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Abstract 
 
 
 
This thesis explores and evaluates MAXCCLUS, a bioinformatics clustering 

algorithm, which was designed to be used to cluster genes from microarray 

experimental data. MAXCCLUS does the clustering of genes depending on 

the textual data that describe the genes. MAXCCLUS attempts to create 

clusters of which it selects only the statistically significant clusters by running 

a significance test. It then attempts to generalise these clusters by using a 

simple greedy generalisation algorithm. We explore the behaviour of 

MAXCCLUS by running several clustering experiments that investigate 

various modifications to MAXCCLUS and its data. The thesis shows (a) that 

using the simple generalisation algorithm of MAXCCLUS gives better result 

than using an exhaustive search algorithm for generalisation, (b) the 

significance test that MAXCCLUS uses needs to be modified to take into 

consideration the dependency of some genes on other genes functionally, (c) 

it is advantageous to delete the non domain-relevant textual data that 

describe the genes but disadvantageous to add more textual data to describe 

the genes, and (d) that MAXCCLUS behaves poorly when it attempts to 

cluster genes that have adjacent categories instead of having two distinct 

categories only.  
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Chapter 1: Introduction 

Chapter 1 
 

Introduction 
 

 

This thesis explores MAXCCLUS, a bioinformatics clustering algorithm, by 

running a set of clustering experiments to study and analyse MAXCCLUS‘s 

behaviour, in order to identify the strengths and limitations of MAXCCLUS. 

The results of the experiments show that in general MAXCCLUS is doing a 

reasonably good job.  

 

 

Clustering is the task of grouping instances into sets so that each set reflects 

the shared properties between its instances, providing that instances of other 

sets do not have all these properties. 

 

Clustering as an approach of machine learning is applied in many fields. One 

of the important applications of clustering is in the field of bioinformatics. 

Bioinformatics is a branch of science that deals with the collection, storage, 

classification and analyses of the biological and biomedical information. One 

of the promising technologies used in bioinformatics is the microarray (also 

called gene chip) [Molla, M; Waddell, M; Page, D. and Shavlik, J. 2004]. 

Microarray biotechnology measures gene expression levels for thousands of 

genes in the same time and in a cost effective way. Gene expression level is 

the amount of protein that the gene produces. Comparing the gene 

expression rates before and after a specific event applied to biological cells or 

tissues (some examples are: antibiotic shock, heating, or cooling) during 

biological or biomedical experiments, helps the scientists to understand the 

genes functionality and gives them an insight into what is happening during 

these experiments. 
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Chapter 1: Introduction 

 

Microarray gene expression data are produced around the world in huge 

amounts. This data is by no mean easy to analyse manually. Therefore, there 

is a need for automated techniques to do the job. Clustering is one of the 

automated techniques that can be handed to a machine (a computer) to 

cluster the data to groups depending on properties that this data share. 

 

An important source of information for such automated techniques is the data 

about genes in large shared text databases such as Swiss-Prot [Swiss-Prot]. 

 

 

 

1.1 Outline of the Thesis 
 

The rest of this chapter introduces the background to the thesis, and 

describes the MAXCCLUS algorithm in detail. 

 

In chapter two of this thesis, we describe the methodology we used to analyse 

MAXCCLUS and the results of the clustering experiments. At the end of 

chapter two we show how much of the data the original MAXCCLUS (without 

any changes to it) is able to describe. 

 

In chapter three, we explore MAXCCLUS’s simple generalisation approach, 

and we introduce a new generalisation approach, which is much powerful and 

much more expensive. The result of running the clustering experiment of 

chapter three is to show that MAXCCLUS’s simple generalisation is better 

than the introduced one, by being able to explain the same genes in much 

less time. 

 

In chapter four, we explore the significance test that MAXCCLUS depends on 

to select the clusters that are statistically significant from the total clusters it 

creates. The result of running the clustering experiment of chapter four is to 

show that MAXCCLUS is ignoring the fact that some instances are dependent 
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Chapter 1: Introduction 

on other ones, which leads MAXCCLUS to select clusters that bigger than 

they should be to be considered statistically significant. Therefore the result 

suggests that the significance test should be changed to take into its account 

the dependency of some instances on other ones. 

 

In chapter five, we explore deleting some of the textual data, which describe 

the instances that MAXCCLUS attempts to cluster. The result of running the 

clustering experiment of chapter five shows that it is advantageous to delete 

some of the textual data providing that it is not domain-relevant. Deleting this 

data lets MAXCCLUS characterise the clusters it creates in a more 

scientifically informative way, and to describe almost the same number of 

genes faster. 

 

In chapter six, also we explore the textual data. This time we attempt to add 

more textual data (synonyms and/or hypernyms of already existing textual 

data) to describe the instances. The result of running the clustering 

experiment of chapter six is to show that it is a bad idea to add more textual 

data: MAXCCLUS is not able to describe any more genes than before adding 

more textual data, it creates many alternative characterisations for the 

clusters that can confuse the user who is trying to make sense of the clusters, 

and it took much longer to cluster. 

 

In chapter seven, we explore the behaviour of MAXCCLUS when it attempts 

to cluster instances that have continuous range of categories instead of 

having two categories separated with a clear gap (the ones that MAXCCLUS 

originally uses). The result of running the clustering experiment of chapter 

seven is to show that MAXCCLUS, like some other clustering algorithms, is 

not able to produce as good results when clustering using a continuous range 

of categories as when clustering using two distinct categories. 

 

In chapter eight, we briefly describe several tools that we developed for the 

project of this thesis. 

 

At the end, in chapter nine, we give the overall conclusions for this thesis.  
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Chapter 1: Introduction 

1.2 Clustering 
 

There are many approaches to clustering [Fasulo, D. 1999]. Two of the 

popular approaches are: K-means clustering, and Agglomerative clustering. 

 

 

 

K-means clustering 
 

In k-means clustering [Falkenauer E. and Marchand A. 2001], the algorithm 

needs in advance the number of clusters (k) that it will cluster the instances 

to. The algorithm initially randomly assigns k cluster centres. Next the 

algorithm clusters each instance to the cluster whose centre is nearest to this 

instance. Then the algorithm changes each cluster centre to the mean of the 

centres of its instances. The last two steps repeat until no changes occur any 

more. K-means clustering assumes numerical attributes because it must be 

able to compute the cluster mean. 

 

 

 

Agglomerative clustering (bottom up) 
 

In agglomerative clustering, the algorithm constructs a tree out of the 

instances to be clustered. Initially each one of the instances presents a cluster 

of its own. Then the algorithm finds the closest two clusters and merges them 

into a new cluster, which represents the parent cluster of the two merged 

clusters. This step repeats until there are no clusters left to merge. This kind 

of agglomerative clustering is called single linkage (also referred to as nearest 

neighbour). Agglomerative clustering assumes a distance measure can be 

computed. 
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Chapter 1: Introduction 

1.3 MAXCCLUS 
 

MAXCCLUS is a clustering algorithm designed and implemented by Peter 

Andreae that uses a novel approach for clustering instances [Andreae, P; 

Shavlik, J; and Molla M. 2001]. This clustering algorithm is designed to cluster 

the genes of a microarray experiment to find characterisations of subsets of 

the genes that behave in the same way during the microarray experiment. 

The goal behind designing MAXCCLUS is to make sense of the data that the 

microarray experiment produces, so that scientists can interpret the data more 

easily by having a clearer view of what is happening in the microarray 

experiments. 

 
 
 
 
 
1.4 Input data types to MAXCCLUS 
 
MAXCCLUS depends on two types of data to cluster instances: experimental 

data and textual data.  

 
 
 
1.4.1 Experimental data 
 
The experimental data that is used, as an input to MAXCCLUS, are actual 

experimental data from microarray experiments. These experiments are from 

the University of Wisconsin, Madison, USA. They are a set of 46 experiments 

on E-Coli, a kind of bacteria. Each microarray experiment dataset is about the 

genes (the instances) that were involved in the microarray experiment. The 

experimental data is a table (example: Table 1.1) in which each row contains 

the instance ID, and a number that represents the expression ratio, which 

describes the regulation of this gene as a result of this microarray experiment, 

under a physical or chemical event, such as antibiotic shock or temperature 

shock. This expression ratio in fact represents the category of the regulation 

that this instance belongs to, under this microarray experiment. If the 

expression ratio is greater than 2.0, we say that the instance is Up regulated.  
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If the expression ratio is less than 0.5, we say that the instance is Down 

regulated. If the expression ratio is in the range [0.5,2.0], this means that this 

expression ratio is uncertain; we will consider it unreliable and we will ignore 

it, and the gene will not be included in the experimental input data to 

MAXCCLUS.  

 

So practically, we can replace the expression ratio of Table 1.1, by its 

category as in Table 1.2. This makes each microarray experiment dataset be 

a table (Table 1.2) in which each row contains the instance ID, and the 

instance category (Up or Down).  

 

Notice that instances with IDs b0003 and b0004 are not included in Table 1.2, 

because their expression ratios are 1.7 and 0.6 respectively (Table 1.1), 

which make these expression ratios uncertain.  

 
 
 
 
Instance ID Expression ratio 

b0001 2.7 
b0002 0.3 
b0003 1.7 
b0004 0.6 
b0005 3.2 
b0006 0.4 
b0007 0.15 

 
Table 1.1: An experimental data source example. This experimental data source is a table in 
which each row contains the instance ID and a number that represents the expression ratio. 
 
 
 
 
 
 
Instance ID Category 

b0001 Up 
b0002 Down 
b0005 Up 
b0006 Down 
b0007 Down 

 
Table 1.2: The same experimental data source example of Table 1.1, but the expression 
ratios were replaced by their categories. This table (Table 1.2) does not include the instances 
that have uncertain expression ratios (b0003 and b0004). The data in this table (Table 1.2) 
will be the experimental data input to the clustering algorithms. 

6 



Chapter 1: Introduction 

1.4.2 The textual data 
 
The other type of data that MAXCCLUS uses, when attempting to cluster 

instances, is the textual data. The textual data presents the text that 

annotates the genes that is available in some fields of the databases about 

these genes. Swiss-Prot [Swiss-Prot] is one of these databases. Swiss-Prot is 

a protein knowledgebase. Proteins are the life building blocks that genes code 

for. Swiss-Prot lists the genes with text fields. Figure 1.1 shows a snapshot of 

the Swiss-Prot database showing the fields for the protein corresponding to 

gene b0003. Each line has a type [Swiss-Prot User Manual]. Not all the text 

fields are useful for the purpose of creating the textual data that MAXCCLUS 

needs to use. For example the last few lines of the field CC are the copyright 

notice and they are repeated for all the genes. Including the same textual data 

for all the genes is not useful because it will not discriminate between the 

genes.  

7 
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ID   KHSE_ECOLI     STANDARD;      PRT;   310 AA. 
AC   P00547; 
DT   21-JUL-1986 (Rel. 01, Created) 
DT   01-APR-1993 (Rel. 25, Last sequence update) 
DT   01-OCT-2000 (Rel. 40, Last annotation update) 
DE   HOMOSERINE KINASE (EC 2.7.1.39) (HK). 
GN   THRB. 
OS   Escherichia coli. 
OC   Bacteria; Proteobacteria; gamma subdivision; Enterobacteriaceae; 
OC   Escherichia. 
OX   NCBI_TaxID=562; 
RN   [1] 
RP   SEQUENCE FROM N.A. 
RX   MEDLINE=81150470; PubMed=6259626; 
RA   Cossart P., Katinka M., Yaniv M.; 
RT   "Nucleotide sequence of the thrB gene of E. coli, and its two 
RT   adjacent regions; the thrAB and thrBC junctions."; 
RL   Nucleic Acids Res. 9:339-347(1981). 
RN   [2] 
RP   SEQUENCE FROM N.A. 
RC   STRAIN=K12; 
RX   MEDLINE=92334977; PubMed=1630901; 
RA   Yura T., Mori H., Nagai H., Nagata T., Ishihama A., Fujita N., 
RA   Isono K., Mizobuchi K., Nakata A.; 
RT   "Systematic sequencing of the Escherichia coli genome: analysis of 
RT   the 0-2.4 min region."; 
RL   Nucleic Acids Res. 20:3305-3308(1992). 
RN   [3] 
RP   SEQUENCE FROM N.A. 
RC   STRAIN=K12 / MG1655; 
RX   MEDLINE=95334362; PubMed=7610040; 
RA   Burland V.D., Plunkett G. III, Sofia H.J., Daniels D.L., 
RA   Blattner F.R.; 
RT   "Analysis of the Escherichia coli genome VI: DNA sequence of the 
RT   region from 92.8 through 100 minutes."; 
RL   Nucleic Acids Res. 23:2105-2119(1995). 
RN   [4] 
RP   REVISIONS TO 166-190. 
RA   Deborde D.C., Strange J.C., Wright B.E.; 
RL   Submitted (XXX-1993) to the EMBL/GenBank/DDBJ databases. 
CC   -!- CATALYTIC ACTIVITY: ATP + L-HOMOSERINE = ADP + O-PHOSPHO-L- 
CC       HOMOSERINE. 
CC   -!- PATHWAY: THREONINE BIOSYNTHESIS. 
CC   -!- SIMILARITY: BELONGS TO THE GHMP KINASE FAMILY. HOMOSERINE 
CC       KINASE SUBFAMILY. 
CC   -------------------------------------------------------------------------- 
CC   This SWISS-PROT entry is copyright. It is produced through a collaboration 
CC   between  the Swiss Institute of Bioinformatics  and the  EMBL outstation - 
CC   the European Bioinformatics Institute.  There are no  restrictions on  its 
CC   use  by  non-profit  institutions as long  as its content  is  in  no  way 
CC   modified and this statement is not removed.  Usage  by  and for commercial 
CC   entities requires a license agreement (See http://www.isb-sib.ch/announce/ 
CC   or send an email to license@isb-sib.ch). 
CC   -------------------------------------------------------------------------- 
DR   EMBL; J01706; AAA83915.1; ALT_SEQ. 
DR   EMBL; D10483; BAA01287.1; ALT_SEQ. 
DR   EMBL; L13601; AAA20618.1; -. 
DR   EMBL; U14003; AAA97302.1; -. 
DR   EMBL; AE000111; AAC73114.1; -. 
DR   PIR; A00658; KIECM. 
DR   PIR; S40532; S40532. 
DR   SWISS-2DPAGE; P00547; COLI. 
DR   ECOGENE; EG10999; THRB. 
DR   INTERPRO; IPR000870; -. 
DR   INTERPRO; IPR001745; -. 
DR   PFAM; PF00288; GHMP_kinases; 1. 
DR   PRINTS; PR00958; HOMSERKINASE. 
DR   PROSITE; PS00627; GHMP_KINASES_ATP; 1. 
KW   Threonine biosynthesis; Transferase; Kinase; ATP-binding. 
FT   NP_BIND      91    101       ATP (POTENTIAL). 
SQ   SEQUENCE   310 AA;  33623 MW;  0F225F9F1B634BE8 CRC64; 
     MVKVYAPASS ANMSVGFDVL GAAVTPVDGA LLGDVVTVEA AETFSLNNLG RFADKLPSEP 
     RENIVYQCWE RFCQELGKQI PVAMTLEKNM PIGSGLGSSA CSVVAALMAM NEHCGKPLND 
     TRLLALMGEL EGRISGSIHY DNVAPCFLGG MQLMIEENDI ISQQVPGFDE WLWVLAYPGI 
     KVSTAEARAI LPAQYRRQDC IAHGRHLAGF IHACYSRQPE LAAKLMKDVI AEPYRERLLP 
     GFRQARQAVA EIGAVASGIS GSGPTLFALC DKPETAQRVA DWLGKNYLQN QEGFVHICRL 
     DTAGARVLEN 

Figure 1.1: A snapshot of the text annotated to genes from Swiss-Prot database. The 
snapshot is for the gene b0003. 
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1.5 Pre-processing textual data 
 
 
This section describes the original pre-processing of the textual data.  

 

The raw data of Swiss-Prot needs to be pre-processed to prepare the textual 

data for MAXCCLUS.  Some of the modifications made to the raw data are: 

 

• Select the DE, KW, RT, and CC fields from the Swiss-Prot entries. 

• Convert the text to lowercase letters. 

• Remove the copyright notice from the CC lines, and some of the 

reference title lines (RT) that appears in the text of most of the genes.  

•  Break sentences and phrases into their words. For example 

“Escherichia coli” becomes two words “escherichia” and “coli”.  

• Break the “words” that have hierarchical structure into their 

substructures including the original full structure. For example “EC 

2.7.1.39” becomes “ec@2@7@1@39”, “ec@2@7@1”, “ec@2@7”, 

and “ec@2”. The use of “@” instead of “.” is because all punctuation 

symbols are to be removed.  

• Remove punctuation. 

• Replace words with their stems using the Porter stemmer algorithm 

[Porter, M. F. 1980] that removes suffixes and prefixes from words, 

because words that have the same stem usually have similar 

meanings. 

• Remove duplicate words in each entry. 

 

After this all the words that belong to a gene comprise the set of descriptors to 

this gene. The textual data consists of a table in which each row in the table 

contains the gene id associated with the gene descriptor set (as in Table 1.3).  
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Instance ID Descriptors 

b0001 acid biosynthesis escherichia isoleucine mutant region structural sulfate … 
b0002 active aspartate belong cytoplasmic h(2)o kda molecular pathway protein …
b0003 adjacent adp analysis atp belong biosynthesis coli ec@2@7@1@39 …
b0004 coli compared enzyme mutant observed protein region sulfate transferase …
b0005 abundance dna-binding encoded homodimer integral  orthophosphate …
b0006 chromatography hypothetical membrane nucleotide predicts subunit sulfate …
b0007 51.7 acid analysis biosynthesis coli oxidoreductase potential regulatory …

 
Table 1.3: A snapshot of the descriptors table showing instances and their descriptors.  
The text data in this table is the textual data input to MAXCCLUS. 
 
 

 

When the experimental and the textual data are available, we can run 

MAXCCLUS to create subsets of the instances that behave in the same way 

during the microarray experiment. 

 
 
 
 
 
 
1.6 How MAXCCLUS works 
 
Figure 1.2 shows the MAXCCLUS clustering algorithm. First, MAXCCLUS 

uses the textual data to construct clusters of instances. Second, from these 

clusters MAXCCLUS selects the good clusters by using the experimental 

data.  Third, MAXCCLUS attempts to generalise the good clusters producing 

the generalised clusters. Finally, from the generalised clusters MAXCCLUS 

attempts to create the cover clusters from which it constructs rules and 

characterisations. 

 
 
 
 

10 
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Figure 1.2: The MAXCCLUS clustering algorithm. 
 
 
 
 
 
 
1.6.1 Construct the clusters 
 

MAXCCLUS starts clustering the instances (genes) using the textual data by 

finding, for each pair of instances, the set of descriptors that are shared by 

these two instances. MAXCCLUS marks each pair of instances with the 

number of descriptors shared between them. Then for each marked pair of 

instances MAXCCLUS creates a cluster. Then MAXCCLUS adds to this 

cluster other instances that share the same descriptors with the cluster’s 

instances.   

 

The clusters that MAXCCLUS creates are determined only by the textual data 

while ignoring the instances’ categories from the experimental data. Each of 

the constructed clusters has a set of descriptors (features) that is maximal in 

the sense that MAXCCLUS cannot add more descriptors to the cluster without 

11 
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excluding some instances from the cluster. Also each cluster is maximal in the 

sense that MAXCCLUS cannot add more instances to the cluster without 

reducing the number of descriptors that describe the cluster.  

 

Each cluster MAXCCLUS creates can be viewed either as a set of instances 

or as a set of word (descriptors) that describe the cluster. We refer to the first 

view as the extensional view, and refer to the second as the intensional view. 

 

Not all the clusters MAXCCLUS creates are relevant to the microarray 

experiment; and therefore not all of the clusters are meaningful. This is 

because, as mentioned above, the clusters that MAXCCLUS creates are 

determined only by the textual data while ignoring the instance categories 

from the experimental data.  To obtain useful clusters, MAXCCLUS needs 

some criteria to determine which of the clusters that it constructs are relevant 

to the microarray experiment. 

 

 

1.6.2 Select good clusters 
 

MAXCCLUS considers a cluster to be a good cluster if it passes both of the 

two tests: the accuracy and the significance tests. 

 

 

The accuracy test 
 

One of the two conditions for a cluster to be considered as a good cluster is 

that a cluster needs to be accurate enough. Accuracy (purity) is a percentage 

measure of the number of instances in the cluster that have the same 

category (Up or Down). The accuracy is also reflects the accuracy of the rules 

that MAXCCLUS creates (in later step) to describe the cluster. The user that 

uses MAXCCLUS package determines the minimum accuracy. For example if 

the user determined that the accuracy should be 95%, this means that each 

cluster must have 95%, or more, of its instances having the same category for 

MAXCCLUS to consider this cluster as a good cluster.  

12 
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The significance test 
 

The other condition for a cluster to be considered a good cluster is that an 

accurate cluster needs to be statistically significant. The significance test 

distinguishes between the accurate clusters that may result from a statistical 

chance, and the clusters that represent a real relationship between the 

descriptors (features) and the categories. MAXCCLUS runs a significance test 

on the clusters it creates to determine which clusters are statistically 

significant. The user of MAXCCLUS determines the minimum significance as 

a percentage (for example 95%). 

 

MAXCCLUS uses a permutation test. It does this test by repeatedly assigning 

categories (Ups or Downs) randomly to the instances. It then evaluates the 

purity of all the clusters, given these random assignments of categories. Any 

pure clusters it finds cannot represent significant clusters because the 

categories are random. There will be many small pure clusters, but fewer 

large pure clusters. It finds the minimum size cluster for which the probability 

of finding a pure cluster of this size is less than: 1-significance.  

 

It then assigns the true categories to the instances and selects the pure 

clusters that are at least this minimum size. These clusters are presumed to 

be significant, and not the product of statistical chance, and are referred to as 

“good clusters” or “significant clusters”. 

 

 

After selecting good clusters, MAXCCLUS can go through one or more of 

three paths (viewing them from left to right in Figure 1.1):  

 

The first path is that MAXCCLUS attempts to directly construct the rules that 

characterise the good clusters.  

 

The second path is that MAXCCLUS attempts to select a subset of the good 

clusters that covers all the instances in the good clusters. It then constructs 

the rules that characterise these cover clusters.  

13 
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The third path is that MAXCCLUS attempts to generalise the good clusters to 

create generalised clusters; then selects a cover for the generalised clusters; 

after that constructs the rules that characterise the generalised cover clusters.  

 

The following sections explain how MAXCCLUS constructs rules, selects 

cover clusters, and performs generalisation. 

 
 
 
 
1.6.3 Constructing rules 
 

MAXCCLUS attempts to construct rules that describe each cluster. 

MAXCCLUS uses the cluster’s descriptors (words) to construct all the rules 

that describe all the instances (genes) that are in the cluster, and at the same 

time exclude all the instances that are not in the cluster. 

 

MAXCCLUS constructs conjunctive rules (using “and” to combine words 

logically). For example, a rule that MAXCCLUS constructs to describe the 

instances of an Up regulated cluster of instances may look like this “Rule: 

protein, sequence, subunit, belong”. This rule can be interpreted as: if an 

instance has all the words “protein”, “sequence”, “subunit”, and “belong”, then 

the instance is Up regulated. Saying it differently: all the instances in the 

cluster can be described by the conjunction of the words “protein”, 

“sequence”, “subunit”, and “belong”; this conjunction of words excludes all the 

instances that are outside the cluster. MAXCCLUS does not construct 

disjunctive rules (using “or” to combine words logically). 

 

 

Words MAXCCLUS uses in constructing rules 
 

There are two sets of words that MAXCCLUS may use in constructing rules to 

describe a cluster, the Necessary and the Sufficient sets. 

 

14 
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The Necessary set of words contains the words that exist in every rule of the 

cluster. Each Necessary word is in the description of every gene in the 

cluster, but some genes outside the cluster share all but this word in the 

cluster’s descriptors. These words are necessary to exclude these “near 

misses”. 

 

Sometimes the Necessary words are not enough to exclude some of the 

genes that are out the cluster, because some of these genes can have all of 

the Necessary words. MAXCCLUS finds another set of words, the Sufficient 

words. By using at least some of the Sufficient words in conjunction with the 

Necessary set of words, MAXCCLUS creates minimal rules of which each rule 

describes the instances in the cluster, but not true for the instances outside 

the, cluster even the ones that have all the Necessary words. The words from 

the Sufficient set of words are present in at least one but not all rules of the 

cluster. 

 

For a rule to be minimal no word can be deleted from the rule without affecting 

the set of instances this rule describe. Deleting any word from a minimal rule 

allows the rule to also describe some instances from outside the cluster, 

which decreases the accuracy of the rule by describing instances that have 

different categories than the cluster’s instances category.  

 

Word sets that MAXCCLUS uses in characterising a cluster 

Both the Necessary and the Sufficient sets of words characterise the 

instances of the cluster, but they are not the only ones. MAXCCLUS 

constructs two other sets of words to characterise the instances of a cluster, 

the Supplementary and the All but X sets of words.  

The Supplementary set of words contains the words that are not in any rule of 

the cluster, but are still true of all instances in the cluster. Since the 

Supplementary words are also true for some instances outside the cluster, 

these words do not help in distinguishing the cluster from other clusters. 
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The All but X set of words (also called frequent words) contains the words that 

are not in any rule of the cluster, but are still true of all but X of the instances 

in the cluster. For example, a cluster may have 217 instances with 

characterisation that say “All but 2: hypothetical”, which means that 215 of the 

cluster instances have the word “hypothetical” in their descriptor set, but the 

other 2 instances do not have this word.  

Both the Supplementary and the All but X sets of words are to help the user of 

MAXCCLUS (the scientist) by reflecting more of the characterisations of the 

instances in the cluster. These extra characterisations are not reflected in the 

rules. 

 

 

1.6.4 Generalisation 
 

MAXCCLUS attempts to generalise each of the good clusters by adding some 

instances from outside the cluster. The instances added share some of the 

same descriptors as the cluster’s characterisation, but must have the same 

category as the cluster’s category. Therefore, generalisation increases the 

accuracy of the cluster by increasing the number of correct instances. We call 

the resulting clusters the generalised clusters. 

 

MAXCCLUS performs generalisation by constructing generalised rules that 

cover all the genes in the cluster and do not cover any incorrect instances 

outside the clusters, but may cover some additional correct instances. This 

small change to the rule constructions leads to a kind of generalisation that is 

simple and strict, however it is fast in execution and as good in covering 

instances as the more complex, and more time consuming generalisation 

introduced in Chapter 3. 
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1.6.5 Select cover clusters 

After constructing the good clusters (or the generalised clusters), MAXCCLUS 

attempts to select the cover clusters. Because the set of the good (or 

generalised) clusters may contain clusters that are overlapping and others 

that are subsumed by bigger clusters in the same set, MAXCCLUS attempts 

to select a minimal subset of the clusters that cover the same instances. We 

call this subset the cover clusters if it is the cover for the good clusters, or the 

generalised cover clusters if it is the cover clusters for the generalised 

clusters.  

 

 

 

1.7 How MAXCCLUS reports its clustering results 

After finishing clustering, MAXCCLUS reports its clustering results as an XML 

(Extensible Markup Language) file, which was originally rendered to HTML 

(HyperText Markup Language) file. Rendering was originally done by running 

a Java program on each of the XML files to create the respective HTML file. 

This approach is not flexible enough in case one needs to change how the 

HTML presents the data; furthermore this approach doubles the computer 

storage size needed to store only the XML files (because of having the HTML 

files too), which can be considerable when running MAXCCLUS on many data 

sets (some XML and HTML files can exceed 34MB in size). We modified the 

rendering by using only one small (7KB) XSL (Extensible Stylesheet 

Language) file to render, on the fly, any XML file created by MAXCCLUS, to a 

HTML file by using Microsoft Internet Explorer to open the XML file.  

Figure 1.3 shows a snapshot of MAXCCLUS clustering results with Microsoft 

Internet Explorer using the XSL file.  
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Data/gene-dkcr-mp1s ===> Data/Experiments/exp03-gene-category 
 
ClusterSet 
clusterCount: 19  
minAccuracy: 95  
minConfidence: 95  
minSize-Up= "212"  
minSize-Dn= "5"  
instanceCount: 335  
 
DataSource 
instanceSource: Data/Experiments/exp03-gene-category  
textSource: Data/gene-dkcr-mp1s  
 
instanceCount: 495  
UpCount: 456  
DnCount: 39  
-------------------------------------------------------------------------------- 
Cluster 
category: Dn  
accuracy: 100.0  
instanceCount: 8  
 
Characterisation: Necessary: protein , sequence , subunit ,   
Sufficient: belong , family ,   
Supplementary: coli , escherichia ,   
 
Rule: protein , sequence , belong , subunit ,  
 
Rule: protein , sequence , family , subunit ,  
 
Operons: b0882 , b0911 , b1260 , b1923 , b2614 , b3295 , b3699 , b3829 ,  
-------------------------------------------------------------------------------- 
Cluster 
category: Dn  
accuracy: 100.0  
instanceCount: 7  
 
Characterisation: Necessary: mutant ,   
Sufficient: gene , k-12 ,   
Supplementary: coli , escherichia , protein , belong , family ,   
 
Rule: gene , mutant ,  
 
Rule: k-12 , mutant ,  
 
Operons: b1136 , b1236 , b1779 , b1923 , b2497 , b3295 , b4177 ,  
-------------------------------------------------------------------------------- 
Cluster 
category: Dn  
accuracy: 100.0  
instanceCount: 5  
 
Characterisation: Necessary: belong , encoded , k-12 , as ,   
Supplementary: coli , escherichia , family ,   
 
Rule: belong , encoded , k-12 , as ,  
 
Operons: b1243 , b1852 , b3295 , b3829 , b4177 ,  
-------------------------------------------------------------------------------- 
Cluster 
category: Dn  
accuracy: 100.0  
instanceCount: 5  
 
Characterisation: Necessary: nucleotide , salmonella ,   
Supplementary: coli , escherichia , sequence , belong , family ,   
 
Rule: nucleotide , salmonella ,  
 
Operons: b1260 , b1264 , b1779 , b1923 , b3295 ,  
-------------------------------------------------------------------------------- 
Cluster 
category: Dn  
accuracy: 100.0  
instanceCount: 5  
 
Characterisation: Sufficient: sequence , belong , encoded , step , k-12 , as ,   
Supplementary: coli , escherichia ,   
 
Rule: step , as ,  
 
Rule: belong , step , k-12 ,  
 
Rule: sequence , encoded , k-12 , as ,  
 
Rule: belong , encoded , k-12 , as ,  
 
Operons: b1852 , b2780 , b3295 , b3829 , b4177 ,  
-------------------------------------------------------------------------------- 
Cluster 
category: Dn  
accuracy: 100.0  
instanceCount: 8  

Figure 1.3: A snapshot of MAXCCLUS clustering results. 
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Chapter 2 

 

Methodology 
 
 

This chapter describes the methodology we used to design the different 

clustering experiments and to analyse the results that MAXCCLUS produced 

from the experiments. 

 

MAXCCLUS produces the results of its clustering and stores these results into 

XML files. Some of these XML files can exceed 34MB in size. Browsing this 

amount of data and attempting to analyse it is a difficult job. Therefore we 

chose a methodology that can help us to simplify the results and enables us 

to compare different clustering experiments. 

 

 

2.1 The clustering experiments 
 

The project designed different clustering experiments to study the behaviour 

of MAXCCLUS. There are many control variables that one can change in a 

clustering experiment to create a new clustering experiment. We attempted to 

design the clustering experiments so that each one of them differs from the 

reference clustering experiment by one controlling variable. The reference 

clustering experiment is obtained by running MAXCCLUS using the 

experimental and textual data that is explained in Chapter 1. Comparing each 

one of the clustering experiments to the same reference clustering experiment 

(the normal clustering experiment) gives an understanding of the behaviour of 

MAXCCLUS and its limitations, and it helps identify improvements to 

MAXCCLUS, or the experimental or textual data that it uses. 
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Figure 2.1 shows the reference clustering experiment, which we refer to as 

the before changes case, and the other clustering experiments, which we 

refer to as after changes case. 

 

 

 
Figure 2. 1: The before and after changes clustering experiments. 

 

 

 

Before any changes, in the reference clustering experiment, MAXCCLUS 

uses the normal descriptor sets for the genes (section 1.5), it attempts to 

cluster genes, the experimental data has instances (genes) that are in two 

categories only, and MAXCCLUS uses a simple generalisation algorithm 

when attempting to generalise the good clusters.  

 

In the after changes case there are five clustering experiments. Each of these 

clustering experiments is based on the reference clustering experiment but 

with a change to one control variable.  
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The first clustering experiment (Exhaustive search generalisation) is designed 

to study the behaviour of MAXCCLUS when MAXCCLUS uses an exhaustive 

search algorithm to generalise the good clusters, instead of the simple 

generalisation algorithm that it uses in the reference clustering experiment. 

 

The second clustering experiment (Operons) is designed to study the 

behaviour of MAXCCLUS regarding the significance test. In this clustering 

experiment MAXCCLUS attempts to cluster operons instead of genes. 

Operons are logical groups of genes that should behave in the same way 

during the microarray experiment. Using operons instead of genes requires 

different textual data from the one the normal clustering experiment uses. The 

textual data for the operon clustering experiment has descriptor sets for 

operons created from the union of the descriptor sets of their genes.  

 

The third and fourth experiments - Deleting descriptors and Adding 

descriptors - are designed to study the behaviour of MAXCCLUS when 

changes are made to the pre-processing of the textual data by changing the 

descriptor sets of the genes. Deleting descriptors uses reduced descriptor 

sets for the genes by deleting words from two different dictionaries. The 

second clustering experiment (Adding descriptors) uses extended descriptor 

sets for the genes by adding synonyms, hypernyms, or both synonyms and 

hypernyms of the existing descriptors. 

 

The last clustering experiment (Five categories) is designed to study the 

behaviour of MAXCCLUS when it attempts to cluster instances that are in five 

categories instead of only two categories. In this clustering experiment, 

MAXCCLUS uses experimental data that includes all the genes (instances), 

not only the ones that are clearly Up or clearly Down regulated.  
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2.2 Comparing clustering experiments results 
 

To be able to study the behaviour of MAXCCLUS, we need to find a way to 

compare the results of using MAXCCLUS for each clustering experiment after 

having changes to the control variables, against the reference clustering 

experimental before changes to the control variables. We refer to the results 

of the reference clustering experiment with the word “before”, and we refer to 

the results of each other clustering experiment with the word “after”. 

 

 

What to compare 
 

MAXCCLUS reports its clustering results in XML files. The clustering results 

consist of some “objects”. The objects can be clusters, instances, rules, or 

rules’ words. We measured the clustering execution time separately because 

it is not reported in the XML files. Figure 2.2 list the maximum value of the 

objects count in an XML file to show the complexity of the comparison 

problem.  

 

 

Object Maximum count 

Instances 980

Clusters 1,789

Rules 115,180

Rules’ words 306

 
Figure 2.2: The maximum count for each object in an XML clustering results file. 
 

 

 

The comparison is made between objects in the before and the after results. 

The result sections in the following chapters present the compared results as 

the relative change between the before and the after results.  
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For each kind of object, the results are presented as the change to the total 

number of the objects, the number of retained objects (objects present in both 

before and after results), and the number of new objects. For  microarray 

experiments data set, the calculations are as the following:   

n

 

 

Change% 
 

For the percentage Change%,  is the percentage ratio of the number of 

objects to the number of objects in the i th microarray experiment, 

calculated as: 

Ci

after before

 

100×=
before
after

C
i

i
i  

 

 

 

Retained% 
 

For the percentage Retained%,  is the percentage ratio of the number of 

objects retained in the clustering experiment, with respect to the number 

of objects in the clustering experiment. The number of the retained 

objects is the number of objects that are in both the  and  results of 

the th microarray experiment.  is calculated as: 

Ri

after

before

before after

i Ri

 

100×=
before

afterbefore
R

i

ii
i

I  
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New% 
 

For the percentage New%,  is the percentage ratio of the number of 

objects in the  results that were not in the  results of the i th 

microarray experiment. is calculated as: 

Ni

after before

N i

 

100×
−

=
after

beforeafter
N

i

ii
i  

 

 

 

Subsumed% 
 

For the percentage Subsumed%,  is the percentage ratio of the number of 

objects in the  results that are subsumed by objects in the results 

of the i th microarray experiment.  is calculated as:  

S i

before after

S i

 

100×=
before

subsumed
S

i

i
i  

 

Where an object from is in  if there exists an object in  

that is strictly a generalisation of it. 

beforei subsumedi afteri

 

Then we calculate the average, median, minimum value, maximum value, 

upper quartile, and lower quartile of C , , , and  over  microarray 

experiments data sets. We present the averages as histograms and other 

statistics as box and whisker plots [Williamson, D. 2002].  

i Ri N i S i n

 

For each experiment, we calculate these measures for three sets of results 

from MAXCCLUS, the significant clusters (the good clusters, which are 

accurate and significant at the same time), the cover, and the generalised 

cover cluster sets, and present them side by side for comparison. 

24 



Chapter 2: Methodology 

Not all the clustering experiments use the same microarray data sets, 

because some of the clustering experiments could not handle some of the 

data sets for one of two reasons: first, not enough computer memory to 

continue the clustering task, and second, the clustering task takes a very long 

time, which forces us to kill the running process for these data sets. Figure 2.3 

lists the clustering experiments and the microarray data sets used to study the 

clustering results. 

 

 

 

Clustering 
experiment 

Number 
of data 

sets 
Data sets 

Exhaustive 
search 
generalisation 

23 3, 6, 7, 8, 10, 11, 12, 13, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 
29, 30, 35, 36, 40 

Operons 20 6, 7, 10, 11, 12, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 35, 
36, 40 

Deleting 
descriptors 23 3, 6, 7, 8, 10, 11, 12, 13, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 

29, 30, 35, 36, 40 

Adding 
Descriptors 23 3, 6, 7, 8, 10, 11, 12, 13, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 

29, 30, 35, 36, 40 

Five 
categories 19 3, 6, 7, 10, 11, 12, 13, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 

30 

 
Figure 2.3: The clustering experiments and the microarray data sets used in studying 
the clustering results. 
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2.3 How much of the data can MAXCCLUS describe 
 

Figure 2.4 shows the number of instances described originally by MAXCCLUS 

when running the reference clustering experiment on 38 microarray 

experimental data sets. On average, MAXCCLUS can describe about 37% of 

the instances in the data sets. The distributions show that there is a wide 

variation across the data sets: from about 5% to about 79%. 
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Figure 2.4: Number of instances described by running the reference clustering 
experiment. 
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Chapter 3 

 

Exhaustive Search Generalisation 
 
 
This chapter describes a clustering experiment designed to study 

MAXCCLUS’s generalisation by introducing an exhaustive search 

generalisation clustering experiment and comparing its results with 

MAXCCLUS’s simple generalisation used in the reference clustering 

experiment. The surprising result of this chapter is to show that MAXCCLUS’s 

simple generalisation does very well compared with the more complex and 

more expensive exhaustive search generalisation, by explaining all the 

instances with much less execution time. 

 

 

In the reference clustering experiment, MAXCCLUS uses a simple 

generalisation that attempts to add, to the cluster that is attempting to 

generalise, other instances that have the same category as the cluster. It 

does this using greedy algorithm that effectively drops words from the 

description of the cluster without including other instances that have different 

category from the cluster. We thought that having an exhaustive search 

generalisation would make MAXCCLUS able to generalise a cluster better 

than the simple greedy generalisation, by using a powerful search an by 

allowing some instances that have a different category from the cluster’s 

category to be added to the cluster, as long as the accuracy is not sacrificed. 
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3.1 Data source 
Both versions of MAXCCLUS use the same data as their input, the 

experimental data and the textual data as described in chapter 1. 

 
 

 

3.2 Comparison between the two versions of MAXCCLUS 

 

When generalising in the reference clustering experiment (see chapter 1), 

MAXCCLUS performs a simple generalisation. It only adds correct instances 

(instances that have the same category as the original cluster’s category) and 

it only generalises by dropping descriptors. Therefore there is a limit for 

MAXCCLUS’s simple generalisation. There is a possibility of getting more 

general rules and clusters by using more powerful algorithm than 

MAXCCLUS. MAXCCLUS needs a generalisation that can search the space 

of the cluster’s characterisation words exhaustively, looking through all the 

possible combinations, and can accept incorrect instances (instances that 

have categories different than the original cluster’s category) providing that 

the cluster’s accuracy is not sacrificed.  

 
 
 
 

3.2.1 MAXCCLUS’s two versions 
 
Figure 3.1 shows two versions of MAXCCLUS. Both versions are the same 

except for the generalisation part: one uses the simple generalisation and the 

other uses an exhaustive search generalisation. Both versions start by 

constructing clusters using the textual data annotated with each instance 

(gene). From these constructed clusters, the two versions select the good 

clusters (the significant accurate clusters) using the microarray experimental 

data. Then both versions attempt to generalise the good clusters, either by 

using the simple generalisation, or by using the exhaustive search 
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generalisation. From these generalised clusters both versions select the cover 

clusters to get the generalised cover clusters. From these generalised cover 

clusters, both versions construct the rules that characterise the clusters. 

 

 

The following sections describe the exhaustive search generalisation method. 

 
 
 
 

 
 
Figure 3.1: The two versions of MAXCCLUS. One uses the simple generalisation (the 
reference clustering experiment) while the other uses the exhaustive search generalisation 
(this chapters clustering experiment). 
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3.2.2 Simple generalisation – algorithm  

The simple generalisation that MAXCCLUS uses is based on only dropping 

words from the rules that describe the cluster, so that the new generalised 

rule will cover more instances. This generalisation does not allow negative 

instances (instances that have different category than the cluster’s category) 

to be covered by the generalised rule.  

 

3.2.3 Exhaustive search generalisation 

The input to the exhaustive generalisation algorithm is a good cluster (which 

is a significant and pure cluster). The output is the best generalisation of this 

cluster. The algorithm searches for the best generalised rule, by attempting to 

generalise one of the cluster’s rules (each rule consists of words that describe 

the cluster’s instances). The best generalised rule for a cluster is a rule that 

has the same category as the cluster and describes more instances than any 

other rule of the cluster, subject to a constraint on accuracy (described later in 

section 3.2.3.2). The best generalised rule for the cluster could be one of the 

original rules of the cluster, or it could be a new rule that also describes the 

cluster. From the best generalised rule (the best generalisation of the cluster), 

MAXCCLUS can construct a new cluster, which is bigger than the original 

cluster (describes more instances than the original cluster). 

 

   

The exhaustive generalisation algorithm creates a set of words that are in the 

characterisation of the cluster. Words contains all the common words and all 

the frequent words of the cluster. The common words of a cluster are the 

words that are represented in all the instances of the cluster; the frequent 

words of a cluster are the words that are represented in most of the instances 

of the cluster. The exhaustive generalisation algorithm (figure 3.2) searches 

exhaustively by creating all combinations (all subsets) of the set of words that 

are in the characterisation of the cluster. 

This project implemented two versions of the exhaustive generalisation 

algorithm, the less restricted version and the more restricted version. They are 
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similar to each other; they only differ in line 04 of the algorithm (figure 3.2). 

The more restricted version includes the “a superset of” constraint, and the 

less restricted version does not. 

 

The exhaustive generalisation algorithm starts by choosing the rule that has 

fewest words from the rules that describe the cluster. Initially this rule 

becomes the best rule. From each combination (subset) of words, except the 

empty set ∅, and combinations that are equal to (for the less restricted 

version), or supersets of (for the more restricted version) the original rules of 

the cluster, this algorithm creates a new rule. This new rule has the same 

category of the cluster. The algorithm evaluates the new rule against the best 

rule by using the IsBetterThanOrEqualTo method (described in the next 

section).  

 

If the new rule is evaluated as better than or equal to the best rule, and if the 

new rule covers more correct instances than the best rule, or the new rule has 

fewer words than the best rule, then the new rule becomes the best rule 

(Note: “correct instances” are the instances that have the same category as 

the rule). Choosing the rule that has fewer words results in a simpler rule to 

describe the cluster. When the exhaustive search finishes, this algorithm 

returns the best rule. 

 
 
 
 
 
 
 
 
 
 
 
 
 

01: Let the cluster’s rule that has fewest words, to become the bestRule. 
02: Let words to be the set of common and frequent words of the cluster. 
03: For each subset of words (except ∅):  
04:       If the subset is not [a superset of] one of the original rules of the cluster: 
05:  create newRule from this subset. 
06:  If newRule isBetterThanOrEqualTo bestRule: 
07:   If newRule covers more correct instances than bestRule: 
08:    Let newRule to become the bestRule. 
09:   Else: choose between newRule and bestRule,  

the rule that has fewer words, to become the bestRule. 
10: return bestRule. 

Figure 3.2: The exhaustive generalisation algorithm 
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3.2.3.1 IsBetterThanOrEqualTo – three evaluating criteria 
 
The input to this method is two rules: the best rule found so far, and the new 

rule that the exhaustive generalisation algorithm trying to evaluate with 

respect to the current best rule. IsBetterThanOrEqualTo returns true if the 

new rule is better than or equal to the best rule. The project implements two 

versions of the IsBetterThanOrEqualTo method, depending on two 

approaches for evaluating accuracy. 

 
 
 

3.2.3.2 Two criteria:  Accuracy and Minimum-accuracy  
 
The IsBetterThanOrEqualTo method has three conditions that must be 

satisfied to return the value true.  

 

The first two conditions are (see figures 3.3 and 3.4): 

 

1. The number of newRule's correctly covered instances is greater than or 

equal to the number of bestRule's correctly covered instances. 

2. The correctly shared instances between newRule and firstRule are 

greater than or equal to a percentage value (the implementation uses 

70%).  

 

 

There are two forms of the third condition referred to as accuracy and 

minimum-accuracy. 

 

Accuracy is the accuracy of the rule and is calculated as: 

 

I
CA =   

 

Where  is the accuracy, C  is the number of correct instances the rule 

covers, and 

A

I  is the number of all instances the rule covers. 
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Minimum-accuracy is the accuracy specified by the user of MAXCCLUS. It 

determines the minimum accuracy for a cluster that MAXCCLUS should 

handle. 

 

For the accuracy form, the third condition is (figure 3.3): 

 

3. newRule's accuracy is greater than or equal to bestRule's accuracy. 

 

For the minimum-accuracy form, the third condition is (figure 3.4): 

 

3. newRule's accuracy is greater than or equal to the minimum accuracy 

for the clusters (usually minimum accuracy is 95% pure). The user of 

MAXCCLUS specifies the value of the minimum-accuracy. 

 
 
 
 
 
 

 
 
Figure 3.3: A new cluster, that is created from the best generalised rule, must cover at least 
70% of the correctly covered instances of the original cluster. The new cluster’s accuracy is 
equal to the original cluster’s accuracy (in this example both accuracies are 100%). 
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Figure 3.4: A new cluster, that is created from the best generalised rule, covers more correct 
instances than the original cluster. The new cluster must also cover at least 70% of the 
correctly covered instances of the original cluster. Also the new cluster’s accuracy must be 
greater than or equal to minimum accuracy. Supposing that the minimum accuracy is 95%, in 
this example the new cluster’s accuracy is equal to the minimum accuracy. 
 
 
 
 
 

3.3 Experimental results 
 
 
Because the two versions of MAXCCLUS are identical except for the 

generalisation part, both versions have the same significant clusters and the 

same cover clusters. Therefore the results section compares only the 

generalised cover clusters of the two versions. 

 

The results shown in the figures below are for running MAXCCLUS on 23 of 

the microarray experimental data sets (data set: 3, 6, 7, 8, 10, 11, 12, 13, 16, 

18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 35, 36, and 40), using exhaustive 

search generalisation instead of the simple generalisation. Figures 3.5 to 3.14 

show the results for the number of clusters, the number of rules, the number 

of words in the rules, the number of words per rule, and the execution time. 

34 



Chapter 3: Exhaustive Search Generalisation 

We will refer in the remaining of the chapter to the results using accuracy as 

AC, and using minimum accuracy as MA. 

 

 

The clusters 

Figures 3.5 to 3.7 show the changes to the number of clusters when 

MAXCCLUS uses the exhaustive search generalisation instead of the simple 

generalisation. The figures show the changes to the total number of clusters, 

the number of retained clusters, and the number of new clusters. 

 

On average, the number of clusters when MAXCCLUS uses the exhaustive 

search generalisation is about 5% more than when MAXCCLUS uses the 

simple generalisation (figure 3.5).  

 

When MAXCCLUS uses the exhaustive search generalisation, on average, 

45% of the clusters are retained from the clusters found when MAXCCLUS 

uses the simple generalisation (figure 3.6).   

 

When MAXCCLUS uses the exhaustive search generalisation, on average, 

about 56% of the clusters found are different from the clusters found when 

MAXCCLUS uses the simple generalisation (figure 3.7).  

 

On average, almost no clusters found from clustering when MAXCCLUS uses 

the simple generalisation, are subsumed by new clusters found from 

clustering when MAXCCLUS uses the exhaustive search generalisation. 

 

 

35 



Chapter 3: Exhaustive Search Generalisation 

0

20

40

60

80

100

Generalised Cover

Pe
rc

en
ta

ge

AC
MA

 
Figure 3.5: Average change to the total number of clusters  
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Figure 3.6: Average number of retained clusters 
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Figure 3.7: Average number of new clusters 
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The instances 

 

When MAXCCLUS uses the exhaustive search generalisation it describes the 

same instances as it does when uses the simple generalisation.  

 

 

 
 

The rules 

 

Figures 3.8 to 3.10 show the changes to the number of rules when 

MAXCCLUS uses the exhaustive search generalisation instead of the simple 

generalisation. The figures show the changes to the total number of rules, the 

number of retained rules, and the number of new rules. 

 

On average, the number of rules when MAXCCLUS uses the exhaustive 

search generalisation is about 65% more that when MAXCCLUS uses the 

simple generalisation (figure 3.8), but the Accuracy version of the algorithm 

(AC) has a somewhat wider range. 

 

When MAXCCLUS uses the exhaustive search generalisation, about 81% of 

the rules are retained from the rules found when MAXCCLUS uses the simple 

generalisation (figure 3.9).  

 

When MAXCCLUS uses the exhaustive search generalisation, on average, 

46% of the rules are different from the rules found when MAXCCLUS uses the 

simple generalisation (figure 3.10).  

 

On average, almost no rules found from clustering when MAXCCLUS uses 

the simple generalisation, are subsumed by new rules found from clustering 

when MAXCCLUS uses the exhaustive search generalisation. 
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Figure 3.8: Change to the total number of rules 
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Figure 3.9: Average number of retained rules 
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Figure 3.10: Average number of new rules 
 
 
 
 
 
 
 
The rules’ words 
 

Figures 3.11 to 3.13 show the changes to the number of rules’ words when 

MAXCCLUS uses the exhaustive search generalisation instead of the simple 

generalisation. The figures show the changes to the total number of rules’ 

words, the number of retained rules’ words, and the number of new rules’ 

words. 

 

On average, the number of rules’ words when MAXCCLUS uses the 

exhaustive search generalisation is about 13% more than that when it uses 

the simple generalisation (figure 3.11).  

 

When MAXCCLUS uses the exhaustive search generalisation, about 96% of 

the rules’ words are retained from that found when MAXCCLUS uses the 

simple generalisation (figure 3.12).   

 

When MAXCCLUS uses exhaustive search generalisation, on average, about 

15% of the rules’ words are different from the rules’ words found when it uses 

the simple generalisation (figure 3.13). 
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Figure 3.11: Average change to the total number of rules' words  
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Figure 3.12: Average number of retained rules' words 
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Figure 3.13: Average number of new rules' words  
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The words per rule 
 

Figure 3.14 shows the changes to the total number of words per rule when 

MAXCCLUS uses the exhaustive search generalisation instead of the simple 

generalisation.  

 

On average, the number of words per rule when MAXCCLUS uses the 

exhaustive search generalisation is almost the same (only about 2% more) as 

that when MAXCCLUS uses the simple generalisation 
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Figure 3.14: Average change to the number of words per rule  
 
 
 
 
 
 
The execution time 
 
Figure 3.15 shows the changes to the clustering execution time when 

MAXCCLUS uses the exhaustive search generalisation instead of the simple 

generalisation. 

 

When MAXCCLUS uses the exhaustive search generalisation using AC or 

MA, on average, the execution time is much more than that when 

MAXCCLUS uses the simple generalisation. On average, the execution time, 

when clustering using AC, is slightly more than that when using MA; about 7.9 

times longer when using AC, but only about 7.6 times longer when using MA, 

compared with the execution time when MAXCCLUS uses the simple 

generalisation. 
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Figure 3.15: Average change to the clustering execution time 
 
 
 
 

3.4 Analysis and discussion 
 

The following sections analyse and discuss the results shown in the previos 

section. 

 

 

The MAXCCLUS clustering algorithm has a simpler and faster algorithm for 

generalisation, compared with more complex and much slower exhaustive 

search algorithm for generalisation of the modified clustering algorithm. We 

had expected that the exhaustive algorithm would give noticeably better 

clusters and rules. However, the results show that MAXCCLUS, using its 

simple generalisation algorithm, behaved very well with most of the 

microarray experimental data sets.  

 

The modified clustering algorithm created new clusters, from the best rules, 

and then it added these new clusters to the original clusters giving a bigger 

cluster set. Creating and adding the new clusters to the original cluster set, 

had little effect on the characterisation behaviour of MAXCCLUS, as the 

results show. There was little change in the number of clusters in the 

generalised cover and no change to the instances. Therefore the original 

MAXCCLUS generalisation algorithm, with its simplicity and speed, proved to 

be preferable to the more complex and more time consuming modified 
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clustering algorithm using either of the two different criteria accuracy and 

minimum accuracy. 

 

Although the exhaustive search generalisation allowed adding negative 

instances that have different category from the cluster, the number of 

instances did not increase. This could be because of the high user accuracy 

value (95%), which prevents adding lots of negative instances to keep the 

high purity of the clusters. We believe that if the user uses low accuracy value 

(say 70%) then more negative instances would be added to the clusters, but 

then the clusters would not be interesting because of the low accuracy value. 

 
 
 
3.5 Conclusion 
Using simple generalisation approach for MAXCCLUS is better, for the 

microarray data sets used for clustering experiments, than using an 

exhaustive search generalisation. The simple generalisation can describe all 

the instances that the exhaustive search generalisation can describe, and it is 

much faster than the exhaustive search generalisation, at least for the 

microarray data sets that MAXCCLUS used in this project.  

 

In the future work we will experiment with other data sets (something that was 

not available during the period of this project) by running this chapter’s 

experiment and the reference experiment and compare their results as we did 

in this chapter. We expect that the simple generalisation will do as well as the 

exhaustive search generalisation in describing instances and it will be faster, 

as it did with the microarray data sets that used in this project. 

 

 

3.6 Recommendations 
For the reasons mentioned in the conclusion section, we recommend that 

MAXCCLUS keeps its simple generalisation and there is no need to replace it 

with an exhaustive search generalisation, at least for the microarray data sets 

that MAXCCLUS used in this project with the given high user accuracy. 
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Chapter 4 

 

Operons 
 
This chapter explores running MAXCCLUS to cluster operons instead of 

genes. An operon is a group of genes that behave in the same way regarding 

regulation. So we expect that within a microarray experiment, a set of genes 

that belong to an operon will respond to physical and/or chemical effects in 

the same way. This means an operon is already a cluster of genes, even 

before using a clustering algorithm (Figure 4.1). 

 

 

 

 

 

 

 

 

 

 

 

Operon A 
Operon B 

Operon C 

Figure 4.1: An operon is a group of genes that behave in the same way.  
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By clustering operons instead of genes we expect to reduce the number of 

clusters produced by MAXCCLUS, and we will find out if the clusters found by 

clustering genes were scientifically interesting, or if they were clusters of 

genes that represent operons.  

 

When clustering genes, MAXCCLUS performs a significance test on each 

cluster it finds. The question “Is this cluster big enough to be significant?” is 

based on an assumption that all the genes in the cluster were independent of 

each other. When performing the significance test, MAXCCLUS does not 

consider that some of the genes belong to operons, and therefore ignores 

their dependency on each other. When clustering operons, we are 

questioning the significance of the clusters found by MAXCCLUS when 

clustering genes. 

 

Because there are not many big operons (figure 4.2), it is not the case that 

MAXCCLUS could find lots of gene clusters that are operons. But 

MAXCCLUS can find gene clusters that contain a number of genes that 

belong to the same operon. 
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Figure 4.2: The frequency of genes per operon. 
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Having genes that belong to the same operon, in a cluster found by 

MAXCCLUS, changes the calculations of the significance test.  

 

 

4.1 Example 

For example, suppose, when clustering genes, MAXCCLUS finds a cluster of 

10 genes (figure 4.3 (a)). It may be that this cluster is statistically significant 

when viewed as having 10 instances. But in another view, the operons view, 

this cluster consists of only 6 instances (figure 4.3 (b)). In the operons view, it 

consists of one operon that has three genes, two operons each having two 

genes, and three single genes (we can imagine these three genes as three 

operons, each operon having one gene). With the operons view, the same 

cluster now has 6 instances as operons, and may be that this cluster is 

statistically insignificant when viewed as having 6 instances, and it should be 

treated by MAXCCLUS as if it was generated by chance and therefore should 

be ignored and not considered as a significant cluster.  

 

From this example, we expect that, when clustering operons, MAXCCLUS will 

find fewer significant clusters. In order to explore significance, we run 

MAXCCLUS to cluster operons in this chapter. 

 

 

 

 

 

 

 

 

(a)  Cluster as genes (b)  Cluster as operons 

Figure 4.3: Two views for a cluster: (a) as genes, (b) as operons. 
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4.2 Preparing the data 
To be able to run MAXCCLUS on operons instead of genes, we need to 

prepare the data that MAXCCLUS uses. We have two kinds of data to be 

used by MAXCCLUS: first the textual data, and second the microarray 

experimental data. 

 

 

4.2.1 Preparing the textual data 
The textual data for operons was prepared by creating the operon descriptor 

table and storing it to a file to be ready for use by MAXCCLUS. This table 

contains a number of rows; each row contains an operon’s id associated with 

the operon’s descriptors’ sets. We created each operon’s descriptor set out of 

its genes descriptor sets. There are two methods to do this. We implemented 

the second one only. 

 

First method 

The first method is to take the intersection of the descriptor sets of the genes 

in the operon; this gives us all the words that are true of all the operon’s 

genes. The operon descriptor sets that we get from this method are not rich 

enough to be useful for our experiment; therefore we do not use it.  

 

Second method 

The second method is to take the union of the descriptor sets of the genes in 

the operon; this gives us the words that are true of any of the operon’s genes. 

This method reflects the functional dependency between an operon’s genes. 

As we extracted the gene descriptors from a protein database (the Swiss-

Prot), the genes descriptors describe the protein that each gene codes for. 

Because the operon’s genes are functionally related, then for each operon, its 

descriptor set needs to be the union of the descriptor sets of the genes in this 

operon to keep the knowledge about all the operon’s genes. From that, the 
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second method creates a richer set of descriptors that describes the operon; 

therefore, we chose the second method to create the operon descriptor set. 

 

4.2.2 Preparing the microarray experimental data 
The operon microarray experimental data is a file that contains a number of 

rows, in which each row contains an operon’s id associated with the operon’s 

category. For each microarray experiment, the operon microarray 

experimental data is created from the gene microarray experimental data for 

this microarray experiment. The problem is that not all genes of every operon 

have the same category; some genes are not labelled “Up” or “Down” and it is 

possible that two genes in the same operon could have opposite categories. 

Therefore, it is not clear how to assign categories to operons. We took three 

approaches to creating and implementing the operon microarray experimental 

data. 

 

First approach (OP100) 

The first approach is to accept an operon (include its id in the operon 

microarray experimental data) if 100% of its genes are present in the gene 

microarray experimental data and if 100% of its genes are associated with the 

same category. We then associate this operon’s id with the same category as 

its genes’ category. If any genes are not present or their categories are mixed, 

we reject the operon so it will not be included in the operon microarray 

experimental data. We will refer to this approach as OP100. We will also use 

this reference to refer to the results of the operon clustering experiment, which 

uses operon microarray experimental data created by using this approach. 

 

Using this approach, we only accepted 58% of the operons that have genes in 

the gene microarray experimental data. Because this was too strict, we 

introduced the second approach with fewer constraints. 
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Second approach (OP66) 

The second approach is to accept an operon if 66% or more of all of its genes’ 

are present in the gene microarray experimental data and if 66% or more of 

all of its genes are associated with the same category. Then we associate this 

operon’s id with the majority category of its genes. Otherwise we reject the 

operon. We will refer to this approach as OP66. We will also use this 

reference to refer to the results of the operon clustering experiment, which 

uses operon microarray experimental data created by using this approach. 

 

Using the second approach, we accepted 63% of the operons that have 

genes in the gene microarray experimental data. While the second approach 

is a little bit less strict than the first approach, the second approach is still 

strict. Therefore, we introduce the third approach that is looser in its 

constraints than the first and the second approaches. 

 

Third approach (OP70) 

The third approach is to accept an operon if any of its genes are present in 

the gene microarray experimental data as long as 70% or more of the genes 

that are present are associated with the same category. Then we associate 

this operon’s id with this category. Otherwise, we reject the operon. We will 

refer to this approach as OP70. We will also use this reference to refer to the 

results of the operon clustering experiment, which uses operon microarray 

experimental data created by using this approach. 

 

Using the third approach we accepted 98.4% of the operons that have genes 

in the gene microarray experimental data. This third approach is the least 

strict of the three approaches regarding constrains for accepting operons in 

the operon’s microarray experimental data. 
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4.3 Experimental results 
 
 
The results shown in the figures below are for running MAXCCLUS on 20 sets 

of the operon microarray experimental data (data set: 6, 7, 10, 11, 12, 16, 18, 

20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 35, 36, and 40), and using the operon 

textual data.  

 

Figures 4.12 to 4.19 show the results for the number of rules, the number of 

words in the rules, and the number of words per rule. The figures compare the 

results on the operon data with the corresponding results on gene data. The 

comparison between the operons data and the genes data is direct.  

 

Figures 4.4 to 4.8 show the results for the number of clusters and the number 

of instances. However, for these figures the comparison between operons and 

genes cannot be direct, because the instance ids of genes are different from 

those of operons. So to be able to compare, we substituted each operon’s id 

by the ids of its genes, and substituted the clusters of operons by the clusters 

that contain the genes that these operons map to. By doing this, we can now 

make a valid comparison between the clusters and instances from the operon 

data and the clusters and instances from the gene data. 
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The clusters 

 

Figures 4.4 and 4.5 show the changes to the number of clusters when the 

genes are replaced by operons. The figures show the changes to the total 

number of clusters and the number of clusters subsumed by new clusters. 

 

When using any of the approaches OP100, OP66 or OP70, on average, there 

are fewer clusters when clustering operons than when clustering genes, 

specially the significant clusters (figure 4.4). 

 

For any of the cluster sets (significant, cover, or generalised cover cluster 

set), on average, there are fewer clusters when using OP100 than when using 

OP66, which in turn, are fewer clusters than when using OP70. 

 

When using any of the approaches OP100, OP66 or OP70, on average, the 

significant cluster set has the highest decrease in the number of clusters. 

 

 

When clustering operons, on average, almost no clusters are retained from 

the clusters found when clustering genes and almost all the clusters are 

different from the clusters found when clustering genes. On average, very few 

or no clusters found when clustering genes are subsumed by new clusters 

found when clustering operons, except for OP70 where there is a noticeable 

percentage of the number of clusters found when clustering genes subsumed 

by the new clusters found when clustering operons, especially the significant 

clusters set (figure 4.5). 
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Figure 4.4: Average change to the total number of clusters 
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Figure 4.5: Average number of clusters subsumed by new clusters 
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The instances 
 

Figures 4.6 to 4.8 show the changes to the number of instances when the 

genes are replaced by operons. The figures show the changes to the total 

number of instances, the number of retained instances, and the number of 

new instances. 

 

When using any of the approaches OP100 or OP66, on average, there are 

fewer instances when clustering operons than when clustering genes, 

specially the significant clusters (figure 4.6). In contrast, on average, when 

using approach OP70, there are more instances when clustering operons 

than when clustering genes.  

 

For any of the cluster sets, significant, cover, or generalised cover cluster set, 

on average, there are fewer instances when using OP100 than when using 

OP66, which in turn, there are fewer instances than when using OP70.  

 

When clustering operons, on average, about 40% to 60% of the instances are 

retained from the instances found when clustering genes (figure 4.7). For all 

cluster sets, significant, cover, or generalised cover cluster set, on average, 

the retained instances when using OP100 are fewer than that when using 

OP66, which in turn, are fewer than that when using OP70. 

 

For all the cluster sets, significant, cover, and generalised cover cluster set, 

on average, the new instances that are described when clustering operons, 

which were not described when clustering genes, are many more when using 

OP70 than when using OP66, which in turn, are a little bit more than when 

using OP100 (figure 4.8). 
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Figure 4.6: Average change to the total number of instances 
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Figure 4.7: Average number of retained instances 
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Figure 4.8: Average number of new instances 
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Figure 4.9 shows the average percentage of the predicted instances (genes) 

when clustering operons. The predicted genes are the genes that exist in the 

gene set mapped from the operons after clustering operons but do not exist in 

the gene experimental data sets. The percentage of the predicted genes  

for each data set is calculated as the percentage ratio of the number of 

predicted genes to the number of the genes from the operons clustering: 

%P

 

100% ×=
Go
Gp

P  

 

Where  represents the predicted genes, and Go  represents the genes 

from operon clustering. 

Gp

 
There are no genes predicted when using OP100. On average, the predicted 

genes when using OP66 are fewer than when using OP70 (figure 4.9). 
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Figure 4.9: Average number of predicted instances 
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Figure 4.10 shows the average of the correctly predicted genes when 

clustering operons. The correctly predicted genes are the predicted genes 

whose real categories are near their predicted categories. A correctly 

predicted Up gene is a gene that its expression ratio is between 1.4 and 2.0 

(excluding) and was predicted to be Up, while a correctly predicted Down 

gene is a gene that its expression ratio is between 0.5 and 0.7 (excluding) and 

was predicted to be Down. The percentage of the correctly predicted genes 

 for each data set is calculated as the percentage ratio of the number of 

correctly predicted genes to the number of the predicted genes: 

%C

 

100% ×=
Gp
C

C
Gp

 

 

Where  represents the correctly predicted genes, and again, Gp  

represents the predicted genes. 

GpC

 

There are no correctly predicted genes when using OP100 because there are 

no predicted genes. On average, the correctly predicted genes when using 

OP66 are more than that when using OP70 (figure 4.10). 
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Figure 4.10: Average number of the correctly predicted instances 
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The Instances with respect to the experimental data 
 
Figures 4.6 to 4.8 show the results for all the genes in the clustered operons. 

But since this includes genes that were not clearly Up or Down in the 

experimental data sets, the comparisons are not completely fair. An 

alternative is to confine the comparisons to just the Up and Down Genes in 

the data sets. 

 

Figure 4.11 shows the number of Up and Down genes described by the rules 

when clustering operons. 

 

The percentage of the Up and Down described genes  for each data set 

is calculated as the percentage ratio of the number of described genes that 

have categories Up or Down when clustering operons:  

%udD

100%
exp

×=
G
Go

D
ud

ud  

 

Where  represents the genes from operon clustering whose categories 

are Up or Down, and  represents the genes from gene experimental data. 

udGo

expG

Figure 4.11 shows these results for the three clustering approaches (OP100, 

OP66, and OP70). It can be compared with figure 4.6. 

 

When clustering operons, for any cluster set, significant, cover, generalised 

cover cluster set, the Up or Down described instances are fewer when using 

OP100 than when using OP66, which in turn, is fewer than when using OP70. 

The distributions show that there is a relatively wide variation across the data 

sets especially for OP70. 
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b: Distributions  

Figure 4.11 : Number of Up and Down instances described. 
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The rules 
 

Figures 4.12 to 4.15 show the changes to the number of rules when the genes 

are replaced by operons. The figures show the changes to the total number of 

rules, the number of retained rules, the number of rules subsumed by new 

rules, and the number of new rules. 

 

Using any of the approaches OP100, OP66 and OP70, on average, there are 

fewer rules when clustering operons than when clustering genes (Figure 

4.12). There are fewer rules when using OP100 than when using OP66, which 

in turn, are fewer than when using of OP70. 

 

Using any of the approaches OP100, OP66 and OP70, on average, the 

significant cluster set has the highest decrease in the number of rules. When 

using OP70, on average, the cover cluster set has the lowest decrease in the 

number of rules.  

 

When clustering operons, on average, only a few rules are retained from the 

clusters found when clustering genes (Figure 4.13). On average, OP70 

retained fewer rules than OP100, which in turn, retained fewer rules than 

OP66. 

 

On average, there are a reasonable number of rules found when clustering 

genes that are subsumed by new rules found by clustering operons (Figure 

4.14). On average, OP70 has fewer rules subsumed than OP66, which in 

turn, has fewer rules subsumed than OP100. The distributions show that there 

is a relatively wide variation across the data sets for OP100 significant 

clusters. 

 

MAXCCLUS replaced the lost rules by new ones (Figure 4.15). MAXCCLUS 

found a lot of new rules when clustering operons. On average, OP66 has 

fewer new rules than OP100, which in turn, has fewer new rules than OP70. 
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Figure 4.12: Average change to the total number of rules 
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Figure 4.13: Average number of retained rules 
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b: Distributions  
 
Figure 4.14: Number of rules subsumed by new rules 
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Figure 4.15: Average number of new rules 
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The rules’ words 
 

Figures 4.16 to 4.18 show the changes to the number of words in the rules 

when the genes are replaced by operons. The figures show the changes to 

the total number, the number of retained words of the rules, and the number 

of new words. 

 

On average, there are fewer words for rules when clustering operons than 

when clustering genes (figure 4.16).  

 

On average, OP100 has higher decrease in the number of rules’ words than 

OP66, which in turn, has higher decrease in the number of rules’ words than 

OP70. 

 

When using any of the approaches, OP60, OP66, or OP70, on average, the 

significant cluster set has the highest decrease in the number of rules’ words. 

 

On average, OP100 retained fewer rules’ words than OP66, which in turn, 

returned fewer rules’ words than OP70 (figure 4.17). 

 

MAXCCLUS replaced the lost words with new words (figure 4.18). 
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Figure 4.16: Average change to the total number of rules' words 
 
 

63 



Chapter 4: Operons 

0

20

40

60

80

100

Significant
clusters

Cover Generalised
Cover

Pe
rc

en
ta

ge OP100
OP66
OP70

 
Figure 4.17: Average number of retained rules' words 
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Figure 4.18: Average number of new rules' words 
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The words per rule 
 
Figure 4.19 shows the changes to the number of words per rule when the 

genes are replaced by operons. 

 

On average, when using the strictest approach OP100, the number of words 

per rule when clustering operons is less than that when clustering genes. 

When using the less strict approach OP66, on average, the number of words 

per rule when clustering operons is almost the same as that when clustering 

genes. When using weakest approach OP70, on average, the number of 

words per rule when clustering operons is more than that when clustering 

genes. 
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Figure 4.19: Average change to the number of words per rule 
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4.4 Analysis and discussion 
 

The following sections analyse and discuss the results shown in the results 

section. 

 

 

Clusters 

Figure 4.4 shows that the average number of the clusters is smaller when 

clustering operons than it is when clustering genes, specially the significant 

clusters.  

 

As we mentioned at the beginning of this chapter and showed in the example 

of section 4.1, it is not the case when clustering genes that MAXCCLUS finds 

lots of clusters that correspond directly to operons because there are not 

many big operons (figure 4.2). However it is the case that some clusters have 

several genes belonging to the same operon, as the example illustrates. 

Therefore we have fewer clusters when clustering operons than when 

clustering genes because MAXCCLUS finds fewer significant clusters when 

clustering operons than when clustering genes. Notice that when clustering 

operons, especially when using the OP70 approach, MAXCCLUS did not 

retain any of the gene clusters, there were very few gene clusters subsumed 

by operon clusters, and almost all the operon clusters were new. Dropping all 

the clusters and replacing them with new ones could be because of using the 

union of the descriptor sets of the genes when creating the descriptor sets of 

the operons. Or it could be because accepting operons that contain genes 

whose categories are not clearly Up or clearly Down, will produce a new set of 

clusters. Some of these new clusters subsumed old clusters of the gene 

clustering (figure 4.5). 
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Instances 

For the instances, when clustering operons using OP100 or OP66, on 

average, MAXCCLUS is able to describe fewer genes than it can when 

clustering genes (figure 4.6). In contrast when using OP70, on average, 

MAXCCLUS is able to describe more genes than it can when clustering 

genes. Notice that with OP100, which is the strictest approach, MAXCCLUS 

describes fewer than the other approaches. This is because in OP100 we 

included in the operon microarray experimental data only the operons that are 

100% pure, therefore we had fewer instances to cluster; in OP66 we included 

operons that are less than 100% pure, so there were more genes to be 

described.  

 

An example is that we can have an operon of 10 genes of which nine genes 

have one category and the other one gene has a different category. By using 

the OP100 approach this operon (and the other similar operons) would be 

rejected. But by using the OP66 approach this operon would be accepted. 

Having a different category for the single gene could be a result of noise or 

wrong measurements while carrying out the microarray experiment. Therefore 

it is possible this gene would have the same category as the other genes in 

the operon if there was no noise or the measurements were right. 

 

Including these extra operons, when using the OP66 approach, added extra 

genes that were not categorised as clearly Up or clearly Down genes (and so 

were not included in the gene microarray experimental data) although they 

might have been nearly Up or nearly Down. Including these extra operons 

helps to correct the noise or the wrong measurements in the microarray 

experimental data, and to predict that those genes whose categories were not 

clearly Up regulated should have been Up regulated, and predict that the 

ones that were not clearly Down regulated should have been Down regulated.  

 

When using OP66, on average, about 8% of the genes that MAXCCLUS can 

describe are predicted genes (figure 4.9). About 45% of these predicted 

67 



Chapter 4: Operons 

genes are correctly predicted (figure 4.10). Correctly predicted genes are the 

genes whose real categories are near Up or near Down, when MAXCCLUS 

predicted them to be Up or Down respectively. 

 

By being even less strict in selecting operons in the operon microarray 

experimental data, as in OP70, MAXCCLUS is able to describe more genes 

than it can describe using the stricter two approaches. Because with OP70 

more operons are accepted than with OP66, the new included operons may 

have many more genes with categories that are neither Up nor Down. These 

categories can be in-between the Up and Down categories but not so close to 

Up or to Down. For each operon, MAXCCLUS predicts that the operon’s 

genes that are not in the gene experimental data are regulated Up (or Down) 

on the basis that the operon has 70% or more of its genes that are clearly 

regulated Up (or Down). To feel how less strict is the OP70 approach we can 

have an example.  

 

In this example, we have an operon that has 15 genes. Suppose only one of 

these genes is in the gene experimental data and this gene has the Up 

category. Then when creating the operon experimental data with the OP70 

approach, this operon will be accepted and it will be assigned the Up category 

even though it has 14 other genes with unknown categories of which some 

may not be even near Up, and may even be near Down. In contrast, OP66 

would reject this operon because only about 7% of its genes are Up 

regulated. 

 

When MAXCCLUS predicts that the 14 other genes of the operon in the 

above example have Up categories, even though some of them are far away 

from being Up, this prediction is not at all reliable. It is probable that some of 

the 14 genes have categories that are near Up, but it is much less probable 

for all of them to have categories that are near Up. 
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When using the OP70 approach in accepting operons in the operon 

microarray experimental data, on average, it seems that there is an increase 

in the number of genes that MAXCCLUS can describe when clustering 

operons than when clustering genes (figure 4.6). But this is not the case when 

we look only at the genes of the gene microarray experimental data (figure 

4.11 OP70). In this result, when clustering operons MAXCCLUS covers fewer 

genes than when clustering genes (figure 2.4). In figure 4.6, the extra genes 

of OP70 described by MAXCCLUS are predicted genes (figure 4.9). Although, 

when using OP70 MAXCCLUS is able to predict many more genes than when 

using OP66 (figure 4.9), on average, the correctly predicted genes when 

using OP70 are much fewer than when using OP66 (figure 4.10). So, on 

average, when using OP70 most of the genes that MAXCCLUS predicts to 

have Up or Down categories are the result of incorrect prediction (on average, 

only 3% of the predicted genes are correctly predicted). In contrast, when 

using OP66 about 45% of the predicted genes are correctly predicted by 

MAXCCLUS, which make using the OP66 approach more sensible than using 

the OP70 approach in accepting operons in the operon microarray 

experimental data. 

 

We have considered MAXCCLUS’s predictions for genes when using OP66 or 

OP70, but not when using OP100 because for OP100 the operons are 

accepted in the operon microarray experimental data are 100% pure and 

each operon contains genes that are all Up or are all Down. Therefore, there 

is no prediction issue when using OP100. 

 

In summary, on average, when clustering genes, MAXCCLUS can explain 

about 37% of the genes (figure 2.4). But when grouping genes into operons 

and clustering these operons, on average, MAXCCLUS can explain only 

about 20% of the genes using the strictest approach OP100 (figure 4.11). This 

percentage increases a little by using the less strict approach OP66, and 

again increases by using the least strict approach OP70. This increase is 

because of accepting more operons that will introduce more genes; these 
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genes were not present in the operons accepted using the strictest version 

OP100. 

 

 

Comparing clusters results with instances results  

When clustering with operons the number of clusters was lower than when 

clustering with genes. At the same time, the number of genes went down but 

not as much as the number of clusters. That means when grouping genes into 

operons and then clustering these operons MAXCCLUS finds bigger clusters 

that have more genes. 

 

 

Rules 

The number of rules is smaller when clustering operons than when clustering 

genes. That means when grouping genes into operons and clustering these 

operons, MAXCCLUS has got rid of some of the very specific rules. These 

rules had lots of words that probably had not very many instances. These 

rules were significant when clustering genes, but they are not significant when 

clustering operons because these rules represent clusters that are too small 

to be considered significant. Some of these rules represent groups of genes 

that were mostly operons. Therefore the rules that MAXCCLUS creates when 

clustering operons are really significant, especially when using the OP100 

approach that accepts pure operons, so we get pure rules from this approach. 

But not all the rules that MAXCCLUS creates when clustering genes are 

significant because some of them result from groups of genes that belong to 

operons. 
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Comparing instances results with rules results 

For OP100 and OP66, on average, between 57% and 72% as many genes 

are being explained but only between 25% and 49% as many rules are 

explaining those genes (figures 4.6 and 4.12). So there are fewer rules that 

each explains more genes. This implies that when clustering operons 

MAXCCLUS creates rules which are bigger and better. MAXCCLUS has 

retained rules that explain many more genes than when clustering genes. 

When clustering operons, MAXCCLUS has got rid of the useless rules that 

explain groups of genes that in reality belong to operons. 

 

 

Words per rule 

For OP70 (figure 4.19), the results showed that the number of words per rule 

for the significant cluster set is less than that of the cover cluster set, which in 

turn is slightly less than that of the generalised cover cluster set. This implies 

that when creating the cover clusters and generalised cover clusters, 

MAXCCLUS is creating rules that have more words to describe the instances 

covered by these clusters. These words come from the descriptors of the 

extra instances described by the rules. 

 

 

 

4.5 Conclusion 
 

As described earlier in this chapter, some genes are related to each other. 

Each group of the related genes is called an operon. The operon’s genes are 

instances that have shared dependency (the operon’s genes functionally 

depend on each other). By clustering genes, MAXCCLUS ignores the 

dependency between operon’s genes during the significance test. This yields 

clusters that are statistically big enough to be considered as significant 

clusters. 
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When grouping genes into operons, then using MAXCCLUS to cluster the 

operons, MAXCCLUS could not describe as many genes as when we used it 

to cluster genes. This drop in the number of genes that MAXCCLUS can 

describe is because MAXCCLUS is now considering the dependency 

between some of the genes, which represent operons, during its significance 

test. But the rules it did obtain were larger (describing more genes) and 

perhaps more informative. Also, with OP66 and OP70, it is able to make 

predictions about genes that had ambiguous regulation levels. 

 

 

4.6 Recommendations 
 

MAXCCLUS significance test needs to be modified to consider the 

dependency of operons’ genes, so that a cluster will not be considered 

significant only because it is statistically big enough, but also because it 

consists of enough number of independent instances. 
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Chapter 5 

 

Deleting Descriptors 
 
 
This chapter describes a clustering experiment designed to study the effects 

on MAXCCLUS clustering after deleting some of the descriptors of the 

instances, and comparing its results with the reference clustering experiment 

where no descriptors are deleted. The deleted descriptors are the non-domain 

words that we expect to carry little meaning for characterising the clusters. 

The result of this chapter is to show that deleting the non-domain descriptors 

can improve MAXCCLUS clustering by allowing MAXCCLUS to create 

clusters that are no longer characterised by the non-domain words and to 

generate the clusters faster. Instead of the non-domain words, the domain-

relevant words appear in the rules that characterise the clusters. For the 

reference clustering experiment, these domain-relevant words are frequently 

excluded from the rules that characterise the clusters because of the 

presence of the non-domain words in the descriptors of the instances. 

 

 
 

 
 
 

5.1 The experiment 
 
To carry out this chapters clustering experiment, we first prepared the new 

textual data (new descriptor table file), then we ran MAXCCLUS on the 

microarray experimental data sets using the new textual data. 
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The normal textual data (the one that has no descriptors deleted from it) that 

the reference clustering experiment uses is prepared by cleaning the text 

extracted from the Swiss-Prot database, and deleting the 15 most common 

function words (stop words): “a”, “an”, “and”, “are”, “at”, “by”, “for”, “from”, “in”, 

“is”, “of”, “on”, “the”, “to”, and “with”. These function words were removed 

because they are not informative in the rules that describe the clusters, and 

because they are so common, they may mask more informative words to be 

included in the rules. 

 

In this chapter’s clustering experiment we choose to clean the textual data 

further, for the same reason that we deleted the stop words above. We expect 

that further cleaning of the textual data will improve the scientific relevance of 

the rules by including more informative words. We also expect cleaning the 

textual data further will increase the efficiency of the clustering process; 

because there are fewer descriptors, the clustering execution time will be 

reduced and the computer memory needed for the clustering process will also 

be reduced. However, we expected that the number of clusters would not 

reduce very much so that MAXCCLUS should not lose important clusters. 

 

 

The project chose two approaches to deleting descriptors from the original 

descriptor set of each instance: 

 

• Deleting descriptors that exist in a relatively small dictionary. We 

chose words in the bible for this purpose. 

• Deleting descriptors that exist in a relatively large dictionary. We chose 

WordNet for this purpose. 

 
 
 

5.1.1 The bible-words dictionary 

The bible-words dictionary contains all the words from a “Basic English” 

version of the bible [Bible in Basic English]. We chose the bible-words 

dictionary because we expect its words to be far from the domain of biology 
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and genetics where we apply our clustering experiments, and because it is 

relatively small dictionary. We reduced the size of the bible-words dictionary 

further by excluding all capitalised nouns (the names), for two reasons. First, 

we expect these names to not occur in the Swiss-Prot data, and second to 

make the process of deleting descriptors more efficient. The final version of 

the bible-words dictionary, used in deleting descriptors, contains 3561 words 

(about 1000 root words). 

 

5.1.2 WordNet 

WordNet is a lexical database for the English language from Princeton 

University [Princeton University, 2003]. We chose WordNet as an alternative 

to the bible-words dictionary because WordNet is much bigger than the bible-

words dictionary (WordNet contains 144,309 words). At the same time, we still 

expect WordNet not to contain many domain-relevant words from genetics. 

WordNet contains only open class words (nouns, verbs, adjectives and 

adverbs). Note that because WordNet does not contain function words (such 

as the word “this”), WordNet is not a strict superset of the bible-words 

dictionary. 

 

 

 
 

5.2 The algorithm for deleting descriptors 
 

To delete the descriptors that exist in the dictionary, we created a program 

using the Perl computer-programming language. 

 

Figure 5.1 shows the algorithm that attempts to reduce the size of the 

descriptor set of each instance in the descriptor table file, by going through 

each descriptor in the instance’s descriptor set, and checks if this descriptor 

exists in dictionary. If the descriptor is in the dictionary, the algorithm deletes 

the descriptor from the instance’s descriptor set. If the resulting descriptor set 

is not empty, the algorithm saves the instance and the new version of the 

75 



Chapter 5: Deleting Descriptors 

instance’s descriptor set to the new descriptor table file, which MAXCCLUS 

will use in this chapter’s clustering experiment. Checking whether a word 

exists in the bible-words dictionary is straight forward, but because WordNet 

is not a simple list of words, the program uses a module to interface with the 

WordNet database [Rennie, J. 2002]. 

 

The output data will be the new descriptor table file, in which each line 

contains an instance id (gene id) followed by a set of descriptors (words that 

describe the instance). This set of descriptors will lack some descriptors that 

were in the instance’s original descriptor set. A possible consequence is that 

some instances may be lost from this table if their descriptor sets contained 

only words in the dictionary. Practically, none of the instances were lost, 

neither by using the bible-words dictionary nor by using WordNet. 

 
 
 
 
 
 
 
 
 
 
 

01 for each instance in the original descriptor table 
02    for each descriptor in the instance’s descriptor set 
03        if descriptor exists in dictionary 
04           delete descriptor from the instance’s descriptor set. 
05 if instance’s new descriptor set is not empty 
06    save instance and its new descriptor set to the new descriptor table file. 

Figure 5.1: The algorithm for deleting descriptors. 
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5.3 Experimental results 
 
This section and its figures show the results for running MAXCCLUS on 23 of 

the microarray experimental data sets (data set: 3, 6, 7, 8, 10, 11, 12, 13, 16, 

18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 35, 36 and 40) first, after deleting 

descriptors using the bible-words dictionary, and second, after deleting 

descriptors using WordNet. We will refer to the two sets of results by BW and 

WN respectively in the sections and figures below. This section also 

compares these results with each other and with the results produced by the 

reference clustering experiment (the one before deleting descriptors). Figures 

5.2 to 5.17 show the results for the number of clusters, the number of 

instances, the number of rules, the number of rules’ words, the number of 

words per rule, and the execution time. 

 

 
The set of all-descriptors - the union of the descriptor sets of all instances in 

the descriptor table file - contains 14429 words before deleting descriptors. 

After deleting descriptors from each instance’s descriptor set, the size of the 

set of all-descriptors reduces also.  

 

There are 394 words from the bible-words dictionary in the set of all-

descriptors before reducing the size of the set of all-descriptors.  Therefore 

the set of all-descriptors after deleting from it the descriptors that exist in the 

bible-words dictionary shrank to approximately 97% of its original size. 

 

On the other hand there are 2566 words from WordNet in the set of all-

descriptors. Therefore the set of all-descriptors after deleting from it the 

descriptors that exist in WordNet shrank to approximately 82% of its original 

size. 
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The clusters 
 

Figures 5.2 to 5.5 show the changes to the number of clusters when some 

descriptors are deleted from the descriptor sets of the instances. The figures 

show the changes to the total number of clusters, the number of retained 

clusters, the number of clusters subsumed by new clusters, and the number 

of new clusters. 

 

When using BW or WN, on average, there are fewer clusters when clustering 

after deleting descriptors than when clustering before deleting descriptors 

(figure 5.2). However, the change in the BW experiment is small: there is 

almost no change to the number of the generalised cover clusters of BW. 

 

For any of the cluster sets, significant, cover, or generalised cover cluster set, 

on average, there are more clusters when using BW than when using WN. 

 

When using BW, on average, the significant cluster set has a slightly greater 

change in the number of clusters, than the cover cluster set, which in turn, has 

greater change than the generalised cover cluster set. In contrast, when using 

WN, on average, the significant cluster set has a significantly greater change 

than the cover and the generalised cover cluster sets. 

 

When clustering after deleting descriptors, on average, the clusters retained 

from the clusters found when clustering before deleting descriptors, are many 

more when using BW than when using WN. Between 47% and 59% of 

clusters are retained when using BW, but only between 2% and 6% of 

clusters are retained when using WN. For both BW and WN the generalised 

cover cluster set retained more clusters than the cover cluster set (figures 

5.3). 

 

When clustering after deleting descriptors, on average, the new clusters found 

are fewer when using BW than when using WN. Between only 39% and 51% 

of clusters are new when using BW, but between 91% and 95% of clusters 

are new when using WN (figure 5.5). 
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On average, more clusters found from clustering before deleting descriptors, 

are subsumed by new clusters found from clustering after deleting descriptors 

using BW than that using WN. Between 1% and 19% of clusters are 

subsumed when using BW, but only between 0% and 9% of clusters are 

subsumed when using WN. Significant cluster set has noticeable number of 

subsumed clusters especially when using BW. The significant cluster set has 

more clusters subsumed than the cover cluster set, which in turn has more 

clusters subsumed than the generalised cover cluster set, which in turn has 

almost no clusters subsumed using BW or has no clusters subsumed using 

WN (figure 5.4). 
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Figure 5.2: Average change to the total number of clusters 
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Figure 5.3: Average number of retained clusters  
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Figure 5.4: Average number of clusters subsumed by new clusters 
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Figure 5.5: Average number of new clusters  
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Significant clusters minimum size  
 
Figure 5.6 shows the changes to the significant clusters’ minimum size for 

each category when some descriptors are deleted from the descriptor sets of 

the instances. 

 

When clustering after deleting descriptors using BW or WN, on average, the 

significant clusters’ minimum size for each category is less than that when 

clustering before deleting descriptors. On average, the reduction in the 

significant clusters’ minimum size, when clustering using BW, is less than that 

when using WN; with almost no change in the minimum size for Down 

category when using BW. When using any of BW or WN, the reduction in the 

significant clusters’ minimum size for the Up category is more than that for the 

Down category. 
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Figure 5.6: Average change to the significant clusters’ minimum size for each category 
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The instances 
 
Figures 5.7 to 5.9 show the changes to the number of instances when some 

descriptors are deleted from the descriptor sets of the instances. The figures 

show the changes to the total number of instances, the number of retained 

instances, and the number of new instances. 

 

On average, when using BW, there is almost no change to the number of 

instances when clustering after deleting descriptors than when clustering 

before deleting descriptors. In contrast, when using WN, there are fewer 

instances when clustering after deleting descriptors than when clustering 

before deleting descriptors, with between only 55% and 70% as many 

instances found when clustering after deleting descriptors than when 

clustering before deleting descriptors (figure 5.7). When using WN, on 

average, the generalised cover cluster set has the highest decrease in the 

number of instances. 

 

When clustering after deleting descriptors, on average, the instances retained 

from the clusters found when clustering before deleting descriptors, are more 

when using BW than when using WN, about 94% of instances are retained 

when using BW, but only between 45% and 60% of instances are retained 

when using WN. For WN the generalised cover cluster set retained fewer 

instances than the other cluster sets (figures 5.8). 

 

When clustering after deleting descriptors, on average, very few instances 

found are new. The new instances found are fewer when using BW than when 

using WN, with about only 5% of instances are new when using BW, but 

about 12% of instances are new when using WN (figure 5.9). 
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Figure 5.7: Average change to the total number of instances 
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Figure 5.8: Average number of retained instances 
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Figure 5.9: Average number of new instances 
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The rules 
 
Figures 5.10 to 5.12 show the changes to the number of rules when some 

descriptors are deleted from the descriptor sets of the instances. The figures 

show the changes to the total number of rules, the number of retained rules, 

and the number of new rules. 

 

When using BW or WN, on average, there are fewer rules when clustering 

after deleting descriptors than when clustering before deleting descriptors 

(figure 5.10). On average, there are more rules when using BW than when 

using WN, between 67% and 90% as many rules when using BW, but only 

between 17% and 53% as many rules when using WN. 

 

When using BW or WN, on average, the significant cluster set has greater 

decrease, in the number of rules, than the cover cluster set, which in turn, has 

greater decrease than the generalised cover cluster set. 

 

When clustering after deleting descriptors, on average, the rules retained from 

the clusters found when clustering before deleting descriptors, are many more 

when using BW than when using WN. Between 38% and 46% of rules are 

retained when using BW, but only about 4% of rules are retained when using 

WN. For BW, the significant cluster set retained more rules than the 

generalised cover cluster set, which in turn, retained more rules than the 

cover cluster set (figures 5.11). 

 

When clustering after deleting descriptors, on average, the new rules found 

are fewer when using BW than when using WN. Between only 30% and 47% 

of rules are new when using BW, but between 81% and 91% of rules are new 

when using WN (figure 5.12). 

 

Almost no rules found from clustering before deleting descriptors, are 

subsumed by new rules found from clustering after deleting descriptors using 

BW or WN. 
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Figure 5.10: Average change to the total number of rules 
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Figure 5.11: Average number of retained rules 
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Figure 5.12: Average number of new rules 
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The rules’ words 
 
Figures 5.13 to 5.15 show the changes to the number of rules’ words when 

some descriptors are deleted from the descriptor sets of the instances. The 

figures show the changes to the total number of words, the number of 

retained words of the rules, and the number of new words. 

 

When using BW or WN, on average, there are fewer rules’ words after 

deleting descriptors than before deleting descriptors (figure 5.13). On 

average, there are more rules’ words when using BW than when using WN; 

between 89% and 93% as many rules’ words when using BW, but only 

between 46% and 50% as many rules’ words when using WN. 

 

When using BW or WN, on average, the significant cluster set has greater 

decrease, in the number of rules’ words, than the cover cluster set, which in 

turn, has greater decrease than the generalised cover cluster set. 

 

When clustering after deleting descriptors, on average, the rules’ words 

retained from the clusters found when clustering before deleting descriptors, 

are many more when using BW than when using WN. Between 74% and 77% 

of rules’ words are retained when using BW, but only between 21% and 25% 

of rules’ words are retained when using WN. For BW, the significant cluster 

set retained more rules’ words than the generalised cover cluster set, which in 

turn, retained more rules’ words than the cover cluster set. In contrast, for 

WN, the significant cluster set retained more rules’ words than the cover 

cluster set, which in turn, retained more rules’ words than the generalised 

cover cluster set (figures 5.14). 

 

When clustering after deleting descriptors, on average, the rules’ words that 

are new found are fewer when using BW than when using WN. Between only 

13% and 20% of the rules’ words are new when using BW, but between 44% 

and 56% of the rules’ words are new when using WN (figure 5.15). The 

significant cluster set has fewer rules’ words that are new than the cover 
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cluster set, which in turn, has fewer rules’ words that are new than the 

generalised cover cluster set. 
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Figure 5.13: Average change to the total number of rules' words 
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Figure 5.14: Average number of retained rules' words 
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Figure 5.15: Average number of new rules' words 
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The words per rule 
 
 

Figure 5.16 shows the changes to the number of words per rule when some 

descriptors are deleted from the descriptor sets of the instances. 

 

When using BW or WN, on average, there are fewer words per rule when 

clustering after deleting descriptors than when clustering before deleting 

descriptors. On average, there are more words per rule when using BW than 

when using WN. Between 96% and 97% as many words per rule when using 

BW, but only between 63% and 65% as many words per rule when using WN, 

compared with words per rule when clustering before deleting descriptors. 

 

On average, for each of BW and WN, the difference in change in the number 

of words per rule is very little between cluster sets.  
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Figure 5.16: Average change to the number of words per rule 
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The execution time 
 
 
Figure 5.17 shows the changes to the clustering execution time when some 

descriptors are deleted from the descriptor sets of the instances. 

 

When clustering after deleting descriptors using BW or WN, on average, the 

execution time is less than that when clustering before deleting descriptors. 

On average, the execution time, when clustering using BW, is more than that 

when using WN; about 74% as much time when using BW, but only about 

11% as much time when using WN, compared with the execution time when 

clustering before deleting descriptors. 
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Figure 5.17: Average change to the clustering execution time 
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5.4 Analysis and discussion 
 

The following sections analyse and discuss the results shown in the results 

section. 

 

 

Clusters and instances 

 

Figure 5.2 shows that, on average, when clustering after deleting descriptors 

using BW, there is almost no change to the number of clusters found by 

MAXCCLUS, compared to that when clustering before deleting descriptors. 

The small loss in the number of significant clusters (about 3%) does not have 

an important effect on the number of instances that MAXCCLUS can describe 

(figure 5.7). When clustering after deleting descriptors using BW, MAXCCLUS 

is able to describe almost the same number of instances as when clustering 

before deleting descriptors. However, MAXCCLUS needs less execution time 

for clustering (figure 5.17): on average, MAXCCLUS needs only about 75% of 

the time that it needs for clustering before deleting descriptors. 

 

The reduction in execution time MAXCCLUS needs to cluster instances is 

because of the reduction in the sizes of the descriptor sets of the instances 

using BW. MAXCCLUS performs clustering by creating clusters of instances 

depending on the descriptor sets of these instances. Therefore, when there 

are fewer descriptors there will be fewer combinations of descriptors to create 

the clusters of these combinations. Although figure 5.2 showed that the 

significant cluster set did not change much, the total number of clusters 

created (the set of all-clusters) was much smaller. This reduces the time 

required for the permutation test. Note that the clusters that were lost were not 

significant clusters. 

 

In contrast, when clustering after deleting descriptors using WN, the 

observations mentioned in the previous sections become more noticeable. 

There is a large reduction in the number of clusters, especially the significant 
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cluster set (figure 5.2). This reduction in the number of clusters is 

accompanied by a large reduction in the number of instances that 

MAXCCLUS can describe (figure 5.7). Although the execution time reduces 

dramatically to an average of 11%, using WN is not preferable because of the 

loss in the number of instances that MAXCCLUS is able to describe.  

 

 

Rules and rules’ words 
 

Figure 5.10 shows that, on average, when clustering after deleting descriptors 

using BW or WN, MAXCCLUS finds fewer rules than when clustering before 

deleting descriptors. On the other hand, figure 5.13 shows that the number of 

rules’ words reduces too, but not as much as the number of rules. The 

reduction of the number of rules and the number of rules’ words is due to the 

reduction of the sizes of descriptor sets of the instances because of deleting 

descriptors from these sets. The smaller change for BW than for WN is 

because of the smaller reduction of the sizes of the descriptor sets of the 

instances when using BW than when using WN. 

 

 

Figure 5.4 shows that there are clusters of instances from clustering before 

deleting descriptors that are subsumed by new clusters from clustering after 

deleting descriptors (a considerable number of significant clusters when using 

BW). The subsumed clusters found by MAXCCLUS represent sets of 

instances that MAXCCLUS clustered using non-domain (uninformative) 

descriptors. When clustering after deleting descriptors, the instances that 

belong to the subsumed clusters, lack the non-domain words; therefore 

MAXCCLUS clusters these instances using their descriptors that are now 

more domain-relevant. Therefore MAXCCLUS finds clusters that describe 

more instances including the instances that belong to the subsumed clusters. 

These clusters that MAXCCLUS finds after deleting descriptors are bigger 

and scientifically more informative. 
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By looking at the actual rules generated, we observed that words like: “as”, 

“family”, “it”, “property”, “step”, “that”, “this” are lost from the BW rules that 

characterise the clusters. Instead of these words, new words that are more 

domain-relevant appeared in the rules: “coli”, “two-dimensional”, “gel”, 

“transcription”, “transmembrane”, “catalyze”. 

 

For example, figure 5.18 shows a cluster of instances before deleting 

descriptors. Using the same data set, after deleting descriptors using BW 

(figure 5.19), the same cluster lost the word "family" (which is in the bible-

words dictionary and is not informative) from its Sufficient set of words. The 

loss of the word “family” made the word "belong" (which is not in the bible-

words dictionary) become a word of the Necessary set of words instead of the 

Sufficient set of words, causing the Sufficient set of words to became empty. 

The effect of this was to reduce the number of rules from 2 to 1 in this 

example, which is a reduction of 50%. It also made the remaining rule 

relatively more informative by not including the word "family" in it. This is 

because the word "family" is closely connected to the word "belong": they 

appear together in the textual database implying a relationship between them. 

Some of the examples of the relation between the words "family" and "belong" 

from the Swiss-Prot database textual data are: 

“BELONGS TO THE TRANSALDOLASE FAMILY” 

“BELONGS TO THE GHMP KINASE FAMILY” 

“BELONGS TO THE SODIUM:ALANINE SYMPORTER FAMILY” 

 

Note, the word “BELONGS” was stemmed to “belong” in the pre-processing. 

 

 

 

 

 

 

 

 

Cluster (Down, 100% accuracy, 8 instances) 
 
Characterisation:  
Necessary:        protein , sequence , subunit 
Sufficient:          belong , family 
Supplementary: coli , escherichia 
 
Rule: protein , sequence , belong , subunit  
Rule: protein , sequence , family , subunit 
 
Genes: b0882 , b0911 , b1260 , b1923 , b2614 , b3295 , b3699 , b3829

Figure 5.18: A cluster before deleting descriptors 
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Cluster (Down, 100% accuracy, 8 instances) 
 
Characterisation:  
Necessary:        protein , sequence , belong , subunit  
Supplementary: coli , escherichia 
 
Rule: protein , sequence , belong , subunit 
 
Genes: b0882 , b0911 , b1260 , b1923 , b2614 , b3295 , b3699 , b3829

Figure 5.19: The same cluster of figure 5.18, but after deleting descriptors using BW 
 

 

 

In contrast, after deleting descriptors using WN, the same cluster of instances 

is lost; MAXCCLUS is not able to construct this cluster at all because of the 

severe loss of descriptors in the instances’ descriptor sets. 

 

 

 

 

Figures 5.3 to 5.5 show that clustering with WN generates a very different set 

of clusters, much more so than for BW. This is because the major change in 

the descriptor sets of the instances after deleting descriptors using WN, 

including many descriptors that are relevant to the domain. Losing lots of 

domain-relevant descriptors when using WN cause MAXCCLUS to find 

clusters that are missing important scientific knowledge (information). 

Therefore it seams that using WN is a bad thing to do, in spite the fact that the 

remaining words are the uncommon domain-relevant descriptors, which may 

lead one to expect a good result.  

 

Some of the words that are retained when using BW are lost when using WN. 

Examples of these words are: “escherichia”, “hypothetical”, “salmonella“, 

“nucleotide”, “biosynthesis”, “expression”, “cytoplasmic”. These are common 

domain-relevant words.  

 

Instead of the lost words, when clustering using WN, new words appear in the 

rules. Examples of these new words are: “ec@2”, “kda”, “acetyl-coa”, 
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“transmembrane”, “atp-binding”, “dna-binding”, “phosphoenolpyruvate”, 

“allosteric”, “3-phosphate”, “homotetramer”, “synthetase”,  “l-glutamate”. 

These are less common domain-relevant words than the words in the 

previous paragraph. 

 

 

Figure 5.20 shows an example from another data set, of a cluster after 

deleting descriptors using WN. The word “phosphoenolpyruvate”, which is the 

only word in the Necessary set of words, does not exist in WordNet, also it 

does not exist in any word set of any cluster when clustering before deleting 

descriptors or when clustering after deleting descriptors using BW. This 

cluster contains only one rule that has only one word, which is an uncommon 

domain-relevant word. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.20: A cluster after deleting descriptors using WN 

Cluster 
category: Dn  
accuracy: 100.0  
instanceCount: 6  
 
Characterisation:  
Necessary:        phosphoenolpyruvate    
Supplementary: coli    
 
Rule: phosphoenolpyruvate   
 
Genes: b0908 , b1676 , b2169 , b2416 , b2779 , b3956 
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5.5 Conclusion 
 

Deleting the non-domain descriptors in the Bible-words dictionary improves 

the rules that characterise the clusters created by MAXCCLUS, making the 

rules more scientifically informative. MAXCCLUS is still able to describe 

almost the same number of instances compared with what it can cover 

without deleting descriptors. Also, deleting the non-domain descriptors 

reduces the clustering time. 

 

However, deleting more descriptors, including common domain-relevant 

descriptors, using the WordNet dictionary gives bad results, because 

MAXCCLUS is not able to describe as many instances or create as many 

clusters as before deleting descriptors. 

 

 

 

 

 

 

 

5.6 Recommendations 
 

These experiments demonstrate that it is advantageous to delete descriptors 

that are not relevant to the applied domain, because they do not carry any 

significant scientific information related to the domain. On the other hand, it is 

important not to delete too many descriptors, especially domain-relevant 

ones, because it removes essential information needed for the clustering 

process. 
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Chapter 6 

 

Adding Descriptors 
 
 

This chapter describes a clustering experiment designed to study the effects 

on MAXCCLUS clustering after adding more descriptors to the descriptor sets 

of the instances, and comparing its results with the reference clustering 

experiment where no descriptors are added. The added descriptors are the 

synonyms and hypernyms of the already existing descriptors. We expected 

this to help MAXCCLUS to form clusters of instances that have semantic 

relationships but were not previously clustered because they did not share 

any literal descriptors. Unexpectedly, the result of this chapter is to show that 

adding descriptors does not improve MAXCCLUS clustering; MAXCCLUS is 

not able to describe more instances and it generates the clusters much more 

slowly. 

 

 

 

6.1 The purpose of the experiment 
 

Some genes can have different descriptor sets and they may not share any 

descriptor, although some of these descriptors have a very similar meaning. 

For example, suppose that there are two instances that do not share any 

descriptor. If the first instance has the word “expand” as one of its descriptors, 

and the second instance has the word “enlarge” as one of its descriptors, then 

these instances may belong to the same cluster because the words “expand” 

and “enlarge” have the same meaning. In this case, we expect that adding 
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synonyms will enable MAXCCLUS to describe more instances by being able 

to see the similarity in their descriptor sets. 

 

 

6.2 Adding descriptors 
 

We chose three approaches to add more descriptors: 

 

• adding synonyms (x is a synonym of y, if x and y have the same 

meaning). An example: the word “enlarge” is a synonym of the word 

“expand”. 

• adding hypernyms (x is a hypernym of y, if y is a kind of x). An 

example: the word “activity” is a hypernym of the word “play”. 

• and adding both synonyms and hypernyms 

 

To ensure that any descriptors we add are relevant to the textual data set, we 

only add a word that is a synonym or hypernym of a descriptor if that word 

already exists in the set of all descriptors (which is the union of the descriptor 

sets of all instances). This project uses WordNet to find synonyms and 

hypernyms of a descriptor. 

 

6.2.1 WordNet 

WordNet is a lexical database for the English language from Princeton 

University [Princeton University, 2003]. WordNet contains 144,309 of the open 

class words (nouns, verbs, adjectives and adverbs) in English. We created a 

program using the Perl computer-programming language, which uses a 

special module [Rennie, J. 2002] to access the WordNet database to retrieve 

all synonyms and hypernyms of descriptors. 
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6.2.2 The algorithm for adding descriptors 
 

Algorithm 6.1 (figure 6.1) attempts to increase the size of the descriptor set of 

each instance in the descriptor table file (the input to this algorithm) by going 

through each descriptor in an instance’s descriptor set, and attempting to 

retrieve the relevant senses of this descriptor from WordNet (if any senses 

exist). In WordNet, the senses of a word include the synonyms and 

hypernyms of the word. For each synonym or hypernym retrieved, it checks 

whether the word exists in the set of all-descriptors, and then adds the word to 

this instance’s descriptor set. The set of all-descriptors is the union of the 

descriptor sets of all instances. The algorithm writes each instance’s new 

descriptor set to the new descriptor table file, which MAXCCLUS will use in 

this chapter’s clustering experiment. 

 

 

 

 

 
 

01 for each instance in the original descriptor table 
02    for each descriptor in the instance’s descriptor set 
03        retrieve the relevant senses of this descriptor 
04        for each sense 
05            if sense exists in the set of all-descriptors set 
06                add sense to the instance’s descriptor set. 
07 save instance and its new descriptor set to the new descriptor table file. 

Figure 6.1: Algorithm 6.1: Adding senses to instances’ descriptor sets. 
 

 

Figure 6.2 shows the increase in the average size of the descriptor sets for 

the three cases. Adding hypernyms gives in lowest increase value, on the 

other hand, adding synonyms and hypernyms together gives in the highest 

increase value.  

 

Added senses Increase 

Synonyms 69% 

Hypernyms 50% 

Synonyms and 
Hypernyms 117% 

 
Figure 6.2: The increase in the average size of the descriptor sets for the three cases. 
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6.3 Experimental results 
 
This section presents the results of running MAXCCLUS on 23 of the 

microarray experimental data sets (data set: 3, 6, 7, 8, 10, 11, 12, 13, 16, 18, 

20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 35, 36, and 40) first after adding 

synonyms, second, after adding hypernyms, and third after adding both 

synonyms and hypernyms. We will refer to these three sets of results by SY, 

HY, and SH respectively in the rest of the chapter. This section also compares 

these results with each other and with the results produced by the reference 

clustering experiment (the one before adding descriptors).  Figures 6.3 to 6.18 

show the results for the number of clusters, the number of instances, the 

number of rules, the number of words in the rules, the number of words per 

rule, and the execution time. 

 
 
 

The clusters 

Figures 6.3 to 6.6 show the changes to the number of clusters when more 

descriptors are added to the descriptor sets of the instances. The figures 

show the changes to the total number of clusters, the number of retained 

clusters, the number of clusters subsumed by new clusters, and the number 

of new clusters. 

 

When using SY, HY or SH, on average, there are fewer clusters in the 

significant cluster set when clustering after adding descriptors than when 

clustering before adding descriptors, but there are more clusters in the cover 

and the generalised cover cluster sets (figure 6.3).  

 

For the significant cluster set and the generalised cover cluster set, on 

average, there are more clusters when using HY than when using SH, which 

in turn, there are more clusters than when using SY. For the cover cluster set, 

there are more clusters when using SH than when using HY, which in turn, 

there more clusters than when using SY. 
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When clustering after adding descriptors, on average, the clusters retained 

from the clusters found when clustering before adding descriptors, are more 

when using SY than when using HY, which in turn has more retained clusters 

than when using SH. Between 26% and 36% of clusters are retained when 

using SY, between 14% and 21% of clusters are retained when using HY, but 

only between 8% and 14% of clusters are retained when using SH. For SY, 

HY and SH, the significant cluster set retained more clusters than the cover 

cluster set or the generalised cover cluster set (figures 6.4). 

 

When clustering after adding descriptors, on average, the new clusters found 

are fewer when using SY than when using HY, which in turn has fewer new 

clusters than when using SH. Only between 59% and 74% of clusters are new 

when using SY; between 75% and 85% of clusters are new when using HY, 

and between 84% and 91% of clusters are new when using SH (figure 6.6). 

 

For the significant cluster set, on average, more clusters found from clustering 

before adding descriptors, are subsumed by new clusters found from 

clustering after adding descriptors using HY than that using SH, which in turn 

has more clusters subsumed than when using SY. For the cover cluster set, 

on average, more clusters are subsumed using SY than that using SH, which 

in turn has more clusters subsumed than when using HY. For the generalised 

cover cluster set, on average, more clusters are subsumed using HY than that 

using SY, which in turn has more clusters subsumed than when using SH. 

The significant cluster set has more clusters subsumed than the generalised 

cover cluster set, which in turn has more clusters subsumed than the cover 

cluster set (figure 6.5). 
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Figure 6.3: Average change to the total number of clusters 
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Figure 6.4: Average number of retained clusters 
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Figure 6.5: Average number of clusters subsumed by new clusters 
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Figure 6.6: Average number of new clusters 
 
 
 
 
 
Significant clusters minimum size  
 
Figure 6.7 shows the changes to the significant clusters’ minimum size for 

each category when more descriptors are added to the descriptor sets of the 

instances. 

 

When clustering after adding descriptors using SY, HY, or SH, on average, 

the significant clusters’ minimum size for each category is more than that 

when clustering before adding descriptors. On average, the increase in the 

significant clusters’ minimum size, when using SY, is less than that when 

using HY, which in turn is less than that when using SH. When using any of 

SY, HY, or SH, the increase in the significant clusters’ minimum size for the 

Up category is more than that for the Down category. 
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Figure 6.7: Average change to the significant clusters’ minimum size for each category 
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The instances 
 
Figures 6.8 to 6.10 show the changes to the number of instances when more 

descriptors are added to the descriptor sets of the instances. The figures 

show the changes to the total number of instances, the number of retained 

instances, and the number of new instances. 

 

In each figure, the results of the significant and the cover cluster sets are the 

same because both sets should cover the same instances. 

 

When using SY, HY or SH, on average, there are fewer instances in the 

significant, cover, and generalised cover cluster sets after adding descriptors 

than before adding descriptors, with almost no change in the number of 

instances in the significant cluster set using SY (figure 6.8).  

 

For any of the cluster sets, significant, cover, or generalised cover cluster set, 

when using SY, on average, there are more instances than when using HY or 

SH. 

 

When clustering after adding descriptors, on average, the instances retained 

from the clusters found when clustering before adding descriptors, are more 

when using SY than when using HY, which in turn has more retained 

instances than when using SH. About 89% of clusters are retained when 

using SY, about 85% of instances are retained when using HY, but only about 

83% instances are retained when using SH. For SY, HY and SH, the 

generalised cover cluster set retained fewer instances than the significant 

cluster set or the cover cluster set (figures 6.9). 

 

When clustering after adding descriptors, on average, the new instances 

found are fewer when using SY than when using HY, which in turn has fewer 

new instances than when using SH. Only about 8% of instances are new 

when using SY; about 9% of instances are new when using HY, and about 

11% of instances are new when using SH (figure 6.10). 
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Figure 6.8: Average change to the total number of instances 
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Figure 6.9: Average number of retained instances 
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Figure 6.10: Average number of new instances 
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The rules: 
 
Figures 6.11 to 6.13 show the changes to the number of rules when more 

descriptors are added to the descriptor sets of the instances. The figures 

show the changes to the total number of rules, the number of retained rules, 

and the number of new rules. 

 

When using SY, HY or SH, on average, there are many more rules when 

clustering after adding descriptors than when clustering before adding 

descriptors. On average, there are many more rules when using SH than 

when using SY, which in turn there are more rules than when using HY (figure 

6.11). 

 

The significant cluster set has a greater increase in the number of rules than 

the cover cluster set, which in turn has a greater increase than the 

generalised cover cluster set. 

 

 

When clustering after adding descriptors, on average, the number of rules 

retained from the rules found when clustering before adding descriptors, is 

greater when using SY than when using HY, which in turn has more retained 

rules than when using SH. Between 26% and 43% of rules are retained when 

using SY, between 14% and 27% of rules are retained when using HY, but 

only between 7% and 17% of rules are retained when using SH. For SY, HY 

and SH, the significant cluster set retained more rules than the cover cluster 

set, which returned more rules than the generalised cover cluster set (figures 

6.12). 

 

 

When clustering after adding descriptors, on average, the new rules found are 

more when using SH than when using SY or HY. Almost all the rules are new 

when using SH, especially for the significant and the cover cluster sets (figure 

6.13). 
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On average, almost no rules found from clustering before adding descriptors, 

are subsumed by new rules found from clustering after adding descriptors 

using any of SY, HY or SH. 
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Figure 6.11: Average change to the total number of rules 
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Figure 6.12: Average number of retained rules 
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Figure 6.13: Average number of new rules 
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The rules’ words 
 
Figures 6.14 to 6.16 show the changes to the number of rules’ words when 

more descriptors are added to the descriptor sets of the instances. The 

figures show the changes to the total number, the number of retained words 

of the rules, and the number of new words. 

 

On average, there are more rules’ words after adding descriptors than before 

adding descriptors. When using SH there are more rules’ words than when 

using SY, which in turn there are more rules words than when using HY. The 

cover cluster set has greater increase in the number of rules’ words than the 

significant cluster set, which in turn, has greater increase than the generalised 

cover cluster set (figure 6.14). 

 

When clustering after adding descriptors, on average, the number of rules’ 

words retained from the clusters found when clustering before adding 

descriptors, is greater when using SY than when using HY, which in turn has 

more retained rules’ words than when using SH. Between 67% and 83% of 

rules’ words are retained when using SY, between 57% and 73% of rules’ 

words are retained when using HY, but only between 49% and 69% of rules’ 

words are retained when using SH. For SY, HY and SH, the significant cluster 

set retained more rules’ words than the cover cluster set, which in turn 

retained more rules’ words than the generalised cover cluster set (figures 

6.15). 

 

When clustering after adding descriptors, on average, the new rules’ words 

found are fewer when using HY than when using SY, which in turn has fewer 

new rules’ words than when using SH. Only between 51% and 57% of rules’ 

words are new when using HY, between 52% and 57% of rules’ words are 

new when using SY, and between 66% and 71% of rules’ words are new 

when using SH. The significant cluster set has fewer new rules’ words than 

the generalised cover set, which in turn has fewer new rules’ words than the 

cover cluster set (figure 6.16). 
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Figure 6.14: Average change to the total number of rules' words 
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Figure 6.15: Average number of retained rules' words 
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Figure 6.16: Average number of new rules' words 
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The words per rule 
 
Figure 6.17 shows the changes to the total number of words per rule when 

more descriptors are added to the descriptor sets of the instances. 

 

On average, there are more words per rule when clustering after adding 

descriptors than when clustering before adding descriptors. On average, 

when using SY there are fewer words per rule than when using HY, which in 

turn generates fewer rules than when using SH.  

 

On average, when using SY or HY, the cover cluster set has greater increase, 

in the number of words per rule, than the generalised cover cluster set, which 

in turn, has greater increase than the significant cluster set. In contrast when 

using SH, the cover cluster set has greater increase, in the number of words 

per rule, than the significant cluster set, which in turn, has greater increase 

than the generalised cover cluster set. 

 

The statistical distributions in the figure show that almost all the data sets 

have more words per rule when clustering after adding descriptors than when 

clustering before adding descriptors. 
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Figure 6.17: Change to the number of words per rule 
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The execution time 
 
Figure 6.18 shows the changes to the clustering execution time when more 

descriptors are added to the descriptor sets of the instances. 

 

When clustering after adding descriptors using SY, HY or SH, on average, the 

execution time is more than that when clustering before adding descriptors. 

On average, the execution time, when clustering using SH, is more than that 

when using HY, which in turn is more than that when using SY. About 7.8 

times longer when using SH, but only about 2.8 times longer when using HY, 

and only about 2.6 times longer when using SY, compared with the execution 

time when clustering before adding descriptors. 
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Figure 6.18: Average change to the clustering execution time 
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6.4 Analysis and discussion 
 

The following sections analyse and discuss the results shown in the results 

section. 

 

Clusters 
 
On average, there are fewer clusters in the significant cluster set after adding 

descriptors than before adding descriptors (figure 6.3). Although there is not a 

great reduction in the number of the significant clusters, the significant 

clusters when clustering after adding descriptors are quite different from when 

clustering before adding descriptors: there is a relatively low percentage of the 

retained significant clusters (figure 6.4). Noticing the relative high percentage 

of the subsumed significant clusters in the new ones (figure 6.5), this means 

that some of the new significant clusters, when clustering after adding 

descriptors, are bigger by subsuming other significant clusters from clustering 

before adding descriptors. 

 

On average, after adding descriptors, the minimum size for significant clusters 

increased (figure 6.7). This means that some of the clusters from before 

adding descriptors are no longer considered significant.  

 

This decrease in the number of significant clusters was a surprise, particularly 

given that the size of the set of all-clusters increased (from an average of 

about 43,000 clusters, before adding descriptors, to 71,000 for SY, 81,000 for 

HY, and 96,000 for SH after adding descriptors). Usually for a clustering 

experiment if the size of the set of all-clusters increases then the size of the 

minimum size for the clusters to be considered statistically significant 

increases too. 

 

We believe that the reason for the decrease in the number of significant 

clusters is that the minimum size for significant clusters also increased. 

Therefore, although MAXCCLUS found more clusters, fewer of them were 
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counted as significant, and therefore, it was not able to explain as much of the 

data. 

 

 
 
 
 
Instances 
 
On average, after adding descriptors, there is a decrease in the number of 

instances that MAXCCLUS can describe (figure 6.8). The instances described 

are almost as the same as the ones described before adding descriptors: a 

high percentage of the instances are retained (figure 6.9), and a low 

percentage of the instances are new (figure 6.10). Therefore after adding 

descriptors MAXCCLUS is not describing more instances than before adding 

descriptors, instead it is describing fewer instances on average and these 

instances are almost the same instances that MAXCCLUS was able to 

describe without the added descriptors. 

 

Having a different set of clusters describing almost the same set of instances 

means that adding descriptors cause MAXCCLUS to spend more time in 

clustering (figure 6.18) without being able to increase the number of instances 

that it is able to describe. 

 

 
 
 
 
Rules 
 
After adding descriptors, MAXCCLUS creates many more rules than before 

adding words, to characterise the clusters it found (figure 6.11). Note that 

these rules characterise almost the same set of instances as before. Having 

many more rules is confusing and does not help a user trying to make sense 

of the clustering results. The number of rules increased dramatically because 

MAXCCLUS can create many alternative rules using the added words that 

have the similar meaning.  
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In some cases, the number of rules for a cluster does not change, but even 

then, the rules may be different. For example, figure 6.19 shows a significant 

cluster that MAXCCLUS creates when clustering before adding descriptors. 

This cluster has 278 instances that are described by the rule “protein, region”. 

Using the same data set, when clustering after adding synonyms, 

MAXCCLUS creates the same cluster that has the same 278 genes, but with 

different rule, “protein, neighborhood”, to describe the instances (figure 6.20).  

 

What happened is that the previous version of the cluster has the words 

“protein” and ”region” in the set of the Necessary words. After adding 

synonyms, the descriptors “area”, “domain”, “neighborhood”, and “part” were 

added to all the instances that had the word “region” in their descriptor set. 

These synonyms were added because they exist in the set of all-descriptors 

(other synonyms of the word “region” and the synonyms of the word “protein” 

were not added because they do not exist in the set of all-descriptors). When 

clustering after adding synonyms, the word “neighborhood” replaced the word 

“region” in the set of the Necessary words, therefore the rule that describe the 

instances became “protein, neighborhood” (figure 6.20). 

 

This seems ok but when comparing the frequency of the word “region” before 

adding descriptors, which is 2002, with the frequency of the word 

“neighborhood” which is 1, the word “region” is more familiar than the word 

“neighborhood”. Before adding descriptors, the word “region” appears in the 

descriptor sets of 2002 instances, in contrast the word “neighborhood” 

appears only in the descriptor set of 1 instance. Which make the word “region” 

more frequent in use than the word “neighborhood”. It is not desirable to have 

a much less frequent word replacing a more frequent one in a rule, because 

the more frequent word is probably more familiar than its synonyms to the 

people that work in the domain (in this case the genetics scientists), and may 

have important connections with the domain.

 
 
 
 
 

115 



Chapter 6: Adding Descriptors 

 
 
 
 
 
 
 
 
 

Cluster (Up, 95% accuracy, 278 instances) 
 
Characterisation:  
Necessary: protein, region  
 
Rule: protein, region 

Figure 6.19: A cluster before adding synonyms 

 
 
 
 
 
 
 
 
 
 
 
 

Cluster (Up, 95% accuracy, 278 instances) 
 
Characterisation:  
Necessary:   protein, neighborhood   
Supplementary: region, part, area, domain  
 
Rule: protein, neighborhood 

 
Figure 6.20: The same cluster of figure A.1 but having different rule after adding 
synonyms. 
 
 
 
 
On the other hand, in most of the cases the number of rules increases after 

adding descriptors. For example suppose that, when clustering before adding 

descriptors, MAXCCLUS finds a rule that has the following words: w1, w2, 

and w3. Suppose that s1 is a synonym for w1, s2 is a synonym for w2, and s3 

is a synonym for w3. Therefore, when clustering after adding using SY, to 

characterise a cluster MAXCCLUS creates the rule “w1, w2, w3” and its 

alternatives, which are:  

“s1, w2, w3” 

“w1, s2, w3” 

“w1, w2, s3” 

“s1, s2, w3” 

“s1, w2, s3” 

“w1, s2, s3” 

“s1, s2, s3” 
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to characterise the same cluster. These alternative rules are likely to confuse 

the user who is trying to make sense of the cluster. Therefore, adding 

descriptors using SY is not useful. The same process happens when 

clustering using HY, but the increase in the number of rules, although it is not 

as great as when using SY, is still a large increase. Suppose that h1 is a 

hypernym for the w1, h2 is a hypernym for the w2, and h3 is a hypernym for 

the w3.  

 

The worst case is when using SH where the number of rules jumps very high 

for the significant clusters. This is because using SH is combining the use of 

the approaches SY and HY. Therefore, the number of rules when using SH 

worsens the rules’ results, even more than when using SY or HY, by 

dramatically increasing the number of rules giving the worst results. Although 

it is still high, the number of rules of the cover cluster set is not as high as that 

of the significant cluster set, therefore covering the significant clusters with the 

cover cluster set is working fine. Even more, the generalisation is working fine 

because the number of rules of the general cluster set, although it is still a 

large increase, is the best case among the three sets of clusters, which 

reflects an enhancement of the generalised cover cluster set over the cover 

cluster set. 
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6.5 Conclusion and recommendations 
 
Adding synonyms, hypernyms (or both) to the descriptor sets of the instances 

does not help MAXCCLUS to describe more instances, instead MAXCCLUS 

describes fewer instances, takes more time for clustering, and produces 

clusters that are characterised with many alternative rules that can confuse 

the user who is trying to make sense of the clusters. Therefore adding 

synonyms, hypernyms or both of them is a bad idea. It may be possible to get 

better clustering results if we can add synonyms and/or hypernyms of the 

domain-relevant words but WordNet does not contain all of these. It might be 

better to replace the descriptors with their most frequent (relevant to the 

textual data) synonyms or hypernyms; this will prevent MAXCCLUS from 

creating alternative rules. 

 

A topic for future work is to replace the domain-relevant descriptors with there 

frequent synonyms and/or hypernyms. 
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Chapter 7 
Five Categories 
 
This chapter describes a clustering experiment designed to study the ability of 

MAXCCLUS to cluster instances that have five adjacent categories and 

comparing its results with the reference experiment where MAXCCLUS 

clusters instances that have two distinct categories only. Unfortunately, the 

result of this chapter is to show that MAXCCLUS is not as good for clustering 

instances that fall in multiple adjacent categories, as it is for clustering 

instances that belong to two clearly distinct categories.  

 

 

This clustering experiment uses the same data that the reference clustering 

experiment uses, but with an important difference: the number of the 

categories and how close the categories are. The reference clustering 

experiment uses two categories to categorise instances (genes). The two 

categories are Up and Down. On the other hand, this chapter's clustering 

experiment uses five categories: Up, MidUp, Mid, MidDown, and Down. Of 

these five categories, the Up and Down categories are the same Up and 

Down categories as in the reference clustering experiment. 

 

The actual raw experimental data allocates each gene a numeric expression 

ratio, which varies between approximately 0.001 and 1000.0. The discrete 

categories represent subranges of the expression ratio. In both the two 

categories and the five categories experiments, the Up and Down represent 

the ranges: greater than or equal to 2.0, and less than or equal to 0.5 

respectively (Figure 7.1). In the five categories experiment, the categories 

MidUp, Mid, and MidDown cover the remaining part of the range. It is 

significant that in the two categories experiment, all the genes in the range 

between Up and Down are excluded, so that the two categories are quite 
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distinct. In the five categories experiment, all the genes are included, so that 

the categories are adjacent to each other and are less distinct. Also, the five 

categories experiment includes 3,548 genes, whereas, on average, only 921 

genes are included in each data set of the two categories experiment.  

  

 

 Category Expression ratio X 

Up 2.0 ≤ X 

MidUp 1.4 < X < 2.0 

Mid 0.7 ≤ X ≤ 1.4 

MidDown 0.5 < X < 0.7 

Down X ≤ 0.5 

 

 

 

 

 
Figure 7.1: Categories versus their expression ratios. 
 

 
 
 
 
7.1 Textual data 
 
The textual data, for the five categories clustering experiment is the same as 

that of the reference clustering experiment; it represents the association of 

each gene's id with the gene's descriptors. 

 
 
 
 

7.2 Experimental results 

 
The results shown in the figures below are for running MAXCCLUS on 19 of 

the microarray experimental data sets (data set: 3, 6, 7, 10, 11, 12, 13, 16, 18, 

20, 21, 22, 23, 24, 25, 27, 28, 29, and 30), using five categories instead of two 

categories. Figures 7.2 to 7.13 show the results for the number of clusters, the 

number of instances, the number of rules, the number of words in the rules, 

and the number of words per rule. 
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The clusters 

Figure 7.2 shows the changes to the total number of clusters when 

MAXCCLUS clusters instances using five categories instead of two 

categories.  

 

On average, there are fewer clusters when clustering instances using five 

categories, than when clustering instances using two categories (between 

18% and 47% as many). The significant cluster set has greater decrease in 

the number of clusters than the cover cluster set, which in turn has greater 

decrease than the generalised cover cluster set. 

 

The distributions show that the significant cluster set has the narrowest 

distribution (the maximum value is an outlier) of the cluster sets, the narrowest 

inter-quartile range, it has the lowest median, and is skewed to lower values. 

The cover cluster set is more spread in its distribution, has a higher median 

but is still skewed to the lower values. The generalised cover is has the most 

spread distribution and the highest median. 

 

When clustering instances using five categories a completely different set of 

clusters was found: no clusters were retained from the clusters found when 

clustering instances using two categories, and therefore all the clusters are 

different from the clusters found when clustering instances using two 

categories. 

 

No clusters found from clustering instances using two categories are 

subsumed by new clusters found from clustering instances using five 

categories. 
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b: Distributions  
 
Figure 7.2: Change to the total number of clusters 
 
 
Significant clusters minimum size  
 
Figure 7.3 shows the changes to the minimum size of the significant clusters 

for the Up and Down categories when clustering using five categories 

compared with when clustering using two categories. Only the minimum size 

for the Up and Down can be compared because there are no other categories 

available when clustering genes using two categories. 
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When clustering instances using five categories, on average, the significant 

clusters’ minimum sizes for the Up and Down categories are less than that 

when clustering instances using two categories. 

 

On average, the significant clusters’ minimum size for the Up category has 

greater decrease than that for the Down category. 
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Figure 7.3: Average change to the significant clusters’ minimum size for the Up and 
Down categories 
 
 
 
 
On the other hand, Figure 7.4 shows the average of the significant clusters’ 

minimum size for each of the five categories (not as a percentage value). The 

figure shows that the Mid category has higher minimum significant cluster size 

than the other categories. 
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Figure 7.4: Average of the significant clusters’ minimum size for each of the five 
categories (not as a percentage value) 
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The instances 
 
Figures 7.5 to 7.7 show the changes to the number of instances when 

MAXCCLUS clusters instances using five categories instead of two 

categories. The figures show the changes to the total number of instances, 

the number of retained instances, and the number of new instances. 

 

In each figure, the results of the significant and the cover cluster sets are the 

same because both sets should cover the same instances. 

 

On average, there are fewer instances when clustering instances using five 

categories, than when clustering instances using two categories (about 20% 

as many) (figure 7.5), in spite of the fact that there are on average of four 

times as many instances in the experimental data sets. 

 

Although the averages for all the cluster sets are the same, the distributions in 

show that the significant and the cover cluster sets have a narrower inter-

quartile range and are more skewed towards the minimum values with slightly 

lower median than the generalised cluster set (figure 7.5). All the maximum 

values are outliers and they belong to one data set (data set 13), while the 

value next to the maximum value is about 45%, which is not an outlier. Also, 

all the minimum values belong to another single data set (data set 20). 

 

When clustering instances using five categories, on average, very few 

instances are retained from the clusters found when clustering instances 

using two categories (about 6%) (Figure 7.6), and about 56% of the instances 

are different from the instances found when clustering instances using two 

categories (Figure 7.7).  

 

Although Figure 7.7 shows that the average of the number of new instances is 

almost the same for all the cluster sets, the distribution show that the median 

of the generalised cover cluster set is lower than that of the other cluster sets. 

Also this figure shows that all the cluster sets have a very widely spread 

distribution; all have a wide inter-quartile range especially the generalised 
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cover. Three data sets (data set 3, 13, and 23) share all the maximum values, 

while two data sets (data sets 6 and 7) share all the minimum values. 
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b: Distributions  
 
Figure 7.5: Change to the total number of instances 
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Figure 7.6: Average number of retained instances 
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b: Distributions  
 
Figure 7.7: Number of new instances 
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Figure 7.8 shows the average of the number of instances per category for 

each of the five categories when clustering using five categories (not as a 

percentage value). The figure shows that the Mid category has the highest 

average number of instances per category. 

 

 

 

Figure 7.8: Average of the number of instances per category for each of the five 
categories when clustering using five categories (not as a percentage value) 

 

 

 

The rules 
 
Figure 7.9 shows the changes to the total number of rules when clustering 

instances using five categories instead of two categories.  

 

On average, there are fewer rules when clustering using five categories, than 

when clustering using two categories (between 34% and 76% as many). The 

significant cluster set has greater decrease in the number of rules than the 

cover cluster set, which in turn has greater decrease than the generalised 

cover cluster set. 

 

When clustering instances using five categories, no rules are retained from 

the rules found when clustering instances using two categories, and no rules 

found from clustering using two categories are subsumed by new rules found 

from clustering using five categories. 
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The distributions show that the significant clusters have a narrower 

distribution than the other cluster sets. The maximum values of the cover and 

the generalised cover cluster sets belong to data set 12, while the minimum 

values of the significant and the cover cluster sets belong to data set 24. 
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Figure 7.9: Average change to the total number of rules 
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The rules’ words 
 
Figures 7.10 to 7.12 show the changes to the number of rules’ words when 

clustering using five categories instead of two categories. The figures show 

the changes to the total number of rules’ words, the number of retained rules’ 

words, and the number of new rules’ words. 

 

On average, there are fewer rules’ words when clustering using five 

categories, than when clustering using two categories (between 57% and 

74% as many). The significant cluster set has greater decrease in the number 

of rules’ words than the cover and the generalised cover cluster set (figure 

7.10). The distributions show that there is a wide variation across the data 

sets. 

 

When clustering using five categories, on average, between 33% and 35.4% 

of the rules’ words are retained from the rules found when clustering using 

two categories (figure 7.11). The average is almost the same for all the cluster 

sets. 

  

When clustering using five categories, on average, between 42% and 53.5% 

of the rules’ words are different compared with the rules’ words found when 

clustering using two categories (figure 7.12). The significant cluster set has 

fewer different rules’ words than the other cluster sets. 
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Figure 7.10: Change to the total number of rules' words 
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Figure 7.11: Average number of retained rules' words 
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Figure 7.12: Average number of new rules' words 
 
 
 
 
 
The words per rule 
 
Figure 7.13 shows the changes to the number of words per rule when 

clustering using five categories instead of using two categories  

 

On average, there are more words per rule when clustering using five 

categories, than when clustering using two categories (between 136% and 

151% as many). The generalised cover cluster set has a greater increase in 

the number of words per rule than the other cluster sets. 
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Figure 7.13: Average change to the number of words per rule 
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The execution time 
 
When clustering using five categories, on average, the execution time is much 

more than that when clustering using two categories - about 15 times longer 

when using five categories compared with the execution time when clustering 

using two categories. 

 
 
 
 
 

7.3 Analysis and discussion 
 

The following sections analyse and discuss the results shown in the 

experimental results section. 

 

 

Clusters 
 

On average, there are fewer clusters when clustering instances using five 

categories, than when clustering instances using two categories, especially 

the significant cluster set (figure 7.2). The clusters MAXCCLUS creates when 

clustering instances using five categories are completely different from the 

clusters it creates when clustering instances using two categories.  

 

The difference in the clusters is the result of including many new instances 

(the ones with categories MidUp, Mid or MidDown) in the data sets in addition 

to the ones used in the reference clustering experiment (the ones with 

categories Up or Down).  

 

When clustering instances using five categories, the minimum size of clusters 

to be considered statistically significant clusters by MAXCCLUS, decreases 

for the Up and Down categorised clusters compared to that for clustering 

instances using two categories (figure 7.3). The minimum size of the Down 

categorised clusters decreased from about 7 instances to about 5 instances, 
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and the minimum size of the Up categorised clusters decreased from about 

89 instances to about 9 instances. 

 

The reason for the reduction in the minimum size for the Up and Down 

clusters is not because the size of the set of all-clusters decreased, since that 

increased to 450,000 clusters for all the data sets when clustering instances 

using five categories (it is on average only 35,000 clusters, when clustering 

instances using two categories). The set of all-clusters is the set of clusters 

that MAXCCLUS creates from the descriptor sets of the data set’s instances. 

Usually for a clustering experiment if the size of the set of all-clusters 

increases then the size of the minimum size for the clusters to be considered 

statistically significant clusters increases too.  

 

When MAXCCLUS clusters instances using only two possible categories (Up 

and Down) MAXCCLUS would have to have large clusters to be considered 

significant, because there is a good chance that most of some cluster’s 

instances belong to one category when there are only two possibilities. On the 

other hand when MAXCCLUS clusters instances using five possible 

categories, a small pure cluster would be considered significant because it is 

very unlikely that, by chance, most of any cluster’s instances belong to a 

single category when there are five possibilities. 

 

Notice that, on average, the minimum size of a cluster to be considered 

statistically significant (figure 7.4), increases with the number of instances for 

this category in the data set (figure 7.8). The minimum size of the Mid 

categories clusters is more than that of any other category clusters, because 

the number of the instances categorised as Mid regulated instances is more 

than the number of any other category instances. 

 

Although the minimum size of a cluster to be considered significant reduces 

when clustering using five categories, the number of significant pure clusters 

unexpectedly decreases considerably instead of increasing (figure 7.2). The 

reduction in the number of significant pure clusters means it is harder to find 

significant clusters that are pure in the real data when clustering using five 
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categories than when clustering using two categories. To explain this, we give 

an example.  

 

Suppose, when clustering using two categories, there is an Up cluster of size 

7, and the purity is required by the user to be 100%, which means that a 

cluster can be pure only if all its instances have the same category; in other 

words MAXCCLUS excludes from the significant pure cluster set any Up 

cluster that has at least one instance not of Up category. On the other hand 

when clustering using five categories two more instances that have some 

words in common with the cluster were added to it to become a cluster of size 

9. These two new instances are MidUp regulated. MAXCCLUS excludes this 

cluster from the significant pure cluster set even though the MidUp instances 

(which are not clearly Up regulated) could be in reality Up ones but their 

regulations were measured as MidUp because of microarray experimental 

noise. Therefore, the cluster becomes bigger but also becomes impure. 

 

When clustering using two categories MAXCCLUS can easily create rules that 

distinguish between the two separated categories (Up and Down). But when 

using five categories MAXCCLUS has difficulty creating rules that can 

distinguish between any two adjacent categories that do not have a gap in 

between (Up and MidUp, MidUp and Mid, Mid and MidDown, or MidDown and 

Down). This is not the behaviour of MAXCCLUS only. In [Sahami, M; Dumais, 

S; Heckerman, D; and Horvitz, E. 1998] they mentioned the same behaviour 

with their Spam filtering system, where the system was able to distinguish 

between ordinary and Spam messages, but it behaved poorly when it 

attempts to distinguish between three kind of messages: ordinary messages, 

one kind of Spam messages and other kind of Spam messages. 
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Instances 
 

On average, when clustering instances using five categories, there is a large 

decrease in the number of instances that can be described - only 20%, even 

though this includes the instances that have the categories MidUp, Mid, or 

MidDown which cannot be described when clustering using two categories 

(figure 7.5). This decrease in the number of described instances is despite the 

fact that all the 3548 instances, available from the microarray raw 

experimental data, are included in all the experimental data sets that 

MAXCCLUS used to cluster using five categories. 

 

Furthermore, the individual instances that MAXCCLUS is able to describe 

when clustering using five categories are quite different from the instances it 

can describe when clustering using two categories: a high percentage of the 

instances are new, about 56% (figure 7.7). The primary reason is the 

reduction in the number of significant pure clusters (as explained in the 

previous section), since only instances in significant pure clusters are 

explained. 

 

The algorithm does not scale well to several thousands of instances; the cost 

of the search grows too fast. The time was much longer because of more 

instances for the data sets and more descriptors contributed by them. Note 

that it is the significance test, rather than the construction of the clusters that 

dominates the time. 

 

 

Rules and Words per rule 
 

On average, there are fewer rules when clustering instances using five 

categories, than when clustering instances using two categories, especially 

the significant cluster set (figure 7.9), and all the rules are different. The 

number of rules does not decrease as much as the number of clusters (figure 

7.2), nor as much as the number of instances (figure 7.5). This means that 

each cluster must have more possible rules because there are many 
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alternative rules due to adding new instances that contribute with their 

descriptors. 

 

This is a consequence of having smaller clusters, which therefore are likely to 

have more words in common. If there are many words associated with the 

cluster, there are likely to be many possible combinations of these words (that 

is many rules) that will distinguish just the instances in the cluster. 

 

The words per rule increased (figure 7.13) because of adding new instances 

(the ones that have categories MidUp, Mid, or MidDown) to the data sets for 

clustering using five categories. Because there are more instances altogether, 

MAXCCLUS needs to use more words in each rule to be able to exclude the 

instances that do not belong to the cluster that the rule characterise 

(describe).  

 

 

 

 

Rules’ words 
 

In spite of more words per rule, there are still fewer words altogether in the 

rules when clustering instances using five categories, than when clustering 

instances using two categories, especially the significant cluster set (figure 

7.10). The rules’ words when clustering instances using five categories are 

quite different from the rules’ words when clustering instances using two 

categories: on average, only about 34% of the rules’ words are retained 

(figure 7.11), and between 42% and 54% of the rules’ words are new (figure 

7.12). 

 

The difference in the rules’ words is because of the difference in the rules that 

previous section describes. 
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7.4 Conclusion 
 

MAXCCLUS is not able to produce as good results when clustering using 

continues range of categories, as when clustering using two categories 

separated with a clear gap. It is not able to explain nearly as many instances, 

even though it constructs almost as many rules as when clustering using two 

categories. When using continues range of categories (Up, MidUp, Mid, 

MidDown, and Down) it is difficult for MAXCCLUS to distinguish between any 

two adjacent categories that do not have a gap in between (Up and MidUp, 

MidUp and Mid, Mid and MidDown, or MidDown and Down). With respect to 

the clustering time, the algorithm does not scale well to several thousands of 

instances as the cost of the search grows too fast. 

 

 

7.5 Recommendations 
 

If one needs to use MAXCCLUS to cluster instances that fall in more than the 

clearly Up or clearly Down categories, it is better to be sure that the 

categories are separated with a gap. Therefore one might be able to use 

MAXCCLUS to cluster instances that fall in three categories Up, Mid, and 

Down, where there is a gap between Up and, Mid, and between Mid and 

Down (figure 7.14). Or clustering by using two categories separated by a gap, 

one category is Up-MidUp (by merging Up and MidUp), and the other is 

Down-MidDown (by merging Down and MidDown), in this case the gap would 

be ignoring the instances that belong to the Mid category (figure 7.15). These 

two suggested clustering experiments are for future research. 
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Category Expression ratio X 

Up 2.0 ≤ X 

Mid 0.7 ≤ X ≤ 1.4 

Down X ≤ 0.5 
 
Figure 7.14: Recommended three categories versus their expression rations with gaps in 
between  
 

 

 

 

Category Expression ratio X

Up-MidUp 1.4 < X 

Down-MidDown X < 0.7 
 
Figure 7.15: Recommended two categories versus their expression ration separated with a 
gap (it is different version than that we used in this project)  
 

 

 

 

 

 

 

 

 

 

 

 

 
 

138 



Chapter 8: Tools 

Chapter 8 

 

Tools 
 
 
The focus of the project was on the experiments that investigated various 

modifications to MAXCCLUS and its data. However, the project also required 

the development of several tools to assist in the conduct of these 

experiments. This chapter briefly describes these tools. 

 

 

 

8.1 Modifications to MAXCCLUS and its data 
 

We modified MAXCCLUS by designing and implementing the exhaustive 

search generalisation (used in chapter 3) using the Java computer 

programming language. We modified the data that MAXCCLUS used using 

the Perl computer programming language. 

 

 

 

8.2 Comparison used in methodology 
 

To carry out the task of comparison of thousands of the objects in tens of XML 

files that MAXCCLUS produced as the results of its clustering throughout all 

the clustering experiments, we designed and implemented computer 

programs using the Java computer language with SAX (Simple API for XML) 

and Xerces parser from Apache, to parse the XML files, extract the 

knowledge, compare, and report the comparison results. 
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8.3 Rendering  
 
 
MAXCCLUS reports its clustering results for a microarray experiment data set 

as an XML file. To easily view these results, they need to be rendered to 

HTML (HyperText Markup Language) files. Rendering was originaly done by 

running a Java program on each of the XML files to create the respective 

HTML file. This approach was not flexible enough in case one needs to 

change how the HTML presents the data; furthermore this approach doubles 

the computer storage size needed to store the clustering results (because of 

having both the XML and the HTML files of the results), which can be 

considerable when running MAXCCLUS on many data sets (some XML and 

HTML files can exceed 34MB in size). We modified the rendering by using 

only one small (7KB) XSL (Extensible Stylesheet Language) file to render, on 

the fly, any XML file created by MAXCCLUS, to a HTML file by using 

Microsoft Internet Explorer to open the XML file. 

 

 

 
8.4 Web robot 
 
 
Some microarray experiment data sets have gene ids that are not in the same 

format of the Swiss-Prot textual database. To be able to use these gene ids, 

we need to map these ids to the format that Swiss-Prot uses. This can be 

done by accessing websites of some gene databases and submitting a query 

to get back a web page that contains different gene id formats from which we 

can select the id that has the Swiss-Prot format.  

 

Doing this manually is not a problem for few genes, but for thousands of 

genes it is time consuming, error prone, and frustrating. Therefore we 

designed and implemented a web robot, using the Perl computer 

programming language, to carryout the task automatically. 

 

 140



Chapter 8: Tools 

To retrieve the Swiss-Prot format gene ids of the non Swiss-Prot format gene 

ids, we chose the web site of the NBCI (National Center for Biotechnology 

Information) at “http://www.ncbi.nih.gov”, which is a resource for molecular 

biology information and public databases. 

 

In one run of the web robot program, the web robot access the web site of the 

NBCI thousands times (depending on the number of genes). In each access, 

it submits a query for one gene id (saved previously in a file of gene ids), 

waits for the web page that holds the results of the query, extracts the Swiss-

Prot gene id format from the results page, and save the gene id with its Swiss-

Prot id format into a gene ids mapping file. We can then use the gene ids 

mapping file when we extract the textual data from the Swiss-Prot database. 

 
 
 
 
 
8.5 Clusters visualisation 
 
 
We needed a way to visualise the clusters to get some idea about how the 

instances are distributed among the clusters of the results of MAXCCLUS 

clustering for a microarray experiment data set. 

 

We designed and implemented a program using the Java computer 

programming language to automatically produce PNG (Portable Network 

Graphics) image files from the XML (Extensible Markup Language) clustering 

result files that MAXCCLUS produce. We chose the PNG format for the 

images because it is patent-free unlike, some other image formats. 

 

The images produced are usually big. Figure 8.1 shows one of the relatively 

small images that it can be viewed clearly on an A4 size page. On the other 

hand Figure 8.2 shows another image, which is not clearly viewable on an A4 

size page because the image was shrunk to fit the page size, but it can still 

give some idea about the clusters and their instances (if the reader is viewing 
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a PDF – Portable Document Format – file of this thesis, the image can be 

viewed clearly by magnifying the document). 

 

In the images, the x and y coordinates represent the clusters and the 

instances respectively. The clusters are sorted from left to right in ascending 

order with respect to the number of instances they have. The instances are 

sorted from bottom to top in an ascending order with respect to the number of 

clusters they are in.  

 

The vertical coloured lines are for the different categories of the clusters. The 

horizontal coloured boxes represents the instances, we made them coloured 

to make it easy to distinguish between the adjacent instances. 
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Figure 8.1: A visualisation for the clustering results of one data set 
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Figure 8.2: A visualisation for the clustering results of another data set 
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Chapter 9 
 

Conclusion 
 
 
The clustering experiments we carried out through chapters three to seven 

showed that in general MAXCCLUS is doing a reasonably good job in 

clustering instances and characterising them to make it easy for the user (the 

scientist) to make sense of the microarray experimental data. The 

experiments also identified some limitations of MAXCCLUS, and showed that 

some improvements that we had expected would help did not in fact improve 

MAXCCLUS. 

 

 

Although MAXCCLUS was able to describe, on average, only about 37% of 

the instances of the microarray experimental data (with a range between 

about 5% to about 79%) using its simple generalisation approach (see section 

2.3), we could not increase the number of instances described by 

MAXCCLUS by using an exhaustive search for generalisation. This could be 

because of the relatively high accuracy value (95%) that was used in the 

clustering experiment (see Chapter 3). However, the exhaustive search 

generalisation was much more expensive than the simple generalisation. 

 

MAXCCLUS depends on the significance test to select from the set of all-

clusters only the clusters that are statistically significant as specified by the 

user accuracy value (95%). The clustering experiment of chapter four 

examined the significance test by using MAXCCLUS to cluster operons 

instead of genes. An operon is a group of genes that are functionally 

dependent on each other during a microarray experiment; therefore they have 

dependency relation. The result of the clustering experiment of chapter four 

showed that, when clustering genes, MAXCCLUS ignored the fact that some 

genes are dependent on other genes. Ignoring this fact led MAXCCLUS to 
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select clusters that are big enough to be considered statistically significant but 

were not really significant. The MAXCCLUS significance test needs to be 

modified to consider the dependency of some genes on others, so that a 

cluster will be considered significant only if it consists of enough independent 

instances. 

 

On the side of textual data, the clustering experiment of chapter five showed 

that it is advantageous to delete some of the descriptors of the instances 

providing that these descriptors are not domain-relevant ones. Deleting these 

descriptors let MAXCCLUS to create rules that are more scientifically 

informative, and to describe almost the same number of instances faster (only 

74% as much time) compared with clustering with all the descriptors. On the 

other hand, the clustering experiment showed that when deleting more 

descriptors, including some domain-relevant ones, MAXCCLUS performed 

poorly, describing many fewer instances and finding fewer clusters than 

before deleting descriptors. 

 

Also, on the side of textual data, the clustering experiment of chapter six 

showed that adding more descriptors (synonyms and/or hypernyms of already 

existing descriptors) to the descriptor sets of the instances did not improve 

MAXCCLUS clustering. After adding descriptors, MAXCCLUS behaved badly: 

it was not able to describe more instances than before adding descriptors, it 

created many alternative rules for clusters characterisations that can confuse 

the user who is trying to make sense of the clusters, and it took much longer 

to cluster. This result may be because the added synonyms and/or 

hypernyms retrieved from WordNet were for the non-domain descriptors only 

(because WordNet does not contain the domain-relevant words for genetics). 

It may be that MAXCCLUS would behave better if we could find the frequent 

synonyms and/or hypernyms for the domain-relevant descriptors. It might also 

be better to replace descriptors by the most frequent synonyms or hypernyms, 

rather than simply adding all synonyms or hypernyms, but this is a topic for 

future work. 
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The clustering experiment of chapter seven showed that the instances that 

MAXCCLUS clusters need to have a clearly district categories with a gap 

between the categories. MAXCCLUS was not able to produce as good results 

when clustering using a continuous range of categories as when clustering 

using two categories separated with a clear gap. This behaviour is known for 

other clustering algorithms too. If one needs to use MAXCCLUS to cluster 

instances, one must be sure that these instances have clear gaps in between 

their categories.  

 

The experiment also showed that there is a problem of scaling to larger 

number of instances with respect to clustering time. As MAXCCLUS attempts 

to cluster thousands of instances the time increases dramatically. 

 

Note that it is the significance test, rather than the construction of the clusters 

that dominates the time. 
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Appendix 
 
 
The words for the Bible in “Simple English” 
 
 
This appendix lists the words that were used to delete the descriptors using 

the first method in chapter 5 (deleting descriptors using the Bible words 

dictionary). There are 3561 words (about 1000 root words). 

  

The list of words from WordNet (the second method used in chapter 5 for 

deleting descriptors) is too large to include (44,309 words), and would not be 

informative.  
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a 
able 
about 
acacia 
acaciatrees 
account 
accounts 
acid 
acre 
across 
act 
acted 
acting 
acts 
actunnatural 
adder 
addition 
additions 
after 
afterbirth 
again 
against 
agate 
agreement 
agreements 
aha 
air 
all 
allburning 
allwise 
almond 
almondtree 
almost 
aloes 
altar 
altars 
am 
amethyst 
among 
amount 
amounts 
an 
and 
angel 
angels 
angel's 
anger 
angle 
angleplate 
angleplates 
angles 
anglestone 
angrily 
angry 
animal 
animals 
animals' 
another 
another's 
answer 
answered 
answering 
answers 
ant 
antelope 
ants 
any 
anyone 
anyone's 
anything 
anywhere 
apparatus 
apples 
appletree 
approval 
arch 
arched 
archer 
archers 
arches 
are 
argument 
arguments 
ark 
arm 

armbands 
armchains 
armed 
armholes 
armies 
arming 
armrings 
arms 
army 
arrow 
arrows 
arrowsnake 
art 
arts 
as 
ashtree 
ass 
asses 
ass's 
at 
atha 
attack 
attacked 
attacker 
attackers 
attacking 
attacks 
attempt 
attempting 
attempts 
attention 
attraction 
authorities 
authority 
awake 
awakening 
awaking 
away 
axe 
axes 
babies 
baby 
back 
backbone 
backs 
bad 
badhumoured 
badly 
bag 
bagpipe 
bags 
balancing 
balancings 
ball 
balsamtrees 
band 
banded 
banding 
bands 
bank 
baptism 
baptisms 
barley 
base 
based 
bases 
basin 
basing 
basins 
basket 
baskets 
bat 
bath 
bathed 
bathing 
bathingplace 
baths 
bdellium 
be 
bear 
bears 
beast 
beasts 
beasts' 
beautiful 

beautifully 
became 
because 
become 
becomes 
becoming 
bed 
bedcover 
bedroom 
bedrooms 
beds 
bed's 
bee 
been 
bees 
before 
behaviour 
being 
beings 
beka 
belief 
beliefs 
bell 
bells 
bent 
berries 
beryl 
beryls 
best 
better 
betterlooking 
between 
bird 
birdlike 
birdnet 
birds 
birth 
birthday 
birthpains 
birthplace 
birthright 
births 
bit 
bite 
bites 
biting 
bits 
bitter 
bitterly 
bittern 
bittertasting 
bittertongued 
black 
blackberries 
blackberry 
blacker 
blackest 
blade 
blades 
blessing 
blessings 
blind 
blinding 
blood 
bloodred 
blow 
blower 
blowing 
blows 
blue 
board 
boarded 
boards 
boat 
boatmen 
boats 
bodies 
body 
bodycover 
bodycovers 
bodyservant 
boiling 
boilingplaces 
boilingrooms 
bone 

bones 
book 
booklearning 
books 
boot 
bottle 
bow 
bowcords 
bowman 
bowmen 
bows 
box 
boxedoff 
boxes 
boxwood 
boy 
boys 
boy's 
branch 
branches 
branching 
brass 
bread 
breadbasin 
breadbasins 
breadmaker 
breadmakers 
breadmaking 
breadmeal 
breadpaste 
breast 
breastplate 
breastplates 
breasts 
breath 
breather 
breathing 
breathingspace 
brickmaking 
bricks 
brickwork 
brickworks 
bride 
bridebed 
bridefeast 
brideoffering 
brideprice 
brides 
bride's 
bridesong 
bridetent 
bright 
brighter 
brightly 
broken 
brokenhearted 
broomplant 
brother 
brotherinlaw 
brotherman 
brotherprisoner 
brothers 
brother's 
brothers' 
brotherservant 
brotherworker 
brotherworkers 
brow 
brows 
brush 
brushed 
brushing 
brushwood 
bucket 
buckets 
bud 
budding 
buds 
builder 
builders 
building 
buildingmaterial 
buildingpaste 
buildings 
buildingstone 

burn 
burned 
burning 
burnings 
burst 
bursting 
bursts 
business 
but 
butter 
by 
cake 
cakes 
calamus 
called 
calling 
calm 
calmer 
calmly 
came 
camel 
camels 
camel's 
camels' 
cameltrains 
captain 
captains 
captain's 
carbuncle 
carbuncles 
care 
cared 
cares 
caretakers 
caring 
carnelian 
carriage 
carriagehorses 
carriages 
carriagetowns 
carriagewheels 
cart 
carts 
cartwheel 
cartwheels 
cassia 
cattle 
cattlefood 
cattlehouse 
cause 
caused 
causes 
causing 
cedar 
cedars 
cedartrees 
cedarwood 
certain 
certainly 
chain 
chained 
chaining 
chainornaments 
chains 
chalcedony 
chalk 
chameleon 
chance 
chances 
change 
changed 
changers 
changes 
changing 
cheap 
cheese 
cheeses 
chest 
chests 
chief 
chiefs 
child 
childbirth 
children 
children's 

child's 
chin 
chins 
chrysolite 
chrysoprase 
church 
churches 
cinnamon 
circle 
circled 
circles 
circling 
circumcision 
circumcisionnot 
clean 
cleaner 
cleaner's 
cleanhearted 
cleaning 
clear 
cleared 
clearing 
clearly 
cloth 
clothed 
clothing 
cloths 
clothworker's 
clothworking 
cloud 
cloudburst 
clouded 
clouds 
coal 
coals 
coat 
coated 
coating 
coats 
cock 
cock's 
cold 
coldly 
colony 
colour 
coloured 
colours 
come 
comes 
comfort 
comforted 
comforter 
comforters 
comforting 
comforts 
coming 
comings 
common 
commonly 
company 
comparison 
comparisons 
competition 
complete 
completely 
completing 
condition 
conditions 
coney 
conies 
connection 
conscious 
consciously 
control 
controlled 
controller 
controllers 
controlling 
cook 
cooked 
cooking 
cookingpot 
cooks 
copied 
copies 
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copper 
copperworker 
copy 
copying 
cor 
coral 
corals 
cord 
corded 
cords 
cormorant 
cornelian 
cotton 
coughedup 
countries 
country 
countryman 
countrymen 
countryside 
cover 
covered 
covering 
covers 
cow 
cows 
cow's 
crack 
cracked 
cracking 
cracks 
crane 
credit 
credited 
creditor 
creditors 
criers 
cries 
crime 
crimes 
crocodile 
cross 
crosses 
crossing 
crossingplaces 
crossroads 
crown 
crowned 
crowning 
crowns 
cruel 
cruelly 
crushed 
crusher 
crushing 
crushingfloor 
crushingplaces 
crushingstone 
crushingstones 
cry 
crying 
crystal 
cubit 
cubits 
cumi 
cummin 
cup 
cups 
current 
curse 
cursed 
curser 
curses 
cursing 
curtain 
curtained 
curtains 
curve 
curved 
curving 
cushion 
cushions 
cut 
cutoff 
cuts 
cutters 

cutting 
cuttinginstruments 
cuttingoff 
cypress 
cypresstrees 
cypresswood 
damage 
damaged 
damaging 
dance 
dancers 
dances 
dancing 
danger 
dangers 
darics 
dark 
darkest 
darkly 
daughter 
daughterinlaw 
daughters 
daughter's 
daughters' 
daughtersinlaw 
daughtertowns 
dawn 
dawning 
day 
daylet 
daylight 
days 
day's 
days' 
daytime 
dead 
dear 
dearer 
dearest 
dearly 
death 
deathblow 
deathgiving 
deaths 
deathwound 
debt 
debtor 
debtors 
debts 
deceit 
deceits 
decision 
decisions 
deep 
deeper 
deepest 
deeply 
deepseated 
degree 
degrees 
delicate 
delicately 
delight 
delighted 
delighting 
delights 
dependent 
design 
designed 
designedly 
designer 
designers 
designing 
designs 
desire 
desired 
desires 
desiring 
destruction 
detail 
detailed 
details 
dew 
diamond 
did 

different 
direction 
directions 
dirty 
disciple 
disciples 
discovery 
discussion 
discussions 
disease 
diseased 
diseases 
disgust 
disgusted 
disgusting 
distance 
distribution 
division 
divisions 
do 
doe 
doer 
doers 
does 
dog 
dogfly 
dogs 
dog's 
doing 
doings 
done 
door 
doorkeeper 
doorkeepers 
dooropening 
doorpillars 
doors 
doorstep 
doorsteps 
doorway 
doorways 
doubt 
doubted 
doubters 
doubting 
doubts 
dove 
doves 
doves' 
down 
downfall 
dragon 
dragons 
dragon's 
drain 
drained 
draining 
dream 
dreamer 
dreamers 
dreaming 
dreams 
dress 
dressed 
dresses 
dressing 
drink 
drinkers 
drinking 
drinkingplace 
drinkingplaces 
drinkingvessels 
drinkingwater 
drinks 
driver 
drivers 
driving 
drop 
dropped 
dropping 
droppings 
drops 
dry 
drying 
dust 

eagle 
eagles 
eagle's 
eagles' 
ear 
earlier 
earliest 
early 
earrings 
ears 
earth 
earthshaking 
earthshock 
earthshocks 
earthwork 
earthworks 
east 
ebony 
edge 
edged 
edges 
edging 
education 
effect 
effected 
effecting 
effects 
egg 
eggs 
eight 
eighteen 
eighteenth 
eighth 
eightieth 
eighty 
eightyeight 
eightyfive 
eightyfour 
eightyseven 
eightysix 
eightythree 
eightytwo 
electrum 
elem 
eleven 
eleventh 
emerald 
emeralds 
empire 
end 
ended 
ending 
ends 
engines 
enough 
envies 
envy 
ephah 
ephod 
equal 
equally 
error 
errors 
eternal 
even 
evening 
evenings 
event 
events 
ever 
everburning 
everflowing 
everliving 
evershining 
every 
everybody 
everyman's 
everyone 
everyone's 
everything 
everywhere 
evil 
evildoer 
evildoers 
evildoing 

evildoings 
evilminded 
evils 
evilsmelling 
example 
examples 
exchange 
exchanged 
exchanging 
existence 
experience 
experienced 
experiences 
expert 
expertly 
experts 
eye 
eyeballs 
eyes 
eyesall 
eyewitnesses 
face 
facebones 
faced 
faces 
facing 
fact 
facts 
fair 
fairer 
faith 
falcon 
fall 
falling 
false  
falsehearted 
falsely 
families 
family 
far 
faraway 
farm 
farmed 
farmer 
farmers 
farming 
faroff 
farseeing 
farstretching 
farther 
farthest 
farthing 
farthings 
fat 
fate 
father 
fatherinlaw 
fathers 
father's 
fathers' 
fathersand 
fathersaw 
fatter 
fattest 
fear 
feared 
fearing 
fears 
feast 
feastday 
feasters 
feasting 
feasts 
feastthey 
feathered 
feathers 
feeble 
feeblefooted 
feeblehearted 
feebleminded 
feebler 
feebly 
feed 
feeling 
feelings 

feet 
female 
females 
ferret 
fertile 
fiction 
fictions 
field 
fieldfly 
fields 
fieldwork 
fieldworkers 
fifteen 
fifteenth 
fifth 
fifties 
fiftieth 
fifty 
fiftyfive 
fiftyfour 
fiftynine 
fiftyone 
fiftysecond 
fiftyseven 
fiftysix 
fiftythree 
fiftytwo 
fig 
fight 
fighter 
fighters 
fighting 
fightingman 
fightingmen 
fightings 
fights 
figs 
figtree 
figtrees 
finger 
fingerrings 
fingers 
fire 
firebaskets 
fireoffering 
fireplace 
fires 
firespoon 
firetrays 
firewood 
firing 
firkins 
first 
firstfruit 
firstfruits 
firtree 
firtrees 
fish 
fisher 
fishermen 
fishers 
fishes 
fishhook 
fishhooks 
fishing 
fishinglines 
fishingnet 
fishspears 
fitches 
five 
fivesided 
fixed 
fixedly 
flag 
flags 
flame 
flames 
flaming 
flat 
flax 
flesh 
fleshif 
fleshpots 
flies 
flight 
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flock 
flocks 
floor 
floors 
flow 
flower 
flowering 
flowers 
flowing 
fly 
fold 
folded 
folding 
folds 
food 
foodbags 
foodplace 
foods 
foodstore 
foolish 
foolishly 
foot 
footchains 
footmen 
footrest 
footrings 
footstep 
footsteps 
footway 
for 
force 
forced 
forces 
forcing 
forgiveness 
forgivenessbut 
fork 
forks 
form 
formed 
forming 
forms 
fortieth 
forty 
fortyeight 
fortyfirst 
fortyfive 
fortyfour 
fortynine 
fortyone 
fortyseven 
fortysix 
fortythree 
fortytwo 
forward 
fountain 
fountains 
four 
fourfooted 
fourteen 
fourteenth 
fourth 
fowlhouse 
fowls 
fox 
foxes 
frame 
framed 
frames 
framework 
framing 
frankincense 
free 
freeing 
freely 
frequent 
frequently 
friend 
friends 
frogs 
from 
fromfrom 
front 
fruit 
fruits 

fruittree 
fruittrees 
full 
fuller 
fullest 
fully 
further 
future 
galbanum 
garden 
gardener 
gardens 
gave 
gazelle 
gazelles 
general 
generally 
generation 
generations 
gentle 
gentlehearted 
gently 
gerahs 
get 
gets 
getting 
gettingin 
giereagle 
girl 
girls 
girl's 
give 
given 
giver 
gives 
giving 
glad 
gladhearted 
gladly 
glass 
glories 
glory 
glorying 
glorysuch 
go 
goat 
goats 
goat's 
goats' 
goatskins 
gobetween 
god 
goddess 
godfearing 
gods 
gods' 
goes 
going 
goings 
gold 
goldworker 
goldworkers 
gone 
good 
goodday 
goodfornothing 
goodlooking 
goods 
gopher 
got 
government 
grace 
grain 
graincleaning 
graincrushers 
graincrushing 
graincutter 
graincutters 
graincutting 
grainfield 
grainfields 
grainfloor 
grainfloors 
grainplants 
grains 

grainstems 
grainstores 
grape 
grapecakes 
grapecrusher 
grapecrushing 
grapecutting 
grapes 
grapevine 
grass 
grasses 
grassland 
grasslands 
great 
greater 
greatest 
greatly 
green 
grey 
greyhaired 
greyheaded 
grief 
grip 
gripped 
gripping 
group 
grouped 
groups 
growth 
growths 
guest 
guestroom 
guests 
guest's 
guide 
guided 
guides 
guiding 
guidingblade 
guidingblades 
had 
hair 
haircloth 
haircutter's 
hairs 
half 
halfcurtain 
halfheartedly 
halfshekel 
halftribe 
halfway 
hammer 
hammered 
hammering 
hammers 
hand 
handbags 
handed 
handing 
handpart 
hands 
hand's 
handstretch 
handwork 
handworker 
handwriting 
hanging 
hangings 
happy 
harbour 
hard 
harder 
hardest 
hardfaced 
hardhearted 
hardly 
hare 
harmony 
harp 
hart 
harts 
has 
hate 
hated 
hater 

haters 
hates 
hating 
hats 
have 
having 
hawk 
hawks 
hawk's 
he 
head 
headband 
headbands 
headcovers 
headdress 
headdresses 
heading 
heads 
headstone 
headway 
healthy 
hearer 
hearers 
hearing 
heart 
hearts 
heart's 
heartsearchings 
heat 
heated 
heating 
heatingpot 
heaven 
heavens 
hedgehog 
hegoat 
hegoats 
helamb 
helambs 
hell 
help 
helped 
helper 
helpers 
helping 
her 
herd 
herdman 
herdmen 
herds 
herdsman's 
herdsmen 
here 
heritage 
heritages 
heron 
hers 
herself 
hesheep 
high 
higher 
highest 
highhearted 
highlands 
highly 
highsounding 
highway 
highways 
hill 
hillcountry 
hills 
hillside 
hillsides 
hilltops 
him 
himself 
himthat 
hin 
hind 
his 
hiss 
hisses 
hissing 
histories 
history 

ho 
hole 
holes 
holies 
hollow 
hollowing 
hollowminded 
hollows 
holy 
homer 
homers 
honey 
honeyed 
honour 
honoured 
honouring 
honours 
hook 
hooks 
hoopoe 
hope 
hoped 
hopes 
hoping 
horn 
horned 
hornet 
hornets 
horns 
horse 
horseback 
horseman 
horsemen 
horses 
horse's 
horses' 
hour 
hours 
hour's 
house 
housed 
houses 
houseservant 
houseservants 
housetop 
housetops 
housing 
how 
however 
hundred 
hundreds 
hundredth 
husband 
husbands 
husband's 
hyssop 
ice 
icedrops 
icestorm 
idea 
ideas 
if 
ill 
image 
images 
important 
impossible 
impulse 
impulses 
in 
increase 
increased 
increasing 
industry 
ink 
inkpot 
inlet 
inlets 
inmost 
inner 
insect 
insects 
inside 
insides 
instrument 

instruments 
interest 
interested 
interests 
into 
invention 
inventions 
iron 
irons 
ironworker 
is 
island 
islands 
it 
its 
itself 
ivory 
jacinth 
jackals 
jasper 
javelin 
jewel 
jewelled 
jeweller 
jewels 
join 
joined 
joining 
joins 
journey 
journeying 
journeys 
joy 
judge 
judged 
judges 
judge's 
judging 
jumping 
keep 
keeper 
keepers 
keeping 
keeps 
keepwashings 
kept 
key 
keys 
keystone 
kidneys 
kind 
kinder 
kindhearted 
kindly 
king 
kingdom 
kingdoms 
kinglike 
kings 
king's 
kings' 
kiss 
kisses 
kissing 
kite 
knee 
knees 
knife 
knives 
knotted 
knotting 
know 
knowledge 
lama 
lamb 
lambs 
land 
landand 
landmark 
landmarks 
lands 
landthough 
language 
languages 
last 
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late 
later 
laughed 
laughing 
law 
lawgiver 
lawgivers 
lawgivers' 
laws 
lead 
leaf 
learner 
learning 
least 
leather 
leatherworker 
leaven 
leavened 
leaves 
left 
lefthanded 
leg 
legchains 
legmuscles 
legs 
leopard 
leopards 
leper 
lepers 
leper's 
less 
let 
lets 
letter 
lettered 
letters 
letting 
level 
levelled 
life 
lifeblood 
lifegiver 
lifegiving 
lifetime 
lifted 
lifter 
lifting 
light 
lighted 
lighting 
lights 
lightsupport 
lightsupports 
like 
lily 
limit 
limits 
line 
lined 
linen 
linenwork 
linenworker's 
lines 
lion 
lions 
lion's 
lions' 
lips 
liquid 
liquids 
list 
listed 
lists 
little 
liver 
lives 
living 
livingplace 
livingplaces 
livingspace 
lizard 
load 
locked 
locking 
locks 

locust 
locusts 
locust's 
log 
long 
longer 
longhaired 
look 
looked 
looking 
lookingglass 
lookingglasses 
lookout 
looks 
loose 
lord 
lords 
lord's 
loss 
losses 
loud 
louder 
loudly 
loudsounding 
loudtongued 
loudvoiced 
love 
loved 
lovefeasts 
lovefruits 
lover 
lovers 
loves 
love's 
loving 
low 
lower 
lowest 
lowland 
lowlands 
lowly 
machine 
machines 
made 
make 
maker 
makers 
makes 
making 
male 
males 
man 
manager 
managers 
manchild 
maneh 
manna 
man's 
manservant 
many 
mark 
marked 
market 
marketing 
marketplace 
marketplaces 
marking 
markings 
marks 
married 
mass 
massed 
masses 
massing 
master 
masterbuilder 
masters 
master's 
masters' 
material 
materials 
may 
me 
meal 
meals 

mealtime 
measure 
measured 
measurers 
measures 
measuring 
measuringline 
measuringrod 
meat 
meathook 
meathooks 
meats 
medical 
meeting 
meetingplace 
meetingplaces 
meetings 
melodies 
melody 
memories 
memory 
men 
men's 
menservants 
menthey 
mercies 
mercy 
mercyseat 
metal 
metaltester's 
metalworker 
metalworkers 
mice 
middle 
might 
mile 
miles 
military 
milk 
milkcheeses 
million 
mind 
minds 
mine 
minute 
minute's 
mist 
mists 
mixed 
money 
moneybag 
moneybags 
moneybox 
moneychangers 
monkeys 
month 
months 
moon 
moonornaments 
moons 
more 
morning 
mornings 
most 
mother 
motherinlaw 
mothers 
mother's 
mothers' 
mothertown 
motion 
mountain 
mountains 
mountaintop 
mountaintops 
mouse 
mouth 
mouthbit 
mouthbone 
mouths 
move 
moved 
mover 
moving 
much 

mulberrytree 
mule 
mules 
muscle 
muscles 
music 
musicinstruments 
musicmaker 
musicmakers 
musicpipe 
mustard 
my 
myrrh 
myrtle 
myself 
myselfwith 
nail 
nailed 
nailing 
nails 
name 
namebecause 
named 
names 
naming 
narrow 
narrower 
narrowminded 
nation 
nations 
natural 
naturally 
near 
nearer 
nearest 
necessaries 
necessary 
neck 
neckornaments 
necks 
need 
needed 
needing 
needle 
needle's 
needlework 
needs 
neighbour 
neighbouring 
neighbours 
neighbour's 
neighbours' 
net 
nets 
network 
never 
neverending 
new 
newly 
newlymarried 
news 
night 
nightbird 
nightfall 
nighthawk 
nightlet 
nights 
night's 
nightspirit 
nighttime 
nightvision 
nightwatches 
nine 
nineteen 
nineteenth 
ninety 
ninetyeight 
ninetyfive 
ninetynine 
ninetysix 
ninetytwo 
ninth 
no 
noble 
noblehearted 

noblest 
nobly 
nobody 
nohair 
noise 
noises 
nor 
normal 
normally 
north 
northeast 
nose 
nosejewels 
nosering 
noserings 
noses 
not 
note 
noted 
notes 
nothing 
noting 
now 
nowhere 
number 
numbered 
numbering 
numbers 
nuts 
oak 
oaks 
oaktree 
oaktrees 
oath 
oaths 
observation 
octave 
of 
off 
offand 
offer 
offered 
offering 
offerings 
offspring 
oil 
oiled 
oilgiving 
oils 
old 
older 
oldest 
olive 
olivegardens 
oliveleaf 
olives 
olivetree 
olivetrees 
olivewood 
omer 
omers 
on 
once 
one 
ones 
one's 
oneself 
onlookers 
only 
onrush 
onto 
onycha 
onyx 
open 
opener 
openhanded 
opening 
openly 
openminded 
openwork 
operation 
operations 
opinion 
opinions 
opposite 

or 
order 
ordered 
ordering 
orders 
ornament 
ornamented 
ornamenting 
ornaments 
ospray 
ostrich 
ostriches 
other 
otherperson 
others 
other's 
others' 
our 
ours 
ourselves 
out 
outburst 
outbursts 
outcome 
outcries 
outcry 
outer 
outflowing 
outgoing 
outgoings 
outlaw 
outlaws 
outlet 
outlines 
outshining 
outside 
outskirts 
outstretched 
oven 
ovenfire 
ovens 
over 
overcame 
overcome 
overcomes 
overcoming 
overdriving 
overflow 
overflowing 
overfull 
overgreat 
overhanging 
overhard 
overhead 
overhigh 
overinterested 
overlong 
overlooked 
overlooking 
overmuch 
overpowering 
overquick 
overready 
overruling 
overrunning 
oversee 
overseeing 
overseer 
overseers 
overstepping 
overtake 
overtaken 
overtakes 
overtook 
overturned 
overturning 
overweight 
owl 
owner 
owners 
owning 
ox 
oxcords 
oxdriving 
oxen 
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oxstick 
oxyokes 
pain 
pained 
pains 
paint 
painted 
painting 
palm 
palmtree 
palmtrees 
paper 
papers 
papyrus 
parallel 
parcel 
parcels 
park 
part 
parted 
parting 
partridge 
parts 
passion 
passions 
past 
paste 
pasting 
payment 
payments 
peace 
peacegiving 
peaceloving 
peacemaker 
peacemakers 
peaceoffering 
peaceofferings 
peacocks 
pearl 
pearls 
pelican 
pen 
pence 
pencil 
penknife 
pennies 
penny 
people 
peopled 
peoples 
people's 
peoples' 
peres 
perfume 
perfumeboxes 
perfumed 
perfumemaker 
perfumemakers 
perfumer's 
perfumes 
perfumevessel 
person 
persons 
person's 
phylacteries 
picture 
pictured 
pictures 
pig 
pigeon 
pigeons 
pigs 
pig's 
pigs' 
pillar 
pillared 
pillars 
pin 
pinetree 
pinning 
pinpoints 
pins 
pipe 
pipes 
piping 

pitied 
pity 
place 
placed 
places 
placing 
plane 
planetrees 
plant 
planted 
planter 
planters 
planting 
plantingplaces 
plantings 
plants 
plantworm 
plate 
plated 
plates 
plating 
play 
played 
player 
players 
playing 
plaything 
please 
pleased 
pleasers 
pleasing 
pleasure 
pleasuremaking 
pleasures 
plough 
ploughblades 
ploughed 
ploughing 
ploughman 
ploughmen 
ploughs 
pockets 
point 
pointed 
pointing 
points 
poison 
poisoned 
poisoning 
poisonplant 
poisonsnake 
poisonsnakes 
police 
polished 
polisher 
pomegranate 
pomegranates 
pool 
pools 
poor 
poorer 
poorest 
poorlooking 
poorly 
porcupine 
porter 
position 
positions 
possible 
postrunner 
pot 
pots 
potter 
potters 
potter's 
pound 
pounds 
powder 
power 
powers 
praise 
praised 
praiseoffering 
praiseofferings 
praises 

praising 
prayer 
prayers 
preacher 
preachers 
preaching 
present 
price 
priced 
pride 
priest 
priests 
priest's 
priests' 
prince 
princes 
prince's 
princess 
print 
printed 
prison 
prisoned 
prisoner 
prisoners 
prisonhouse 
prisoning 
prisons 
private 
privately 
produce 
produced 
producing 
profit 
profits 
property 
prophet 
prophets 
prophet's 
protest 
protesting 
protests 
psaltery 
public 
publicly 
pulled 
pulling 
punishment 
punishments 
purple 
purpose 
purposed 
purposes 
purposing 
purslain 
pushed 
pushing 
put 
puts 
putting 
pygarg 
qualities 
quality 
quarter 
quarters 
queen 
queenmother 
queens 
queen's 
question 
questioned 
questioning 
questionings 
questions 
quick 
quicker 
quickfooted 
quickly 
quickmoving 
quickrunning 
quiet 
quietly 
quite 
railing 
rain 
raindrops 

rained 
raining 
rains 
rainstorm 
range 
rapture 
rate 
rating 
raven 
ravens 
rays 
reader 
readers 
readily 
reading 
ready 
reason 
reasoning 
reasonings 
reasons 
record 
recorded 
recorder 
recorders 
records 
red 
redder 
redhaired 
reedboats 
regret 
regretted 
regular 
regularly 
rehokim 
relation 
relations 
relation's 
religion 
representative 
representatives 
request 
requested 
requesting 
requests 
respect 
respected 
respecter 
respecting 
responsible 
rest 
resting 
restingplace 
restingplaces 
revelation 
revelations 
reward 
rewarded 
rewarder 
rewarding 
rewards 
right 
righteousness 
rightly 
rights 
ring 
ringed 
rings 
river 
riverbeast 
rivercrossing 
rivergrass 
riverplant 
riverplants 
rivers 
river's 
riverside 
road 
roads 
roadside 
robe 
robed 
robes 
rock 
rockbadger 
rockgoats 

rocks 
rod 
rods 
roe 
roes 
roe's 
roes' 
roll 
rolled 
rolling 
rolls 
roof 
roofed 
roofing 
roofs 
room 
rooms 
root 
rooted 
rooting 
roots 
rose 
rough 
rougher 
roughly 
round 
roundabout 
rubbed 
rubbing 
rubies 
ruby 
rule 
ruled 
ruler 
rulers 
ruler's 
rulers' 
rules 
ruling 
run 
runner 
runners 
running 
rush 
rushing 
sabachthani 
sad 
sadfaced 
sadly 
safe 
safely 
said 
sail 
sailing 
sailors 
sails 
sailsupport 
saint 
saints 
salt 
salted 
salvation 
same 
sand 
sandalwood 
sandlizard 
sands 
sapphire 
sapphires 
sardius 
sardonyx 
saviour 
saviours 
saw 
sawbecause 
say 
saying 
sayings 
says 
scale 
scales 
school 
scissors 
scorpion 
scorpions 

scribe 
scribes 
scribe's 
sea 
seabeast 
seabeasts 
seaforce 
seagrass 
seahawk 
sealand 
sealands 
seamen 
search 
searched 
searcher 
searchers 
searching 
searchings 
seas 
sea's 
seaside 
seat 
seated 
seating 
seats 
second 
secret 
secretary 
secretly 
secrets 
see 
seed 
seeds 
seed's 
seeif 
seeing 
seem 
seemed 
seeming 
seems 
seen 
seer 
seers 
sees 
selection 
self 
selfcontrol 
selfcontrolled 
selfglory 
selfjudged 
selfordered 
selfrespect 
selfrespecting 
send 
sending 
sends 
sense 
senses 
sent 
separate 
separately 
separating 
serious 
seriously 
seriousminded 
servant 
servantgirl 
servantgirls 
servants 
servant's 
servants' 
servantwife 
servantwives 
servantwoman 
servantwomen 
seven 
seventeen 
seventeenth 
seventh 
seventy 
seventyfive 
seventyfour 
seventyseven 
seventysix 
seventythree 
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seventytwo 
sex 
shade 
shades 
shake 
shaker 
shaking 
shakiphwood 
shame 
shamed 
shaming 
sharp 
sharper 
sharply 
sharppointed 
she 
sheasses 
shebears 
sheep 
sheepfarmer 
sheepkeeper 
sheepkeepers 
sheepmarket 
sheep's 
sheepskins 
sheeptraders 
shegoat 
shegoats 
shekel 
shekels 
shekels' 
shelamb 
shelf 
shelion 
shelions 
sherbintree 
shining 
ship 
shipmaster 
ships 
ship's 
ships' 
shock 
shocked 
shocking 
shoe 
shoes 
short 
shorter 
shower 
showered 
showers 
shut 
shutin 
shutting 
side 
sidebones 
sideroads 
siderooms 
sides 
sidewalls 
siding 
sign 
signed 
signing 
signs 
silk 
silver 
silverworker 
simple 
simpleminded 
simpler 
simply 
sin 
sinned 
sinner 
sinners 
sinner's 
sinning 
sinoffering 
sinofferings 
sins 
sir 
sister 
sisterinlaw 

sisters 
sister's 
six 
sixteen 
sixteenth 
sixth 
sixty 
sixtyeight 
sixtyfive 
sixtyfour 
sixtynine 
sixtyone 
sixtyseven 
sixtysix 
sixtytwo 
size 
sizes 
skies 
skin 
skindisease 
skinmark 
skinned 
skinning 
skinplates 
skins 
skirt 
skirts 
sky 
sleep 
sleeping 
sleepingrooms 
slip 
slipping 
slope 
slopes 
sloping 
slow 
slowly 
small 
smaller 
smallest 
smashed 
smashing 
smell 
smelling 
smells 
smile 
smoke 
smoking 
smooth 
smoother 
smoothing 
smoothly 
smoothsounding 
snake 
snakebite 
snakes 
snake's 
sneezings 
snow 
so 
soap 
society 
soda 
soft 
softer 
softly 
softlyflowing 
solid 
some 
someone 
someone's 
something 
sometimes 
somewhere 
son 
song 
songs 
soninlaw 
sons 
son's 
sons' 
sonsinlaw 
sorrow 
sorrowing 

sorrows 
sort 
sorts 
soul 
souls 
soul's 
sound 
sounded 
sounding 
sounds 
soup 
south 
southeast 
southland 
space 
spaced 
spaces 
spade 
spades 
sparrow 
sparrows 
spear 
spearmen 
spears 
special 
specially 
spelt 
spice 
spices 
spicetrees 
spider's 
spirit 
spirits 
sponge 
spoon 
spoons 
sport 
sports 
spring 
springing 
springs 
square 
squared 
squares 
stacte 
stage 
stages 
stamp 
stamped 
stamping 
stamps 
star 
stars 
start 
started 
starting 
statement 
statements 
station 
stationed 
stations 
stem 
stems 
step 
stepping 
steps 
stick 
sticks 
sticky 
stiff 
stiffhearted 
stiffnecked 
still 
stitched 
stitchedup 
stitching 
stomach 
stomachs 
stone 
stonecutters 
stoned 
stones 
stonework 
stoneworkers 
stoneworks 

stoning 
stop 
stopped 
stopping 
store 
stored 
storedup 
storehouse 
storehouses 
storerooms 
stores 
storetowns 
stories 
storing 
stork 
storm 
stormcloud 
stormcrushed 
stormflames 
stormwind 
stormwinds 
story 
straight 
straightforward 
straightforwardly 
strange 
strangely 
stream 
streaming 
streams 
street 
streets 
strength 
stretch 
stretched 
stretchedout 
stretcher 
stretching 
strong 
stronger 
strongest 
strongly 
structure 
substance 
such 
sudden 
suddenly 
suggestion 
suggestions 
summer 
summerhouse 
sun 
sundown 
sunimages 
sunjewels 
sunlight 
support 
supported 
supporter 
supporters 
supporting 
supports 
surprise 
surprised 
swallow 
sweet 
sweeter 
sweetsmelling 
swimming 
sword 
swords 
swordsmen 
sycamores 
sycamoretrees 
system 
table 
tableland 
tablelands 
tables 
tablevessels 
tail 
tails 
take 
taken 
taker 

takers 
takes 
taking 
talent 
talents 
talents' 
talk 
talked 
talker 
talkers 
talking 
tall 
taller 
taste 
tasted 
tastes 
tasting 
tax 
taxed 
taxes 
taxfarmer 
taxfarmers 
taxing 
teacher 
teachers 
teaching 
teachings 
tears 
teeth 
tekel 
ten 
tencorded 
tens 
tent 
tentcircle 
tentcircles 
tentcord 
tentdoor 
tenth 
tenths 
tentmakers 
tentpin 
tentpins 
tents 
tenttowns 
test 
testament 
tested 
tester 
testing 
tests 
than 
that 
the 
theatre 
their 
theirs 
them 
themsaid 
themselves 
themthe 
then 
theories 
there 
these 
they 
thick 
thicker 
thickly 
thief 
thieves 
thin 
thing 
things 
thinner 
third 
thirteen 
thirteenth 
thirtieth 
thirty 
thirtyeight 
thirtyeighth 
thirtyfifth 
thirtyfirst 
thirtyfive 

thirtyfour 
thirtynine 
thirtyninth 
thirtyone 
thirtysecond 
thirtyseven 
thirtyseventh 
thirtysix 
thirtysixth 
thirtythree 
thirtytwo 
this 
thistles 
thorn 
thorns 
thorntree 
those 
though 
thought 
thoughts 
thousand 
thousands 
thread 
threads 
three 
threeyear 
throat 
throats 
through 
thumb 
thumbs 
thunder 
thunderflame 
thunderflames 
thundering 
thunderings 
thunders 
thunderstorm 
thunderstorms 
tight 
tightly 
till 
time 
times 
tin 
tired 
to 
today 
toe 
toes 
together 
tomorrow 
tongue 
tongues 
tonight 
took 
tooth 
top 
topaz 
tops 
touch 
touched 
touching 
tower 
towers 
town 
towndoor 
towns 
townsman 
townsmen 
townspeople 
trade 
traded 
trader 
traders 
trading 
tradingships 
train 
trained 
training 
transport 
transported 
traveller 
travellers 
travelling 

 155



Appendix: The words for the Bible in “Simple English” 

travels 
tray 
trays 
tree 
trees 
tribe 
tribes 
tribesmen 
trick 
tricked 
tricking 
tricks 
trigon 
trouble 
troubled 
troublemaker 
troubler 
troublers 
troubles 
troubling 
trousers 
true  
truehearted 
truly 
turn 
turned 
turning 
turnings 
twelfth 
twelve 
twentieth 
twenty 
twentyeight 
twentyfifth 
twentyfirst 
twentyfive 
twentyfour 
twentyfourth 
twentynine 
twentyone 
twentysecond 
twentyseven 
twentyseventh 
twentysix 
twentysixth 
twentythird 
twentythree 
twentytwo 
twice 
twist 
twisted 
twisting 
twists 
two 
twoedged 
twohorned 
twos 
unable 
unanswered 
unarmed 
unbalanced 
unbreathing 
unbroken 
uncared 
uncaredfor 
uncertain 
uncertainly 
unchanged 
unchanging 
unclean 
unclothed 
uncomforted 
uncommonly 
unconscious 
unconsciously 
uncontrolled 
uncooked 
uncovered 
uncovering 
uncut 
undamaged 
under 
underfoot 
undergo 
undergoes 

undergoing 
undergone 
undertake 
undertaken 
undertaking 
undertakings 
undertook 
underwent 
underworld 
undid 
undo 
undoes 
undone 
unending 
unequal 
unfertile 
unfolded 
unfolding 
unformed 
unfree 
unhappy 
unhealthy 
unholy 
unhonoured 
unimportant 
unit 
united 
uniting 
unkind 
unleavened 
unlifted 
unlike 
unlimited 
unmarked 
unmarried 
unmeasured 
unmixed 
unmoved 
unnatural 
unnaturally 
unnumbered 
unpeopled 
unplanted 
unpleasing 
unploughed 
unready 
unresting 
unsafe 
unseen 
unsexed 
unshaking 
untested 
untouched 
untrained 
untroubled 
untrue 
unused 
unveiled 
unveiler 
unveiling 
unwalled 
unwashed 
unwatched 
unwatered 
unwell 
unwise 
unworked 
up 
upkeep 
upland 
uplifted 
uplifting 
upon 
upper 
upright 
uprightly 
uprights 
uprooted 
uprooting 
upside 
us 
use 
used 
user 
users 

uses 
using 
valley 
valleys 
value 
valued 
valuer 
values 
valuing 
veil 
veiled 
veiling 
veils 
verse 
very 
vessel 
vessels 
view 
viewing 
vine 
vinebranch 
vinecuttings 
vinegarden 
vinegardens 
vinekeepers 
vineknives 
vineplants 
vines 
vinetree 
violent 
violently 
virgin 
virgins 
virgin's 
virtue 
virtues 
vision 
visions 
voice 
voices 
vulture 
waited 
waiting 
waitingwoman 
walk 
walked 
walking 
walks 
wall 
wallbuilders 
walled 
walls 
wanderer 
wanderers 
wandering 
wanderings 
war 
warcarriage 
warcarriages 
warcries 
warcry 
ward 
wardress 
wardresses 
warhorn 
warhorse 
warhorses 
warm 
warming 
warmly 
waronly 
warring 
wars 
was 
wash 
washed 
washerman's 
washing 
washingbasin 
washings 
washingvessel 
washingvessels 
washpot 
waste 
wasted 

waster 
wasters 
wastes 
wasting 
watch 
watched 
watcher 
watchers 
watches 
watching 
watchings 
watchman 
watchman's 
watchmen 
watchmen's 
watchnight 
watchtower 
water 
waterdoor 
waterdoorway 
watered 
waterer 
waterfalls 
waterhen 
waterhole 
waterholes 
watering 
wateringplaces 
waterpipe 
waterplants 
waterpot 
waters 
waterside 
waterskin 
waterskins 
waterspring 
watersprings 
waterstreams 
watertight 
watertown 
watervessel 
waterways 
wave 
waved 
waves 
waving 
wax 
way 
ways 
wayside 
we 
wealth 
weariness 
weasel 
weather 
week 
weeks 
weeping 
weight 
weighted 
weights 
well 
wellarmed 
wellbeing 
welldoing 
welldressed 
wellloved 
wellpleased 
wellpleasing 
wellsaid 
wellwatered 
went 
were 
west 
wet 
what 
whatever 
wheat 
wheel 
wheeled 
wheels 
when 
whenever 
where 
wherever 

which 
whichever 
while 
whip 
whipped 
whipping 
whips 
whistling 
white 
whitehaired 
whiter 
whitewash 
whitewashed 
who 
whoever 
whom 
whose 
why 
wide 
widely 
wider 
wideshining 
widestretching 
widow 
widowed 
widows 
widow's 
wife 
wife's 
will 
willowtree 
wind 
windinstruments 
window 
windowframes 
windows 
winds 
wine 
winecrusher 
winecrushing 
winedrinking 
wines 
wineservant 
wineservants 
wineskin 
wineskins 
winestore 
wing 
winged 
wings 
winter 
wires 
wisdom 
wise 
wisehearted 
wisely 
wiser 
wisest 
with 
without 
witness 
witnessed 
witnesses 
witnessing 
wives 
wolf 
wolves 
woman 
woman's 
womanservant 
women 
women's 
womenservants 
wonder 
wondered 
wondering 
wonders 
wonderworker 
wonderworkers 
wonderworking 
wood 
woodcutter 
woodcutters 
woodcutting 
woodland 

woodlands 
woods 
woodwork 
woodworker 
woodworkers 
woodworker's 
wool 
woolcutters 
woolcutting 
word 
words 
work 
worked 
worker 
workers 
working 
workman 
workman's 
workmen 
works 
workstrange 
workthen 
world 
worldrulers 
world's 
worm 
worms 
wormwood 
worse 
worship 
worshipped 
worshipper 
worshippers 
worshipping 
worst 
would 
wound 
wounded 
wounding 
wounds 
wrath 
writer 
writers 
writer's 
writing 
writingboard 
writings 
wrong 
wrongdoer 
wrongdoers 
wrongdoing 
wrongdoings 
wronghearted 
wrongly 
wrongminded 
wrongs 
yardsticks 
year 
years 
year's 
years' 
yellow 
yes 
yesterday 
yoke 
yoked 
yokes 
yoking 
you 
young 
younger 
youngest 
your 
yours 
yourself 
yourselves 
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