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Abstract

The algebraic and geometric classification of k-algbras, of dimension four

or less, was started by Gabriel in “Finite representation type is open” [12].

Several years later Mazzola continued in this direction with his paper “The

algebraic and geometric classification of associative algebras of dimension

five” [21]. The problem we attempt in this thesis, is to extend the results

of Gabriel to the setting of super (or Z2-graded) algebras — our main ef-

forts being devoted to the case of superalgebras of dimension four. We

give an algebraic classification for superalgebras of dimension four with

non-trivial Z2-grading. By combining these results with Gabriel’s we ob-

tain a complete algebraic classification of four dimensional superalgebras.

This completes the classification of four dimensional Yetter-Drinfeld mod-

ule algebras over Sweedler’s Hopf algebra H4 given by Chen and Zhang

in “Four dimensional Yetter-Drinfeld module algebras over H4” [9]. The

geometric classification problem leads us to define a new variety, Salgn —

the variety of n-dimensional superalgebras — and study some of its prop-

erties. The geometry of Salgn is influenced by the geometry of the variety

Algn yet it is also more complicated, an important difference being that

Salgn is disconnected. While we make significant progress on the geomet-

ric classification of four dimensional superalgebras, it is not complete. We

discover twenty irreducible components of Salg4 — however there could

be up to two further irreducible components.
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Chapter 1

Introduction

1.1 Background

In this thesis we consider the problems of algebraic and geometric classi-

fication of four dimensional superalgebras. The idea of algebraic classifi-

cation is a very natural one, whereas the notion of geometric classification

is more subtle. Before introducing the main problems and the results of

this thesis, we give the reader some background to this area of research,

focusing on the more interesting geometric classification problem.

The algebraic classification problem is where one is interested in deter-

mining “all possible examples of some algebraic structure up to isomor-

phism” (of the appropriate kind); or, more formally, the problem is to try

and determine the isomorphism classes of the algebraic structure in ques-

tion. As mentioned before, this question arises very naturally once one has

defined some algebraic structure and a suitable notion of map between

two such structures. An example of this is the problem of determining the

isomorphism classes of n-dimensional k-algebras (solved for n ≤ 4 in [12]

and for n = 5 in [21]). Similarly, the problem of determining all isomor-

phism classes of modules of a given dimension over a fixed k-algebra is of

this nature. The algebraic classification is very “rigid”, with two structures

being considered equivalent only when they really are two different views

1



CHAPTER 1. INTRODUCTION 2

of the same structure.

The geometric classification on the other hand is not so “rigid”. In this

case the problem one wishes to tackle is to find all the structures which

are the “most basic”, in a sense which we shall try to describe in this para-

graph. These structures are called generic, and the complete list of such

generic structures has the following property: every possible structure is

either isomorphic to one of the generic structures or “lies very close to one

of the generic structures”. In the latter case we can obtain this structure

from a suitable degeneration of the rigid structure. Thus, from the list of

all the rigid structures every other structure can be obtained in this man-

ner. Determining the complete list of generic structures is the geometric

classification problem. While we have not been very precise, we hope this

description helps the reader to understand both of these points of view of

classification and see the distinction between them.

We illustrate the idea of geometric classification with the example of

n-dimensional k-algebras. A k-algebra structure A on an n-dimensional

vector space V is a linear map µ : A⊗A→ A called multiplication, which

satisfies suitable conditions requiring that this multiplication is associative

and unitary. If one chooses a basis for V , say {e1, . . . , en}, then from the al-

gebra structure we can easily determine the structure constants (αk
ij) ∈ kn3

,

which must satisfy eiej =
∑n

k=1 α
k
ijek. (Where we follow the usual conven-

tion of denoting the product of two elements by their juxtaposition, so

for example, eiej denotes µ(ei ⊗ ej)). Conversely, such structure constants

(αk
ij) will give rise to a k-algebra structure on V by defining multiplication

of the basis vectors by the previous formula. The conditions imposed re-

quiring µ to be associative and unitary translate into relations amongst the

structure constants. These relations define a subvariety of kn3

, called Algn.

The structure constants for an algebra depend on the choice of basis

for V ; in different bases the same algebra structure may be represented by

different structure constants. Suppose V has a given basis, then a set of

structure constants (αk
ij) can be used to construct a k-algebra structure on
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V . After making a change of basis in V , the k-algebra structure just con-

structed will now have, in general, a different set of structure constants

(α′k
ij). In this way, base changes in V gives rise to the transport of structure

action on Algn. The orbits in Algn (under this action) can be identified with

the isomorphism classes of n-dimensional k-algebras. Suppose thatA is an

n-dimensional algebra and one writes O(A) for the orbit in Algn which is

identified with the isomorphism class of A. Given two n-dimensional k-

algebras, A and B, we say that A degenerates to B if some point in O(B)

also belongs to O(A) (the closure being taken in the Zariski topology).

This notion extends to a well-defined partial order on the isomorphism

classes of n-dimensional k-algebras, called the degeneration partial order.

We call an n-dimensional algebra generic if the (Zariski-) closure of its or-

bit is an irreducible component of Algn. The geometric classification of

n-dimensional k-algebras is nothing more than finding the decomposition

of Algn into its irreducible components. Supposing that A is a generic al-

gebra, then every algebra in the irreducible component given by O(A) is a

degeneration of A.

The reader should now realise that the geometric classification prob-

lem brings into use all the tools from Algebraic Geometry. The more spe-

cialised area of actions of algebraic groups are also very useful in tackling

this problem. It should be noted that the problem has a flavour of Geo-

metric Invariant Theory: we would like to take the variety Algn and con-

struct a quotient by the transport of structure action, yielding us a space in

which the points would represent the orbits in Algn. However we are not

able to do this, because the transport of structure action is not sufficiently

well-behaved, and so the methods of Geometric Invariant Theory are not

available to us.

In general, it is too much to hope that we can determine the orbits in the

variety Algn. Instead of looking at such fine properties, we should first try

to determine properties on a broader scale — such as determining the con-

nected and irreducible components of the variety. Also knowing which or-
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bits are open and which are closed is an interesting question. Thus we are

naturally led to studying the geometry or perhaps “landscape” of such va-

rieties. Flanigan in [11] coins the term “algebraic geography” for studying

the variety Algn in this manner. Gabriel studies these important proper-

ties of Algn in his famous paper, “Finite Representation type is open” [12].

There have been other works written giving the same material. For exam-

ple see [7, 17], both of which provide more explanation and background

knowledge to the reader than [12] does.

The first efforts in the geometric classification of algebras seems to have

been made by Gabriel in [12], where he gave both forms of classification

for k-algebras of dimension four or less. It is, however, hard to determine

exactly whom should be credited with coming up with the notion of the

geometric classification of k-algebras, since the variety Algn was known

and had been mentioned before Gabriel’s paper (see for example [11]).

Several years after Gabriel’s paper on the classification of k-algebras of di-

mension four or less, Mazzola published a paper [21] giving the algebraic

and geometric classification of k-algebras of dimension five. The notation

algn is used to denote the number of irreducible components of the variety

Algn. In this paper, Mazzola also included asymptotic bounds on algn as

n goes to infinity. The lower asymptotic bound is exponential in n, and

unsurprisingly the classification problems become increasing difficult in

higher dimensions. In a later paper Mazzola [23] obtains a description of

the algebras responsible for the asymptotic behaviour of the function algn

— they are basic algebras and their quivers are of a particularly simple

shape.

The geometric classification problem is a problem which can be asked

in many different settings, not only that of n-dimensional k-algebras. There

is also a geometric classification problem for m-dimensional modules over

a fixed k-algebra. This gives rise to the module varieties ModA
m where A

is a k-algebra and the modules in question are A-modules. From this in-

troduction the reader may find it somewhat surprising that the module
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varieties have been the subject of much more research than the algebra va-

rieties Algn. However our main focus is going to be on superalgebras —

a notion generalising that of an algebra — explaining our motivation in

focusing on the algebra varieties.

In any case, the two geometric classification problems in each setting

proceed very much in parallel. The crux of the approach to the geomet-

ric classification problem is finding a variety whose points represent the

type of objects you are studying, then finding the appropriate transport

of structure action on this variety, and checking that the orbits under this

action may be identified with the isomorphism classes of these objects.

Then the properties one is interested in are: determining which orbits are

open and which are closed, determining the connected components and

the irreducible components, and so on. The papers [7, 12, 17] are help-

ful in seeing this parallel, where they give standard properties of both the

algebra and module varieties.

There are many more papers which concentrate solely on the module

varieties, [24] being just one which gives standard results on the module

varieties. We finish our discussion of the module varieties with the fol-

lowing comment. One very interesting result for the module varieties is

the fact that there is a characterisation of degenerations between modules

purely in terms of representation theory. There is currently no such char-

acterisation for degenerations between algebras. The work of Riedtmann

[28] and Zwara [33] combined, shows that the following three statements

are equivalent for m-dimensional A-modules M and N (where we denote

the category of A-modules by modA):

• M degenerates to N

• There is a short exact sequence

0 → N →M ⊕ Z → Z → 0

in modA for some Z in modA
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• There is a short exact sequence

0 → Z → Z ⊕M → N → 0

in modA for some Z in modA

More recently, the work of applying geometric methods to representa-

tion theory has still been active. However, the methods used and ques-

tions asked differ from those in earlier work on this topic. The paper [13],

by Goze and Makhlouf, attacks the the classification problem of rigid alge-

bra structures on Cn using a new approach, based on non-standard anal-

ysis and a method of perturbing the idempotent elements. They give a

full classification of such structures in C6 using this idea, although this

does not constitute a full solution to the geometric classification problem

in dimension 6 (since not all algebra structures are rigid). A year later

Makhlouf published another paper [19] showing how computer algebra

software can be used to study associative algebras and in particular their

irreducible components. In the future, with more computing power avail-

able, such an approach may well prove useful in the attack of the higher

dimensional problems, with the computations involved becoming increas-

ingly difficult as the dimension increases. A paper of Le Bruyn and Re-

ichstein [18] addresses questions of smoothness and the singularities that

may occur in Algn. In particular they show that the closure of the orbit of

the matrix algebra Mr(k) in Algr2 is not smooth for r ≥ 3. It should also

be known that in this paper they adopt a different definition of Algn from

the one presented in earlier works. They require that the first element of

the basis for V be the identity of the algebra. We mention this, as we shall

also follow this convention when we define the variety of n-dimensional

superalgebras.

In recent times, we have also seen the geometric classification problem

applied to different algebraic structures. This method has been used in the

setting of Lie algebras, one such example of this being [6]. Another paper

[20] by Makhlouf defines the varieties of bialgebras and Hopf algebras.
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In this he reviews different works giving an algebraic classification of all

Hopf algebras of dimension thirteen or less, and lists the irreducible com-

ponents of the Hopf algebra varieties. He also discovers that all Hopf alge-

bras with dimension thirteen or less are rigid. This highlights even more

strongly the general method of attacking the geometric classification prob-

lem. It seems apparent that the geometric classification problem may be

asked whenever there is an algebraic structure whose isomorphism classes

may be parametrised as orbits in some variety.

1.2 Our Problem

The task which we attempt in this thesis, is to classify, both algebraically

and geometrically, superalgebras of dimension four or less — thus extend-

ing the work of Gabriel. We obtain the algebraic classification theorem un-

der the assumptions that k is an algebraically closed field with ch(k) 6= 2.

While the assumption ch(k) 6= 2 simplifies the algebraic classification, it is

vital for the geometric classification. The most basic fact about Salgn — its

disconnectedness (Proposition 3.2.12) — requires this assumption. Thus

we keep the same assumptions for the geometric classification problem,

and while we make significant progress towards solving the geometric

classification problem, it is unfortunately not completed. While we find

20 generic superalgebras (or generic families of superalgebras) there may

be up to two more generic superalgebras. Owing to time restrictions, we

must leave this problem unsolved.

Since our main object of interest in this thesis is a superalgebra, we

should introduce what a superalgebra is. A superalgebra (or a Z2-graded

algebra) is an algebra A which can be written as A = A0 ⊕A1 with AiAj ⊆
Ai+j for i, j ∈ Z2. A superalgebra A is equivalent to a pair (B, σ) where

B is an algebra and σ : B → B is an algebra involution. Thus we view

a superalgebra as an algebra “with some additional structure”. We shall

often refer to this additional structure as the Z2-grading.
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The notion of a superalgebra is not only of interest to mathematicians,

but it is of vital interest to physicists too (with one hearing quantum physi-

cists using terms like “supersymmetry”). So extending the classification

results of Gabriel and Mazzola to the setting of superalgebras should be a

problem of broad appeal.

We have already mentioned that the geometric classification problem

may be applied to many different situations and have given several exam-

ples of this. The case of superalgebras serves as a prototype of how one can

generalise the classical approach to the geometric classification problem

for n-dimensional algebras, to the analogous problem for n-dimensional

module algebras. We remark that an algebra A is a superalgebra if and

only if it is a kZ2-module algebra, where kZ2 denotes the sub-Hopf al-

gebra k1 ⊕ kg of Sweedler’s Hopf algebra H4. The element 1 from kZ2

acts on the algebra A trivially, whereas the element g from kZ2 acts on the

algebra A as an involution. Thus, our treatment of the case of superalge-

bras should help with setting up the geometric classification problem for

this more general situation. Studying the more general problem may also

shed new light on the geometric classification problem for superalgebras.

One particularly interesting possible future direction we have in mind for

this work, is to attempt the classification ofH4-module algebras, which are

precisely the same as differential superalgebras (see [32]). We examine this

idea in more detail in the following section.

Our work relies heavily on the work of Gabriel and others on the al-

gebra variety Algn and the classification of n-dimensional algebras; our

methods being mainly to reduce our arguments to a situation where we

can apply one of their results, rather than to provide a new more general

proof which gives their results as a special case. It should however be

noted that while there are some similarities between our results, there are

some very substantial differences too.

The algebraic classification of four dimensional algebras over an al-

gebraically closed field k, determines the underlying algebra structure of
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each superalgebra. Yet it is interesting to see that all of these algebras ad-

mit at least one non-trivial Z2-grading, and it is also interesting to note

which algebras admit multiple Z2-gradings. The geometry of the vari-

ety of n-dimensional superalgebras, which we call Salgn is influenced by

the geometry of Algn (the variety of n-dimensional algebras), yet is more

complicated. It was remarked in [12], by Gabriel, that Algn is always con-

nected. However we shall see that Salgn is disconnected. We also find that

from superalgebra structures (and there may be several such structures),

on a given generic algebra structure at least one such structure must be

generic as a superalgebra. However we also find examples in Salg4 of

generic superalgebra structures whose underlying algebra is not generic.

For this reason, in a fixed dimension, there are many more generic superal-

gebras than generic algebras. Recall that we use algn to denote the number

of irreducible components of Algn (or equivalently the number of generic

algebras or generic families of algebras of dimension n). Now if we denote

by salgn the number of irreducible components of Salgn and combine our

results with those in [12, 13, 21], then we have the following table. This

should help convince the reader that the varieties Salgn are, in general,

more complex than the corresponding variety Algn.

algn vs salgn for small n

n 2 3 4 5 6

algn 1 2 5 10 ≥ 21

salgn 2 5 20–22 ? ?

In Chapter 2 we work on the algebraic classification of four dimen-

sional superalgebras. Under the assumption that ch(k) 6= 2, we classify

up to isomorphism all non-trivially Z2-graded superalgebras of dimension

four (see Proposition 2.2.12, Theorem 2.3.1 and Theorem 2.4.1). However,

for the following chapter on the geometric classification, we need an al-

gebraic classification of all superalgebras of dimension four, whether they
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be trivially Z2-graded or not. (But notice that, for the geometric classifica-

tion, we must assume k is algebraically closed to apply the standard tech-

niques of algebraic geometry). Since a trivially Z2-graded superalgebra

is nothing more than an algebra, to complete the algebraic classification

of four dimensional superalgebras over a field k with ch(k) 6= 2 would

require a classification of four dimensional algebras over a field k, with

ch(k) 6= 2. This would likely be a difficult task. Thus, we settle for a com-

plete classification of four dimensional superalgebras in the case that k is

an algebraically closed field with ch(k) 6= 2 (see Theorem 2.5.1). We use

Gabriel’s results to give us the classification of four dimensional trivially

Z2-graded superalgebras, and specialise our results on the classification of

non-trivially Z2-graded superalgebras to the case where k is algebraically

closed.

Our results in Chapter 2 serve two purposes. Firstly they equip us

with the set of isomorphism classes of four dimensional superalgebras,

each corresponding to an orbit in the variety Salg4. For the geometric clas-

sification we then attempt to find those orbits whose closures give an ir-

reducible component of Salg4. In this way, it is not only natural to com-

plete the algebraic classification first, but it is usually required, since the

geometric classification builds upon the algebraic classification. Secondly

in [9], Chen and Zhang give a classification of Hopf actions of D(H4) (the

Drinfeld double of H4) on 4-dimensional algebras. The methods they used

failed to apply to the 4-dimensional D(H4)-module algebras on which

the action of the skew-primitive elements are trivial. After noticing that

D(H4)-module algebras with the skew primitive elements acting trivially

are nothing other than superalgebras, we find that our classification theo-

rem of this chapter completes the classification results of [9].

In Chapter 3, the remark that a superalgebra is simply a pair consist-

ing of an algebra and an algebra involution, allows us to find suitable

structure constants to represent superalgebra structures. We then give the

definition of the variety of n-dimensional superalgebra structures, which
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we denote by Salgn (see Definition 3.2.1). The appropriate transport of

structure action (which arises by considering a change of basis) is deter-

mined. We show that this is well-defined and that its orbits in Salgn corre-

spond to isomorphism classes of n-dimensional superalgebras. There are

two very useful morphisms between Algn and Salgn denoted by U and i,

which relate the geometry of these two varieties. The map i can be used

to show that Algn can be identified with a closed subvariety of Salgn —

thus the algebraic and geometric classification of n-dimensional algebras

should be attempted before the classications of n-dimensional superalge-

bras. We show that the variety Salgn is disconnected for n ≥ 2 (see Proposi-

tion 3.2.12). We define Salgi
n for i = 1, . . . , n to consist of those points repre-

senting an n-dimensional superalgebra whose degree zero component has

dimension i. The subsets Salgi
n of Salgn are clearly disjoint. In either low

dimensions (n ≤ 6) or under suitable assumptions on the characteristic of

k, we show these subsets are also closed (see Lemma 3.2.10). We require

this to be the case for the majority of the remainder of the chapter. We

then show in this case that Salgn has Salgi
n for i = 1, . . . , n as its connected

components (see Proposition 3.4.5). In Section 3.5 we give the partial de-

generation diagrams of 4-dimensional superalgebras: these diagrams are

complete apart from 1 degeneration between two superalgebras with ho-

mogeneous degree zero components having dimension 3, and 6 degenera-

tions between superalgebras with homogeneous degree zero components

having dimension 2. From these diagrams we can find twenty irreducible

components in Salg4 (giving us a partial result towards the geometric clas-

sification, see Theorem 3.5.1). However, due to some of the missing de-

generations there are two other structures of which we are unsure if they

give rise to irreducible components or not.

In Chapter 4, we give the algebraic and geometric classification results

for superalgebras of dimensions 2 and 3. The corresponding results for

2 and 3 dimensional algebras appear in Gabriel’s paper, [12]. We first

present the algebraic classification of the superalgebras, which is trivial
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for dimension 2 and straightforward for dimension 3 (see Theorem 4.1.1

and Theorem 4.2.3). Then using these results and the general methods de-

rived in chapter 3 we give the geometric classification of superalgebras in

dimensions 2 and 3 (see Theorem 4.3.3 and Theorem 4.4.3).

Finally, in Chapter 5, we introduce the notion of a supermodule over

a superalgebra. As mentioned before, the study of the module varieties

mod A
m shares a lot in common with the study of the algebra varieties Algn.

The papers [7, 12, 17] are useful for background on the module varieties

and their similarities with the algebra varieties Algn. So, naturally, one

would wonder how to define the supermodule varieties, the superspace

analogue of the ordinary module varieties. The main purpose of this chap-

ter is to define and introduce the supermodule varieties. This chapter is

not intended to be rigorous, but merely to indicate the similarities with

the classical case of modules over an algebra, and suggest how some of

the techniques used to study the superalgebra varieties in Chapter 3 may

be modified to apply to the situation of supermodules over a superalgebra.

Section 5.2 is dedicated to giving an example of 3-dimensional supermod-

ules over two different superalgebra structures on the same underlying

algebra. We present both algebraic and geometric classifications in this ex-

ample, which enables us to see how the module varieties can change when

one alters the Z2-grading of the algebra.

1.3 Future Research

As with most research, our work has brought up at least as many new

questions as we have answered. So we will first outline the questions

which have arisen in the preparation of this thesis before indicating possi-

ble directions for future research in this area.

First and foremost, it would be an interesting and satisfying result to

have the geometric classification (see Theorem 3.5.1 and Remark 3.5.2) of

four dimensional superalgebras completed. Once that is done, complet-
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ing the degeneration diagrams may be attempted (since if the geometric

classification cannot be completed, then neither can the degeneration dia-

gram). It would be satisfying to check that the geometries of the two ver-

sions of the varieties of n-dimensional superalgebras defined by (i) simply

requiring the existence of an identity, and (ii) requiring the identity to be

the first element in the basis for the vector space V , do in fact coincide

(see Remark 3.2.5). Another interesting question is whether the geome-

try of Salgn can change in some cases where n is suitably large and the

ground field k has characteristic p so that Lemma 3.2.10 doesn’t apply, or

whether there are methods which can be used to show that the conclusions

of Lemma 3.2.10 must always hold (see Remark 3.2.11). It would be inter-

esting to see if the criterion, namely thatH2(A,A) = 0, which Gabriel gives

to show that an orbit of an algebra A is open in Algn may be generalised to

a criterion to determine when the orbit of a superalgebra B is open. The

natural generalisation would be that the orbit of B is open in Salgn when

H2(B,B) = 0, where H2(B,B) is interpreted as the Hochschild cohomol-

ogy group of the superalgebra B (see Remark 3.2.17). Does the dimension

of the irreducible component of a generic family which depends on a sin-

gle parameter, exceed the dimension of any given orbit in that family by

exactly one? (See Remark 3.5.3). Finally, is it ever possible for a superal-

gebra structure to degenerate to a different superalgebra structure on the

same underling algebra? (See Remark 3.5.4).

The following suggestions only skim the surface. By applying and gen-

eralising the ideas in this thesis, one can attempt the geometric classifica-

tion problem for module algebras — of which there are many interesting

examples.

Since Mazzola gives the algebraic and geometric classifications of five

dimensional algebras, it is possible to try to generalise our work to the

classication of five dimensional superalgebras. This may come up against

some difficulties due to the large number of dimensions. Another problem

with the geometric classification of five dimensional superalgebras, is that
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in the case of dimension four, our results used the degeneration diagram of

Alg4 to eliminate a large number of degenerations which could not occur.

However the complete degeneration diagram in Alg5 has not been given,

although Mazzola gives the degeneration diagram for the commutative

structures in Alg5 in [22], so the degeneration diagram for Alg5 would most

likely be needed in attempting the geometric classification of five dimen-

sional superalgebras.

One future direction is the study of the supermodule varieties. Chapter

5 introduces the basic notions and problems necessary to study these va-

rieties. This is the natural generalisation of the classical module varieties

to superspaces. In this chapter we focus on ideas and concepts rather than

proving any results. It is hoped that this chapter will stimulate interest

in this open area of research, and that the supermodule varieties will be

studied in more detail in the future.

Another way in which this thesis could be generalised is by extending

the ideas to the case of H4-module algebras, or in other words, differen-

tial superalgebras (see [32]). The algebraic classification of 4-dimensional

differential superalgebras has been done in [9] and Chaper 2, leaving the

geometric classification problem open in the case of 4-dimensions. The

classification of Azumaya differential superalgebras up to Morita equiv-

alence was completed in [31], and the structures of Azumaya differential

superalgebras and their invariants have been studied in [2]. We would

be very interested in observing the geometric behaviour of these invari-

ants. The variety Salgn will appear as the closed subvariety of differential

superalgebras having trivial differential (in much the same way Algn was

identified as the closed subvariety of Salgn with the trivial Z2-grading).

Thus the complete geometric classification of n-dimensional H4-module

algebras requires a complete geometric classification of n-dimensional su-

peralgebras. We also remark that since the differential is a nilpotent linear

map, its trace and determinant are both zero, methods similar to those in

Lemma 3.2.10 will not be able to be applied. If similar results are needed,
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then new methods will be required. These new methods may, however,

shed more light on the variety Salgn.

Finally, one could try applying these ideas to obtain the notion of ge-

ometric classification of super Lie algebras, combining some of our ideas

on superalgebras with the literature which already exists on the geometric

classification of Lie algebras, for example [6].

1.4 Notation

In this section we fix some basic notation and make a convention which

shall be used throughout the thesis.

Throughout this thesis we work over a fixed ground field, k. We use

ch(k) to denote the characteristic of k; we assume that ch(k) 6= 2 through-

out the thesis; we use k∗ to denote the non-zero elements of k. This set, k∗,

forms a group under multiplication and k∗2 is used to denote the subgroup

of square elements.

All vector spaces are vector spaces over k; all bases are k-bases; all

linear maps are k-linear and all unadorned tensor products are implied

to be taken over k (for those unfamiliar with tensor products, see Defini-

tion 2.1.13).



Chapter 2

Algebraic Classification

In this chapter we classify all non-trivially Z2-graded superalgebras of di-

mension four over a field k with ch(k) 6= 2, up to isomorphism. Specialis-

ing to the case k is algebraically closed and utilising the results of [12] we

obtain a classification of all four dimensional superalgebras, up to isomor-

phism. The results of this section have been made into a paper [3] which

shall appear soon.

2.1 Preliminaries

It is assumed that the reader has a basic knowledge of abstract algebra.

We shall give definitions of k-algebra and modules over an algebra; and

present related results which we wish to use, omitting the proofs as they

are standard and can easily be found in the literature. It should be noted

that the definitions given are limited to those required for our purpose. It

is possible to define the notion of an R-algebra and an R-module where R

is a ring. In fact, in module theory, one usually defines the more general

notion of an R-module, rather than a module over an algebra. Our defi-

nitions and presentation of this preliminary material is based on [1, 4, 27].

However many other texts on these subject areas would also be suitable

for this purpose. We briefly introduce the notion of a G-graded algebra,

16
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where G is a group. However we quickly specialise to the case of interest,

Z2-graded algebras or superalgebras. For a very thorough treatment of

graded ring theory, the reader is referred to [26].

Definition 2.1.1 An algebra over a field k or k-algebra is defined to be a

triple (A,m, u), with A a vector space, m : A ⊗ A → A a linear map called

multiplication, u : k → A a linear map called the unit map, making the following

two diagrams commute:

m

A⊗ A⊗ A

m⊗ idA

A⊗ A

A⊗A

A

A⊗ k A⊗A k ⊗A
idA ⊗u

m

A

u⊗ idAidA ⊗m

m

where the maps A⊗ k → A and k⊗A → A are the isomorphisms induced by

scalar multiplication.

The dimension of a k-algebra is its dimension as a vector space over k.

We shall usually abbreviate this terminology and simply refer to alge-

bra A instead of the triple (A,m, u). We shall also write multiplication of

two elements of the k-algebra by juxtaposition, and instead of referring

explicitly to the unit map, we shall simply identify the identity of k and

the identity of A.

Definition 2.1.2 With k-algebras (A,mA, uA) and (B,mB, uB) a map, f : A→
B is a k-algebra map or k-algebra homomorphism if f is a linear map and

the following two diagrams commute:

k

A⊗A

f

f ⊗ f

A

B ⊗ B

mB

B

A B
f

uBmA uA
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With these definitions we obtain the category of k-algebras, whose ob-

jects are k-algebras and morphisms are k-algebra maps as defined above.

For the reader familiar with category theory, the following definition of

isomorphism is just the usual notion of an isomorphism between objects

in a category.

Definition 2.1.3 A k-algebra map f : A → B is said to be an isomorphism

if there exists another k-algebra map g : B → A such that f ◦ g = idA and

g ◦ f = idB , in this case A and B are said to be isomorphic.

Moreover, a k-algebra map σ : A→ A having the same domain and codomain

is said to be an automorphism if σ is an isomorphism, and is said to be an

algebra involution if σ2 = idA.

Remark 2.1.4 If we were being careful, we would refer to k-algebras as unitary

k-algebras since by deleting the second and fourth diagrams above we obtain the

category of k-algebras (perhaps without unit). However as we shall rarely deal

with non-unitary k-algberas this should not cause a problem. Since we are view-

ing the ground field k fixed, we shall abreviate the terminology even further, by

simply talking about algebras and algebra maps.

Examples 2.1.5 Many examples of k-algebras abound such as:

(a) Polynomial rings over k, k[X1, . . . , Xn]

(b) Rings of n× n square matrices with entries in k, Mn(k)

(c) Also, for any α ∈ k we can define a 2-dimensional k-algebra, denoted by

k(
√
α), generated by an element x, subject to x2 = α. The set {1, x} is a basis

for k(
√
α) over k and k(

√
α) ∼= k[X]/(X2 − α). When k is not algebraically

closed and α ∈ k∗\k∗2, then k(
√
α) as defined above, is a quadratic extension

of k, explaining why we have used this particular notation

To each algebra, we can associate another algebra which is identical,

except for the way we take products. In this new algebra, for the product



CHAPTER 2. ALGEBRAIC CLASSIFICATION 19

of two elements, we first reverse their order and then compute the product

in the original algebra. More formally, we make the following:

Definition 2.1.6 Given an algebra (A,mA, uA), the opposite algebra is de-

fined to be (Aop, mAop, uaop), with Aop = A as vector spaces, mAop(x, y) =

mA(y, x) and uAop = uA.

Definition 2.1.7 An algebraA is said to be a division algebra if every non-zero

element of A has an inverse.

An algebra is essentially a ring with identity, which is also a vector

space using the addition of the ring. Thus, many of the notions in the

settings of algebras are obtained by taking the corresponding notions in

the settings of rings and placing suitable vector space restrictions on them,

e.g. requiring subsets to be subspaces, maps to be linear maps and so

on. We have seen an example of this with Definition 2.1.2, the following

definition gives us another example.

Definition 2.1.8 A subalgebra B of an algebra A is a subspace which is closed

under multiplication and contains the same identity element as A. The center of

an algebraA is defined to be the subalgebra Z(A) = {a ∈ A : ab = ba ∀b ∈ A}.

A left ideal (respectively right ideal), I , in an algebra is a vector subspace of A

which satisfies AI ⊆ I (respectively IA ⊆ I). A two-sided ideal is a subspace

which is simultaneously a left and right sided ideal.

Definition 2.1.9 An algebra A is called left Artinian if it satisfies the descend-

ing chain condition for left ideals: that is, for any sequence I1 ⊇ I2 ⊇ . . . of ideals

there is an integer r ∈ N such that Ir = Ir+1 = . . .. An algebra A is called

left Noetherian if it satisfies the ascending chain condition for left ideals: that

is, for any sequence I1 ⊆ I2 ⊆ . . . of ideals there is an integer r ∈ N such that

Ir = Ir+1 = . . .. Similarly, we call an algebra A right Artinian (respectively

right Noetherian) if it satisfies the descending (respectively ascending) chain

condition for right ideals. We call an algebra Artinian (respectively Noethe-

rian) in the case that it is both left and right Artinian (respectively Noetherian).
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If an algebra A is finite dimensional as a vector space over k, then it is

both Artinian and Noetherian (consider the sequence of dimensions of the

ideals).

Definition 2.1.10 An ideal (or left ideal or right ideal) I is said to be nil if every

element x ∈ I is nilpotent, that is xn = 0 for some integer n ∈ N. An ideal I is

nilpotent if In = 0 for some integer n ∈ N.

Every nilpotent ideal is nil, and in an Artinian algebra the converse

holds too. To see this we first need to introduce the Jacobson radical.

Definition 2.1.11 If A is an algebra, then the Jacobson radical of A, denoted

by J(A), is defined to be the intersection of all maximal left ideals of A.

There are many equivalent ways to define the Jacobson radical. We

mention just one. Definition 2.1.11 is equivalent to defining J(A) to be the

intersection of all maximal right ideals of A.

Lemma 2.1.12 We have the following statements about the Jacobson radical:

(a) If I is a nil left ideal of A, then I ⊆ J(A)

(b) If A is Artinian, then J(A) is nilpotent

(c) If A is Artinian, then by (a) and (b), J(A) is the largest nilpotent ideal of A

and every nil ideal of A is nilpotent

Definition 2.1.13 Suppose that V and W are vector spaces over k with dimen-

sions m and n respectively and suppose that {ei : 1 ≤ i ≤ m} is a basis for V

and {fi : 1 ≤ e ≤ n} is a basis for W . Then we can construct a new vector

space V ⊗W called the tensor product of V and W , which has dimension mn

and a basis {ei ⊗ fj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Although we do not give the
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construction (for details, see [27] for example) the tensor product can be shown to

have the following properties, for all v, v1, v2 ∈ V, w, w1, w2 ∈W, c ∈ k:

v ⊗ (w1 + w2) = (v ⊗ w1) + (v ⊗ w2)

(v1 + v2) ⊗ w = (v1 ⊗ w) + (v2 ⊗ w)

c(v ⊗ w) = (cv) ⊗ w = v ⊗ (cw)

0 ⊗ w = v ⊗ 0 = 0

Definition 2.1.14 Suppose thatA, B are k-algebras then the tensor productA⊗
B can be given a k-algebra structure by defining multiplication in A ⊗ B by

(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2) ⊗ (b1b2), then this has identity given by 1A⊗B =

1A ⊗ 1B . We call the k-algebra A⊗ B the tensor product of A and B.

Whenever A and B are k-algebras the tensor product of A and B is

understood to be the k-algebra A⊗B defined in this way.

Definition 2.1.15 Let A be an k-algebra and M be a vector space over k. Then

M is a left A-module if there exists a map λ : A⊗M → M which satisfies the

following four conditions, for all a, b ∈ A,m, n ∈M :

λ(a⊗ (m+ n)) = λ(a⊗m) + λ(a⊗ n),

λ((a + b) ⊗m) = λ(a⊗m) + λ(b⊗m),

λ((ab) ⊗m) = λ(a⊗ λ(b⊗m)),

λ(1A ⊗m) = m

If we write λ(a⊗m) = a ·m, then the equations become:

a · (m+ n) = (a ·m) + (a · n),

(a + b) ·m = (a ·m) + (b ·m),

(ab) ·m = (a · (b ·m)),

1A ·m = m
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Let A be an k-algebra and M be a vector space over k. Then M is a right

A-module if there exists a map ρ : M ⊗ A → M which satisfies the following

four conditions, for all a, b ∈ A,m, n ∈M :

ρ((m+ n) ⊗ a) = ρ(m⊗ a) + ρ(n⊗ a),

ρ(m⊗ (a+ b)) = ρ(m⊗ a) + ρ(m⊗ b),

ρ(m⊗ (ab)) = ρ(ρ(m⊗ a) ⊗ b),

ρ(m⊗ 1A) = m

If we write ρ(m⊗ a) = m · a, then the equations become:

(m+ n) · a = (m · a) + (n · a),
m · (a+ b) = (m · a) + (m · b),
m · (ab) = ((m · a) · b),
m · 1A = m

If we do not specify on which side A acts on M , it shall always be

understood to act on the left. We note that considering only the case of

left modules should cause no restriction however, since a right A-module

is the same thing as a left Aop-module.

It is useful to think aboutA-modules as a generalisation of vector spaces

over a field. We may add any two elements in the A-module to give us an-

other such element, and we can also mulitply by scalars from the algebra

A. (Also see Example 2.1.17 (a)).

For any k-algebra A, the 0-dimensional vector space consisting of only

the zero vector is always a leftA-module upon setting a·0 = 0 for all a ∈ A.

We shall call this the zero module and denote it by 0.

Definition 2.1.16 Let A and B be k-algebras and M a vector space over k. Then

M is an A − B bimodule if it is simultaneously a left A-module and right B-
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module which satisfies the following for all a ∈ A, b ∈ B, c ∈ k,m ∈M :

(a ·m) · b = a · (m · b)
(c1A) ·m = m · (c1B)

We refer to an A−A bimodule, simply as an A-bimodule.

Notice that any A − B bimodule can be regarded as a left A ⊗ Bop-

module via (a⊗b) ·m = a ·m ·b (note that by the “associativity” property of

bimodules we do not need to bracket the right hand side of this equation).

Conversely any leftA⊗Bop-module may be regarded as anA−B bimodule

via a ·m = (a⊗ 1B) ·m,m · b = (1A ⊗ b) ·m.

Examples 2.1.17 (a) Consider k itself as the 1-dimensional k-algebra, then any

k-vector space V is a left k-module with the action of k on V given by scalar

multiplication

(b) Let A = kZ2
∼= k[σ]/(σ2 − 1) and let M = k(

√
α), which is in fact a k-

algebra itself (see Example 2.1.5 (c)). Then M is a left A-module with the

action of A on M induced by setting:

1A · 1M = 1M , 1A · x = x, σ · 1M = 1M , σ · x = −x

Notice that σ is an algebra involution ofM . Viewing this example in conjunc-

tion with Example 2.1.33 (b) may help the reader to realise that a superalgebra

is equivalent to a pair consisting of an algebra A and an algebra involution

σ : A→ A (or equivalently a kZ2-module algebra).

(c) Any k-algebra A can be viewed as a left or right A-module by letting A act

on itself via left or right multiplication. In fact, this gives an example of an

A-bimodule.

Definition 2.1.18 If A is an algebra and M is a left A-module then a left A-

submodule of M is a subspace N of the vector space M , closed under scalar
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multiplication by A. We often abbreviate this and simply say that N is a submod-

ule of the module M .

Definition 2.1.19 If M1, . . .Mr are submodules of the left A-module M , then

we define M1 + . . . + Mr = {x1 + . . . + xr : xi ∈ Mi, i = 1, . . . , r} which

is again a submodule of M . More generally, suppose that (Mi)i∈I is an indexed

class of left A-modules, then
∑

i∈I Mi is defined to be the collection of all finite

sums
∑

i∈I′ mi with mi ∈Mi and I ′ finite.

Moreover, the moduleM is the internal direct sum of submodulesMi, i ∈ I
if each x ∈ M can be written uniquely as x = xi1 + . . . + xin where 0 6= xij ∈
Mij , j = 1, . . . , n and each index ij is distinct from the others. Note that n may

depend on the particular element x. We denote this by M =
⊕

i∈I Mi.

For the next two results, we make the assumption that M is a left A-

module, which has finite dimension as a vector space over k. (We make

this assumption to avoid mentioning the notion of “finitely generated” —

these results hold in a more general context)

Lemma 2.1.20 (Nakayama’s lemma, Version 1) Suppose that I is a two-sided

ideal of A. If I ⊆ J(A) and IM = M , then M = 0.

As a corollary to this result, if I ⊆ J(A) and M is not the zero module,

then IM ⊂M , and in particular J(A)M ⊂M .

Lemma 2.1.21 (Nakayama’s lemma, Version 2) Suppose N is a submodule of M

and I is a two-sided ideal of A, with I ⊆ J(A). If M = N + IM , then M = N .

We now explain how one can construct newA-modules out of a collec-

tion of A-modules.

Definition 2.1.22 Suppose that (Mi)i∈I is an indexed class of left A-modules.

The catesian product ×i∈IMi becomes a left A-module with operations defined

coordinatewise. That is, (mi) + (ni) = (mi + ni), a · (mi) = (a · mi) for all
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a ∈ A, (mi), (ni) ∈ ×i∈IMi. The resulting A-module is called the direct (or

cartesian) product and is denoted by
∏

i∈I Mi.

The support of an element m = (mi) ∈ ∏

i∈I Mi is S(m) = {i ∈ I :

mi 6= 0}, the element m = (mi) ∈ ∏

i∈I Mi is said to be almost always

zero, when its support S(m) is finite. We define
⊕

i∈I = {m ∈ ∏

i∈I :

m is almost always zero } and call it the external direct sum of (Mi)i∈I . This

can be shown to be a submodule of
∏

i∈I Mi.

We briefly remark that direct products are the products in the cate-

gory of A-modules, and external direct sums are the coproduct in this

category. It should be clear from the definitions that these two notions

coincide when the collection (Mi)i∈I of A-modules is finite (i.e. I is a finite

set).

Note that we use the same symbol for internal and external direct sums.

This should not cause any confusion. The difference between the two

notions is simply whether the direct summands Mi are submodules of a

given module, or not.

Definition 2.1.23 An A-module M is simple if M 6= 0 and the only submod-

ules of M are 0 and M .

Lemma 2.1.24 Let M be an A-module, then the following conditions are equiv-

alent and any module satisfying them is called semisimple:

(a) M is a sum of simple modules

(b) M is a direct sum of simple modules

(c) If N is a submodule of M , then N is a direct summand of M , that is, there is

a submodule N ′ of M such that M = N ⊕N ′

Before giving the next definition, recall from Example 2.1.17 (c) that

any algebra can be regarded as a left or right module over itself, where the

action is given by multiplication in the algebra.
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Definition 2.1.25 An algebra A is said to be semisimple when it is semisimple

as a right module over itself.

We remark that it can be shown (after some work) to be equivalent to

requiring that A is semisimple as a left module over itself. Hence we may

simply refer to an algebra as semisimple, in either case.

The following result shows that, in some sense, the Jacobson radical

measures the “obstruction to semisimplicity” of an algebra.

Lemma 2.1.26 A is semisimple if and only if A is Artinian and J(A) = 0.

We have another standard fact about semisimple algebras:

Lemma 2.1.27 Suppose that an algebra A is semisimple, then any A-module is

semisimple.

We have one final result to give before moving onto the subject of G-

graded algebras.

Lemma 2.1.28 (The Wedderburn-Artin Structure Theorem)

Suppose that A is a semisimple algebra, then

(i) There exist natural numbers n1, . . . , nr and division algebras D1, . . . , Dr

such that

A ∼= Mn1
(D1) ⊕ . . .⊕Mnr

(Dr)

When k is algebraically closed, for every i ∈ {1, . . . , r}, Di
∼= k.

(ii) The pairs (n1, D1), . . . , (nr, Dr) for which the above is satisfied are uniquely

determined (up to isomorphism) by A.

(iii) If n1, . . . , nr ∈ N and D1, . . . , Dr are division algebras, then Mn1
(D1) ⊕

. . .⊕Mnr
(Dr) is a semisimple algebra.
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Most statements of the above Theorem do not include the last state-

ment given in part (i); however, this follows at once from the fact that the

only division algebra over an algebraically closed field k is k itself.

We now introduce the notion of a G-graded algebra.

Definition 2.1.29 Let G be a group. We denote the group operation by ◦ and

the identity of this group by e. An algebra A is a G-graded algebra if there is a

family of subspaces {Ag : g ∈ G} such that A =
⊕

g∈GAg and AgAh ⊆ Ag◦h.

The subspace Ag is said to be the degree g component of A and elements of Ag

are said to be homogeneous of degree g.

WhenA andB areG-graded algebras and f : A→ B is a linear map, f is said

to be homogeneous of left degree g (respectively right degree g) if f(Ah) ⊆
Bg◦h (respectively f(Ah) ⊆ Bh◦g). An algebra map which is homogeneous of left

degree e must also be homogeneous of right degree e and conversely, in this case,

we say that the map is a G-graded algebra map .

From this we obtain the category of G-graded algebras whose objects

are G-graded algebras and morphisms are G-graded algebra maps.

We note here that, from the definition, we can quickly deduce that for

a G-graded algebra k1 ⊆ Ae, Ae is a subalgebra of A, Ag is an Ae-bimodule

and that for each g ∈ G, AgAg−1 and Ag−1Ag are ideals in Ae.

Lemma 2.1.30 Suppose that φ is an invertible linear map, homogeneous of left

(respectively right) degree g, then φ−1 is homogeneous of left (respectively right)

degree g−1.

As an easy consequence of the above result, an algebra isomorphism

is a G-graded algebra isomorphism if and only if it is homogeneous of

degree e.

Examples 2.1.31 As examples of G-graded algebras we give the following:

(a) An algebra A can be given a “trivial” G-grading for any group G by setting

Ae = A and Ag = {0} for all e 6= g ∈ G.
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(b) A = k[X] is naturally graded by Z upon setting An = {0} for n ≤ 0

and An = {aXn : a ∈ k} = kXn for n ≥ 1. More generally, A =

k[X1, . . . , Xm] is graded by Z upon setting An = {0} for n ≤ 0 and An =

{ homogeneous polynomials of degree n} for n ≥ 1. Recall that a polynomial

p(X1, . . . , Xm) is said to be homogeneous of degree n if p(λX1, . . . , λXm)

= λnp(X1, . . . , Xm).

(c) Let Zn+1 be the cyclic group of order n + 1 with generator 1, then A =

k[X1, . . . , Xn]/(X1, . . . , Xn)
2 is graded by Zn+1 by setting A0 = k1A and

Ai = kXi for i ∈ {1, . . . , n}. This follows since A0Ai = AiA0 = Ai and

AiAj = 0 ⊂ Ai+j for 0 6= i, j ∈ Zn+1.

(d) The group algebra A = kG is naturally graded by G by setting Ag = kg.

Notice that the homogeneous components Ag obey AgAh = Ag◦h rather than

just AgAh ⊆ Ag◦h. In such cases we say that A is strongly G-graded.

However, we only mention this concept in passing and will not use it further.

In the case G = Z2 then we obtain the concept of a Z2-graded algebra,

which is also called a superalgebra. Since this is our main object of interest

we give the conditions defining a superalgebra (even though they are a

special case of Definition 2.1.29).

Definition 2.1.32 A Z2-graded algebra or a superalgebra is an algebra A

with subspaces A0, A1 such that A = A0 ⊕A1 with AiAj ⊆ Ai+j for i, j ∈ Z2 or

in full: A0A0 ⊆ A0, A0A1 ⊆ A1, A1A0 ⊆ A1 and A1A1 ⊆ A0.

Throughout the thesis we shall use the term superalgebra. We view a

superalgebra A as consisting of an algebra B and “some additional struc-

ture” (which, with some thought, we discover the additional structure is

an algebra involution σ : B → B — consider Example 2.1.17 (c) and Exam-

ple 2.1.33 (b)). We shall call the algebra obtained by forgetting this addi-

tional structure the underlying algebra and we shall refer to the additional

structure as the Z2-grading .
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We note that k1 ⊆ A0, A0 is a subalgebra of A, A1 is an A0-bimodule

and A2
1 = A1A1 is an ideal of A0.

Examples 2.1.33 As examples of superalgebras we give the following:

(a) Any algebra A is a superalgebra endowed with the trivial Z2-grading A0 =

A,A1 = {0}. This is quite an important idea which is used throughout this

thesis.

(b) If A = C then A is a superalgbera over R via A0 = R, A1 = Ri. Or more

generally, if A = k(
√
α), then A is a superalgebra over k, via A0 = k =

k1, A1 = kx.

Definition 2.1.34 For a superalgebra,A, we define dim0A = dimA0 and dim1A

= dimA1 where these are the dimensions of A0 and A1 as vector spaces over k.

We shall use dim = n substantively to refer to the set of algebras of

dimension n and similarly, we shall use dim0 = i to refer to the set of

superalgebras A having dim0A = dimA0 = i.

Finally, we define a useful piece of notation:

Definition 2.1.35 Let δj
i be the Kronecker delta function defined by:

δj
i =

{

1, if i = j

0, if i 6= j

Henceforth, δj
i with the sub- and superscripts shall only be used to refer to this

function.
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2.2 4-dimensional Algebras

As mentioned in the introduction, we assume that k is a field with ch(k) 6=
2. We do not make the additional assumption that k is algebraically closed

until Section 2.5.

Notice that any two superalgebras A and B must in particular be al-

gebras and that a superalgebra isomorphism of A and B must in partic-

ular be an algebra isomorphism between A and B when viewed as alge-

bras. Hence, when A and B are not isomorphic as algebras, they cannot

be isomorphic as superalgebras. We shall use this fact to help us prove the

classification results of non-trivially Z2-graded superalgebras in the later

sections. This section is dedicated to proving several results which state

when some 4-dimensional algebras are not isomorphic. It should be noted

however that this does not give a full classification of 4-dimensional alge-

bras.

Recall that k〈X1, . . . , Xn〉 denotes the polynomial algebra in n non-

commuting indeterminates.

The first result follows from the work of [12]

Proposition 2.2.1 The following families of algebras are pairwise non-isomorphic:

(1) k × k × k × k,

(2) k × k × k[X]/(X2),

(3) k[X]/(X2) × k[Y ]/(Y 2),

(4) k × k[X]/(X3),

(5) k[X]/(X4),

(6) k × k[X, Y ]/(X, Y )2,

(7) k[X, Y ]/(X2, Y 2),

(8) k[X, Y ]/(X3, XY, Y 2),

(9) k[X, Y, Z]/(X, Y, Z)2,

(10) M2,
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(11)











a 0 0 0

0 a 0 d

c 0 b 0

0 0 0 b



 : a, b, c, d ∈ k







,

(12) ∧k2,

(13) k ×
(

k k

0 k

)

=
{(

a,
(

b c

0 d

))

: a, b, c, d ∈ k
}

,

(14)

{(

a 0 0

c a 0

d 0 b

)

: a, b, c, d ∈ k

}

,

(15)

{(

a c d

0 a 0

0 0 b

)

: a, b, c, d ∈ k

}

,

(16) k〈X, Y 〉/(X2, Y 2, Y X),

(17)

{(

a 0 0

0 a 0

c d b

)

: a, b, c, d ∈ k

}

,

(18;λ) k〈X, Y 〉/(X2, Y 2, Y X − λXY ), where λ ∈ k with λ 6= −1, 0, 1,

(19) k〈X, Y 〉/(Y 2, X2 + Y X,XY + Y X)

Proof:

This follows from Gabriel’s results given in [12]. Suppose that two al-

gebras on the list are isomorphic. Then take tensor products with an al-

gebraically closed extension K of k to obtain two K-algebras. The iso-

morphism of the two k-algebras induces an isomorphism of the two K-

algebras just constructed. However, since K is algebraically closed, this

would contradict the results in [12] — impossible. Thus any two algebras

on the above list are indeed isomorphic as claimed. �

In the case where the families depend on some parameter, such as

(18;λ) above, there may be situations in which different members of the

the same family are isomorphic. For instance (18;λ) ∼= (18;λ′) if and only if

either λ = λ′ or λλ′ = 1, which again follows from the results of [12]. Since

this section is only to help us with our proofs in the next few sections we

do not bother listing when two such members of a given family are iso-

morphic. We shall however be interested in exactly this question in the



CHAPTER 2. ALGEBRAIC CLASSIFICATION 32

next few sections when we give classification results for superalgebras.

When k is not algebraically closed, in particular when k contains non-

square elements, the classification of non-trivially Z2-graded superalge-

bras over k gives rise to some algebras which are not on the list above. We

treat these algebras in the next two propositions. The parameters µ and ξ

which occur in the next few propositions are elements of k∗\k∗2.

Proposition 2.2.2 The following families of algebras are pairwise non-isomorphic

and are all non-isomorphic with the families described in Proposition 2.2.1:

(20;µ) k[X]/(X2) × k(
√
µ),

(21;µ) k × k × k(
√
µ),

(22;ξ,µ) k(
√
ξ) × k(

√
µ)),

(23;µ) k[X, Y ]/(X2 − µ, Y 2),

(24;µ) k[X, Y ]/(µX2 + Y 2, XY ),

(25;µ) k〈X, Y 〉/(X2 − µ, Y 2, XY + Y X)

Proof:

We shall use a series of lemmas establishing the following:

• (20;µ)–(23;µ) are non-isomorphic (Lemma 2.2.5, Lemma 2.2.6 and

Lemma 2.2.9)

• none of (20;µ)–(23;µ) is isomorphic to (1)–(9) (Lemma 2.2.8)

• (24;µ) is not isomorphic to any of (1)–(9) (Lemma 2.2.9 and

Lemma 2.2.10)

• (24;µ) is not isomorphic to any of (20;µ)–(23;µ) (Lemma 2.2.8)

• (25;µ) is not isomorphic to any of (10)–(19) (Lemma 2.2.8 and

Lemma 2.2.9)

To complete the proof, note the simple fact that a commutative algebra can

never be isomorphic to a non-commutative algebra. �
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Proposition 2.2.3 The following families of algebras are pairwise non-isomorphic

and we have:

(a) Algebra (26;µ,θ,η) is non-isomorphic with all algebras described in Proposi-

tion 2.2.1 and Proposition 2.2.2 above, except (20;µ)–(23;µ)

(b) Algebra (27;µ,θ) is non-isomorphic with all algebras described in Proposi-

tion 2.2.1 and Proposition 2.2.2 above, except (10) and (25;µ)

(26;µ,θ,η) k[X, Y ]/(X2 − µ, Y 2 − θ − ηX), with θ, η ∈ k where θ 6= 0 or η 6= 0,

(27;µ,θ) k〈X, Y 〉/(X2 − µ,XY + Y X, Y 2 − θ), with θ ∈ k where θ 6= 0

Proof:

Again we use the fact that a commutative and a non-commutative alge-

bra cannot be isomorphic. We complete the proof by using Lemma 2.2.8,

which shows that :

• (26;µ, θ, η) is not isomorphic to any of (1)–(9), or (24;µ)

• (27;µ, θ) is not isomorphic to any of (11)–(19)

�

Remark 2.2.4 There are some cases where Proposition 2.2.3 cannot be strength-

ened any further, for example (26;µ,1,0) is isomorphic to (22;µ,µ) and (27;µ,1) is

isomorphic to (10). However for some of the other cases, for example (27;µ, θ) and

(25;µ), we are unsure if they can be isomorphic to each other or not. Determining

conditions when an algebra from Proposition 2.2.3 is isomorphic to an algebra

from Proposition 2.2.2 can be quite difficult. However we spend no further time

on this problem since Proposition 2.2.3 is as strong as we require for its use in

later sections.

Lemma 2.2.5 (a) Let α, β ∈ k. Then k(
√
α) ∼= k(

√
β) if and only if α = δ2β

for some δ ∈ k∗.
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(b) Let µ ∈ k. Then we have

k[X]/(X2 − µ) ∼=











k[X]/(X2), µ = 0,

k × k, µ ∈ k∗2,

k(
√
µ), µ ∈ k∗\k∗2.

Moreover, the three classes of algebras are non-isomorphic to each other.

Proof:

For part (a), by definition, there is a k-basis {1, x} in k(
√
α) and a k-basis

{1, y} in k(
√
β) such that x2 = α and y2 = β. Suppose φ : k(

√
α) → k(

√
β)

is an algebra isomorphism. Then φ(1) = 1 and φ(x) = γ + δy for some

γ ∈ k and δ ∈ k∗. From φ(x2) = φ(x)2, one gets α = γ2 + δ2β + 2γδy.

This implies γ = 0 and α = δ2β as δ 6= 0. Conversely, if α = δ2β for some

δ ∈ k∗, then the k-linear map k(
√
α) → k(

√
β), 1 7→ 1, x 7→ δy, is an algebra

isomorphism.

Part (b) follows from Part (a) and the facts that k[X]/(X2 −α) ∼= k(
√
α)

and k(
√

1) ∼= k × k. �

Lemma 2.2.6 Suppose that B,C,E, F are finite dimensional algebras and that

B ∼= E. Then B × C ∼= E × F if and only if C ∼= F .

Proof:

It is easy to see that if C ∼= F then B × C ∼= B × F ∼= E × F .

The converse follows from the Krull-Schmidt theorem for finite dimen-

sional algebras. However, since this result is not very well-known, we give

a direct proof for the sake of completeness.

Firstly, we will show the special case that B × C = A = E × F with

B ∼= E implies C ∼= F .

SinceA is finite dimensional it has a unique, finite complete set of prim-

itive central idempotents. Denote this set by S. So S = {e1, . . . , en} with

each ei non-zero and satisfying the following: eiej = δj
i ej , 1 = e1 + . . .+ en

and if ei = ei1 + ei2 then ei1 = 0 or ei2 = 0.
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We can identify A with Ae1 × . . . × Aen. Order the primitive central

idempotents so that e1, . . . , et ∈ B, so B = Ae1 × . . . × Aet and hence

C = Aet+1 × . . .×Aen.

An algebra map must preserve idempotents, and moreover an isomor-

phism must map distinct primitive central idempotents to distinct primi-

tive central idempotents. Suppose that φ : B → E is an isomorphism, such

an isomorphism exists by hypothesis.

Let e′i = φ(ei) for 1 ≤ i ≤ t. For each e′i with t + 1 ≤ i ≤ n choose an

element of S\{e′1, . . . , e′t} in such a way that e′i = e′j ⇔ i = j. It is clear that

{e′1, . . . , e′n} is simply a permutation of {e1, . . . , en}, E = Ae′1× . . .×Ae′t and

F = Ae′t+1 × . . .× Ae′n.

Now for 1 ≤ i ≤ t,

φ(Aei) = φ(Aeiei) = φ(Aei)φ(ei) = φ(Aei)e
′
i ⊆ Ee′i = Ae′i

and since φ is an isomorphism

φ−1(Ae′i) = φ−1(Ae′ie
′
i) = φ−1(Ae′i)φ

−1(e′i) = φ−1(Ae′i)ei ⊆ Bei = Aei

i.e. Ae′i ⊆ φ(Aei). Thus φ(Aei) = Ae′i, so Aei
∼= Ae′i via φ|Aei

.

We wish to lift φ to an automorphism ψ ofA. First define T = {e1, . . . , et}
and T ′ = {e′1, . . . , e′t}. We can then construct such a ψ : A → A as follows

(we also describe how to construct its inverse): if ej ∈ T then for x ∈ Aej

define ψ(x) = φ(x), if ej ∈ T ′ then for x ∈ Aej define ψ−1(x) = φ−1(x),

if ej ∈ T ′\T then for x ∈ Aej define ψ(x) = φ−1(x), if ej ∈ T\T ′ then for

x ∈ Aej define ψ−1(x) = φ(x) and finally, if ej ∈ S\(T ∪T ′) then for x ∈ Aej

define ψ(x) = ψ−1(x) = x. We then extend these maps linearly to A. One

can easily check that ψ ◦ ψ−1 = ψ−1 ◦ ψ = idA.

By construction ψ|B = φ, so ψ is the required lifting. The primitive

central idempotents of C are either in T ′\T or in S\(T ∪T ′), so one quickly

checks that ψ(C) = F . Hence ψ|C : C → F is an isomorphism. Thus

C ∼= F as required.

We can now prove the general case as follows. Suppose B×C ∼= E×F
where B ∼= E. Set A = B × C and suppose θ : E × F → B × C is an
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isomorphism. The isomorphism induces a decomposition of A as θ(E) ×
θ(F ) where θ(E) ∼= E ∼= B and θ(F ) ∼= F . We can now apply the above

special case to deduce that θ(F ) ∼= C thus F ∼= θ(F ) ∼= C, as required. �

Now let us consider the algebras given in (22; ξ, µ). Let µ, µ1, ξ, ξ1 ∈
k∗\k∗2. Then from Lemma 2.2.6 we know that k(

√
ξ) × k(

√
µ) ∼= k(

√
ξ1) ×

k(
√
µ1) if and only if either k(

√
ξ) ∼= k(

√
ξ1) and k(

√
µ) ∼= k(

√
µ1), or

k(
√
ξ) ∼= k(

√
µ1) and k(

√
µ) ∼= k(

√
ξ1), which occurs if and only if either

ξξ−1
1 , µµ−1

1 ∈ k∗2, or ξµ−1
1 , µξ−1

1 ∈ k∗2. That is, (22; ξ, µ) ∼= (22; ξ1, µ1) if and

only if either ξξ−1
1 , µµ−1

1 ∈ k∗2, or ξµ−1
1 , µξ−1

1 ∈ k∗2.

Definition 2.2.7 Let A be a k-algebra. A subring, B, of A is a vector subspace

of A which is closed under multiplication and with the additional property that

there is an element e ∈ B which satisfies b = eb = be for all b ∈ B. Then B is a

k-algebra with the element e as the identity. (One can easily see that e must be an

idempotent element of A).

Lemma 2.2.8 Algebras (1)–(9), (11)–(19) and (24;µ) have no subring isomor-

phic to a quadratic extension of k.

Proof:

The general method is as follows: For any non-zero idempotent element a

and an element b linearly independent from a such that 0 6= b2 ∈ ka, we

will show b2 = α2a for some α ∈ k∗ in all cases. Thus ka ⊕ kb cannot be

isomorphic, as an algebra, to a quadratic extension of k. Since we make

the minimal assumptions that a 6= 0 is idempotent, {a, b} is linearly inde-

pendent and that 0 6= b2 ∈ ka, we conclude in each case that the algebra

has no subring isomorphic to a quadratic extension of k.

We will illustrate this method for the algebra given in (17). The others

are done similarly.

Let a =

(

α1 0 0

0 α1 0

α3 α4 α2

)

6= 0 and b =

(

β1 0 0

0 β1 0

β3 β4 β2

)

6= 0 with αi, βi ∈ k for

1 ≤ i ≤ 4. Suppose a2 = a. Then α2
1 = α1, α2

2 = α2, α1α3 + α2α3 = α3 and
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α1α4 + α2α4 = α4. Hence

α1, α2 ∈ {0, 1}, and α3 = α4 = 0 if α1 = α2.

Now assume b2 = γa for some γ ∈ k∗. Then β2
1 = γα1, β2

2 = γα2 and

(β1 +β2)βi = γαi, i = 3, 4. Hence (β1 −β2)(β1 +β2)βi = γ(β1 −β2)αi, which

implies (α1 − α2)βi = (β1 − β2)αi as γ 6= 0, i = 3, 4.

If α1 = α2 then α3 = α4 = 0. Hence α1 = α2 = 1 as a 6= 0. Thus we

have γ = β2
1 = β2

2 , β3 = β4 = 0, and so b2 = γa = β2
1a. If α1 = 1 and

α2 = 0, then γ = β2
1 , β2 = 0, β3 = β1α3, β4 = β1α4, and hence b2 = γa = β2

1a.

Similarly, if α1 = 0, α2 = 1, then γ = β2
2 , β1 = 0, β3 = β2α3, β4 = β2α4 and

b2 = γa = β2
2a. �

Lemma 2.2.9 The algebras defined by (23;µ),(24;µ) and (25;µ) contain no non-

trivial idempotents.

Proof:

We prove the lemma for the algebras given in (25; µ). The other two cases

are similar.

The algebra A given in (25; µ) has two generators X and Y subject to

the relations:

X2 = µ, Y 2 = 0, and XY + Y X = 0.

Hence A has a k-basis {1, X, Y,XY }. Now let a = α1 +α2X +α3Y +α4XY

be an idempotent in A, where αi ∈ k, 1 ≤ i ≤ 4. Since a2 = (α1 + α2X +

α3Y + α4XY )2 = α2
1 + α2

2µ+ 2α1α2X + 2a1α3Y + 2α1α4XY , we have

α2
1 + α2

2µ = α1, 2α1αi = αi, i = 2, 3, 4.

If α1 = 1
2
, then α2

2µ = 1
2
− (1

2
)2 = 1

22 . Hence α2 6= 0, and µ = (1
2
α−1

2 )2 ∈ k∗2, a

contradiction. Hence α1 6= 1
2
. Thus we have α2 = α3 = α4 = 0 and α2

1 = α1.

Hence α1 = 1 or α1 = 0, and so a = 1 or a = 0. �

Lemma 2.2.10 The algebra defined by (24;µ) is not isomorphic to the algebras

defined by (5), and (7)–(9) respectively.
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Proof:

Let µ ∈ k∗\k∗2. Let x = X + (µX2 + Y 2, XY ) and y = Y + (µX2 + Y 2, XY )

in k[X, Y ]/(µX2 + Y 2, XY ). Let x1 = X + (X4) in k[X]/(X4).

Assume φ : k[X, Y ]/(µX2 + Y 2, XY ) → k[X]/(X4) is an algebra iso-

morphism. Then φ(1) = 1, φ(x) = α0 + α1x1 + α2x
2
1 + α3x

3
1 and φ(y) =

β0 + β1x1 + β2x
2
1 + β3x

3
1 for some αi, βi ∈ k, 0 ≤ i ≤ 3. From the equation

φ(xy) = φ(x)φ(y) we obtain

0 = α0β0+(α0β1+α1β0)x1+(α0β2+α1β1+α2β0)x
2
1+(α0β3+α1β2+α2β1+α3β0)x

3
1.

This implies that α0β0 = 0, α0β1 + α1β0 = 0, α0β2 + α1β1 + α2β0 = 0 and

α0β3 + α1β2 + α2β1 + α3β0 = 0.

If α0 6= 0, then β0 = β1 = β2 = β3 = 0, and so φ(y) = 0. This is

impossible as φ is an isomorphism. Hence α0 = 0. Similarly, one can show

β0 = 0. Thus we have α1β1 = 0 and α1β2 + α2β1 = 0.

If α1 6= 0, then β1 = β2 = 0, and so φ(y) = β3x
3
1. Hence φ(y2) =

φ(y)2 = 0, which is impossible since y2 6= 0 and φ is injective. Thus we

have α1 = 0 and φ(x) = α2x
2
1 + α3x

3
1. It follows that φ(x2) = φ(x)2 = 0.

This is impossible since x2 6= 0 and φ is injective. Thus we have proven

that k[X, Y ]/(µX2 + Y 2, XY ) ≇ k[X]/(X4).

Similarly, one can show that k[X, Y ]/(µX2 + Y 2, XY ) ≇

k[X, Y ]/(X3, XY, Y 2) and k[X, Y ]/(µX2 +Y 2, XY ) ≇ k[X, Y, Z]/(X, Y, Z)2.

To show k[X, Y ]/(µX2 + Y 2, XY ) ≇ k[X, Y ]/(X2, Y 2) is slightly differ-

ent. Let x = X+(X2, Y 2), y = Y +(X2, Y 2) in k[X, Y ]/(X2, Y 2) and let x1 =

X+(µX2 +Y 2, XY ), y1 = Y +(µX2 +Y 2, XY ) in k[X, Y ]/(µX2 +Y 2, XY ).

Suppose φ : k[X, Y ]/(µX2 + Y 2, XY ) → k[X, Y ]/(X2, Y 2) is an algebra

isomorphism. φ(x) = α0+α1x1+α2x
2
1+α3y1, φ(y) = β0+β1x1+β2x

2
1+β3y1.

From 0 = φ(x2) = φ(x)φ(x) we obtain: α2
0 = 0, 2α0α1 = 0, 2α0α2 + α2

1 −
α3µ = 0, 2α0α3 = 0 and so α0 = 0, α2

1−α2
3µ = 0. Similarly, from 0 = φ(y2) =

φ(y)φ(y) we obtain: β2
0 = 0, 2β0β1 = 0, 2β0β2 + β2

1 − β3µ = 0, 2β0β3 = 0 and

so β0 = 0, β2
1 − β2

3µ = 0
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If α3 6= 0 then µ = (α1α
−1
3 )2 — impossible, since µ ∈ k∗\k∗2, so α3 = 0.

If β3 6= 0 then µ = (β1β
−1
3 )2 — impossible, since µ ∈ k∗\k∗2, so β3 = 0.

However, with α3 = β3 = 0, φ cannot be surjective, so cannot be an isomor-

phism — a contradiction. Thus k[X, Y ]/(µX2+Y 2, XY ) ≇ k[X, Y ]/(X2, Y 2).

This completes the proof. �

From our remark in the introduction that a superalgebra A, must sat-

isfy k1 ⊆ A0, one can see that we can split the problem of classification of

4-dimensional superalgebras into cases: dim0A = 1, 2, 3 or 4. That is, we

may look at the cases where the degree zero component has dimensions

1, 2, 3, or 4 separately.

When A is a 4-dimensional superalgebra with dim0A = dimA0 = 4

then we must have A0 = A,A1 = {0}, this is the situation where each

algebra is given the trivial Z2-grading. In this case a superalgebra with

the trivial Z2-grading is no more than just an algebra. Note that two triv-

ially Z2-graded superalgebra are isomorphic as superalgebras if and only

if they are isomorphic as algebras. Thus the results of [12] give us the

classification for this case when k is algebraically closed.

Example 2.2.11 In this example we consider superalgebra structures on algebra

(9) from our list in Proposition 2.2.1. To this end takeA = k[X, Y, Z]/(X, Y, Z)2.

Then one can check that any superalgebra must be isomorphic to one of the fol-

lowing superalgebra structures onA (where we identifyX, Y, Z with their images

under the natural projection k[X, Y, Z] → k[X, Y, Z]/(X, Y, Z)2):

(a) A0 = A and A1 = {0} (the trivial Z2-grading),

(b) A0 = k1 ⊕ kX ⊕ kY and A1 = kZ,

(c) A0 = k1 ⊕ kX and A1 = kY ⊕ kZ,

(d) A0 = k1 and A1 = kX ⊕ kY ⊕ kZ

The interesting thing about Example 2.2.11 is that all superalgebras

with dimA0 = 1, dimA1 = 3 are isomorphic to the superalgebra on (9)
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given the last Z2-grading of the example. This is a special case of the fol-

lowing short propostion, which shall conclude this section.

Proposition 2.2.12 An n-dimensional superalgebra,A, with n ≥ 3 and dimA0 =

1, must have A2
1 = {0}.

Proof:

Suppose A is an n-dimensional superalgebra, with n ≥ 3 and dimA0 = 1.

Since dimA0 = 1, and k1 ⊆ A0 we must have A0 = k1 = k.

We show that the square of any element in A1 is zero and its product

with any linearly independent element from A1 is also zero. From this, the

conclusion of our proposition easily follows.

Let 0 6= x ∈ A1 and y ∈ A1 be such that {x, y} are linearly independent.

Thus x2, xy ∈ A0 = k so x2 = α, xy = β for some α, β ∈ k. Now αy =

(xx)y = x(xy) = βx, which by linear independence of x and y implies

α = β = 0, which is what we wanted to show. �

This leaves us with the cases dim0 = 3 and dim0 = 2, which we will

deal with in the following two sections.
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2.3 Case dim0 = 3

In the following, we will use (j) to denote the algebras defined as (j) of

Proposition 2.2.1, Proposition 2.2.2 and Proposition 2.2.3, and use (j|i)
to denote the various superalgebras having the underlying algebra (j),

i = 0, 1, 2, · · · . We will always use (j|0) to denote the superalgebra on the

underlying algebra (j) with the trivial Z2-grading, i.e., (j|0)0 = (j) and

(j|0)1 = 0. For example, (1|1) denotes the superalgebra structure on alge-

bra A = k× k× k× k which has A0 = k(1, 1, 1, 1)⊕ k(1, 0, 0, 0)⊕ k(0, 0, 1, 1)

and A1 = k(0, 0, 1,−1).

Some algebras listed in Proposition 2.2.1, Proposition 2.2.2 and Propo-

sition 2.2.3 admit the form of a quotient algebra A/I of an algebra A, mod-

ulo an ideal I . In this case, in order to simplify the notation, we denote by

a the image a+ I of a under the natural projection A→ A/I , where a ∈ A.

For example, we will write X := X + (X2, Y 2) and Y := Y + (X2, Y 2) in

the algebra (7) = k[X, Y ]/(X2, Y 2).

Theorem 2.3.1 Let k be a field with ch(k) 6= 2.

(a) Suppose A is a superalgebra with dimA0 = 3 and dimA1 = 1. Then A is

isomorphic to one of the following pairwise non-isomorphic families of superalge-

bras:

(1) k × k × k × k :

(1|1)0 = k(1, 1, 1, 1) ⊕ k(1, 0, 0, 0) ⊕ k(0, 0, 1, 1) and (1|1)1 = k(0, 0, 1,−1),

(2) k × k × k[X]/(X2) :

(2|1)0 = k(1, 1, 1) ⊕ k(1, 0, 0) ⊕ k(0, 1, 0) and (2|1)1 = k(0, 0, X),

(2|2)0 = k(1, 1, 1) ⊕ k(1, 1, 0) ⊕ k(0, 0, X) and (2|2)1 = k(1,−1, 0),

(3) k[X]/(X2) × k[Y ]/(Y 2) :

(3|1)0 = k(1, 1) ⊕ k(1, 0) ⊕ k(X, 0) and (3|1)1 = k(0, Y ),

(4) k × k[X]/(X3) :

(4|1)0 = k(1, 1) ⊕ k(1, 0) ⊕ k(0, X2) and (4|1)1 = k(0, X),

(6) k × k[X, Y ]/(X, Y )2 :

(6|1)0 = k(1, 1) ⊕ k(1, 0) ⊕ k(0, X) and (6|1)1 = k(0, Y ),
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(7) k[X, Y ]/(X2, Y 2) :

(7|1)0 = k1 ⊕ k(X + Y ) ⊕ kXY and (7|1)1 = k(X − Y ),

(8) k[X, Y ]/(X3, XY, Y 2) :

(8|1)0 = k1 ⊕ kX ⊕ kX2 and (8|1)1 = kY ,

(8|2)0 = k1 ⊕ kX2 ⊕ kY and (8|2)1 = kX ,

(9) k[X, Y, Z]/(X, Y, Z)2 :

(9|1)0 = k1 ⊕ kX ⊕ kY and (9|1)1 = kZ,

(11)











a 0 0 0

0 a 0 d

c 0 b 0

0 0 0 b





∣

∣

∣

∣

∣

∣

a, b, c, d ∈ k







:

(11|1)0 = k





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



⊕ k





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0



⊕ k





0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0





and (11|1)1 = k





0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0



,

(13) k ×
(

k k

0 k

)

=
{

(a,
(

b c

0 d

)

)
∣

∣

∣
a, b, c, d ∈ k

}

:

(13|1)0 = k
(

1,
(

1 0

0 1

))

⊕ k
(

0,
(

1 0

0 0

))

⊕ k
(

0,
(

0 0

0 1

))

and (13|1)1 = k
(

0,
(

0 1

0 0

))

,

(14)

{(

a 0 0

c a 0

d 0 b

)∣

∣

∣

∣

∣

a, b, c, d ∈ k

}

:

(14|1)0 = k

(

1 0 0

0 1 0

0 0 1

)

⊕ k

(

1 0 0

0 1 0

0 0 0

)

⊕ k

(

0 0 0

0 0 0

1 0 0

)

and (14|1)1 = k

(

0 0 0

1 0 0

0 0 0

)

,

(14|2)0 = k

(

1 0 0

0 1 0

0 0 1

)

⊕ k

(

1 0 0

0 1 0

0 0 0

)

⊕ k

(

0 0 0

1 0 0

0 0 0

)

and (14|2)1 = k

(

0 0 0

0 0 0

1 0 0

)

,

(15)

{(

a c d

0 a 0

0 0 b

)∣

∣

∣

∣

∣

a, b, c, d ∈ k

}

:
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(15|1)0 = k

(

1 0 0

0 1 0

0 0 1

)

⊕ k

(

1 0 0

0 1 0

0 0 0

)

⊕ k

(

0 0 1

0 0 0

0 0 0

)

and (15|1)1 = k

(

0 1 0

0 0 0

0 0 0

)

,

(15|2)0 = k

(

1 0 0

0 1 0

0 0 1

)

⊕ k

(

1 0 0

0 1 0

0 0 0

)

⊕ k

(

0 1 0

0 0 0

0 0 0

)

and (15|2)1 = k

(

0 0 1

0 0 0

0 0 0

)

,

(17)

{(

a 0 0

0 a 0

c d b

)∣

∣

∣

∣

∣

a, b, c, d ∈ k

}

:

(17|1)0 = k

(

1 0 0

0 1 0

0 0 1

)

⊕ k

(

1 0 0

0 1 0

0 0 0

)

⊕ k

(

0 0 0

0 0 0

1 0 0

)

and (17|1)1 = k

(

0 0 0

0 0 0

0 1 0

)

,

(20;µ) k[X]/(X2) × k(
√
µ), µ ∈ k∗\k∗2 :

(20;µ|1)0 = k(1, 1) ⊕ k(1, 0) ⊕ k(X, 0) and (20;µ|1)1 = k(0, Y ),

(20;µ|2)0 = k(1, 1) ⊕ k(1, 0) ⊕ k(0, Y ) and (20;µ|2)1 = k(X, 0),

(21;µ) k × k × k(
√
µ), µ ∈ k∗\k∗2 :

(21;µ|1)0 = k(1, 1, 1)⊕ k(1, 0, 0) ⊕ k(0, 1, 0) and (21;µ|1)1 = k(0, 0, X),

(21;µ|2)0 = k(1, 1, 1)⊕ k(1, 1, 0) ⊕ k(0, 0, X) and (21;µ|2)1 = k(1,−1, 0),

(22; ξ, µ) k(
√
ξ) × k(

√
µ)), ξ, µ ∈ k∗\k∗2 :

(22; ξ, µ|1)0 = k(1, 1) ⊕ k(1, 0) ⊕ k(X, 0) and (22; ξ, µ|1)1 = k(0, Y ),

(24;µ) k[X, Y ]/(µX2 + Y 2, XY ), µ ∈ k∗ :

(24;µ|1)0 = k1 ⊕ kX ⊕ kX2 and (24;µ|1)1 = kY .

(b) Let µ, µ1, ξ, ξ1 ∈ k∗\k∗2. Then we have

(b.1) (20;µ|1) ∼= (20;µ1|1) if and only if µµ−1
1 ∈ k∗2,

(b.2) (20;µ|2) ∼= (20;µ1|2) if and only if µµ−1
1 ∈ k∗2,

(b.3) (21;µ|1) ∼= (21;µ1|1) if and only if µµ−1
1 ∈ k∗2,

(b.4) (21;µ|2) ∼= (21;µ1|2) if and only if µµ−1
1 ∈ k∗2,

(b.5) (22; ξ, µ|1) ∼= (22; ξ1, µ1|1) if and only if ξξ−1
1 ∈ k∗2 and µµ−1

1 ∈ k∗2,
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(b.6) (24;µ|1) ∼= (24;µ1|1) if and only if µµ−1
1 ∈ k∗2.

Proof:

The proof of this shall be the main goal of this section. We shall divide the

proof into three lemmas, showing the following:

• Each 4-dimensional superalgebra, A, with dimA0 = 3 and dimA1

= 1 is isomorphic to one of the superalgebras listed in the theorem.

(Lemma 2.3.2)

• Each pair of distinct families of superalgebras listed in the theorem

are non-isomorphic. (Lemma 2.3.5)

• The conditions for superalgebra isomorphisms to exist are as stated

in part (b) of the theorem. (Lemma 2.3.6)

�

Lemma 2.3.2 Let A be a 4-dimensional superalgebra with dimA0 = 3 and

dimA1 = 1. Then A is isomorphic to one of the superalgebras listed in Theo-

rem 2.3.1 (a).

Proof:

Suppose thatA = A0⊕A1 is a 4-dimensional superalgebra with dimA0 = 3

and dimA1 = 1. Let {z} be a basis for A1.

Since A1 is an A0-bimodule with the actions being given by multipli-

cation in A, we can define two maps f, g : A0 → k by az = f(a)z and

za = g(a)z for all a ∈ A0. With a little work, we discover that these are in

fact k-algebra homomorphisms. Consider the kernels of f and g. We have

two cases:

I Ker(f) = Ker(g),

II Ker(f) 6= Ker(g).

Suppose case I holds and Ker(f) = Ker(g). Since A0 = k1 ⊕ Ker(f) =

k1 ⊕ Ker(g), we have f = g. Hence z ∈ Z(A), the center of A. Either A0 is

semisimple, or it isn’t, so we get the following possibilities.
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Assume A0 is semisimple (i.e. J(A0) = 0). Then A0
∼= Mn1

(D1) ⊕
· · · ⊕Mnr

(Dr) by the Wedderburn-Artin structure theorem, where Di is a

division algebra with dimension di, 1 ≤ i ≤ r and r is a positive integer

with m ≤ 3. Hence n2
1d1 + n2

2d2 + n2
3d3 = 3. Since A0 has a nontrivial

ideal Ker(f), A0 is not a division algebra. Thus we have the following

possibilities:

(a) A0
∼= k⊕D, where D is a 2-dimensional division algebra, and hence

a quadratic extension of k;

(b) A0
∼= k ⊕ k ⊕ k.

For case (a), there is a k-basis {1, e, x} of A0 with 1 being the identity

of A such that e2 = e, ex = xe = x and x2 = αe for some α ∈ k∗\k∗2. For

case (b), there is a k-basis {e1, e2, e3} of A0 such that eiej = δj
i ei, 1 ≤ i, j ≤ 3

(where δj
i is the Kronecker delta). Let Ii = kei, i = 1, 2, 3. Then I1, I2 and I3

are ideals of A0, and A0 = I1 ⊕ I2 ⊕ I3.

Now assume that A0 is not semisimple. Then dim J(A0) = 1 or 2. Let

I = Ker(f) = Ker(g).

If dim J(A0) = 2, then I = J(A0) and I2 6= I since J(A0) is nilpotent.

Thus we have two cases:

(c) I2 is 1-dimensional;

(d) I2 = {0}
For case (c), we may choose 0 6= x ∈ I2 and y ∈ I\I2. Observe that

In = {0} for n ≥ 3. Hence x2 = xy = yx = 0, and y2 = αx with α ∈ k∗

since I2 6= 0. In this case, {x, y} is a k-basis of I = J(A0).

If dim J(A0) = 1, then we get the final possibility:

(e) We discover that J(A0)
2 = 0 and J(A0) ⊂ I . Choose 0 6= x ∈ J(A0)

and y ∈ I\J(A0). Observe that {x, y} is a k-basis of I . Then x2 = 0, xy,

yx ∈ J(A0) and y2 = α1y+α2x for some α1, α2 ∈ k. We claim that α1 6= 0. In

fact, if α1 = 0, then I2 ⊆ J(A0), and hence I is a nilpotent ideal of A0. This

implies I ⊆ J(A0), a contradiction. Notice that (α−1
1 y)2 = α−1

1 y + α−2
1 α2x;

then by replacing y with α−1
1 y we may assume that α1 = 1.

Suppose case II holds and Ker(f) 6= Ker(g). We first have that Ker(f)∩
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Ker(g) is 1-dimensional. Let 0 6= x ∈ Ker(f)∩Ker(g). Then one can choose

an element y ∈ Ker(f) such that {x, y} is a basis for Ker(f) over k. Observe

that span{1, y} ∩ Ker(g) is 1-dimensional. Let 0 6= y′ ∈ Ker(g) ∩ span{1, y}
such that {x, y′} is a basis for Ker(g). Now by definition xz = yz = zx =

zy′ = 0 and zy = g(y)z with g(y) 6= 0. Replacing y by g(y)−1y, we may

assume that g(y) = 1 and zy = z. Since Ker(f) ∩ Ker(g) is an ideal of A0

and x ∈ Ker(f) ∩ Ker(g), we have x2, xy, yx ∈ Ker(f) ∩ Ker(g), and so

x2 = β1x, xy = β2x and yx = β3x for some βi ∈ k, i = 1, 2, 3. Now

we have y′ = γ1 + γ2y with γ1, γ2 ∈ k. Since 1 /∈ Ker(g) and y /∈ Ker(g),

we know that γ1 6= 0 and γ2 6= 0. Replacing y′ with γ−1
1 y′, we may assume

γ1 = 1. Hence 0 = zy′ = z+γ2zy = (1+γ2)z, and so γ2 = −1 and y′ = 1−y.

Since yy′ ∈ Ker(f)Ker(g) ⊆ Ker(f) ∩ Ker(g), yy′ = y(1 − y) = γx for some

γ ∈ k. It follows that y2 = y − γx. Since zy = z and yz = 0, we have

z2 = (zy)z = z(yz) = 0.

Now we deal with each of the above cases.

I (a): A0 has a k-basis {1, e, x} satisfying e2 = e, ex = xe = x and

x2 = αe, where α ∈ k∗\k∗2. Moreover, we have z ∈ Z(A), f = g, ez =

f(e)z and xz = f(x)z. Suppose z2 = η1 + η2e + η3x. Since f is an algebra

homomorphism, f(e) = f(e2) = f(e)2 and f(x)2 = f(x2) = αf(e). From

the equation xz2 = (xz)z one gets f(x)η1 = 0, f(x)η2 = η3α and f(x)η3 =

η1 +η2. Now f(e) = f(e)2 implies f(e) = 0 or 1. If f(e) = 1, then α = f(x)2,

and hence α = 0 or α ∈ k∗2, a contradiction. Thus f(e) = 0, and so

f(x) = 0 as f(x)2 = αf(e). Now from the equations f(x)η2 = η3α and

f(x)η3 = η1 + η2 one obtains η3 = 0 (as α 6= 0) and η1 + η2 = 0. It follows

that z2 = η1 − η1e. Either η1 = 0, η1 ∈ k∗2 or η1 ∈ k∗\k∗2. If η1 = 0 then

A ∼= (20;α|2), via e 7→ (0, 1), x 7→ (0, Y ), z 7→ (X, 0). If η1 = η2 for some

η ∈ k∗ then A ∼= (21;α|2), via e 7→ (0, 0, 1), x 7→ (0, 0, X), z 7→ η(1,−1, 0). If

η1 ∈ k∗\k∗2 then A ∼= (22;α, η1|1), via e 7→ (1, 0), x 7→ (X, 0), z 7→ (0, Y ).

I (b): A0 has a k-basis {1, e1, e2} such that e21 = e1, e22 = e2 and e1e2 =

e2e1 = 0. Moreover, z ∈ Z(A) and eiz = f(ei)z, i = 1, 2. Suppose z2 = η0 +

η1e1 + η2e2. Since f is an algebra homomorphism, f(ei)
2 = f(ei), i = 1, 2.
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From the equation (e1e2)z = e1(e2z) one gets f(e1)f(e2) = 0. Furthermore,

from the equation eiz
2 = (eiz)z, i = 1, 2, one gets f(e1)η0 = f(e2)η0 = 0,

f(e1)η1 = η0 + η1, f(e2)η2 = η0 + η2 and f(e1)η2 = f(e2)η1 = 0. Now we

consider the structure of A according to whether ηi 6= 0 or ηi = 0, i = 1, 2,

3.

Case 1: Suppose η0 6= 0. In this case, we have f(e1) = f(e2) = 0 as

f(e1)η0 = f(e2)η0 = 0. Hence η1 = η2 = −η0 since f(ei)ηi = η0 + ηi, i = 1,

2. Hence we have z2 = η0(1 − e1 − e2) and eiz = zei = 0, i = 1, 2. Either

η0 ∈ k∗2 or η0 ∈ k∗\k∗2. If η0 = η2 for some η ∈ k∗ then A ∼= (1|1), via

e1 7→ (1, 0, 0, 0), e2 7→ (0, 1, 0, 0), z 7→ η(0, 0, 1,−1). If η0 ∈ k∗\k∗2 then

A ∼= (21; η0|1), via e1 7→ (1, 0, 0), e2 7→ (0, 1, 0), z 7→ (0, 0, X).

Now suppose η0 = 0, then we have

f(e1)f(e2) = 0, f(e1)η2 = f(e2)η1 = 0,

f(ei)
2 = f(ei), f(ei)ηi = ηi, i = 1, 2.

Therefore, we get the following three cases depending on whether either

of η1 or η2 are 0.

Case 2: η0 = 0 and η1 6= 0. In this case, we have f(e1) = 1, f(e2) = 0

and η2 = 0. Hence z2 = η1e1, e1z = ze1 = z and e2z = ze2 = 0. Let

e′1 = 1 − e1 − e2 and e′2 = e2. By considering the new basis {1, e′1, e′2} of A0

over k, one can see from the proof of Case 1 that A ∼= (1|1) if η1 ∈ k∗2, and

A ∼= (21; η1|1) if η1 ∈ k∗\k∗2.

Case 3: η0 = 0 and η2 6= 0. This is treated similarly to Case 2. (Simply

interchange e1 and e2 in Case 2). Thus we can see that A ∼= (1|1) if η2 ∈ k∗2,

and A ∼= (21; η2|1) if η2 ∈ k∗\k∗2.

Case 4: η0 = η1 = η2 = 0. If f(e1) = f(e2) = 0, then we have z2 = 0 and

eiz = zei = 0, i = 1, 2. Hence A ∼= (2|1), via e1 7→ (1, 0, 0), e2 7→ (0, 1, 0),

z 7→ (0, 0, X). If f(e1) = 1 and f(e2) = 0, then by replacing e1 with 1−e1−e2
one can see that A ∼= (2|1) as superalgebras. Similarly, if f(e1) = 0 and

f(e2) = 1, then we also have A ∼= (2|1).
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I (c): A0 has a k-basis {1, x, y} such that x2 = xy = yx = 0 and y2 = αx

with α ∈ k∗. In this case, we have z ∈ Z(A), Ker(f) = J(A0) and hence

xz = yz = 0. Since J(A0) is a unique maximal ideal of A0 and A2
1 is an

ideal ofA0 with dimA2
1 ≤ 1, A2

1 ⊆ J(A0). Hence we have z2 = β1x+β2y for

some β1, β2 ∈ k. Then from the equation yz2 = (yz)z one gets β2 = 0 (as

α 6= 0). Hence, z2 = β1x. Either β1 = 0, −β1α
−1 ∈ k∗2 or −β1α

−1 ∈ k∗\k∗2.

If β1 = 0 then A ∼= (8|1), via x 7→ α−1X2, y 7→ X , z 7→ Y . If β1 6= 0 and

−β1α
−1 = γ2 for some γ ∈ k∗, thenA ∼= (7|1), via x 7→ 2α−1XY , y 7→ X+Y ,

z 7→ γ(X − Y ). If β1 6= 0 and −β1α
−1 ∈ k∗\k∗2 then A ∼= (24;−β1α

−1|1), via

x 7→ α−1X2, y 7→ X , z 7→ Y .

I (d): A0 has a k-basis {1, x, y} such that x2 = y2 = xy = yx = 0. In this

case, we have z ∈ Z(A) and J(A0) = kx+ ky = Ker(f) and so xz = yz = 0.

By the same reason as in 1 (c) we have z2 = β1x+ β2y for some β1, β2 ∈ k.

Either β1 = β2 = 0, β1 6= 0 or β2 6= 0. If β1 = β2 = 0 then A ∼= (9|1), via

x 7→ X , y 7→ Y , z 7→ Z. If β1 6= 0, then A ∼= (8|2), via x 7→ β−1
1 (X2 − β2Y ),

y 7→ Y , z 7→ X . Similarly, if β2 6= 0 then A ∼= (8|2), too.

I (e): A0 has a k-basis {1, x, y} such that x2 = 0, y2 = y + αx, xy = βx

and yx = γx for some α, β, γ ∈ k. In this case, we have z ∈ Z(A) and

xz = yz = 0. Suppose z2 = δ0 + δ1x + δ2y. Then from the equations

xy2 = (xy)y and y2x = y(yx) one gets β2 = β and γ2 = γ. From the

equation y2y = yy2 one gets αβ = αγ. Similarly, from the equations z2x =

xz2, z2y = yz2, xz2 = (xz)z, yz2 = (yz)z one obtains δ2γ = δ2β, δ1β = δ1γ,

δ0 + δ2β = 0, δ0 + δ2 = 0 and δ2α + δ1γ = 0. Hence

δ2 = −δ0, δ0α = δ1γ, αβ = αγ,

and so

β2 = β, γ2 = γ, αβ = αγ, δ2 = −δ1, δ0β = δ0γ, δ1β = δ1γ, δ0 = δ0β, δ0α = δ1γ.

Thus we get 4 cases from this, listed 1–4 in the following, depending on

whether β is 0 or 1 and whether γ is 0 or 1.

Case 1: β = γ = 0. In this case, we have δ0 = δ2 = 0. Hence y2 = y+αx,

xy = yx = 0 and z2 = δ1x. Notice (y + αx)2 = y + αx. Then by replacing
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y with y + αx, we may assume that α = 0, or equivalently, y2 = y. Either

δ1 = 0 or δ1 6= 0. If δ1 = 0 then A ∼= (6|1), via x 7→ (0, X), y 7→ (1, 0),

z 7→ (0, Y ). If δ1 6= 0 then A ∼= (4|1), via x 7→ δ−1
1 (0, X2), y 7→ (1, 0),

z 7→ (0, X).

Case 2: β = 0 and γ = 1. In this case, we have δ0 = δ1 = δ2 = α = 0.

Hence y2 = y, xy = 0, yx = x and z2 = 0. It follows that A ∼= (14|1), via

x 7→
(

0 0 0

0 0 0

1 0 0

)

, y 7→
(

0 0 0

0 0 0

0 0 1

)

, z 7→
(

0 0 0

1 0 0

0 0 0

)

.

Case 3: β = 1 and γ = 0. In this case, we have δ0 = δ1 = δ2 = α = 0.

Hence y2 = y, xy = x, yx = 0 and z2 = 0. It follows that A ∼= (15|1), via

x 7→
(

0 0 1

0 0 0

0 0 0

)

, y 7→
(

0 0 0

0 0 0

0 0 1

)

, z 7→
(

0 1 0

0 0 0

0 0 0

)

.

Case 4: β = γ = 1. In this case, we have δ1 = δ0α and δ2 = −δ0. Hence

xy = yx = x, y2 = αx+ y and z2 = δ0 + δ0αx− δ0y = δ0(1 − (y − αx)). Let

y1 = y − αx. Then y2
1 = y1, xy1 = y1x = x and z2 = δ0(1 − y1). Note that

{1, x, y1} is a k-basis of A0. Either δ0 = 0, δ0 ∈ k∗2 or δ0 ∈ k∗\k∗2. If δ0 = 0

then A ∼= (3|1), via x 7→ (X, 0), y1 7→ (1, 0), z 7→ (0, Y ). If δ0 = δ2 for some

δ ∈ k∗, then A ∼= (2|2), via x 7→ (0, 0, X), y1 7→ (0, 0, 1), z 7→ δ(1,−1, 0). If

δ0 ∈ k∗\k∗2, then A ∼= (20; δ0|1), via x 7→ (X, 0), y1 7→ (1, 0), z 7→ (0, Y ).

II: Ker(f) 6= Ker(g). In this case, A0 has a k-basis {1, x, y} such that

x2 = β1x, xy = β2x, yx = β3x, y2 = y − γx, xz = zx = yz = 0, zy = z

and z2 = 0, where βi, γ ∈ k, i = 1, 2, 3. From the equations y2y = yy2

and x(yx) = (xy)x one gets γβ2 = γβ3 and β1β2 = β1β3. Similarly, from

the equations y(yx) = y2x and (xy)y = xy2 one gets β2
3 = β3 − γβ1 and

β2
2 = β2 − γβ1. Either γ = 0 or γ 6= 0. If γ = 0, then β1(β2 − β3) = 0,

β2
2 = β2 and β2

3 = β3 and so β2, β3 ∈ {0, 1}. If γ 6= 0, then β2 = β3 and

β1 = γ−1β3(1 − β3). We get 5 cases from this, listed 1–5 in the following:

Case 1: γ = 0, β2 = 0 and β3 = 1. In this case, we have β1 = 0. Hence,

x2 = 0, xy = 0, yx = x, y2 = y, xz = zx = yz = 0, zy = z and z2 = 0. Thus

A ∼= (11|1), via x 7→





0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



, y 7→





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0



, z 7→





0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0



.
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Case 2: γ = 0, β2 = 1 and β3 = 0. In this case, we have β1 = 0. Hence,

x2 = 0, xy = x, yx = 0, y2 = y, xz = zx = yz = 0, zy = z and z2 = 0. Thus

A ∼= (17|1), via x 7→
(

0 0 0

0 0 0

1 0 0

)

, y 7→
(

1 0 0

0 1 0

0 0 0

)

, z 7→
(

0 0 0

0 0 0

0 1 0

)

.

Case 3: γ = 0 and β2 = β3 = 0. In this case, we have x2 = β1x,

xy = yx = 0, y2 = y, xz = zx = yz = 0, zy = z and z2 = 0. Either β1 = 0

or β1 6= 0. If β1 = 0 then x2 = 0, and A ∼= (15|2), via x 7→
(

0 1 0

0 0 0

0 0 0

)

, y 7→
(

0 0 0

0 0 0

0 0 1

)

, z 7→
(

0 0 1

0 0 0

0 0 0

)

. If β1 6= 0 then A ∼= (13|1), via x 7→
(

β1,
(

0 0

0 0

)

,
)

,

y 7→
(

0,
(

0 0

0 1

)

,
)

, z 7→
(

0,
(

0 1

0 0

))

.

Case 4: γ = 0 and β2 = β3 = 1. In this case, we have x2 = β1x,

xy = yx = x, y2 = y, xz = zx = yz = 0, zy = z and z2 = 0. Either β1 = 0

or β1 6= 0. If β1 = 0 then A ∼= (14|2), via x 7→
(

0 0 0

1 0 0

0 0 0

)

, y 7→
(

1 0 0

0 1 0

0 0 0

)

,

z 7→
(

0 0 0

0 0 0

1 0 0

)

. If β1 6= 0, then (y − β−1
1 x)2 = y − β−1

1 x, x(y − β−1
1 x) =

(y − β−1
1 x)x = 0, (y − β−1

1 x)z = 0 and z(y − β−1
1 x) = z. Replacing y with

y − β−1
1 x, one can see from Case 3 that A ∼= (13|1).

Case 5: γ 6= 0. In this case, we have x2 = γ−1β3(1−β3)x, xy = yx = β3x,

y2 = y − γx, xz = zx = yz = 0, zy = z and z2 = 0. Either β3 = 0,

β3 = 1 or β3 6= 0, 1. If β3 = 0, then x2 = 0, x(y − γx) = (y − γx)x = 0,

(y − γx)2 = y − γx, (y − γx)z = 0 and z(y − γx) = z. Replacing y with

y − γx, it follows from Case 3 that A ∼= (15|2). If β3 = 1, then x2 = 0 and

x(y + γx) = (y + γx) = x, (y + γx)2 = y + γx, (y + γx)z = 0, z(y + γx) = z.

Replacing y with y + γx, it follows from Case 4 that A ∼= (14|2). Now

assume β3 6= 0 and β3 6= 1. Let y1 = y−γ(1−β3)
−1x. Then a straightforward

verification shows that y2
1 = y1, xy1 = y1x = 0, y1z = 0 and zy1 = z. It

follows from Case 3 that A ∼= (13|1).

This completes the proof. �

For the next two short results, which will be used in the proof of
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Lemma 2.3.5, suppose that A and B are superalgebras.

Lemma 2.3.3 If A2
1 6= {0} and B2

1 = {0}, then A ≇ B.

Proof:

Suppose that φ : A → B is a superalgebra map. Take y, z ∈ A1 such that

yz 6= 0. Then φ(yz) = φ(y)φ(z) = 0 since φ(y), φ(z) ∈ B1 ⇒ 0 6= yz ∈ Kerφ.

Hence φ cannot be one-to-one, hence cannot be an isomorphism. �

Lemma 2.3.4 Consider a superalgebra map φ : A → B. If there exists x ∈ A0

such that either:

(a) xA1 6= {0}, but φ(x)B1 = {0}, or

(b) A1x 6= {0}, but B1φ(x) = {0}

then φ isn’t one-to-one, and in particular can’t be an isomorphism.

Proof:

We prove (a) here. (b) is proved similarly.

Take y ∈ A1 such that xy 6= 0 then φ(xy) = φ(x)φ(y) = 0 as φ(y) ∈ B1

⇒ 0 6= xy ∈ Kerφ. Hence φ cannot be one-to-one, hence cannot be an

isomorphism. �

Lemma 2.3.5 Each pair of distinct families of superalgebras listed in Theorem 2.3.1

are non-isomorphic.

Proof:

By Proposition 2.2.1, Proposition 2.2.2 and Proposition 2.2.3 we simply

need to show that different Z2-gradings on the same underlying algebra

are non-isomorphic.

From Lemma 2.3.3 we have that (2|1) ≇ (2|2), (8|1) ≇ (8|2) and (20|1) ≇

(20|2).

Now we consider the superalgebras (14|1) and (14|2). Observe that

(14|2) has a k-basis {1, x, y, z} with (14|2)0 = k1⊕ kx⊕ ky and (14|2)1 = kz
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such that x2 = 0, xy = yx = x, y2 = y, xz = zx = yz = 0, zy = z and

z2 = 0. (14|1) has a k-basis {1, x1, y1, z1} with (14|1)0 = k1 ⊕ kx1 ⊕ ky1 and

(14|1)1 = kz1 such that x2
1 = 0, x1y1 = 0, y1x1 = x1, y2

1 = y1, x1z1 = z1x1 =

y1z1 = z1y1 = 0 and z2
1 = 0.

Suppose, contrary to what we wish to show, that (14|2) ∼= (14|1) and

φ : (14|2) → (14|1) is an isomorphism. Then φ(1) = 1, φ(x) = α0 + α1x1 +

α2y1, φ(y) = β0 + β1x1 + β2y1 and φ(z) = γz1 for some αi, βi, γ ∈ k with

α1β2 − α2β1 6= 0 and γ 6= 0. Thus we have 0 = φ(yz) = φ(y)φ(z) =

(β0 + β1x1 + β2y1)γz1 = β0γz1, which implies β0 = 0 as γ 6= 0. Thus

zy = z 6= 0 yet z1y1 = z1x1 = 0, hence (14|1)1φ(y) = {0}, which would

contradict Lemma 2.3.4 — impossible. Thus (14|2) ≇ (14|1).

The proof of (15|1) ≇ (15|2) is similar to the above argument showing

(14|2) ≇ (14|1).

Next, we consider (21;µ|2) and (21;µ1|1) with µ, µ1 ∈ k∗\k∗2. Let x =

(0, 0, 1), y = (0, 0, X) and z = (1,−1, 0) in (21;µ|2). Then {1, x, y, z} is a

basis for (21;µ|2) over k such that (21;µ|2)0 = k1⊕kx⊕ky and (21;µ|2)1 =

kz. Let x1 = (1, 0, 0), y1 = (0, 1, 0) and z1 = (0, 0, X) in (21;µ1|1). Then

{1, x1, y1, z1} a basis for (21;µ1|1) over k such that (21;µ|1)0 = k1⊕kx1⊕ky1

and (21;µ|1)1 = kz1.

Suppose, contrary to what we wish to show, that (21;µ|2) ∼= (21;µ1|1)

and φ : (21;µ|2) → (21;µ1|1) is an isomorphism. Then φ(1) = 1, φ(x) =

α0 + α1x1 + α2y1, φ(y) = β0 + β1x1 + β2y1 and φ(z) = γz1 for some αi, βi,

γ ∈ k with α1β2−α2β1 6= 0 and γ 6= 0. From the equations φ(xz) = φ(x)φ(z)

and φ(yz) = φ(y)φ(z) one gets α0 = β0 = 0. Hence φ(x) = α1x1 + α2y1 and

φ(y) = β1x1 + β2y1. Now since α1x1 + α2y1 = φ(x) = φ(x2) = φ(x)2 =

(α1x1 + α2y1)
2 = α2

1x1 + α2
2y1, we have α2

1 = α1 and α2
2 = α2, and hence

αi = 0 or 1, i = 1, 2. Similarly, from the equation φ(y)2 = φ(y2) = φ(µx) one

gets µα1 = β2
1 and µα2 = β2

2 . Since φ is an isomorphism, at least one of α1,

α2 is non-zero. If α1 6= 0 then α1 = 1, and so µ = β2
1 , which is impossible

as µ ∈ k∗\k∗2. Similarly, if α2 6= 0 then α2 = 1, and so µ = β2
2 , which is

impossible too. Thus we have proved (21;µ|2) ≇ (21;µ1|1).
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This completes the proof. �

Lemma 2.3.6 The conditions given in part (b) of Theorem 2.3.1 for two superal-

gebras from the same family to be isomorphic are as stated there.

Proof:

Observe that (20;µ|1) has a k-basis {1, e, x, y} with (20;µ|1)0 = k1⊕ke⊕kx
and (20;µ|1)1 = ky such that e2 = e, ex = xe = x, x2 = 0, ey = ye = xy =

yx = 0 and y2 = µ(1 − e). Similarly, (20;µ1|1) has a k-basis {1, e1, x1, y1}
with (20;µ1|1)0 = k1 ⊕ ke1 ⊕ kx1 and (20;µ1|1)1 = ky1 such that e21 = e1,

e1x1 = x1e1 = x1, x2
1 = 0, e1y1 = y1e1 = x1y1 = y1x1 = 0 and y2

1 =

µ1(1 − e1). If µµ−1
1 ∈ k∗2 then µ = δ2µ1 for some δ ∈ k∗. Define a k-linear

isomorphism f : (20;µ|1) → (20;µ1|1) by f(1) = 1, f(e) = e1, f(x) = x1

and f(y) = δy1. Then it is straightforward to check that f is a superalgebra

isomorphism. Conversely, if (20;µ|1) ∼= (20;µ1|1) as superalgebras, then

(20;µ|1) ∼= (20;µ1|1) as ungraded algebras, i.e., (20;µ) ∼= (20;µ1). Now it

follows from Lemma 2.2.5 and Lemma 2.2.6 that µµ−1
1 ∈ k∗2. Thus we have

proved Part (b.1).

Similarly, one can show Parts (b.2), (b.3) and (b.4).

Now we show Part (b.5). Clearly, (22; ξ, µ|1) has a k-basis {1, e, x, y}
with (22; ξ, µ|1)0 = k1 ⊕ ke ⊕ kx and (22; ξ, µ|1)1 = ky such that e2 = e,

ex = xe = x, x2 = ξe, ey = ye = xy = yx = 0 and y2 = µ(1 − e). Similarly,

(22; ξ1, µ1|1) has a k-basis {1, e1, x1, y1} with (22; ξ1, µ1|1)0 = k1 ⊕ ke1 ⊕ kx1

and (22; ξ1, µ1|1)1 = ky1 such that e21 = e1, e1x1 = x1e1 = x1, x2
1 = ξ1e1,

e1y1 = y1e1 = x1y1 = y1x1 = 0 and y2
1 = µ1(1 − e1). If ξ = δ2ξ1 and

µ = γ2µ1 for some δ, γ ∈ k∗, then there is a superalgebra isomorphism

f : (22; ξ, µ|1) → (22; ξ1, µ1|1) given by f(e) = e1, f(x) = δx1 and f(y) =

γy1. Conversely, if f is a superalgebra isomorphism from (22; ξ, µ|1) to

(22; ξ1, µ1|1), then f((22; ξ, µ|1)1) = (22; ξ1, µ1|1)1. Hence there is a γ ∈ k∗

such that f(y) = γy1. Since y2 = µ(1 − e) and y2
1 = µ1(1 − e1), we have

µ(1− f(e)) = f(y2) = f(y)2 = γ2y2
1 = γ2µ1(1− e1). Since both 1− f(e) and

1 − e1 are non-trivial idempotents in (22; ξ1, µ1|1)0, we have µ = γ2µ1 and



CHAPTER 2. ALGEBRAIC CLASSIFICATION 54

1 − f(e) = 1 − e1, and hence f(e) = e1. Since ex = x and x ∈ (22; ξ, µ|1)0,

f(x) ∈ (22; ξ1, µ1|1)0 and e1f(x) = f(x). It follows that f(x) = βe1 + δx1 for

some β, δ ∈ k with δ 6= 0 since f is an isomorphism and f(e) = e1. Since

x2 = ξe, ξe1 = f(x2) = f(x)2 = (βe1 + δx1)
2 = (β2 + δ2ξ1)e1 + 2βδx1. This

implies βδ = 0 and ξ = β2 + δ2ξ1, and hence β = 0 and ξ = δ2ξ1 as δ 6= 0.

Finally, we show Part (b.6). We use X and Y to denote the generators

of (24;µ|1), and use X1 and Y1 to denote the generators of (24;µ1|1). Note

that X3
1 = X1X

2
1 = −µ−1

1 X1Y
2
1 = 0. If µ = δ2µ1 for some δ ∈ k∗, then

there is a superalgebra isomorphism f : (24;µ|1) → (24;µ1|1) given by

f(X) = X1 and f(Y ) = δY1. Conversly, if (24;µ|1) ∼= (24;µ1|1), suppose

f : (24;µ|1) → (24;µ1|1) is a superalgebra isomorphism, then we have

f(X) = α+βX1+γX
2
1 and f(Y ) = δY1 for some α, β, γ ∈ k and δ ∈ k∗ with

β 6= 0 or γ 6= 0. From the equations XY = 0 and X1Y1 = 0 one gets α = 0

as δ 6= 0. Since Y 2 = −µX2 and Y 2
1 = −µ1X

2
1 , we have −δ2µ1X

2
1 = δ2Y 2

1 =

f(Y )2 = f(Y 2) = f(−µX2) = −µf(X)2 = −µ(βX1 + γX2
1 )2 = −µβ2X2

1 .

This implies δ2µ1 = β2µ, and hence β 6= 0 as δ, µ, µ1 6= 0. It follows that

µµ−1
1 ∈ k∗2. �

This completes the proof of Theorem 2.3.1. To conclude this section we

mention that, when k is algebraically closed, the superalgebras (20;µ|1)–

(24;µ|1) listed in Theorem 2.3.1 can never arise.
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2.4 Case dim0 = 2

In this section we complete the classification of the last case of non-trivially

Z2-graded superalgebras of dimension 4.

Theorem 2.4.1 Let k be a field with ch(k) 6= 2.

(a) Suppose A is a superalgebra with dimA0 = dimA1 = 2. Then A is isomor-

phic to one of the following pairwise non-isomorphic families of superalgebras:

(1) k × k × k × k :

(1|2)0 = k(1, 1, 1, 1) ⊕ k(1, 1, 0, 0) and (1|2)1 = k(1,−1, 0, 0)⊕ k(0, 0, 1,−1),

(2) k × k × k[X]/(X2) :

(2|3)0 = k(1, 1, 1) ⊕ k(1, 1, 0) and (2|3)1 = k(1,−1, 0) ⊕ k(0, 0, X),

(3) k[X]/(X2) × k[Y ]/(Y 2) :

(3|2)0 = k(1, 1) ⊕ k(1, 0) and (3|2)1 = k(X, 0) ⊕ k(0, Y ),

(3|3)0 = k(1, 1) ⊕ k(X, Y ) and (3|3)1 = k(1,−1) ⊕ k(X,−Y ),

(5) k[X]/(X4) :

(5|1)0 = k1 ⊕ kX2 and (5|1)1 = kX ⊕ kX3,

(6) k × k[X, Y ]/(X, Y )2 :

(6|2)0 = k(1, 1) ⊕ k(1, 0) and (6|2)1 = k(0, X) ⊕ k(0, Y ),

(7) k[X, Y ]/(X2, Y 2) :

(7|2)0 = k1 ⊕ kX and (7|2)1 = kY ⊕ kXY,

(9) k[X, Y, Z]/(X, Y, Z)2,

(9|2)0 = k1 ⊕ kX and (9|2)1 = kY ⊕ kZ,

(10) M2 :

(10|1)0 = k
(

1 0

0 1

)

⊕ k
(

1 0

0 0

)

and (10|1)1 = k
(

0 1

0 0

)

⊕ k
(

0 0

1 0

)

,

(11)











a 0 0 0

0 a 0 d

c 0 b 0

0 0 0 b





∣

∣

∣

∣

∣

∣

a, b, c, d ∈ k







:

(11|2)0 = k





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



⊕ k





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




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and (11|2)1 = k





0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



⊕ k





0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0



,

(11|3)0 = k





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



⊕ k





0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0





and (11|3)1 = k





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



⊕ k





0 0 0 0

0 0 0 −1

1 0 0 0

0 0 0 0



,

(12) ∧k2 ∼= k〈X, Y 〉/(X2, Y 2, XY + Y X) :

(12|1)0 = k1 ⊕ kX and (12|1)1 = kY ⊕ kXY,

(14)

{(

a 0 0

c a 0

d 0 b

)∣

∣

∣

∣

∣

a, b, c, d ∈ k

}

:

(14|3)0 = k

(

1 0 0

0 1 0

0 0 1

)

⊕ k

(

1 0 0

0 1 0

0 0 0

)

and (14|3)1 = k

(

0 0 0

1 0 0

0 0 0

)

⊕ k

(

0 0 0

0 0 0

1 0 0

)

,

(15)

{(

a c d

0 a 0

0 0 b

)∣

∣

∣

∣

∣

a, b, c, d ∈ k

}

:

(15|3)0 = k

(

1 0 0

0 1 0

0 0 1

)

⊕ k

(

1 0 0

0 1 0

0 0 0

)

and (15|3)1 = k

(

0 1 0

0 0 0

0 0 0

)

⊕ k

(

0 0 1

0 0 0

0 0 0

)

,

(16) k〈X, Y 〉/(X2, Y 2, Y X) :

(16|1)0 = k1 ⊕ kX and (16|1)1 = kY ⊕ kXY,

(16|2)0 = k1 ⊕ kY and (16|2)1 = kX ⊕ kXY,

(17)

{(

a 0 0

0 a 0

c d b

)∣

∣

∣

∣

∣

a, b, c, d ∈ k

}

:

(17|2)0 = k

(

1 0 0

0 1 0

0 0 1

)

⊕ k

(

1 0 0

0 1 0

0 0 0

)

and (17|2)1 = k

(

0 0 0

0 0 0

1 0 0

)

⊕ k

(

0 0 0

0 0 0

0 1 0

)

,
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(18;λ) k〈X, Y 〉/(X2, Y 2, Y X − λXY ), where λ ∈ k with λ 6= −1, 0, 1 :

(18;λ|1)0 = k1 ⊕ kX and (18;λ|1)1 = kY ⊕ kXY,

(20;µ) k[X]/(X2) × k(
√
µ), where µ ∈ k∗\k∗2,

(20;µ|3)0 = k(1, 1) ⊕ k(1, 0) and (20;µ|3)1 = k(X, 0) ⊕ k(0, Y ),

(21;µ) k × k × k(
√
µ), where µ ∈ k∗\k∗2 :

(21;µ|3)0 = k(1, 1, 1)⊕ k(1, 1, 0) and (21;µ|3)1 = k(1,−1, 0) ⊕ k(0, 0, X),

(22; ξ, µ) k(
√
ξ) × k(

√
µ)), where ξ, µ ∈ k∗\k∗2 :

(22; ξ, µ|2)0 = k(1, 1) ⊕ k(1, 0) and (22; ξ, µ|2)1 = k(X, 0) ⊕ k(0, Y ),

(23;µ) k[X, Y ]/(X2 − µ, Y 2), where µ ∈ k∗\k∗2 :

(23;µ|1)0 = k1 ⊕ kX and (23;µ|1)1 = kY ⊕ kXY,

(23;µ|2)0 = k1 ⊕ kY and (23;µ|2)1 = kX ⊕ kXY,

(25;µ) k〈X, Y 〉/(X2 − µ, Y 2, XY + Y X), where µ ∈ k∗\k∗2 :

(25;µ|2)0 = k1 ⊕ kX and (25;µ|2)1 = kY ⊕ kXY,

(25;µ|3)0 = k1 ⊕ kY and (25;µ|3)1 = kX ⊕ kXY,

(26;µ, θ, η) k[X, Y ]/(X2 − µ, Y 2 − θ − ηX), where µ ∈ k∗\k∗2 and θ, η ∈ k with

θ 6= 0 or η 6= 0 :

(26;µ, θ, η|1)0 = k1 ⊕ kX and (26;µ, θ, η|1)1 = kY ⊕ kXY,

(27;µ, θ) k〈X, Y 〉/(X2 − µ,XY + Y X, Y 2 − θ), where µ ∈ k∗\k∗2 and θ ∈ k∗ :

(27;µ, θ|1)0 = k1 ⊕ kX and (27;µ, θ|1)1 = kY ⊕ kXY,

(28; θ, η, λ, κ)

k〈X, Y, Z〉/(X2, XY,XZ, Y X,ZX, Y 2 − θX, Y Z − ηX, ZY − λX,Z2 − κX),

where θ, η, λ, κ ∈ k with at least one of them 6= 0 :

(28; θ, η, λ, κ|1)0 = k1 ⊕ kX and (28; θ, η, λ, κ|1)1 = kY ⊕ kZ.

(b) Moreover, we have

(b.1) (18;λ|1) ∼= (18;λ1|1) if and only if λ = λ1,

(b.2) (20;µ|3) ∼= (20;µ1|3) if and only if µµ−1
1 ∈ k∗2,

(b.3) (21;µ|3) ∼= (21;µ1|3) if and only if µµ−1
1 ∈ k∗2,

(b.4) (22; ξ, µ|2) ∼= (22; ξ′, µ′|2) if and only if ξξ−1
1 , µµ−1

1 ∈ k∗2, or

µξ−1
1 , ξµ−1

1 ∈ k∗2,

(b.5) (23;µ|1) ∼= (23;µ1|1) if and only if µµ−1
1 ∈ k∗2,
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(b.6) (23;µ|2) ∼= (23;µ1|2) if and only if µµ−1
1 ∈ k∗2,

(b.7) (25;µ|2) ∼= (25;µ1|2) if and only if µµ−1
1 ∈ k∗2,

(b.8) (25;µ|3) ∼= (25;µ1|3) if and only if µµ−1
1 ∈ k∗2,

(b.9) (26;µ, θ, η|2) ∼= (26;µ1, θ1, η1|2) if and only if there exist β ∈ k∗ and

γ, δ ∈ k with γ 6= 0 or δ 6= 0 such that

µ = β2µ1

θ = γ2θ1 + 2γδµ1η1 + δ2µ1θ1

βη = γ2η1 + 2γδθ1 + δ2µ1η1

(b.10) (27;µ, θ|1) ∼= (27;µ1, θ1|1) if and only if there exist β ∈ k∗ and γ, δ ∈ k

with γ 6= 0 or δ 6= 0 such that

µ = β2µ1

θ = γ2θ1 − δ2µ1θ1

(b.11) (28; θ, η, λ, κ|1) ∼= (28; θ1, η1, λ1, κ1|1) if and only if there exist β ∈ k∗

and γ, δ, ǫ, ρ ∈ k with γρ− δǫ 6= 0 such that

βθ = γ2θ1 + γδη1 + γδλ1 + δ2κ1

βη = γǫθ1 + γρη1 + δǫλ1 + δρκ1

βλ = γǫθ1 + δǫη1 + γρλ1 + δρκ1

βκ = ǫ2θ1 + ǫρη1 + ǫρλ1 + ρ2κ1

Proof:

The proof of this shall be the main goal of this section. We shall divide the

proof into three lemmas, showing the following:

• Each 4-dimensional superalgebra, A, with dimA0 = dimA1 = 2 is

isomorphic to one of the superalgebras listed in the theorem.

(Lemma 2.4.3)
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• Each pair of distinct families of superalgebras listed in the theorem

are non-isomorphic. (Lemma 2.4.5)

• The conditions for superalgebra isomorphisms to exist are as stated

in part (b) of the theorem. (Lemma 2.4.6)

�

Remark 2.4.2 This list is not entirely satisfactory. While the superalgebras listed

are non-isomorphic as superalgebras, there are some cases where the underlying

algebras may be isomorphic. In this way there can be different non-isomorphic

Z2-gradings on an algebra listed as Z2-gradings on some other algebra. As an

example (27;µ, 1) ∼= (10) = M2 via 1 7→
(

1 0

0 1

)

, X 7→
(

0 µ

1 0

)

, Y 7→
(

1 0

0 −1

)

.

So, in the case that k isn’t algebraically closed, there are, in fact, more Z2-gradings

on M2 than immediately obvious. This is because they are isomorphic to some of

the superalgebras of the form (27;µ, θ|1), hence do not get listed as Z2-gradings

on M2.

We list them as has been done in Theorem 2.4.1, because it is too difficult

to determine conditions where some of the different underlying algebras will be

isomorphic as algebras, for instance (27;µ, 1) and M2 as in our example.

Lemma 2.4.3 Let A be a 4-dimensional superalgebra with dim0A = 2 and

dim1 A = 2. Then A is isomorphic to one of the superalgebras listed in Theo-

rem 2.4.1 (a).

Proof:

Since A0 is a 2-dimensional algebra, we may choose an element x ∈ A0

such that {1, x} is a k-basis of A0 and x2 = α ∈ k. (If x2 = α + βx, notice

that (x− β

2
)2 = α+(β

2
)2, so then replace xwith x− β

2
). We then have the fol-

lowing three cases labelled I, II and III respectively to consider, depending

on whether α = 0, α ∈ k∗2 or α ∈ k∗\k∗2:

I. If α = 0, then x2 = 0 and so J(A0) = kx. Nakayama’s lemma im-

plies J(A0)A1 ⊂ A1. Thus dim(J(A0)A1) = 0 or 1. Similarly, we have

dim(A1J(A0)) = 0 or 1. So we get three cases:
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(a) dim(J(A0)A1) = 1. In this case, choose an element y ∈ A1\J(A0)A1.

Then A1 = ky ⊕ J(A0)A1 ⊆ A0y + J(A0)A1 ⊆ A0A1 = A1, and hence A1 =

A0y + J(A0)A1. Now from Nakayama’s lemma (Version 2) we conclude

that A1 = A0y = ky + kxy and {y, xy} is a basis for A1 over k.

(b) dim(J(A0)A1) = 0 and dim(A1J(A0)) = 0. In this case, xA1 = 0 and

A1x = 0.

(c) dim(J(A0)A1) = 0 and dim(A1J(A0)) = 1. In this case, a similar

argument to (a) shows that there is an element z ∈ A1\A1J(A0) such that

A1 = kz + kzx. We also have xA1 = 0, and hence xz = 0.

II. If α = δ2 for some δ ∈ k∗, then (δ−1x)2 = 1. Replacing x with δ−1x,

we may assume α = 1, and hence A0 has a basis {1, x} with x2 = 1. Let

e1 = 1
2
(1 + x) and e2 = 1

2
(1 − x). Then e21 = e1 e

2
2 = e2 and e1e2 = e2e1 = 0.

Since A0 is a commutative algebra, the opposite algebra Aop
0 = A0. Hence

A0 ⊗Aop
0 = A0 ⊗A0 = span{e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2} ∼= k× k× k× k,

and {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2} is a set of orthogonal idempotents

with the sum being equal to 1. Thus A0 ⊗ A0 is semisimple. In this case,

any A0 ⊗ A0-module is semisimple and any simple A0 ⊗ A0-module is of

dimension 1. Since A1 is an A0-bimodule, A1 is a left A0 ⊗A0-module with

the action given by (a⊗ b)x = axb, a, b ∈ A0, x ∈ A1. Thus we may choose

a k-basis {x1, x2} for A1 such that kxi is a simple A0⊗A0-submodule of A1,

1 ≤ i ≤ 2. Now by the Wedderburn-Artin Theorem, one gets the following

six cases for which one of the four idempotents does not annihilate each

xi:

(a) (e1 ⊗ e1)xi = xi, 1 ≤ i ≤ 2.

(b) (e1 ⊗ e2)xi = xi, 1 ≤ i ≤ 2.

(c) (e1 ⊗ e1)x1 = x1 and (e1 ⊗ e2)x2 = x2.

(d) (e1 ⊗ e1)x1 = x1 and (e2 ⊗ e1)x2 = x2.

(e) (e1 ⊗ e1)x1 = x1 and (e2 ⊗ e2)x2 = x2.

(f) (e1 ⊗ e2)x1 = x1 and (e2 ⊗ e1)x2 = x2.

Note that we actually have ten other cases:

(g) (e2 ⊗ e1)xi = xi, 1 ≤ i ≤ 2.
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(h) (e2 ⊗ e2)xi = xi, 1 ≤ i ≤ 2.

(i) (e1 ⊗ e2)x1 = x1 and (e1 ⊗ e1)x2 = x2.

(j) (e1 ⊗ e2)x1 = x1 and (e2 ⊗ e2)x2 = x2.

(k) (e2 ⊗ e1)x1 = x1 and (e1 ⊗ e1)x2 = x2.

(l) (e2 ⊗ e1)x1 = x1 and (e1 ⊗ e2)x2 = x2.

(m) (e2 ⊗ e1)x1 = x1 and (e2 ⊗ e2)x2 = x2.

(n) (e2 ⊗ e2)x1 = x1 and (e1 ⊗ e1)x2 = x2.

(o) (e2 ⊗ e2)x1 = x1 and (e1 ⊗ e2)x2 = x2.

(p) (e2 ⊗ e2)x1 = x1 and (e2 ⊗ e1)x2 = x2.

By relabelling ei, 1 ≤ i ≤ 2, or relabelling xi, 1 ≤ i ≤ 2, or relabelling

both ei and xi, 1 ≤ i ≤ 2, each of these cases can be reduced to one of the

cases (a), (b), (c), (d), (e) and (f). For example, case (m) is reduced to case

(c) by relabelling e1 and e2 and relabelling x1 and x2.

III. If α ∈ k∗\k∗2, then A0
∼= k(

√
α) is an extension field of k. In this

case, A1 is a free A0-module of rank 1, and hence A1 = A0y = ky + kxy for

some 0 6= y ∈ A1.

Now we deal with each of the above cases.

Cases I (a) and III: A0 = k1 + kx and A1 = A0y = ky + kxy with

x2 = α ∈ k, where α = 0 or α ∈ k∗\k∗2. Since A1A0 = A1 and A2
1 ⊆ A0, we

may suppose that yx = βy+γxy = (β+γx)y and y2 = δ+ ǫx for some β, γ,

δ, ǫ ∈ k. From the equations y2y = yy2, yx2 = (yx)x and y2x = y(yx), one

obtains βǫ = 0, γǫ = ǫ, β2 + αγ2 = α, 2βγ = 0, αǫ = βδ + βγδ + αγ2ǫ, δ =

βǫ + βγǫ + γ2δ. In the case α = 0 we see that β = 0 straightaway. In the

case α ∈ k∗2, if β 6= 0, then γ = 0 and hence α = β2 ∈ k∗2, a contradiction.

This contradiction shows that β = 0. Hence in both cases we must have

β = 0. Thus we have yx = γxy and

γǫ = ǫ, αγ2 = α, δγ2 = δ.

Note that γ = ±1 if α ∈ k∗\k∗2. From this we get five cases labelled I (a)

1–I (a) 3, III 1 and III 2 in the following.

Case I (a) 1: α = 0 and γ = 1. In this case, we have x2 = 0, yx = xy

and y2 = δ + ǫx. Either δ = ǫ = 0, δ = 0, ǫ 6= 0, δ ∈ k∗2 or δ ∈ k∗\k∗2. If
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δ = ǫ = 0 then A ∼= (7|2), via x 7→ X , y 7→ Y . If δ = 0 and ǫ 6= 0 then

A ∼= (5|1), via x 7→ ǫ−1X2, y 7→ X . If δ = θ2 for some θ ∈ k∗, then A ∼= (3|3),

via x 7→ 2θ(X, Y ), y 7→ (θ + ǫX,−θ − ǫY ). If δ ∈ k∗\k∗2, then A ∼= (23; δ|2),

via x 7→ 2δY , y 7→ X + ǫXY .

Case I (a) 2: α = 0 and γ = −1. In this case, we have ǫ = 0, and hence

x2 = 0, yx = −xy and y2 = δ. Either δ = 0, δ ∈ k∗2 or δ ∈ k∗\k∗2. If

δ = 0 then A ∼= (12|1), via x 7→ X , y 7→ Y . If δ = θ2 for some θ ∈ k∗, then

A ∼= (11|3), via

x 7→





0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0



, y 7→ θ





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



.

If δ ∈ k∗\k∗2, then A ∼= (25; δ|3), via x 7→ Y , y 7→ X .

Case I (a) 3: α = 0 and γ 6= ±1. In this case, we have δ = ǫ = 0, and

hence x2 = 0, yx = γxy and y2 = 0. Either γ = 0 or γ 6= 0. If γ = 0 then

A ∼= (16|1), via x 7→ X and y 7→ Y . If γ 6= 0, then A ∼= (18; γ|1), via x 7→ X

and y 7→ Y .

This completes our treatment of case I(a).

Case III 1: α ∈ k∗\k∗2 and γ = 1. In this case, we have x2 = α, yx = xy

and y2 = δ + ǫx. Either δ = ǫ = 0 or at least one of δ and ǫ is non-zero. If

δ = ǫ = 0, then A ∼= (23;α|1), via x 7→ X and y 7→ Y . If δ 6= 0 or ǫ 6= 0, then

A ∼= (26;α, δ, ǫ|1), via x 7→ X and y 7→ Y .

Case III 2: α ∈ k∗\k∗2 and γ = −1. In this case, we have ǫ = 0, and

hence x2 = α, yx = −xy and y2 = δ. Either δ = 0 or δ 6= 0. If δ = 0 then

A ∼= (25;α|2), via x 7→ X and y 7→ Y . If δ 6= 0 then A ∼= (27;α, δ|1), via

x 7→ X and y 7→ Y .

This completes our treatment of case III.

Case I (b): A0 = k1+kx and xA1 = A1x = 0 with x2 = 0. In this case, we

have A2
1 ⊆ A0, and A2

1 is an ideal of A0. Since xA2
1 = 0, A2

1 6= A0. It follows

that A2
1 = 0 or A2

1 = kx. Either A2
1 = 0 or A2

1 6= 0. If A2
1 = 0, then clearly

A ∼= (9|2). If A2
1 = kx then there is a k-basis {y, z} of A1 with y2 = α1x,

yz = α2x, zy = α3x and z2 = α4x for some αi ∈ k, 1 ≤ i ≤ 4, such that
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at least one of αi is nonzero. Hence A ∼= (28;α1, α2, α3, α4|1), via x 7→ X ,

y 7→ Y , z 7→ Z.

Case I (c): A0 = k1 + kx and A1 = kz + kzx with x2 = 0 and xz = 0.

Since z2 ∈ A0 and xz2 = (xz)z = 0, one can see z2 = βx for some β ∈ k.

Now we have z3 = z2z = βxz = 0 and z3 = zz2 = βzx. Hence β = 0 as

zx 6= 0, and so z2 = 0. Thus A ∼= (16|2), via x 7→ Y , z 7→ X .

Case II (a): A0 = ke1 + ke2 and A1 = kx1 + kx2 with eiej = δj
i ei and

e1xie1 = xi, 1 ≤ i, j ≤ 2, recall δj
i is the Kronecker delta. In this case,

e2A1 = A1e2 = 0. Since A2
1 ⊆ A0 and e2A

2
1 = 0, we have A2

1 ⊆ ke1, and

hence x2
1 = αe1, x1x2 = βe1, x2x1 = γe1 and x2

2 = δe1 for some α, β, γ, δ ∈
k. From the equation x2

1x2 = x1(x1x2) one gets αx2 = βx1. This implies

α = β = 0 since {x1, x2} is linearly independent over k. Similarly, from the

equation x2
2x1 = x2(x2x1), one obtains γ = δ = 0. Thus A2

1 = 0, and hence

A ∼= (6|2), via e1 7→ (0, 1), e2 7→ (1, 0), x1 7→ (0, X), x2 7→ (0, Y ).

Case II (b): A0 = ke1 + ke2 and A1 = kx1 + kx2 with eiej = δj
i ei and

e1xie2 = xi, 1 ≤ i, j ≤ 2. In this case, xixj = (xie2)(e1xj) = 0, and hence

A2
1 = 0. Thus A ∼= (17|2), via e1 7→

(

0 0 0

0 0 0

0 0 1

)

, e2 7→
(

1 0 0

0 1 0

0 0 0

)

, x1 7→
(

0 0 0

0 0 0

1 0 0

)

, x2 7→
(

0 0 0

0 0 0

0 1 0

)

.

Case II (c): A0 = ke1+ke2 andA1 = kx1+kx2 with eiej = δj
i ei, 1 ≤ i, j ≤

2, e1x1e1 = x1 and e1x2e2 = x2. An argument similar to Case II(b) shows

that x2x1 = 0 and x2
2 = 0. Now we have A2

1 ⊆ A0, e2(x1x2) = (x1x2)e1 = 0.

It follows x1x2 = 0. Since e1x
2
1 = x2

1e1 = x2
1, we have x2

1 = αe1 for some

α ∈ k. Then from the equation x2
1x2 = x1(x1x2), one gets α = 0, and hence

x2
1 = 0. Thus A2

1 = 0, and A ∼= (15|3), via e1 7→
(

1 0 0

0 1 0

0 0 0

)

, e2 7→
(

0 0 0

0 0 0

0 0 1

)

,

x1 7→
(

0 1 0

0 0 0

0 0 0

)

, x2 7→
(

0 0 1

0 0 0

0 0 0

)

.

Case II (d): A0 = ke1+ke2 andA1 = kx1+kx2 with eiej = δj
i ei, 1 ≤ i, j ≤

2, e1x1e1 = x1 and e2x2e1 = x2. An argument similar to Case II(c) shows
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that xixj = 0, and hence A2
1 = 0. Thus A ∼= (14|3), via e1 7→

(

1 0 0

0 1 0

0 0 0

)

,

e2 7→
(

0 0 0

0 0 0

0 0 1

)

, x1 7→
(

0 0 0

1 0 0

0 0 0

)

, x2 7→
(

0 0 0

0 0 0

1 0 0

)

.

Case II (e): A0 = ke1 + ke2 and A1 = kx1 + kx2 with eiej = δj
i ei, 1 ≤

i, j ≤ 2, e1x1e1 = x1 and e2x2e2 = x2. An argument similar to Case II(c)

shows that x1x2 = x2x1 = 0, x2
1 = αe1 and x2

2 = βe2. We shall consider the

different cases which arise depending on whether α and β belong to {0},

k∗2 or k∗\k∗2. If α = β = 0, then A ∼= (3|2), via e1 7→ (1, 0), e2 7→ (0, 1),

x1 7→ (X, 0) and x2 7→ (0, Y ). If α = 0 and β = γ2 for some γ ∈ k∗, then A ∼=
(2|3), via e1 7→ (0, 0, 1), e2 7→ (1, 1, 0), x1 7→ (0, 0, X) and x2 7→ γ(1,−1, 0).

Similarly, if β = 0 and α = γ2 for some γ ∈ k∗, then A ∼= (2|3). If α = 0

and β ∈ k∗\k∗2, then A ∼= (20; β|3), via e1 7→ (1, 0), e2 7→ (0, 1), x1 7→ (X, 0)

and x2 7→ (0, Y ). Similarly, if β = 0 and α ∈ k∗\k∗2, then A ∼= (20;α|3). If

α = γ2 and β = δ2 for some γ, δ ∈ k∗, then A ∼= (1|2), via e1 7→ (1, 1, 0, 0),

e2 7→ (0, 0, 1, 1), x1 7→ γ(1,−1, 0, 0), x2 7→ δ(0, 0, 1,−1). If α = γ2 for some

γ ∈ k∗ and β ∈ k∗\k∗2, then A ∼= (21; β|3), via e1 7→ (1, 1, 0), e2 7→ (0, 0, 1),

x1 7→ γ(1,−1, 0), x2 7→ (0, 0, X). Similarly, if α ∈ k∗\k∗2 and β = γ2 for

some γ ∈ k∗, then A ∼= (21;α|3). If α ∈ k∗\k∗2 and β ∈ k∗\k∗2, then

A ∼= (22;α, β|2), via e1 7→ (1, 0), e2 7→ (0, 1), x1 7→ (X, 0) and x2 7→ (0, Y ).

Case II (f): A0 = ke1 + ke2 and A1 = kx1 + kx2 with eiej = δj
i ei, 1 ≤

i, j ≤ 2, e1x1e2 = x1 and e2x2e1 = x2. An argument similar to Case II(c)

shows that x2
1 = x2

2 = 0, x1x2 = αe1 and x2x1 = βe2 for some α, β ∈ k.

From the equation (x1x2)x1 = x1(x2x1) one gets α = β. Either α = 0 or

α 6= 0. If α = 0 then A ∼= (11|2), via e1 7→





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0



, e2 7→





0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



,

x1 7→





0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



, x2 7→





0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0



. If α 6= 0 then A ∼= (10|1), via

e1 7→
(

1 0

0 0

)

, e2 7→
(

0 0

0 1

)

, x1 7→ α
(

0 1

0 0

)

, x2 7→
(

0 0

1 0

)

.

This completes the proof. �
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The following helpful result will be used in the proof of Lemma 2.4.5.

Lemma 2.4.4 Consider superalgebras A and B with dim0A = dim0B = 2.

Suppose that {1, x}, {1, y} are bases of A0 and B0 respectively with x2 = ω ∈
k, y2 = ν ∈ k. If A ∼= B then ω = β2ν for some β ∈ k∗.

Proof:

After noticing that, if A ∼= B as superalgebras then we must have A0
∼= B0

as algebras, the result immediately follows from Lemma 2.2.5 (a). �

Lemma 2.4.5 Each pair of distinct families of superalgebras listed in Theorem 2.4.1

are non-isomorphic.

Proof:

From Proposition 2.2.1, Proposition 2.2.2 and Proposition 2.2.3 we have to

show the following:

• different superalgebras defined on the same underlying algebra are

non-isomorphic;

• the superalgebra (26;µ, θ, η|1) is not isomorphic to any of (20;µ|3),

(21;µ|3), (22; ξ, µ|2), (23;µ|1) and (23;µ|2);

• the superalgebra (27;µ, θ|1) is not isomorphic to (10|1), (25;µ|2) or

(25;µ|3);

• the superalgebra (28; θ, η, λ, κ|1) is not isomorphic to any other su-

peralgebra on the list.

In Theorem 2.4.1 we gave A0 and A1 in the forms k1 ⊕ kx, ky ⊕ kz respec-

tively. Hence we may give A0 a basis of {1, x} and A1 a basis of {y, z}. For

the remainder of the proof we endow each superalgebra with the basis ob-

tained from Theorem 2.4.1 in this manner, except for (6|2), instead giving

(6|2)0 and (6|2)1 bases {(1, 1), (0, 1)} and {(0, X), (0, Y )} respectively.
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In this paragraph we describe the arguments used in the rest of the

proof, and also show that different superalgebras defined on the same

underlying algebra are non-isomorphic. To see (3|2) ≇ (3|3), (23;µ|1)

≇ (23;µ|2) and (25;µ|2) ≇ (25;µ|3) assume that they are isomorphic, ap-

ply Lemma 2.4.4 and find the contradiction that no such non-zero β as de-

scribed in Lemma 2.4.4 can exist. We call this Approach 1. Apply

Lemma 2.3.3 to discover that (11|2) ≇ (11|3). We call this Approach 2. Let A

andA′ be two superalgebras with dimA0 = dimA1 = dimA′
0 = dimA′

1 = 2.

ThenA0 has a k-basis {1, x} such that x2 ∈ k1 and x is uniquely determined

up to a nonzero scalar multiple. Similarly, A′
0 has a k-basis {1, y} such that

y2 ∈ k1 and y is uniquely determined up to a nonzero scalar multiple. If

f : A → A′ is a superalgebra isomorphism, then f restricts to an isomor-

phism from A0 to A′
0. It follows from the proof of Lemma 2.2.5 that f must

satisfy f(x) = αy for some α ∈ k∗. Hence if A1x = 0 and A′
1y 6= 0, then

A ≇ A′, by Lemma 2.3.4. Similarly, if xA1 = 0 and yA′
1 6= 0, then A ≇ A′,

by Lemma 2.3.4. We call this method Approach 3. For instance, assume

f : (16|2) → (16|1) is an isomorphism. Then by the above discussion we

have f(Y ) = αX for some α ∈ k∗. Now (16|1)1f(Y ) = (16|1)1X = 0,

however (16|2)1Y 6= 0. This is impossible. Hence (16|2) ≇ (16|1).

Using Approach 1, one can see that (26;µ, θ, η|1) is not isomorphic to

any of (20;µ′|3), (21;µ′|3), (22; ξ, µ′|2) and (23;µ′|2), where µ, µ′, ξ ∈ k∗\k∗2
and θ, η ∈ k with θ 6= 0 or η 6= 0. Using Approach 2, one discovers that

(26;µ, θ, η|1) is not isomorphic to (23;µ′|1), where µ, µ′, θ and η are given

as above.

Using Approach 1, one gets that (27;µ, θ|1) is not isomorphic to (10|1)

or (25;µ′|3); using Approach 2, one gets that (27;µ, θ|1) is not isomorphic

to (25;µ′|2), where µ, µ′ ∈ k∗\k∗2 and θ ∈ k∗.

Using Approach 2, one can see that (28; θ, η, λ, κ|1) is not isomorphic

to (9|2), where θ, η, λ, κ ∈ k with at least one of them 6= 0. Finally,

using Approach 3, one knows that (28; θ, η, λ, κ|1) is not isomorphic to

any of the remaining superalgebras on the list in Theorem 2.4.1 (a). Thus
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(28; θ, η, λ, κ|1) is not isomorphic to any other superalgebra on the list in

Theorem 2.4.1 (a).

This completes the proof. �

Lemma 2.4.6 The conditions given in part (b) of Theorem 2.4.1 for two superal-

gebras from the same family to be isomorphic are as stated there.

Proof:

(b.1). LetX and Y be the generators of (18;λ|1) as given in Theorem 2.4.1(a),

and let X1 and Y1 denote the corresponding generators of (18;λ1|1). Ob-

viously, if λ = λ1 then (18;λ|1) ∼= (18;λ1|1). Conversely, assume f :

(18;λ|1) → (18;λ1|1) is a superalgebra isomorphism. Then as pointed

out in the proof of Lemma 2.4.5, f must be of the form f(X) = αX1,

f(Y ) = γY1 + δX1Y1, where α, γ, δ ∈ k with α 6= 0 and γ 6= 0. Now

0 = f(Y X − λXY ) = f(Y )f(X) − λf(X)f(Y ) = (γY1 + δX1Y1)αX1 −
λαX1(γY1 + δX1Y1) = γαY1X1 − λγαX1Y1 = γα(λ1 − λ)X1Y1. This implies

λ = λ1 as γα 6= 0.

(b.2). Let (X, 0), (0, Y ) and (X1, 0), (0, Y1) be the generators of (20;µ|3)

and (20;µ1|3), respectively, as given in Theorem 2.4.1(a). If µ = δ2µ1 for

some δ ∈ k∗, then there is a superalgebra isomorphism f : (20;µ|3) →
(20;µ1|3) given by f((X, 0)) = (X1, 0) and f((0, Y )) = δ(0, Y1). Conversely,

assume (20;µ|3) ∼= (20;µ1|3). Then (20;µ|3) ∼= (20;µ1|3) as ungraded alge-

bras, i.e., (20;µ) ∼= (20;µ1). By Lemma 2.2.5 and Lemma 2.2.6, one knows

that µµ−1
1 ∈ k∗2.

(b.3). Is proved similarly to (b.2).

(b.4). Let (X, 0) and (0, Y ) be the generators of (22; ξ, µ), and (X1, 0) and

(0, Y1) be the generators of (22; ξ1, µ1), as described in Theorem 2.4.1(a).

Suppose that either ξξ−1
1 , µµ−1

1 ∈ k∗2 or µξ−1
1 , ξµ−1

1 ∈ k∗2. Observe that

(22; ξ, µ|2) ∼= (22;µ, ξ|2) as superalgebras. Hence we may assume that

µ = γ2µ1 and ξ = δ2ξ1 for some γ, δ ∈ k∗. Then there is a superalgebra iso-

morphism f from (22; ξ, µ|2) to (22; ξ1, µ1|2) given by f((X, 0)) = γ(X1, 0)

and f((0, Y )) = δ(0, Y1). Conversely assume (22; ξ, µ|2) ∼= (22; ξ1, µ1|2)
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as superalgebras, then (22; ξ, µ) ∼= (22; ξ1, µ1) as algebras. By the com-

ments following Lemma 2.2.6 we must have either ξξ−1
1 , µµ−1

1 ∈ k∗2 or

µξ−1
1 , ξµ−1

1 ∈ k∗2.

(b.5). Let X and Y be the generators of (23;µ|1), and X1 and Y1 be

the generators of (23;µ1|1), as described in Theorem 2.4.1(a). If µ = γ2µ1

for some γ ∈ k∗, then (23;µ|1) ∼= (23;µ1|1) via X 7→ γX1 and Y 7→ Y1.

Conversely, if (23;µ|1) ∼= (23;µ1|1) then (23;µ|1)0
∼= (23;µ1|1)0. However,

we have (23;µ|1)0
∼= k(

√
µ) and (23;µ1|1)0

∼= k(
√
µ1). Thus by Lemma 2.2.5

one gets µµ−1
1 ∈ k∗2.

(b.6). If µ = γ2µ1 for some γ ∈ k∗, then the algebra isomorphism from

(23;µ|1) to (23;µ1|1) given in (b.5) is also a superalgebra isomorphism

from (23;µ|2) to (23;µ1|2). Conversely, suppose f : (23;µ|2) → (23;µ1|2)

is an isomorphism. We use the notation given in the proof of (b.5). Then

from the proofs of Lemma 2.2.5 and Lemma 2.4.5, one can see that f is

given by f(Y ) = βY1 and f(X) = γX1 + δX1Y1, where β, γ ∈ k∗ and δ ∈ k.

Now we have µ = f(X2) = f(X)2 = (γX1 + δX1Y1)
2 = γ2µ1 + 2γδµ1Y1,

which implies µ = γ2µ1 and δ = 0. Thus µµ−1
1 ∈ k∗2.

(b.7). Is proved similarly to (b.5).

(b.8). Is proved similarly to (b.6).

(b.9). Let X and Y be the generators of (26;µ, θ, η), and X1 and Y1

be the generators of (26;µ1, θ1, η1), as described in Theorem 2.4.1(a). If

f : (26;µ, θ, η|1) ∼= (26;µ1, θ1, η1|1), then f must be given by f(X) = βX1

and f(Y ) = γY1 + δX1Y1 for some β ∈ k∗ and γ, δ ∈ k with γ 6= 0 or δ 6= 0.

From the equations f(X2) = f(X)2 and f(Y 2) = f(Y )2 one gets

µ = β2µ1,

θ = γ2θ1 + 2γδµ1η1 + δ2µ1θ1,

βη = γ2η1 + 2γδθ1 + δ2µ1η1.

Conversely, if there exist β ∈ k∗ and γ, δ ∈ k with γ 6= 0 or δ 6= 0 such

that the above three equations are satisfied, then there is a superalgebra

isomorphism f : (26;µ, θ, η|1) ∼= (26;µ1, θ1, η1|1) given by f(X) = βX1 and

f(Y ) = γY1 + δX1Y1.
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(b.10) and (b.11). Are proved similarly to (b.9).

This completes the proof. �

This completes the proof of Theorem 2.4.1. To conclude this section we

give a corollary of Theorem 2.4.1 which shall be used later.

Corollary 2.4.7 Assume that k is an algebraically closed field, then

(a) superalgebras (20;µ|3)–(27;µ, θ|1) listed in Theorem 2.4.1 can never arise,

and

(b) the superalgebra (28; θ, η, λ, κ|1) can be simplified to the following non-

isomorphic superalgebras:

(7) k[X, Y ]/(X2, Y 2) :

(7|3)0 = k1 ⊕ kXY and (7|3)1 = kX ⊕ kY.

(8) k[X, Y ]/(X3, XY, Y 2) :

(8|3)0 = k1 ⊕ kX2 and (8|3)1 = kX ⊕ kY.

(12) ∧k2 ∼= k〈X, Y 〉/(X2, Y 2, XY + Y X) :

(12|2)0 = k1 ⊕ kXY and (12|2)1 = kX ⊕ kY.

(16) k〈X, Y 〉/(X2, Y 2, Y X) :

(16|3)0 = k1 ⊕ kXY and (16|3)1 = kX ⊕ kY.

(18;λ) k〈X, Y 〉/(X2, Y 2, Y X − λXY ), where λ ∈ k with λ 6= 1, 0,−1 :

(18;λ|2)0 = k1 ⊕ kXY and (18;λ|2)1 = kX ⊕ kY.

(19) k〈X, Y 〉/(Y 2, X2 + Y X, Y X +XY ) :

(19|1)0 = k1 ⊕ kXY and (19|1)1 = kX ⊕ kY.

Moreover, (18;λ|2) ∼= (18;λ1|2) if and only if λ1 = λ or λλ1 = 1.

Proof:

(a) is obvious since k∗\k∗2 = ∅ when k is algebraically closed.

For (b), we shall write the generators of (28; θ, η, λ, κ) as x, y and z

which were given as X, Y and Z respectively in Theorem 2.4.1. This is

to distinguish them from the generators X and Y of the superalgebras

(7), (8), (12), (16), (18;λ) and (19) given above. Then (28; θ, η, λ, κ|1)0 =
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k1 + kx and (28; θ, η, λ, κ|1)1 = ky + kz with x2 = xy = xz = yx = zx = 0,

y2 = θx, yz = ηx, zy = λx and z2 = κx. Note that at least one of θ, η, λ and

κ is not zero.

We first consider the case : θ = κ = 0. In this case, η 6= 0 or λ 6= 0. We

may assume that η 6= 0 (otherwise, we can switch y and z). By replacing x

with ηx, one can assume η = 1 and hence yz = x. Note that y2 = z2 = 0.

Either λ = 0, λ = −1, λ = 1 or λ 6= −1, 0, 1. If λ = 0 then (28; θ, η, λ, κ|1) =

(28; 0, 1, 0, 0|1) is isomorphic to (16|3) via y 7→ X and z 7→ Y . Similarly, if

λ = −1 then (28; θ, η, λ, κ|1) = (28; 0, 1,−1, 0|1) is isomorphic to (12|2), if

λ = 1 then (28; θ, η, λ, κ|1) = (28; 0, 1, 1, 0|1) is isomorphic to (7|3), and if

λ 6= −1, 0, 1 then (28; θ, η, λ, κ|1) = (28; 0, 1, λ, 0|1) is isomorphic to (18;λ|2).

Now we consider the case: θ 6= 0 or κ 6= 0. We may assume that

θ 6= 0 (otherwise, we can switch y and z). By replacing x with θx, we may

assume that θ = 1 and hence y2 = x. Since k is algebraically closed, there

is an α ∈ k such that α2 + (η + λ)α + κ = 0. Now let z0 = αy + z. Then

(28; θ, η, λ, κ|1)1 = ky + kz0, z2
0 = (αy + z)2 = α2y2 + αyz + αzy + z2 =

(α2 + (η+ λ)α+ κ)x = 0, xz0 = z0x = 0, yz0 = (α+ η)x and z0y = (α+ λ)x.

Hence, by replacing z with z0, we may assume κ = 0. Thus we have

x2 = xy = xz = yx = zx = 0, y2 = x, yz = ηx, zy = λx and z2 = 0. Either

η = 0 and λ = 0, η = 0 and λ 6= 0 or η 6= 0. If η = 0 and λ = 0, then yz =

zy = 0. In this case, (28; θ, η, λ, κ|1) = (28; 1, 0, 0, 0|1) is isomorphic to (8|3)

via y 7→ X and z 7→ Y . If η = 0 and λ 6= 0, then by replacing z with λ−1z

we may assume λ = 1. Hence we have yz = 0 and zy = x. Let y1 = z and

z1 = y− z. Then (28; θ, η, λ, κ|1)1 = ky1 +kz1, y2
1 = 0, y1z1 = x, z1y1 = 0 and

z2
1 = (y−z)2 = y2−yz−zy+z2 = x−0−x+0 = 0. By replacing y and z with

y1 and z1 respectively, one can see that (28; θ, η, λ, κ|1) = (28; 1, 0, 1, 0|1) ∼=
(28; 0, 1, 0, 0|1) ∼= (16|3) by the first case. Finally, suppose η 6= 0. Then by

replacing z with η−1z we may assume η = 1. Hence yz = x. Either λ = 1,

λ = −1 or λ 6= ±1. If λ = 1 then (28; θ, η, λ, κ|1) = (28; 1, 1, 1, 0|1) ∼= (7|3)

via x 7→ 1
2
XY , y 7→ 1

2
(X + Y ) and z 7→ Y . If λ = −1 then y2 = x, yz = x,

zy = −x and z2 = 0. In this case, (28; θ, η, λ, κ|1) = (28; 1, 1,−1, 0|1) is
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isomorphic to (19|1) via y 7→ X and z 7→ Y . If λ 6= ±1, let y2 = −(1+λ)y+z

and z2 = −(1+λ)−1z. Then {y2, z2} is a k-basis of (28; θ, η, λ, κ|1)1. Now we

have y2
2 = (−(1+λ)y+ z)2 = (1+λ)2y2 − (1+λ)yz− (1+λ)zy+ z2 = ((1+

λ)2−(1+λ)−(1+λ)λ)x = 0, y2z2 = (−(1+λ)y+z)(−(1+λ)−1z) = yz−(1+

λ)−1z2 = x, z2y2 = (−(1+λ)−1z)(−(1+λ)y+z) = zy−(1+λ)−1z2 = λx and

z2
2 = (1 + λ)−2z2 = 0. By replacing y and z with y2 and z2, respectively, one

can get that (28; θ, η, λ, κ|1) = (28; 1, 1, λ, 0|1) ∼= (28; 0, 1, λ, 0|1) ∼= (18;λ|2)

from the first case.

It follows from Proposition 2.2.1 that the superalgebras listed in the

corollary are non-isomorphic.

By switching X and Y , one can see (18;λ|2) ∼= (18;λ−1|2). Thus if λ1 =

λ or λλ1 = 1 then (18;λ|2) ∼= (18;λ1|2). Conversely, assume f : (18;λ|2) →
(18;λ1|2) is a superalgebra isomorphism. Let X and Y be the generators

of (18;λ|2), and X1 and Y1 be the generators of (18;λ1|2). Then f(X) =

α11X1 +α12Y1 and f(Y ) = α21X1 +α22Y1 for some αij ∈ k, 1 ≤ i, j ≤ 2, with

α11α22−α12α21 6= 0. Now we have 0 = f(X2) = f(X)2 = (α11X1+α12Y1)
2 =

α11α12(X1Y1+Y1X1) = α11α12(1+λ1)X1Y1, and hence α11α12 = 0. Similarly,

from the equation f(Y 2) = f(Y )2 one gets α21α22 = 0. Either α11 6= 0 or

α11 = 0. If α11 6= 0, then α12 = 0, α22 6= 0 and α21 = 0. Now from

the equation f(Y )f(X) = f(Y X) = f(λXY ) = λf(Y )f(X), one obtains

λ = λ1. If α11 = 0, then α12α21 6= 0 and α22 = 0. Now from the equation

f(Y )f(X) = λf(X)f(Y ), one obtains λλ1 = 1. Thus we have proved that

(18;λ|2) ∼= (18;λ1|2) if and only if λ1 = λ or λλ1 = 1. �
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2.5 Case k is Algebraically Closed

In this section we collect results from the previous sections, which, when

combined with the results from [12] gives us a complete classification of

four dimensional superalgebras in the case that k is algebraically closed

and has ch(k) 6= 2. We note here that even if k is not algebraically closed

then a four dimensional superalgebra must be either a four dimensional al-

gebra endowed with the trivial Z2-grading or isomorphic to one of the su-

peralgebras described in Proposition 2.2.12, Theorem 2.3.1 or Theorem 2.4.1.

The superalgebra described in Proposition 2.2.12 is denoted by (9|3) (see

Example 2.2.11).

Although the results from the previous sections give a full classification

of four dimensional superalgebras with non-trivial Z2-gradings, we would

like a complete classification of superalgebras, even the trivially Z2-graded

superalgebras. For example these results are needed before starting on

the geometric classification (which is done in Chapter 3). Thus, for this

section we make the additional assumption that k is algebraically closed.

We use the results of [12] to classify the trivially Z2-graded superalgebras

and specialise our results from the previous sections to the case where k is

algebraically closed. This yields us the following theorem.

Theorem 2.5.1 (Algebraic classification of 4-dimensional superalgebras)

Assume that k is algebraically closed and that ch(k) 6= 2. LetA be a 4-dimensional

superalgebra. Then A is isomorphic to one of the following superalgebras. More-

over each pair of classes is non-isomorphic.

(1) : (1|0), (1|1), (1|2),

(2) : (2|0), (2|1), (2|2), (2|3),

(3) : (3|0), (3|1), (3|2), (3|3),

(4) : (4|0), (4|1),

(5) : (5|0), (5|1),

(6) : (6|0), (6|1), (6|2),

(7) : (7|0), (7|1), (7|2), (7|3),
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(8) : (8|0), (8|1), (8|2), (8|3),

(9) : (9|0), (9|1), (9|2), (9|3),

(10) : (10|0), (10|1),

(11) : (11|0), (11|1), (11|2), (11|3),

(12) : (12|0), (12|1), (12|2),

(13) : (13|0), (13|1),

(14) : (14|0), (14|1), (14|2), (14|3),

(15) : (15|0), (15|1), (15|2), (15|3),

(16) : (16|0), (16|1), (16|2), (16|3),

(17) : (17|0), (17|1), (17|2),

(18;λ) : (18;λ|0), (18;λ|1), (18;λ|2), where λ ∈ k with λ 6= 1, 0,−1,

(19) : (19|0), (19|1).

Furthermore, (18;λ|0) ∼= (18;λ1|0) if and only if λ1 = λ or λλ1 = 1, (18;λ|1) ∼=
(18;λ1|1) if and only if λ = λ1, and (18;λ|2) ∼= (18;λ1|2) if and only if λ1 = λ

or λλ1 = 1.

Proof:

This follows from the results of [12], Proposition 2.2.12, Theorem 2.3.1,

Theorem 2.4.1 and Corollary 2.4.7. �

Remark 2.5.2 Compare these results with those obtained by Gabriel in [12]. It is

interesting to note that each 4-dimensional algebra from his classification results

admits at least one non-trivial Z2-grading. Some of the algebras admit only one

such non-trivial Z2-grading. However some admit up to three non-isomorphic

non-trivial Z2-gradings.

Theorem 2.5.1 above lays the foundations for the geometric classifica-

tion in the following chapter, since the isomorphism classes of

4-dimensional superalgebras are in one-to-one correspondence with G4-

orbits in Salg4. Before we move onto the geometric classification problem,

we list the superalgebra automorphism groups for the superalgebras listed

in Theorem 2.5.1, since they will also be needed in the following chapter.
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2.6 Automorphism groups

In this section we calculate the automorphism groups of the algebras de-

scribed in Section 2.5, where we assumed that k is algebraically closed and

ch(k) 6= 2. We will use the results from this section to calculate the dimen-

sions of orbits in the variety Salg4. We shall describe the varieties Salgn in

the next section.

We shall choose a basis for each each superalgebra, {e1 = 1, e2, e3, e4},

and find the constants a21, . . . , a44 for which φ is an automorphism of the

given superalgebra, where φ is defined by φ(e1) = e1, φ(e2) = a21e1+a22e2+

a23e3+a24e4, φ(e3) = a31e1+a32e2+a33e3+a34e4, φ(e4) = a41e1+a42e2+a43e3+

a44e4. Since we shall choose homogeneous bases, then for superalgebras

with dimA0 = 3 we must have a24 = a34 = a41 = a42 = a43 = 0; for the

superalgebras with dimA0 = 2 we must have a23 = a24 = a31 = a32 = a41 =

a42 = 0; and for those with dimA0 = 1 we must have a21 = a31 = a41 = 0,

in order for the given map to be homogeneous. We shall not mention these

constants in these cases. In the following, we give the values or relations

amongst these constants for each to give a superalgebra automorphism.

(1|0) : e1 = (1, 1, 1, 1), e2 = (1, 0, 0, 0), e3 = (0, 1, 0, 0), e4 = (0, 0, 1, 0)

Then, in this case, one can show that there are only finitely many pos-

sibilities for the constants. (This suffices for our purposes — to list the

possibilities takes a while).

(1|1) : e1 = (1, 1, 1, 1), e2 = (1, 0, 0, 0), e3 = (0, 1, 0, 0), e4 = (0, 0, 1,−1)

Then a21 = a31 = 0, a44 = ±1 and either

• a22 = a33 = 1, a23 = a32 = 0; or

• a22 = a33 = 0, a23 = a32 = 1

(1|2) : e1 = (1, 1, 1, 1), e2 = (1, 1, 0, 0), e3 = (1,−1, 0, 0), e4 = (0, 0, 1,−1)

Then either

• a21 = a34 = a43 = 0, a22 = 1, a33 = ±1, a44 = ±1; or
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• a21 = 1, a22 = −1, a33 = a44 = 0, a34 = ±1, a43 = ±1

(2|0) : e1 = (1, 1, 1), e2 = (1, 0, 0), e3 = (0, 1, 0), e4 = (0, 0, X)

Then a21 = a24 = a31 = a34 = a41 = a42 = a43 = 0, a44 6= 0 and either

• a22 = a33 = 1, a23 = a32 = 0; or

• a22 = a33 = 0, a23 = a32 = 1

(2|1) : e1 = (1, 1, 1), e2 = (1, 0, 0), e3 = (0, 1, 0), e4 = (0, 0, X)

Then a21 = a31 = 0, a44 6= 0 and either

• a22 = a33 = 1, a23 = a32 = 0; or

• a22 = a33 = 0, a23 = a32 = 1

(2|2) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (0, 0, X), e4 = (1,−1, 0)

Then a21 = a23 = a31 = a32 = 0 and a22 = 1, a33 6= 0, a44 = ±1

(2|3) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (1,−1, 0), e4 = (0, 0, X)

Then a21 = a34 = a43 = 0 and a22 = 1, a33 = ±1, a44 6= 0

(3|0) : e1 = (1, 1), e2 = (1, 0), e3 = (X, 0), e4 = (0, Y )

Then a23 = a24 = a31 = a32 = a41 = a42 = 0 and either

• a21 = a34 = a43 = 0, a22 = 1, a33 6= 0, a44 6= 0; or

• a33 = a44 = 0, a21 = 1, a22 = −1, a34 6= 0, a43 6= 0

(3|1) : e1 = (1, 1), e2 = (1, 0), e3 = (X, 0), e4 = (0, Y )

Then a21 = a23 = a31 = a32 = 0, a22 = 1, a33 6= 0, a44 6= 0

(3|2) : e1 = (1, 1), e2 = (1, 0), e3 = (X, 0), e4 = (0, Y )

Then either

• a21 = 0, a22 = 1, a34 = a43 = 0, a33 6= 0, a44 6= 0; or

• a21 = 1, a22 = −1, a33 = a44 = 0, a34 6= 0, a43 6= 0

(3|3) : e1 = (1, 1), e2 = (X, Y ), e3 = (1,−1), e4 = (X,−Y )

Then a21 = a34 = a43 = 0 and either
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• a33 = −1, a22 = −a44 6= 0; or

• a33 = 1, a22 = a44 6= 0

(4|0) : e1 = (1, 1), e2 = (1, 0), e3 = (0, X), e4 = (0, X2)

Then a21 = a23 = a24 = a31 = a32 = a41 = a42 = a43 = 0, a22 = 1, a44 =

a2
33 6= 0, a34 is unconstrained

(4|1) : e1 = (1, 1), e2 = (1, 0), e3 = (0, X2), e4 = (0, X)

Then a21 = a23 = a31 = a32 = 0, a22 = 1, a33 = a2
44 6= 0

(5|0) : e1 = 1, e2 = X, e3 = X2, e4 = X3

Then a21 = a31 = a32 = a41 = a42 = a43 = 0, a22 6= 0, a33 = a2
22, a34 =

2a22a23, a44 = a22a33 = a3
22, a23 and a24 are unconstrained

(5|1) : e1 = 1, e2 = X2, e3 = X, e4 = X3

Then a21 = a43 = 0, a33 6= 0, a22 = a2
33, a44 = a22a33 = a3

33, a34 is uncon-

strained

(6|0) : e1 = (1, 1), e2 = (1, 0), e3 = (0, X), e4 = (0, Y )

Then a21 = a23 = a24 = a31 = a32 = a41 = a42 = 0, a22 = 1 and

a33, a34, a43, a44 are unconstrained apart from a33a44 − a34a43 6= 0

(6|1) : e1 = (1, 1), e2 = (1, 0), e3 = (0, X), e4 = (0, Y )

Then a21 = a23 = a31 = a32 = 0, a22 = 1, a33 6= 0, a44 6= 0

(6|2) : e1 = (1, 1), e2 = (1, 0), e3 = (0, X), e4 = (0, Y )

Then a21 = 0, a22 = 1 and a33, a34, a43, a44 are unconstrained apart from

a33a44 − a34a43 6= 0

(7|0) : e1 = 1, e2 = X, e3 = Y, e4 = XY

Then a21 = a31 = a41 = a42 = a43 = 0, a24, a34 are unconstrained and

either

• a22 6= 0, a33 6= 0, a23 = a32 = 0, a44 = a22a33; or

• a23 6= 0, a32 6= 0, a22 = a33 = 0, a44 = a23a32

(7|1) : e1 = 1, e2 = X + Y, e3 = 2XY, e4 = X − Y

Then a21 = a31 = a32 = 0, a33 = a2
22 = a2

44 6= 0 we have cases a22 = a44

or a22 = −a44 and a23 is unconstrained
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(7|2) : e1 = 1, e2 = X, e3 = Y, e4 = XY

Then a21 = a43 = 0, a22 6= 0, a33 6= 0, a44 = a22a33, a34 is unconstrained

(7|3) : e1 = 1, e2 = XY, e3 = X, e4 = Y

Then a21 = 0 and either

• a34 = a43 = 0, a33 6= 0, a44 6= 0, a22 = a33a44; or

• a33 = a44 = 0, a34 6= 0, a43 6= 0, a22 = a34a43

(8|0) : e1 = 1, e2 = X, e3 = X2, e4 = Y

Then a21 = a31 = a32 = a34 = a41 = a42 = 0, a33 = a2
22 6= 0, a44 6=

0, a23, a24, a43 are unconstrained

(8|1) : e1 = 1, e2 = X, e3 = X2, e4 = Y

Then a21 = a31 = a32 = 0, a33 = a2
22 6= 0, a44 6= 0, a23 is unconstrained

(8|2) : e1 = 1, e2 = X2, e3 = Y, e4 = X

Then a21 = a23 = a31 = 0, a22 = a2
44 6= 0, a33 6= 0, a32 is unconstrained

(8|3) : e1 = 1, e2 = X2, e3 = X, e4 = Y

Then a21 = a43 = 0, a22 = a2
33 6= 0, a44 6= 0, a34 is unconstrained

(9|0) : e1 = 1, e2 = X, e3 = Y, e4 = Z

Then a21 = a31 = a41 = 0, a22, a23, a24, a32, a33, a34, a42, a43, a44 are uncon-

strained apart from

∣

∣

∣

∣

∣

a22 a23 a24

a32 a33 a34

a42 a43 a44

∣

∣

∣

∣

∣

6= 0

(9|1) : e1 = 1, e2 = X, e3 = Y, e4 = Z

Then a21 = a31 = 0, a44 6= 0, a22, a23, a32, a33 are unconstrained apart

from a22a33 − a23a32 6= 0

(9|2) : e1 = 1, e2 = X, e3 = Y, e4 = Z

Then a21 = 0, a22 6= 0, a33, a34, a43, a44 are unconstrained apart from

a33a44 − a34a43 6= 0

(9|3) : e1 = 1, e2 = X, e3 = Y, e4 = Z

Then there are no constraints other than

∣

∣

∣

∣

∣

a22 a23 a24

a32 a33 a34

a42 a43 a44

∣

∣

∣

∣

∣

6= 0

(10|0) :

Now M2(k) is a central simple algebra, so each automorphism must be

inner by the Skolem-Noether theorem. For A ∈ GL2(k), φA(X) = AXA−1,
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φA = id ⇔ A = λI2 for some λ 6= 0. Thus Aut(M2(k)) = GL2(k)/k
∗ =

PGL2(k)

(10|1) : e1 =
(

1 0

0 1

)

, e2 =
(

1 0

0 0

)

, e3 =
(

0 1

0 0

)

, e4 =
(

0 0

1 0

)

Then either

• a21 = 0, a22 = 1, a34 = a43 = 0, a33 6= 0, a44 = a−1
33 ; or

• a21 = 1, a22 = −1, a33 = a44 = 0, a34 6= 0, a43 = a−1
34

(11|0) : e1 =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, e2 =





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0



, e3 =





0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



, e4 =





0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0





Then a31 = a32 = a41 = a42 = 0, a23, a24 are unconstrained and either

• a21 = 0, a22 = 1, a34 = a43 = 0, a33 6= 0, a44 6= 0; or

• a21 = 1, a22 = −1, a33 = a44 = 0, a34 6= 0, a43 6= 0

(11|1) : e1 =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, e2 =





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0



, e3 =





0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



, e4 =





0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0





Then a21 = a31 = a32 = 0, a22 = 1, a33 6= 0, a44 6= 0, a23 is unconstrained

(11|2) : e1 =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, e2 =





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0



, e3 =





0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



, e4 =





0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0





Then either

• a21 = 0, a22 = 1, a34 = a43 = 0, a33 6= 0, a44 6= 0; or
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• a21 = 1, a22 = −1, a33 = a44 = 0, a34 6= 0, a43 6= 0

(11|3) : e1 =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, e2 =





0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0



, e3 =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



, e4 =





0 0 0 0

0 0 0 −1

1 0 0 0

0 0 0 0





Then a21 = a43 = 0, a34 is unconstrained, and either

• a33 = 1, a22 6= 0, a44 = a22; or

• a33 = −1, a22 6= 0, a44 = −a22

(12|0) : e1 = 1, e2 = X, e3 = Y, e4 = XY

Then a21 = a31 = a41 = a42 = a43 = 0, a44 = a22a33 − a23a32 6= 0, a24, a34

are unconstrained

(12|1) : e1 = 1, e2 = X, e3 = Y, e4 = XY

Then a21 = a43 = 0, a44 = a22a33 6= 0, a34 is unconstrained

(12|2) : e1 = 1, e2 = XY, e3 = X, e4 = Y

Then a21 = 0, a22 = a33a44 − a34a43 6= 0

(13|0) : e1 =
(

1,
(

1 0

0 1

))

, e2 =
(

0,
(

1 0

0 0

))

, e3 =
(

0,
(

0 0

0 1

))

, e4 =
(

0,
(

0 1

0 0

))

Then a21 = a23 = a31 = a32 = a41 = a42 = a43 = 0, a22 = a33 = 1, a44 6=
0, a24 = −a34

(13|1) : e1 =
(

1,
(

1 0

0 1

))

, e2 =
(

0,
(

1 0

0 0

))

, e3 =
(

0,
(

0 0

0 1

))

, e4 =
(

0,
(

0 1

0 0

))

Then a21 = a23 = a31 = a32 = 0, a22 = a33 = 1, a44 6= 0

(14|0) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 0 0

0 0 0

1 0 0

)

, e4 =

(

0 0 0

1 0 0

0 0 0

)

Then a21 = a24 = a31 = a32 = a34 = a41 = a42 = a43 = 0, a22 = 1, a33 6=
0, a44 6= 0, a23 is unconstrained

(14|1) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 0 0

0 0 0

1 0 0

)

, e4 =

(

0 0 0

1 0 0

0 0 0

)
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Then a21 = a31 = a32 = 0, a22 = 1, a33 6= 0, a44 6= 0, a23 is unconstrained

(14|2) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 0 0

1 0 0

0 0 0

)

, e4 =

(

0 0 0

0 0 0

1 0 0

)

Then a21 = a23 = a31 = a32 = 0, a22 = 1, a33 6= 0, a44 6= 0

(14|3) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 0 0

0 0 0

1 0 0

)

, e4 =

(

0 0 0

1 0 0

0 0 0

)

Then a21 = a34 = a43 = 0, a22 = 1, a33 6= 0, a44 6= 0

(15|0) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 0 1

0 0 0

0 0 0

)

, e4 =

(

0 1 0

0 0 0

0 0 0

)

Then a21 = a24 = a31 = a32 = a34 = a41 = a42 = a43 = 0, a22 = 1, a33 6=
0, a44 6= 0, a23 is unconstrained

(15|1) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 0 1

0 0 0

0 0 0

)

, e4 =

(

0 1 0

0 0 0

0 0 0

)

Then a21 = a31 = a32 = 0, a22 = 1, a33 6= 0, a44 6= 0, a23 is unconstrained

(15|2) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 1 0

0 0 0

0 0 0

)

, e4 =

(

0 0 1

0 0 0

0 0 0

)

Then a21 = a23 = a31 = a32 = 0, a22 = 1, a33 6= 0, a44 6= 0

(15|3) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 0 1

0 0 0

0 0 0

)

, e4 =

(

0 1 0

0 0 0

0 0 0

)

Then a21 = a34 = a43 = 0, a22 = 1, a33 6= 0, a44 6= 0

(16|0) : e1 = 1, e2 = X, e3 = Y, e4 = XY

Then a21 = a23 = a31 = a32 = a41 = a42 = a43 = 0, a22 6= 0, a33 6= 0, a44 =

a22a33, a24, a34 are unconstrained

(16|1) : e1 = 1, e2 = X, e3 = Y, e4 = XY

Then a21 = a43 = 0, a22 6= 0, a33 6= 0, a44 = a22a33, a34 is unconstrained

(16|2) : e1 = 1, e2 = Y, e3 = X, e4 = XY

Then a21 = a43 = 0, a22 6= 0, a33 6= 0, a44 = a22a33, a34 is unconstrained

(16|3) : e1 = 1, e2 = XY, e3 = X, e4 = Y

Then a21 = a34 = a43 = 0, a33 6= 0, a44 6= 0, a22 = a33a44

(17|0) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 0 0

0 0 0

1 0 0

)

, e4 =

(

0 0 0

0 0 0

0 1 0

)

Then a21 = a31 = a32 = a41 = a42 = 0, a22 = 1, a23, a24, a33, a34, a43, a44

are unconstrained, apart from a33a44 − a34a43 6= 0
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(17|1) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 0 0

0 0 0

1 0 0

)

, e4 =

(

0 0 0

0 0 0

0 1 0

)

Then a21 = a31 = a32 = 0, a22 = 1, a33 6= 0, a44 6= 0, a23 is unconstrained

(17|2) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 0

)

, e3 =

(

0 0 0

0 0 0

1 0 0

)

, e4 =

(

0 0 0

0 0 0

0 1 0

)

Then a21 = 0, a22 = 1, a33, a34, a43, a44 are unconstrained, apart from

a33a44 − a34a43 6= 0

(18;λ|0) for λ 6= −1: e1 = 1, e2 = X, e3 = Y, e4 = XY

If λ 6= 1: then a21 = a23 = a31 = a32 = a41 = a42 = a43 = 0, a22 6= 0, a33 6=
0, a44 = a22a33, a24, a34 are unconstrained

If λ = 1: then this is case (7|0)

(18;λ|1) for λ 6= −1: e1 = 1, e2 = X, e3 = Y, e4 = XY

Then a21 = a43 = 0, a22 6= 0, a33 6= 0, a44 = a22a33, a34 is unconstrained

(18;λ|2) for λ 6= −1: e1 = 1, e2 = XY, e3 = X, e4 = Y

If λ 6= 1: then a21 = a34 = a43 = 0, a33 6= 0, a44 6= 0, a22 = a33a44

If λ = 1: then this is case (7|3)

(19|0) : e1 = 1, e2 = XY, e3 = X, e4 = Y

Then a21 = a23 = a24 = a31 = a41 = a43 = 0, a33 6= 0, a22 = a2
33, a44 =

a33, a32, a34, a42 are unconstrained

(19|1) : e1 = 1, e2 = XY, e3 = X, e4 = Y

Then a21 = a43 = 0, a33 6= 0, a22 = a2
33, a44 = a33, a34 is unconstrained



Chapter 3

Geometric Classification

In this chapter we attempt the geometric classification problem for

4-dimensional superalgebras. While we make significant progress towards

a geometric classification theorem of 4-dimensional superalgebras, the prob-

lem is not completely solved. We must assume that our ground field, k,

is algebraically closed to apply the techniques of algebraic geometry. We

additionally assume ch(k) 6= 2, in which case the problem becomes deter-

mining which superalgebra structures listed in Theorem 2.5.1 are generic.

To make sense of these ideas, we define a new variety whose points rep-

resent superalgebra structures on an n-dimensional vector space, we call

this variety Salgn. We then study the geometry of this variety, as this helps

us attack the geometric classification problem.

3.1 Preliminaries

It is assumed that the reader need not have any familiarity with alge-

braic geometry, although this would be helpful. We do however assume a

knowledge of basic topology. In this section we shall briefly review some

of the ideas from algebraic geometry and fix the terminology that we shall

use. Again, we work over a fixed ground field k with ch(k) 6= 2, and we

now must additionally assume that k is algebraically closed.

82
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We point out that an we make a non-standard definition of varieties.

Typically varieties are defined to be irreducible, however in keeping with

the literature on the idea of geometric classification of algebraic structures,

e.g. [12, 21] we do not impose this constraint. As remarked earlier, the

main goal of the geometric classification problem is to determine the irre-

ducible components.

Our review of algebraic geometry is largely a synthesis from [7, 15, 25,

30]. The material we present is mostly standard, (except we use a slightly

different definition of variety from that in most modern treatments) so

many other books would give the reader an adequate introduction to the

subject. We shall omit proofs and references for the results which are stan-

dard. Both [16, 29] on linear algebraic groups, also provide a quick in-

troduction into algebraic geometry, which would be appropriate for our

purposes. The book [10] is quite different to most standard algebraic ge-

ometry texts, in that it approaches the subject from the functorial view-

point. While it explains some of the approaches used in Gabriel’s paper

[12], it is not really appropriate for a light introduction to the subject.

Before we begin our review of algebraic geometry, we define some

basic notions. After the review of algebraic geometry, our last topic in

this section is a review of the work done on Algn — the variety of n-

dimensional algebras.

Definition 3.1.1 Given a group G (whose operation we denote by juxtaposition

and whose identity we denote by e) and a set X , we say that G acts on X or X

has a G-action when there is a map φ : G×X → X such that

φ(e, x) = x for all x ∈ X ; and

φ(g, φ(h, x)) = φ(gh, x) for all g, h ∈ G, x ∈ X

For brevity we shall write φ(g, x) = g · x, in which case these two conditions

become:

e · x = x for all x ∈ X ; and
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g · (h · x) = (gh) · x for all g, h ∈ G, x ∈ X

The orbits in X under the action of G are the sets G · x = {g · x : g ∈ G}.

When we have a map between two sets both with actions of some

group G, we are interested in how it interacts with the action of G. In

the case that the map “preserves” the G-action on both sets we make the

following definition.

Definition 3.1.2 Suppose we have a groupG and two setsX and Y both equipped

with an action of the group G, when we have a map f : X → Y such that

f(g · x) = g · f(x) we call the map, f , G-equivariant.

Now we begin the material on introductory Algebraic Geometry.

Definition 3.1.3 Affine n-space, An is the topological space, which is kn as a

set, and is endowed with the Zariski topology which we shall define below (see

Definition 3.1.7). When thinking of kn in this manner, we shall use the notation

An to indicate this.

We set P = k[X1, . . . , Xn] and view P as a set of k-valued functions

on An, where f ∈ P assigns to the point (a1, . . . , an) ∈ An the value

f(a1, . . . , an). We say that f vanishes at (a1, . . . , an) or (a1, . . . , an) is a zero

of f if f(a1, . . . , an) = 0.

Definition 3.1.4 Given f ∈ P the vanishing set of f is defined to be

V (f) = {p ∈ An : f(p) = 0}

and more generally, if S is a set of polynomials we define the vanishing set of S

to be

V (S) = {p ∈ An : f(p) = 0 ∀f ∈ S}

If I is the ideal generated by S then V (I) = V (S), so we usually just

consider vanishing sets of ideals (and lose no generality in doing so). Note

that when R is a ring and r ∈ R we denote by (r) the ideal in R generated

by the element r. In this case, we have V (f) = V ((f)).
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Definition 3.1.5 A subset of some affine space, An, is called an algebraic set if

it is equal to the vanishing set, V (S), of some set of polynomials, S.

So V is a function, mapping subsets of P to algebraic sets (which are

subsets of An).

We remark that using some of the ideas introduced later, it should not

be too difficult to see that a set of finitely many polynomials will always

suffice to “cut out” an algebraic set.

When indexed sets of functions are being used and the range of the in-

dices is clear, we shall omit listing the range of indices in the vanishing set

for notational convenience. For example, if f j
i are functions with indices

i = 1, . . . n, j = 1, . . .m, then we shall simply write V ({f j
i }) instead of the

more cumbersome V

(

{f j
i } i=1,...,n

j=1,...,m

)

.

Lemma 3.1.6 The function V has the following properties:

(a) V (0) = V ((0)) = An, V (1) = V (P ) = ∅

(b) V (I ∩ J) = V (I) ∪ V (J)

(c) V (
⋃

α∈A Iα) =
⋂

α∈A V (Iα)

(d) If I ⊆ J then V (I) ⊇ V (J)

Properties (a) to (c) show that the collection of algebraic sets form the

closed sets for some topology on An — this is the Zariski topology. More

formally, we make the following definition.

Definition 3.1.7 The Zariski topology on An is defined by taking the open sets

to be complements of the algebraic sets in An. Now, if f ∈ P we have a special

open subset of An defined by such a function, we set D(f) = {p ∈ An : f(p) 6=
0}, we call such a subset a distinguished open subset .

Note that D(f) is the complement of the algebraic set V (f). Also no-

tice that the collection of distinguished open subsets forms a basis for the

Zariski topology.
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Examples 3.1.8 (a) The Zariski topology on A1: The closed sets in A1 are simply

the zeros of a polynomial in one variable, say x, f(x) = 0. But it is easy to

check that there can be only finitely many such zeros for a polynomial in one

variable. Thus the closed sets are ∅,A1 and any finite set of points. Thus, the

Zariski topology on A1 is simply the cofinite topology on A1.

(b) The Zariski topology on A2: A closed set in A2 is ∅,A2 or a finite union

of points and “curves”, where by curves we mean the set of zeros of some

polynomial of two variables, say x and y, f(x, y) = 0. The open sets in A2

are then simply the complements of these sets.

Remark 3.1.9 When k = R or k = C, the Zariski topology on kn is very different

to the metric topology on kn. The Zariski topology on kn is T1 since any point has

an open set not containing that point, but it is not T2 since any two open subsets

must intersect. In fact, it is due to this lack of separation, that the notion of

irreducibility is useful when using the Zariski topology, viz Remark 3.1.17. It

is also quasi-compact, that is, every open cover of the space has a finite subcover

(this is essentially the same idea as that of compactness, yet in the definition of

compactness people sometimes require that the space be T2, hence the distinction).

Definition 3.1.10 In a ring R, the radical of an ideal I is the set
√
I = {r ∈

R : rn ∈ I for some n ∈ N}. An ideal I is called radical if it is equal to its own

radical, that is I =
√
I. An ideal I is called prime if ab ∈ I implies that either

a ∈ I or b ∈ I .

Notice that all prime ideals are radical ideals.

Definition 3.1.11 On a subset X of An, one defines the ideal of functions

vanishing on X as I(X) = {f ∈ P : f(p) = 0 ∀p ∈ X}.

One can check that this is indeed an ideal of P . Moreover one can check

that each ideal I(X) is a radical ideal in P .

So I is a function, mapping subsets of An to radical ideals of P .
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Lemma 3.1.12 The function I has the following properties:

(a) I(∅) = P, I(An) = (0)

(b) I(X1 ∪X2) = I(X1) ∩ I(X2)

(c) If X1 ⊆ X2 then I(X1) ⊇ I(X2)

Since V maps subsets of P to subsets of An and I maps subsets of An to

subsets of P , the composites V ◦ I and I ◦ V are defined. It is interesting to

see what we can say about these composites. This is what we consider in

the following lemma.

Lemma 3.1.13 Now if J is an ideal of P and X, Y ⊆ An where Y is an algebraic

set in An, then we have the following statements:

(a) I(V (J)) =
√
J

(b) V (I(X)) = X (the closure being taken in the Zariski topology on An)

(c) V (I(Y )) = Y

We remark that for (a) it is relatively easy to show that
√
J ⊆ I(V (J)).

For the other inclusion we use Hilbert’s Nullstellensatz, which we give

below. We also note that part (c) follows immediately from part (b), since

algebraic sets are the closed sets in the Zariski topology.

Lemma 3.1.14 (Hilbert’s Nullstellensatz)

Let k be an algebraically closed field and let J be an ideal of P = k[X1, . . . , Xn]

and let f ∈ P be a polynomial which vanishes at all points of V (J). Then f r ∈ J

for some r ∈ N.

Now, combining several results seen so far, Lemma 3.1.6, Lemma 3.1.12

and Lemma 3.1.13, we get the following result:

Proposition 3.1.15 The assignment I 7→ V (I) sets up an inclusion reversing

bijective correspondence between radical ideals of P and algebraic subsets of An.
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This is an interesting result — it relates the topological structure of the

space An with the algebraic structure of P = k[X1, . . . , Xn].

Definition 3.1.16 A non-empty subset X of a topological space Y is called irre-

ducible if it cannot be written as the union of two proper closed subsets (where

the topology on X is the subspace topology induced from the topology of Y ).

Equivalently, X is irreducible if ∅ 6= X = X1 ∪ X2 with X1, X2 closed, then

X1 = X or X2 = X .

Remark 3.1.17 We mention that this notion is not very useful in a T2-space, as

the only irreducible subsets as single points (see exercise 1.2.2 on p3 in [29])

Lemma 3.1.18 We have the following results about irreducibility:

(a) A set X is irreducible if and only if any two open subsets of X intersect

(b) Any non-empty open subset of an irreducible set is irreducible and dense

(c) For a subset Y of X , Y is irreducible if and only if its closure in X Y , is

irreducible

(d) The image of an irreducible set under a continuous map is irreducible

Under the correspondence between radical ideals of P and algebraic

subsets of k[X1, . . .Xn] mentioned in Proposition 3.1.15, prime ideals cor-

respond to irreducible algebraic subsets.

Definition 3.1.19 For an algebraic set X ⊆ An we define the coordinate ring

of X to be A(X) = P/I(X).

We interpret elements of the coordinate ring as functions on X . If we

can only observe values that a function takes on X , then it is natural to

consider two functions to be the same if their values agree on all of X .

When this is the case, these two functions represent the same element of

the coordinate ring, that is if f(p) = g(p) for all p ∈ X then f + I(X) =

g + I(X) in the coordinate ring A(X).
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Remark 3.1.20 As seen from the above definition, from an algebraic set one can

uniquely construct an object called its coordinate ring. However it is also possible

to uniquely reconstruct an algebraic set from its coordinate ring — we omit the

details. So, in some sense the coordinate ring encodes all the information about

the algebraic set. We shall make this comment a lot more formal soon, but first we

need the notion of morphisms of algebraic sets.

Definition 3.1.21 If X ⊆ An and Y ⊆ Am are algebraic sets, then f : X → Y

is a morphism of algebraic sets if

f(X1, . . . , Xn) = (f1(X1, . . . , Xn), . . . , fm(X1, . . . , Xn))

where each fi(X1, . . . , Xn) is a polynomial in X1, . . .Xn and each point of X is

mapped to a point of Y . A morphism f : X → Y of algebraic sets is said to be an

isomorphism if there exists another morphism g : Y → X such that g◦f = idX

and f ◦ g = idY . In this case X and Y are said to be isomorphic.

Remark 3.1.22 In fact with this definition of morphisms of algebraic sets, one

obtains the category of algebraic sets, and the definition of isomorphism given

above is simply the general category theoretic definition of an isomorphim between

two objects.

We also remind the reader that in a general category, a bijective morphism

need not be an isomorphism. The category of algebraic sets provides an example

of where the two ideas need not coincide. Consider the following example given in

[30]: let C be the curve given by y2 = x3 in the xy-plane, A2, then the morphism

f from A1 (with coordinate t) to the curve C given by t 7→ (t2, t3) is bijective, but

is not an isomorphism.

It is standard to show, although we omit the details, that from a mor-

phism f : X → Y between algebraic sets, there is an induced k-algebra ho-

momorphism of coordinate rings, A(f) : A(Y ) → A(X), but in the oppo-

site direction. I have suggestively used the notation A(f) above, because

the assignment X 7→ A(X) extends to a contravariant functor between
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the category of algebraic sets and morphisms between them as defined in

Definition 3.1.21, and the category of finitely generated k-algebras with no

nilpotent elements and k-algebra homomorphisms. In fact, we have the

following result:

Proposition 3.1.23 The functor A, described above, is an (anti-)equivalence of

categories.

Thus from a finitely generated k-algebra with no nilpotent elements B,

one can construct an algebraic set which has B for its coordinate ring.

As a corollary of the above result we find that two algebraic sets are

isomorphic if and only if their coordinate rings are isomorphic. So, in this

sense, the coordinate ring contains all the information about an algebraic

set.

Remark 3.1.24 The category of irreducible algebraic sets and morphisms be-

tween them and the category of finitely generated k-algebras which are integral

domains and k-algebra homomorphisms are also (anti-)equivalent.

Definition 3.1.25 In a topological space, a subset is locally closed if it is open

in its closure or equivalently if it is the intersection of an open and a closed set.

Definition 3.1.26 If X ⊆ An is locally closed, a function f : X → k is regular

at a point p ∈ X if there is an open neighbourhood U with p ∈ U ⊆ X and

polynomials g, h ∈ k[X1, . . . , Xn] such that h is nowhere zero on U , and f = g/h

on U . We say that f is regular on X if it is regular at every point of X . The set

of regular maps X is denoted by O(X) = {f : X → k : f is regular on X}.

So regular functions are functions which are locally quotients of poly-

nomials. This need not be true globally, however. Think about the follow-

ing example given in [30]. Consider the algebraic setX = V (wx−yz) ⊆ A4,

and the subset U = D(y) ∪D(w) = {(w, x, y, z) ∈ X : w 6= 0 or y 6= 0}. The

subset U is a locally closed subset of A4. Now the function h defined by
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taking h = x
y

on D(y) and h = z
w

on D(w) is a regular function on U (note

that this function is well-defined). But it cannot be written as a quotient of

polynomials globally.

Definition 3.1.27 A variety is a locally closed subset X of An endowed with its

topology and the collection of O(U) for all U open in X .

Note that this definition is not the standard one. Nowadays most peo-

ple include irreducibility in the definition of a variety, but this is not con-

venient for our purposes. Following the literature on the geometric classi-

fication of algebraic structures e.g. [7, 12] we choose not to require this.

Definition 3.1.28 A morphism φ : X → Y between varieties is a continuous

map such that for all U ⊆ Y and all regular maps θ : U → k the composition

φ−1(U)
φ−−−→ U

θ−−−→ k

is regular. This property is sometimes stated as “φ pulls back regular functions to

regular functions”.

It is useful to notice that a morphism must in particular be a continuous

map.

Algebraic sets give us an examples of a special kind of variety, which

we define now.

Definition 3.1.29 An affine variety is one which is isomorphic to a closed sub-

set of An for some n.

We give a proof of the following result, since it is important in the later

sections of the chapter. It does however follow from a more general result.

We do not state or prove the more general version since we have no need

for it — Lemma 3.1.30 will suffice for our purposes.
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Lemma 3.1.30 Suppose we are given varieties X ⊆ An and Y ⊆ Am and

f = (f1, . . . , fm) : X → Y a function between these varieties such that each

component fi of the funcion is a rational function with non-vanishing denomina-

tor, i.e. for all i ∈ {1, . . . , m}, fi(x1, . . . , xn) = pi(x1,...,xn)
qi(x1,...,xn)

with qi(x1, . . . , xn)

non-vanishing. Then f is a morphism of varieties.

Proof:

Suppose h(y1, . . . , ym) = 0 where h(y1, . . . , ym) is a polynomial. Then the

preimage f−1(V (h)) is given by the points inX satisfying (h◦f)(x1, . . . , xn)

= 0, i.e.

h

(

p1(x1, . . . , xn)

q1(x1, . . . , xn)
, . . . ,

pm(x1, . . . , xn)

qm(x1, . . . , xn)

)

= 0 (†)

Since each qi(x1, . . . , xn) is non-zero we may multiply through by suffi-

ciently large powers of the qi to clear the denominators in the above. It fol-

lows that we get some polynomial h̃(x1, . . . , xn) such that h̃(x1, . . . , xn) =

0 ⇔ (h◦f)(x1, . . . , xn) = 0. Thus f−1(V (h)) = V (h̃), hence f is continuous.

Suppose that U ⊆ Y is open and θ : U → k is regular. Then given

x ∈ f−1(U) let y = f(x). By hypothesis y has a neighbourhood V such that

θ|U∩V = g/h with g, h ∈ k[y1, . . . , ym] with h non-vanishing on V . Then

f−1(V ) is a neighbourhood of x such that

θ ◦ f |f−1(U)∩f−1(V ) =
g
(

p1(x1,...,xn)
q1(x1,...,xn)

, . . . , pm(x1,...,xn)
qm(x1,...,xn)

)

h
(

p1(x1,...,xn)
q1(x1,...,xn)

, . . . , pm(x1,...,xn)
qm(x1,...,xn)

) (‡)

we can multiply through the numerator and denominator by suitably large

powers of qi to obtain polynomials on the numerator and denominator.

After doing this, say we obtain θ ◦ f |f−1(U)∩f−1(V ) = g′

h′
, where g′, h′ ∈

k[x1, . . . , xn].

Now, we know that h is non-vanishing on V , i.e. V (h)∩ V = ∅, so then

V (h) ∩ V = ∅ ⇒ f−1(V (h) ∩ V ) = f−1(∅) = ∅
⇒ f−1(V (h)) ∩ f−1(V ) = ∅
⇒ V (h̃) ∩ f−1(V ) = ∅
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Notice that h′ and h̃ differ by a factor of terms qni

i , i.e. h′ =
∏n

i=1 q
ni

i h̃ (since,

in general, we will need to multiply (‡) through by more factors of qi than

(†) to ensure that both numerator and denominator are polynomials). But

since the qi are non-vanishing V (h′) = V (h̃), so V (h′)∩ f−1(V ) = ∅ too, i.e.

h′ is non-vanishing on f−1(V ).

Thus we have shown that the composite θ ◦ f is regular, i.e. f pulls

back regular functions to regular functions. Hence f is a morphism. �

Actually, using the more general version of this lemma (where we only

require that the component functions be regular functions, not necessarily

rational functions with non-vanishing denominator) we can give an even

better characterization of morphism.

Lemma 3.1.31 f = (f1, . . . , fm) : X → Y is a morphism of varieties if and only

if the components fi are regular functions on X .

Proof:

The generalised version of Lemma 3.1.30 gives the sufficiency. To see the

necessity, suppose that f is a morphism. Now with πi the projection func-

tion defined as follows πi(x1, . . . , xm) = xi, we see that πi is a regular func-

tion and thus fi = πi ◦ f must be regular.

�

Definition 3.1.32 A topological space X is called Noetherian if it satisfies the

descending chain condition for closed subsets: that is, for any sequence Y1 ⊇ Y2 ⊇
. . . of closed subsets, there is an integer r ∈ N such that Yr = Yr+1 = . . ..

We shall soon show that affine space, An is a Noetherian topological

space.

Remark 3.1.33 The definition of a Noetherian ring is very similar to the defini-

tion of a Noetherian algebra, given in the previous chapter. A ring R is Noethe-

rian if it satisfies the ascending chain condition for ideals: that is, for any sequence

I1 ⊆ I2 ⊆ . . . of ideals there is an integer r ∈ N such that Ir = Ir+1 = . . ..
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Lemma 3.1.34 (The Hilbert Basis Theorem)

If a ring R is Noetherian, then R[X] is also Noetherian.

By inductively applying this result, we get the following.

Corollary 3.1.35 k[X1, . . . , Xn] is Noetherian

Examples 3.1.36 We have the following examples of Noetherian spaces:

(a) An is a Noetherian topological space. Suppose Y1 ⊇ Y2 ⊇ . . . is a descending

chain of closed subsets, then I(Y1) ⊆ I(Y2) ⊆ . . . is an ascending chain

of ideals in P = k[X1, . . . , Xn]. However, P is a Noetherian ring, so this

chain must eventually stabilize, say I(Yr) = I(Yr+1) = . . .. Then using

Yi = V (I(Yi)) we see that Yr = Yr+1 = . . .. So any descending chain of

closed subsets must stabilize, giving the desired result.

(b) If a topological space is Noetherian, then so is any closed subspace.

Lemma 3.1.37 In a Noetherian topological space X , every non-empty closed

subset Y can be expressed as a finite union Y = Y1 ∪ . . . ∪ Yr of irreducible

closed subsets Yi. If we require that Yi * Yj for i 6= j then the Yi are uniquely

determined. They are called the irreducible components of Y .

Remark 3.1.38 We have the following observations on the above result:

(a) There are only finitely many irreducible components,

(b) This decomposition is unique up to reordering,

(c) The irreducible components are the maximal irreducible subsets of the space,

(d) The irreducible components are closed (since if X is irreducible then so is X)

As a corollary of the above result we see that every algebraic set can be

written as a finite union of irreducible algebraic sets.
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Definition 3.1.39 If X is a topological space, we define the dimension of X

(denoted dimX) to be the supremum of all integers n such that there exists a

chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn of distinct irreducible closed subsets of X . We define

the dimension of a variety to be its dimension as a topological space.

Definition 3.1.40 In a ring R, the height of a prime ideal, p, is the supremum

of all integers n such that there exists a chain p0 ⊂ p1 ⊂ pn = p of distinct prime

ideals. We define the Krull dimension of R to be the supremum of the heights of

all prime ideals in R.

Lemma 3.1.41 We have the following facts about dimension:

(a) For an algebraic set X , the dimension of X is equal to the Krull dimension of

its coordinate ring A(X)

(b) The dimension of An is n

(c) If U 6= ∅ is open in an irreducible variety X , then dimU = dimX

(d) If X =
⋃n

i=1 Ui with the Ui irreducible, then dimX = maxi∈{1,...,n}{dimUi}

(e) If X ⊆ Y then dimX ≤ dimY , moreover if X is closed and Y is irreducible,

then X ⊂ Y implies dimX < dimY

The following result may be well known, however we include a short

proof. It is a result that, if it were not true, then something would be wrong

with our notion of variety. Essentially it says that it doesn’t matter how we

view an r-dimensional affine space — as an affine space in its own right

or as a vector subspace of a larger affine space — they both share the same

properties as varieties.

Lemma 3.1.42 An r-dimensional vector subspace W of An with n > r is iso-

morphic as a variety to Ar. In particular this means that W is irreducible and as

a variety has dimension r.
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Proof:

A vector subspace W of An is the solution space of a system of homo-

geneous linear equations in the n unknowns x1, . . . , xn. Since W is r-

dimensional, exactly n − r of these linear equations are linearly indepen-

dent.

If the homogeneous linear system is Ax = 0, then by reducing the coef-

ficient matrix A to row-echelon form and permuting some of the Xi if nec-

essary, we may assume that the linear equations are fi =

xi +
∑n

j=n−r+1 aijxj for 1 ≤ i ≤ n− r.

The map φ : k[x1, . . . , xn] → k[x1, . . . , xn] defined by

φ(xi) =

{

fi, 1 ≤ i ≤ r,

xi, r < i ≤ n

is an automorphism. One can check that this map sends the prime ideal

(x1, . . . , xn−r) to the prime ideal (f1, . . . , fn−r). Hence φ induces an isomor-

phism k[x1, . . . , xn]/(x1, . . . xn−r) ∼= k[x1, . . . , xn]/(f1, . . . , fn−r). We com-

pose this with the following isomorphisms k[x1, . . . , xr] ∼= k[xn−r, . . . , xn]
∼= k[x1, . . . , xn]/(x1, . . . , xn−r) to obtain the isomorphism k[x1, . . . , xr] ∼=
k[x1, . . . , xn]/(f1, . . . fn−r).

Now notice that k[x1, . . . , xn]/(f1, . . . , fn−r) is the coordinate ring of W

and k[x1, . . . , xr] is the coordinate ring of Ar. The isomorphism of coor-

dinate rings induces an isomorphism of the varieties W and Ar, as men-

tioned after Proposition 3.1.23, (which implies that W and Ar are homeo-

morphic as topological spaces with the Zariski topology).

Since Ar is irreducible, so must W . Also the isomorphism between W

and Ar shows that chains of closed irreducible subsets inW , with length n,

correspond to such chains in Ar also having length n, and vice versa. This

implies that, as a variety, the dimension of W and Ar must be the same.

But by Lemma 3.1.41 (b), dim Ar = r. �

Definition 3.1.43 We define the local dimension at x ∈ X as dimxX =

min{dimU : U is a neighbourhood in X of x}
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Lemma 3.1.44 dimxX = max{dimZ : Z is an irreducible component of X

containing x}

Definition 3.1.45 A morphism f : X → Y is dominating if its image is dense

in Y , i.e. Y = f(X).

We shall now list several results from Mumford’s book [25], which we

shall use later. Note that Mumford adopts the more common definition of

variety and requires his varieties to be irreducible. This should be kept in

mind while reading these next few results.

Lemma 3.1.46 ([25, Chapter 1 §8 Proposition 1])

If f : X → Y is any morphism, let Z = f(X). Then Z is irreducible and the

restricted morphism f ′ : X → Z is dominating.

Lemma 3.1.47 ([25, Chapter 1 §8 Theorem 3])

Let f : X → Y be a dominating morphism of varieties and let r = dimX −
dimY . Then there exists a non-empty open set U ⊂ Y such that:

(i) U ⊆ f(X)

(ii) for all irreducible subsets W ⊆ Y such that W ∩ U 6= ∅, and for all compo-

nents Z of f−1(W ) such that Z ∩ f−1(U) 6= ∅

dimZ = dimW + r

or codim(Z in X) = codim(W in Y )

Definition 3.1.48 A function f : X → Z is said to be upper semicontinuous

if the set {x ∈ X : f(x) ≥ n} is closed in X for all n ∈ Z.

Lemma 3.1.49 (essentially [25, Chapter 1 §8 Corollary 3])

If f : X → Y is a morphism of varieties then the function x 7→ dimx f
−1(f(x))

is upper semicontinuous.
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Definition 3.1.50 If V is a vector space and W a subset of V , then W is called a

cone in V ifW contains the zero vector and is closed under scalar multiplication.

In Section 3.4 we shall require use of a lemma given in [8] which is

apparently well-known. We give this lemma now. In [7], a sketch of a

proof is given, where it is derived as a special case of Lemma 3.1.49 above.

Lemma 3.1.51 SupposeX is a variety, V a vector space and we are given subsets

Vx ⊆ V for all x ∈ X . Suppose that

(a) each Vx is a cone in V

(b) {(x, v) : v ∈ Vx} is closed in X × V

Then the map x 7→ dimVx is upper semicontinuous.

We shall on occasion want to talk about products of varieties, Crawley-

Boevey notes in [7] that given two varieties X, Y then X×Y has the struc-

ture of a variety. All we shall do here is indicate how one can naturally

view the product of locally closed subsets X ⊆ An, Y ⊆ Am as a locally

closed subset X × Y ⊆ An+m.

Suppose that X ⊂ An and Y ⊂ Am are varieties, then they are both

the intersection of open and closed sets and since the distinguished open

subsetsD(f) form a basis for the Zariski topology we must be able to write

each as follows: X = V ({ei})∩
(

⋃

β D(fβ)
)

and Y = V ({gj})∩
(

⋃

γ D(hγ)
)

.

(Notice that we know there must only be finitely many of the indices i and

j). The product of these is then the variety in An+m defined by X × Y =

V ({ei, gj}) ∩
(

⋃

β D(fβ)
)

∩
(

⋃

γ D(hγ)
)

.

It is important to realize, however, that the topology on the product va-

riety is not the product topology from the topologies on each variety. For

example, A1 × A1 with the product topology has only points, horizontal

and vertical lines for its closed sets, whereas the topology on the product

variety A1×A1 ∼= A2, has these and many more closed sets, in addition. Its

closed sets are the vanishing sets of polynomials of two variables. In this
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case, where the varieties are, in fact, algebraic sets, this can be further ex-

plained by the fact that the coordinate ring of the product of the algebraic

sets is isomorphic to the tensor product of the coordinate rings.

Lemma 3.1.52 The product of two irreducible varieties is irreducible.

Finally we give a quick review of the work already done on Algn the

variety of n-dimensional algebras. This variety was studied in detail by

Gabriel in [12], however it was known and used in other papers (see, for

example, [11]) before this time. Since then, there has been more work done

on it. However its study does not seem to have the popularity that the

study of module varieties does.

General properties of Algn are given in [7, 12, 17]. The paper [18] also

contains a short introduction to the variety Algn. The geometric classifi-

cation problem for algebras of dimension n is equivalent to finding the

irreducible components of Algn. Classification of algebras of dimension

≤ 4 is given in [12]. The case of algebras of dimension 5 is given in [21]

and [13] lists some special irreducible components (“rigid” components)

for Alg6 working over the field C.

Our review of this material will be brief since we shall study these

ideas, for the case of superalgebras, in more detail in the body of the chap-

ter. We remind the reader that when we say “algebra” without qualifi-

cation, it shall mean a unitary associative algebra. On several occasions

we will mention non-unitary associative algebras, in which case we shall

make this clear.

On an n-dimensional vector space V , a (unitary associative) algebra

structure on V gives rise to the set of structure constants (αk
ij) ∈ An3

.

Choose a basis for V , say {e1, . . . , en}, the structure constants are then

determined by the multiplication on V so that

eiej =
n
∑

k=1

αk
ijek
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Conversely, the structure constants induces an algebra structure on V ,

where the multiplication of basis vectors is given by the previous formula.

Multiplication is then extended to the whole of V by linearity. It is impor-

tant to notice that isomorphic algebras can give rise to different structure

constants — even a single algebra structure on V may give rise to differ-

ent structure constants, when using different bases. Structure constants

correspond to an n-dimensional algebra with some given basis. Although

an n-dimensional algebra with a given basis gives rise to a unique set of

structure constants in An3

, this correspondence isn’t one-to-one, since a

different basis on the same algebra may give rise to the same structure

constants.

The structure constants must obey certain equations to reflect the fact

that they represent associative, unitary algebra structures. In terms of the

basis elements, these equations can be written:

e1ei = ei

eie1 = ei

(eiej)ek = ei(ejek)

Which translate into the following relations amongst the structure con-

stants:

αj
1i − δj

i = 0 (△.1)

αj
i1 − δj

i = 0 (△.2)

n
∑

l=1

(αl
ijα

m
lk − αm

il α
l
jk) = 0 (△.3)

Definition 3.1.53 We define:
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(a) Algn — the variety of (unitary associative) algebras, with the identity fixed

at the first element of the basis — to be the variety in An3

, which is cut out by

the above 3 sets of equations, (△.1)–(△.3).

(b) Sn — the variety of associative (and perhaps non-unitary) algebras — to be

the variety in An3

cut out by the equations in (△.3) above.

(c) Alg′
n — the variety of (unitary associative) algebras, without requiring the

identity to be the first member of (or even in) the basis — to be Alg′
n = {(αk

ij ∈
Sn : (αk

ij) defines a unitary algebra }

Notice that Alg′
n was the variety originally studied by Gabriel in [12]

and others. However following [18] we are more interested in the related

variety Algn.

Lemma 3.1.54 We have the following results about the above varieties:

(a) Algn and Sn are algebraic sets and hence affine varieties.

(b) Alg′
n is an affine variety.

Proof:

Part (a) is easy. The proof of part (b) can be found in [12] or in [7]. The

proof given in [7] is essentially identical to our proof of Lemma 3.2.4. �

We can equivalently write the multiplication of the algebra as an ele-

ment µ ∈ Hom(V ⊗ V, V ). Thus the structure constants (αk
ij) ∈ Sn or Alg′

n

give rise to such an element and it must obey the following equation:

µ ◦ (µ⊗ id) = µ ◦ (id⊗µ)

If the structure constants, (αk
ij), actually belong to Algn then this element

must obey the following two equations also:

µ(e1 ⊗ ei) = ei

µ(ei ⊗ e1) = ei
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Conversely, an element µ ∈ Hom(V ⊗ V, V ) obeying the first equation

above, along with a choice of basis, gives rise to structure constants (αk
ij)

which is a point in Sn or perhaps Alg′
n. If this element µ obeys all three

equations above, then the structure constants (αk
ij) is a point in Algn. We

shall, on occasion, use this alternate notation instead of the structure con-

stants.

Since Algn was defined with the identity fixed as the first element of

the basis, when we consider an action on Algn we must use maps which

send the first element of the basis to itself. Thus a subgroup Gn of GLn acts

on Algn not the whole group as one might expect. We can describe Gn for

n ≥ 2 as follows:

Gn =

{(

1 bT

0 Σ

)

: Σ ∈ GLn−1, b ∈ kn−1

}

Now, there is an action of Gn on Algn. If we let Λ = (λj
i ) ∈ Gn and

(νj
i ) = Λ−1 this can be described as follows:

Λ · (αk
ij) =

(

n
∑

l,p,q=1

νk
l α

l
pqλ

p
iλ

q
j

)

or in the alternate notation:

Λ · µ = Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1)

There are also actions of GLn on Sn and Alg′
n which are given by the

same formulae as above, except now allowing Λ ∈ GLn. Any of these

actions may be referred to as the “transport of structure actions” .

Lemma 3.1.55 The orbits under Gn in Algn and the orbits under GLn in Alg′
n

can be identified with the isomorphism classes of n-dimensional (unitary associa-

tive) algebras.

Thus, for an n-dimensional algebra, A, we shall speak of its orbit in

either Algn denoted by Gn ·A, or in Alg′
n denoted by GLn ·A, and mean the
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orbit in Algn or Alg′
n respectively, which is identified with the isomorphism

class of A as mentioned in the lemma above.

We now introduce a very important idea in the study of these varieties

— the idea of degeneration. It is very useful when trying to determine the

irreducible components of these varieties.

Definition 3.1.56 For n-dimensional algebras A and B, if there exists a point

(αk
ij) ∈ Gn · B such that (ak

ij) ∈ Gn · A then we say that A degenerates to B

and denote this by A→ B.

This notion of degeneration extends to a partial order (≤degr) on the isomor-

phism classes of n-dimensional algebras. We write B ≤degr A if and only if A

degenerates to B.

Depending on which variety we use (Algn or Alg′
n) we could potentially

end up with two different degeneration partial orders on the isomorphism

classes of n-dimensional algebras. However, it would be nice to think that

the idea of degeneration was intrinsic to the algebra, and these two partial

orders would thus be the same. This is indeed the case, as remarked in

[18]. So, in this way, these two varieties share a similar geometry.

Definition 3.1.57 If A and B are n-dimensional algebras, a specialization of

A to B is the following situation: one makes a change of basis inA to a “variable”

basis, i.e. one involving some unknown t, such that the point of Algn (or Alg′
n)

obtained by structural transport is given by polynomial functions in t and lies in

the orbit of A for t 6= 0, yet at t = 0 lies in the orbit B.

If there is a specialization from A toB, then there must also be a degen-

eration from A to B (we prove this in the case of superalgebras in Corol-

lary 3.4.3. It should be clear how to alter that proof to apply to the algebra

case).

Lemma 3.1.58 ([12, Proposition 2.2])

In Alg′
n there is one closed orbit, which is the orbit which is identified with

isomorphism class of k[X1, . . . , Xn−1]/(X1, . . . , Xn−1)
2.
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The next lemma follows from the previous lemma without too much

work. (The ideas for this proof are contained in the proof of Proposi-

tion 3.4.5).

Lemma 3.1.59 Alg′
n is connected for all n

The above two results were proved for Alg′
n in [12], but the proofs carry

over to the case of Algn too. The proof of the first result follows from these

facts:

• each algebra structure in Algn degenerates to the algebra structure

on k[X1, . . . , Xn−1]/(X1, . . . , Xn−1)
2

• thus the orbit of k[X1, . . . , Xn−1]/(X1, . . . , Xn−1)
2 has minimal dimen-

sion

• orbits of minimal dimension are closed

We would like to think that the following result also holds in Algn but

we have not checked through the details.

Lemma 3.1.60 ([12, Corollary 2.5])

The orbit of an n-dimensional algebra A is open in Alg′
n if H2(A,A) = 0,

(where H2(A,A) is the Hochschild cohomology group of the algebra A).

The converse of the above lemma need not hold in general however,

e.g. in the case of 5-dimensional algebras Mazzola mentions that alge-

bra (26) in his classification has an open orbit, yet H2((26), (26)) is two-

dimensional.

To show that A does not degenerate to B, it is enough to show a closed

subset containing the orbit of A, disjoint from the orbit of B. So we are

interested in closed subsets of Algn or Alg′
n which are stable under the

actions of Gn or GLn respectively. The following provides us with some

such subsets. Since Algn is a closed subvariety of Alg′
n the analogous sets

in Algn are also closed.
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Lemma 3.1.61 ([12, Proposition 2.7])

The following subsets of Alg′
n are Zariski-closed (where s is any fixed value):

(a) {A ∈ Alg′
n : dim J(A) ≥ s}

(b) {A ∈ Alg′
n : dimZ(A) ≥ s}

(c) {A ∈ Alg′
n : number of blocks ≤ s}

(d) {A ∈ Alg′
n : A is basic, i.e. A/J(A) ∼= kt for some t}

For the degeneration diagrams and a list of the irreducible components

of Alg′
n for n ≤ 4 see [12]. For a list of the irreducible components in the

case n = 5 see [21].

This concludes our preliminaries section.
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3.2 The variety Salgn and its properties

In the preliminaries, we summarised the work done on Algn. From this, it

should be clear that the idea of using structure constants in some variety

to represent an algebraic object is very useful. The question is then, how

do we modify the analysis used to study Algn so that we have some sort of

structure constants to represent an n-dimensional superalgebra structure

on V ? To answer this, we remark that a superalgebra A = A0 ⊕ A1 is the

same as the pair (A, σ) whereA is an algebra and σ is an algebra involution

on A. Given a superalgebra A = A0 ⊕A1 the Z2-grading induces the main

involution, given by σ(a0 + a1) = a0 − a1 where ai ∈ Ai. Conversely any

algebra involution σ induces a Z2-grading on A via A0 = {a ∈ A : σ(a) =

a}, A1 = {a ∈ A : σ(a) = −a} (and the main involution induced from this

Z2-grading is σ).

The algebra involution σ on an algebra A (as a linear map from A

to itself) may be described by the set of constants (γj
i ) ∈ An2

satisfying

σ(ei) =
∑n

j=1 γ
j
i ej . It follows then, that to each superalgebra, (A, σ), we can

associate a set of augmented structure constants (αk
ij , γ

j
i ) ∈ An3+n2

where

(αk
ij) are the structure constants determined by the algebra structure of A

and (γj
i ) the constants determined by the Z2-grading in the above man-

ner. For brevity we simply refer to the (αk
ij, γ

j
i ) as “structure constants”

from here on. However it is not true that an arbitrary set of augmented

structure constants can give rise to a superalgebra. The structure constants

must obey certain relations to reflect how we have defined a superalgebra.

As a superalgebra (A, σ) must in particular be a unitary associative

algebra, we have a multiplicative identity which we always take to be the

first element of our basis, e1. Then to be a unitary associative algebra we

have the following conditions:

e1ei = ei
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eie1 = ei

(eiej)ek = ei(ejek)

Which translate into the following relations amongst the structure con-

stants:

αj
1i − δj

i = 0 (3.1)

αj
i1 − δj

i = 0 (3.2)

n
∑

l=1

(αl
ijα

m
lk − αm

il α
l
jk) = 0 (3.3)

For σ to be an algebra involution means that:

σ(e1) = e1

σ(eiej) = σ(ei)σ(ej)

σ2(ei) = ei

These become the following relations in terms of the structure con-

stants:

γj
1 − δj

1 = 0 (3.4)

n
∑

k=1

αk
ijγ

m
k −

n
∑

k,l=1

γk
i γ

l
jα

m
kl = 0 (3.5)

n
∑

j=1

γj
i γ

k
j − δk

i = 0 (3.6)



CHAPTER 3. GEOMETRIC CLASSIFICATION 108

It is precisely those structure constants obeying the relations (3.1)–(3.6)

given above which give rise to superalgebras.

Definition 3.2.1 The equations (3.1)–(3.6) given above cut out a variety in An3+n2

which we shall call Salgn — the variety of n-dimensional superalgebras.

It shall be our interest for the rest of the chapter to study the geometry

of Salgn. We will see that the geometry of Salgn is influenced by that of

Algn — but Salgn also has a more rich geometrical structure.

Definition 3.2.2 We define SAn — the variety of n-dimensional superalge-

bras not requiring existence of a unit — to be the subvariety of An3+n2

cut

out by equations (3.3), (3.5) and (3.6).

One checks that ifA is a unitary algebra and σ : A→ A satisfies σ(xy) =

σ(x)σ(y) and σ2 = idA then σ(1A) = 1A (This follows from the more general

fact that any invertible homomorphism σ : A→ B between rings with unit

must map the identity to the identity, i.e. σ(1A) = 1B), which after a little

thought shows that Salgn = SAn ∩V ({αj
1i − δj

i , α
j
i1 − δj

i }). So we obtain the

following result:

Lemma 3.2.3 Salgn is a closed subvariety of SAn.

A point (αk
ij, γ

j
i ) in SAn clearly gives rise to elements µ ∈ Hom(V ⊗V, V )

and σ ∈ Hom(V, V ) from the multiplication structure constants (αk
ij) and

the Z2-grading structure constants (γj
i ) respectively. These elements obey

the following equations:

µ ◦ (µ⊗ id) = µ ◦ (id⊗µ) (3.7)

µ ◦ (σ ⊗ σ) = σ ◦ µ (3.8)

σ ◦ σ = id (3.9)
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If the point (αk
ij , γ

j
i ) not only belongs to SAn but in fact belongs to Salgn

then the elements µ, σ described earlier satisfy the following three equa-

tions in addition to (3.7)–(3.9) above:

µ(e1 ⊗ ei) = ei (3.10)

µ(ei ⊗ e1) = ei (3.11)

σ(e1) = e1 (3.12)

Conversely, assuming that V has a chosen basis, then any pair elements

µ ∈ Hom(V ⊗V, V ) and σ ∈ Hom(V, V ) obeying equations (3.7)–(3.9) above

give rise to a point (αk
ij , γ

j
i ) in SAn. If these elements obey equations (3.10)–

(3.12) as well, then the point (αk
ij , γ

j
i ) actually belongs to Salgn. We shall, on

occasion, use this alternate notation to represent points in Salgn or SAn —

it often turns out to be more straightforward to do calculations with this.

(The proof of Lemma 3.2.6 uses this notation. While the proof could be

done using the structure constants notation, it is far more cumbersome).

It is important to notice the way that we have defined Salgn — requir-

ing the identity to be fixed — is analogous to the way Algn is defined in

[18], but is not analogous to the way Algn was defined in [12] (the defini-

tion given in [12] corresponds to our variety Alg′
n). We define Salg′

n to be

the subset of SAn which consists of superalgebras with unit, but not nec-

essarily requiring the unit to be the first element (or even in) the basis (this

is to distinguish between the two possible definitions for Salgn). It is Salg′
n

whose definition is analogous to the case treated in [12].

Lemma 3.2.4 Salg′
n is an open affine subvariety of SAn.

Proof:

Our proof of this lemma follows from making minor alterations to the

proof given in [7] for the algebra case. One should note that the alterations
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are trivial, since the question of existence of an identity depends only on

the underlying algebra of the given superalgebra. Here we use the alter-

nate notation and consider points in SAn as a pair (µ, σ) ∈ Hom(V ⊗V, V )×
Hom(V, V ), the first element giving the multiplication of the superalgebra

and the second giving the Z2-grading.

Suppose that an algebra A has multiplication given by µ ∈ Hom(V ⊗
V, V ). Denote by lµa and rµ

a respectively the maps defined by left and right

multiplication by an element a ∈ A, that is, lµa (x) = µ(a ⊗ x), rµ
a (x) =

µ(x ⊗ a). As noted in [7], A has 1 if and only if lµa and rµ
a are invertible, in

which case the unit is [lµa ]−1(a).

The set Da = {(µ, σ) ∈ SAn : det(lµa) det(rµ
a ) 6= 0} is open in SAn and

Salg′
n =

⋃

a Da, by the above. Thus Salg′
n is open in SAn.

If we denote by 1µ the unit for the multiplication given by µ, then the

map Salg′
n → An given by (µ, σ) 7→ 1µ is a regular map, since on Da it

is equal to µ 7→ [lµa ]−1(a) which is a quotient of polynomials, with non-

vanishing denominators.

So Salgn
∼= {((µ, σ), x) ∈ SAn ×An : x is a unit for µ} via the morphisms

(µ, σ) 7→ ((µ, σ), 1µ) and ((µ, σ), x) 7→ (µ, σ). The set on the right is closed

since for x ∈ An one can find cj such that x =
∑n

i=1 cjej . The conditions

µ(x ⊗ ei) = ei and µ(ei ⊗ x) = ei then translate into
∑n

j=1 cjα
k
ji = δk

i and
∑n

j=1 cjα
k
ij = δk

i . Thus Salg′
n is isomorphic to a closed subset of an affine

space, so is an affine variety. �

Similarly to the situation remarked in [18], since for our definition of

Salgn we require that the identity be the first element in the basis of any

superalgebra, a subgroup Gn of GLn acts on Salgn (not the full group GLn

as one may expect). This action is induced by considering what happens

to the structure constants when one makes a basis change. As the iden-

tity must be the first element in the basis, this means that the first col-

umn of the matrix describing the basis change must be
(

1 0 . . . 0
)T

(identifying the given basis {e1 = 1, e2, . . . , en} with the standard basis

vectors for kn). Hence we can describe Gn for n ≥ 2 as follows: Gn =
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{(

1 bT

0 Σ

)

: Σ ∈ GLn−1, b ∈ kn−1

}

.

Remark 3.2.5 If one so desired, our methods could be modified to study Salg′
n

with it’s action of GLn. However, one would hope that the geometry of both spaces

are very similar — in particular we would like the degeneration partial orders in-

duced in each space to coincide (the degeneration partial order will be introduced

in the Section 3.3). We would hope that such properties are intrinsic to the su-

peralgebras and thus not depend on the way in which they are represented by a

particular variety. We have not investigated this thoroughly, although in [18], it

is remarked that this is the case for the degeneration partial orders in Algn and

Alg′
n.

Let Λ = (λj
i ) ∈ Gn and (νj

i ) = Λ−1. Then we can describe the action of

Gn on Salgn as follows:

Λ · (αk
ij, γ

j
i ) = (

n
∑

l,p,q=1

νk
l α

l
pqλ

p
iλ

q
j ,

n
∑

k,l=1

νj
kγ

k
l λ

l
i) = (α′k

ij , γ
′j
i )

Firstly, recall that the formula for the inverse of a matrix means that we can

express the entries νj
i of the matrix Λ−1 as a polynomial in the entries λj

i

of the matrix Λ and 1/ det(Λ). Then the above formula expresses the new

structure constants α′k
ij , γ

′j
i in Salgn as a polynomial in the old structure

constants αk
ij , γ

j
i , the entries of the matrix Λ ∈ Gn and 1/ det(Λ) which

has non-vanishing denominator. Hence we may apply Lemma 3.1.30 to

see that the action gives us a morphism Gn × Salgn → Salgn. The same

reasoning also shows that the transport of structure action on Algn gives a

morphism Gn × Algn → Algn.

Notice that if one uses the alternate notation, writing the multiplication

as an element µ of Homk(V ⊗ V, V ) and the Z2-grading σ as an element of

Homk(V, V ), then the action of Λ ∈ Gn on Salgn is given by:

Λ · (µ, σ) = (Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1),Λ ◦ σ ◦ Λ−1)
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Then one sees instantly that the action of Gn on Salgn is simply the trans-

port of structure action from Algn on the first component (which gives the

algebra structure) and conjugation on the second component (which gives

the Z2-grading).

We may refer to the above action of Gn on Salgn as the transport of

structure action. However as it is the only action ofGn on Salgn considered

here, we shall often simply refer to it as the action of Gn on Salgn

Lemma 3.2.6 The transport of structure action on Salgn is well-defined.

Proof:

First we check that this action is well-defined. Let µ′ = Λ ◦ µ ◦ (Λ−1 ⊗
Λ−1) and σ′ = Λ ◦ σ ◦ Λ−1. Then as Λ · (µ, σ) = (µ′, σ′), showing that

the action is well-defined amounts to showing that when the pair (µ, σ)

satisfies equations (3.7)–(3.12), so too must (µ′, σ′).

Now note that since Λ ∈ Gn then Λe1 = e1 and Λ−1e1 = e1 too.

µ′(e1 ⊗ ei) = (Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1))(e1 ⊗ ei)

= (Λ ◦ µ)(Λ−1e1 ⊗ Λ−1ei)

= Λ(µ(e1 ⊗ Λ−1ei))

= Λ(Λ−1ei)

= ei

µ′(ei ⊗ e1) = (Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1))(ei ⊗ e1)

= (Λ ◦ µ)(Λ−1ei ⊗ Λ−1e1)

= Λ(µ(Λ−1ei ⊗ e1))

= Λ(Λ−1ei)

= ei
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µ′ ◦ (µ′ ⊗ id) = Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1) ◦ ((Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1)) ⊗ id)

= Λ ◦ µ ◦ ((Λ−1 ◦ Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1)) ⊗ (Λ−1 ◦ id))

= Λ ◦ µ ◦ ((µ ◦ (Λ−1 ⊗ Λ−1)) ⊗ (id ◦Λ−1))

= Λ ◦ µ ◦ (µ⊗ id) ◦ (Λ−1 ⊗ Λ−1 ⊗ Λ−1)

= Λ ◦ µ ◦ (id⊗µ) ◦ (Λ−1 ⊗ Λ−1 ⊗ Λ−1)

= Λ ◦ µ ◦ (Λ−1 ⊗ (µ ◦ (Λ−1 ⊗ Λ−1)))

= Λ ◦ µ ◦ (Λ−1 ⊗ (Λ−1 ◦ Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1)))

= Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1) ◦ (id⊗(Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1)))

= µ′ ◦ (id⊗µ′)

σ′(e1) = (Λ ◦ σ ◦ Λ−1)(e1)

= Λ(σ(Λ−1(e1)))

= Λ(σ(e1))

= Λ(e1)

= e1

µ′ ◦ (σ′ ⊗ σ′) = Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1) ◦ ((Λ ◦ σ ◦ Λ−1) ⊗ (Λ ◦ σ ◦ Λ−1))

= Λ ◦ µ ◦ ((Λ−1 ◦ Λ ◦ σ ◦ Λ−1) ⊗ (Λ−1 ◦ Λ ◦ σ ◦ Λ−1))

= Λ ◦ µ ◦ ((σ ◦ Λ−1) ⊗ (σ ◦ Λ−1))

= Λ ◦ µ ◦ (σ ⊗ σ) ◦ (Λ−1 ⊗ Λ−1)

= Λ ◦ σ ◦ µ ◦ (Λ−1 ⊗ Λ−1)

= Λ ◦ σ ◦ Λ−1 ◦ Λ ◦ µ ◦ (Λ−1 ⊗ Λ−1)

= σ′ ◦ µ′
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σ′ ◦ σ′ = Λ ◦ σ ◦ Λ−1 ◦ Λ ◦ σ ◦ Λ−1

= Λ ◦ σ ◦ σ ◦ Λ−1

= Λ ◦ id ◦Λ−1

= Λ ◦ Λ−1

= id

This shows that the action is well-defined.Finally, we show that this is

indeed an action of Gn on Salgn. Note, In the n × n identity matrix, is the

identity of the group Gn.

In · (µ, σ) = (In ◦ µ ◦ (I−1
n ⊗ I−1

n ), In ◦ σ ◦ I−1
n )

= (In ◦ µ ◦ (In ⊗ In), In ◦ σ ◦ In)

= (µ, σ)

Let Γ,∆ ∈ Gn

Γ · (∆ · (µ, σ)) = Γ · (∆ ◦ µ ◦ (∆−1 ⊗ ∆−1),∆ ◦ σ ◦ ∆−1)

= (Γ ◦ (∆ ◦ µ ◦ (∆−1 ⊗ ∆−1)) ◦ (Γ−1 ⊗ Γ−1),Γ ◦ (∆ ◦ σ ◦ ∆−1) ◦ Γ−1)

= (Γ ◦ ∆ ◦ µ ◦ (∆−1 ⊗ ∆−1) ◦ (Γ−1 ⊗ Γ−1),Γ ◦ ∆ ◦ σ ◦ ∆−1 ◦ Γ−1)

= (Γ ◦ ∆ ◦ µ ◦ ((∆−1 ◦ Γ−1) ⊗ (∆−1 ◦ Γ−1)),Γ ◦ ∆ ◦ σ ◦ ∆−1 ◦ Γ−1)

= ((Γ ◦ ∆) ◦ µ ◦ ((Γ ◦ ∆)−1 ⊗ (Γ ◦ ∆)−1), (Γ ◦ ∆) ◦ σ ◦ (Γ ◦ ∆)−1)

= (Γ ◦ ∆) · (µ, σ)

This completes the proof. �

Lemma 3.2.7 The orbits of Salgn under the action of Gn can be identified with

the isomorphism classes of n-dimensional superalgebras.
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Proof:

Suppose A is a superalgebra with structure constants (αk
ij, γ

j
i ) and B is

a superalgebra with structure constants (βk
ij , ǫ

j
i ). The result follows since

A ∼= B if and only if (αk
ij, γ

j
i ) and (βk

ij , ǫ
j
i ) belong to the same orbit — this

is what we shall show. If A ∼= B, say the isomorphism (of superalgebras)

is given by the linear map represented by the matrix Λ, then (βk
ij , ǫ

j
i ) =

Λ · (αk
ij, γ

j
i ) so that the structure constants of A and B are in the same orbit.

Conversely if the structure constants of A and B belong to the same orbit,

then there exists Λ ∈ Gn such that (βk
ij, ǫ

j
i ) = Λ · (αk

ij , γ
j
i ), then one can see

that the linear map represented by the matrix Λ gives an isomorphism of

superalgebras showing A ∼= B. �

For an n-dimensional superalgebra A, we will sometimes use Gn · A
to represent the orbit in Salgn which the isomorphism class of A can be

identified with. If in some basis the superalgebraA has structure constants

(αk
ij, γ

j
i ) then Gn ·A = Gn · (αk

ij, γ
j
i ).

There are two interesting morphisms between Salgn and Algn (the reader

can use Lemma 3.1.30 to see that they are indeed morphisms). They arise

from the observations that: any n-dimensional superalgebra may be re-

garded as an n-dimensional algebra and any n-dimensional algebra can

be endowed with the trivial Z2-grading making it into an n-dimensional

superalgebra.

The first morphism: U : Salgn → Algn is defined by (αk
ij, γ

j
i ) 7→ (αk

ij).

This can be viewed as the composition of the projection onto the subset of

An3+n2

defined by γj
i = 0 followed by the natural identification of An3×{0}

with An3

. This is a “forgetful” map — it forgets the superalgebra structure

on V and only remembers the algebra structure on V .

The second morphism: i : Algn → Salgn is defined by (αk
ij) 7→ (αk

ij , δ
j
i )

where δj
i is the Kronecker delta function defined earlier. This takes an

algebra structure on V and endows it with the trivial Z2-grading making

it a superalgebra on V .

Notice that the subset of Salgn consisting of superalgebras with the triv-
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ial Z2-grading is a closed subset of Salgn and is given by V ({γj
i − δj

i }) ∩
Salgn. The morphism i above identifies Algn with this subset. This result

is part of the following proposition.

Proposition 3.2.8 The morphismsU and i described above are continuous closed

maps. Moreover i provides an isomorphism of Algn with the closed subset of Salgn

consisting of the superalgebras with the trivial Z2-grading.

Proof:

As morphisms we know instantly that both maps are continuous.

A closed set in Algn is of the form C = V ({f1, . . . , fm}) ∩ Algn where fi

for 1 ≤ i ≤ m is a polynomial in α1
11, . . . , α

n
nn. i(C) = V ({f1, . . . , fm, γ

j
i −

δj
i })∩Salgn. LetD = V ({f1, . . . , fm})∩Salgn then U(D) = V ({f ′

1, . . . , f
′
m′})∩

Algn where we obtain the f ′
i from the fi as follows. If fi is a polynomial

containing only γj
i then we omit it in this new set of polynomials, other-

wise we obtain f ′
i from fi by setting γj

i = 0 and we let f ′
i be the polynomial

so obtained. We also omit repeats of any of the polynomials f ′
i . Thus we

obtain the set {f ′
1, . . . , f

′
m′} of polynomials. This verifies that U and i are

closed maps.

Let W = V ({γj
i − δj

i }) ∩ Salgn. This is the subset of Salgn consisting of

the trivially Z2-graded superalgebras. One can check that U |W ◦ i = idAlgn

and i ◦ U |W = idW . Thus it follows that i is an isomorphism of Algn with

the subset of Salgn consisting of superalgebras with the trivial Z2-grading.

�

Suppose that A is a superalgebra and B is an algebra. We may for-

malise the notion of underlying algebra, which we have already men-

tioned, and shall say that A is a superalgebra on B, or B is the under-

lying algebra of A in the case that U(A) = B. This simply means that by

forgeting the Z2-grading on A we are left with the algebra B.

Notice that we have Gn-actions on both Salgn and Algn. Now, one can

quickly check (this is probably easier in the (µ, σ) notation) that for Λ ∈ Gn

U(Λ · (αk
ij , γ

j
i )) = Λ · U((αk

ij , γ
j
i )) and i(Λ · (ak

ij)) = Λ · i((αk
ij)), which shows

that the morphisms U and i are Gn-equivariant.
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After noting this Gn-equivariance of U , we may obtain a corollary to

Proposition 3.2.8 by applying the following standard fact from General

Topology: If f : X → Y is a closed continuous map, then for any Z ⊆ X

f
(

Z
)

= f(Z). We proceed as follows:

U
(

Gn · (αk
ij, γ

j
i )
)

= U(Gn · (αk
ij, γ

j
i ))

= Gn · U(αk
ij , γ

j
i ))

= Gn · (αk
ij)

This proves the following:

Corollary 3.2.9 U
(

Gn · (αk
ij , γ

j
i )
)

= Gn · (αk
ij).

Suppose that one has a superalgebra Awith dimA0 = i and Z2-grading

given by the algebra involution σ. Now change to a homogeneous basis

(say by a linear map represented by the matrix Λ), which clearly has Z2-

grading σ′ given by the linear map represented by the diagonal matrix

with 1 for the first i entries and −1 for the last n − i entries. From the

above we have σ′ = ΛσΛ−1 (identifying the Z2-gradings with their matrix

representatives), so σ = Λ−1σ′Λ. Now recall that the trace and determinant

tr and det are given by polynomials in the entries of a matrix, and also the

standard facts tr(AB) = tr(BA), det(AB) = det(A) det(B). Thus tr(σ) =

tr(Λ−1σ′Λ) = tr(σ′ΛΛ−1) = tr(σ′) = i − (n − i) = 2i − n and det(σ) =

det(Λ−1σ′Λ) = det(Λ−1) det(σ′) det(Λ) = det(σ′) = (−1)n−i.

We now define Salgi
n to be the subset of Salgn consisting of the superal-

gebras A with dimA0 = i. Obviously we have Salgn =
⋃n

i=1 Salgi
n. Hence,

from above, the trace and determinant are constant on Salgi
n. It is clear that

these subsets must be disjoint. We are interested in when these subsets are

also closed. The following lemma gives some sufficient conditions for this

to be the case.



CHAPTER 3. GEOMETRIC CLASSIFICATION 118

Before stating the next couple of results we mention how vital the as-

sumption that ch(k) 6= 2 is to Lemma 3.2.10 and Proposition 3.2.12. These

are very basic results about the geometry of Salgn — the study of Salgn

over an algebraically closed field k with ch(k) = 2 would require new tech-

niques as the proofs of these two results do not work in the case ch(k) = 2.

Lemma 3.2.10 The sets Salgi
n are closed subsets of Salgn in the following situa-

tions:
(a) ch(k) = p and n ≤ 2p

(b) ch(k) = 0 (with no restriction on n in this case)

(c) n ≤ 6 (for any algebraically closed field k with ch(k) 6= 2)

Proof:

Define Si
n = V ({∑n

j=1 γ
j
j − (2i − n),

∑

π sgn(π)γ
π(1)
1 . . . γ

π(n)
n − (−1)n−i}) ∩

Salgn for i ∈ {1, . . . , n}, (where sgn(π) denotes the signature of the permu-

tation π, and the sum is taken over all permutations of {1, . . . , n}). Thus

the Si
n are closed subsets of Salgn. From the statements above, it is clear

that Salgi
n ⊆ Si

n. The first polynomial
∑n

j=1 γ
j
j represents the trace of the

Z2-grading and the second
∑

π sgn(π)γ
π(1)
1 . . . γ

π(n)
n represesnts its determi-

nant.

For the proof of part (a), consider the following. Let i, j ∈ {1, . . . , n}, i 6=
j. If i and j differ by 2p then both the traces and the determinants for

Salgi
n and Sj

n will agree, so Salgi
n ⊆ Sj

n. If i and j differ by less than 2p,

then the traces of Salgi
n and Sj

n will differ unless i and j differ by p, in

which case, since p is odd (remember we are excluding the case ch(k) = 2

throughout this thesis) the determinants will differ. Thus Salgi
n and Sj

n

are disjoint. From these comments one can see that we have the equality

Salgi
n = Si

n for all i ∈ {1, . . . , n} if and only if there are no two distinct

integers i, j ∈ {1, . . . , n} which differ by 2p. One can always be sure that

this is condition is met when n ≤ 2p. This completes the proof of (a).

For part (b), we have ch(k) = 0. Here one simply needs to consider the

traces on Salgi
n and Sj

n, which must differ unless i = j, showing that the

subsets Salgi
n and Sj

n are disjoint unless i = j, that is Salgi
n = Si

n.
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Finally, for part (c) we combine the results of (a) and (b). In the case

of positive characteristic p, then as p ≥ 3, from part (a) we know that

these subsets are disjoint and closed for n ≤ 6, while in the case of zero

characteristic from part (b) we know that these subsets are disjoint and

closed for any n. Combine these statements to see that regardless of the

characteristic of the field k, the subsets Salgi
n are all closed subsets when

n ≤ 6. �

Remark 3.2.11 Lemma 3.2.10 is likely to be general enough for us to use in all

cases where determining irreducible components of Salgn is currently practical.

The irreducible components of Algn have so far only been described for n ≤ 5

(with some special — “rigid” — components described in the case n = 6), and

finding these irreducible components is a more basic question than finding the

irreducible components of Salgn. However, it is of theoretical interest to determine

whether the subsets Salgi
n are in fact closed subsets of Salgn for all n and any

field k with ch(k) 6= 2, or if there is some field k of prime characteristic, p, and

some integer, n, such that the variety Salgn over the field k has one of its subsets

Salgi
n which is not closed. As we shall see, when the Salgi

n are closed they form

the connected components of Salgn. Thus it would be interesting to know if the

geometry of Salgn can change in this manner for some integer, n, and field, k, of

prime characteristic, p.

Using the notation from the proof of Lemma 3.2.10 we have the follow-

ing situation for the variety Salg7 over an algebraically closed field of char-

acteristic 3. S1
7 = S7

7 = V ({∑n
j=1 γ

j
j −1,

∑

π sgn(π)γ
π(1)
1 . . . γ

π(n)
n −1})∩Salg7.

This is the smallest example of where the above lemma may not be ap-

plied. While it is clear that Salg1
7 and Salg7

7 are disjoint, it may be possible

that Salg1
7 and Salg7

7 have some point in common. (Recall that we remarked

earlier that Salgn
n is closed — so Salgn

n = Salgn
n and thus we do know that

Salg7
7 = Salg7

7 and Salg1
7 are disjoint).

Proposition 3.2.12 Salgn is disconnected for n ≥ 2.
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Proof:

By the comments above Lemma 3.2.10, for each superalgebra, the determi-

nant of the Z2-grading is either −1 or 1. Since ch(k) 6= 2, −1 and 1 are dis-

tinct elements of k, henceX−1 = V ({∑π sgn(π)γ
π(1)
1 . . . γ

π(n)
n −(−1)})∩Salgn

and X1 = V ({∑π sgn(π)γ
π(1)
1 . . . γ

π(n)
n − 1}) ∩ Salgn are disjoint closed sub-

sets whose union is Salgn. But X−1 = Salgn \X1 and X1 = Salgn \X−1,

hence both are open sets too. Thus Salgn is a union of two disjoint open

subsets. Both subsets are non-empty for n ≥ 2. Thus for n ≥ 2, Salgn is

disconnected. �

Assumption 3.2.13 From here onwards, we make the assumption that Salgi
n are

closed subsets of Salgn.

The main examples which we are interested in are Salgn for n = 2, 3, 4,

and in these cases this assumption is satisfied by Lemma 3.2.10. The places

where this assumption is used it should be obvious from the proof. This

assumption is, however, not needed for the material on algebraic groups

and their actions in the next section.

As we have mentioned in Remark 3.2.11, when Assumption 3.2.13 holds,

the Salgi
n are the connected components of Salgn. We must however, post-

pone the proof of this fact until Section 3.4 when we will have sufficient

tools to prove it.

Since some algebras and superalgebras arise several times, we shall

name them for convenience.

Definition 3.2.14 DefineCn to be the algebra k[X1, . . . , Xn−1]/(X1, . . . , Xn−1)
2

and for i = 1, . . . , n, let Cn(i) be the superalgebra structure, which has Cn as its

underlying algebra and is given the Z2-grading,Cn(i)0 = span{1, X1, . . . , Xi−1},
Cn(i)1 = span{Xi, . . . , Xn−1}. The algebra Cn and the superalgebras Cn(i) for

i = 1, . . . , n all have dimension n.

The following lemma shows that each superalgebra structure on Cn is

isomorphic to one of the Cn(i).
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Lemma 3.2.15 Consider the algebraCn. There are n distinct isomorphism classes

of superalgebras on this algebra, which are Cn(1), . . . , Cn(n).

Proof:

Let B = B0 ⊕ B1 be a superalgebra structure on Cn where dimB0 = i +

1 with 0 ≤ i ≤ n − 1 (so dimB1 = n − i − 1). Suppose B0 has basis

{1, u1, . . . , ui} andB1 has basis {ui+1, . . . , un−1}. There must be scalars such

that for 1 ≤ j ≤ n− 1, uj = αj11 + αj2X1 + . . .+ αjnXn−1.

Now let u′j = uj − αj11 = αj2X1 + . . .+ αjnXn−1. Then {1, u′1, . . . , u′i} is

also a basis for B0.

If αj1 6= 0 for any i+1 ≤ j ≤ n−1 then uj = αj11+
∑n−1

i=1 αji+1Xi, so u2
j =

α2
j11+2

∑n−1
i=1 αji+1Xi. Since u2

j ∈ B0 we must have
∑n−1

i=1 αji+1Xi ∈ B0, say
∑n−1

i=1 αji+1Xi = β11+
∑i

k=1 βk+1uk then (β1 +αj1)1+
∑i

k=1 βk+1uk −uj = 0,

which contradicts the linear independence of the basis. So αj1 = 0 for all

i+ 1 ≤ j ≤ n− 1.

It is easy to check that any two of u′1, . . . , u
′
i, ui+1, . . . , un−1 have product

zero (including a product involving two of the same terms). So we can

define a map φ : B → Cn(i + 1) by 1 7→ 1, u′1 7→ X1, . . . , u
′
i 7→ Xi, ui+1 7→

Xi+1, . . . , un−1 7→ Xn−1. It is easy to see that this is a bijection, which pre-

serves the algebra structure and Z2-grading, hence is an isomorphism of

superalgebras. Thus a superalgebra structure on Cn must be isomorphic

to one of those described in the lemma.

To conclude the proof, we note that the n superalgebra structures given

in the lemma are clearly mutually non-isomorphic. �

So for each i there is a unique (up to isomorphism) superalgebra struc-

ture A on k[X1, . . . , Xn−1]/(X1, . . . , Xn−1)
2 which has dimA0 = i.

In the case of n-dimensional algebras, Gabriel showed that the closed

orbit consists of algebras isomorphic to Cn. The closed orbits in Salgn con-

sist of superalgebras isomorphic to one of the superalgebras Cn(i), as the

following Proposition shows.
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Proposition 3.2.16 There are n closed orbits in Salgn. They are all disjoint,

Cn(i) being the closed orbit in Salgi
n.

Proof:

Suppose Gn · A is a closed orbit, i.e. Gn · A = Gn · A. As U(A) is an n-

dimensional algebra, Gn · U(A) is an orbit in Algn. Now by Corollary 3.2.9

Gn · U(A) = U(Gn · A) = U(Gn · A) = Gn · U(A). Thus the orbit Gn · U(A)

is closed in Algn but then, by the results of [12], U(A) must be isomorphic

to Cn. That is, A must be isomorphic to a superalgebra structure on Cn.

It remains to show that the orbits, Gn · Cn(i), corresponding to the iso-

morphism classes of the superalgebras Cn(i) are, in fact, closed. Notice

that Cn = U(Cn(i)) is the algebra structure whose isomorphism class cor-

responds to the closed orbit in Algn. That is, the orbit Gn · Cn is closed in

Algn and thus U−1(Gn ·Cn) is closed in Salgn. Now, by Assumption 3.2.13,

Salgi
n are closed disjoint subsets, thus U−1(Gn ·Cn)∩ Salgi

n is closed. How-

ever this set is the orbit Gn · Cn(i) (since Lemma 3.2.15 above showed that

all superalgebra structures on algebra Cn with the degree zero component

having dimension i are all isomorphic). The result follows. �

Remark 3.2.17 Recall that Gabriel showed that the orbit, GLn ·A of an

n-dimensional algebra is open when H2(A,A) = 0 (see Lemma 3.1.60), the

obvious generalization of this statement to the case of superalgebras being that,

for an n-dimensional superalgebra A, the orbit, Gn · A is open in Salgn when

H2(A,A) = 0. H2(A,A) now being interpreted as the Hochschild cohomology

group of the superalgebra A. We have not made any progress on proving or

disproving this statement, although it would be interesting to know if it holds.

Lemma 3.2.18 Suppose that A is a superalgebra with dimA0 = i and there is

only one isomorphism class of superalgebras on U(A) which has dim0 = i. If the

orbit Gn · U(A) is open in Algn then the orbit Gn ·A is open in Salgn

Proof:

Since Salgi
n are all disjoint closed subsets (by Assumption 3.2.13), they are
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also each open. Now U−1(Gn · U(A))) is the collection of superalgebra

structures on U(A). Since Gn ·U(A) is open, so too must be U−1(Gn ·U(A)),

by the continuity of U . Now by the assumptions made Gn · A = U−1(Gn ·
U(A)) ∩ Salgi

n. Thus Gn · A is the intersection of two open sets, so is open

itself. �

Example 3.2.19 This is indeed the case for several orbits in Salg4. Using this

result and the fact that the orbits of (1) and (10) are open in Alg4 we discover that

the orbits (1|0), (1|1), (1|2), (10|0) and (10|1) are open in Salg4.

Finally, we shall introduce the notion of degeneration. This idea is very

important for the remainder of the chapter.

Definition 3.2.20 For n-dimensional superalgebras A and B, if (αk
ij, γ

j
i ) ∈ Gn ·

B and (ak
ij , γ

j
i ) ∈ Gn · A then we say that A degenerates to B and denote this

by A → B. In some places the terminology A dominates B is used instead of

A degenerates to B. As we shall see in the next section, this extends to a well

defined partial order on the isomorphism classes of n-dimensional superalgebras

called the degeneration partial order. We define B ≤degr A if and only if

A degenerates to B. Clearly, whenever (αk
ij, γ

j
i ) ∈ Gn · A, then we also have

(αk
ij, γ

j
i ) ∈ Gn · A since Gn · A ⊆ Gn · A. A degeneration of this form is referred

to as a trivial degeneration, any degeneration not of this form is called a non-

trivial degeneration.

Intuitively, if the superalgebra A degenerates to the superalgebra B

(where B ≇ A that is, this is a proper degeneration) then we think of the

orbit Gn · B as consisting of some of those points outside the orbit Gn · A,

but which are “close to” some of the points in the orbit Gn · A. This is

supported by observing that the orbit Gn · B belongs to the boundary of

Gn ·A (i.e. the setGn ·A\Gn ·A) as we shall see in the next section. Another

observation supporting this intuition is that some degenerations may be

obtained by taking a sequence of points in the orbit Gn · A whose “limit”

lies in the orbit Gn · B (see Corollary 3.4.3).
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Now we shall present a section on group actions, before returning to

our primary interest of studying the degenerations in Salgn.
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3.3 Algebraic groups and their actions

Definition 3.3.1 Let G be a variety, which additionally has the structure of a

group. If the maps for multiplication µ : G×G→ G given by µ(x, y) = xy and

inversion ι : G→ G given by ι(x) = x−1 are morphisms of varieties, then we call

G an algebraic group. The algebraic groups are group objects in the category of

varieties.

Remark 3.3.2 The reader who has met topological or lie groups before should see

the analogy. In these cases G is required to be a topological space, respectively

a differentiable manifold, and the multiplication and inversion maps are required

to be continuous, respectively differentiable. These are the group objects in the

categories of topological spaces and differentiable manifolds respectively.

Examples 3.3.3 We have already mentioned two algebraic groups: Gn and GLn.

They are examples of algebraic groups, due to the formulae for matrix multiplica-

tion and inversion. There are many more examples that one can easily construct,

using the fact thay any subgroup of GLn which is closed in the Zariski Topology

is an algebraic group.

Recall from Section 3.1 the definition of a group acting on a set. This

notion transfers straight across to the situation where G is an algebraic

group and X is a variety. In this case the notion is the most interesting

when the map giving the action of G on X , φ : G×X → X is a morphism

of varieties, because in this case we can relate the structures of G and X as

varieties. In this case, we say that the action is algebraic. For example if G

is irreducible and it acts algebraically on a variety X , then we know that

the G-orbits in X are irreducible also.

We have already seen examples of this kind of action, the structure

transport action of Gn on Salgn (and Algn) by the remarks in Section 3.3.

Since these are the actions which primarily interest us, we will assume

that all actions are algebraic. Given an algebraic group, G, and a variety,
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X , we shall simply say that G acts on X when we really mean that G acts

algebraically on X .

The constant maps hx : G → X , hg : X → G defined by g 7→ x for

fixed x ∈ X and x 7→ g for fixed g ∈ G respectively, are morphisms of

varieties. Now with the identity maps idG : G → G, idX : X → X , one

can construct the product maps of idG with hx and hg with idX to define

morphisms ix : G → G×X and ig : X → G ×X , which can be described

by g 7→ (g, x) and x 7→ (g, x) respectively. Then by composition with the

action map φ : G×X → X we get morphisms φx : G→ X (the orbit map)

described by g 7→ g · x and φg : X → X (the translation map) described by

x 7→ g · x.

As an easy application of the maps constructed in the last paragraph,

we have the following small result, which we shall use later in the section.

Lemma 3.3.4 If an algebraic group G acts algebraically on a variety X and U ⊆
X is open, then g · U is open for any g ∈ G.

Proof:

Use the translation maps φg, φg−1 , and the fact that morphisms are contin-

uous.

�

In the theory of algebraic groups, the convention is to refer to an al-

gebraic group, which is irreducible as a variety, as a connected algebraic

group. This is because irreducibility has a different meaning in the context

of group representations. This makes sense as, for an algebraic group, its

irreducible components coincide with its connected components.

Lemma 3.3.5 Gn and GLn are connected algebraic groups with dimensions n2−
n and n2 respectively.

Proof:

We give the proof for Gn since these facts are better known for GLn. In
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any case, one can easily modify the arguments given here to prove the

statements for GLn.

Let M ′
n =

















1 a12 · · · a1n

0 a22 · · · a2n

...
...

. . .
...

0 an2 · · · ann






: aij ∈ k











. Note that by cofactor expan-

sion, the determinant of a matrix in M ′
n is equal to the determinant of the

lower right (n−1)× (n−1) submatrix, i.e.

∣

∣

∣

∣

∣

∣

∣

1 a12 · · · a1n

0 a22 · · · a2n

.

..
.
..

. . .
.
..

0 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a22 · · · a2n

.

..
. . .

.

..

an2 · · · ann

∣

∣

∣

∣

∣

∣

.

It is clear that Gn is a subset of M ′
n. In fact, Gn is the distinguished open

subset D(det) = {X ∈M ′
n : det(X) 6= 0} of M ′

n. Thus Gn is a variety.

We notice that the formualae for matrix multiplication and inversion

of a matrix are morphisms of varieties, by Lemma 3.1.30. Thus Gn is an

algebraic group. Another way to see this result is to use the fact mentioned

above in Example 3.3.3 — that any subgroup of GLn which is closed in the

Zariski topology is an algebraic group. Now Gn is a subgroup of GLn and

it is closed in the Zariski topology, being the set V ({ai1− δi
1})∩GLn. So we

reach the same conclusion.

As a vector space M ′
n is isomorphic to An2−n, so they are isomorphic

as varieties (by Lemma 3.1.42) and hence have the same dimensions, and

M ′
n is irreducible. So M ′

n has dimension n2 − n. The set Gn has dimension

n2 − n also, as it is an open subset of M ′
n. It follows Gn is also irreducible,

since any open subspace of an irreducible space is irreducible. �

By Lemma 3.3.5 above, we may apply a lemma from [7] on group ac-

tions, to the structure transport action of Gn on Salgn.

Lemma 3.3.6 Let G be a connected algebraic group acting on a variety X , then:

(a) Each orbit G · x is locally closed and irreducible

(b) dimG · x = dimG− dim StabG(x)

(c) G · x\G · x is a union of orbits of dimension < dimG · x
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Proof:

We use the proof from [7], giving extra details.

For part (a): G · x is the image of G under the orbit map φx : G → X

given by g 7→ g · x. Since this map is a morphism and hence continuous,

it follows that G · x is irreducible. It then follows that G · x is irreducible.

By Lemma 3.1.46 the restricted morphism φ′
x : G → G · x is dominating

and by applying part (i) of Lemma 3.1.47 there exists a non-empty open

set ∅ 6= U ⊆ X such that U ⊆ G · x. Thus there is ∅ 6= U ⊆ G · x with U

open in G · x. Now G · U =
⋃

g∈G g ·U ⊆ G · x which is G-stable and hence

equalsG ·x. Each g ·U is open inG · x since U is open (using Lemma 3.3.4).

Thus G ·U is open in G · x, i.e. G ·x is open in G · x, hence is locally closed.

For part (b), we continue on using Lemma 3.1.47, however it is part (ii)

which assists us here. Now since ∅ 6= U ⊆ G ·x, U must contain an element

of the form h · x where h ∈ G, set W = {h · x} then for each component

Z of φ−1({h · x}) = h · StabG(x), dimZ = dim{h · x} + dimG − dimG · x.

We now note that as G · x is open in G · x which is irreducible, dimG · x =

dimG · x, dim{h · x} = 0 (being a single point) and as dimh · StabG(x)

is the maximum of the dimensions of its components, we discover dim h ·
StabG(x) = dimG−dimG·x. Finally, by consideringG to be acting on itself

by left multiplication, we may use the translation maps φh and φh−1 (which

are morphisms, so in particular are continuous) to see that StabG(x) and

h · StabG(x) have the same dimensions. Hence dim StabG(x) = dimG −
dimG · x, getting the required statement upon rearrangement.

This leaves us with part (c). Firstly, fix an element g ∈ G, then note: 1.

if U is an open neighbourhood of y then g · U is an open neighbourhood

of g · y; 2. if V is an open neighbourhood of g · y then g−1 · V is an open

neighbourhood of y; and 3. y /∈ G · x⇔ g · y /∈ G · x. So we have:
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y ∈ G · x\G · x
⇔ y ∈ G · x, y /∈ G · x
⇔ Every open neighbourhood of y intersects G · x and y /∈ G · x
⇔ Every open neighbourhood of g · y intersects G · x and g · y /∈ G · x
⇔ g · y ∈ G · x\G · x

In particular, we see that y ∈ G · x\G ·x⇒ g · y ∈ G · x\G ·x for any g ∈ G,

and thus G · y =
⋃

g∈G g · y ⊆ G · x\G · x. Secondly, since G · z is open in

G · z which is irreducible, we find dimG · z = dimG · z. If G · y ⊂ G · x and

y /∈ G ·x, thenG · y ⊂ G · x and since G · y is closed andG · x is irreducible,

we have dimG · y < dimG · x, hence dimG · y < dimG · x. Combine these

two arguments to get the required statement. �

Remark 3.3.7 We make the following remark of how to interpret the stabiliser

subgroup in the case of the Gn-action on Salgn. Suppose one has a point (αk
ij , γ

j
i )

of Salgn which is in the orbit Gn · A for some superalgebra A. Recall that when

one represents points in Salgn using the alternate notation (µ, σ) ∈ Hom(V ⊗
V, V )×Hom(V, V ), the transport of structure action can be described as follows:

for Λ ∈ Gn Λ·(µ, σ) = (Λ◦µ◦(Λ−1⊗Λ−1),Λ◦σ◦Λ−1). Then the matrix Λ, viewed

as a linear map from V to V , is an automorphism of A (as a superalgebra) if and

only if it satisfies Λ ◦µ = µ ◦ (Λ⊗Λ) and Λ ◦ σ = σ ◦Λ. Then an automorphism

Λ of A is in the stabiliser StabGn
((αk

ij, γ
j
i )), and conversely, an element of this

stabiliser gives an automorphim of the superalgebra A. In fact, because of this

correspondence the stabiliser of a point (αk
ij , γ

j
i ) in Salgn is isomorphic to the

automorphism group of the superalgebra whose isomorphism class is identified

with the orbit Gn · (αk
ij, γ

j
i ).

Whenever we have a connected algebraic group G acting on a vari-

ety X , we have the idea of degeneration. The action of G on X parti-

tions the variety into equivalence classes under the equivalence relation
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x ≡ y ⇔ ∃ g ∈ G such that y = g · x. The equivalence classes are the

G-orbits. Because of this, we shall use the notation [x] = G · x for brevity,

while stating and proving results about this more general notion of degen-

eration.

Definition 3.3.8 We say that [x] degenerates to [y] if y ∈ G · x and will write

[x] → [y]. By appealing to Lemma 3.3.6 we can show that this idea of degeneration

is not only well-defined on the G-orbits of X , but it also gives rise to a partial

order on the G-orbits in X . This is the content of the following corollary. We

define [y] ≤degr [x] if and only if [x] degenerates to [y]. (Note that in some places

the degeneration partial order is defined to be the opposite to this. This happens

for example in [33]).

Some people define the idea of degeneration as: [x] degenerates to [y]

if G · y ⊆ G · x. Using part (c) of Lemma 3.3.6, one can see that this is an

equivalent definition. It does provide a useful way to visualize the notion

of degeneration — that an orbit is contained in the closure of some other

orbit.

Corollary 3.3.9 When G is a connected algebraic group acting on a variety X ,

≤degr is a partial order on the G-orbits of X .

Proof:

By part (c) of Lemma 3.3.6, G · x is a union of orbits. So if y ∈ G · x, then

G · y ⊆ G · x. From this statement, we deduce that [y] ≤degr [x] if and only

if [y′] ≤degr [x′] for any y′ ∈ G · y, x′ ∈ G · x, which shows that ≤degr is a

well-defined relation on the G-orbits.

Clearly x ∈ G · x, thus [x] ≤degr [x].

Suppose [x] ≤degr [y] and [y] ≤degr [z], so from above we have G · x ⊆
G · y and G · y ⊆ G · z. Since we clearly have x ∈ G · x, combine this with

the previous statements to obtain x ∈ G · x ⊆ G · y ⊆ G · z, i.e. [x] ≤degr [z].

Suppose [x] ≤degr [y] and [y] ≤degr [x], so G · x ⊆ G · y and G · y ⊆ G · x.

Now assume that G · x 6= G · y. By part (c) of Lemma 3.3.6 G · x ⊆ G · y
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and G · x 6= G · y implies dimG · x < dimG · y. Similarly G · y ⊆ G · x
and G · x 6= G · y implies dimG · y < dimG · x. Combining these, we get

dimG ·x < dimG ·y < dimG ·x, which is clearly absurd, henceG ·x = G ·y.

�

The above result can be used to show that the idea of degeneration in

Salgn which was introduced at the end of the previous section, extends to a

partial order on the isomorphism classes of n-dimensional superalgebras.

Lemma 3.3.10 When G is a connected algebraic group acting on a variety X ,

the irreducible components of X are stable under the action of G.

Proof:

We remind the reader that saying G is a connected algebraic group means

precisely that G is irreducible as a variety. Now suppose Y is an irre-

ducible component of X , then G × Y is irreducible. Now letting φ :

G×X → X be the morphism giving the action of G on X , then φ is a con-

tinuous map, so G · Y = φ(G× Y ) is also irreducible. Clearly, Y ⊆ G · Y .

However, by maximality of Y we must have Y = G · Y , i.e. Y is stable

under the action of G. �

Corollary 3.3.11 When G is a connected algebraic group acting on a variety,

the irreducible components are closures of a single orbit or closures of an infinite

family of orbits.

Proof:

From Lemma 3.3.10, irreducible components are G-stable. We also know

that components are closed, hence each component can be taken to be the

closure of a union of orbits. If there are only finitely many orbits in the

union, then by using A ∪B = A ∪ B we see that the component is not

irreducible unless it is the closure of a single orbit. This gives the required

statement. �

In the case of the Gn transport of structure action on Algn Flanigan goes

further, and in [11] proves a result describing algebraic properties of the
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algebras belonging to some infinite family, whose orbits give rise to an

irreducible component as described above.

In the following we shall abuse the terminology, and refer to the sit-

uation when some structure is contained in the closure of the union of

the orbits of an infinite family of orbits, as a degeneration. We see an ex-

ample of this in Alg4 in the results of Gabriel, where the structure (19) is

contained in the closure of the union of orbits of the family of structures

(18;λ). It is important to notice, however, that this is not a degeneration as

defined earlier. Similarly, when an infinite family of orbits is contained in

another infinite family of structures, we may also wish to refer to this as

a degeneration too. We have an example of this given by Mazzola’s work

on Alg5 in [21], where the orbits of the infinite family of structures (35;λ)

is contained in the closure of the union of the orbits in the infinite family

of structures (13;λ). Finally, one may wish to refer to the case where an

infinite family of structures is contained in the closure of a single orbit as

a degeneration. This idea is less of an abuse of terminolgy than the oth-

ers mentioned above, however, since we could consider it to be an infinite

family of degenerations (in the original sense), one to each of the orbits in

the infinite family. Although an abuse of terminology, it is useful to ex-

tend the notion of degeneration in this way, as it helps with determining

the irreducible components.

Corollary 3.3.12 When G is a connected algebraic group acting on a variety

X , we have the following statements regarding the notions of degeneration and

irreducible components:

(a) If [x] → [y] then [y] belongs to all the irreducible components to which [x]

belongs (and possibly more too)

(b) If there is no degeneration to [x], then its closure is an irreducible component

(c) If ∪λ[x(λ)] is irreducible and there is no degeneration to ∪λ[x(λ)] then its

closure is an irreducible component
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Proof:

For part (a) Gn · y ⊆ Gn · x, so that any irreducible component containing

Gn · x must also contain Gn · y.

For parts (b) and (c), consider what happens if Gn · x (respectively

∪λGn · x(λ)) is not an irreducible component. Then, as an irreducible set,

it must be contained in some irreducible component implying that [x] (re-

spectively ∪λ[x(λ)]) is contained in the closure of an orbit, or in the closure

of the union of an infinite family of orbits. This means that there is a de-

generation to [x] (respectively ∪λ[x(λ)]), contrary to our assumption.

�

Remark 3.3.13 This leads one to wonder when a union of a family of orbits is

irreducible, so that we may apply part (c) of the above. This might not be true for

arbitrary actions of algebraic groups on a variety. However the infinite families

which arise in Alg4 and Alg5 can be shown to be irreducible. We illustrate this

idea using the superalgebras (18;λ|i). Firstly fix i as either 0, 1 or 2. Use the basis

e1 = 1, e2 = X, e3 = Y, e4 = XY of (18;λ|i) then for the member of the family

with parameter value λ 6= −1 we have that the structure constant, α4
23 = λ.

Hence, using this basis, we obtain a set of points in Salg4. Call this set S —

one point from each orbit corresponding to a member of the family (18;λ|i). This

set of points can be identified with k\{−1} which is irreducible in A1 (being the

distinguished open D(x + 1) of A1), thus the set of points, S, is also irreducible.

Now denote by φ : Gn × Salgn → Salgn the morphism arising from the transport

of structure action of Gn on Salgn. The union of the orbits of (18;λ|i) is given

by φ(Gn × S), which, exactly as in Lemma 3.3.10, is seen to be irreducible. So

we have shown that the union of orbits of superalgebras (18;λ|i) for i = 0, 1, 2

are irreducible. The infinite families in Alg5 can be shown to be irreducible in a

similar manner.

The above corollary tells us that the irreducible components are the

orbits or infinite families of orbits, which no other orbit or infinite family

of orbits degenerates to. So if one knows all degenerations between orbits
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and infinite families of orbits, then it is a trivial matter to determine the

irreducible components. Unfortunately, the problem of determining all

these degenerations is usually difficult. The problem of determining the

irreducible components is somewhat easier, but can still be difficult too.

Definition 3.3.14 An n-dimensional superalgebra A (respectively, a family of

superalgebrasA(λ)) is called generic, if the closure of its orbit in Salgn —Gn · A
(respectively, the closure of the union of the family of orbits —

⋃

λGn · A(λ)), is

an irreducible component of Salgn.

Remark 3.3.15 A superalgebra, A, whose orbit is open is always generic. Since

it must lie in some irreducible component (being an irreducible set by part (a) of

Lemma 3.3.6) and, as an open subset of any irreducible set is dense, we must have

that Gn · A is the entire component.

However the observations in Corollary 3.3.12 applies more generally and can

also aid us in finding the irreducible components. For example, after finding that

no algebras degenerate to (17) in Alg4, by applying the closed continuous map U ,

we discover that no superalgebras can degenerate to any of (17|i) for i = 0, 1, 2

in Salg4. Then, by using the observations given in Corollary 3.3.12, we see that

(17|i) for i = 0, 1, 2 give rise to irreducible components of Salg4, hence these

algebras are also generic.

The last two lemmas of this section are concerned with calculating the

dimensions of the orbits in Salgn. We explain how to read these tables now.

Each row corresponds to a different algebra structure and the columns of

the table are for different Z2-gradings on that given underlying algebra

structure. Thus the underlying algebra structure of the superalgebra de-

termines which row you look in, and which particular Z2-grading is used

to obtain the given superalgebra structure determines which column you

look under. We illustrate this by using an example. To find the dimension

of the stabilizer of a point in the orbit of (3|2) we look in the row labelled

(3|·) and then look under the column labelled 2 to see that the dimension

of the required stabilizer is 2.
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Lemma 3.3.16 The following gives the dimensions of the stabilizers of points in

the orbits in Salg4:

Stabilizer dimensions

· 0 1 2 3

(1|·) 0 0 0

(2|·) 1 1 1 1

(3|·) 2 2 2 1

(4|·) 2 1

(5|·) 3 2

(6|·) 4 2 4

(7|·) 4 2 3 2

(8|·) 5 3 3 3

(9|·) 9 5 5 9

(10|·) 3 1

(11|·) 4 3 2 2

(12|·) 6 3 4

(13|·) 2 1

(14|·) 3 3 2 2

(15|·) 3 3 2 2

(16|·) 4 3 3 2

(17|·) 6 3 4

(18;λ|·) 4 3 2

(19|·) 4 2

Proof:

If the point (αk
ij, γ

j
i ) is in the orbit, G4 · A, which is identified with the iso-

morphism class of superalgebra A, then StabG4
((αk

ij, γ
j
i ))

∼= Aut(A) where

the automorphism group is the group of automorphisms of the superal-

gebra A as mentioned in Remark 3.3.7. See Section 2.6 for a description of

these automorphism groups.
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The statements given in Lemma 3.1.41 are also useful when comput-

ing the dimension of the automorphism groups. We also remark that

dim PGLn(k) = n2 − 1, so that dim PGL2(k) = 22 − 1 = 3 (see for example

[14]) �

Proposition 3.3.17 The following gives the dimensions of the orbits in Salg4:

Orbit dimensions

· 0 1 2 3

(1|·) 12 12 12

(2|·) 11 11 11 11

(3|·) 10 10 10 11

(4|·) 10 11

(5|·) 9 10

(6|·) 8 10 8

(7|·) 8 10 9 10

(8|·) 7 9 9 9

(9|·) 3 7 7 3

(10|·) 9 11

(11|·) 8 9 10 10

(12|·) 6 9 8

(13|·) 10 11

(14|·) 9 9 10 10

(15|·) 9 9 10 10

(16|·) 8 9 9 10

(17|·) 6 9 8

(18;λ|·) 8 9 10

(19|·) 8 10

Proof:

We have calculated the dimensions of the automorphism groups, or equiv-

alently, the dimensions of stabilizers of any point in each orbit in
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Lemma 3.3.16 above. We know that the dimension of G4 is 12 from

Lemma 3.3.5. By using part (b) of Lemma 3.3.6, we can calculate the di-

mension of the orbit G4 · (αk
ij , γ

j
i ) by subtracting the dimension of the sta-

bilizer, StabG4
((αk

ij , γ
j
i )), from the dimension of G4 which is 12.

�

Remark 3.3.18 We remark that to calculate the dimensions of the orbits in the

case where we don’t require the identity to be fixed (i.e. the orbits in Salg′
4 and

in which case GL4 acts on this variety) we can subtract the dimensions of the

stabilizers found in Lemma 3.3.16 from 16 (16 being the dimension of GL4 by

Lemma 3.3.5). If we then compare the dimensions of the orbits of the trivially

Z2-graded superalgebras (i|0) for i = 1, . . . , 18;λ, 19, thus calculated, with those

given by Gabriel in [12], we find that the two sets of numbers do not agree. In

fact the orbit dimensions that Gabriel gives are exactly one less than the orbit di-

mensions we calculate in each case. This is strange. Since Gabriel did not give the

proof of these facts in [12] it is difficult to find an explanation for this difference.

However in Mazzola’s paper [21] on classifying algebras of dimension five, the or-

bit dimensions are calculated by subtracting the dimension of the automorphism

groups from 25 (25 being the dimension of GL5) — this would tend to suggest

that our methodology for calculating orbit dimensions is correct.



CHAPTER 3. GEOMETRIC CLASSIFICATION 138

3.4 Degenerations in Salgn

Recall the notion of degeneration between two superalgebra, which was

introduced at the end of Section 3.2.

In this section we concern ourselves with conditions determining when

a degeneration of superalgebras in Salgn can or cannot exist. When look-

ing for conditions for the non-existence of degenerations between a given

pair of superalgebras, it would be helpful to have some invariants of the

superalgebra which are “rigid” in the sense that if there is a degeneration

of superalgebras A → B, then the superalgebras A and B must have the

same value for the invariant. Unfortunately, the only such invariant that

we know of is dim0 (using Assumption 3.2.13, which states that the sets

Salgi
n are closed subsets of Salgn and the fact that these subsets are disjoint).

The next best thing is a property of a superalgebra which any degeneration

of this superalgebra must inherit, or some property which cannot increase

or decrease upon degeneration. Such properties are analogous to those de-

scribed in [12, Proposition 2.7] (given here as Lemma 3.1.61), which states,

for example, the fact that the dimension of the radical cannot decrease

upon degeneration. Later in the section we determine several properties

which any degeneration of a given superalgebra must share.

Lemma 3.4.1 Let Ω : k → Salgn be a polynomial function and U ⊆ Salgn. If

there are infinitely many points of Ω(k) in U then Ω(k) ⊆ U .

Proof:

First, note that we think of Ω as describing a curve in Salgn. U is defined

to be the intersection of all closed sets containing U . A closed set is the

vanishing set of polynomials (intersected with Salgn), so it is enough to

show that any polynomial vanishing on U must also vanish on all of Ω(k).

By applying the appropriate projections to Ω, we may write αk
ij = ak

ij(t)

and γj
i = gj

i (t) (letting the indeterminate be t), to describe the coordinates

of this curve.
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It is standard that Ω−1(U) = {t ∈ k : Ω(t) ∈ U}, but notice that this set

gives the t values such that the curve Ω lies inside the set U . We consider a

polynomial function in (αk
ij , γ

j
i ), which vanishes on U , f(αk

ij, γ
j
i ) = 0. Since

f vanishes on U it must vanish at the points of Ω(k) lying inside U . So

we have t ∈ Ω−1(U) ⇒ f(ak
ij(t), g

j
i (t)) = 0. Note that f(ak

ij(t), g
j
i (t)) is a

polynomial in t, suppose the degree deg(f(ak
ij(t), g

j
i (t))) = d (which must

be finite).

It is impossible to have d ≥ 1, since if d ≥ 1 then f(ak
ij(t), g

j
i (t)) = 0 has

at most d zeros, which contradicts the fact we assumed it to vanish on all

of Ω(k) ∩ U , which has infinitely many points.

Thus d = 0, hence f(ak
ij(t), g

j
i (t)) must be a constant. The only way that

f(ak
ij(t), g

j
i (t)) = 0 is satisfied for points in Ω−1(U) is if f(ak

ij(t), g
j
i (t)) is the

zero polynomial, in which case f(ak
ij(t), g

j
i (t)) = 0 is satisfied for all t ∈ k.

This completes the proof. �

Definition 3.4.2 If A and B are n-dimensional superalgebras, a specialization

of A to B is the following situation: one makes a change of basis in A to a “vari-

able” basis, i.e. one involving some unknown t, such that the point of Salgn

obtained by structural transport is given by some polynomial functions in t and

lies in the orbit of A for t 6= 0, yet at t = 0 lies in the orbit B. We think of B as

being obtained by a formal limit of the basis change in A.

A specialization of superalgebras A to B is a more restrictive notion

than a specialization of algebras, since not only must there be a specializa-

tion of the underlying algebras, this must occur in such a way that under

the specialization, the Z2-grading on A also tends to the Z2-grading on B.

This is usually a non-trivial constraint, so some specializations between

algebras may not give rise to specializations of superalgebras on these al-

gebras. Or perhaps one must use different specializations for different

superalgebra structures on the same underlying algebra.

With this idea of specialization we obtain a useful corollary of the above

lemma.
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Corollary 3.4.3 A specialization of A to B implies that A degenerates to B.

Proof:

Clearly the specialization gives us a curve Ω : k → Salgn. We let the set U

in Lemma 3.4.1 be the orbit Gn ·A. Now, as k is algebraically closed, it has

infinitely many elements. Thus so does k∗. Then Ω(k∗) ⊆ Gn · A so Gn · A
contains infinitely many elements of Ω(k). So we may apply Lemma 3.4.1.

Now note that Ω(0) gives structure constants for a point in the orbit Gn ·B.

Hence, by Lemma 3.4.1 the point in the orbit Gn · B given by Ω(0) lies in

the closure of the orbit of A — this means that A degenerates to B. �

Remark 3.4.4 Let A be a superalgebra with dimA0 = i, in other words A ∈
Salgi

n. Suppose the bases of A0 and A1 are given by {1, e2, . . . , ei} and {ei+1, . . . ,

en} respectively. The specialization described by Gabriel in [12] given by 1 7→
1, e2 7→ te2, . . . , en 7→ ten and letting t→ 0 implies that any algebra degenerates

to the algebraCn. This specialization does not alter the Z2-grading, which implies

(by Corollary 3.4.3) any superalgebra in Salgi
n degenerates to the superalgebra

Cn(i) in Salgi
n. Stated another way, the closure of any orbit in Salgi

n contains the

orbit of the superalgebra Cn(i) in Salgi
n (which is the closed orbit in Salgi

n).

Earlier in Section 3.2 we mentioned that Salgi
n are the connected com-

ponents of Salgn. Using Corollary 3.4.3 above, we can now prove this to

be the case.

Proposition 3.4.5 The set {Salgi
n}n

i=1 are the connected components of Salgn.

Proof:

Any irreducible component is connected, because a disconnected space is

reducible.

Am is a Noetherian space, and by Assumption 3.2.13 Salgi
n is a closed

subset of Am (for m = n3 + n2), so by Remark 3.1.38 (a) Salgi
n has a finite

number of irreducible components. However, irreducible components are

closed and they must all contain the orbit of the superalgebra Cn(i) by
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the statements before this proposition. Hence the irreducible components

have a non-empty intersection.

Thus Salgi
n is a finite union of its irreducible components, these are con-

nected and have non-empty intersection. Now apply the following result

from General Topology to deduce that Salgi
n is connected: if the family

{Xi : i ∈ I} of connected subsets of a topological space has non-empty

intersection, then its union,
⋃

i∈I Xi is connected. �

Remark 3.4.6 To prove Proposition 3.4.5 above, we needed to assume that

{Salgi
n}n

i=1 are closed subsets of Salgn. One can actually see that, in fact, {Salgi
n}n

i=1

are the connected components of Salgn if and only if {Salgi
n}n

i=1 are closed subsets.

Proposition 3.4.5 shows one of the directions, and for the converse we note that

connected components are closed (another fact from General Topology).

Given n-dimensional superalgebrasA andB, to show thatA cannot de-

generate to B, it is sufficient to exhibit a closed set in Salgn containing the

orbit Gn ·Awhich is disjoint from Gn ·B. Note that if there are two disjoint

closed sets in Salgn one containing the orbit Gn · A and the other contain-

ing the orbit of Gn · B, then there cannot be any degenerations between A

and B. We now look for some necessary conditions for a degeneration of

superalgebras to exist.

Remark 3.4.7 We have seen some conditions necessary (but not sufficient) for

the existence of a degeneration earlier in the chapter, perhaps given in a different

context. These are useful to show when there is no degeneration between two

superalgebras. We point these out now. In the following, suppose that A and B

are n-dimensional superalgebras.

(a) If U(A) doesn’t degenerate to U(B) as algebras, then A cannot degenerate

to B as superalgebras. This follows, as a degeneration of A to B as super-

algebras implies a degeneration of U(A) to U(B) as algebras, by using the

Gn-equivariant map U .
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(b) However, in the case of trivially Z2-graded superalgebras this condition is

clearly also sufficient. Since Salgn
n is isomorphic to Algn (see Proposition 3.2.8),

and the isomorphism is Gn-equivariant, it follows that A degenerates to B in

Salgn
n if and only if U(A) degenerates to U(B) in Algn.

(c) Since we are making Assumption 3.2.13 that the disjoint sets Salgi
n are also

closed subsets of Salgn it follows that there cannot be a degeneration from A

to B unless dimA0 = dimB0.

(d) We also remark that for n ≥ 3, Salg1
n consists only of the closed orbit of

the superalgebra Cn(1). (See Proposition 2.2.12). So when n ≥ 3, in the

dim0 = 1 case, we do not need to worry about degenerations in Salg1
n. Since,

in this case, there is only one orbit.

The above facts follow from considering either the algebra structure

or the Z2-grading in isolation. For some more necessary conditions for the

existence of a degeneration we must exploit both the algebra structure and

the Z2-grading simultaneously.

We look for closed Gn-stable subsets defined by some superalgebraic

properties. Finding such subsets is made difficult and proving such a sub-

set is closed is awkward since a point in Salgn has structure constants rep-

resenting, in general, a superalgebra with a non-homogeneous basis, yet

superalgebraic properties are usually given in terms of homogeneous ele-

ments.

The results which follow all require use of Lemma 3.1.51 given in the

preliminaries section.

Lemma 3.4.8 The following sets are closed in Salgn:

(a) {A ∈ Salgn : A2
1 = {0}}

(b) {A ∈ Salgn : A0 is commutative }
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Proof:

Recall that at the beginning of this chapter we defined superalgebra struc-

tures on an n-dimensional vector space V , which we gave a basis {e1, . . . ,
en}.

For the set in part (a) we assign to a superalgebra A the following sub-

set WA = {v ⊗ w : v, w ∈ A1, vw = 0} of V ⊗ V . For the set in part (b)

we assign to a superalgebra A the following subset W ′
A = {v ⊗ w : v, w ∈

A0, vw = wv} of V ⊗ V . It is straightforward to check that these are both

cones in V ⊗ V .

Then we may write v =
∑n

i=1 ciei and w =
∑n

i=1 diei. Now from v⊗w 6=
0 it is possible to recover v andw up to scalar multiple. This fact shall cause

us no problems, however, since WA and W ′
A are cones in V ⊗ V .

We show now that {(A, v ⊗ w) : v, w ∈ A1, vw = 0} is closed in

Salgn ×(V ⊗ V ). If v ⊗ w = 0 then either v = 0 or w = 0, in which

case ci = 0 for i = 1, . . . , n or di = 0 for i = 1, . . . , n. So for v ⊗ w 6= 0,

v ∈ A1 ⇔∑n
i=1 ciγ

j
i + cj = 0 for j = 1, . . . , n; w ∈ A1 ⇔∑n

i=1 diγ
j
i + dj = 0

for j = 1, . . . , n; and vw = 0 ⇔ ∑n

i,j=1 cidjα
k
ij = 0 for 1 ≤ i, j ≤ n.

We remark that if coordinates of v and w with respect to the given ba-

sis, i.e. (ci), (di), satisfy these equations, then so too must (λci), (µdi) for

any λ, µ ∈ k. Thus it does not matter that we can only obtain v and w

up to scalar multiple. Thus {(A, v ⊗ w) : v, w ∈ A1, vw = 0} = V ({ci}) ∪
V ({di})∪V ({∑n

i=1 ciγ
j
i + cj,

∑n
i=1 diγ

j
i +dj ,

∑n
i,j=1 cidjα

k
ij}), which is closed

in Salgn ×(V ⊗ V ).

We show now that {(A, v ⊗ w) : v, w ∈ A0, vw = wv} is closed in

Salgn ×(V ⊗ V ). If v ⊗ w = 0 then either v = 0 or w = 0, in which

case ci = 0 for i = 1, . . . , n or di = 0 for i = 1, . . . , n. So for v ⊗ w 6= 0,

v ∈ A0 ⇔∑n
i=1 ciγ

j
i − cj = 0 for j = 1, . . . , n; w ∈ A0 ⇔∑n

i=1 diγ
j
i − dj = 0

for j = 1, . . . , n; and vw = wv ⇔∑n

i,j=1 cidj(α
k
ij − αk

ji) = 0 for 1 ≤ i, j ≤ n.

Thus {(A, v⊗w) : v, w ∈ A0, vw = wv} = V ({ci})∪V ({di})∪V ({∑n

i=1 ciγ
j
i −

cj,
∑n

i=1 diγ
j
i −dj ,

∑n
i,j=1 cidj(α

k
ij−αk

ji)}), which is closed in Salgn ×(V ⊗V ).

So by Lemma 3.1.51 the maps A 7→ dimWA and A 7→ dimW ′
A are upper
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semicontinuous.

Now since Salgi
n are closed subsets of Salgn it suffices to show that the

sets mentioned in the lemma intersected with Salgi
n are closed in Salgi

n

for each i = 1, . . . , n. That is, we may assume dimA0 = i. We note that

WA ⊆ A1 ⊗ A1. Now if A2
1 = 0, then WA = A1 ⊗ A1 which has dimension

(n− i)2. If A2
1 6= {0}, then WA ⊂ A1 ⊗ A1. We can see from the above, that

for a given superalgebra A, WA is closed in V ⊗V , and we note thatA1⊗A1

is irreducible and has dimension (n − i)2 (as a variety, see Lemma 3.1.42)

as it is isomorphic to the (n − i)2-dimensional affine space A(n−i)2 , thus

dimWA < (n − i)2 by Lemma 3.1.41. Thus the set {A ∈ Salgi
n : A2

1 =

{0}} = {A ∈ Salgi
n : dimWA ≥ (n− i)2} which is a closed set by the upper

semicontinuity. This proves part (a).

Similarly W ′
A ⊆ A0 ⊗ A0, and if A0 is commutative then W ′

A = A0 ⊗
A0 which has dimension i2. If A0 is not commutative then W ′

A ⊂ A0 ⊗
A0 and so similarly as above dimW ′

A < i2 (we just need to note that W ′
A

is closed and A0 ⊗ A0 is irreducible). Thus the set {A ∈ Salgi
n : A0 is

commutative } = {A ∈ Salgi
n : dimW ′

A ≥ i2} which is a closed set by the

upper semicontinuity. This proves part (b). �

Definition 3.4.9 On a superalgebra, one can define a new multiplication by a •
b = a0b0 + a1b0 + a0b1 − a1b1. The graded center of a superalgebra is then

defined to be Zg(A) = {a ∈ A : ab = b • a ∀b ∈ A} = {a ∈ A : ab =

b0a0 + b1a0 + b0a1 − b1a1 ∀b ∈ A}. In the case that the graded centre coincides

with the entire superalgebra i.e. Zg(A) = A we say that the superalgebra is

supercommutative or graded commutative.

The set of supercommutative superalgebras form a closed subset as

the next lemma shows. Unfortunately, this result doesn’t help us with

showing the non-existence of any degenerations in dimension 4 or less.

Lemma 3.4.10 {A ∈ Salgn : A is supercommutative } is a closed subset of

Salgn.
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Proof:

The proof of this fact is similar to the proof of the above lemma, so we only

present a sketch.

We assign to a superalgebraA the following subsetWA = {v⊗w : vw =

w • v} of V ⊗ V . Then with v =
∑n

i=1 ciei and w =
∑n

i=1 diei the conditions

for these two elements to supercommute becomes:
∑n

i,j,k,l=1[(cj + ciγ
j
i )(dl + dkγ

l
k) + (cj + ciγ

j
i )(dl − dkγ

l
k) + (cj − ciγ

j
i )(dl +

dkγ
l
k) + (cj − ciγ

j
i )(dl − dkγ

l
k)]α

m
jl =

∑n
i,j,k,l=1[(cj + ciγ

j
i )(dl + dkγ

l
k) + (cj +

ciγ
j
i )(dl − dkγ

l
k) + (cj − ciγ

j
i )(dl + dkγ

l
k) − (cj − ciγ

j
i )(dl − dkγ

l
k)]α

m
lj for all

m ∈ {1, . . . , n}
Thus the subset {(A, v⊗w) : v⊗w ∈ WA} is closed in Salgn ×V ⊗V . So

by Lemma 3.1.51 the map A 7→ dimWA is an upper semicontinuous map.

The superalgebra A is supercommutative if and only if WA has dimension

n2 (which is as large as the dimension can possibly be). So the set of super-

commutative superalgebras is equal to {A ∈ Salgn : dimWA ≥ n2} which

is closed. �

For Salg2
n we have other closed subsets. Since dimA0 = 2, J(A0) = {x ∈

A0 : x2 = 0}, notice that this is a vector subspace of A0.

Lemma 3.4.11 The following are closed sets in Salg2
n:

• {A ∈ Salg2
n : dim J(A0) = 1}

• {A ∈ Salg2
n : dim J(A0) = 1, J(A0)A1 = {0}}

• {A ∈ Salg2
n : dim J(A0) = 1, A1J(A0) = {0}}

Proof:

We give the proof for the second subset, since the proof for the third is

very similar and the proof for the first subset follows by simplifying this

proof.

For the second subset we assign to a superalgebra A the subset WA =

{v ⊗ w : v ∈ A0, w ∈ A1, v
2 = 0, vw = 0} of V ⊗ V . This is clearly a cone.

We also note WA ⊆ J(A0) ⊗ A1.
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Suppose v =
∑n

i=1 ciei, w =
∑n

i=1 diei. We discover {(A, v ⊗ w) : v ⊗
w ∈WA} = V ({ci})∪V ({di})∪V ({∑n

i=1 ciγ
j
i − cj ,

∑n

i=1 cicjα
k
ij ,
∑n

i=1 diγ
j
i +

dj,
∑n

i,j=1 cidjα
k
ij}). Which is closed in Salgn ×(V ⊗ V ).

So by Lemma 3.1.51 A 7→ dimWA is an upper semi-continuous map.

Now, ifA ∈ {A ∈ Salg2
n : dim J(A0) = 1, J(A0)A1 = {0}} then dimWA =

n− 2.

If A /∈ {A ∈ Salg2
n : dim J(A0) = 1, J(A0)A1 = {0}} then either

dim J(A0) = 0 in which case WA = {0} and dimWA = 0 or dim J(A0) = 1

and J(A0)A1 6= {0} in which case WA ⊂ J(A0)⊗A1. In this case dimWA <

n− 2 since WA is closed, and J(A0) ⊗A1
∼= A1

∼= An−2 as vector spaces, so

J(A0) ⊗A1 is an irreducible subset of dimension n− 2 by Lemma 3.1.42.

Hence {A ∈ Salg2
n : dim J(A0) = 1, J(A0)A1 = {0}} = {A ∈ Salg2

n :

dimWA ≥ n− 2} which is closed by the upper semi-continuity. �

One can quickly check that if a superalgebra belongs to one of the

closed sets described in Lemma 3.4.8, Lemma 3.4.10 or Lemma 3.4.11, then

any isomorphic superalgebra must also belong to the same set. Thus these

closed sets are stable under the action of Gn.
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3.5 Degenerations in Salg4

In this section we are interested in determining when 4-dimensional su-

peralgebra structures do or do not degenerate to one another. Here we

use the results derived in the previous section to help us.

The results of this section give us most of the degenerations in Salg4.

Before giving the degeneration diagrams we shall first explain how to in-

terpret them. We follow this by giving a partial classification theorem for

Salg4 — we determine twenty irreducible components. There are, how-

ever, two other structures which may or may not give rise to irreducible

components, and finally we give the details of the degenerations or the

non-existence of degenerations, which were shown in the degeneration

diagram.

As we shall soon see, there can be no degenerations amongst

4-dimensional superalgebras A and B with dimA0 6= dimB0. Thus we

can give the degeneration diagram for Salg4 by giving the degeneration

diagrams for each of the connected components Salgi
4 for i = 1, 2, 3, 4 sep-

arately. However we shall omit the diagram for Salg1
4 since this consists of

the solitary orbit of (9|3).

Before giving these diagrams we shall explain the notations that we

use in these diagrams.

We represent the orbits of isomorphism classes of superalgebras, by

using the (i|j) notation from Chapter 2; (i|j) shall be used to denote the

orbit G4 · (i|j) in Salg4.

The families of superalgebras (18;λ|i), i = 0, 1, 2 consist of those su-

peralgebras for all values of λ except −1, which in particular includes the

values λ = 0 and λ = 1. In these cases these orbits coincide with some of

the other orbits. This is because, as superalgebras, we have the following

equalities or isomorphisms: (18; 0|0) = (16|0), (18; 0|1) = (16|1), (18; 0|2) =

(16|3), (18; 1|0) ∼= (7|0), (18; 1|1) ∼= (7|2), (18; 1|2) ∼= (7|3).

In the degeneration diagram we use a dashed line to indicate a “degen-
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eration” by a family of superalgebra structures; that is, when an orbit lies

in the closure of the union of a family of orbits. This explains the use of the

dashed lines through the families (18;λ|i), i = 0, 1, 2. The fact that we use

an arrow from (18;λ|0) to (8|0) and from (18;λ|2) to (8|3) is because there

is a genuine degeneration, in the sense of Definition 3.2.20, from each of

the orbits in these families to the orbits (8|0) or (8|3).

The dotted arrows (or dotted lines in the case of degenerations by a

family of structures), are used to indicate those degenerations which we

are unsure of — there may or may not be a degeneration between the

indicated superalgebras.
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From this we get the following partial result classifying 4-dimensional

superalgebras:

Theorem 3.5.1 (Partial Geometric Classification of 4-dimensional Superalgebras)

In Salg4 there are at least twenty irreducible components. The following struc-

tures (or families of structures) are known to be generic:

In Salg4
4: (1|0), (10|0), (13|0), (17|0), (18;λ|0)

In Salg3
4: (1|1), (11|1), (13|1), (14|1), (15|1), (17|1)

In Salg2
4: (1|2), (10|1), (11|3), (14|3), (15|3), (17|2), (18;λ|1), (18;λ|2)

In Salg1
4: (9|3)

Proof:

This follows from the degeneration diagrams and Corollary 3.3.12 which

gives the relationship between the degeneration partial order and the irre-

ducible components.

�

Remark 3.5.2 The result above guarantees the existence of twenty irreducible

components, however there could be up to two more irreducible components as

well. It is the connected component Salg2
4 in which we are unsure if we have

found all of the irreducible components. It is not known whether the following

two structures in Salg2
4 are generic or not: (6|2), (19|1) — so Salg2

4 could have as

few as eight irreducible components or as many as ten.

We are unsure if (18;λ|2) degenerates to (19|1) or not. This is why the

dashed line through (18;λ|2) changes to a dotted line after passing through

(16|3). We point this out to the reader to ensure this important detail is not

missed.

Remark 3.5.3 Proposition 3.3.17 gives the dimensions of these orbits, which for

the generic structures gives the dimensions of the components too. However, for

the generic families (18;λ|i) for i = 0, 1, 2, the dimension of the component must

be at least one larger than the dimension of any single orbit in this family. Since
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the family depends on one parameter λ, we would suspect that the dimensions of

these components of the generic families are exactly one larger than the dimension

of any single orbit in this family. However, we have not proved this. To prove

that this is indeed the case, it would suffice to show that there can be no closed

irreducible set Y lying properly between Gn · (18;λ|i) and
⋃

λGn · (18;λ|i), i.e.

that it is impossible to have Gn · (18;λ|i) ⊂ Y ⊂ ⋃

λGn · (18;λ|i) when Y is

closed and irreducible.

We now provide the details which were used to obtain the degenera-

tion diagrams just given:

We apply the following useful facts mentioned in Remark 3.4.7 in the

previous section which shall help us here. Since n = 4 we may appeal

Lemma 3.2.10 to see that Salgi
4 for i = 1, 2, 3, 4 are all closed disjoint subsets

(and in fact by Proposition 3.4.5 are the connected components of Salg4).

Thus by part (c) of Remark 3.4.7 there cannot be a degeneration from A to

B unless dim0A = dim0B. Thus we need only look at the degenerations

amongst superalgebras belonging to the same subset Salgi
4.

Another remark made in part (a) of Remark 3.4.7 is the following: If

U(A) doesn’t degenerate to U(B) as algebras, then A cannot degenerate

to B as superalgebras. So we simply focus on degenerations from A to B,

when there is a degeneration from U(A) to U(B) of underlying algebras.

These two remarks represent large simplifications for us, as they greatly

reduce the number of degenerations we must consider. Since two differ-

ent superalgebras on the same underlying algebra have a trivial degener-

ation of the underlying algebra, we must however check to see if there are

degenerations between different superalgebras on the same underlying al-

gebra.

We also recall, any superalgebra in Salgi
4 degenerates to the superalge-

bra structure on k[X, Y, Z]/(X, Y, Z)2 in Salgi
4 for i = 1, 2, 3, 4. The orbit of

this superalgebra is the closed orbit in Salgi
4. We will not mention this de-

generation further since it always exists. We gave the specialization giving

rise to this degeneration in Remark 3.4.4.
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By Corollary 3.4.3, to show the existence of a degeneration, it suffices

to exhibit a specialization. In this section to show the existence of degen-

erations we shall do this, except in one instance where we shall appeal to

Lemma 3.4.1 directly.

We mention that all the specializations given in this section are “homo-

geneous”, that is, the basis changes replace degree zero terms by degree

zero terms, and similarly replace degree one terms by degree one terms.

Corollary 3.4.3 applies equally well to non-homogeneous specializations,

however, such specializations are more difficult to determine. In fact, there

are some superalgebras which we haven’t determined whether there is or

is not a degeneration between (e.g. does (1|2) degenerate to (6|2)?), but

if the degeneration was to be obtained by a specialization it would nec-

essarily have to be non-homogeneous. For an example of a degeneration

obtained by a non-homogeneous specialization we have the following in

the dimension 2 case, where each superalgebra is given the non-trivial Z2-

grading:

k × k → k[X]/(X2) by e1 = (1, 1), e2 = (1,−1), e′1 = e1, e
′
2 = te1 + te2 let

t→ 0

To show the non-existence of a degeneration we list the method which

we use. There are several different methods. We give the name and a brief

explanation for each below.

• By Lemma 3.3.6 part (c) the orbit dimension must strictly decrease

upon proper degeneration. So a superalgebra cannot degenerate to

another superalgebra of the same or greater dimension. We abbrevi-

ate this method by (OD). Note however that it is possible for a family

of structures of a given dimension to “degenerate” to a structure of

the same dimension. As an example of this, each orbit in (18;λ|0) has

dimension 8 as does the orbit (19|0), yet the family (18;λ|0) “degen-

erates” to (19|0).

• For the other methods we use the closed Gn-stable subsets found in
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the previous section. If A belongs to one of these subsets, and B

does not, then A cannot degenerate to B. We shall refer to this set

of methods by which of the closed Gn-stable subsets we apply. The

abbreviation we give to the method by applying one of the closed

sets is listed below.

– (A) {A ∈ Salgn : A2
1 = {0}}

– (B) {A ∈ Salgn : A0 is commutative }
– (C) {A ∈ Salg2

4 : dim J(A0) = 1}
– (D) {A ∈ Salg2

4 : dim J(A0) = 1, J(A0)A1 = {0}}
– (E) {A ∈ Salg2

4 : dim J(A0) = 1, A1J(A0) = {0}}

In the following, when α 6= 0, we will use the shorthand,
√
α to denote

some element, x, of k∗, such that x2 = α. (Such an element x always exists

as k is algebraically closed. Moreover, if x is such an element, then so too

is −x).

Case dim0 = 4:

Applying part (b) in Remark 3.4.7 from the previous section, we no-

tice that the degeneration diagram of Salg4
4 corresponds exactly to the de-

generation diagram of Alg4. These degenerations have been completely

described by Gabriel in [12], where he gives the degeneration diagram.

Case dim0 = 3:

Existence of Degenerations:

(1|1) → (2|1) : e1 = (1, 1, 1, 1), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 1), e4 =

(0, 0, 1,−1), e′1 = e1, e
′
2 = e2, e

′
3 = e3, e

′
4 = te4 let t→ 0

(1|1) → (2|2) : e1 = (1, 1, 1, 1), e2 = (0, 0, 1, 1), e3 = (1,−1, 0, 0), e4 =

(0, 0, 1,−1), e′1 = e1, e
′
2 = e2, e

′
3 = te3, e

′
4 = e4 let t→ 0

(1|1) → (4|1) : e1 = (1, 1, 1, 1), e2 = (1, 0, 0, 0), e3 = (0, 0, 1, 1), e4 =

(0, 0, 1,−1), e′1 = e1, e
′
2 = e2, e

′
3 = t2e3, e

′
4 = te4 let t→ 0
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(2|1) → (3|1) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (1,−1, 0), e4 = (0, 0, X), e′1 =

e1, e
′
2 = e2, e

′
3 = te3, e

′
4 = e4 let t→ 0

(2|1) → (6|1) : e1 = (1, 1, 1), e2 = (1, 0, 0), e3 = (0,−1, 1), e4 = (0, 0, X), e′1 =

e1, e
′
2 = e2, e

′
3 = te3, e

′
4 = e4 let t→ 0

(2|2) → (3|1) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (0, 0, X), e4 = (1,−1, 0), e′1 =

e1, e
′
2 = e2, e

′
3 = e3, e

′
4 = te4 let t→ 0

(2|2) → (7|1) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (0, 0, X), e4 = (1,−1, 0), e′1 =

e1, e
′
2 =

√
2te2 + e3, e

′
3 = t2e2, e

′
4 =

√
−2te4 let t→ 0

(3|1) → (8|1) : e1 = (1, 1), e2 = (1, 0), e3 = (X, 0), e4 = (0, Y ), e′1 =

e1, e
′
2 = te2 + e3, e

′
3 = te3, e

′
4 = e4 let t→ 0

(4|1) → (6|1) : e1 = (1, 1), e2 = (1, 0), e3 = (0, X2), e4 = (0, X), e′1 =

e1, e
′
2 = e2, e

′
3 = e3, e

′
4 = te4 let t→ 0

(4|1) → (7|1) : e1 = (1, 1), e2 = (−1, 1), e3 = (0, X2), e4 = (0, X), e′1 =

e1, e
′
2 = t2e2 + e3, e

′
3 = t2e3, e

′
4 =

√
−2te4 let t→ 0

(6|1) → (8|1) : e1 = (1, 1), e2 = (−1, 1), e3 = (0, X), e4 = (0, Y ), e′1 =

e1, e
′
2 = te2 + e3, e

′
3 = 2te3, e

′
4 = e4 let t→ 0

(7|1) → (8|1) : e1 = 1, e2 = X + Y, e3 = XY, e4 = X − Y, e′1 = e1, e
′
2 =

e2, e
′
3 = 2e3, e

′
4 = te4 let t→ 0

(7|1) → (8|2) : e1 = 1, e2 = X + Y, e3 = XY, e4 = X − Y, e′1 = e1, e
′
2 =

−2e3, e
′
3 = te2, e

′
4 = e4 let t→ 0

(13|1) → (14|2) : e1 =
(

1,
(

1 0

0 1

))

, e2 =
(

1,
(

0 0

0 1

))

, e3 =
(

1,
(

0 0

0 0

))

, e4 =
(

0,
(

0 1

0 0

))

, e′1 = e1, e
′
2 = e2, e

′
3 = te3, e

′
4 = e4 let t→ 0

(13|1) → (15|2) : e1 =
(

1,
(

1 0

0 1

))

, e2 =
(

1,
(

1 0

0 0

))

, e3 =
(

1,
(

0 0

0 0

))

, e4 =
(

0,
(

0 1

0 0

))

, e′1 = e1, e
′
2 = e2, e

′
3 = te3, e

′
4 = e4 let t→ 0

(14|2) → (8|1) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 −1

)

, e3 =

(

0 0 0

1 0 0

0 0 0

)

, e4 =

(

0 0 0

0 0 0

1 0 0

)

, e′1 = e1, e
′
2 = te2 + e3, e

′
3 = 2te3, e

′
4 = e4 let t→ 0

(15|2) → (8|1) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 −1

)

, e3 =

(

0 1 0

0 0 0

0 0 0

)

, e4 =
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(

0 0 1

0 0 0

0 0 0

)

, e′1 = e1, e
′
2 = te2 + e3, e

′
3 = 2te3, e

′
4 = e4 let t→ 0

Non-existence of Degenerations:

(2|1) 9 (2|2) (OD)

(2|1) 9 (4|1) (OD)

(2|1) 9 (7|1) (A)

(2|1) 9 (8|2) (A)

(2|2) 9 (2|1) (OD)

(2|2) 9 (4|1) (OD)

(3|1) 9 (7|1) (OD)

(3|1) 9 (8|2) (A)

(6|1) 9 (8|2) (A)

(8|1) 9 (8|2) (OD)

(8|2) 9 (8|1) (OD)

(13|1) 9 (8|2) (A)

(13|1) 9 (14|1) (B)

(13|1) 9 (15|1) (B)

(14|1) 9 (8|1) (OD)

(14|1) 9 (8|2) (OD)

(14|1) 9 (14|2) (OD)

(14|2) 9 (8|2) (A)

(14|2) 9 (14|1) (B)

(15|1) 9 (8|1) (OD)

(15|1) 9 (8|2) (OD)

(15|1) 9 (15|2) (OD)

(15|2) 9 (8|2) (A)

(15|2) 9 (15|1) (B)

Undetermined Degeneration:

(2|2)
?→ (6|1)

Case dim0 = 2:
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Existence of Degenerations:

(1|2) → (2|3) : e1 = (1, 1, 1, 1), e2 = (0, 0, 1, 1), e3 = (1,−1, 0, 0), e4 =

(0, 0, 1,−1), e′1 = e1, e
′
2 = e2, e

′
3 = e3, e

′
4 = te4 let t→ 0

(1|2) → (3|3) : e1 = (1, 1, 1, 1), e2 = (1, 1, 0, 0), e3 = (1,−1, 1,−1), e4 =

(1,−1, 0, 0), e′1 = e1, e
′
2 = te2, e

′
3 = e3, e

′
4 = te4 let t→ 0

(2|3) → (3|2) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (1,−1, 0), e4 = (0, 0, X), e′1 =

e1, e
′
2 = e2, e

′
3 = te3, e

′
4 = e4 let t→ 0

(2|3) → (5|1) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (1,−1, 0), e4 = (0, 0, X), e′1 =

e1, e
′
2 = t2e2, e

′
3 = te3 + e4, e

′
4 = t3e3 let t→ 0

(3|2) → (7|2) : e1 = (1, 1), e2 = (1,−1), e3 = (X, Y ), e4 = (X,−Y ), e′1 =

e1, e
′
2 = te2, e

′
3 = e3, e

′
4 = te4 let t→ 0

(3|3) → (5|1) : e1 = (1, 1), e2 = (X, Y ), e3 = (1,−1), e4 = (X,−Y ), e′1 =

e1, e
′
2 = 2te2, e

′
3 = te3 + e4, e

′
4 = 2t2e4 let t→ 0

(3|3) → (7|3) : e1 = (1, 1), e2 = (X, Y ), e3 = (1,−1), e4 = (X,−Y ), e′1 =

e1, e
′
2 = te2, e

′
3 = te3, e

′
4 = e4 let t→ 0

(5|1) → (7|2) : e1 = 1, e2 = X2, e3 = X, e4 = X3, e′1 = e1, e
′
2 = e2, e

′
3 =

te3, e
′
4 = te4 let t→ 0

(5|1) → (8|3) : e1 = 1, e2 = X2, e3 = X, e4 = X3, e′1 = e1, e
′
2 = t2e2, e

′
3 =

te3, e
′
4 = e4 let t→ 0

(7|3) → (8|3) : e1 = 1, e2 = XY, e3 = X + Y, e4 = X − Y, e′1 = e1, e
′
2 =

2e2, e
′
3 = e3, e

′
4 = te4 let t→ 0

(10|1) → (11|2) : e1 =
(

1 0

0 1

)

, e2 =
(

1 0

0 −1

)

, e3 =
(

0 1

0 0

)

, e4 =
(

0 0

1 0

)

, e′1 =

e1, e
′
2 = e2, e

′
3 = te3, e

′
4 = te4 let t→ 0

(10|1) → (12|2) : e1 =
(

1 0

0 1

)

, e2 =
(

1 0

0 −1

)

, e3 =
(

0 1

−1 0

)

, e4 =
(

0 1

1 0

)

, e′1 =

e1, e
′
2 = t2e2, e

′
3 = te3, e

′
4 = te4 let t→ 0

(11|2) → (12|1) : e1 =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, e2 =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



, e3 =





0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0



,

e4 =





0 0 0 0

0 0 0 1

−1 0 0 0

0 0 0 0



, e′1 = e1, e
′
2 = te2, e

′
3 = e3, e

′
4 = te4 let t→ 0
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(11|3) → (12|1) : e1 =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, e2 =





0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0



, e3 =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



,

e4 =





0 0 0 0

0 0 0 −1

1 0 0 0

0 0 0 0



, e′1 = e1, e
′
2 = e2, e

′
3 = te3, e

′
4 = te4 let t→ 0

(11|3) → (12|2) : e1 =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, e2 =





0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0



, e3 =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



,

e4 =





0 0 0 0

0 0 0 1

−1 0 0 0

0 0 0 0



, e′1 = e1, e
′
2 = te2, e

′
3 = te3, e

′
4 = e4 let t→ 0

(14|3) → (16|1) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 −1

)

, e3 =

(

0 0 0

1 0 0

1 0 0

)

, e4 =

(

0 0 0

1 0 0

−1 0 0

)

, e′1 = e1, e
′
2 = te2, e

′
3 = e3, e

′
4 = te4 let t→ 0

(15|3) → (16|2) : e1 =

(

1 0 0

0 1 0

0 0 1

)

, e2 =

(

1 0 0

0 1 0

0 0 −1

)

, e3 =

(

0 1 1

0 0 0

0 0 0

)

, e4 =

(

0 1 −1

0 0 0

0 0 0

)

, e′1 = e1, e
′
2 = te2, e

′
3 = e3, e

′
4 = te4 let t→ 0

(16|3) → (8|3) : e1 = 1, e2 = XY, e3 = X + Y, e4 = X − Y, e′1 = e1, e
′
2 =

e2, e
′
3 = e3, e

′
4 = te4 let t→ 0

(18;λ|1) → (7|2), (16|1) : Since the orbits of (7|2) and (16|1) coincide

with the orbits of (18; 1|1) and (18; 0|1) respectively, (7|2) and (16|1) are

included in the closure of the union of the family of orbits (18;λ|1).

(18;λ|1) → (16|2) : Also (16|2) is included in the closure of the union of

the family of orbits (18;λ|1). To see this, we look at the structure constants

of (18; t−1|1) in the basis e1 = 1, e2 = X, e3 = Y, e4 = Y X . This gives us

a curve in Salg4 which lies in the family of orbits of (18;λ|1) for t 6= 0, yet

lies in the orbit of (16|2) when t = 0. By appealing to Lemma 3.4.1 directly

the result follows.

(18;λ|2) → (7|3), (16|3) : Similarly the orbits of (7|3) and (16|3) are in-
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cluded in the closure of the union of the family of orbits (18;λ|2).

(18;λ|2) → (8|3) : e1 = 1, e2 = XY, e3 = X + Y, e4 = X − Y, e′1 = e1, e
′
2 =

(1 + λ)e2, e
′
3 = e3, e

′
4 = te4 let t→ 0

(19|1) → (8|3) : e1 = 1, e2 = XY, e3 = X + Y, e4 = X − Y, e′1 = e1, e
′
2 =

e2, e
′
3 = e3, e

′
4 = te4 let t→ 0

(19|1) → (12|2) : e1 = 1, e2 = XY, e3 = X, e4 = Y, e′1 = e1, e
′
2 = te2, e

′
3 =

te3, e
′
4 = e4 let t→ 0

Non-existence of Degenerations:

(2|3) 9 (3|3) (OD)

(3|2) 9 (3|3) (OD)

(3|2) 9 (5|1) (OD)

(3|2) 9 (7|3) (OD)

(3|2) 9 (8|3) (A)

(3|3) 9 (3|2) (C)

(5|1) 9 (7|3) (OD)

(6|2) 9 (8|3) (OD)

(7|2) 9 (7|3) (OD)

(7|2) 9 (8|3) (OD)

(7|3) 9 (7|2) (D)

(10|1) 9 (11|3) (OD)

(11|2) 9 (11|3) (OD)

(11|2) 9 (12|2) (A)

(11|3) 9 (11|2) (C)

(12|1) 9 (12|2) (A)

(12|2) 9 (12|1) (OD)

(14|3) 9 (16|3) (OD)

(14|3) 9 (8|3) (A)

(15|3) 9 (16|3) (OD)

(15|3) 9 (8|3) (A)

(16|1) 9 (16|2) (OD)

(16|1) 9 (16|3) (OD)
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(16|1) 9 (8|3) (OD)

(16|2) 9 (16|1) (OD)

(16|2) 9 (16|3) (OD)

(16|2) 9 (8|3) (OD)

(16|3) 9 (16|1) (D)

(16|3) 9 (16|2) (E)

(18;λ|1) 9 (7|3), (16|3), (18;λ|2), (19|1) (A)

(18;λ|1) 9 (8|3) (A)

(18;λ|2) 9 (7|2), (16|1), (16|2), (18;λ|1) (D), (E)

(19|1) 9 (12|1) (D)

Undetermined Degenerations:

(1|2)
?→ (6|2)

(2|3)
?→ (6|2)

(18;λ|2)
?→ (19|1)

(2|3)
?→ (7|3)

(14|3)
?→ (16|2)

(15|3)
?→ (16|1)

The first three of these undetermined degenerations are related to dis-

covering whether (6|2) or (19|1) give rise to irreducible components in

Salg2
4.

Remark 3.5.4 We close with the remark that in Salg4 no two superalgebra struc-

tures A and B on the same underlying algebra can degenerate to each other, even

if dim0A = dim0B. We have seen this from brute force checking of each case. Is

it a general result that there can be no degeneration from a superalgebra to any

other superalgebra having the same underlying algebra?



Chapter 4

2-d and 3-d Superalgebras

In this chapter we repeat the analysis of the previous two chapters for

superalgebras of dimensions 2 and 3. We still assume that k is a field

with ch(k) 6= 2. The first two sections are concerned with the algebraic

classification of superalgebras of dimensions 2 and 3. We prove algebraic

classification theorems for both of these cases, additionally assuming that

k is algebraically closed for the case of superalgebras of dimension 3. In

the final two sections we must additionally assume that k is algebraically

closed and give the geometric classification theorems for these cases.

We again make use of the work of Gabriel in [12] on the varieties Alg2

and Alg3. It is interesting to compare the classification results that we de-

rive with the classical ones just mentioned.

4.1 Dimension 2 case

We have two cases to consider: dim0 = 2 or dim0 = 1. As before, (i|0) shall

stand for the trivially Z2-graded superalgebra on algebra (i). This always

has the form (i|0)0 = (i), (i|0)1 = {0}, so we do not describe the Z2-grading

for these superalgebras in the following.

162
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Theorem 4.1.1 (Algebraic Classification of 2-dimensional superalgebras)

Let k be a field with ch(k) 6= 2.

(a) Suppose A is a superalgebra with dimension 2. Then A is isomorphic to one

of the following pairwise non-isomorphic families of superalgebras:

(1) k × k

(1|0)

(1|1)0 = k(1, 1), (1|1)1 = k(1,−1)

(2) k[X]/(X2)

(2|0)

(2|1)0 = k1, (2|1)1 = kX

(3;µ) k(
√
µ)

(3;µ|0)

(3;µ|1)0 = k1, (3;µ|1)1 = X

(b)

(b.1) (3;µ|0) ∼= (3;µ1|0) if and only if µµ−1
1 ∈ k∗2

(b.2) (3;µ|1) ∼= (3;µ1|1) if and only if µµ−1
1 ∈ k∗2

Proof:

Firstly, we prove part (a). Suppose that A is a 2-dimensional superalgebra.

In the case that dimA0 = 2 we have bases for A0 and A1 as {1, x} and {}
respectively, whereas in the case that dimA0 = 1, we have bases for A0 and

A1 as {1} and {x} respectively. In each case we may assume x2 = α ∈ k,

which follows at once in the second case. In the first case, if x2 = α + βx,

notice that (x− β

2
)2 = α + (β

2
)2 and so we may replace x by x− β

2
.

We get the following cases depending on whether α is an element of

{0}, k∗2 or k∗\k∗2. If α = 0 then A is isomorphic to a superalgebra on (2),

via 1 7→ 1, x 7→ X . If α = γ2 for some γ ∈ k∗, then A is isomorphic to a

superalgebra on (1), via 1 7→ (1, 1), x 7→ γ(1,−1). Finally, if α ∈ k∗\k∗2 then

A is isomorphic to a superalgebra on (3;α) via 1 7→ 1, x 7→ X .
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It is straightforward to show that these families are non-isomorphic

and to prove the assertions given in part (b). �

Corollary 4.1.2 In the case that k is algebraically closed, superalgebras on alge-

bra (3;µ) can never arise.

Proof:

In this case k∗2 = k∗, so that k∗\k∗2 = ∅. �

Automorphism groups

We shall now also calculate the automorphism groups of those super-

algbras described in Corollary 4.1.2, which shall be used later to calculate

the dimensions of the corresponding orbits in Salg2.

We choose a basis for each superalgebra {e1 = 1, e2} and determine the

constants a21, a22 for which φ gives an automorphism of the given superal-

gebra, where φ is defined by φ(e1) = e1, φ(e2) = a21e1 + a22e2 . As this map

must be homogeneous, and since we will choose homogeneous bases, we

must have a21 = 0 for dimA0 = 1. We omit mention of a21 in this case.

(1|0): e1 = (1, 1), e2 = (1, 0)

Then either a21 = 0, a22 = 1; or a21 = 1, a22 = −1

(1|1): e1 = (1, 1), e2 = (1,−1)

Then a22 = ±1

(2|0): e1 = 1, e2 = X

Then a21 = 0, a22 6= 0

(2|1): e1 = 1, e2 = X

Then a22 6= 0
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4.2 Dimension 3 case

We have three cases to consider: either dim0 = 3, dim0 = 2 or dim0 = 1.

The case dim0 = 3 has been dealt with in Gabriels paper when k is

algebraically closed. The case dim0 = 1 is dealt with by using Proposi-

tion 2.2.12. We see that the only superalgebra with Z2-grading of this form

is: (4|2) = k[X, Y ]/(X, Y )2 having the Z2-grading (4|2)0 = k1, (4|2)1 =

kX ⊕ kY . Thus the one remaining case we must deal with is dim0 = 2,

which we do in the following proposition.

Proposition 4.2.1 Let k be a field with ch(k) 6= 2.

(a) Suppose A is a superalgebra with dimA0 = 2 and dimA1 = 1. Then A is

isomorphic to one of the following pairwise non-isomorphic families of superalge-

bras:

(1) k × k × k

(1|1)0 = k(1, 1, 1) ⊕ k(1, 1, 0), (1|1)1 = k(1,−1, 0)

(2) k × k[X]/(X2)

(2|1)0 = k(1, 1) ⊕ k(1, 0), (2|1)1 = k(0, X)

(3) k[X]/(X3)

(3|1)0 = k1 ⊕ kX2, (3|1)1 = kX

(4) k[X, Y ]/(X, Y )2

(4|1)0 = k1 ⊕ kX, (4|1)1 = kY

(5)

(

k k

0 k

)

(5|1)0 = k

(

1 0

0 1

)

⊕ k

(

1 0

0 0

)

, (5|1)1 = k

(

0 1

0 0

)

(6;µ) k × k(
√
µ)

(6;µ|1)0 = k(1, 1) ⊕ k(1, 0), (6;µ|1)1 = k(0, X)

(b) (6;µ|1) ∼= (6;µ1|1) if and only if µµ−1
1 ∈ k∗2
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Proof:

First we prove part (a). Suppose that A is a 3-dimensional superalgebra

with dimA0 = 2, then we have bases {1, x} and {y} for A0 and A1 respec-

tively. As we have seen before, we may assume x2 ∈ k, say x2 = α. We get

the following three cases depending on whether α is an element of {0}, k∗2

or k∗\k∗2.

I. If α = 0 then x2 = 0, so J(A0) = kx. By Nakayama’s lemma

J(A0)A1 ⊂ A1 ⇒ dim J(A0)A1 = 0, so J(A0)A1 = {0}. i.e. xy = 0.

II. If α = β2 where β ∈ k∗, then (β−1x)2 = 1. Replacing x with β−1x,

we may assume α = 1, and hence A0 has a basis {1, x} with x2 = 1. Let

e1 = 1
2
(1 + x) and e2 = 1

2
(1 − x). Then e21 = e1 e

2
2 = e2 and e1e2 = e2e1 = 0.

Since A0 is a commutative algebra, the opposite algebra Aop
0 = A0. Hence

A0 ⊗Aop
0 = A0 ⊗A0 = span{e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2} ∼= k× k× k× k,

and {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2} is a set of orthogonal idempotents

with the sum being equal to 1. Thus A0 ⊗ A0 is semisimple. In this case,

any A0 ⊗ A0-module is semisimple and any simple A0 ⊗ A0-module is of

dimension 1. Since A1 is an A0-bimodule, A1 is a left A0 ⊗A0-module with

the action given by (a ⊗ b)x = axb, a, b ∈ A0, x ∈ A1. Notice that A1 is a

simple A0 ⊗ A0-module. Thus we may choose a k-basis {y} for A1. Now

by the Wedderburn-Artin Theorem, one gets the following four cases for

which one of the four idempotents does not annihilate y:

(a) (e1 ⊗ e1)y = y.

(b) (e1 ⊗ e2)y = y.

(c) (e2 ⊗ e1)y = y.

(d) (e2 ⊗ e2)y = y.

Cases (c) and (d) can be reduced to (a) or (b) by relabelling e1 and e2.

III. If α ∈ k∗\k∗2 then A0
∼= k[X]/(X2−α) hence A0 is an extension field

of k. Any module over a field is free. Thus A1 is a free module, suppose it

has rank n. Now since n ≥ 1 then dimA1 = n dimA0 = 2n ≥ 2, which is

impossible because dimA1 = 1. So case III does not arise.

We deal with these cases now:
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I: We have x2 = 0, xy = 0, yx = βy, y2 = γ + δx. The equation (yx)x =

yx2 gives that β2 = 0 and thus β = 0. The equation xy2 = (xy)y gives

γ = 0. Thus y2 = δx. Either δ = 0 or δ 6= 0. If δ = 0 then A ∼= (4|1), via 1 7→
1, x 7→ X, y 7→ Y . If δ 6= 0 then A ∼= (3|1), via 1 7→ 1, x 7→ δ−1X2, y 7→ X .

II (a): We have eiej = δj
i ei for 1 ≤ i, j ≤ 2 and e1ye1 = y, from which

we deduce e1y = ye1 = y, e2y = ye2 = 0, so y2 = γe1. Either γ = 0,

γ ∈ k∗2 or γ ∈ k∗\k∗2. If γ = 0 then A ∼= (2|1), via e1 7→ (0, 1), e2 7→
(1, 0), y 7→ (0, X). If γ = δ2 for some δ ∈ k∗ then A ∼= (1|1), via e1 7→
(1, 1, 0), e2 7→ (0, 0, 1), y 7→ δ(1,−1, 0). If γ ∈ k∗\k∗2 then A ∼= (6; γ|1), via

e1 7→ (0, 1), e2 7→ (1, 0), y 7→ (0, X).

II (b): We have eiej = δj
i ei for 1 ≤ i, j ≤ 2 and e1ye2 = y, from which

we deduce e1y = y, e2y = 0, ye1 = 0, ye2 = y and y2 = (e1ye2)(e1ye2) = 0.

In this case A ∼= (5|1), via e1 7→
(

1 0

0 0

)

, e2 7→
(

0 0

0 1

)

, y 7→
(

0 1

0 0

)

.

It follows from Gabriel’s results that (1)–(5) are non-isomorphic. Us-

ing ideas similar to those in Chapter 2 one can show that (6;µ) is non-

isomorphic with (1)–(5), as algebras and hence also as superalgebras.

Finally, we deal with part (b). Suppose µ = δ2µ1 with δ ∈ k∗. Then

f(1, 1) = (1, 1), f(1, 0) = (1, 0), f(0, X) = δ(0, X1) gives a superalgebra iso-

morphism (6;µ|1) ∼= (6;µ1|1). Conversely suppose (6;µ|1) ∼= (6;µ1|1), then

we must have (6;µ|1)0
∼= (6;µ1|1)0 as algebras, that is k(

√
µ) ∼= k(

√
µ1).

Thus by Lemma 2.2.5 it follows that µµ−1
1 ∈ k∗2. �

Corollary 4.2.2 In the case that k is algbebraically closed, superalgebras on al-

gebra (6;µ) do not occur.

Proof:

In this case k∗2 = k∗, so that k∗\k∗2 = ∅. �

As before (i|0) shall stand for the trivially Z2-graded superalgebra on

algebra (i). This always has the form (i|0)0 = (i), (i|0)1 = {0}, so we do

not describe the Z2-grading for these superalgebras in the following.
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Theorem 4.2.3 (Algebraic Classification of 3-dimensional superalgebras)

Let k be an algebraically closed field with ch(k) 6= 2. Suppose A is a superalgebra

with dimension 3. Then A is isomorphic to one of the following pairwise non-

isomorphic families of superalgebras:

(1) k × k × k

(1|0)

(1|1)0 = k(1, 1, 1) ⊕ k(1, 1, 0), (1|1)1 = k(1,−1, 0)

(2) k × k[X]/(X2)

(2|0)

(2|1)0 = k(1, 1) ⊕ k(1, 0), (2|1)1 = k(0, X)

(3) k[x]/(X3)

(3|0)

(3|1)0 = k1 ⊕ kX2, (3|1)1 = kX

(4) k[X, Y ]/(X, Y )2

(4|0)

(4|1)0 = k1 ⊕ kX, (4|1)1 = kY

(4|2)0 = k1, (4|2)1 = kX ⊕ kY

(5)

(

k k

0 k

)

(5|0)

(5|1)0 = k

(

1 0

0 1

)

⊕ k

(

1 0

0 0

)

, (5|1)1 = k

(

0 1

0 0

)

Proof:

This follows from combining the results of Gabriel in [12], the comments

at the beginning of this section, Proposition 4.2.1 and Corollary 4.2.2. �

Automorphism groups

We shall now also calculate the automorphism groups of those super-

algbras described in Theorem 4.2.3, which shall be used later to calculate

the dimensions of the corresponding orbits in Salg3.
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We choose a basis for each superalgebra {e1 = 1, e2, e3} and determine

the constants a21, . . . , a33 for which φ gives an automorphism of the given

superalgebra, where φ is defined by φ(e1) = e1, φ(e2) = a21e1 + a22e2 +

a23e3, φ(e3) = a31e1 +a32e2 +a33e3. As this map must be homogeneous, and

since we will choose homogeneous bases, we must have a23 = a31 = a32 =

0 for dimA0 = 2; and a21 = a31 = 0 for dimA0 = 1. We shall not mention

these constants in these cases.

(1|0): e1 = (1, 1, 1), e2 = (1, 0, 0), e3 = (0, 1, 0)

Then either

• a21 = a31 = 0, a22 = a33 = 1, a23 = a32 = 0; or

• a21 = a31 = 0, a22 = a33 = 0, a23 = a32 = 1; or

• a21 = 0, a31 = 1, a22 = 0, a23 = 1, a32 = a33 = −1; or

• a21 = 0, a31 = 1, a22 = 1, a23 = 0, a32 = a33 = −1; or

• a21 = 1, a31 = 0, a32 = 0, a22 = −1, a33 = 1, a23 = −1; or

• a21 = 1, a31 = 0, a32 = 1, a22 = −1, a33 = 0, a23 = −1

(1|1): e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (1,−1, 0)

Then a21 = 0, a22 = 1, a33 = ±1

(2|0): e1 = (1, 1), e2 = (1, 0), e3 = (0, X)

Then a21 = a23 = a31 = a32 = 0, a22 = 1, a33 6= 0

(2|1): e1 = (1, 1), e2 = (1, 0), e3 = (0, X)

Then a21 = 0, a22 = 1, a33 6= 0

(3|0): e1 = 1, e2 = X2, e3 = X

Then a21 = a23 = a31 = 0, a33 6= 0, a22 = a2
33, a32 is unconstrained

(3|1): e1 = 1, e2 = X2, e3 = X

Then a21 = 0, a33 6= 0, a22 = a2
33

(4|0): e1 = 1, e2 = X, e3 = Y
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Then a21 = a31 = 0, a22, a23, a32, a33 are unconstrained apart from a22a33−
a23a32 6= 0

(4|1): e1 = 1, e2 = X, e3 = Y

Then a21 = 0, a22 6= 0, a33 6= 0

(4|2): e1 = 1, e2 = X, e3 = Y

Then a22, a23, a32, a33 are unconstrained apart from a22a33 − a23a32 6= 0

(5|0): e1 =

(

1 0

0 1

)

, e2 =

(

1 0

0 0

)

, e3 =

(

0 1

0 0

)

Then a21 = a31 = a32 = 0, a22 = 1, a33 6= 0, a23 is unconstrained

(5|1): e1 =

(

1 0

0 1

)

, e2 =

(

1 0

0 0

)

, e3 =

(

0 1

0 0

)

Then a21 = 0, a22 = 1, a33 6= 0
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4.3 Geometric Classification in Salg2

In this section we discuss the geometry of Salg2 and give the degeneration

diagram for the corresponding orbits in this variety.

By Proposition 3.2.12 we know that this variety is disconnected, and

by Proposition 3.4.5 we know that the connected components are Salgi
2 for

i = 1, 2.

Lemma 4.3.1 The following gives the dimensions of the stabilizers of points in

the orbits in Salg2:

Stabilizer dimensions

· 0 1

(1|·) 0 0

(2|·) 1 1

Proof:

If the point (αk
ij, γ

j
i ) is in the orbit, G2 · A, which is identified with the iso-

morphism class of superalgebra A, then StabG2
((αk

ij, γ
j
i ))

∼= Aut(A) where

the automorphism group is the group of automorphisms of the superal-

gebra A as mentioned in Remark 3.3.7. See Section 4.1 for a description of

these automorphism groups.

The statements given in Lemma 3.1.41 are also useful when computing

the dimension of the automorphism groups. �

Proposition 4.3.2 The following gives the dimensions of the orbits in Salg2:

Orbit dimensions

· 0 1

(1|·) 2 2

(2|·) 1 1
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Proof:

We have calculated the dimensions of the automorphism groups, or equiv-

alently, the dimensions of stabilizers of any point in each orbit in

Lemma 4.3.1 above. We know that the dimension of G2 is 2 from

Lemma 3.3.5. By using part (b) of Lemma 3.3.6, we can calculate the di-

mension of the orbit G2 · (αk
ij , γ

j
i ) by subtracting the dimension of the sta-

bilizer, StabG2
((αk

ij , γ
j
i )), from the dimension of G2 which is 2.

�

We give the degeneration diagram of Salg2 here. The brief explanations

are given at the end of the section.

Salg1
2 component

(2|0) (1|0)

(2|1) (1|1)

Salg2
2 component

Figure 4.1: Degenerations in the variety Salg2

Theorem 4.3.3 (Geometric Classification of 2-dimensional Superalgebras)

In Salg2 there are two irreducible components. The following structures are

generic:

In Salg2
2: (1|0)

In Salg1
2: (1|1)

Proof:

This follows from the degeneration diagram and Corollary 3.3.12 which
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gives the relationship between the degeneration partial order and the irre-

ducible components.

�

Notice that the irreducible components and the connected components

coincide in this case.

Since the orbit of (1) is open in Alg2, the orbit (1|0) is open in Salg2
2 and

we can use Lemma 3.2.18 to see that the orbit of (1|1) is also open.

Proposition 4.3.2 gives the dimensions of the orbits and hence the di-

mensions of the irreducible components also.

We give the details for the degeneration diagram now:

The degenerations in Salg2
2 are as given in Gabriels paper. In fact, both

degenerations (1|0) → (2|0) and (1|1) → (2|1) are obtained as the degener-

ations to the closed orbits (2|0) and (2|1). These can both be obtained using

the following specialization: e1 = (1, 1), e2 = (1,−1), e′1 = e1, e
′
2 = te1 let

t→ 0.
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4.4 Geometric Classification in Salg3

In this section we discuss the geometry of Salg3 and give the degeneration

diagram for the corresponding orbits in this variety.

By Proposition 3.2.12 we know that this variety is disconnected, and

by Proposition 3.4.5 we know that the connected components are Salgi
3 for

i = 1, 2, 3.

Lemma 4.4.1 The following gives the dimensions of the stabilizers of points in

the orbits in Salg3:

Stabilizer dimensions

· 0 1 2

(1|·) 0 0

(2|·) 1 1

(3|·) 2 1

(4|·) 4 2 4

(5|·) 2 1

Proof:

If the point (αk
ij, γ

j
i ) is in the orbit, G3 · A, which is identified with the iso-

morphism class of superalgebra A, then StabG3
((αk

ij, γ
j
i ))

∼= Aut(A) where

the automorphism group is the group of automorphisms of the superal-

gebra A as mentioned in Remark 3.3.7. See Section 4.2 for a description of

these automorphism groups.

The statements given in Lemma 3.1.41 are also useful when computing

the dimensions of the automorphism groups. �

Proposition 4.4.2 The following gives the dimensions of the orbits in Salg3:
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Orbit dimensions

· 0 1 2

(1|·) 6 6

(2|·) 5 5

(3|·) 4 5

(4|·) 2 4 2

(5|·) 4 5

Proof:

We have calculated the dimensions of the automorphism groups, or equiv-

alently, the dimensions of stabilizers of any point in each orbit in

Lemma 4.4.1 above. We know that the dimension of G3 is 6 from

Lemma 3.3.5. By using part (b) of Lemma 3.3.6, we can calculate the di-

mension of the orbit G3 · (αk
ij , γ

j
i ) by subtracting the dimension of the sta-

bilizer, StabG3
((αk

ij , γ
j
i )), from the dimension of G3 which is 6.

�

We give the degeneration diagram of Salg3 in Figure 4.2. The explana-

tions are given at the end of the section.
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Salg1
3 component

(4|0)

(3|0) (2|0)

(5|0)

(4|1)

(5|1)

(3|1) (2|1) (1|1)

(1|0)

(4|2)

Salg3
3 component

Salg2
3 component

Figure 4.2: Degenerations in the variety Salg3
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Theorem 4.4.3 (Geometric Classification of 3-dimensional Superalgebras)

In Salg3 there are five irreducible components. The following structures are generic:

In Salg3
3: (1|0), (5|0)

In Salg2
3: (1|1), (5|1)

In Salg1
3: (4|2)

Proof:

This follows from the degeneration diagram and Corollary 3.3.12 which

gives the relationship between the degeneration partial order and the irre-

ducible components.

�

Proposition 4.4.2 gives the dimensions of the orbits and hence the di-

mensions of the irreducible components as well.

Since the orbits of (1) and (5) are open in Alg3, the orbits (1|0) and (5|0)

are open in Salg3
3, and we can use Lemma 3.2.18 to see that the orbits (1|1)

and (5|1) are also open. It may also pay to note that while the orbit (4|2) is

closed, it is also open as well.

We give the details for the degeneration diagram now:

The degenerations in Salg3
3 are as given in Gabriels paper.

We remark that these degenerations can be obtained using those given

below for orbits in Salg2
3 and the remaining degeneration is as follows:

(2|0) → (3|0) : e1 = (1, 1), e2 = (0, 1), e3 = (0, X), e′1 = e1, e
′
2 = te2 +

e3, e
′
3 = te3 let t→ 0

We remind the reader that we do not bother to mention the degener-

ation to the closed orbit since they always exist, the closed orbits in this

case being (4|0), (4|1), (4|2).

The degenerations in Salg2
3 are as follows:

Existence of degenerations:

(1|1) → (2|1) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (1,−1, 0), e′1 = e1, e
′
2 =

e2, e
′
3 = te3 let t→ 0

(1|1) → (3|1) : e1 = (1, 1, 1), e2 = (1, 1, 0), e3 = (1,−1, 0), e′1 = e1, e
′
2 =

t2e2, e
′
3 = te3 let t→ 0
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Non-existence of degenerations:

(2|1) 9 (3|1) (A)

(Where (A) is defined as in Section 3.5)

Since Salg1
3 consists only of the closed orbit, there is no interesting be-

haviour to analyse there.



Chapter 5

Supermodules

In this chapter we define the varieties of supermodules over a superalge-

bra. This is the natural extension of the ordinary module varieties, studied

in [7, 12, 17] amongst others, to the setting of superspaces.

This chapter is not intended to be rigorous, but merely to introduce

this idea to the reader and discuss similarities with (i) the classical case of

modules over an algebra and (ii) with the analysis developed to deal with

superalgebras in Chapter 3. We mention the properties one is interested in

studying and suggest several useful ideas in this regard. To conclude this

chapter we give examples of 3-dimensional supermodules over the super-

algebra k[X]/(X3) firstly when given the trivial Z2-grading and secondly

when given the non-trivial Z2-grading (given in the previous chapter).

It is hoped that this discussion will stimulate interest in these varieties

so that they will be studied in more detail in the future.

5.1 Supermodule varieties

First of all, we define the notion of a supermodule over a superalgebra.

Definition 5.1.1 If A = A0 ⊕ A1 is a superalgebra and M is an A-module,

then M is an A-supermodule if there are subspaces M0 and M1 such that M =

179
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M0⊕M1 andAi ·Mj ⊆ Mi+j for i, j ∈ Z2 or in fullA0 ·M0 ⊆M0,A0 ·M1 ⊆M1,

A1 ·M0 ⊆M1 and A1 ·M1 ⊆M0. The dimension ofM shall mean its dimension

as a vector space over k.

Notice that this means that both M0 and M1 are A0-modules.

Now, we would like to know what kind of maps we should take be-

tween supermodules (over a superalgebra A) to obtain the category of su-

permodules (over a superalgebra A).

Definition 5.1.2 Suppose thatM andN areA-supermodules. Then anA-module

map f : M → N is an A-supermodule map if and only if f(Mi) ⊆ Ni for

i = 0, 1.

Recall that a superalgebra can be described by giving an algebra and an

algebra involution. We have a similar result for supermodules. IfA = A0⊕
A1 is a superalgebra with main involution σ, then every A-supermodule

M gives rise to a linear map τ : M → M defined by τ(m0 +m1) = m0 −m1

which is an involution (that is, τ 2 = τ ◦ τ = idM ) and satisfies τ(a ·m) =

σ(a) · τ(m) for all a ∈ A,m ∈ M . Notice that the A-supermodule M must

also be an A-module. Conversely, an A-module M and a linear map τ :

M → M with the above properties can make the A-module M into an

A-supermodule.

For the definition of the supermodule varieties of a fixed k-dimension,

over a given superalgebra, we must fix the basis of the superalgebra. (How-

ever a basis change of the superalgebra yields an isomorphic variety. More-

over this isomorpism is GLm-equivariant with respect to the GLm-action

which we shall describe below). Suppose the basis of the superalgebra is

{e1 = 1, e2, . . . , en} and it has structure constants (αk
ij , γ

j
i ).

Suppose M has dimension m as a vector space over k, and let the basis

for M be {f1, . . . , fm}, and suppose that the action of A on M is described

as

ei · fj =
n
∑

k=1

βk
ijfk
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and the involution τ is described as

τ(fi) =
n
∑

j=1

ζj
i fj

Then (βk
ij, ζ

j
i ) gives us a point in knm2+m2

= k(n+1)m2

. For M to be an A-

supermodule we require the following to be satisfied for all a, b ∈ A,m ∈
M :

(ab) ·m = a · (b ·m)

1A ·m = m

τ(a ·m) = σ(a) · τ(m)

τ 2 = idM

These translate into the following conditions:

n
∑

l=1

αl
ijβ

m
lk −

n
∑

l=1

βl
jkβ

m
il = 0 (5.1)

βk
1j − δk

j = 0 (5.2)

n
∑

k=1

βk
ijζ

m
k −

n
∑

l,k=1

γl
iζ

k
j β

m
lk = 0 (5.3)

n
∑

j=1

ζj
i ζ

k
j − δk

i = 0 (5.4)

Definition 5.1.3 The equations (5.1)–(5.4) above, cut out a variety in k(n+1)m2

which we denote by SmodA
m — the variety of A-supermodules of dimension

m.

There is a well-defined action of GLm on SmodA
m. Let Λ = (λj

i ) ∈ GLm

and (νj
i ) = Λ−1. Then this transport of structure action may be described

as follows:

Λ · (βk
ij , ζ

j
i ) = (

n
∑

l,m=1

λl
jβ

m
il ν

k
m,

n
∑

k,l=1

λk
i ζ

l
kν

j
l )



CHAPTER 5. SUPERMODULES 182

As we have seen in the case of superalgebras, this action gives rise to a

morphism GLm × SmodA
m → SmodA

m which means that the action is alge-

braic.

Suppose that A is an n-dimensional superalgebra and that M is an m-

dimensional A-supermodule, then let V be an n-dimensional vector space

and W an m-dimensional vector space. If we write the action map as

an element ρ of Hom(V ⊗ W,W ) and the Z2-grading τ as an element of

Hom(W,W ), then the action of Λ ∈ GLm on SmodA
m is given by:

Λ · (ρ, τ) = (Λ ◦ ρ ◦ (idA ⊗Λ−1),Λ ◦ τ ◦ Λ−1)

which is simply the usual transport of structure action for modules on the

first component and conjugation by G on the second component.

Now, the GLm-action on SmodA
m gives rise to the notion of orbits in this

variety and the orbits under this action correspond to isomorphism classes

of A-supermodules. If M is an A-supermodule, we write GLm ·M to de-

note the orbit which is identified with the isomorphism class of M . Also

the stabilizer of a point can be identified with the automorphism group of

the supermodule, whose orbit the point belongs to.

As before, one is particularly interested in knowing which orbits are

open and which are closed.

Since the action is algebraic, all the results from Section 3.3 on the ac-

tions of algebraic groups, immediately apply here too.

Again there is a notion of degeneration of supermodules, which can

be defined in this setting as M degenerates to N , denoted by M → N if

and only if there is a point in the orbit of N , GLm ·N , which belongs to

the closure of the orbit of M , GLm ·M . This is seen to be equivalent to

GLm ·N ⊆ GLm ·M . As shown in Section 3.3, degeneration is very useful

to determine the geometry of these varieties also.

Analogously to the classical cases of modules over an algebra and the

case of superalgebras treated earlier, the main problem of the geometric

classification of such varieties is to determine the “generic structures” or
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equivalently, those module structures whose orbits give rise to the irre-

ducible components. Yet one should always first consider the more basic

question of determining the connected components.

Now, with the main notions and problems for the geometric classifica-

tion of supermodules over a given superalgebra, we finally suggest how

to modify a few methods from Chapter 3, on the geometric classification

of superalgebras so that they may apply to the situation here.

It should be fairly clear how to modify the proof of Lemma 3.2.10 to

show that the sets of supermodules with dimM0 = i, dimM1 = j with

i, j ≥ 0, i + j = m are closed subsets (they are clearly disjoint). However,

this only applies for m ≤ 2p− 1 when ch(k) = p, and thus only applies for

m ≤ 5 in general.

As before, one can define the idea of specialization of supermodules,

and this idea is useful because it shows the existence of a degeneration

between supermodules. More formally, if M and N are A-supermodules,

then if there is a specialization from M to N , then M degenerates to N .

Next we define some useful maps. It is easy to check that they are all

in fact GLm-equivariant morphisms.

Noticing that any supermodule over a superalgebra A can be regarded

as a module over the underlying algebra U(A), simply by forgetting the

Z2-grading of the supermodule — one finds another forgetful map. We

also denote this by U . We use this perhaps slightly confusing notation to

highlight the analogy with the superalgebra case (hopefully the confusion

caused will be minimal). More formally we have U : SmodA
m → ModU(A)

m

defined by (βk
ij, ζ

j
i ) 7→ (βk

ij).

The fact that any module M over an algebra A can be regarded as a

trivially Z2-graded supermodule over the trivially Z2-graded superalgebra

i(A), by endowing it with the following Z2-grading M0 = M,M1 = {0}
gives rise to another useful morphism. One can equivalently view this as

endowing the module with the involution idM to make it a supermodule

over i(A). We define i : ModA
m → Smodi(A)

m by (βk
ij) 7→ (βk

ij , δ
j
i ).
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However, there is no special reason why one should choose to place

M in the degree zero component of the supermodule in the above para-

graph. One could equally well make M into an i(A)-supermodule via the

following Z2-grading M0 = {0},M1 = M . (This is equivalent to using

the involution − idM to give M its i(A)-supermodule structure). For this

reason, we refer to the Z2-grading described in the above paragraph as

the trivial Z2-grading in degree zero, and the Z2-grading described in this

paragraph as the trivial Z2-grading in degree one. Again one can define a

morphism from this, i′ : ModA
m → Smodi(A)

m by (βk
ij) 7→ (βk

ij,−δj
i ).

The above morphisms show that the variety ModA
m can be identified

with two closed subsets of Smodi(A)
m where the A-modules are identified

with i(A)-supermodules with one of the two trivial Z2-gradings. The fact

that there are two closed subset of Smodi(A)
m which are isomorphic to the

variety ModA
m is really a consequence of a more general symmetry prop-

erty of supermodules. If M = M0 ⊕ M1 is an A-supermodule having

dimM0 = i, dimM1 = j (where i, j ≥ 0, i + j = m) then one can de-

fine a new A-supermodule M ′ = M ′
0 ⊕M ′

1 by M ′
0 = M1,M

′
1 = M0. This

A-supermodule M ′ has dimM ′
0 = j, dimM ′

1 = i. A little thought shows

that all that one is doing is changing the sign on the involution. This re-

mark suggests defining the following morphism, s : SmodA
m → SmodA

m by

(βk
ij, ζ

j
i ) 7→ (βk

ij ,−ζj
i ). One should quickly notice that s is an involution,

that is, s◦s = idSmodA
m

hence s is invertible. The morphism i′ defined above

is then simply s ◦ i.
When the sets of supermodules in SmodA

m with dimM0 = i, dimM1 = j

with i, j ≥ 0, i+j = m are closed subsets, the morphism s gives an isomor-

phism between the subset of supermodules with dimM0 = i, dimM1 = j

and the subset of supermodules with dimM0 = j, dimM1 = i, which

shows that the geometry of these two subsets must coincide. Thus, in

this case, one only needs to study ⌈m+1
2

⌉ of these subsets.
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5.2 Examples of supermodule varieties

In this section consider the supermodules over superalgebras on k[X]/(X3).

The trivially Z2-graded superalgebra is denoted by A where A0 = A,A1 =

{0} and the non-trivially Z2-graded superalgebra is denoted by B where

B0 = k1⊕kX2, B1 = kX . We give the isomorphism classes of 3-dimensional

supermodules over both of these superalgebras. These give the orbits in

the supermodule varieties and we then study the geometry of these vari-

eties.

The following two propositions are stated without proof. The ideas

used in earlier sections can be adapted to give proof of these results.

Proposition 5.2.1 The 3-dimensional A-supermodules are isomorphic to one of

the following, which are pairwise non-isomorphic:

(1) k[X]/(X3):

(1|0)0 = k[X]/(X3), (1|0)1 = {0}
(1|1)0 = {0}, (1|1)1 = k[X]/(X3)

(2) k[X]/(X2) ⊕ k:

(2|0)0 = k[X]/(X2) ⊕ k, (2|0)1 = {0}
(2|1)0 = k(1, 0) ⊕ k(X, 0), (2|1)1 = k(0, 1)

(2|2)0 = k(0, 1), (2|2)1 = k(1, 0) ⊕ k(X, 0)

(2|3)0 = {0}, (2|3)1 = k[X]/(X2) ⊕ k

(3) k ⊕ k ⊕ k:

(3|0)0 = k ⊕ k ⊕ k, (3|0)1 = {0}
(3|1)0 = k(1, 0, 0) ⊕ k(0, 1, 0), (3|1)1 = k(0, 0, 1)

(3|2)0 = k(0, 0, 1), (3|2)1 = k(1, 0, 0) ⊕ k(0, 1, 0)

(3|3)0 = {0}, (3|3)1 = k ⊕ k ⊕ k
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Proposition 5.2.2 The 3-dimensional B-supermodules are isomorphic to one of

the following, which are pairwise non-isomorphic:

(1) k[X]/(X3)

(1|0)0 = k1 ⊕ kX2, (1|0)1 = kX

(1|1)0 = kX, (1|1)1 = k1 ⊕ kX2

(2) k[X]/(X2) ⊕ k:

(2|0)0 = k(1, 0) ⊕ k(0, 1), (2|0)1 = k(X, 0)

(2|1)0 = k(X, 0) ⊕ k(0, 1), (2|1)1 = k(1, 0)

(2|2)0 = k(X, 0), (2|0)1 = k(1, 0) ⊕ k(0, 1)

(2|3)0 = k(1, 0), (2|3)1 = k(X, 0) ⊕ k(0, 1)

(3) k ⊕ k ⊕ k:

(3|0)0 = k ⊕ k ⊕ k, (3|0)1 = {0}
(3|1)0 = k(1, 0, 0) ⊕ k(0, 1, 0), (3|1)1 = k(0, 0, 1)

(3|2)0 = k(0, 0, 1), (3|2)1 = k(1, 0, 0) ⊕ k(0, 1, 0)

(3|3)0 = {0}, (3|3)1 = k ⊕ k ⊕ k

We now give the degeneration diagrams for these varieties. Figure 5.1

treats the module variety SmodA
3 , and Figure 5.2 treats the module variety

SmodB
3 .
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(1|1)

dim0 = 3 component

(3|0) (2|0) (1|0)

dim0 = 2 component

(3|1) (2|1)

dim0 = 1 component

(3|2) (2|2)

dim0 = 0 component

(3|3) (2|3)

Figure 5.1: Degenerations in SmodA
3
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(1|1)

dim0 = 3 component

(3|0)

dim0 = 2 component

(3|1)

dim0 = 1 component

(3|2)

dim0 = 0 component

(3|3)

(2|0)

(2|1)

(1|0)

(2|3)

(2|2)

Figure 5.2: Degenerations in SmodB
3
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We briefly explain the methods used to obtain these two degeneration

diagrams now:

Since the dimension of the modules is 3, we know from earlier state-

ments that the sets of supermodules with dimM0 = i, dimM1 = j with

i, j ≥ 0, i + j = 3 are closed subsets, which are clearly disjoint. Thus we

only need to search for degenerations between modules having the same

dimension for their homogeneous components.

For the variety SmodA
3 , the degenerations are obtained by the following

specializations:

The specialization for the supermodule structures on (1) to the super-

module structures on (2): f1 = 1, f2 = X, f3 = X2, f ′
1 = tf1, f

′
2 = tf2, f

′
3 =

f3 let t→ 0

The specialization for the supermodule structures on (2) to the super-

module structures on (3): f1 = (1, 0), f2 = (X, 0), f3 = (0, 1), f ′
1 = tf1, f

′
2 =

f2, f
′
3 = f3 let t→ 0

For the SmodB
3 , the degenerations are obtained by the following spe-

cializations:

The specialization for (1|0) → (2|0) and (1|1) → (2|2): f1 = 1, f2 =

X, f3 = X2, f ′
1 = tf1, f

′
2 = tf2, f

′
3 = f3 let t→ 0

The specialization for (1|0) → (2|1) and (1|1) → (2|3): f1 = 1, f2 =

X, f3 = X2, f ′
1 = tf1, f

′
2 = f2, f

′
3 = f3 let t→ 0

The specialization for the supermodule structures on (2) to the super-

module structures on (3): f1 = (1, 0), f2 = (X, 0), f3 = (0, 1), f ′
1 = tf1, f

′
2 =

f2, f
′
3 = f3 let t→ 0

Finally consider associating to each supermoduleM the following cones:

RM = {x ∈ M : x ∈ M0, X · x = 0} and SM = {x ∈ M : x ∈ M1, X · x = 0}
(where X is from k[X]/(X3)). We use upper semicontinuity arguments as

seen in Section 3.4. We then discover {M ∈ SmodB
3 : dimRM ≥ 2} is a

closed set containing the orbit (2|1) and is disjoint from the orbit of (2|0),

and {M ∈ SmodB
3 : dimSM ≥ 1} is a closed set containing the orbit of (2|0)

and is disjoint from the orbit of (2|1). Thus there can be no degenerations
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between (2|0) and (2|1). A similar argument can be used to show that there

are no degenerations between (2|2) and (2|3). Another way to show this

fact is simply to notice that from comments in the previous section, the

geometry of the subset with dimM0 = 2 is the same as the geometry of the

subset with dimM0 = 1.

The final comments we make on the material in this section is that not

only is it interesting to compare the varieties ModU(A)
m and SmodA

m and their

geometry, but it is also very interesting to compare the varieties SmodA
m

and SmodB
m whereA andB are non-isomorphic superalgebra structures on

the same underlying algebra. In this way we see how the supermodules

change when we endow a given algebra with different superalgebra struc-

tures. From our example above, we see that there is a dramatic change in

the geometry of the two varieties of supermodules over the superalgebra

k[X]/(X3) when we change the Z2-grading on k[X]/(X3).
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[26] C. Năstăsescu, and F. Van Oystaeyen, Methods of graded rings, Lec-

ture Notes in Mathematics, 1836, Springer-Verlag, Berlin, 2004

[27] R. S. Pierce, Associative algebras, Graduate Texts in Mathematics, 88,

Springer-Verlag, New York-Berlin, 1982

[28] C. Riedtmann, Degenerations for representations of quivers with re-
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