rest of the system
with information from inside the visualised program. The “. . . program component presents
the target program to the visualisation system”[45](p.6). The mapping component takes
information about the program to be visualised from the program component, transforms it,
and passes it to the visualisation component. The nature of the transformation has varied
between implementations, but discussing this is beyond the scope of this thesis. Finally, the
visualisation component deals with the interaction with the user. This includes displaying
the graphical elements, as well as collecting user input for interaction if needed.

2.4.2 PMV to VARE

VARE takes the PMV model and moves it into client/server territory for a web-based code
repository environment. The first thing to note is the similarities between the PMV model
and VARE. The program, mapping and visualisation components are all represented in VARE
— albeit with different names. The PMV’s program component is referred to as an “engine”.
This makes explicit the difference between the program being visualised and the component
which makes the program behaviour available for visualisation. In the VARE architecture,
PMV’s mapping component is called the “transformer”. Thirdly, the visualisation component
is also included in VARE, this time retaining the same name. These elements are then made
accessible via the Internet for clients to access.

2.4.3 Architecture

Figure 2.4 shows the current state of VARE’s still developing architecture. There is an
important distinction shown in this figure indicated by the horizontal line marked “Network”.

7

This indicates the client/server divide, with the elements relevant to the client shown above
and the server below.

Server

To provide the web-based code repository capabilities, the code to be visualised is stored
on the server in a “Component Repository”. This also implies, and therefore results in
repositories for engines, transformers, and pre-constructed visualisations. This allows the
architecture to support the heterogeneous and varied demands of multiple users, multiple
programs, multiple programming languages, and multiple types of visualisation. When initi-
ated, code components are loaded from the Component Repository for execution. A suitable
engine is selected from the engine repository and attached to the Component. During the
execution of the code components, the engine eavesdrops on their internal behaviour, and
records this in a “test drive report”. This can be streamed to a transformer, as well as
recorded in a “Test Drive Report Repository”. In a subtle difference from the PMV model,
the VARE transformer takes the Test Drive Report and creates a “visualisation”, which will
later be rendered at the client side.

Client

The client side system is web-based, consistent with making the system easily accessible over
the Internet. The client side presents interfaces to control the location and selection of code
components to visualise; the setup and execution of test runs; the selection of transformers
to create visualisations; and the interface to actually experience the visualisations. All of
this complex activity is mediated through the metaphor of directing, filming and viewing a
movie.

2.4.4 Communication

XML

Communication in VARE is dominated by XML[60] based technologies. The Extensible
Markup Language (XML) has been described as “. . . the universal format for structured
documents and data on the Web.”[59] It provides a textual, human-readable, tree-based
method of storing data. Data in XML is “marked up” with “tags”. An “element” is delimited
by a starting tag and a closing tag pair. Tags are a name contained between angle brackets.
An opening tag might look like <tagname>. A closing tag has a forward slash before the name
as in </tagname>. XML also allows empty elements. Such elements are shown as a tag with
a forward slash after the name, such as <tagname/>. Each element can contain further sub
elements which gives XML its tree structure. Actual data can be contained in the elements
attributes or as data at the leaves of the tree. Attributes are contained after the elements
tag name and contain an attribute name and value (in the form name=value). Leaf data in

8

Visualisation
Repository

Test Drive
Report
Repository

Engine Transformer

Component
Repository

Component
Set

Engine
Repository

Transformer
Repository

Session Manager

Network

Test Driven
Program
Interface Component

Repository
Interface

Transformer
Repository
Interface

Visualisation
InterfaceInterface

Test Drive

Figure 2.4: VARE architecture.

9

XML is simply the data between two tags which is not a sub-element. The approach of using
these types of tags for data storage is called “markup” and XML as well as its relatives are
therefore called “markup languages”.

As an example of XML, a student could be represented by a student element containing name,
age, id and phonenumber elements. The phonenumber element has a “status” attribute as
to whether the phone number it represents is public or should be kept private. When written
to a file this could look like figure 2.5.

<student>
<name>James</name>
<age>15</age>
<id>1000100</id>
<phonenumber status="secret">478-4483</phonenumber>

</student>

Figure 2.5: A simple example of XML showing data about a student.

The purpose of XML is to be extensible. This means that new XML based markup languages
can be defined using the XML syntax. These definitions determine the elements that can be
used, as well as when and how they can be used.

The benefit of XML lies in its status as a well-supported open standard. This ensures that
the XML developer can leverage a huge set of standard tools and parsers that provide much
of the common functionality required in data manipulation. For example, rather than work
with a data file at the byte or character level, XML documents can be explored with tools
that support higher-level abstractions. Two popular higher-level data access abstractions
for XML are the “Document Object Model” (DOM)[58] and the “Simple API for XML”
(SAX)[5].

• The Document Object Model

The DOM specifies a set of interfaces which provide access to the underlying XML data.
When implemented in a library, the DOM allows the programmer to explore XML data
as a set of objects structured in the “tree” of the document. This fits nicely with the
typical object-oriented programming approach. The underlying data is automatically
transformed into the program objects without the need for the programmer to deal
with file format details.

• The Simple API for XML

Alternatively, the SAX allows the programmer to register interest in certain elements
in an underlying XML document. As the XML document is parsed by the SAX imple-
menting code it triggers events to be dealt with by a higher-level program.

Both the DOM and SAX are implemented in a large number of public libraries for
inclusion in new projects. Using these libraries removes a large burden in the devel-
opment of the software that utilises them. This however is not XML’s only strength.

10

XML provides a good foundation for building independent components in a larger sys-
tem by allowing developers to define the XML languages which components must speak
when communicating. The primary XML languages used in VARE are the Simple Ob-
ject Access Protocol (SOAP)[64], and a new purpose-built language called the Process
Abstraction Language (PAL)[38].

The Simple Object Access Protocol

The “Simple Object Access Protocol” (SOAP) is an XML-based language which is designed
to enable communication between web services[64]. Using a standard such as this allows each
service to be completely independent of the implementations of the others. This has obvious
benefits for use in the VARE architecture which has multiple components which need to be
implemented in a number of different languages. This is due to the fact that VARE will have
to test drive programs in any language that needs to be visualised. While it has been decided
that SOAP will be used in VARE for this purpose, further details are still being fleshed out
by our research group. Further discussion of SOAP is outside the scope of this thesis.

The Process Abstraction Language

The Process Abstraction Language (PAL)[38] is being used as the storage form for the Test
Drive Reports in VARE. PAL is designed to describe the execution of object-oriented code
in a standard and easily accessible format. It can represent both static information, such as
data and object types, as well as dynamic information, such as method-calls and new class
instances. An example of a PAL document is shown in figure 2.6. The advantage of using the
clearly defined syntax that PAL provides is that the engine components become independent
from the transformer components. As long as an engine outputs its Test Drive Reports in
PAL, it should be fully compatible with all existing PAL-reading transformers. This allows
new engines and transformers to be added to VARE without having to check all components
for compatibility.

However, while PAL was developed for the very purpose of being used in the VARE archi-
tecture, it was initially created for use in a C++ case study[38]. While every effort was
made to make PAL as generic as possible it will certainly need to be extended as support for
other programming language characteristics are added. One obvious extension to the current
implementation of PAL would be to include exception events. More extensions of this nature
seem likely, although the basic design of PAL allows it to be extended without breaking older
components that do not recognise these new extensions.

However, it is important to note that PAL has been designed with object-oriented systems
in mind. This does indicate that it might not be ideal for more atypical languages such as
pure functional languages. PAL can however describe the executions of languages such as C
which tend to contain a subset of the object-oriented language semantics, rather than being
radically different.

11

<pal>
<execution>
<event eventid="_200">
<processbegin>
<argstring></argstring>

</processbegin>
</event>
...
<type name="FoodItem" typeid="t3">
<context contextname="sourcefile" contextvalue="tp7.cc"/>
<classdata>
<methods>
<method access="public" methodid="f40" name="operator=">
...
<argument argumentid="a39">
...
</argument>

</method>
...
</methods>

</classdata>
</type>
...
<event eventid="_222">
<methodcall callermethodcallidref="dmc212" callerpositionref="dp215"

classinstanceidref="dcl217" methodcallid="dmc220"
methodidref="f27" threadnum="1"/>

</event>
...
<event eventid="_376">
<methodreturn methodcallidref="dmc212"/>

</event>

<event eventid="_377">
<processend/>

</event>

</execution>
</pal>

Figure 2.6: A reduced example of PAL output from a C++ engine. Inside the execution
element are any number of type and event elements. In this example the FoodItem class is
described in a type element, and a methodcall and methodreturn events occur as described
by the event elements.

12

This leaves two questions to be answered to complete the communication framework of VARE.
How will visualisations be transmitted to the client, and how will they be displayed?

2.4.5 Finding a medium for software visualisation over the web

VARE is in need of a technology to deliver the visualisations it creates. The selection of such
a technology must involve several careful considerations. Firstly, the visualisations need to be
created programmatically. VARE should be able to create visualisations automatically with
a minimum of human intervention regarding graphical details. Secondly, the visualisations
should be able to be stored in some form on the server so they can be easily retrieved. This is
because VARE’s architecture should allow the browsing of previously created visualisations
without the need for a transformer. This is also required, as it must be possible for modifi-
cations or annotations to be made to visualisations after the transformation process, which
can then be accessed by interested users. Thirdly, the visualisation needs to be transported
to the client over the network. If this can be cleanly integrated into the other web-based
technologies, this would be advantageous. Most importantly, the visualisation technology
needs to have the core capabilities required to implement the visualisations.

2.4.6 The Unified Modelling Language

The Unified Modelling Language, known more commonly as UML, was briefly introduced in
section 2.3. UML is a standard for modelling object-oriented systems in a diagrammatic form
and was specified by the Object Management Group[24]. It has become an industry standard,
being taught in universities and is required knowledge for many software engineering positions.
As such, UML is one of the types of visualisations that VARE must be able to create. There
are twelve diagram types in UML, some of which are purely for assisting designers, and others
that can also be used for the “visualisation as documentation” purpose to which VARE is
aimed. We will briefly discuss three of the latter type, with the aim of illustrating the kinds
of visualisations that VARE must support as a minimum.

UML class diagrams

A UML class diagram describes the “types of objects in the system and the various kinds
of static relationships that exist among them.”[22](p.49). An example is shown in figure 2.7
from the Objects by Design website[14]. Class diagrams show two principal types of static
relationships, associations between objects and hierarchies for the classification of types.
Objects are shown as boxes with the object’s name (or type), its attributes (data) and the
operations that can be carried out on it (methods) listed as text inside. Relationships are
displayed as various types of lines linking appropriate objects. Different line types include
variations on arrows (with different types of arrow-head), dashed and full lines, as well as
lines with special notations along their length.

13

Figure 2.7: A UML class diagram. (Objects by Design)

14

UML sequence diagrams

A UML sequence diagram is a type of interaction diagram. Figure 2.8 from Rational Software
Corporation[11] shows its basic form. Sequence diagrams show how the various objects in the
system interact when a given scenario plays out. It consists of a series of the system’s objects
mapped across the x-axis, while time is mapped down the y-axis. Each object is shown as
a box at the top of the diagram and has a “lifeline” which is shown as a vertical line from
the box downwards through time. Interaction between objects (the subject of the diagram)
is shown as arrows from one object’s lifeline to another at the appropriate position in time.
These interactions are method-calls and returns. Between a method-call and its return there
is a method activation box, which is depicted as an elongated rectangle stretched along the
lifeline for the duration of the wait. A method-call from one object may result in any number
of consequent method-calls before a response is returned.

Figure 2.8: A summary of the UML sequence diagram. (Rational Software Corporation)

UML collaboration diagrams

UML collaboration diagrams are very similar to Sequence diagrams. However, they do not
encode time spatially. Instead, objects are displayed in a convenient layout and method-calls
between them are numbered to show ordering. Figure 2.9, again from Rational Software
Corporation[11] shows the basic form of the collaboration diagram.

2.5 Scalable Vector Graphics

With the demands of VARE in mind, a new XML-based graphic language seems to be a
potential fit. This language is called “Scalable Vector Graphics”, or more commonly, “SVG”.

15

Figure 2.9: A summary of the UML collaboration diagram. (Rational Software Corporation)

It is a newly-created open standard, which reached version 1.1 on the 14th of January 2003[62].
In this section, the aim is to give the flavour of SVG and how it works, rather then to attempt
to describe it in any real detail. The standard itself is a very large document and it is beyond
the scope of this thesis to try and summarise it all here.

2.5.1 Bitmap versus vector graphics

As the name suggests, SVG is based on vector graphics rather than traditional bitmapped
graphics. The difference is primarily in the content of the graphics file format. Bitmap
graphics describe the properties of each individual point of colour that makes up the image.
In a primitive implementation, a bitmap graphics file could describe a two dimensional grid,
and specify the colour value for each square. When it is to be displayed on a screen, the
program would place each square of colour in its correct place in an invisible grid on the
screen.

In contrast to this, vector graphics describe the logical entities in a graphic. Instead of
encoding each unit of colour (pixels), vector graphics files encode entities like curves, circles,
and words. The structure of the image is maintained in its file format. Only when the vector
graphics file is to be rendered on the display are the low level pixel values calculated. This
has many benefits.

• Firstly, vector graphics can be more independent of their display medium. When a
graphic is created and distributed, it could be displayed on a high or low resolution
monitor, cell-phone, or even be converted to audio for a blind user. The graphic can be
seamlessly scaled to an appropriate size for display. The important point is that each
display device “understands” the graphic, and so can make intelligent decisions about
how to display it in its particular situation.

• Secondly, vector graphics retain semantic information that is lost with bitmap graphics.
An Internet search engine can potentially access vector graphics and index their textual
content.

16

• Thirdly, because vector graphics do not resolve down to pixels until the last moment
of display, they enable intelligent changes to be made long after they were originally
created. For example, there is the potential to easily change the position of a square
in the background of a picture, the colour of a border, the text of a label, or the shape
of an arrow. This is the reason that most graphics editors’ native file save formats are
variations on the vector graphics principle.

• Fourthly, vector graphics can include bitmap graphics as elements inside themselves.
Bitmap graphics cannot do the reverse.

While this only highlights some of the important differences between vector and bitmap
graphics, it clearly shows some of the features that make vector graphics very promising from
the perspective of VARE.

2.5.2 SVG in practice

The SVG XML language defines a set of element types which describe graphics. For example,
there is a circle element that defines a circle to be drawn when the SVG is shown in a renderer.
The code for this might look like figure 2.10. The attributes cx and cy specify the center
coordinates while r and style define the radius and appearance of the circle respectively.
The rendered result can be seen in figure 2.11.

<circle cx="100"
cy="100"
r="50"
style="stroke:blue;

fill:red;
stroke-width:5"/>

Figure 2.10: SVG code to draw a circle.

Figure 2.11: The circle from figure 2.10 displayed by an SVG browser plug-in.

In the XML way, SVG graphics are defined structurally, with lower level elements able to be
combined into higher-level groups. An arrow can be defined by grouping a long black line
and a triangular path for the head together in a g element, as shown in figures 2.12 and 2.13.

This arrow group could be defined as a symbol which could then be used1 in many places
1A use element can use a symbol element.

17

<g style="fill:black; stroke:black">
<line x1="0"

x2="70"
y1="10"
y2="10"/>

<path d="M70 5 L70 15 L80 10 z"/>
</g>

Figure 2.12: SVG code which draws an arrow as a line and a path as shown in figure 2.13.

Figure 2.13: The arrow from figure 2.12 displayed in an SVG browser plug-in.

in the diagram. When the arrow is used, it can be stretched, rotated or moved arbitrarily.
This is shown in figures 2.14 and 2.15.

<symbol id="Arrow" preserveAspectRatio="none" viewBox="0 0 80 20">
<g style="fill:black; stroke:black">
<line x1="0" x2="70" y1="10" y2="10"/>
<path d="M70 5 L70 15 L80 10 z"/>

</g>
</symbol>

<use height="20" width="80" x="50" y="0" xlink:href="#Arrow" />
<use height="20" width="80" x="50" y="40" xlink:href="#Arrow"

transform="rotate(165 90 40)" />
<use height="20" width="20" x="50" y="60" xlink:href="#Arrow" />
<use height="100" width="80" x="50" y="60" xlink:href="#Arrow" />

Figure 2.14: SVG code that defines an arrow as a symbol, and then uses it four times with
differing coordinates, sizes and transformations applied. The result can be seen in figure 2.15

The other highlights of SVG’s functionality include animation, interactivity, and hyper-
linking as well as a myriad of graphical display constructs such as filter effects and gradients.
SVG’s capacity is also hugely augmented by its inclusion of script elements. Script elements
contain links to (or include in-line) executable code written in a scripting language. These
scripts are interpreted at runtime, and can manipulate all aspects of the SVG currently being
viewed by interacting with the DOM. The scripting language to be used is specified when in-

18

Figure 2.15: The SVG from figure 2.14 displayed in an SVG browser plug-in.

cluding a script, allowing different scripting languages to be used. The SVG specification does
not make clear what scripting languages, if any, must be supported by a conformant viewer,
although ECMAScript seems to be the de-facto standard. The ECMAScript language[17] is
based on the common elements of JScript and Javascript from the Microsoft and Netscape
web-browsers. Other languages, such as Macromedia’s ActionScript are also ECMAScript
compatible. While all of these scripting languages meet the ECMAScript requirements, they
all have their own idiosyncrasies, particularly in regards to their object models. Another
feature of SVG is that it is designed principally with the web in mind. The standard expects
SVG to be embedded in web pages, and it provides built-in functionality like hyper-linking
to other web resources.

Implementations

The dominant implementation of SVG already allows the embedding of SVG graphics in
web pages. This mature implementation is the Adobe SVG plug-in[55]. There are versions
for Macintosh, Microsoft Windows, Solaris and Linux operating systems. The Windows
implementation is compliant with the Microsoft ActiveX standard, and therefore can be
built into other Windows programs. Other implementations include a pure Java system for
SVG rendering[20], a KDE plug-in[27], and the first native web-browser implementation in
Mozilla[44]. Also, Corel are developing a “Smart Graphics” product line based on SVG[12].
This will include the Corel Smart Graphics Studio for creating SVG interfaces, and the Corel
SVG Viewer for viewing SVG content in browsers or otherwise. Additionally, Microsoft’s new
version of their Office suite will include support for the import and export of SVG graphics
through their Visio software[25]. Even with these later implementations still in development,
there is clearly already an adequate base of support to make SVG a valid option for use in
software visualisation.

19

2.5.3 The future of SVG

With the 1.0 SVG standard now a formal W3C Recommendation, new versions of the stan-
dard are already under development. SVG 1.1[62] contains no new features, but is a modular-
isation of SVG into “profiles”. Different implementations can then support particular profiles,
designed for specific tasks, such as SVG Mobile, and SVG Tiny. SVG 1.1 now has the status
of W3C Proposed Recommendation, and is expected to become a formal Recommendation
in the near future.

Unlike SVG 1.1, the SVG 1.2[63] standard aims to add a number of interesting features.
These include automatic text wrapping, declarative drawing order, streaming, and support
for XML XForms, among others. SVG 1.2 is currently a working draft.

2.5.4 Competing vector graphics formats

The web has long been dominated by bitmap graphic formats such as JPEGs and GIFs which
are standards for compressed bitmap image data, but vector graphics are not new either.
SVG has one major competitor in Macromedia Flash. Flash is the de-facto standard in web
vector graphics and already has a broad development base. Macromedia provide a number
of mature authoring tools for web designers, and have free viewing plug-ins for Windows,
Macintosh and Linux. Macromedia flash also provides animation, interactivity and many
graphics capabilities. One core difference between flash and SVG is in the file storage details.
While SVG documents are stored in a plain text format (XML), Flash content is stored in a
binary format. The implications of this, as well as further comparison of the formats will be
included in section 5.4.1.

2.6 Evaluating SVG

Following this background, we can now move onto the evaluation of SVG as a medium for
software visualisation. While SVG looks promising, at this stage it is clear that there are
other technologies available which may fit VARE’s requirements. Each will have its own
strengths and weaknesses, and as we shall soon see, the complexity of the requirements
makes it difficult to pick the best technology without careful analysis. We need to be able
to evaluate SVG, along with other graphics technologies in order to find the best fit. Such
an evaluation needs to be done in a consistent way to allow clear and fair comparisons. To
this end, we will move forward and develop a general model for the evaluation of computer
media for software visualisation. Not only do we need a model to make comparisons fair and
easy, developing a clear model ensures that requirements are explicitly laid out. This makes
a complete and thorough evaluation possible. Only once we have such a model can we then
move onto evaluating SVG as a specific candidate for VARE, as well as for use in software
visualisation in general.

20

Chapter 3

Evaluation Model

The aim of this chapter is to develop a model for evaluating software visualisation computer
display media. This evaluation model will be based on existing information and software
visualisation principles. While the immediate goal is to assess SVG’s suitability for inclusion
in the VARE architecture, developing a more generic model has two prime motivators. Firstly,
SVG is not the only choice for realising visualisations in VARE. Therefore, we also want to
be able to utilise our evaluation criteria on technologies other than SVG. More importantly,
it is not evident that a model for the evaluation of software visualisation media has been
created to date. This may also be true even for the broader area of information visualisation.
As such, developing a clear and comprehensive model should be a positive contribution to
the area.

For the purposes of this model, we define a software visualisation “medium” to be any tech-
nology or technologies used in the creation, deployment and display of graphical images to an
end-user via a computer display. Note that “creation” here means only the specification of
the graphics for display, not the whole process of generating graphics from a program execu-
tion. To put this in the terms of the PMV model (section 2.4.1) we are only creating a model
for the evaluation of the visualisation component, not the program or mapping components.

3.1 A basis for evaluating software visualisation media

The problem in developing this evaluation model is that the area of software visualisation
is still so new. As we are still exploring which visualisations are useful for understanding
software, it is difficult to pinpoint exactly what capabilities a medium must provide. If we
limit ourselves to only supporting current software visualisations, our model is unlikely to
remain relevant when a visualisation is conceived which demands new capabilities of the
medium. The most practical way to address this issue is to try and identify all of the ways in
which information can be visually encoded. In identifying the software visualisation designers’
palette we can evaluate a medium not just against what is required in software visualisations
today, but also against what we can expect to be required in the near future. Fortunately,

21

much of this work has already been done in the more general field of information visualisation.
This is briefly described in section 3.1.1.

It is also important to explore in more detail the types of visualisations that are particularly
suited to software visualisations. We need to examine existing software visualisations and
utilise the existing taxonomies of software visualisations which have already been developed
in the literature. This is covered in section 3.1.2.

3.1.1 Information visualisation

The field of information visualisation (briefly introduced in section 2.2) has steadily developed
a comprehensive analysis of how information can be best encoded in visual form. Our interest
here is not with what decisions to make when constructing visualisations, but with the visual
palette that should be available to visualisation designers. The basis for this work is Jacques
Bertin’s Semiology of Graphics[3] published 1967. This classic work dealt only with “that
which is...on a sheet of white paper”[3](p.42) in defining the palette. While this was a
reasonable limitation for the time, it obviously needs extending for our purposes. However,
Berin’s work provides a good starting point for the first part of our evaluation model. Building
from this work, the information visualisation community have extended the palette to include
a vast array of possibilities afforded by modern graphics technology. Our model incorporates
these additions, drawing primarily from the summary sections of “Readings in Information
Visualization: Using Vision to Think” by Mackinlay et al.[7]. In addition, our model also
utilises the discussion and summaries from the text “Information Visualization: Perception
for design” by Ware[69].

3.1.2 Software visualisation

Because we are evaluating the capabilities of a graphics medium, we are primarily concerned
with the end product of the software visualisation process, in other words, the visual de-
pictions of software. However, taxonomies of software visualisation have often focused on
other aspects of the visualisation process. Oudshoorn et al[47] describe a number of these
taxonomies: Price et al.[1] have focused their taxonomy on general features in tools used for
software visualisation. Roman and Cox[51] attempted to categorise the methods of providing
visualisations, while Kraemer and Stasko[28] looked in detail at the process of transformation
from execution to graphical representation. Oudshoorn et al. then go on to discuss their own
taxonomy based on what information travels from the underlying program execution through
to visualisation.

None of these really serve our requirements for a taxonomy of the types of graphical represen-
tation needed for software visualisation. However, Oudshoorn et al. do briefly mention what
would be the basis for such a taxonomy. They break down the types of “data representations”
for software visualisation into three “well-known types”.

22

• Graph-based displays

Graph-based displays are what Ware[69](p.222) calls node-link diagrams. We shall also
use this term. They are built from nodes which represent entities and links between
them which represent various relationships. Different node attributes (shape, colour
etc.) are used to encode information about the represented entities, and similarly for
the links. The most common group of these software visualisations must be those from
UML. An example of UML’s collaboration diagram was shown in figure 2.9. Collabora-
tion diagrams are a classic example of node-link diagrams with their boxes for objects,
and lines for method-calls.

• Statistics-based displays

Statistics-based displays move into the area of scientific visualisation. Such displays can
use aggregations of data to draw statistical graphs, or can display data in a massed form
by encoding it visually for rapid assimilation by users. A host of examples of statistical
software visualisations can be found in De Pauw et al.’s work in creating an architecture
for visualising program behaviour[49]. Another example can be seen in figure 3.1 by
Jerding et al[26]. This example, called the “Execution Mural” shows graphically the
entire record of messages passed in a program execution. Here the colours and spatial
mapping may help a developer see patterns emerging.

Figure 3.1: A visualisation showing messages passing between objects in an executing program
as a “mural”. The bottom half shows the message stream from the entire program, while the
top half shows a detail.

• Source-code-related displays

Source-code-related displays show source code in a more visually accessible form. This
can include a zoomed out source code view with additional information encoding such
as Eick et al.’s SeeSoft[19] shown in figure 2.2, or in providing linking from a UML class

23

diagram to the associated source code as in figure 3.2. I created this second figure in
SVG for the evaluation, and it is explained further in section 4.2.2.

Figure 3.2: A UML class diagram I created in SVG and HTML which displays and highlights
associated source code.

3.1.3 Ease of programming

A model for the evaluation of a medium for software visualisation needs to take into account
how the visualisations ‘get into’ the medium. If visualisations are created directly by a human
user there will need to be good tools for them to use. If the visualisations are to be created
programmatically (as in VARE) the medium and the libraries that facilitate diagram creation
need to provide the capabilities in a logical and intuitive manner.

3.1.4 Limitations

Vitally important in any model for evaluation is identifying what is being left out. The
following areas will not be included in the model:

• We are not dealing with senses outside of vision. While the use of touch, smell and
sound is potentially interesting, these fall outside of the scope of this model. However
this model could be extended at some later time to include them.

• We are only dealing with 2D computer display technology. The main reason is that
this is the equipment that has become cheap and accessible, and is therefore the most

24

useful as a vehicle for software visualisation at this time. Again, expanding the outlook
of this model to wider possibilities would be interesting, but is left as future work.

• Because we are not examining how to best create visualisations, we are not directly
including end-user usability in our model. However, end-user usability does make some
requirements on the technology (as opposed to what we do with it) so it will be con-
sidered where appropriate.

• Finally, other than general future proofing (through a focus on the requirements for
basic information visualisation), we are not trying to predict where software visualisa-
tion will be heading in the future. It is quite possible that despite my best intentions,
radically new visualisations will be created that require capabilities not included in this
model.

3.2 Model framework

The framework for this model is based on the discussion above and takes the following basic
structure:

• Firstly we explore the basic capabilities which enable the encoding of information in
a visual medium (Section 3.3). This includes graphics, interaction and performance
requirements based on the work of Bertin and Mackinlay et al..

• Next we look at higher-level issues — concentrating on how well the medium supports
the things we want to do, rather than just providing the basic capacity to do them
(Section 3.4). This includes looking at how well the medium integrates with other
technologies we wish to use, and what we shall call “programmer usability”.

• The next step is to look at the various types of software visualisations identified by
Oudshoorn et al. discussed in section 3.1.2. These need to be fleshed out into bench
marks for inclusion in the evaluation model (Section 3.4.3).

For each of these broad categories of analysis, there will be a number of capabilities that
our model will identify. To use the model effectively, it is necessary to describe how well the
medium meets each criteria, rather then simply giving a yes or no answer. This is because
different media will support each capability differently, and to a greater or lesser extent.

3.2.1 Qualitative evaluation

Evaluation in the model will be qualitative in nature. The reason for this is that many of
the capabilities we are looking for in a software visualisation can not be easily broken down
into perfectly measurable units. For example, we may want our medium to support us in
adding textures to areas of a graphic. But the realised support for this could vary immensely.

25

While some media may support this directly, others may allow this only through some other
(but more awkward) means. A programmer dealing with a medium may have to calculate
every pixel values for an entire surface for texturing, while in another medium simply specify
a texture from a predetermined list. Yet another medium may allow for arbitrary textures
to be imported for display. It is often possible to get a technology to do things that it was
not designed for, but the question to ask here is: how well does it support these particular
functions? While it might be possible to come up with the ultimate quantitative model, this
would be a difficult task, and it would be forced to ignore many of the quantitative facets of
capability that we are interested in.

3.3 Basic information visualisation capabilities

This section is concerned with describing the visualisation palette needed for software visual-
isation design by utilising the work of the information visualisation community, in particular
the work of Bertin and Mackinlay et al..

3.3.1 Graphical capability

Graphical properties are the most important properties that a medium for software visuali-
sation must support. Indeed, the term “software visualisation” itself makes this an obvious
focus. Graphical media are generally described in terms of the “spatial substrate”, “marks”,
and the “marks’ graphical properties”[33]. The spatial substrate describes layout, while
marks and their graphical properties describe the visible elements which are layered upon
this. The importance of this is emphasized by the statement that “...while other proper-
ties...are possible, [...] most visualizations will probably continue to be made from this basic
set.”[7](p.26).

The spatial substrate

The spatial substrate is a term used to describe the underlying spatial characteristics of a
graphic. The spatial substrate can be organized in various ways to give differing meanings
to the position of marks. A display medium’s support for different aspects of the spatial
substrate can be broken down as follows:

• Dimensional support

While we have limited our model to include only 2D media, even these can allow
differing support for the illusion of additional dimensions. A medium may even be able
to represent 4+ Dimensions through the use of clever built-in techniques1. Some simple

1Such techniques are often employed in Data Warehousing for the representation of data with multiple
dimensions.

26

techniques for 3D display include stereo-scopic depth, kinetic depth (creating the effect
of a rotating 3D object) and shading.

Example use: 3D can be used in visualisation to support focus + context. UML type
class diagrams have been modeled in 3D[16].

• Axis folding

As implied in dimensional support above, a 2D medium may have inbuilt support for
additional dimensions — and hence additional axes. However, with limited room in the
dimensions of a space it is often useful to “fold” dimensions so they fit in an allocated
area.

Example use: The classic software visualisation “SeeSoft”[19] visualises lines of code in
columns with a zoomed out effect. When displaying files with large numbers of lines it
breaks the files into multiple columns. Each column is an axis which is “folded” at the
breaks.

• Axis types

The traditional straight axes used in line and bar graphs are not the only option for
display of ordered data. Other axis types include curved or circular axes, as well as
axes along arbitrary paths.

Example use: Data displayed in the pie graph form is one obvious example. This could
be used in displaying program statistics.

• Axis distortion

Distorting axes can be very useful when implemented correctly. Distorting an axis
involves modifying the regular intervals along its length to create a desired effect. The
result is similar to a ruler with the marked measurements having been “squashed” or
“stretched”.

Example use: Distorting an axis is often used to create focus plus context views. Fo-
cus plus context provides a detailed view of some information, while still providing a
contextual view of the surrounding information. One example from Information Visu-
alisation is the “perspective wall”[7] where a two dimensional space is projected as a
bent wall in a three dimensional space. While this relies on three dimensions, a similar
effect could be created just through squashing context information on an axis in two
dimensions. This could be used in very large UML sequence diagrams.

• Viewpoint control by system

Ware asserts that “moving the viewpoint in a visualization can function as a form of
narrative control”[69](p.327). Note that here we are talking about the visualisation con-
trolling the viewpoint, not the user controlling the viewpoint as in interaction (section
3.3.2).

Example use: An animated sequence diagram would need to pan and scroll its viewpoint
when the action moved out of the current viewpoint.

27

• Recursion

It is possible to allow the repeated subdivision of space providing a recursive space[7](p.28).

Example use: A software visualisation could be created that contained a host of visu-
alisations inside itself. Users could pick a visualisation by zooming in. Having support
for recursion of space would allow each of these sub-visualisations to have their own
spatial coordinates etc.

Marks and their properties (retinal encoding)

Marks are what we directly experience when viewing a visualisation. Therefore, the types of
marks we can make, and the properties that they can have are vital capabilities for a software
visualisation medium. The capacities itemized here largely take the form of vector graphical
capabilities. This is due to the assumption that in creating these visualisations we want to
think about it as ‘making marks’ on a space. The act of making a mark is essentially a vector
based notion — regardless of how it is implemented by the system. What this comes down
to is that when we are creating the visualisation in the medium we do this through vector
based operations (e.g. make green line between (0,4) and (3,12)).

For each of the capabilities identified below the questions to ask of the medium are: can we
specify marks in this way, and is this information retained at display time? For example, a
library for creating bitmap graphics may allow us to specify marks in this way but these marks
will then lose the identity they would have kept had they been represented as vector graphics.
This will become important for interaction (3.3.2), integration (3.4.1) and higher-level (3.4.2)
capabilities.

• Size

Do we have control of the size of the marks we make? Can we scale the marks we make?

• Colour

Can we control value, hue and saturation?

Note: For colour coding information we can use usefully only about eight different
colours[69](p.194) although having a continuous range is necessary for colour gradients
and other effects.

• Orientation

Can we rotate marks through 360◦?

Note: For coding discrete data through rotation we can usefully make use of only four
rotations[69](p.195) as smaller rotations are difficult to distinguish.

• Shape

Can we specify lines paths and curvature?

What is the expressiveness of the way we can define them?

28

• Points, lines and areas

Can we specify points, lines and areas?

• Filter effects

Can a particular area be altered through filtering effects? Effects could include resolu-
tion and crispness.

• Transparency

Can we control a see-through effect on particular marks and areas?

Temporal encoding

Temporal encoding is simply changing the visualisation over time to communicate additional
information.

“The use of simple motion can powerfully express certain kinds of relationships
in data [and the] animation of abstract shapes can significantly extend the vo-
cabulary of things that can be conveyed naturally beyond what is possible with
a static diagram.”[69](p.239)

• Encoding time

Can graphics be easily changed to show the passage of time?

• Encoding identity

Can animations be specified on particular entities for the smooth animation necessary
to show identity?

• Variation in retinal encodings

For full expressive control there needs to be control of the value of all retinal encodings
(section 3.3.1) over time.

3.3.2 Interaction

Interaction is an essential part of many types of visualisation.

“In some ways, a visualization can be considered an internal interface in a problem-
solving system that has both human and computer components. A visualization
can be the interface to a complex computer-based information system that sup-
ports data gathering and data analysis.”[69](p.335)

29

In this respect visualisation becomes part of an active process controlled by the human user.
The ideal way to integrate visualisation into this active process is to make it interactive.
This clearly applies to software visualisation as documentation. In the VARE architecture
the user is engaged in data gathering and data analysis. This is where the area of Human
Computer Interaction (HCI) with its concern for usability becomes an important influence.
The discussion here does not consider what is good for the usability of a visualisation, but
rather, identifies the full range capabilities that are required to make it possible to implement
a system with good usability. Additionally, while many of the interaction capabilities could
be side-stepped in the VARE architecture by resorting to regeneration of the visualisations
at the server side, there are serious consequences to this. The central problem is the time
delay caused by the latency of the network — particularly in a web-based system. If the
user has to wait too long for feedback this cripples the effectiveness of the user exploring
interaction possibilities. The user is essentially penalised for exploring the visualisation and
may find this unacceptable. Also, an action and an associated event need to occur within a
0.1 second time frame to convey cause and effect effectively[7](p.231). This effect is destroyed
by the delays introduced in client/server web-based systems. The consequence is that the
visualisation medium (as deployed to the client) needs to provide as full a range of interaction
capabilities as is possible.

The following capabilities are important for interaction in visualisation systems and should
therefore be part of our evaluation criteria.

• Graphic malleability

Interaction demands that the graphic representation can be changed at runtime in
response to user actions. Ideally we should be able to change the graphic arbitrarily
at runtime. In a less optimal system, potential graphic changes might have to be built
into the representation before deployment. In the worst case the medium might be
completely unchangeable once created.

Example use: A class diagram could be augmented to link to source code. Highlighting
could be used to make a link between currently viewed code and the corresponding
class in the diagram. This would require being able to change the colour of classes in
the diagram at runtime in response to the user’s actions.

• Events

Interaction with a visualisation is limited by the types of events it can recognise. Pos-
sible events include mouse events (mouse over, mouse click, mouse off etc.) keyboard
events, timing events and process events (for interprocess communication). Limiting
the types of events the visualisation can recognise limits the potential usability of the
system (e.g. a mouse-over might be more intuitive then having to use the keyboard).

Example use: Brushing is a common visualisation mechanism and could be used as
follows: Source code structure could be visualised in the same zoomed out manner as

30

SeeSoft[19]. When the mouse passes over (or ‘brushes’) a method declaration, all of the
calls to this method in the zoomed out source code could be highlighted.

• Computation

When the visualisation receives one of the above events it needs to be able to respond
in an appropriate fashion. This will often require some level of computation on the
system’s part. Does the visualisation medium allow us to compute everything that we
need to?

In a typical implementation we would expect to have the capability for condition testing
and loops as well as variable storage and manipulation.

Example use: Again using the SeeSoft example, functionality could be added to allow
the user to enter a string of text to be searched for. Hits would be highlighted in the
visualisation. Of course the medium would need to be able to conduct the equality
testing and string operations for the search, as well as be able to handle and respond
to malformed user input.

• User notation

To support data analysis a visualisation system could allow the user to annotate visu-
alisations for their own reference. This could be supported through implementation of
the other interaction capabilities listed here, but it could also be implemented natively
in the medium.

Example use: A user could annotate a UML class diagram with personal notes.

• View refinement/navigation

Giving the user control of the visualisation’s viewpoint empowers them to uncover
and follow up information that they are interested in. View refinement and nav-
igation becomes important when there is information extended out of the current
viewpoint[69](p.343) and this will always be the case when zooming is permitted. Rapid
and easy to invoke zooming is a way to provide focus + context[2]. Allowing the user
to control the clipping (mask) of the view-port can give additional flexibility.

If the medium implements viewpoint control natively it may support various spatial
navigation metaphors which could impact on usability. These include ‘World-in-hand’,
‘Eyeball-in-hand’, ‘Walking’, and ‘Flying’[69](p.346).

Example use: UML diagrams can become very large. Enabling the user to pan and
zoom is therefore very important.

• Information hiding

Enabling the user to hide information they are not interested in allows them to avoid
information overload. This also allows the user to uncover increasing levels of detail as
they are ready or require it.

31

Note: We are not referring to information hiding from Object Oriented design. Rather
the literal “hiding” of information in the visualisation.

Example use: A UML sequence diagram could be collapsible and have method activa-
tions and their consequences shown only as the user clicked on them.

• Time control

If the visualisation has a temporal encoding component (see section 3.3.1) it might be
important for users to control the current position in time. This could include “stop”,
“start”, “restart”, “rewind”, “fast-forward” etc.

Example use: The VARE architecture hopes to use a video playback metaphor for
visualisations with animation[4]. Giving the user control of the animation’s current
position would be vital for this.

3.3.3 Performance

In interaction (section 3.3.2) the impact of time delays in interaction on usability was briefly
discussed. Clearly the performance characteristics of the medium will have a direct impact
on this.

• Scalability

Does the medium have inherent scalability problems? Even if the performance is ac-
ceptable for small visualisations, it may drastically degenerate as it grows in size.

• Current implementations

It is possible that performance issues may only be the result of current implementations
rather then being inherent in the medium itself. How good is the performance of the
current implementations?

3.4 Software visualisation specific and higher-level capabili-

ties

This section is concerned with software visualisation specific, and higher-level, capabilities.
While the software visualisation specific capabilities described here are based on established
models of software visualisation, the higher-level capabilities are a new area which I have
developed.

3.4.1 Integration

No computer technology is isolated. An operating system is only as useful as the applications
that it hosts, and a web browser is not much good without the resource of web pages and web

32

servers for it to interact with. Many technologies may seem simple or limited, but because
they integrate closely with other tools, the synthesis of their features make them worth much
more then their individual potential might suggest. The same is true for a visualisation
medium.

We need to ask, what does this medium gain from its integration with other technologies.
This raises a number of issues:

• Creation mechanism

The visualisations could be created by a human user “drawing” the diagram with
the aid of a tool, or through programmatic generation. For both these cases, dif-
ferent tools/technologies will provide differing advantages and disadvantages. What
tools/technologies are leveraged by the medium for creation?

Example use: The VARE architecture supports the automatic creation of software
visualisations from (executing) program code. It is also aiming to allow human aug-
mentation of generated visualisations for additional documentation.

• Deployment

If a visualisation medium is difficult to deliver to potential users, its usefulness will be
severely limited. How does the visualisation get from the generating process or person
to the end user? Also, one way of conducting software visualisations is to have the
graphical representations appearing in real time as the program runs. This way, users
can interact with the program and see the visualisations of the internals as they play
out. This requires a more sophisticated deployment mechanism.

Example use: This question is particularly important for use in the VARE architecture.
The VARE architecture aims to deliver visualisations over the Internet using standard
web and Internet technologies. Obviously, the easier the medium integrates with these
technologies the better.

• Linkages with other technologies at display time

The medium may utilise other technologies to provide additional functionality. Alter-
natively the medium may be a completely stand alone technology. Linkages between
the technologies need to be included in the evaluation to ensure that a medium is not
penalised for following modular design principles — providing only one part of the
functionality, but doing so in a way which can easily be integrated with complementing
tools.

Example use: If further documentation is available outside of the visualisation this
could be made available by utilising existing HTML technology. Clicking on a class in a
class diagram could cue a web browser to load and display the associated documentation
or source code.

• View coordination with other visualisation media

33

If different media have different strengths and weaknesses we may want to use more
then one visualisation medium in conjunction. However, a visualisation technique that
utilises multiple complementary views[48] of underlying information requires view co-
ordination. Can the medium under investigation integrate with other media for view
coordination?

Example use: If one view of a multiple view software visualisation was being displayed
using Macromedia Flash, and another in a Java Applet there would need to be com-
munication hooks between the two to support maintaining consistent views.

3.4.2 Higher-level capabilities

While the areas of information and software visualisation seem to be primarily concerned
with what makes good visualisations and the underlying technical design of visualisation
architectures, there is another area which we need to examine. In evaluating a medium we
need to be very mindful of what I will call “programmer usability”. The fact is that many
media will support our basic information visualisation capabilities (section 3.3). However, a
medium’s effectiveness is not primarily determined by what it can do in theory, but rather
how easily you can get it to do what you intend to do. If one medium requires ten times
the development effort of another we need to be aware of it. Higher level capabilities aid
programmer usability by integrating useful operations into the technology itself.

• Higher order graphics

One set of higher-level capabilities is to provide inbuilt support for creating common
shapes, dealing with text, creating layering and filtering effects, textures and other
common requirements.

Example use: A 3D object model could have lighting and shadow effects to help give
depth cues. If these were not provided by the medium the effects would have to be
programmed by the visualisation designer.

• Data/display independence

Being able to keep underlying data independent of the visual display is a common
design practice. The Model View Controller pattern[6] and the software visualisation
specific Program Mapping View model[45] are both variations on this principle which
helps isolate the ideal representation of the data from the current implementation of the
display of that data. But in software visualisation, this data/display independence is
not just important over the whole program to visualisation conversion process, but also
in the visualisation medium itself. The reason for this is for support of interactivity.
Once a visualisation has been created we need to be able to change the details of how
it is displayed without altering the underlying structure of the visualisation.

Example use: In a UML sequence diagram with collapsible method activation boxes
the visualisation needs to track the un-collapsed size of boxes when they are displayed

34

as collapsed. This information needs to be stored somewhere. Another example is in
trying to avoid “conjunction searches”. Conjunction searches are where the user visu-
ally searches a graphic for elements with two or more particular properties[69](p.169).
For example, a software visualisation could show a zoomed out depiction of every cur-
rent object in a running program (typically in the thousands even with a simple Java
program). Object size could be visually coded in gray-scale shade and object type as
shape. Looking for round black objects is made very difficult if there are numbers of
other black objects and other round objects. If upon deployment, the data-to-visual
attribute mapping is still flexible in the visualisation medium, users can avoid this prob-
lem through interaction. This requires some level of independence between the data
and the display.

• Referencable entities/objects

This is related to the visualisation being kept in a vector based form (see section 2.5.1).
For implementing interaction it is very important that graphical elements can be refer-
enced so modifications can be made.

Example use: In the example of a UML class diagram linked to source code or docu-
mentation, it is necessary to highlight the class currently being viewed. This requires
being able to refer to the graphic of a class in order to change its colour.

• Layout constraints

Support for layout constraints can make the creation of visualisations radically simpler.
This allows the programmer to specify what is important in layout and by implication
what is not. This means that the programmer has drastically less work to do in calcu-
lating the effects of any graphical change during interaction. Being able to implement
visualisations using simple layout constraints could hugely reduce development times.
Layout constraints make it easier to provide semantic preserving manipulation[56] which
allows diagrams to retain their meaning as they are modified.

Example use: In a UML collaboration diagram the user may wish to move objects
around for a better layout. This is particularly true with diagrams created by automatic
layout algorithms which are often non optimal[15]. An intuitive way to support this
is to allow the user to click and drag the object to a new location. The effects of this
should be followed from layout rules rather then hard coding by the programmer. For
example, the object may be connected to any number of other objects by lines showing
relationships. All of these lines should be updated to point to the new location of the
object. Another example would be with a collapsible UML sequence diagram. When
part of it is expanded, the lower segments need to be moved down. This too could be
automated with layout constraints.

Note: Layout constraints can also enable other useful capabilities such as semantic
zooming and differential scaling[56] — but we will not describe all of these here.

• Structure

35

When having to create and manipulate the graphical elements of a visualisation, it is
important that the elements can be grouped and structured as the programmer sees fit.
If the programmer can create underlying structure for graphical elements appropriate
to the demands of their application, manipulating the visualisation should be easier.

Example use: Many software visualisations contain arrows. An arrow might be made
up of a number of lines and shapes in its implementation. If these elements can be
grouped together they can be manipulated in a more logical form.

This area of higher-level capabilities (or programmer usability) in graphical representation
does not seem to have received the same amount of literature backing that we see for other
areas of information and software visualisation. Apart from ideas found in a paper on the
weaknesses of SVG[56], the above capabilities are largely based on the author’s personal
experience in carrying out this current evaluation. The end result of this is that this part of
the model is relatively immature as it is not based on the years of research by many parties
as in the broader visualisation area. There could be other higher-level capabilities such as
causality of events which might be important in creating software visualisations. Developing
this further will have to be left as future work, although providing this initial discussion as
an first effort is important.

3.4.3 Support for current software visualisations

In addition to the capabilities which have been identified so far in this chapter, a software
visualisation medium needs to be assessed against the current categories of software visuali-
sation. In section 3.1.2 we identified three main types of software visualisations. We therefore
base our examination for support of current visualisations on instances of these three types.
It is likely that as the area of software visualisation moves forward the visualisations I have
chosen will need to be updated.

• Node-link displays seem to be the predominantly used type (expressly for object-
oriented programs) and so are the most important to include in an evaluation. UML
offers a number of node-link variations. The two most obvious and common are the
Collaboration diagram and the Class diagram. Sequence diagrams are similar to the ba-
sic node-link type. Since the grammar of UML is standardised and largely understood
these diagrams are good choices for inclusion as tests in the model.

• What we have been calling statistics-based displays seem to fall into the two categories
of aggregated data, and raw data display. Aggregated data displays (like pie and bar
graphs) hardly seem likely to tax any medium under investigation. For this reason, we
will specify a raw data type display. Examination under this model should include the
creation of a display similar to the message mural shown in figure 3.1.

• Source-code-related displays are the third common type of display. For evaluating the
medium against this type we will use a simple source-code browser driven by a UML

36

class diagram. Activating the image of a class in the class diagram will locate and
highlight the associated source code. The image of the class should also be highlighted
to emphasize the currently viewed class and the relation of it to the code in question.

37

Chapter 4

Exploring SVG

Having developed an evaluation model, we can now proceed to steps two and three of our
methodology: Examining SVG’s capabilities, and constructing SVG software visualisations.
This examination takes a number of forms. These include reading SVG’s formal specification,
doing tutorials, examining existing examples, as well as creating a number of SVG software
visualisations — through building programs to create SVG, authoring SVG by hand, and
with graphical user interface drawing tools.

4.1 Learning SVG

The first step to being able to evaluate SVG is to become proficient with the details of
the technology. This can be accomplished through using web resources as discussed in the
following sections.

4.1.1 The SVG specification

SVG is a publicly documented standard created by the World Wide Web Consortium (W3C).
As such, an important part of understanding the capabilities of SVG is reading the standards
document[61]. While the document is large, it is well written and easy to read, as well as
containing illustrative examples. While reading the document is time consuming, it provides
the necessary knowledge to be able to assess SVG against the model I have developed.

4.1.2 On-line tutorials

On-line tutorials provide a good foundation for a more practical knowledge of a technology.
Adobe systems provide a large range of SVG tutorials that range from the basics of creating
shapes and text, through to creating dynamic SVG with scripting and interactivity. These
seem to be the best tutorials available. This is probably explained by the fact that they are
created by the same company who have built the leading and only fully functionally SVG
viewer currently available.

38

4.1.3 On-line examples

While SVG is still a new standard (Version 1 was finalised only in September 2001) there are
a number of highly illustrative examples on the web. Again, the prime source has been Adobe
Systems who have provided a number of interesting examples[54] to motivate developers to
pick up SVG. Because deploying SVG graphics requires that the source code is sent to the
client for rendering, it is possible to discover how examples are created by examining the
details. Reading the source code of a number of more complex examples is an important part
of the learning process. Such examination reveals tricks and tips for the creation of complex
and dynamic SVG content. I identified five examples of particular interest. They are briefly
described here, and their implications for our evaluation will be discussed in chapter 5.

Chart and graph demo

This example allows the user to interactively enter data and have it instantly added to a
number of SVG graphs on display. Figure 4.1 shows a bar graph. Users can add data
through the HTML form below the embedded SVG graphic. This form cues the appropriate
script function inside the SVG to draw the new column in the graph.

Figure 4.1: An interactive graph in SVG. (Adobe Systems)

SVG draw demo

This impressive example provides a simple vector drawing program implemented in SVG
through scripting. Users can add various coloured shapes and text and then save the created

39

diagram as an SVG document for later use. The implementation modifies the graphic through
the XML DOM. An example session is shown in figure 4.2.

Figure 4.2: A vector based drawing program implemented entirely in SVG with ECMAScript.
(Adobe Systems)

Chemical Markup Language demo

The Chemical Markup Language is another XML language, this time for the specification of
chemical structures. The beginning of a Chemical Markup document is shown in the bottom
half of figure 4.3. This SVG example demonstrates a number of interesting capabilities.
It utilises XSLT for translating the Chemical Markup into SVG graphics. The graphical
Visualisation of the chemical structure is a 3D representation with a shadowing effect. The
user can spin the representation with a click and drag motion of the mouse. Impressively,
this is all achieved in SVG’s 2D environment. This is facilitated by tracking the entire model
in ECMAScript, while only using SVG as a raw display medium. The script makes the
calculations for rendering the 3D model on SVG’s 2D plane. Figure 4.3 shows the end result.

Theater seat booking demo

This example is a prototype of a web ticking system, powered by a back-end database. The
user is presented with a graphical depiction of a venue for a performance which displays

40

Figure 4.3: A scientific visualisation of a chemical implemented in SVG. The visualisations
were created with XSLT from the XML source shown in the lower half. (Adobe Systems)

available seats (as determined by the database on the web server). Users can click on seats
to book them and after selecting “buy”, can enter credit card details through an integrated
HTML web page. All of this is mediated by Java Servlets on the web server which both
create the representation of the venue and carry out bookings via the database. The SVG
user interface is shown in figure 4.4. The perspective effect is created through traditional art
techniques. Three different chair symbols are specified in the SVG, each of which depict a
chair on a different angle.

Apache Batik project UML class diagram

The final example is not from Adobe. This example from the Objects By Design site[14] shows
UML class diagrams for the the Apache Batik SVG project[20]. This large class diagram was
created from a CASE1 tool and exported to Adobe Illustrator for conversion to SVG. Figure
4.5 shows the entire diagram zoomed out while figure 4.6 shows a zoomed-in detail.

1CASE stands for Computer Aided Software Engineering.

41

Figure 4.4: This is the graphical front end to an on-line ticket sale system with a back-end
database. (Adobe Systems)

4.2 Constructing software visualisations with SVG

After having learnt SVG and discovering some of its more advanced capabilities, the task
is to apply this to examples of software visualisation. The examples I chose to build were
selected on the basis of fulfilling the construction requirements of our model described in
section 3.4.3. The visualisations described below play the following specific roles in meet-
ing the model’s testing requirements: The UML diagrams are both variations on node-link
diagrams. The message mural inspired diagram fills the statistical diagram role. The class
diagram code browser is used as the code-related diagram example. In addition, all of the
visualisations described below were used to further explore SVG’s capabilities for use as a
software visualisation medium.

4.2.1 UML visualisations

While there are many types of UML diagrams, I created only a select few for experimentation.
The reason for this is that there is little benefit to creating a large number of similar types
of diagrams (as UML diagrams mostly are) because most of the insight comes from a limited
number of key examples. The following are brief descriptions of the UML diagrams that I
implemented in SVG.

42

Figure 4.5: A UML class diagram of the Apache Batik software in SVG. (Objects By Design)

43

Figure 4.6: Detail from A UML class diagram of the Apache Batik software in SVG. (Objects
By Design)

44

UML class diagrams

The Batik class diagram example is an impressive display that SVG is capable of this sort
of software visualisations. However, I created a simple class diagram from scratch to utilise
the learning experience of the construction process, as well as for extension as explained in
section 4.2.2.

Figure 4.7 shows the simple UML class diagram implemented in SVG for this project. I
created this diagram in the vector graphics program Adobe Illustrator 5. The whole diagram
was created using simple drawing tools. The only step required to turn this into SVG is to
choose File — Export from the menu, and then select SVG as the file format. The resulting
document is then ready to be deployed on the web.

Figure 4.7: A simple UML Class diagram I implemented in SVG.

UML sequence diagrams

The second SVG example I created was a simple sequence diagram. The SVG code for this
was written by hand. This example contains only the bare bones of a sequence diagram.
However, creating it was tedious enough to establish the difficulty of using such a method.
The diagram can be seen in figure 4.8. The method-call and object names were put in using
the text element as follows:

45

<text

x="10" y="30" >Some text to display</text>

The arrow is specified as a symbol once and used repeatedly with the use element in a similar
manner to that shown in figure 2.14. The stick figure is grouped together in a g element,
as are all of the object boxes along the top. This allows a single style attribute to be used
for all of the sub-elements of the group. For example, the outline thickness of all of the
object boxes could be changed to 15 units by adding stroke-width:15 to the appropriate
g element’s style attribute. While these conveniences were welcome, creating a visual image
by specifying exact coordinates was a monotonous chore. After having used visual drawing
tools for so long, I found that creating an image by coding was an awkward experience.

Figure 4.8: A UML sequence diagram I implemented in SVG.

4.2.2 Extended UML visualisations

To explore the interactive potential of SVG as a medium for software visualisation, it was
useful to extend some UML diagrams to add interaction.

Code linked collaboration diagram

As an example of a code-based software visualisation in SVG, I developed a prototype class
diagram driven code browser. This was mentioned in section 3.1.2 and can be seen again in
figure 4.9. The prototype is relatively trivial in that it only contains a model consisting of
six classes with a small single file of source code. However, it illustrates the capabilities of
SVG to good effect.

46

Figure 4.9: A UML class diagram I implemented in SVG which displays and highlights
associated source code.

47

On clicking on a hyper-link from a web page to the visualisation, the user is presented with
a two-sided display. On the left is a class diagram which depicts a simple program. On
the right is an HTML document containing the source code for the program. As the user
moves the mouse-over the various objects in the class diagram they are highlighted. This also
triggers the source code on the right hand side to move to the correct position in the code
and highlight the appropriate lines. The highlighting serves to show the linkage between the
currently viewed source code and the associated object in the diagram. The object’s methods
can also be activated, which again highlights the appropriate point in the code — although
this time with a different colour.

This was implemented by reusing the simple class diagram created in Adobe Illustrator.
This SVG was embedded in an HTML page, which was then put into the left-hand frame
of an HTML frameset. A second HTML page was put into the right-hand frameset. This
page contained the source code of the program modeled in the SVG diagram. Appropriate
scripting events were added by hand to elements in the SVG document that would be rendered
as object boxes and method names. Strangely, Adobe Illustrator had represented the boxes
as path elements, which is not an optimal implementation. This also made it difficult to find
the appropriate element because instead of being a rect (for rectangle) element it was an
obscure list of points in a path element. While in some cases editing the SVG by hand could
be avoided by using Adobe Illustrator’s script insertion mechanism, some SVG applications
would be too complex to use this simple tool. Actually inserting the script was as simple as
adding a scripting event attribute to the appropriate element. The event attribute for the
Acorn class box was written as:

onmouseover="showLocal(evt); showCode(‘class Acorn’);"

This calls two ECMAScript functions. The first function is called showLocal and is located
in the SVG inside a script element. It highlights the appropriate class box. This was done
by changing its colour attribute via the DOM. The second function is called showCode. It
is located in the SVG’s HTML page. This function in turn calls another function located in
the program code HTML page. This final function highlights and jumps to the appropriate
section of the program’s code.

Collapsible sequence diagram

The second interactive extension to UML developed for this evaluation was a collapsible
sequence diagram. This allows the user to unfold the nested messages as they desire to see
them. This could be particularly useful for users wanting to discover how code works if they
were hoping to reuse it. They would avoid being overwhelmed by information, and would
be in control of their own learning. Because this example was written by hand, fleshing
out all of the details of a sequence diagram would have taken an immense amount of time.
Construction of a complete example was left as an exercise for the automatic generation
discussed in section 4.3.2. Instead, the actual construction focused on the design of the

48

structure, and the implementation of the scripting to make the diagram dynamic. Figure
4.10 shows a test for the design in a fully collapsed state. To uncover a message, the user
can click on the square at the top of the method-call box. The message is then expanded,
showing the next level of nested message, each ready to be unfolded in turn. Figures 4.11
and 4.12 show the diagram in successive states of unfolding.

Figure 4.10: The basis for a collapsible SVG Sequence diagram fully collapsed.

Figure 4.11: The basis for a collapsible SVG Sequence diagram partially collapsed.

Figure 4.12: The basis for a collapsible SVG collapsible sequence diagram fully unfolded.

This was attempted in a number of different forms before a working design was found. Having
a good structure was necessary to make the task of manipulating the SVG via script possible.
The final design was based on embedding svg elements recursively inside one another. An
svg element is the element normally used as the root of an SVG document, but it can be
included recursively inside other svg elements. Each method-call is represented as one of
these svg elements. These svg elements each contain two animate elements. One controls an
animation that moves the svg up or down. The other controls the element’s height. These

49

animate elements can then be used to move a method-call up or down as needed, as well
as animating the method-call to collapse by decreasing the height to almost zero. The svg

elements also contain two rect (rectangle) elements to draw the method activation box, as
well as the little coloured square to be clicked on. Each svg element also includes a use

element to include an appropriately positioned method-call arrow, and a text element for the
method name. Finally, each svg element can contain any number of sub-svg elements. These
sub-svg elements contain the details for method-calls called from this method-call. The code
for a single method-call looks something like figure 4.13.

To implement the interaction, one hundred lines of ECMAScript code implement recursive
algorithms for collapsing and expanding various sub-trees of the diagram. The general direc-
tion for the implementation was to have a complete representation of the diagram in the SVG
and have the ECMAScript modify it as requested by the user. However, this method was
pushed to its limits in this example. As SVG only provides mechanisms for storing the state
of the displayed graphics, it is difficult to manage the semantic content of the graphic during
interaction. To create anything more dynamic or complex would require using scripting to
record the underlying state of the diagram, and using SVG as a raw medium. This is what
was done in Adobe’s Chemical Markup Language example. The reason for the need to move
to a “script-centric” approach is that SVG only allows you to describe the current state of
the diagram. Other information is needed in interactive examples, such as the collapsible
sequence diagram. For example, when a method-call is collapsed, the uncollapsed height
needs to be stored somewhere.

4.2.3 Statistical visualisation

Because of a lack of ready access to a large pool of program statistics for use in a diagram,
I took a more abstract approach in testing SVG’s capability for displaying statistical type
visualisations. The SVG bar graph shown in figure 4.1 demonstrates SVGs capabilities for
displaying basic aggregated data. For this reason I created a message mural type visualisation
(see figure 3.1) to test SVG’s capability for displaying raw data in a visual form. A simple
algorithm was used to create an arbitrarily long mural which showed randomly generated
data. If real data was used, the x-axis would encode the passing of time, while the y-axis
would encode particular objects. Messages would be represented by the vertical lines. Colour
could be used for some attribute of the message. Figures 4.14 and 4.15 show an example
simulating 5000 messages.

4.3 VARE integration

The next section of the exploration focuses on the need for SVG to integrate into the VARE
architecture. However, the benefits of this are not limited to a VARE-centric evaluation. The
important learning here is in the discoveries found from generating SVG dynamically. Much

50

<svg height="70" width="2000" x="0" y="50">
<animate attributeName="height"

attributeType="XML"
begin="indefinite"
dur="1s"
fill="freeze"
from="0"
to="70"/>

<animate attributeName="y"
attributeType="XML"
begin="indefinite"
dur="1s"
fill="freeze"
from="0" to="50"/>

<rect height="40"
style="stroke:black; fill:white"
width="10"
x="865"
y="25">

<animate attributeName="height"
attributeType="XML"
begin="indefinite"
dur="1s"
fill="freeze"
from="0"
to="40"/>

</rect>
<rect height="10"

onclick="collapse(evt)"
style="fill:blue"
width="10"
x="865"
y="25"/>

<use height="35"
width="30"
x="875" xlink:href="#LBmethodCallArrow"
y="20"/>

<text style="stroke:black"
x="890"
y="15">FoodItem(...)</text>

... Some number of sub-svg elements here
<svg...
...
</svg>

</svg>

Figure 4.13: An example of the SVG code representing a single method-call in the collapsible
sequence diagram.

51

Figure 4.14: An SVG visualisation of random data mimicking Jerding and Stasko’s message
mural[26].

Figure 4.15: An SVG visualisation of random data mimicking Jerding and Stasko’s message
mural[26] under magnification.

52

of the field of software visualisation is involved with automatic generation of visualisations
from an executing program, and so dynamic creation is an important area to investigate.

4.3.1 AT — The Process Abstraction Tool

Michael McGavin recently developed a tool to fill the role of an engine in the VARE architecture[38].
This engine was called AT (for Abstraction Tool) and was designed to utilise the GNU C++
program debugger to run “test drives” on Unix programs written in C++. AT loads the
executable code inside the debugger and records the internal behaviour of the program as
it runs. The process can be controlled remotely using SOAP, and AT produces test drive
reports in PAL. A simple prototype web/internet interface was built by our research group
for this, which can be seen in figure 4.16.

Figure 4.16: Test driving a C++ program via AT.

The web page on the left of the figure allows the user to pick a component or a complete
program to test drive. The programs input/output is presented in the top right terminal,
while the bottom right terminal shows the PAL output generated by AT.

4.3.2 Building a transformer

With a working engine and simple interface in action, building a transformer is the next
logical step. This aids both the immediate development of VARE, as well as testing the
dynamic creation of SVG. However, because the primary focus is evaluating SVG, as well as
the still emerging nature of the VARE architecture, the transformer that I developed is not

53

controlled by SOAP. However, adding in a SOAP control layer would not be difficult. The
transformer I developed and implemented is called Blur2.

Java servlets

A convenient vehicle for delivering dynamically created web content is Java Servlets. Java
Servlets integrate with web servers to provide dynamic content, but are platform and server
independent[41]. They are written and compiled in the Java programming language, and
simply need to provide a certain interface for a compliant web server to load and run them
when requested from the web. Their output is then streamed through the web server back to
the client web browser. I chose to use Java Servlets in the implementation of my transformer.

Transformer design

I created the Java Servlet PAL to SVG transformer in a typical modular design. A PalToSVG
object handles Transformation requests from the web server. The PalToSVG object is passed
a visualisation type to create, as well as a reference to a web URL which points to a PAL
document. It then creates a PalParser object to turn the referenced PAL into a convenient
program representation in memory. The PalParser utilises the Java XML parser technology
“Xerces”[21]. Finally, the PalToSVG object selects an appropriate SVG software visualisation
construction object to create the SVG from the program representation and stream it back
to the user’s web browser for display. Both the PalParser, and the implementations of the
visualisation creators use the DOM interface implemented by Xerces to manipulate the XML
they deal with.

Transforming code

As an example, let us now look at how Blur converts a class instance described in a PAL
document into a corresponding SVG image. To do this, the PalParser includes code to
recognise PAL’s type and event elements. In this case, the type element we are interested
in specifies the details of a class, including its name, methods, and inheritance structure. The
element describing a class modelling a Squirrel could look something like the following:

<type name="Squirrel" typeid="t6">

<context context name="sourcefile" contextvalue="tp7.cc"/>

<classdata>

...the class data goes here...

2Blur was a character in the cartoon series “Transformers”.

54

</classdata>

</type>

The event element we are interested in describes the creation of a new class instance of a
particular type (of class). The following PAL shows an example of an element which describes
a new Squirrel object being created.

<event eventid="234">

<newclassinstance classinstanceid="dcl232" typeidref="t6"/>

</event>

You can see here how the Squirrel type’s typeid attribute value from the first code snippet
matches the newclassinstance element’s typeidref in the second code snippet. In this
case the value is t6. This allows the PalParser to identify the class information for the new
class instance.

When the PalParser encounters a type or event element in the PAL, it calls an appropriate
helper parse method to add it to the developing program representation. For example, the
PalParser’s parseEvent method checks for the existence of a newclassinstance element inside
the event element. If it finds it, it uses the DOM to gain access to the attributes in the
following manner:

classInstanceId = element.getAttribute("classinstanceid");

typeIdRef = element.getAttribute("typeidref");

The values of the Java variables classInstanceId and typeIdRef will now contain the
values dcl232 and t6 respectively. These can then be added to the in-memory program
representation. Of course, building the program representation also involves binding this
new class instance to its class type, and making this easily accessible for later parts of the
program.

When the visualisation creation object wants to add a class instance to a visualisation that
it is building, it can access it from the in-memory program representation. It extracts the
information from the representation and creates a new Element object to insert into the SVG
via the DOM. The following is some example Java code which achieves this:

// Get a friendly representation of the class instance from

// our program representation

classInstance = programRepresentation.getClassInstanceById("dcl232")

55

// Create a rectangle to represent the object in the diagram

Element object = svgDocument.createElement("rect");

// Set its attributes

object.setAttribute("height", "20");

object.setAttribute("width", "150");

object.setAttribute("x", someCalculatedXValue);

object.setAttribute("y", someCalculatedYValue);

// Create a text element to display the object’s name

Element objectName = svgDocument.createElement("text");

// Create the actual text.

// Find the class name from the classInstance

Node objectNameText = svgDocument.createTextNode(classInstance.getName());

//Add the text value to the text element

objectName.appendChild(objectNameText);

//Add everything to the SVG docuement

svgDocument.getDocumentElement().appendChild(object);

svgDocument.getDocumentElement().appendChild(objectName);

In this example, a graphic of the class instance has now been added to the SVG document
from its specification in a PAL document. The last step is to serialize the svgDocument and
send it back to the client over the web.

Transformer user interface

I built a simple web-based user interface for controlling Blur over the Internet. This can be
seen in figure 4.17. The user types or pastes the web address of a PAL file for conversion.
The desired visualisations are then specified by selecting the appropriate check boxes. Each
visualisation has a check box, along with an example screen shot and brief description. The
user then clicks the “Build Diagrams” button at the bottom of the interface. The web browser
opens a new window for each visualisation to be generated using ECMAScript. Each window

56

contacts the web-server and asks for the appropriate visualisation, passing through the URL
of the PAL which is to be converted. Once the visualisations have been loaded, the user can
browse the multiple views of the program execution that is described in the PAL document
they specified.

Figure 4.17: This simple web interface I designed allows a user to turn any valid PAL docu-
ment into a number of software visualisations.

Dynamically created software visualisations

Four SVG visualisation creators were written for this system. They were built based upon
the static visualisations from section 4.2.1, as well as a dynamic diagram from section 4.2.2.
As discussed previously, each of these creators are used to turn arbitrary (but valid) PAL
into visualisations. The following three visualisation creators were built initially, and a fourth
was added later, and is discussed in chapter 6:

• A standard UML Collaboration Diagram creator. This builds a collaboration diagram
by positioning the objects around a circle and uses trigonometry to calculate the coor-
dinates. Trigonometry is also needed to calculate the rotation angle for the method call
direction arrows. An example that was generated by blur can be seen in figure 4.18.

• A static UML sequence diagram creator.

• An interactive collapsible UML sequence diagram creator. This uses the same recursive
svg element design as the simple example built by hand. Once the algorithm creates
the structure of the diagram (by embedding the svg elements as required) it then uses
a recursive algorithm to initiate all of the height and position variables. An example of
the result can be seen in figures 4.19, 4.20 and 4.21.

57

Figure 4.18: An SVG UML collaboration diagram generated by the transformer from PAL
input.

Figure 4.19: A collapsible SVG sequence diagram fully collapsed.

58

Figure 4.20: A collapsible SVG sequence diagram partially collapsed.

59

Figure 4.21: A collapsible SVG sequence diagram almost fully unfolded.

60

When a new visualisation type is needed, a new SVG creation object can simply be added
to Blur.

VARE in action

Because a working PAL to SVG transformer has been built, it is now possible to follow
through VARE’s complete process of software visualisation generation. Since this work has
been done primarily in order to evaluate SVG, there needs to be a certain amount of hand-
holding. This could be addressed by the addition of a SOAP control layer, as well as the
development of the central coordination component for VARE.

Using AT’s web interface, a simple program was run which simulated various types of animals
eating food. This produced a PAL output file, which was streamed to a file in a directory
accessible via the web. The transformer’s web interface was then used to enter the URL of the
PAL file, as well as selecting both of the visualisation types for generation. Both visualisations
opened in their new windows for viewing. This demonstrates that the process of using AT
and GNU C++ program debugger to create PAL, and transforming these into SVG software
visualisations is possible. A combined interface for controlling AT and the transformer could
have been developed that would have automated the step from test driving to visualising.
However, this is best left until further development of VARE’s SOAP control system, and a
carefully designed user interface has been developed. Figure 4.22 shows the interaction of AT
and the SVG transformer. Comparing this with the VARE architecture shown in figure 2.4
reveals two things. Firstly, the lack of control lines between AT and the SVG transformer,
as well as between the web interfaces, illustrates the current lack of a session manager and
internal communication. Secondly, this current implementation has no repositories. It only
has the single instances of AT and the SVG transformer.

61

Figure 4.22: The simplified version of the VARE architecture implemented for this thesis.

62

Chapter 5

Evaluation

At this point, the experience gained from the work covered in chapter 4 is applied in evalu-
ating SVG through the model developed in chapter 3. I present a brief summary of SVG’s
performance in each category of capabilities, and break these down in further detail. I then
explore some of the interesting issues that emerge in more depth.

5.1 Basic information visualisation capabilities

5.1.1 Graphical capability

SVG performs well for most of the graphical capabilities. While it does not do particularly
well with the spacial substrate, SVG is very able to support the remaining graphical demands.
SVG can compensate for its poor performance with spacial substrate capabilities through the
heavy use of scripting.

The spatial substrate

Dimensional support SVG provides a two dimensional coordinate system. There is no
built-in support for representing additional dimensions. It is possible to implement
three dimensions by calculating 3D to 2D coordinate conversions in scripts. However,
trying to create true 3D content in SVG is largely prohibited by performance as 3D
hardware cannot be utilised in this environment. SVG is not an ideal medium for 3D
or higher dimensional use, due to this lack of built-in support.

Axis folding SVG provides no built-in support for axis folding. Every visual element must
have an exact position specified with coordinates. Axis folding functionality could be
implemented through heavy use of scripts.

Axis types SVG supports only straight axes. Other axes could be supported through script-
ing.

63

Axis distortions Arbitrary axis distortions cannot be established in native SVG. Again,
this must be done via scripting. This can be achieved by ensuring that all use of
coordinates on the distorted axis is mediated by specialised scripts. These scripts need
to convert the virtual distorted axis values onto the real coordinates that are used in
the native SVG. However, SVG does allow the specification of “transformations” on
a coordinate system. These include moving, (universal) scaling, rotation, or skewing
a coordinate space. This could be used to provide only simple axis distortion effects.
These do not provide the programmer with a single global coordinate space with flexible
distortions inside it. Rather, this cuts the space into a number of different coordinate
spaces, each with their own different distortions.

Viewpoint control by system Pan and zoom changes can be specified declaratively in
SVG. This is done by using animate elements which control transformations on the
root SVG graphic. These animations can be staggered to create the moving viewpoint
effect. Scripting can also control the “currentScale” and “currentTranslate” values to
get the same effect.

Recursion SVG provides explicit support for subdivided space by allowing SVG elements
to be embedded within each other recursively.

Marks and their properties

Size Size can be specified when shapes and paths are created. SVG has a competent scaling
system.

Colour SVG has a sophisticated colour system which includes support for the International
Colour Consortium’s colour profile standard[8]. SVG allows a full range of colour spec-
ification as well as providing control via Cascading Style Sheets[57].

Orientation Orientation can be specified via SVG’s competent translation capabilities.

Shape SVG allows the definition of paths which can include cubic and quadratic Bézier
curves and elliptical arcs, as well as straight lines.

Points, lines and areas SVG allows for exact positioning of points in two dimensional
space. Lines can be specified as described above. Areas can be defined by a path
description and used for masking and controlling the area of graphic effects.

Filter Effects SVG allows a wide variety of filter effects.

Transparency SVG allows the specification of the transparency of any visible element.

Temporal encoding

Encoding time SVG has a timing model to allow changes to graphics over time. The
animate, set, animateMotion, animateColour, and animateTransform elements all take

64

timing attributes so they can be cued at the appropriate points. Also, scripting allows
programmatic control of the graphic.

Encoding identity The capability to specify animation declaratively (as opposed to man-
ually setting values to fake animation) makes it easy to have visual elements move
smoothly — and thus preserve identity.

Variation of retinal encodings Almost all graphical attributes of elements in an SVG
graphic can be changed declaratively with the animate and set elements or via scripting.

5.1.2 Interaction

SVG is almost entirely dependent on scripting for interaction. Having said this, with scripting
SVG is capable of a wide range of interaction types and is highly flexible.

Graphic malleability (after creation) Only with the addition of scripting can the struc-
ture and content of SVG graphics be changed at runtime. However, scripting can alter
almost any aspect of the graphic arbitrarily at runtime. SVG’s declarative modification
elements (such as set) can only modify the attributes of the elements that are already
in the document when it is first rendered.

Events The SVG specification covers a full range of pointer events, as well as focusin, focu-
sout, and activate that could be driven from a keyboard. However, full keyboard support
is not part of the standard. SVG 1.2 will probably contain support for navigating and
triggering events in SVG documents with other input devices such as keyboards.

There are a series of event types cued when things happen to the SVG document, such
as loading, resizing and closing. The standard also specifies DOM events which are
triggered when the document is modified via the DOM.

Computation The only computation that can be done in native SVG is to allow alternative
viewings to suit an SVG renderer’s capabilities. A switch element allows conditional
processing of parts of a SVG document based on these capabilities. Of course, the
inclusion of scripting allows full computational abilities.

User notation SVG has no in built-in capability to allow users to annotate graphics. How-
ever, this can be provided with scripting, as in the example in figure 4.2

View refinement / navigation SVG renderers are expected to provide pan and zoom con-
trols. The Adobe viewer does this via the context menu (right click) or by holding down
the ALT or CTRL keys and left clicking.

Information hiding Graphical SVG elements have a visibility attribute that can be set to
“hidden”. They can be unhidden by setting the attribute to “visible”.

65

Time control Time in an SVG graphic begins once the SVG is loaded. While animations
can be restarted through native SVG event handling, accurate control of the “current
time” can only be controlled via scripting. An SVG element has a setCurrentTime
operation which can be passed the new “current time” by using the DOM.

5.1.3 Performance

SVG seems to have acceptable performance for small to medium sized graphics. Scripting
and interaction seem to impose a large performance overhead, and animating text seems to
be particularly slow in the Adobe implementation.

Scalability Increasing the complexity of a graphic will always have an impact on perfor-
mance, but there is no indication that there are any inherent scalability problems in
the graphic’s specification of the SVG standard. On the other hand, SVG might have a
weak point as scripting may begin to show serious scalability problems. This is because
it is interpreted at runtime which imposes an additional computational overhead.

Current implementations The only fully featured implementation is the Adobe SVG
viewer. It has now reached version 3 and its performance has steadily improved with
each release. The viewer’s current performance seems comparable to Macromedia Flash.
While no solid empirical tests were conducted, very large versions of the message mural
inspired example shown in figure 4.14 were tested. On a Pentium 4 1700MHz, 512
Megabytes of RAM running Windows 98 with the Adobe web plug-in, it performed
fairly well. The test was fully scrollable and zoomable with fair responsiveness when
there were up to 20000 line elements. Once the test was pushed up to 32000 line ele-
ments it became unusable, functioning with large delays. While drawing only straight
lines is far less complex than curved shapes or text, this shows that even the current
viewer is capable of displaying fairly complex diagrams. Another static example is the
large class diagram from the Apache Batik project shown in figure 4.5. Even though it
is very large, this graphic could be panned with ease. Zooming in and out worked, but
with some delay. While Adobe’s plug-in performed quite well with these static graphics,
with interaction and animation examples it did seem to struggle a little. Even the fairly
trivial version of the collapsible sequence diagram shown in figure 4.21 did not animate
smoothly once the text for method names was added. Animation of text elements seems
to be a weak point.

66

5.2 Software visualisation-specific and higher-level capabili-

ties

5.2.1 Integration

SVG has a huge strength in integration. Due to its XML basis, as well as it being developed
for the web, it has unique advantages over other graphics formats.

Creation mechanism Since SVG is based on the plain text XML standard, there are a wide
range of options for creating graphics with it. A SVG document can be hand-crafted in
a text editor. A vector graphics drawing program such as Adobe Illustrator[53] can be
used. XSLT can be used to create an SVG document from an XML data source (but
there is a limit to how this can be done usefully which is discussed in section 5.3.1).
Standard XML tools can be used to create the diagram programmatically.

Deployment SVG already has the MIME[50] type of image/svg+xml[61]. MIME types are
a standardised way of declaring and transmitting non ASCII file types over the standard
ASCII protocols of the internet1. By using this MIME type, SVG can be transferred
by existing web servers over the internet as requested. Web pages can embed or link
to SVG content for easy access. SVG can also be sent via email, or distributed in
any other form. Users will currently need an SVG viewer installed on their machine,
but these are free and easily available. In the future, SVG will likely move to being
included inline in XHTML, and web browsers will render SVG natively. Indeed, Mozilla
already supports this[44]. However, SVG can not easily support live program software
visualisation viewing. This is discussed further in section 5.3.2.

Linkages with other technologies at display time SVG is very strongly integrated with
scripting. The scripting language to be used is not dictated by the SVG specification,
and it can therefore integrate with any scripting language and implementation needed.
The most popular choice is a variation on javascript or ECMAScript. However, once
the scripting language is specified, the SVG document can contain script elements as
well as script event attributes in the chosen language. SVG integrates well with the
web. Any visual element can be a hyper-link to any other web resource.

View coordination with other visual media SVG is dependent on scripting to coordi-
nate multiple views across media. The only limitation is in the scripting environment
used in an implementation. In principle this is not limited by SVG. In practice, multi-
ple SVG views can be coordinated within a web browser’s scripting environment. It is
important to note that this functionality is outside of the SVG standard, and therefore
cannot be guaranteed to be compatible across different implementations. Testing with
interaction with other media (e.g. Java) was not conducted.

1MIME stands for Multipurpose Internet Mail Extensions, which betrays its origins as a standard for email
attachment types.

67

5.2.2 Higher-level capabilities

SVG is disappointingly lacking in higher-level capabilities. After becoming accustomed to
programming in well developed user interface frameworks, moving to SVG is a shock. SVG
is quite low-level. This is fine for working with simple graphics, but becomes troublesome
when applied to more complex applications. Again, scripting is necessary for any hope at
achieving these capabilities. The only exception to this is in built-in graphical capabilities
where SVG performs rather well.

Higher order graphics SVG provides support for a number of basic shapes including rect-
angles, circles, ellipses, lines, poly-lines, and polygons. At specification they can all be
given appropriate attributes such as position, width and height. The lines and curves
supported by SVG can be used to build non-standard shapes. These non-standard
shapes can be specified as “symbols” and used repeatedly in a graphic. Sophisticated
layering and filtering (as already mentioned) are part of the standard. Gradients and
patterns (textures) are supported.

Basic text is well supported in SVG with provision for multiple languages and fonts.
However, SVG 1.0 does not support automatic word-wrap which complicates the use of
text in SVG hugely, but SVG 1.2 will probably address this. Also, moving text seems
to be a point of performance slowdown.

Data/display independence There is little room in SVG to store data independently from
display. An SVG document is only designed to describe a graphic, not to store other
forms of information. There is a meta-data element that can be included to describe
any SVG element, although this is meant to be used for descriptive information rather
than raw data. However, scripting can be used to store the data while it creates the
content of the SVG on the fly.

The order and groupings of graphical elements in an SVG document determine the
layer ordering for the display. This makes it impossible to group and order elements
to capture semantic meaning when this conflicts with the elements layer in the final
graphic. SVG 1.2 may provide a drawing order attribute to deal with this.

Referencable Entities/Objects Every graphical element in an SVG graphic can be refer-
enced via the DOM or XML ID attributes.

Layout constraints SVG provides no support for layout constraints.

Structure Elements can be structured with group (g) elements. However, these groups
determine layering order (what elements lie on top of which others) and so are limited
in their use for grouping elements logically.

68

5.2.3 Support for current software visualisations

SVG is able to display all three of the common forms of software visualisation. However, it
does not make it as easy as would be ideal.

Node-link diagrams SVG can cope well with drawing node-link diagrams. However, the
lack of layout constraints makes SVG a much less convenient medium to work with
than it could be. Coordinate points must be specified absolutely, and cannot be given
in relation to other objects.

Statistical diagrams The performance of the message mural inspired test has already been
described in the performance section (5.1.3)of this evaluation. This indicated that SVG
was quite capable of displaying non-trivially sized raw data displays. It would not
perform well in more interactive and dynamic raw data displays. Aggregated data is
displayed with ease.

Source-code-related diagrams While SVG can display text, most implementations would
probably have trouble rendering the huge quantities of text that make up the source
code of large programs. However, SVG’s integration with HTML more than makes up
for this in many cases due to HTML browsers’ relatively good performance with text.
For many source-code-related diagrams, it would be possible to have the graphical
segments in SVG while the source code segments are in HTML. The SVG would simply
have to be embedded in the appropriate places in the HTML, with scripting used to let
the HTML and SVG work together. However, some visualisations could be conceived
that could not be divided like this, and they would push SVG renderers to their limits.

5.3 Points of interest

Now that I have briefly covered how SVG performed in each of our model’s capabilities, a
more detailed discussion of the interesting points that were raised can be undertaken.

5.3.1 SVG creation

SVG has a number of interesting options available for programmatic generation and creation.

XSLT

XSLT is a declarative style sheet language for styling XML documents. It is often used for
XML data conversion, moving data from one XML document type to another. As such,
it would seem to be a logical choice for creating SVG from PAL. However, XSLT’s primary
purpose is as a style-sheet language, and its declarative nature, make it awkward for the types
of processing needed for visualisation creation. While XSLT is good for simply changing the

69

form of XML data, it would be difficult to use XSLT to implement some of the complex layout
algorithms needed to convert raw data into visualisations. However, XSLT can be used to
generate script content for an SVG document which will be run automatically when the SVG
is loaded. This SVG script content can then build and control the graphical elements required
in the visualisation. An example of this could work as follows:

XSLT could be used to parse PAL, and for every type definition it finds it could write a
insertType(...) function in the SVG script content. The XSLT parsing of the PAL could also
recognise elements in the PAL that represent events and write the appropriate insertEvent(...)
functions in the SVG script content. When the SVG — which is empty apart from the XSLT
created script content — gets to the client for display, the scripts are automatically run,
building the visualisation on the fly. This example is inspired by Adobe’s Chemical Markup
Language demo shown in figure 4.3.

However, what this amounts to is developing visualisation creation transformations in two
contrasting environments. One, (server based) uses XSLT. The other (client based) uses
script. The end result is a transformation system of far more complexity then is needed. So
while XSLT may have a place in some SVG software visualisation generation systems, it is
unlikely to offer a complete solution.

Server side generation

The other alternative is to complete the generation of the visualisation entirely on the server
side. This is more in line with the VARE architecture, as well as being the simpler and
cleaner approach. As explained in chapter 4, a Java transformer was implemented that could
be used as a Servlet. However, the programming language used could have easily been Perl,
C++ or Python. The main issues here were that the environment is controlled (not on an
undetermined client system with an unpredictable setup), and that a quality XML toolkit
was available[21]. The presence of an XML toolkit simplifies the parsing of PAL, as well as
the creation of the SVG.

The original hope was that the PAL input could be parsed by the standard XML parser and
visualisations could be created by accessing the PAL via the DOM. In practice, although
accessing PAL via the DOM is higher-level than direct file input/output, it is still too low
level to be a practical source for creating a visualisation. To be worrying about “what the
third child of the fourth element of the next event element” is when creating visualisations
is very awkward. To further complicate the matter, PAL has been designed in such a way,
that discovering all the information about a particular event or type often requires following
multiple “ID” references to get all the necessary information. This is the reason that the
transformer creates an in-memory representation of the program to be visualised. It is then
easy to create the SVG from this more convenient representation.

While the DOM was chosen because it was hoped it could fill the role of the program repre-
sentation, its failure to live up to this means that SAX could be equally useful.

70

Writing SVG by hand

Creating a complete software visualisation by hand is possible, but painful. Editing SVG at
the source code level is more suited for either building basic components for use in program-
matic creation, or for fine-tuning SVG output from a drawing or conversion tool.

Drawing tools

Using Adobe Illustrator[53] proved to be an easy way to create one-off SVG diagrams. How-
ever, the code it produces tended not to be as conceptually tidy as what would be produced
by a human. For this reason, this is not an ideal route if lots of work needs to be done to the
SVG after export (like the addition of complex scripting).

UML CASE tool file conversion

Finding a way to create SVG from a CASE tool designed for creation of software visualisations
is an attractive option for some situations. However, you are limited to creating only the well
known, supported visualisation types. This would be too limiting for some applications, but
useful in others.

5.3.2 Streaming SVG

SAX’s simple event triggering design makes it ideal for streaming conversion of XML content.
A form of streaming could be used to animate a live visualisation of a program execution
on a server. However, doing this with SVG is problematic. While some implementations of
SVG renderers will support a crude form of streaming in that they display the SVG as it
becomes available, this is too limiting for running even moderately interesting animations.
This is because a stream of SVG can only add to the SVG which has already been rendered
at the client — not manipulate or change what is already there. To do serious live program
visualisation with SVG over the Internet, another agent would need to be present on the
client. This agent would read an event stream and modify the SVG via the DOM. This could
be done via scripting, but Java would be a more attractive option. If scripting in SVG was
chosen, a communication path would need to be established with a server for updates. This
is not part of the SVG standard, but is offered in some implementations as an extension.
Both Adobe’s plug-in, and the Apache Java SVG viewer provide a getURL function in their
scripting environments which would allow this. Streaming will probably be directly supported
by SVG 1.2.

5.3.3 The importance of scripting

A theme emerging from the evaluation so far has been SVG’s reliance on scripting to support
many of the capabilities which would prove useful for software visualisation. The “dirty”

71

nature of scripting, as implemented in practice, combined with the fact that the SVG specifi-
cation defines no standard scripting language, means that the developer must be very careful.
While doing simple scripting work in a homogenous environment (e.g. where all web-browsers
are the same) is acceptable, the implementation of the complex script capabilities required
for SVG software visualisation could cause problems. This is caused by the fact that scripting
environments are not truly standardised across various platforms. Because architectures such
as VARE cannot afford to be tied to a single platform, presumptions about client implemen-
tations must be kept to a minimum. However, if SVG with scripting was used, the following
could be achieved:

XSLT and client side generation

The details of this have already been discussed in section 5.3.1.

3D with shadows

Adobe’s Chemical Markup Language example (shown in figure 4.3) shows a 3D visualisation
with shadow effects on SVG’s 2D plane. This shows that SVG can be used simply as a
raw display medium while graphics libraries are implemented on top in a scripting language.
However, traveling too far down this road would certainly raise serious performance problems.
At some point it would need to be asked, why not use some other medium that supports
these capabilities natively without the performance hit of interpreted scripting, and lack of
hardware acceleration? Other options could include 3D markup languages such as VRML[10],
the emerging X3D[9], or alternatively Java with Java3D.

Improved node-link diagrams

While SVG is more than capable of displaying node-link diagrams, the underlying represen-
tations that are possible are far from ideal. Unfortunately, for reasons discussed shortly in
section 5.3.5, SVG does not support a line to be specified as linking two other graphic entities.
This becomes a concern when you need to move one or more of these entities. For example,
a user might want to modify the layout for clarity. If the graphical entity is moved, any lines
that linked to it will become orphans. The only way to address this is to track the “nodes”
and “links” in scripts, and demote the SVG further towards the the role of a raw medium.

Data display independence

Again, data display independence is reliant on scripting doing the work behind the scenes,
while the SVG takes a passive role. In this case, creating a visualisation would involve
determining the logical elements which will be present in the diagram. The SVG should
arrive at the client in an empty or basic initial state except for the scripts which would
take control when the SVG is viewed. Any interaction would need to be fully mediated

72

by the scripts, which would update their state, and then feed this through to the display
(implemented by the SVG). In this case, you could begin to look at XSLT for translation.
However, it would probably be better to use something more sophisticated on the server to
create the entire initial state of the visualisation.

Logical structure

Logical structure (as opposed to the largely graphically determined structure imposed by
SVG) would also be facilitated by the data display independence just outlined.

5.3.4 Creating objects from symbols

SVG seems to have a strange weakness in how symbols are created and used. To make SVG
easier to use (and more efficient for downloading) recurring groups of SVG elements can be
defined as a symbol. These symbols can then be used as many times as needed in a graphic.
This is done by specifying a use tag, and giving coordinates for its location in its attributes.
Unfortunately, there seems to be no easy way to specify other customisations at creation
time. For example, in creating the rectangles at the top of a sequence diagram, all that needs
to be customised is the value of the text element which displays the object’s name. However,
this cannot be done through the declarative means of the SVG’s use element.

5.3.5 Layout constraints

A weakness that seems to be a result of SVG’s philosophy is the lack of any support for layout
constraints. SVG’s philosophy seems to be that all graphical elements should be placed in
exact coordinates. In other words, SVG makes no effort to help in the intelligent placement
of objects. The programmer must do all the work. For example:

• There is no way to automate line wrapping for text which runs off the screen or outside
an area.

• There is no way to specify an element’s coordinate values as being an expression to be
calculated.

• There is no way to specify behaviour rules for specific elements (e.g. different zoom
factors when a zoom is triggered).

These limits can be overcome through diligent script coding, but it seems a shame that they
were not included in the base SVG specification.

One interesting attempt to extend SVG to allow layout constraints is pSVG[32]. pSVG stands
for “parametric SVG”, and allows developers to embed variable parameters and expressions
in SVG content. Figure 5.1 shows some example pSVG and a description of how it works.

73

<rect x="{$x-2}" y="{$y-2}" width="4" height="4"/>

The pSVG processor will first convert all property name references to their values.
Let’s say that our context-object has these values: x: 10, y: 20 . After phase one
is complete, our pSVG string will look like this:

<rect x="{10-2}" y="{20-2}" width="4" height="4"/>

Phase two will process each delimited JavaScript section. When you eval() a
statement like, ”10 - 2”, eval() will return 8. So, after each section of delimited
JavaScript is eval()’ed, we end up with the following string:

<rect x="8" y="18" width="4" height="4"/>

Figure 5.1: Example code and description of Parametric SVG from KevLinDev.

While pSVG essentially provides all that is needed for layout constraints, it is unfortunate
that it is not included in the SVG standard directly. Because it is in fact just a service
provided by pSVG ECMAScript objects, it is impossible to include pSVG directly in the
body of the SVG document. This means that all of the parameterised SVG content must be
added to the document through ECMAScript calls. It would be great to see some of these
ideas incorporated into SVG as this would simplify practical use of SVG greatly.

5.4 Alternatives to SVG

While this is primarily an evaluation of SVG as a medium for software visualisation, it is also
prudent to at least mention some of the alternatives. However, this discussion will be limited
to a brief comparison with SVG. A more complete exploration would require measuring each
of the alternatives against the evaluation model in order to usefully develop the points of
comparison.

5.4.1 Macromedia Flash

Flash provides very similar basic capabilities to SVG. In fact, there is a working (but still
developing) conversion script from SVG to Flash’s file format (SWF)[29]. However, Flash
has a number of crucial differences. Firstly, while Flash has a vector based file format,
it is a binary format. While this can result in better performance, it has a major draw-
back. Creating new authoring systems is made very difficult. For both hand-authoring and
programmatic generation, Flash has only a few tools available [43][35][34]. Compared to the
breadth of support for authoring SVG via general XML tools, Flash’s options are limited.
Additionally, because SVG is backed by standard XML, high quality authoring environments
already have SVG support[53], and more will probably follow. While Flash’s format is a
published standard, it is not an open comunity standard which means that the real control

74

of the future of Flash lies with Macromedia. An interesting development in the latest version
of Flash (Flash 5) is that it now has direct support for XML data communication[36]. What
this means is that a Flash graphic being viewed on a client machine can now access XML
data from the web as needed, as well as send XML to servers. This built-in functionality
would make it easy to make a client Flash display talk in SOAP with the VARE server. This
is a clear advantage over SVG. It could even go as far as to read PAL itself, and implement
a transformer, even if this might not be the most elegant design. Importantly however, this
does not overcome Flash’s central weakness. The XML integration is only an addition to its
capabilities, not its file format. This means that developers are still limited to using the small
set of tools that are available for Flash authoring. Finally, one big advantage of Flash is that
it has support for streaming “movies”, which would be useful for live program visualisation.

5.4.2 VRML and X3D

Another option is to use VRML, or the still emerging X3D as media. Like SVG, these
technologies are for the display of graphics over the web and are also based on markup
languages. However, they would probably not be ideal for the two dimensional applications
that dominate much of the software visualisation field. Further examination of these media
would be necessary in order to provide further comment.

5.4.3 Java

Another option would be to utilise Java. Java Applets[39] allow programs written and com-
piled in Java to run in a web browser on (potentially) any hardware/software platform. This
is a very interesting option, as it provides a sophisticated graphical user interface toolkit, as
well as full network capabilities for intelligent communication with a server after deployment.
This could include communicating in XML based languages (such as SOAP) to integrate with
an architecture such as VARE. However, Java is clearly a heavy-weight solution, while SVG
is the light-weight alternative. SVG allows the developer to deploy simple descriptions of
graphical content, rather than executable programs. For small software visualisations, such
as some UML diagrams, SVG would be a perfect choice. Larger, more dynamic visualisation
would probably be better served by Java applets. Interestingly, SVG content can be included
in Java applications through the Apache Batik libraries[20], so SVG visualisations could be
displayed from within larger Java visualisations.

5.5 SVG’s strengths

SVG has many good features and a few great advantages. SVG’s biggest strengths are as
follows:

• SVG was born for the web. SVG integrates well in existing web browsers through
current plug-ins, and if the built-in browser support matures this will be a powerful

75

advantage. Being able to embed SVG natively in XHTML web pages will allow clean
delivery of mixed HTML SVG content. This will be useful for source code based
visualisations, as well as for giving the user a seamless code discovery experience. All
of this can be delivered over the Internet to a wide variety of platforms.

• SVG provides an easy way to create high quality graphics. The built-in capabilities for
textures, filters and effects provide a good set of tools to get the quality visual results
required in software visualisation. Being vector-based makes creating animation and
simple interactivity easy.

• Because SVG is XML based, SVG can already be created and manipulated by a huge
variety of tools. Also, XML’s popularity makes coding SVG easy to pick up for a large
proportion of programmers.

• SVG’s light weight nature makes it much easier and faster to deploy than more heavy-
duty options.

5.6 SVG’s weaknesses

Of course, SVG has a number of weaknesses. The most prominent are as follows:

• While SVG performs relatively well for small to medium-sized graphics, it will probably
never be able to compete with dedicated and compiled programs when it comes to large
visualisations with complex interfaces.

• SVG does not have any support for layout constraints. Therefore, programmers are
forced to deal with writing code to manage this by hand in client side interpreted
scripting languages.

• SVG is extremely dependent on client side interpreted script for supporting many com-
mon capabilities that software visualisations demand. This sort of scripting environ-
ment offers little standardisation, poor performance, and has a lack of easily available
and mature development environments.

• This reliance on scripting for typical common requirements results in a situation where
the optimal deployment is an SVG document containing only script. The script then
does all the work, using the SVG graphics elements as only a type of low level graphics
control mechanism. The fact that writing non-trivial SVG actually means creating
ECMAScript “programs” is something that many programmers would be unhappy with.

76

5.7 Possible improvements for SVG

5.7.1 Layout constraints

Adding layout constraints, as proposed by Tirtowidjojo et al[56], could bring SVG to just a
high enough level to avoid much of the dependence on scripting. Attempting to add layout
constraints to SVG with ECMAScript, as is done with pSVG (section 5.3.5), is one approach.
However, including layout constraints inline in SVG itself would simplify things immensely.
Representing layout constraints in the SVG itself could not only be easier than writing scripts,
but switching back and forwards between the world of scripts and the world of SVG markup
would no longer be necessary. A possible suggestion for a layout constraint mechanism is to
allow executable statements for numeric attribute values. This would result in being able to
write SVG code like the following:

<line x1=SomeBox.width y1=(SomeBox.height + 10) ...

What this amounts to is taking a simplified and clearly standardised subset of script-like
capability and cleanly integrating it into the SVG standard itself. This would allow more
appropriate support for node-link diagrams, as the end of a line could be defined as being
located wherever the center of a rectangle was. The line would then follow the rectangle
wherever it was moved. With some more additions, this could also allow for automatic
column wrapping text, and other high level capabilities. These changes would consist solely
of additions to the SVG standard, which would not impact on the use of the current syntax.
Performance should not be impacted too greatly, as otherwise all of this work would have to
be done with scripting. Additionally, SVG renderers could be optimised for this functionality.
This optimisation could not be done if non-standardised interpreted scripting is used, as it is
at present.

5.7.2 Entity construction

Another possible improvement to SVG would be to allow symbols to be used in a more
powerful manner. As it is currently, entities with similar but not identical properties cannot
be abstracted out to a common symbol in the SVG document. For example, if a diagram
contained a number of stick figures, each with either a smile, frown or grimace on its face,
it is not possible to create a generalised stick figure symbol that allows the specification of
different faces when used. SVG’s symbol and use facility would be more useful if you could
do things like the following:

<symbol id="stickFigure" ...

<option id="smile" ...

... put smile shapes here

</option>

77

<option id="frown" ...

... put frown shapes here

</option>

<option id="grimace"

... put grimace shapes here

</option>

... Put all of the common shapes

i.e. the body here ...

</symbol>

...

<use xref="#stickFigure" option="smile" ...

5.7.3 Upcoming improvements

A discussion of possible improvements for SVG would not be complete without further exam-
ination of what is likely to be added to new versions of the standard. While the SVG 1.1[62]
candidate recommendation will not contain any new features, the SVG 1.2[63] working draft
looks a little more interesting. The following is a discussion of the new features being planned
for SVG 1.2.

Text wrapping

SVG 1.2 will allow automatically calculated text wrapping in arbitrary shapes. This means
that it will become trivial to define a shape in SVG, and then have text sit inside this shape,
and line-wrap with the contours of the shape. This will be a huge advancement for the use of
SVG in text-based graphics. To achieve a similar effect currently requires some fairly complex
scripting. Integrating this into the SVG renderer itself should result in marked improvement,
and simplicity of development.

XML integration

While SVG is XML itself, and can be included inside other XML documents, there are further
improvements that can be made to integrate it with other XML standards. SVG 1.2 will aim
to make a number of changes in this regard as follows:

• XForms

XForms[66] is an XML application designed to replace current form implementations
embedded in web-pages. XForms are designed to be embedded in other XML display

78

documents, such as SVG and XHTML[67]. XForms essentially provide all of the func-
tionality for creating basic interactive user-interfaces. They provide various input fields,
and the separation of presentation from content.

Once XForms can be integrated into SVG, it will greatly simplify the addition of stan-
dard user-interface components to SVG. This will reduce the dependence on complex
ECMAScript as typical user-interface tasks will no-longer require it.

• XML Events

The XML Event standard[68] provides a means of clearly specifying event listeners,
while separating them from the actual XML content. Once this is integrated into
SVG, developers will be able to specify event listeners separately from SVG content,
improving modularity and maintainability.

• More SMIL Animation

The Synchronized Multimedia Integration Language (SMIL)[65] is designed for the
specification of interactive audiovisual presentations. SVG 1.0 currently supports SMIL
for its animation facility. When more SMIL functionality is introduced in SVG 1.2, it
will likely be possible to include video and audio content in SVG documents, as well as
utilise more of SMIL’s timing controls.

• Rendering Arbitrary XML

As in the case with Blur, SVG is often being used as the display technology for XML
data. Blur takes XML program descriptions (in PAL) and creates SVG visualisations
from them. The SVG working group is currently looking at ways to support this use
case, by incorporating translation features into the SVG standard.

It would be interesting to see if there is any real benefit to this for the field of software
visualisation, given the complex nature of the data being visualised, and the technical
requirements of layout algorithms.

Printing

When SVG content is required to be printed, there are a number of issues that SVG could
take into account, and some of these are being looked at for inclusion in SVG 1.2. While
these new features are probably not so vital to software visualisation (as much of it is often
based on interaction) there would be a number of static reference type visualisations which
would benefit from these additions.

The likely changes include the ability to specify how SVG content should be broken across
pages when printed, as well as specialised color support for the physical printing process.

Changes to the rendering model

• Alpha compositing

79

There are a number of changes to the compositing model proposed for SVG 1.2, but
this is an area which is still under heavy discussion. These proposed changes will
provide a more advanced system for the layering of graphics on-top of each other. The
enhanced alpha compositing proposed for SVG 1.2 will allow the specification of how
semi-transparent objects are blended together. SVG 1.0 and 1.1 do not provide such
flexability, as they have only a single compositing scheme.

• Drawing order

SVG 1.2 may allow the specification of drawing order as being separate from an ele-
ments position in the SVG document. This could aid developers in creating semantic
groupings in their SVG documents, rather then be required to always group elements
for graphical reasons. This could have a number of positive effects, including simplifying
the management of an SVG document tree from ECMAScript, and aiding understand-
ing of document structure.

Streaming

There are plans to introduce streaming into SVG 1.2. This would be vitally important for
real-time program visualisations, as well as allowing time-based visualisations with a very
long duration to begin displaying before the download is complete.

Painting

A number of changes are proposed in SVG 1.2 to enhance document structure with regard
to color references, and text transformations.

Changes to the SVG DOM

There are a number of proposed changes for SVG 1.2 which improve the accessibility of various
types of information via the SVG’s document Object Model (DOM). These changes will not
affect SVG’s capability for software visualisation directly, but will ease some ECMAScript
programming tasks.

Navigation

SVG 1.2 will likely enable input devices other than the mouse to navigate an SVG graphic.
This could enable other interaction methods with the SVG document. However, the real
impacts of this would probably be for the accessibility of SVG to those with disabilities.

80

Chapter 6

Building on SVG

It is clear that for SVG to become a useful medium for software visualisation, it needs to
better support higher-level software visualisation capabilities. Because improvements to the
SVG specification could be a long time coming, other possible remedies for its short comings
should be considered. The absolute need for scripting in non-trivial visualisations means that
a lot of time could be wasted in “reimplementing the wheel”. If SVG is chosen as the primary
visualisation medium for VARE — a role that it could surely fill — it would be very helpful
to create a SVG software visualisation scripting library. This would greatly ease the job of
visualisation development. Such a library can be referenced by a SVG script element and
could include all of the functionality discussed in section 5.3.3.

6.1 Graphics APIs

Creating sophisticated software visualisations with SVG becomes a large ECMAScript pro-
gramming task. However, the programmer must still be intricately involved with the details of
the XML SVG content, setting attributes of graphical objects via the DOM. The result seems
to be less then ideal. While many programmers are probably used to graphics programming
using a specialised graphics application programming interface (API), SVG programming
through ECMAScript provides a very different, and more complicated system. For exam-
ple, the popular 2D and 3D graphics API OpenGL[46] provides function calls which allow
the programmer to specify shapes as a series of vertices, by calling appropriate functions as
follows:

// Draw a square (by specifying vertices of a polygon)

glBegin(GL_POLYGON);

// Draw verticies in a square

glVertex2f(0.0, 0.0);

glVertex2f(0.0, 10.0);

glVertex2f(10.0, 10.0);

81

glVertex2f(10.0, 0.0);

glEnd();

The Java graphics libraries also provide an API for creating graphics[42], this time in an
object-oriented form. The programmer has access to a Graphics object, which can be passed
Shapes or coordinates to create polygons, among other features. A simple example where a
rectangle is drawn on a “graphics” object could be written as follows:

// Create rectangle at point (0,0) of width and height 10

Shape aRectangleShape = new Rectangle(0, 0, 10, 10);

// Tell the graphics object to draw this shape by filling it with color

someGraphicsObject.fill(aRectangleShape);

However, doing graphics programming with SVG and ECMAScript is currently quite a dif-
ferent story. In SVG, the programmer expresses the graphics by creating the appropriate
elements and attributes in an XML document conforming to the SVG specification. To ma-
nipulate the SVG graphics in real-time, code can access and manipulate the SVG document
directly via the document object model (DOM). What this means, is that to add a rectangle
to the graphic the code needs to create XML elements which describe the shape, and then
append the elements as children1 to appropriate elements in the existing SVG XML docu-
ment. For example, to dynamically create a square similar to the openGL and Java examples
would require writing in a form such as:

// Create rect element

var shapeElement = svgDocument.createElementNS(svgns, "rect");

// Set x attribute

shapeElement.setAttributeNS(null, "x", 0);

// Set y attribute

shapeElement.setAttributeNS(null, "y", 0);

// Set width

shapeElement.setAttributeNS(null, "width", 10);

// Set height

shapeElement.setAttributeNS(null, "height", 10);

// Append the rect element to the root element in the SVG XML document

svgDocument.documentElement.appendChild(shapeElement);

1XML elements inside other XML elements are referred to as the children of the containing element

82

This illustrates the different approach required in graphics programming with SVG and the
DOM versus programming with a typical graphics API. Instead of dealing with vertices
and shapes directly, the programmer must deal with the graphics through an extra level of
indirection, creating XML elements and attributes, and navigating the XML document tree.
Ideally, the programmer should be presented with abstractions of the graphical components
themselves. How then can we make accessing SVG from ECMAScript easier?

We can begin by observing that much of the progress in software development is based on
building higher-levels of abstraction upon the building blocks that have gone before. We can
apply this principle to make the union of SVG and ECMAScript for software visualisation
a more attractive proposition. One approach would be to create an ECMAScript graphics
API to hide the SVG manipulation, analogous to OpenGL, Java’s 2D libraries, or Microsoft’s
DirectDraw. Alternatively, we could create ECMAScript SVG libraries designed for specific
domains. In our case, this would involve creating an ECMAScript library specificly tailored
for supporting software visualisation. In section 6.2 I discuss a developing ECMAScript
graphics API, and in section 6.3 I detail my development of an ECMAScript SVG library for
software visualisation.

6.2 An SVG graphics API

Interestingly, after I started developing an ECMAScript SVG library for software visualisation
I discovered some work towards the first approach mentioned, that of building a generic
ECMAScript graphics API on-top of SVG[31]. This project includes ECMAScript objects
for doing 2D Maths, creating and manipulating SVG Shapes, GUI Widgets such as buttons
and sliders, and a number of other utility objects. For example, a button GUI Widget can
be created with the following ECMAScript code:

button = new Button(

50, 200,

my_callback,,button_updy,button_downmb, SVGRoot);

my callback is the event handler function that will be called when the button is pushed.
button updy and button downmb are XML id values for SVG elements which define the
appearance of the button in its two states (up and down). SVGRoot is the root XML element
in the SVG document. The resulting ECMAScript button object will then abstract away the
details of keeping the SVG document up-to-date with the current state of the button, and
passing on button events to the appropriate event handlers. Figure 6.1 shows a number of
these buttons in use in an SVG document.

Using the functions provided removes the need for navigating the SVG document’s DOM and
laboriously adding elements and attributes. While this is still happening in the implementa-
tion of the ECMAScript objects, the programmer can focus more on their intentions for the

83

Figure 6.1: A user interface with buttons produced by the KevLinDev[31] SVG ECMAScript
library.

graphics themselves, rather than thinking about the structure of the SVG document. How-
ever, at the same time, this approach does not try to hide SVG from the programmer entirely.
The SVG document is still a very important part of the programming model. For example,
the new Button function shown above takes references to SVG graphics for the depictions
of various button states, rather then passing ECMAScript objects that might encapsulate
such graphics. While this is not necessarily a criticism, intuitively it seems less than ideal to
force the developer to work with two very different representations of the graphics. It would
be interesting to look at this issue further, examining whether there are negative impacts
resulting from this added complexity. This is a definite area for future work.

While building a generalised graphics API for SVG has many potential gains, it is also possible
to create domain specific ECMAScript libraries.

6.3 An SVG software visualisation library

As described in section 3.1.2, Oudshoorn et al.[47] divide software visualisations into three
types: Graph-based (node-link), Statistics-based, and source-code-related displays. If we
can augment SVG to better support the development of these sorts of diagrams, SVG could
become a much more attractive option for software visualisation deployment. The obvious
approach for this would be to create an ECMAScript library that would hide away many
of the details of the graphic manipulation of the SVG document, and allow developers to
deal directly with objects representing the abstractions they are working with. However,
these different types of software visualisation will require very different feature sets from
those found in a support library. For example, a node-link type software visualisations would
need abstractions for nodes and links, while source-code-related visualisations would require

84

textual abstractions to deal with large textual structures in intelligent ways.

A practical approach to begin working towards such a library is to develop the foundation
of one of the three software visualisation types. Here I describe the development of an
ECMAScript library to support the node-link type diagrams. As mentioned in section 5.3.3,
SVG is disappointing in its lack of ability to support node-link diagrams. Because SVG has
no facility to encode the semantics of a graphic, such as defining a point as being attached to a
shape, developers are forced to track events and coordinates and update the SVG accordingly
all through ECMAScript. The library aims to alleviate this.

6.4 Library details

The library is designed to be called from a near empty SVG document. An example is shown
in figure 6.2. The document only needs to contain two elements, both of which are script el-
ements. The first should reference (and load) the node-link ECMAScript library. The second
script element contains XML character data, as indicated by the surrounding <![CDATA[
and]]> markers. This character data contains the ECMAScript content where the library
calls will be made. This ECMAScript contains a function called GenerateStructure() which
will be called by the library when the diagram is ready to be built. Finally, the root svg

element must set the library’s Initialiize(evt) function as the event handler for the onload
event, which is triggered once the base SVG has been loaded. The Initialize function will set
up the required SVG content, create the required resources, and then call the aforementioned
GenerateStructure function to generate the diagram.

<svg onload="Initialize(evt)" >

<script type="text/ecmascript" xlink:href="./nodebuilder.js" />

<script type="text/ecmascript">
<![CDATA[

function GenerateStructure(){

// library calls go here

}

]]>
</script>

</svg>

Figure 6.2: The skeleton SVG file required to use the ECMAScript SVG library.

85

6.4.1 Creating Nodes and Links

At this point, creating Nodes and links is much simpler with the details of SVG removed.
Calls to create these are put in the GenerateStructure function. To build a node, a Node
object must be created with the ECMAScript “new” keyword. A number of parameters can
be passed to the Node, including its x and y coordinates. The Node object takes care of
remembering its location on the SVG canvas, as well as adding itself to the SVG document,
and keeping its constituent SVG elements and attributes up-to-date. Creating links between
Node objects is equally simple. This involves creating an instance of the Link object with
the “new” keyword, passing through the two Node objects to be linked as parameters. Addi-
tionally, other parameters, such as the symbols to be drawn at either end of the line can be
given. A simple example of creating Nodes and Links can be created by the code in figure
6.3, and the result is shown in figure 6.4.

function GenerateStructure(){

// library calls
var firstNode = new Node("10","10");
var secondNode = new Node("80","9");

new Link(firstNode, secondNode, "none","none");

var thirdNode = new Node("250","230");
var fourthNode = new Node("200","300");

new Link(thirdNode,fourthNode,"none","arrow");

var fifthNode = new Node("330","300");

new Link(thirdNode,fifthNode,"arrow","none");

var sixthNode = new Node("200","20");

new Link(sixthNode, fourthNode,"arrow","aggregate");

var seventhNode = new Node("159", "200");

new Link(seventhNode, fifthNode, "none","aggregate");

}

Figure 6.3: ECMAScript calls creating a dynamic SVG node-link diagram, shown in figure
6.4.

Figures 6.3 and 6.4 show clearly how the library takes care of many details which are awkward
to implement in SVG. Firstly, being able to specify links by simply associating them with
the nodes which they join, rather than with hard coordinates ensures that all of the nodes

86

Figure 6.4: A dynamic node-link diagram generated by ECMAScript objects.

87

and links will be properly connected. The library takes care of ensuring that the symbols at
the end of the links are correctly positioned on the edge of the node, and that they have the
correct rotation to match the angle of the link.

6.4.2 Dynamic diagrams

While this is clearly helpful, the real benefits can be seen in the dynamic nature of the node-
link diagram. What cannot be seen from the simple code example and screen-shot, is that
the end-user viewing the node-link diagram can click and drag the nodes to new positions.
As a node is being moved, the attached links move with it, and the symbols on the links also
move and rotate as appropriate. This can be seen in action in figure 6.5.

Figure 6.5: Four shots of a Node in a node-link diagram being dragged from left to right by
the mouse.

This is made possible as the Node object has registered itself in the SVG document as the

88

recipient of mouse events occurring over the square box depicting the Node. When there is a
mouse event (such as a move or click) over the Node’s depiction in the SVG graphic, the Node
object is alerted, and it can then update the appropriate elements in the SVG document as
necessary. As the Node object moves, it also advises the Link object (via LinkEnd objects)
of its changing position, so the links follow as well, updating their own collection of elements
in the SVG document.

Each object that has a depiction in the SVG document has a refresh() method, which contains
all of the code that is responsible for updating the SVG elements. This ensures that all of
the SVG specific code is encapsulated in the single method, and changing the appearance of
an object only requires modification of this method.

As is probably evident, the node-link functionality is essentially useless for software visuali-
sation unless the appearance and behaviour of the nodes and links can be customised. The
ECMAScript GUI library mentioned in section 6.2 allowed the specification of new graphical
content for widgets by passing a reference to new SVG content contained in the SVG doc-
ument. However, this approach is not taken here for two reasons. Firstly, this only allows
the specification of new graphical appearance for the objects, not behaviour. New non-trivial
behaviours cannot be added without working with ECMAScript. Secondly, using SVG at
this level forces the developer to deal with SVG directly every time they wish to instantiate
an object.

Another approach which avoids both of these problems is to encapsulate SVG content in the
object-oriented nature of ECMAScript.

6.4.3 Object-oriented ECMAScript

While ECMAScript does not contain all of the features of a full object-oriented programming
language, it does have a number of the important object-oriented features. ECMAScript
provides the capability to instance objects with the “new” operator, in much the same way
as with Java. These objects contain data, and have attributes and methods which allow the
user of the object to access and manipulate this data. However, unlike Java, ECMAScript is a
form of “Prototype-based language”[17]. The “new” operator simply creates an empty object
— calling a constructor function to build the object by adding attributes and methods to
the object as required. Additionally, any object can be used as a prototype for a new object.
Any attributes or methods belonging to the prototypical object will also be available in the
new object. Additional attributes and methods can be added to either object at anytime
during the program’s execution. Additionally, an object that has has a prototypical parent
can override any methods with its own.

6.4.4 A UML class node

This overriding functionality can be used to create new versions of objects to use in the
library, with the rest of the library remaining unaware of the changes. In our case, this

89

means that new appearances, behaviour and functionality can be added to Node objects and
the library will continue to manipulate them as normal.

For an example, I developed a basic interactive SVG UML Class diagram based on the
library. This simply involved creating a new type of Node, or more correctly, creating a
UML Class object that is prototyped from an existing Node object. The code to accomplish
this can be contained in the script element inside the SVG document, or could be put in
an external ECMAScript file and stored on the Web for reuse. The actual implementation
requires creating two new functions. The first is the Objects constructing function, and the
second is a “refresh” function which will override the “refresh” method of the Node object
from which it is prototyped. The refresh method contains all of the logic required to update
the SVG document with the objects current state. These functions are then bound to the
UML Class object as methods, and the Node object is specified as the prototype.

Of course, a UML Class node is different from a plain Node in that it has a name, attributes
and methods. To implement a UML Class node, extra methods can be added to the EC-
MAScript UML Class node, such as addMethod(methodName) and addAttribute(attributeName)
methods. Once the refresh() method has also been enhanced to add these methods and
attributes to the SVG document, a new UMLClass can be created from within an SVG
document’s script content. Figures 6.6 and 6.7 show a UMLClass object created by the
ECMAScript library.

function GenerateStructure(){

// library calls
var classNode = new UMLClass("10","10", "SomeClass");
classNode.addMethod("Method1()");
classNode.addMethod("Method2(anArgument)");
classNode.addMethod("Method3(anotherArg)");

}

Figure 6.6: ECMAScript calls creating a UMLClass node, shown in figure 6.7.

Figure 6.7: A UML Class node created by the SVG ECMAScript library.

Because the UMLClass objects are created from Node objects, they can be used in library
calls as Nodes could before. This means that links can be created between the UMLClasses
by passing the library’s Link objects the appropriate UMLClasses to link. Any sort of Nodes
can be linked together, so new Nodes, such as documentation notes, can be created and linked
with other Nodes in the diagram.

90

6.5 SVG node-link library in action

With these objects available from within the SVG script content, it is trivial to create UML
Class diagrams. Figure 6.8 shows the ECMAScript code required to generate the SVG class
diagram shown in figure 6.9. Note that the user can click and drag the classes around
the diagram to new positions as desired. This functionality comes from the fact that the
UMLClass objects are prototyped from the Node object.

function GenerateStructure(){

// library calls
var car = new UMLClass("100","10", "Car");
car.addMethod("startEngine()");
car.addMethod("drive(Road)");

var bmw = new UMLClass("20","130","BMW");
bmw.addMethod("activateCarAlarm()");

var road = new UMLClass("250","10", "Road");
road.addMethod("getCondition()");

var electricWindows = new UMLClass("200","230", "ElectricWindows");
electricWindows.addMethod("open()");
electricWindows.addMethod("close()");

new Link(car, bmw, "arrow", "none");

new Link(car, road, "none", "none");

new Link(bmw, electricWindows, "aggregate", "none");

}

Figure 6.8: ECMAScript calls creating a UMLClass diagram, shown in figure 6.9.

With this ECMAScript library available, it greatly simplifies the process of generating these
diagrams programmatically on request. To experiment with this, I augmented Blur to cre-
ate SVG interactive class diagrams from PAL files. From a combination of the static type
information, and dynamic runtime events contained in PAL, it is possible to create the appro-
priate SVG ECMAScript library calls and embed them in an SVG document. When this SVG
document arrives at a client, the ECMAScript library will create the diagram, as specified
by the embedded library calls. The user can then manipulate the diagram as they require.
After integrating this into the web interface discussed in section 4.3.2, it is now possible for
users to request interactive UML class diagrams to be built from any PAL output, and have
it deployed in their browser as SVG.

91

Figure 6.9: A UML Class diagram created by the SVG ECMAScript library.

Instead of building another layout algorithm implementation from scratch, I incorporated the
graph layout system from the Graph Visualization Framework (GVF)[37]. The GVF provides
graph and layout functionality that allows new layout algorithms to be plugged in. Blur uses
the Fruchterman Reingold layout algorithm[23] as implemented by GVF. The initial layout is
calculated on the server, and the calculated coordinates are used in the ECMAScript library
calls embedded in the SVG document. Due to random elements in this layout algorithm, the
user can press the web browsers refresh button, and cause a new layout to be generated on
the server and displayed in the browser. Figure 6.10 shows four layouts of a class diagram
created from the same PAL file. Once the user finds a layout they are reasonably happy with,
they can fine tune the layout by clicking and dragging the classes with their mouse.

Figure 6.11 shows another UML class diagram created via the web interface from a PAL out-
put file. The PAL file used was created by a prototype Java engine for the VARE framework.
This engine is similar to the engine “AT” that was discussed in section 4.3.1, but rather than
generating PAL from the execution of C++ programs, it builds PAL from the execution of
Java programs, by using the Java Debugger Interface (JDI)[40]. Interestingly, in this case the
Java program used as the source for the PAL output was a previous execution of Blur itself.
When this PAL file describing an execution of Blur, was fed back into Blur, it was able to
draw software visualisations of itself. While the information in this diagram is incomplete, it
shows how the ECMAScript SVG software visualisation library can already be used to create
reasonably detailed diagrams.

92

Figure 6.10: Four different layouts of a SVG UML class diagram.

93

Figure 6.11: A UML class diagram of Blur, created by Blur from a previously created PAL
file.

94

6.6 Discussion

While this is only the beginning of what is required for a full SVG software visualisation
library, there are a number of interesting issues that its development has highlighted.

By using a clear ECMAScript interface to create the SVG document, it is possible to ensure
that all SVG specific code is kept in the same environment. In contrast, the SVG content
of the collapsible sequence diagram shown in figure 4.21 was created on a server using Java.
However, the code which modifies the diagram to enable the interaction was implemented in
ECMAScript and runs on the client system in the web browser. This means that the func-
tionality which is dependent on the structural details of the SVG diagram is spread over the
client and server, in two different development environments. This makes any maintenance
of the diagram difficult, as both the Java code on the server, and the ECMAScript on the
client will need to be carefully modified in tandem. This situation can now avoided by using
the SVG software visualisation library. Using only a clean ECMAScript library as I have for
the UML class diagram generator, means that all the SVG generation and modification for
interaction is centralised. This eases the maintenance and development of the SVG diagrams.
However, as was discussed in section 5.3.3 this comes at a price. Having so much depending
on client-side scripting can complicate matters. Scripting across multiple web-browsers on
multiple operating systems has traditionally been a point of difficulty due to the variations
in script engine implementations. This difficulty will only be exacerbated by the fact that
SVG demands no one standard scripting environment.

Another issue that arose in implementing this node-link library is that while it attempts to
isolate the developer from the details of SVG while building node-link diagrams, it is still
necessary to use SVG to generate new object types. For example, implementing the UML
Class object required writing a refresh() method which manipulated SVG content. If the
idea of hiding SVG’s implementation was taken to the extreme, it would be possible to create
a library of ECMAScript drawing primitives to manipulate the SVG. This could provide
the developer with a more coherent development environment. More investigation is needed
to determine what the real benefits of this would be. Additionally, the added complexity
introduced in the ECMAScript could cause additional performance problems.

6.6.1 Possible improvements

While this ECMAScript SVG node-link diagram library is only the beginning of a full library,
there are a number of small additions which would add greatly to the current implementation’s
utility.

One big improvement to the Class diagram generator would be to use a specialised class
diagram layout algorithm. A Java framework is available[18] designed specificly for this task
providing an implementation of one such algorithm. Such an algorithm would give better
end results, as more general algorithms have no knowledge of the semantics of UML, and
thus cannot make intelligent layout decisions. Many of these more sophisticated algorithms

95

require the ability to specify links made up of multiple points. Again, this would simply
require creating a new object for the library which is prototyped from the existing Link
object. This would take a series of points as an argument, and draw the appropriate SVG on
a refresh() call. Users would expect to be able to add, delete, or move the points in a link.

Another important addition would be to include the functionality for the user to save the
diagram after they have made modifications to the layout. This could be done by saving a
static snapshot of the diagram as non-dynamic SVG, or by recording the new layout coor-
dinates so new library calls could be generated to create the diagram from scratch. Ideally,
these coordinates should be able to be saved back to the web-server which provided the dia-
gram, for future viewings. However, the SVG standard does not specify any form of network
communication that SVG viewers must support. This means that such functionality would
need to utilise individual SVG viewers’ proprietary communication extensions. The Adobe
SVG Viewer provides a getURL method that can be accessed from the script content which
could be used for such a purpose.

6.6.2 Contributions

This chapter has illustrated the weaknesses of SVG when viewed as a development environ-
ment for interactive graphical content, and how these can be addressed through scripting.
In particular, when viewed in this light, it is interesting how it compares to a programming
language such as Java which provides an integrated mechanism for both displaying graphical
objects, and supporting the computation necessary for interaction with these objects. In
Java, developers create graphical content in exactly the same way that they then modify it
for interaction — by writing Java source-code.

This chapter showed how it is possible with some effort, to use SVG’s scriptability in building
a resource to bring SVG up to some more acceptable level. By building the foundation of a
ECMAScript SVG software visualisation library which can be linked to dynamically by SVG
documents, it is now clear that to a large extent, developers do not need to deal with the
file format details of SVG when creating standard types of interactive software visualisation.
By hiding most of the details of the SVG implementation under the ECMAScript library,
developers can work with just ECMAScript, and use its object-oriented features to work with
graphical “objects” in a more high-level manner.

96

Chapter 7

Conclusions

The goal of this thesis was to evaluate SVG for use in software visualisation. In particular,
a technology like SVG is required for our research group’s developing Visualisation Architec-
ture for Reuse (VARE). To conduct a thorough evaluation of SVG required developing an
evaluation model for software visualisation media.

In this thesis I have followed a clear methodology. In chapter 3 I developed a principled
model of the required capabilities for software visualisation media. In chapter 4 I showed
the basis for learning SVG’s basic capabilities, and described the SVG software visualisations
created by me, for the purpose of software visualisation specific evaluation. In chapter 5,
the developed model, coupled with the knowledged gained from exploring SVG, was put to
use in evaluating SVG’s capabilities for software visualisation. In chapter 6 I examined the
possibilities for extending SVG by supporting it with ECMAScript libraries, and described
my development of the beginnings of an ECMAScript library for SVG software visualisation.
This thesis also outlines the contribution of a transformer for the VARE architecture, as well
as assessing the suitability of SVG for inclusion in its implementation.

From these results, SVG is clearly capable of displaying at least a set of useful software
visualisations. To conclude, I will comment on the consequences of this work for the VARE
architecture, the success of the evaluation model, and look at potential work for the future.

7.1 Conclusions for VARE

The primary motivator of this investigation was to evaluate SVG for use in the VARE ar-
chitecture. Therefore it is vital to discuss the impact the results of our evaluation have on
VARE.

7.1.1 Contribution to VARE

A fully functional PAL to SVG software visualisation transformer called Blur was imple-
mented for UML collaboration diagrams, collapsible sequence diagrams, and interactive class

97

diagrams. With the implementation of a SOAP control layer, these could be integrated into
VARE as soon as is necessary. The development of Blur proves that PAL is a usable format
for encoding at least the basic set of process abstractions for visualisation. The construction
of Blur allowed the complete PMV process to be carried out in VARE from beginning to end.
A real, albeit simple program, was written in C++. It was run under AT. PAL output was
taken and fed into Blur, and software visualisations were created that were deployed over
the web. To illustrate the platform neutral capabilities of the architecture, a Java program
(which was a previous execution of the transformer Blur itself) was also integrated, this time
by a Java specific engine. The resulting PAL was fed into Blur and software visualisations
were created. Due to the current lack of coordinated control in VARE, some hand-holding
was necessary, but this clearly provides an important proof of concept for the basis of the
VARE architecture.

7.1.2 Implications for VARE

While this looks generally positive for the current direction of VARE, the results of this
evaluation point to a number of conclusions that should influence VARE’s architecture.

Implications for PAL

While PAL is functional as an encoding for process execution information, it is not particularly
friendly to work with. This, as well as the tree-traversal distraction of the DOM, combine to
make PAL a non-ideal representation for use when creating visualisations. This means that
creating an in-memory representation of the process execution described in a PAL document
will be an important aspect of almost all transformers. The implication of this is that VARE
needs a standard and convenient way to represent process executions in memory. If this was
developed, moving from one transformer to another for maintenance or creation would be
eased by a shared design. What’s more, a convenience library could be written for popular
transformer languages (perhaps Java and Python) which would take care of this common
functionality.

This is not an indication of a weakness in PAL. Much of the awkwardness in navigating PAL
via the DOM is due to the side effects of good data design rather than a usability oversight.
PAL’s data format is modular and it makes heavy use of XML’s IDREF attribute type to
maintain this. A PAL element representing a method-call event will only have information
specific to that method-call. All shared information such as the information on the method
being called is accessible through the reference provided by an IDREF. The IDREF refers
to a unique element with a matching ID attribute. To gain some information, such as the
object type that a particular method-call is called on, requires following several IDREF to
ID jumps. This helps ensure that a PAL document will be internally consistent. This is
because it is more difficult to make mistakes in PAL generation as each piece of information

98

is only located in one place. This also reduces the size of PAL output because of the lack of
duplicated information.

However, in PAL’s current, still evolving form, I found a break in its adherence to this pattern.
PAL’s specification states that a method-call event element can have a callerclassinstanceidref.
This reference to the object which is calling the method on another object, is also available by
following the callermethodcallidref, and finding the object from that element instead. While
this is a minor incongruity, it was already causing confusion with AT’s output. All that this
indicates is that PAL’s specification needs to be carefully reexamined and (to borrow a term
from databases) be “normalised”.

There is also an interesting issue due to PAL’s nature as a pure description of type and event
data. There are characteristics of program design, such as aggregation and structures like
loops that PAL cannot clearly capture. While this is often information that it may be difficult
or impossible to simply deduce from interrogating a programs execution, it is important that
these factors are looked at for future development of PAL. For example, a loop in a program
which called a method several hundred times would be represented in PAL as several hundred
method-calls. A visualisation of this would be much more intelligible to a human if it somehow
represents the loop itself, rather than just a huge number of method-calls.

Using more than one visualisation medium

The problem with SVG seems to be that it it is a little too light-weight. Java on the other
hand, is too heavy weight. This tends to suggest that some software visualisations might best
be served by SVG, while more complex visualisations might have to be implemented in Java.
This would provide the best of both worlds, but would have a number of consequences.

• The client-side parts of the architecture would need to be designed to allow both SVG
and Java to be used.

• VARE’s “Visualisation Repository” would need to be able to store software visualisa-
tions implemented in both Java and SVG, or Java applications would need to be able
to display the smaller SVG visualisations.

• A protocol for multiple view coordination would need to be established that was inter-
operable between Java and SVG.

7.2 Meta analysis — evaluating the model

Because I developed a new model for the evaluation, it is important to reflect on it briefly
here. Having a model for evaluation gave a clear guide to what was important in visualisation.
Having such a guide was important to ensure that no necessary capabilities were ignored in
the evaluation. The model’s list-like form seemed to be best utilised by commenting briefly

99

on how a medium matched up to the identified capabilities, and then pulling out the more
interesting observations for further discussion. While some of the model was conceptually
new work in bringing together these important capabilities, it seemed to be successful on its
first try. No doubt, more capabilities could be added, and details need to be refined, but the
basic form is already highly usable.

7.3 Summary of evaluation

In summary, SVG definitely has potential for use in the VARE architecture. As shown by
figure 4.5, SVG is already being used for software visualisation, and it is clearly capable of
simple to medium sized visualisation demands. However, SVG is disappointingly low level
in its core functionality. The integration of scripting addresses this to an extent by giving it
the capability for more complex visualisations. On the other hand, the reliance on scripting
for all of this more complex work makes SVG more awkward and undesirable than it needs
to be. Inclusion of layout constraints would instantly give SVG more credibility for serious
use in software visualisation. As this is not likely to happen in the near future, the next best
bet is to carefully develop an SVG software visualisation scripting library. Our explorations
of this solution proved that this would be a useful endeavour.

SVG is a good choice for light-weight visualisations. It is quick and easy to deploy over the
web, and it provides high quality graphical capability. However, more complex and interactive
visualisations would be better served by some other medium — such as Java Applets.

7.4 Future work

This thesis has illuminated a number of possibilities for future research. The software visuali-
sation media evaluation model could be further developed by looking at non-visual capabilities
such as sound and touch, or by expanding and refining the high-level capabilities. It would
also be useful to look at conducting evaluations with the model on other potential software
visualisation media, such as Flash, X3D, VRML and Java. This would increase the utility of
the SVG evaluation presented in this thesis, as well as testing the applicability of the model
to visualisation media other than SVG.

In terms of further research into SVG, it would be useful to study the effects of the dichotomy
between SVG development, and ECMAScript development. Because developers are expected
to create some SVG content directly in XML, and then manipulate and create other SVG
content from an imperative language such as ECMAScript, this results in an inconsistent and
perhaps overly complex development process. It would be valuable to study the effects of
this on program understanding, and developer productivity.

Finally, this thesis raised some issues for the VARE architecture which invite further research.
Firstly, VARE would gain from the development of a useful standard for in-memory program

100

representation. This would provide a useful and standard abstraction for programmers build-
ing transformers under VARE. It would be interesting to look at ways to embed this into
the VARE architecture, perhaps by making such functionality into a library, or by making it
part of the API for an XML PAL database. Also, if SVG is to be used in VARE alongside
other visualisation media, it may be important to look into issues of view-coordination inside
VARE visualisations.

7.5 Contributions

This project achieved the following:

• A principled model for evaluating software visualisation media was developed and
tested. This model allows software visualisation developers to assess the strengths
and weaknesses of a medium in a methodological and thorough manner. The model
also provides the ideal foundation for the comparison of potential software visualisation
media.

• SVG was carefully evaluated as a medium for software visualisation and its core strengths
and weaknesses presented. This evaluation can be used by software visualisation devel-
opers who are considering using SVG as a display technology. The evaluation makes
clear how SVG performs in various software visualisation capabilities which may be
required by developers for specific software visualisation tasks.

• A method for proceeding with using SVG as a medium for software visualisation was
presented, namely through the creation of a specialised scripting library. It was shown
how such a method would provide commonly required functionality while hiding the
low-level nature of SVG.

• This solution was tested by implementing the beginnings of such a library. This library
can now be used for the creation of node-link diagrams — and vastly simplifies their
development. It was shown by example how this library can be easily extended to
support new node-link software visualisations. This library not only simplifies the
development of these visualisations, but also provides additional built-in functionality
such as allowing users to interactively manipulate the visualisation once it has been
rendered.

• The implications of the evaluation on VARE were discussed. It was shown how the Pro-
cess Abstraction Language (PAL) is not the best format for visualisation developers to
deal with. Instead, PAL should be used as the underlying file format, and automatically
turned into a more user-friendly object model via a standard API. It was also shown
that if the VARE architecture settles on SVG for its primary visualisation medium, it
should ensure that it also has the ability to support other media (such as Java) for more
complex and demanding visualisations.

101

• A live demonstration of VARE in action was conducted, showing an important proof of
concept for the VARE architecture. It is now clear that the underlying principles of the
VARE architecture are sound. The completion of the SVG visualisation transformer for
VARE was the final element required to show the process of a code component being
executed, interrogated, and visualised — all conducted remotely over the Web. This
transformer can now be easily integrated into the final VARE architecture to provide
a number of SVG software visualisations.

102

Bibliography

[1] R. M. Baecker, B. A. Price, and I. S. Small. A principled taxonomy of software visuali-
sation. Journal of Visual Languages and Computing, 4(2):211–266, September 1993.

[2] B. B. Bederson and J. D. Hollan. ad++: A zooming graphical interface for exploring
alternate interface physics. In Marina del Rey, editor, Proceedings of UIST’94, ACM
Symposium on User Interface Software and Technology, pages 17–26, California, USA,
November 1994.

[3] J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin
Press, Madison, WI, 1967/83. W. J. Berg, Trans.

[4] R. Biddle, M. Duignan, K. Jackson, S. Marshall, M. McGavin, and E. Tempero. Visu-
alising reusable software over the web. In Information Visualisation 2001. Australian
Symposium on Information Visualisation, volume 9, pages 103–111, 2001.

[5] D. Brownell. Sax. http://sax.sourceforge.net/.

[6] S. Burbeck. Applications programming in smalltalk-80: How to use model-view-
controller (MVC). http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html.

[7] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information Visualisation:
Using Vision to Think. Morgan Kaufmann, 1999.

[8] International Color Consortium. Document icc.1a:1999-04 addendum 2 to spec.
icc.1:1998-09. http://www.color.org/ICC-1A_1999-04.PDF.

[9] The Web3D Consortium. Extensible 3D (X3D) graphics. http://www.web3d.org/x3d.
html.

[10] The Web3D Consortium. The virtual reality modeling language. http://www.web3d.

org/Specifications/VRML97/.

[11] Rational Software Coperation. UML quick reference for rational rose. http://www.

rational.com/uml/resources/quick/index.jsp.

[12] Corel. Corel smart graphics. http://www.corel.com/smartgraphics.

103

[13] K. C. Cox and G. Roman. A taxonomy of program visualization systems. IEEE Com-
puter, 26(12), December 1993.

[14] Objects By Design. Open source. http://opensource.objectsbydesign.com.

[15] H. A. D. do Nascimento. A framework for human-computer interaction in directed graph
drawing. In Information Visualisation 2001. Australian Symposium on Information Vi-
sualisation, volume 9, pages 63–69, 2001.

[16] T. Dwyer. Three dimensional UML using force directed layout. In Information Visu-
alisation 2001. Australian Symposium on Information Visualisation, volume 9, pages
103–111, 2001.

[17] ECMA. Standard ecma-262. ecmascript language specification. 3rd edition (december
1999). http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM.

[18] Holger Eichelberger. Sugibib. automatic layout in UML and case. http://www2.

informatik.uni-wuerzburg.de/staff/eichelberger/SugiBib/engl%ish.html.

[19] S. G. Eick, J. L. Steffen, and E. E. Summer. Seesoft-a tool for visualizing line ori-
ented software statistics. IEEE Transactions on Software Engineering, 18(11):957–968,
November 1992.

[20] The Apache Software Foundation. Batik svg toolkit. http://xml.apache.org/batik/.

[21] The Apache Software Foundation. Xerces java parser. http://xml.apache.org/

xerces-j/index.html.

[22] M. Fowler. UML Distilled Second Edition: A Brief Guide to the Standard Object Mod-
eling Language. Addison Wesley Longman, Inc., USA, 1999.

[23] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed
placement. Software Practice and Experience, 21(11):1129–1164, 1991.

[24] The Object Management Group. Unified modeling language (UML), version 1.4. http:
//www.omg.org/technology/documents/formal/uml.htm.

[25] XML Hack. Microsoft office embraces xml. http://www.xmlhack.com/read.php?item=
1839.

[26] D. F. Jerding and J. T. Stasko. The information mural: A technique for displaying
and navigating large information spaces. In Proceedings of the IEEE Visualization ‘95
Symposium on Information Visualization, pages 43–50, Atlanta, GA, October 1995.

[27] KDE. KSVG. http://svg.kde.org/, 2002.

[28] E. Kraemer and J. T. Stasko. The visualisation of parallel systems: An overview. Journal
of Parallel and Distributed Computing, 18:105–117, 1993.

104

[29] Rob Lanphier. svg2swf. http://freshmeat.net/projects/svg2swf/.

[30] J. Larking and H. A. Simon. Why a diagram is (sometimes) worth ten thousand words.
Cognitive Science, 11(1):65–99, 1987.

[31] Kevin Lindsey. Kevlindev. http://www.kevlindev.com.

[32] Kevin Lindsey. pSVG. http://www.kevlindev.com/dom/pSVG/index.htm.

[33] J. D. Mackinlay. Automatic Design of Graphical Presentations. PhD thesis, Stanford
University, 1986.

[34] Macromedia. Macromedia flash 5. http://www.macromedia.com/software/flash/.

[35] Macromedia. Macromedia flash file format (swf) sdk. http://www.macromedia.com/

software/flash/open/licensing/fileformat/.

[36] Macromedia. Xml transfer and html text support. http://www.macromedia.com/

software/flash/productinfo/features/new_featu%res_tour/14xml_html.htm.

[37] M. S. Marshall, I. Herman, and G. Melançon. An object-oriented design for graph
visualization. Software Practice and Experience, 31(8):739–756, 2001.

[38] Mike McGavin. Extracting software re-use information for visualisation tools. Honours
report, 2001. Victoria University of Wellington.

[39] Sun Microsystems. Java applets. http://java.sun.com/applets/index.html.

[40] Sun Microsystems. Java debug interface. http://java.sun.com/products/jpda/doc/
jdi/.

[41] Sun Microsystems. Java servlet technology: The power behind the server. http://

java.sun.com/products/servlet/index.html.

[42] Sun Microsystems. Package java.awt. http://java.sun.com/j2se/1.4.1/docs/api/

java/awt/package-summary.html.

[43] Ming. Ming - an swf output library and PHP module. http://www.opaque.net/ming/.

[44] Mozilla.org. Mozilla svg project. http://www.mozilla.org/projects/svg.

[45] J. Noble. Abstract Program Visualisation: Object Orientation in the Tarraingim Program
Exploratorium. PhD thesis, Victoria University of Wellington, 1995.

[46] OpenGL.org. OpenGL - high performance 2d/3d graphics. http://www.opengl.org/.

[47] M. J. Oudshoorn, H. Widjaja, and S. K. Ellershaw. Aspects and taxonomy of pro-
gram visualisation. In Peter D. Eades and Kang Zhang, editors, Software Visualisation,
volume 7, pages 3–26. World Scientific, Singapore, 1996.

105

[48] T. Pattison and M. Phillips. View coordination architecture for information visualisation.
In Information Visualisation 2001. Australian Symposium on Information Visualisation,
volume 9, pages 165–171, 2001.

[49] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides. An architecture for visualising
the behavior of object-oriented systems. In OOPSLA 1993, pages 326–337, 1993.

[50] RFC. Multipurpose internet mail extensions: Mime, rfcs 2045 - 2049. http://www.

rfc-editor.org.

[51] Gruia-Catalin Roman and Kenneth C. Cox. Program visualization: The art of mapping
programs to pictures. In International Conference on Software Engineering, pages 412–
420, May 1992.

[52] J. T. Stasko. The path-transition paradigm: a practical methodology for adding anima-
tion to program interfaces. Journal of Visual Languages and Computing, 1(3), September
1990.

[53] Adobe Systems. Adobe illustrator 10. http://www.adobe.com/products/

illustrator/main.html.

[54] Adobe Systems. Inspiration: Demos. http://www.adobe.com/svg/demos/main.html.

[55] Adobe Systems. Svg zone. http://www.adobe.com/svg/basics/intro.htm.

[56] J. J. Tirtowidjojo, K. Marriott, and B. Meyer. Extending SVG with constraints. In
Sixth Australian World Wide Web Conference, 2000.

[57] World Wide Web Consortium (W3C). Cascading style sheets, level 1. W3C recommen-
dation 17 december 1996, revised 11 january 1999. http://www.w3.org/TR/REC-CSS1.

[58] World Wide Web Consortium (W3C). Document object model (dom) level 2 core spec-
ification. W3C recommendation 13 november, 2000. http://www.w3.org/TR/2000/

REC-DOM-Level-2-Core-20001113.

[59] World Wide Web Consortium (W3C). Extensible markup language (xml). http://www.
w3.org/XML.

[60] World Wide Web Consortium (W3C). Extensible markup language (xml) 1.0 (sec-
ond edition). W3C recommendation 06 october 2001. http://www.w3.org/TR/2000/

REC-xml-20001006.

[61] World Wide Web Consortium (W3C). Scalable vector graphics (SVG) 1.0 specifi-
cation . W3C recommendation 04 september 2001. http://www.w3.org/TR/2001/

REC-SVG-20010904/.

[62] World Wide Web Consortium (W3C). Scalable vector graphics (SVG) 1.1 specification
. W3C proposed recommendation 15 november 2002. http://www.w3.org/TR/SVG11/.

106

[63] World Wide Web Consortium (W3C). Scalable vector graphics (SVG) 1.2 . W3C working
draft 15 november 2002. http://www.w3.org/TR/SVG12/.

[64] World Wide Web Consortium (W3C). Soap version 1.2 part 0: Primer W3C working
draft 17 december 2001. http://www.w3.org/TR/soap12-part0/.

[65] World Wide Web Consortium (W3C). Synchronized multimedia integration language
(smil 2.0) . W3C recommendation 07 august 2001. http://www.w3.org/TR/smil20/.

[66] World Wide Web Consortium (W3C). Xforms 1.0 . W3C candidate recommendation 12
november 2002. http://www.w3.org/TR/2002/CR-xforms-20021112/.

[67] World Wide Web Consortium (W3C). Xhtml 1.1 - module-based xhtml . W3C recom-
mendation 31 may 2001. http://www.w3.org/TR/xhtml11/.

[68] World Wide Web Consortium (W3C). Xml events. an events syntax for xml . W3C
working draft 12 august 2002. http://www.w3.org/TR/xml-events/.

[69] C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann, San
Fancisco, 2000.

107

