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Abstract

In this thesis four separate problems in general relativity are considered, divided

into two separate themes: coordinate conditions and perfect fluid spheres. Regard-

ing coordinate conditions we present a pedagogical discussion of how the appropriate

use of coordinate conditions can lead to simplifications in the form of the spacetime

curvature — such tricks are often helpful when seeking specific exact solutions of the

Einstein equations. Regarding perfect fluid spheres we present several methods of

transforming any given perfect fluid sphere into a possibly new perfect fluid sphere.

This is done in three qualitatively distinct manners: The first set of solution generat-

ing theorems apply in Schwarzschild curvature coordinates, and are phrased in terms

of the metric components: they show how to transform one static spherical perfect

fluid spacetime geometry into another. A second set of solution generating theorems

extends these ideas to other coordinate systems (such as isotropic, Gaussian polar,

Buchdahl, Synge, and exponential coordinates), again working directly in terms of the

metric components. Finally, the solution generating theorems are rephrased in terms

of the TOV equation and density and pressure profiles. Most of the relevant calcula-

tions are carried out analytically, though some numerical explorations are also carried

out.
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Preface

This thesis looks at four problems in general relativity:

• Coordinate conditions in general relativity: A method of looking for nice solu-

tions of the Einstein equations.

• Develop several new transformation theorems that map perfect fluid spheres into

perfect fluid spheres.

• Develop a systematic way of classifying the set of all perfect fluid spheres.

• Rephrase all these theorems which apply in Schwarzschild coordinates, directly

in terms of the pressure profile and density profile.

General relativity (GR) or general relativity theory (GRT) is a theory of gravitation

discovered by Albert Einstein. The fundamental physical postulate of GR is that

the presence of matter causes curvature in the spacetime in which it exists. This

curvature is taken to be the gravitational field produced by the matter. Einstein’s

field equation gives the mathematical description of how the matter and curvature are

related. Moreover, once this curvature is given, GR describes how other objects (such

as planets and light beams) move in this gravitational field via the geodesic equation.

In addition, general relativity states that clocks run slower in strong gravitational

fields (or highly accelerated frames), predicting a gravitational redshift. It also pre-

dicts the existence of gravitational lensing, gravitational waves, gravitomagnetism, the

Lense-Thirring effect, and relativistic precession of orbiting bodies.

v



The first problem is looking for nice solutions of the Einstein equations. However,

Before stating Einstein’s equation, we need to briefly describe the concept of special

relativity, otherwise general relativity will be hard to understand.

Structure of the thesis

This thesis has been written with the goal of being accessible to people with a basic

background in general relativity, especially in coordinate conditions in general relativ-

ity and perfect fluid spheres.

This thesis is made up of six chapters and three appendices. Two of appendices are

papers published on work relating to this thesis. One was produced as a collaboration

with Dr. Matt Visser, Silke Weinfurtner, Celine Cattoen and Tristan Faber. The

second was produced in collaboration with Dr. Matt Visser and Silke Weinfurtner. At

the time of writing all papers have been published.
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Chapter 1

General introduction

1.1 Introduction

General relativity (GR) is the theory of space, time and gravitation formulated by

Einstein in 1915. General relativity is a beautiful theory, however it is often regarded

as a very deep and difficult theory. It has been considerably developed since the

late 1950s. Furthermore, in the mid 1960s, the modern theory of gravitational col-

lapse, singularities, and black holes has been developed. In this thesis, we present

the coordinate condition in general relativity, we will discuss the recent advances and

developments in methods of looking for a nice solutions of Einstein equation. In ad-

dition, we also present the perfect fluid spheres in general relativity. Understanding

the concept of perfect fluid spheres are important. They are first approximations to

attempt at building a realistic model for a general relativistic star. We introduce the

“algorithmic” techniques that permit one to generate large classess of perfect fluid

spheres in a purely mechanical way. Furthermore, we will extend these algorithmic

ideas, by proving several solution-generating theorems of varying levels of complexity.

We shall then explore the formal properties of these solution-generating theorems and

then will use these theorems to classify some of the previously known exact solutions.

Indeed, we develop several new transformation theorems that map perfect fluid spheres

into perfect fluid spheres. Additionally, we develop a systematic way of classifying the

set of all perfect fluid spheres. The remaining part of this thesis will be devoted to

1



rephrasing all these theorems, which originally apply in Schwarzschild coordinates,

directly in terms of the pressure profile and density profile.

Now we would like to give a mathematically precise formulation of the ideas in

Einstein’s equation. Before stating Einstein’s equation, we need to describe in brief

the concept of special relativity, otherwise general relativity will be hard to understand.

1.2 Einstein’s equation

To start we give an exposition of elementary topics in the geometry of space, and

the spatial tensorial character of physical laws in prerelativity physics. We formulate

general relativity and provide a motivation for Einstein’s equation, which relates the

geometry of spacetime to the distribution of matter in the universe.

1.2.1 General and Special Covariance

Assume that space has the manifold structure of R
3 and the association of points of

space with elements (x1, x2, x3) of R
3 can be accomplished by construction of a rigid

rectilinear grid of metersticks. We call the coordinates of space derived in this manner

as Cartesian coordinates [24]. The distance, S, between two points, x and x̄, defined

in terms of Cartesian coordinates by

S2 = (x1 − x̄1)2 + (x2 − x̄2)2 + (x3 − x̄3)2 (1.1)

This formula is the distance between two points.

Referred to equation (1.1), the distance between two nearby points is

(δS)2 = (δx1)2 + (δx2)2 + (δx3)2 (1.2)

Therefore, the metric of space is given by

ds2 = (dx1)2 + (dx2)2 + (dx3)2 (1.3)

In the Cartesian coordinate basis, we derive

ds2 =
∑
a,b

hab(dxa)(dxb) (1.4)

2



with hab = diag (1, 1, 1). This definition of hab is independent of choice of Cartesian

coordinate system.

When the components of the metric in the Cartesian coordinate basis are constants,

we get

∂ahbc = 0. (1.5)

The space is the manifold R
3 which possesses a flat Riemann metric. We are able to

use the geodesics of the flat metric to construct a Cartesian coordinate system. We use

the fact that initially parallel geodesics remain parallel because the cuvature vanishes.

1.3 Special Relativity

1.3.1 Minkowski space-time

We introduce a 4-dimensional continuum called space-time in which an event has

coordinates (t, x, y, z) [19].

Minkowski space-time is defined as a 4-dimensional manifold provided with a flat

metric of signature +2. By the definiton, since the metric is flat, there exists a special

coordinate system covering the whole manifold in which the metric is diagonal, with

diagonal elements equal to ±1. For convenience, we prefer to use the convention that

lower case latin indices run from 0 to 3. The special coordinate system is called a

Minkowski coordinate system and is written

(xa) = (x0, x1, x2, x3) = (c t, x, y, z). (1.6)

In special relativity [24], it is assumed that spacetime has the manifold structure of

R
4.

The spacetime interval, S, between two events x and x̄ defined by

S = −(x0 − x̄0)2 + (x1 − x̄1)2 + (x2 − x̄2)2 + (x3 − x̄3)2 (1.7)

in units where c = 1.

From the equation (1.7), we are able to defind the metric of spacetime ηab by

ds2 =

3∑
a,b=0

ηab dxa dxb (1.8)

3



with ηab = diag (-1, 1, 1, 1), where xa is any global inertial coordinate system.

Therefore, the ordinary derivative operator, ∂a, of the global inertial coordinates

satisfies

∂aηbc = 0 (1.9)

The curvature of ηab vanishes. In addition, we can parameterize timelike curves by

proper time, τ , defined by

τ =

∫
(−ηab T a T b)1/2 dt, (1.10)

where t = arbitrary parameterizaton of the curve, and T a = the tangent to the curve

in this parameterization.

The tangent vector ua to a timelike curve parameterized by τ is defined by the

4-velocity of the curve. The square of any 4-vector is an invariant and so

uaua = −c2, (1.11)

where c = 1 so we get,

uaua = −1. (1.12)

In the absence of external forces, its 4-velocity will satisfy the equation of motion,

ua∂au
b = 0, (1.13)

where ∂a is the derivative operator associated with ηab. In addition, when forces are

present, the equation (1.13), ua∂au
b is nonzero. Furthermore, all material particles

have a parameter known as “rest mass”, m, which appears as a parameter in the

equations of motion when forces are present. We can define the energy momentum

4-vector, pa, of a particle of mass m by

pa = m ua. (1.14)

Finally, we can define the energy of particle which is measured by an observer – present

at the site of the particle – as

E = −pa va, (1.15)
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where va is the 4-velocity of the observer.

In special relativity, the energy is the “time component” of the 4-vector, pa. At the rest

frame, a particle with respect to the observer, equation (1.15) reduces to the familiar

formula E = m c2. When the spacetime metric, ηab is flat, and the parallel transport

is path independent, we are able to define the energy of a particle as measured by an

observer who is not present at the site of the particle and has 4-velocity parallel to

that of the distant observer.

1.3.2 The Stress-Energy Tensor

In special relavity, we define the energy-momentum 4-vector of a particle of mass m

as in equation (1.14).

From [19], the Minkowski line element takes the form

ds2 = −dt2 + dx2 + dy2 + dz2 (1.16)

We can write this in tensorial form as

ds2 = ηab dxadxb, (1.17)

We take ηab to denote the Minkowski metric

ηab ≡

⎡
⎢⎢⎢⎣

−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

⎤
⎥⎥⎥⎦ = diag (−1, +1, +1, +1) (1.18)

In relativistic units the equation for the proper time satisfies

dτ 2 = −ds2. (1.19)

Now we present proper time τ relates to coordinate time t for any observer whose

velocity at time t is v, where

v =

(
dx

dt
,
dy

dt
,
dz

dt

)
. (1.20)
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So we have,

dτ 2 = −ds2 = −(−c2 dt2 + dx2 + dy2 + dz2)

= −dt2

[
−c2 +

(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]

= −c2 dt2

{
−1 +

1

c2

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]}

= c2 dt2
(

1 − v2

c2

)

dτ =

(
1 − v2

c2

)1/2

c dt (1.21)

The time-component of the energy-momentum vector does represent the energy of the

particle

p0 =
E

c
, γ =

(
1 − v2

c2

)−1/2

, and E = mc2γ. (1.22)

The space-components are the components of the three-dimensional momentum

p = mγv. (1.23)

A perfect fluid is defined to be a continuous distribution of matter with stress

energy tensor Tab of the form

Tab = ρuaub + p(ηab + uaub), (1.24)

where ua is the 4-velocity of the fluid, ρ is the mass-energy density in the rest-frame

of fluid, and p is the the pressure in the rest-frame of the fluid.

When there is no external forces, the equation of motion of a perfect fluid is simply

∂a Tab = 0. (1.25)
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Consider ∂aTab, we can write this in terms of ρ, p, and ua as

∂aTab = ∂a [ρuaub + p(ηab + uaub)]

= (∂aρ)uaub + (∂ap)(ηab + uaub)

+(ρ + p)(∂aua)ub + (ρ + p)ua(∂
aub)

= [(ua∂aρ) + (ρ + p)∂aua] ub

+ [(ρ + p)ua∂aub + ∂ap(ηab + uaub)] (1.26)

For equation (1.26) we can project the resulting equation parallel and perpendicular

to ub, we find:

[(ua∂aρ) + (ρ + p)∂aua] = 0, (1.27)

[(ρ + p)ua∂aub + ∂ap(ηab + uaub)] = 0. (1.28)

In the non-relativistic limit, when p � ρ , uμ = (1,−→v ), and v
dp
dt

� |−→∇p|, equation

(1.27) becomes,

ua ∂aρ + ρ ∂a ua = 0

⇒ ∂tρ + −→v · −→∇ ρ + ρ
−→∇ · −→v = 0

⇒ ∂tρ +
−→∇ · (ρ−→v ) = 0 (1.29)

and equation (1.28) becomes

ρ

{
∂−→v
∂t

+ (−→v · −→∇)−→v
}

= −−→∇p (1.30)

1.3.3 Relativistic hydrodynamics

Ordinary hydrodynamics is dealing with two basic equations [22]:

The equation of continuity

∂tρ + ∇ · (ρ−→v ) = 0 (1.31)

This relates to the density and velocity of the fluid. It is equivalent to the conservation

of mass.
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The Euler equation is the fluid mechanics equivalent to Newton’s second law, it

relates the acceleration of a particle following the flow

−→a =
dv

dt
=

∂−→v
∂t

+ (−→v · −→∇)−→v (1.32)

We can write it in term of force density
−→
f and mass density ρ:

−→a =
∂−→v
∂t

+ (−→v · −→∇)−→v =

−→
f

ρ
(1.33)

These laws have relativistic generalizations which are:

∇a(ρ va) = 0 (1.34)

Aa = V b ∇b V a (1.35)

where Aa is now a 4-vector field of 4-accelerations.

The relativistic continuity equation yields

∂(ρ γ)

∂t
= ∇ · (ρ γ −→v ) (1.36)

We interpret ρ as proportional to the number density of particles as measured by an

observer moving with the fluid. Indeed, the γ factor is corresponding to the fact that

Lorentz contraction “squashes” in the direction of motion, therefore, as seen by an

observer moving with respect to the fluid the number density of particles is ρ γ.

Now for the 4-acceleration

Ai = (γ ∂t + γ [−→v · −→∇]) [γ vi] (1.37)

and

A0 = (γ ∂t + γ [−→v · −→∇]) [γ] (1.38)

The standard Newtonian results is reproduced at the low velocity, where γ → 1.

The special theory of relativity only deals with flat spacetime and the motion of

objects is usually treated in terms of Lorentz transformations and translations from

inertial frame to another. The general theory of relativity extends it to deal with

non-inertial frames, and via Einstein’s equations with curved spacetimes as well. We

need to understand the basic concepts of special relativity before turning to gen-

eral relativity—as otherwise the mathematical constructions used in general relativity

would appear rather unmotivated.
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1.4 Conclusion

1.4.1 Postulational formulation of special relativity

There are two sets of postulates which are useful to generalize the general theory [19].

Postulate I. Space and time are represented by a 4-dimensional manifold provided with a

symmetric affine connection, Γa
bc, and a metric tensor, gab, which is satisfied as

follows:

(i) gab is non-singular with signature − + ++;

(ii) ∇c gab = 0;

(iii) Ra
bcd = 0.

The Postulate states that Γa
bc is the metric connection and that the metric is flat.

Postulate II. There exist privileged classes of curves in the manifold singled out as follows:

(i) ideal clocks travel along timelike curves and measure the parameter τ defined by

dτ 2 = −gab dxa dxb;

(ii) free particles travel along timelike geodesics;

(iii) light rays travel along null geodesics.

The first part of the second postulate makes physical the distinction between space

and time in the manifold. In Minkowski coordinates, it distinguishes the coordinate x0

from the other three as the “time” coordinate. Furthermore, it states that the proper

time τ which a clock measures is in accordance with the clock hypothesis. The rest of

Postulate II singles out the privileged curves that free particles and light rays travel

along.
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1.4.2 The correspondence principle

Any new theory is consistent with any acceptable earlier theories within their range of

validity. General relativity must agree on the one hand with special relativity in the

absence of gravitation and on the other hand with Newtonian gravitational theory in

the limit of weak gravitational fields and low velocities by comparing with the speed

of light. This gives rise to a correspondence principle, as in figure (1.1), where arrows

indicate directions of increased specialization.

Figure 1.1: This structure shows the correspondence principle for general relativity.

1.4.3 Discussion

Special relativity is a physical theory published in 1905 by Albert Einstein [2]. The

theory is a special case of Einstein’s theory of relativity where the effects of acceler-

ation and of gravity can be ignored. Special relativity can be cast into an abstract

geometrical form based on the use of a flat 4-manifold called Minkowski space. In-

deed, most of this can easily be handled using high school algebra, however this is

not necessarily the most useful way of doing things — especially when you then want

to generalize to the curved spacetime of the general relativity. Most of the special
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relativity, especially the foundations, can be adequately treated using matrix algebra

[22].

The theory of special relativity asserts that spacetime is the manifold R
4 with a

flat metric of Lorentz signature defined on it. In special relativity, the principle of

general covariance states that the spacetime metric, ηab, is the only quantity relating

to spacetime structure can appear in any physical laws. In addition, the laws of physics

in special relativity satisfy the principle of special covariance with respect to the proper

Poincaré transformation.

In special relativity, energy is described in terms of the “time component” of 4-

vector pa. The continuous matter distributions in special relativity are described by a

symmetric tensor Tab called the stress energy momentum tensor.

In this chapter we introduce the theory of special relativity, which deals with the

motion of objects as seen from inertial frames. General relativity extends this to cover

non-inertial frames as well. As the theory of general relativity relies on the theory of

special relativity, we present the concept of special relativity first, so general relativity

is easier to understand.
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Chapter 2

Coordinate conditions in general

relativity

2.1 Introduction

General relativity is a beautiful physical theory, invented for describing the gravita-

tional field and the equations it obeys. General relativity is phrased in the language

of differential geometry. It is by construction coordinate independent.

General relativity does not have a preferred coordinate system, and the coordinates

must be constructed along with the spacetime. The mathematics and physics cannot

depend on the particular choice of coordinate system you choose to place on the

manifold. However, the choice of the coordinate system can be useful in other ways.

It may simplify the mathematical calculation and the physics interpretation of what

is going on.

For example, if the physics is time independent and spherically symmetric, it is

extremely useful to choose a coordinate system that respects this property.

Reference [19] describes several coordinate conditions that we can consider to solve

the vacuum field equations

Gab = 0 (2.1)
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for gab. At first sight, the problem seems well posed. Indeed, there are 10 equations for

the 10 unknowns gab. However, the equations are not independent, they are connected

by 4 differential constraints through the contracted Bianchi identities

∇bG
ab ≡ 0. (2.2)

We therefore seem to have a problem of under-determinacy, when there are fewer

equations than unknowns. We cannot expect complete determinancy for any set gab,

since they can be transformed with fourfold freedom by a coordinate transformation:

Xa → X ′a = X ′a(x) (a = 0, 1, 2, 3). (2.3)

In fact, we can use this coordinate freedom to impose four conditions on the gab.

These are known as coordinate conditions or gauge conditions. We can give an example

by introducing Gaussian normal coordinates in which

g00 → +1, g0i → 0 (i = 1, 2, 3). (2.4)

The remaining six unknowns gαβ can be determined by six independent equations

in (1).

The assumption of spherical symmetry of a spacetime means that each event be-

longs to a two dimensional submanifold with spherical symmetry. This two dimensional

submanifold can be given the metric

ds2 = R2(dθ2 + sin2 dφ2) (2.5)

where θ and φ are the standard angular coordinates on the sphere. There must exist

(at least locally) two additional coordinates t and r labelling the different spheres.

They can be chosen to be orthogonal to the sphere and also mutually orthogonal,

t to be time-like and r space-like. The metric thus reads

gik = diag
(−c2e2φ, e2Λ, R2, R2 sin2 θ

)
(2.6)

where Λ = Λ(r, t), φ = φ(r, t) and R = R(r, t). If ∂R
∂r

�= 0, it is possible to rescale R

to be identical with r. However, this special choice of the coordinate system need not

always be useful in particular cases.
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In general relativity, we express physics in terms of tensors. General relativity

is a geometrical theory. Specifically, we will deal with a Riemannian manifold which

defines a metric. We used the metric to define a distance and length (norm) of vectors.

We have infinitesimal distance or interval which is defined as

(ds)2 = ds2 = gab dxadxb (2.7)

where, ds in (2.7) is called a “line element”, gab is called a metric form. In addi-

tion, gab is called “covariant” metric and it has an inverse of the form gab which is a

“contravariant” metric.

2.2 Independent components: Riemann’s argument

The quick way to see how much we can get away with is to simply count the number

of independent components of the metric tensor. In n dimensions, since the metric is a

symmetric T (0,2) tensor, it has n(n+1)/2 independent components. Since there are n

coordinates, we can eliminate up to n of the metric components by suitably choosing

our coordinates. This leaves

n(n+1)/2 - n = n(n-1)/2

true “independent” functions in the metric. This argument is due to Riemann.

The number of free components of the Riemann tensor is strictly limited by all

symmetries when we deal with a [torsion-free] metric connexion.

2.2.1 For n = 1

If n = 1, then this implies there are zero truly independent components in the metric

(see the proof below): In any 1-dimensional Riemann manifold we can always choose

coordinates so that the metric is flat. (A space-time is said to be flat if Ri
jkl = 0 at

every point in it.)
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Proof.

ds2 = f(x) dx2 = gxx(x) dx2.

Let

y =

∫ √
f(x) dx,

then
dy

dx
=
√

f(x),

which implies

dy =
√

f dx.

So finally

dy2 = f dx2 = ds2.

i.e. we always can choose a coordinate y such that ds2 = dy2 in any 1-dimension

manifold

2.2.2 For n = 2

If n = 2, then this Riemann’s argument implies there is exactly one truly independent

component in the metric: In any 2-dimensional Riemann manifold it is a standard

result that locally we can always choose coordinates to make the metric conformally

flat.

Indeed, when n = 2 the Riemann tensor has only one independent component,

essentially the Ricci Scalar, R. We have (in any coordinate system)

Rabcd =
1

2
R (gac gbd − gad gbc)

Rab =
1

2
R gab

Theorem: Any 2-dimensional Riemann manifold is locally conformally flat

gij = exp[2φ(x)] δij
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2.2.3 For n = 3

If n = 3, then Riemann’s argument implies there are exactly three truly independent

components in the metric: In any 3-dimensional Riemann manifold it is a standard

result (typically attributed to Darboux) that locally we can always choose coordinates

to make the metric diagonal:

gij =

⎡
⎢⎣ g11 0 0

0 g22 0

0 0 g33

⎤
⎥⎦

That is, Riemann 3-manifolds have metric that are always locally diagonalizable. If

n = 3, then the Riemann tensor has only six independent components, essentially Rab.

Indeed

Rabcd = −2{ga[dRc]b + gb[cRd]a} − R ga[cgd]b (2.8)

That is

Rabcd = {gac Rbd + gbd Rac − gad Rbc − gbc Rad}
−1

2
R {gac gbd − gad gbc} (2.9)

2.2.4 For n = 4

If n = 4 Riemann’s argument implies there are exactly six truly independent compo-

nents in the metric. This means that for a generic manifold in n = 4 you cannot assert

that

gij =

⎡
⎢⎢⎢⎣

g11 0 0 0

0 g22 0 0

0 0 g33 0

0 0 0 g44

⎤
⎥⎥⎥⎦

because this metric has too few free functions (four rather than six). So in general

we cannot in 4 dimensions choose patches to make the metric patchwise diagonal. In

local coordinate patches, there are often non-zero off-diagonal elements. For a truly
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general metric there must be at least 2 off diagonal elements. For instance, it might

be true that we can always set:

gij =

⎡
⎢⎢⎢⎣

g11 g12 0 0

g12 g22 0 0

0 0 g33 g34

0 0 g34 g44

⎤
⎥⎥⎥⎦

This at least has the correct counting properties, and it would be nice to know if this

sort of thing is always possible. Another thing that can always be done locally in 4

dimensions is to set:

gij =

⎡
⎢⎢⎢⎣

1 0 0 0

0 g22 g23 g24

0 g23 g33 g34

0 g24 g34 g44

⎤
⎥⎥⎥⎦

This is called a Gaussian normal coordinate patch.

If n = 4 the Riemann tensor has only twenty independent components. Ten of

them are the Ricci tensor Rab and the other ten are hidden in the “Weyl tensor”.

Cabcd = Rabcd + {ga[dRc]b + gb[cRd]a} +
1

3
Rga[cgd]b (2.10)

That is

Rabcd = Cabcd +
1

2
{gacRbd + gbdRac − gadRbc − gbcRad} − 1

6
R{gacgbd − gadgbc} (2.11)

2.3 Lorentzian manifolds

The Lorentz metric is used to formulate the free-space Maxwell equations in a 4-

dimensional pseudo Riemann space and also used in describing mechanical phenomena

in a mass-free Riemann space. The line element and metric are then assumed to be

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

= −c2dt2 + (dx2 + dy2 + dz2) (2.12)
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This particular metric tensor will be called the Lorentz metric tensor, and the corre-

sponding metric, the Lorentz metric.

gab =

⎡
⎢⎢⎢⎣

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

The signature of a metric tensor is the number of positive and negative eigenvalues of

the metric. That is, the corresponding real symmetric matrix is diagonalized, and the

diagonal entries of each sign counted. If the matrix is n × n, the possible number of

positive signs may take any value p from 0 to n. Let q = n−p, then the signature may

be denoted either by a pair of integers such as (p, q), or as the bracketed sum (p + q),

or as a explicit list such as −+++, or even as the number s = |p− q|. (Unfortunately

all of these different notations are in common use). A Lorentzian metric is one with

signature (p, 1) = (n−1, 1) or sometimes (1, q) = (1, n−1). For a Lorentzian signature:

(0+1) dimension

For a Riemannian geometry in (0+1) dimensions, this is trivial to get Lorentzian

geometry

g11 = − exp[2φ(t)]

(1+1) dimensions

For a Riemannian geometry in (2+0) dimensions we can always locally choose coordi-

nates such that

gij = exp[2φ(t, x)] δij

For Lorentzian geometry in (1+1) dimensions this becomes

gij = exp[2φ(t, x)] ηij

where

ηij =

[
−1 0

0 +1

]
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gij = exp[2φ(t, x)]

[
−1 0

0 +1

]

so

gij =

[
− exp[2φ(t, x)] 0

0 + exp[2φ(t, x)]

]

We can find the Ricci scalar n in term of φ, its derivative, η, the Ricci tensor and

Riemann tensor. The Ricci scalar is

R = −
2
{
−
(

d2

dx2 φ(t, x)
)

+
(

d2

dt2
φ(t, x)

)}
exp(2φ(t, x))

(2.13)

And we can calculate the Ricci tensor, its non-zero components are:

R11 = −
(

d2

dx2
φ(t, x)

)
+

(
d2

dt2
φ(t, x)

)
(2.14)

R22 =

(
d2

dx2
φ(t, x)

)
−
(

d2

dt2
φ(t, x)

)
(2.15)

Similarly, we can calculate the Riemann tensor, its non-zero components are:

R1212 = − exp(2φ(t, x))

(
−
(

d2

dx2
φ(t, x)

)
+

(
d2

dt2
φ(t, x)

))
(2.16)

In Lorentzian geometry, it is possible to make another coordinate choice by setting

gij =

[
−[1 − v2] −v

−v +1

]

where v = v(t,x), so

gij =

[
−[1 − v(t, x)2] −v(t, x)

−v(t, x) +1

]

In terms of this coordinate system we have: The Ricci scalar is

R = −2

(
∂2

∂x ∂t
v(t, x)

)
− 2

(
∂

∂x
v(t, x)

)2

− 2v(t, x)

(
∂2

∂x2
v(t, x)

)
(2.17)
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And we can calculate the Ricci tensor, its non-zero components are:

R11 = − (−1 + v(t, x))2

{(
∂2

∂x ∂t
v(t, x)

)
+

(
∂

∂x
v(t, x)

)2

+ v(t, x)

(
∂2

∂x2
v(t, x)

)}

(2.18)

R12 = v(t, x)

{(
∂2

∂x ∂t
v(t, x)

)
+

(
∂

∂x
v(t, x)

)2

+ v(t, x)

(
∂2

∂x2
v(t, x)

)}
(2.19)

R22 = −
(

∂2

∂x ∂t
v(t, x)

)
−
(

∂

∂x
v(t, x)

)2

− v(t, x)

(
∂2

∂x2
v(t, x)

)
(2.20)

Similary, we can calculate the Riemann tensor, its non-zero components are:

R1212 = −
(

∂2

∂x ∂t
v(t, x)

)
−
(

∂

∂x
v(t, x)

)2

− v(t, x)

(
∂2

∂x2
v(t, x)

)
(2.21)

(2+1) dimensions

The simplest special coordinate patch that it is always possible to set up yields

gij =

⎡
⎢⎣ −h0

2 0 0

0 h1
2 0

0 0 h2
2

⎤
⎥⎦ ,

where hi = hi(t, x, y), so

gij =

⎡
⎢⎣ −h0(t, x, y)2 0 0

0 h1(t, x, y)2 0

0 0 h2(t, x, y)2

⎤
⎥⎦ .

Alternatively we can always locally set up patches of the form

gij =

⎡
⎢⎣

−[N2 − v2] v1 v2

v1 1 0

v2 0 1

⎤
⎥⎦

where vi = vi(t, x, y), N = N(t, x, y), v2 = v2
1 + v2

2.

So the metric is

gij =

⎡
⎢⎣ −[N(t, x, y)2 − (v2

1(t, x, y) + v2
2(t, x, y))] v1(t, x, y) v2(t, x, y)

v1(t, x, y) 1 0

v2(t, x, y) 0 1

⎤
⎥⎦
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Coordinate patches of this type are called Painleve–Gullstrand coordinates. Another

alternative, in (2+1) dimensions, is that we can always locally set up patches of the

form

gij =

⎡
⎢⎣ −[1 − v2] v1 v2

v1 exp[2φ] 0

v2 0 exp[2φ]

⎤
⎥⎦

where φ = φ(t, x, y), v2 = exp[−2φ] (v2
1 + v2

2).

The inverse metric is then:

gij =

⎡
⎢⎣

−1 v1 exp[−2φ] v2 exp[−2φ]

v1 exp[−2φ] (exp[2φ] − v2
1) exp[−4φ] −v1v2 exp[−4φ]

v2 exp[−2φ] −v1v2 exp[−4φ] (exp[2φ] − v2
2) exp[−4φ]

⎤
⎥⎦

In (2+1) dimensions we can calculate the Ricci scalar, the Ricci tensor and the Rie-

mann tensor. However, all results are too complex to analyze in detail.

(3+1) dimensions

This is the physically interesting case, and this is the case that will be most difficult

to analyze in detail, and the remainder of the Chapter is devoted to this case.

2.4 The block diagonal ansatz

• It is certainly true that we can always locally set:

gμν =

⎡
⎢⎢⎢⎢⎣

g11 g12 0 0

g12 g22 0 0

0 0 g33 g34

0 0 g34 g44

⎤
⎥⎥⎥⎥⎦

• This at least has the correct counting properties.

Now we can take the above as an ansatz and calculate the Ricci tensor, and then the

Einstein tensor, respectively.
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Specifically, We write the four coordinates as xμ = (ya, zi), with

x1 = y1; x2 = y2; x3 = z1; x4 = z2.

Then

gμν(x) = gμν(y, z) =

⎡
⎢⎢⎢⎢⎣

g11(y, z) g12(y, z) 0 0

g12(y, z) g22(y, z) 0 0

0 0 g33(y, z) g34(y, z)

0 0 g34(y, z) g44(y, z)

⎤
⎥⎥⎥⎥⎦

That is

gμν(y, z) =

[
hab(y, z) 0

0 fij(y, z)

]

This means the 4 dimensional metric has split up into four 2 × 2 blocks, two of them

trivial (zero). This will make the Ricci tensor relatively easy to calculate.

The inverse tensor is very simple

gμν =

[
hab(y, z) 0

0 f ij(y, z)

]

where hab and f ij are two dimensional inverses of the two 2 × 2 matrices hab and fij.

For definiteness, we assume the h subspace has signature (1+1) [one time direc-

tion plus one space direction] while the f subspace has signature (2+0) [two space

directions]. But this subtle point does not really affect the subsequent analysis.

The Christoffel symbols can be computed from

Γμ
σρ(y, z) = gμν

{
gν(σ,ρ) − 1

2
gσρ,ν

}
(2.22)

and now we can spilt them up into little 2 × 2 blocks

Γμ
σρ(y, z) =

⎡
⎢⎢⎢⎢⎣

Γμ
11(y, z) Γμ

12(y, z) Γμ
13(y, z) Γμ

14(y, z)

Γμ
12(y, z) Γμ

22(y, z) Γμ
23(y, z) Γμ

24(y, z)

Γμ
13(y, z) Γμ

23(y, z) Γμ
33(y, z) Γμ

34(y, z)

Γμ
14(y, z) Γμ

24(y, z) Γμ
34(y, z) Γμ

44(y, z)

⎤
⎥⎥⎥⎥⎦
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Some of these blocks should have a simple interpretation in terms of the Christoffel

symbols of the 2 dimensional metrics hab and fij .

For example

Γa
bc(y, z) = gaν

{
gν(b,c) − 1

2
gbc,ν

}
= gad

{
gd(b,c) − 1

2
gbc,d

}

= had

{
hd(b,c) − 1

2
hbc,d

}
= [Γ(h)]abc(y, z). (2.23)

That is, this portion of the 4 dimensional Christoffel symbol can be calculated simply

by looking at the 2 dimensional Christoffel symbol corresponding to the two dimen-

sional metric hab. Similarly, we can calculate this:

Γi
jk(y, z) = giν

{
gν(j,k) − 1

2
gjk,ν

}
= gil

{
gl(j,k) − 1

2
gjk,l

}

= hil

{
hl(j,k) − 1

2
hjk,l

}
= [Γ(f)]ijk(y, z). (2.24)

The complications of course come with the other pieces, such as

Γi
bc(y, z) = giν

{
gν(b,c) − 1

2
gbc,ν

}
= f ij

{
gj(b,c) − 1

2
gbc,j

}

= f ij

{
0 − 1

2
hbc,j

}
= −1

2
f ijhbc,j. (2.25)

Similarly, and we can calculate this:

Γa
jk(y, z) = gaν

{
gν(j,k) − 1

2
gjk,ν

}
= hab

{
gb(j,k) − 1

2
gjk,b

}

= hab

{
0 − 1

2
fjk,b

}
= −1

2
habfjk,b. (2.26)

This part of the 4-dimensional Christoffel symbol is rather simple but does not have

a simple interpretation in terms of the 2 dimensional sub-geometries.

There are four other sub-blocks to calculate:

Γa
bk(y, z) = gaν

(
gν(b,k) − 1

2
gbk,ν

)
= gac

(
gc(b,k) − 1

2
gbk,c

)
(2.27)

= gac

(
1

2
gcb,k +

1

2
gck,b − 1

2
gbk,c

)
= hac

(
1

2
hcb,k

)
=

1

2
hachcb,k
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Whence

Γa
jc(y, z) =

1

2
habhbc,j (2.28)

Similarly

Γi
jc(y, z) = giν

(
gν(j,c) − 1

2
gjc,ν

)
= gik

(
gk(j,c) − 1

2
gjc,k

)
(2.29)

= gik

(
1

2
gkj,c +

1

2
gkc,j − 1

2
gjc,k

)
= f ik

(
1

2
fkj,c

)
=

1

2
f ik fjk,c

Whence

Γi
bk(y, z) =

1

2
f ij fjk,b (2.30)

Various symmetries should make all four of these results obvious once any one of

them has been calculated.

2.4.1 Collected results for the connexion

There are a total of 8 sub-blocks to deal with:

Γa
bc(y, z) = [Γ(h)]abc(y, z).

Γi
jk(y, z) = [Γ(f)]ijk(y, z).

Γi
bc(y, z) = −1

2
f ij hbc,j.

Γa
jk(y, z) = −1

2
hab fjk,b.

Γa
bk(y, z) =

1

2
hac hcb,k.

Γa
jc(y, z) =

1

2
hab hbc,j.

Γi
jc(y, z) =

1

2
f ik fjk,c.

Γi
bk(y, z) =

1

2
f ij fjk,b.

2.4.2 Back to the Ricci tensor: qualitative results

Once we have all eight sub-blocks, we have the entire 4 dimensional Christoffel symbol.
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The Ricci tensor of gμν can then be calculated from [17], page 224

Rμν = Γσ
μν,σ − Γσ

μσ,ν + Γσ
ρσ Γρ

μν − Γρ
σμ Γσ

ρν . (2.31)

• It is convenient to first calculate Γσ
ρσ

In fact, it is a standard result that

Γσ
ρσ =

(
ln
√−g

)
,ρ

=
1

2

g,a

g
(2.32)

(see, for instance, equation (8.51a) on page 222 of [17]). Then we can simplify:

Rμν =
1√−g

(√−g Γσ
μν

)
,σ
− (ln√−g

)
,μν

− Γρ
σμ Γσ

ρν , (2.33)

(see, for instance, equation (8.51b) on page 222 of [17]). This is the explicit formula

for the Ricci tensor.

To interpret the Ricci tensor, write it in 2 × 2 sub-blocks

Rμν(y, z) =

⎡
⎢⎢⎢⎢⎣

R11(y, z) R12(y, z) R13(y, z) R14(y, z)

R12(y, z) R22(y, z) R23(y, z) R24(y, z)

R13(y, z) R23(y, z) R33(y, z) R34(y, z)

R14(y, z) R24(y, z) R34(y, z) R44(y, z)

⎤
⎥⎥⎥⎥⎦

That is

Rμν(y, z) =

[
Rab(y, z) Rai(y, z)

Rjb(y, z) Rij(y, z)

]

Some of these blocks should have a simple interpretation in terms of the Ricci

tensor of the 2 dimensional metrics hab and fij . For instance we expect

[R(g)]ab = [R(h)]ab+???

[R(g)]ij = [R(f)]ij+???

where the extra terms (the ???) involve y derivatives of f and z derivatives of h. That

is, we expect the full 4 dimensional Ricci tensor of these particular 2 × 2 sub-blocks
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to be related to the Ricci tensors of the 2 dimensional metrics f and h, but with some

additional terms.

For the off-diagonal block

[R(g)]ia =???

It will probably involve y derivatives of f and z derivatives of h.

Once you have the Ricci tensor, the Ricci scalar is easy

R(g) = gμνRμν = habRab + f ijRij = R(h)+??? + R(f)+???

That is

R(g) = R(h) + R(f)+???

That is, we expect the full 4 dimensional Ricci scalar to be related to the sum of the

Ricci tensors of the 2 dimensional metrics f and h, but with some additional terms.

Then for the four dimensional Einstein tensor

Gμν = Rμν − 1

2
R gμν (2.34)

we can sub-divide the 2 × 2 sub blocks as

[G(g)]ab = [G(h)]ab − 1

2
R(f) hab+???

[G(g)]ij = [G(f)]ij − 1

2
R(g) fij+???

But the Einstein tensor of any two dimensional manifold is zero; this is one of the

special features of two dimensions, so

[G(h)]ab = 0 = [G(f)]ij

and we have

[G(g)]ab = −1

2
R(f) hab+???

[G(g)]ij = −1

2
R(g) fij+???

Finally, for the off-diagonal

[G(g)]aj = [R(g)]aj =???

Of course it is all these ??? pieces that give the important mathematics and physics.

Again, we are not really sure what to expect, they will probably involve y derivatives

of f and z derivatives of h.
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2.4.3 Calculating the Ricci tensor - diagonal pieces

Start from the general expression for the Ricci tensor of the metric gμν :

Rμν =
1√−g

(√−g Γσ
μν

)
,σ
− (ln√−g

)
,μν

− Γρ
σμ Γσ

ρν . (2.35)

Note that, since the metric is block diagonal,

g = det[gμν ] = det[hab] det[fij ] = h f. (2.36)

Now consider

[R(g)]ab =
1√−g

(√−g Γσ
ab

)
,σ
− (ln√−g

)
,ab

− Γρ
σa Γσ

ρb (2.37)

which we expand as

[R(g)]ab =
1√−h f

(√
−h f Γc

ab

)
,c

+
1√−h f

(√
−h f Γk

ab

)
,k
−
(
ln
√

−h f
)

,ab

−Γc
da Γd

cb − Γc
ka Γk

cb − Γj
ka Γk

jb − Γj
da Γd

jb

Then

[R(g)]ab =
1√−h

(√−h Γc
ab

)
,c

+
1

2

f,c

f
Γc

ab +
1√−h f

(√
−h f Γk

ab

)
,k

−
(
ln
√−h

)
,ab

−
(
ln
√

f
)

,ab

−Γc
da Γd

cb − Γc
ka Γk

cb − Γj
ka Γk

jb − Γj
da Γd

jb

which we regroup as

[R(g)]ab =
1√−h

(√−h Γc
ab

)
,c
−
(
ln
√−h

)
,ab

− Γc
da Γd

cb

+
1

2

f,c

f
Γc

ab +
1√−h f

(√
−h f Γk

ab

)
,k
−
(
ln
√

f
)

,ab

−Γc
ka Γk

cb − Γj
ka Γk

jb − Γj
da Γd

jb (2.38)

But the first line is just [R(h)]ab, the 2-dimensional Ricci tensor calculated using the

2-metric hab. The other terms can be slightly rearranged as

[R(g)]ab = [R(h)]ab − 1

2

{
(ln f),ab −

f,c

f
Γc

ab

}
+

1√−h f

(√
−h f Γk

ab

)
,k

−Γc
ka Γk

cb − Γj
ka Γk

jb − Γj
da Γd

jb (2.39)
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Now use colons : to denote 2-dimensional covariant derivatives using the 2-metric h.

Then

[R(g)]ab = [R(h)]ab − 1

2
(ln f):ab +

1

2

h,k

h
Γk

ab +
1√
f

(√
f Γk

ab

)
,k

−Γc
ka Γk

cb − Γj
ka Γk

jb − Γj
da Γd

jb (2.40)

Now we start to insert the various pieces.

Note that

1√
f

(√
f Γk

ab

)
,k

= −1

2

1√
f

(√
f fkj ∂jhab

)
,k

= −1

2

1√
f

(√
f f ij ∂ihab

)
,j

We can write this more compactly as

1√
f

(√
f Γk

ab

)
,k

= −1

2
Δf hab (2.41)

where by Δf we mean the two-dimensional Laplacian in the f subspace, treating the

h indices as though they were scalars.

Also note that

Γj
ka Γk

jb =
1

4
f jm fmk,a fkn fnj,b (2.42)

which we can re-write as

Γj
ka Γk

jb =
1

4
f ij fjk,a fkl fli,b

=
1

4
tr
[
f−1 f,a f−1 f,b

]
(2.43)

Next, we start looking at

Γc
ka Γk

cb = −1

4
(hcd hda,k) (fkj hbc,j)

= −1

4
hcd (had,i f ij hbc,j) (2.44)

Similarly,

Γj
da Γd

jb = −1

4
hcd (had,i f ij hbc,j) (2.45)

Finally
h,k

h
Γk

ab = −1

2

h,i

h
f ijhab,j (2.46)
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Now pull all these pieces together. We get

[R(g)]ab = [R(h)]ab − 1

2
(ln f):ab −

1

2
Δf hab − 1

4
tr
[
f−1 f,a f−1 f,b

]
−1

4

h,i

h
f ijhab,j +

1

2
hcd (had,i f ij hbc,j) (2.47)

There are still simplifications we could make. For instance

(ln f):ab =

(
f:a

f

)
:b

=
f:ab

f
− f:a

f

f:b

f
(2.48)

Using this we get rid of the logarithm. Then finally

[R(g)]ab = [R(h)]ab − 1

2

f:ab

f
+

1

2

f:a

f

f:b

f
− 1

2
Δf hab − 1

4
tr
[
f−1 f,a f−1 f,b

]
−1

4

h,i

h
f ijhab,j +

1

2
hcd (had,i f ij hbc,j) (2.49)

For [R(g)]ij we can appeal to symmetry to simply write:

[R(g)]ij = [R(f)]ij − 1

2

h|ij
h

+
1

2

h|i
h

h|j
h

− 1

2
Δh fij − 1

4
tr
[
h−1 h,i h−1 h,j

]
−1

4

f,a

f
habfij,a +

1

2
fkl (fik,a hab fjl,b) (2.50)

The vertical bar | now denotes 2-dimensional covariant derivatives in the f direction,

treating the h indices as scalars.

To obtain the Ricci scalar we note

hab [R(g)]ab = hab [R(h)]ab − 1

2

Δh f

f
+

1

2

f:a

f

f :a

f
− 1

2
hab Δf hab − 1

4
hab tr

[
f−1 f,a f−1 f,b

]
−1

4

h|i
h

h|i

h
+

1

2
f ij tr

[
h−1 h,i h−1 h,j

]
(2.51)

with a similar formula holding for hij [R(g)]ij:

f ij [R(g)]ij = f ij [R(f)]ij − 1

2

Δf h

h
+

1

2

h|i
h

h|i

h
− 1

2
f ij Δh fij − 1

4
f ij tr

[
h−1 h,i h−1 h,j

]
−1

4

f|a
f

f |a

f
+

1

2
hab tr

[
f−1 f,a f−1 f,b

]
(2.52)
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Then in the Ricci scalar there are a lot of partial cancellations

R(g) = hab [R(g)]ab + f ij [R(g)]ij

= R(h) + R(g) − 1

2

Δh f

f
− 1

2

Δf h

h
+

1

4

f:a

f

f :a

f
+

1

4

h|i
h

h|i

h

−1

2
hab Δf hab − 1

2
f ij Δh fij

+
1

4
hab tr

[
f−1 f,a f−1 f,b

]
+

1

4
f ij tr

[
h−1 h,i h−1 h,j

]
(2.53)

2.4.4 Off-diagonal part of the Ricci tensor

Now we consider what we can say about the off-diagonal piece [R(g)]ai. Again we will

want to start from the general formula for the Ricci tensor of the metric gμν :

Rμν =
1√−g

(√−g Γσ
μν

)
,σ
− (ln√−g

)
,μν

− Γρ
σμ Γσ

ρν .

Now consider

[R(g)]ai =
1√−g

(√−g Γσ
ai

)
,σ
− (ln√−g

)
,ai

− Γρ
σa Γσ

ρi (2.54)

which we expand as

[R(g)]ai =
1√−h f

(√
−h f Γc

ai

)
,c

+
1√−h f

(√
−h f Γk

ab

)
,k
−
(
ln
√

−h f
)

,ai

−Γc
da Γd

ci − Γc
ka Γk

ci − Γj
ka Γk

ji − Γj
da Γd

ji

That is

[R(g)]ai =
1√−h f

(√
−h f Γc

ai

)
,c

+
1√−h f

(√
−h f Γk

ab

)
,k

−1

2
(ln(−h)),ai −

1

2
(ln(f)),ai

−Γc
da Γd

ci − Γc
ka Γk

ci − Γj
ka Γk

ji − Γj
da Γd

ji (2.55)

So that

[R(g)]ai = −1

2
(ln(f)),ai +

1

2
(ln(f)),b Γb

ai +
1√−h

(√−h Γb
ai

)
,b

−1

2
(ln(−h)),ai +

1

2
(ln(−h)),j Γj

ai +
1√
f

(√
f Γj

ay

)
,j

−Γc
da Γd

ci − Γc
ka Γk

ci − Γj
ka Γk

ji − Γj
da Γd

ji (2.56)
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Now consider

Γb
ai:b =

1√−h
∂b

(√−h Γb
ai

)
− Γc

ab

(
Γb

ci

)
(2.57)

Here Γb
ai is treated as though it were a T 1

1 tensor with respect to the h subspace, the

i index [which lies in the f subspace] is treated as though this quantity were a scalar

with respect to coordinate transformations in the f subspace. This notation, together

with the analogous

Γj
ia|j =

1√
f

∂j

(√
f Γj

ia

)
− Γk

ij

(
Γj

ka

)
(2.58)

allows us to simplify the off-diagonal Ricci tensor as:

[R(g)]ai = Γb
ai:b + Γj

ia|j − 1

2
(f,a/f),i −

1

2
(h,i/h),a

+
1

2
(f,b/f) Γb

ai +
1

2
(h,j/h) Γj

ai − 1

2
hac,lh

cdf ljfji,d (2.59)

To simplify things, we can define two tensors by

Kabi = −1

2
hab,i = −1

2
hab|i (2.60)

Lija = −1

2
fij,a = −1

2
hij:a (2.61)

with the convention that the abc... indices are raised and lowered using h, and the

ijk... indices are raised and lowered using f .

(The reason for this notation is that these quantities are some sort of generalization

of the notion of extrinsic curvature.)

With these conventions we have:

Γa
bc(y, z) = [Γ(h)]abc(y, z).

Γi
jk(y, z) = [Γ(f)]ijk(y, z).

Γi
bc(y, z) = Kbc

i.

Γa
jk(y, z) = Ljk

a.

Γa
bk(y, z) = −Ka

bk.

Γa
jc(y, z) = −Ka

cj.

Γi
jc(y, z) = −Li

jc.

Γi
bk(y, z) = −Li

kb.
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Which then implies

Rai = −Kb
ai:b + Kb

bi:a − Lj
ia|j + Lj

ja|i

−1

2

f,b

f
Kb

ai − 1

2

h,j

f
LKj

ia − 2Kac
j Lji

c (2.62)

2.4.5 Discussion

This form of the metric is physically interesting because there is a good chance that it

really is general for 4 dimensional spacetime, and general enough to encode the Kerr

metric for a rotating black hole.

For this chapter we simply counted the number of independent components of the

metric tensor. In 1-dimension, there are zero truly independent components in the

metric. Furthermore, in any 1-dimensional Riemann manifold we are able to choose

the coordinates to make the metric flat. For 2-dimensions, Riemann’s argument im-

plies that there is only one truly independent component in the metric. Indeed, any

2-dimensional Riemann manifold has a standard result that locally, we can choose

coordinates to make the metric conformally flat. The Riemann tensor also has one

independent component, essentially the Ricci scalar, R. In addition, for n = 3, then

Riemann’s argument implies that there are exactly three truly independent compo-

nents in the metric. The Riemann 3-manifolds have metrics that are always locally

diagonalizable. For n = 4, the Riemann tensor has only twenty independent compo-

nents. Ten of them are the Ricci tensor Rab, while the other ten are hidden in the

“Weyl tensor”.

We use the Lorentz metric to formulate the free-space Maxwell equations in a

4-dimensional Riemann space, and to describe mechanical phenomena in a vacuum

Riemann space. It is trivial to get a Lorentzian geometry from a Riemannian geometry

in (0+1) dimensions. For a Riemannian geometry in (1+1) dimensions we are able to

find the Ricci scalar, the Ricci tensor and the Riemann tensor. While, for a Riemannian

geometry in (2+1) dimensions it is more complicated to calculate the Ricci scalar, Ricci

tensor and Riemann tensor.

The case for (3+1) dimensions is physically interesting, but it is the most difficult

to analyze in detail. However, we are able to calculate the Ricci tensor and Einstein
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tensor in the 4 dimensional metric. We split the metric into four 2 × 2 blocks, two of

them trivial (zero), which allows us to calculate the Ricci tensor easily. Furthermore,

the Christoffel symbols can be computed from equation (2.22). For the 4-dimensional

Christoffel symbol, there is a total of 8 sub-blocks to deal with (see section (2.4.1)).

Now we are able to calculate the Ricci tensor of gμν from equation (2.31). We expect

the full 4 dimensional Ricci tensor to be related to the sum of the Ricci tensors of

the 2 dimensional metrics f and h, with some additional terms. In addition, we can

calculate the 4 dimensional Einstein tensor from equation (2.34). This is useful as a

way of looking for nice new solutions of the Einstein equations.

2.5 The ADM (Arnowitt-Deser-Misner) ansatz

Both ADM and reverse-ADM (Kaluza–Klein) decompositions seek to split “spacetime”

into “space” plus “time” in some sort of natural way, and then use this split to describe

spacetime curvature in terms of the curvature of space and some additional structure.

In addition, this decomposes the four-metric of spacetime as a time-varying three-

metric on a three-dimensional domain together with the lapse and shift, which are

scalar-valued and three-vector-valued functions of time and space, respectively.

2.5.1 ADM Decomposition

Definition 1. In the case of the ADM decomposition one takes

gab =

[
−[c2 − v2] −vj

−vi hij

]

Notation: Latin indices from the beginning of the alphabet (a, b, c, ...) run from 0-3

and refer to space-time; Latin indices from the middle of the alphabet (i, j, k...) run

from 1-3 and refer to space. We use X;a to denote a space-time covariant derivative

and X:i to denote a three-space covariant derivative.

Interpretation: The light cones, defined by ds2 = gab dxa dxb = 0 take the form

hij (dxi − vidt) (dxj − vj dt) = c2 dt2

34



Here hij is the 3-metric of space. We take

hij = [hij]
−1

to be the inverse 3-metric, and

v2 = hij vi vj = hij vi vj

Then vi is the 3-velocity of a coordinate system with respect to which c is the “coor-

dinate speed of light”. (Note that in comparison to usual conventions vi is minus the

“shift vector”, while c is equal to the “lapse function”.)

We are able to calculate the inverse metric:

gab =

[
−1/c2 vj/c2

−vi/c2 hij − vivj/c2

]

Note that 3 contravariant vectors that point in the “space” directions are

Xa = (0; 1, 0, 0), Y a = (0; 0, 1, 0), and Za = (0; 0, 0, 1).

So if we want n to be a vector that is “orthogonal” to space, then we need to pick its

covariant components to satisfy

na ∝ (1; 0, 0, 0)

If we want n to be a unit vector that is “orthogonal” to space, then we need to pick

its covariant components to satisfy

na = ± (c; 0, 0, 0)

Its contravariant components are then

na = ∓
(

1

c
;
vi

c

)
= ∓ (1; vi)

c

Choosing na to be a future directed unit vector orthogonal to the space slices then

fixes

na =

(
1

c
;
vi

c

)
=

(1; vi)

c

and

na = (−c; 0, 0, 0).
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2.5.2 Reverse-ADM (Kaluza-Klein) Decomposition

Definition 2. The “reverse-ADM decomposition” can be found in Landau-Lifshitz and

consists of setting

gab =

[
−c2 −vj

−vi hij − vi vj/c
2

]

Notation: Again, Latin indices from the begining of the alphabet (such as a, b, c,...)

run from 0-3 and refer to space-time; Latin indices from the middle of the alphabet

(i, j, k, ...) run from 1-3 and refer to space. We use X;a to denote a space-time covariant

derivative and X;i to denote a three-space covariant derivative.

Interpretation: The light cones, defined by ds2 = gab dxa dxb = 0 now take the form

hij dxi dxj = c2(dt + vi dxi)2

We again say that hij is the 3-metric of space, though it’s a different 3-metric than in

the ADM case. We take

hij = [hij ]
−1

to be the inverse 3-metric, and

v2 = hij vivj = hij vivj

Then c is the “two-way coordinate-averaged speed of light”, which is by construction

isotropic. See §84 on pages 251-255 of [14] for details. The physical interpretation of

the 3-velocity vi is not particularly clear, and there seems to be no clean interpretation

of the current formalism in terms of “analogue models” [23]. Nevertheless it is one of

the standard metric decompositions, so let us adopt it and see what happens.
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2.6 Static spacetimes: ADM and reverse-ADM (Kaluza-

Klein) Decomposition

Our strategy is straightforward:

• Take any static spacetime, and use the natural time coordinate to slice it into

space plus time.

• Use the Gauss-Codazzi and Gauss-Weingarten equations to decompose the

(3+1)-dimensional spacetime curvature tensor in terms of the 3-dimensional spatial

curvature tensor, the extrinsic curvature of the time slice [zero], and the gravitational

potential.

In any static spacetime one can decompose the spacetime metric into block diagonal

form [1, 2, 3]:

ds2 = gμν dxμdxν

= −c2dt2 + hij dxidxj . (2.63)

Here c and hij are assumed to be time-independent, they depend only on position in

space. This is equivalent to taking

gab =

[
−c2 0

0 hij

]

Theorem: In any static spacetime coordinates can be found in which the ADM and

reverse-ADM (Kaluza-Klein) decompositions are identical. The proof is by inspection.

Simply set �v = 0 in the general formalism.

Being static tightly constrains the space-time geometry in terms of the three-geometry

of space on a constant time slice, and the manner in which this three-geometry is

embedded into the spacetime. For example, from [17], page 515, and applying page

518, we have the standard results (which we will re-derive in a slightly more general

context below):

(3+1)Rijkl = (3)Rijkl. (2.64)

(3+1)Rtijk = 0. (2.65)

(3+1)Rtitj = c c:i:j. (2.66)
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This will generalize when we allow time dependence for c and hij .

Now taking suitable contractions,

(3+1)Rij = (3)Rij − c:i:j

c
. (2.67)

(3+1)Rti = 0. (2.68)

(3+1)Rtt = c gijc:i:j = c (3) Δc. (2.69)

So that
(3+1)R = (3)R − 2

(3) Δc

c
. (2.70)

Finally, for the spacetime Einstein tensor (for bits of this see [17], page 552, noting

that in our present case Kij = 0, while in the corresponding formulae of [17] they chose

c = 1)

(3+1)Gij = (3)Gij − c:i:j

c
+ gij

{
(3) Δc

c

}
. (2.71)

(3+1)Gti = 0. (2.72)

(3+1)Gtt = +
c2

2
(3)R. (2.73)

This decomposition is generic to any static spacetime. (You can check this decom-

position against various standard textbooks to make sure the coefficients are correct.

For instance see [1, 12, 21]).

2.7 Zero–shift spacetimes: ADM and reverse-ADM

(Kaluza-Klein) Decomposition

If the spacetime is not static but the “shift vector” is zero we still have

gab =

[
−c2 0

0 hij

]
. (2.74)

(Such a decomposition is always possible in a globally hyperbolic spacetime.)

But now we will have to permit time dependence for both c and hij. Note that as
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long as the shift vector is zero the ADM and reversed-ADM decompositions remain

identical.

In this case it is useful to define a quantity called the extrinsic curvature [17], the

equation (21.67)

Kij = − 1

2c

∂hij

∂t
(2.75)

and then

(3+1)Rijkl = (3)Rijkl + KikKjl − KilKjk. (2.76)

(3+1)Rtijk = c {Kik:j − Kij:k}. (2.77)

(3+1)Rtitj = c c:ij + “mess”. (2.78)

See [17], equations (21.75) and (21.76). Note (n · n) = −1, and the “n-coordinate” of

equation (21.76) is really “Nt” [that is, “ct”]. The last equation for (3+1)Rtitj is not

given by [17], except implicitly on page 518, and this really is a bit of a mess which

we shall explicitly calculate below.

But some pieces of the Riemann, Ricci, and Einstein can be immediately read off

from [17]. For instance from [17], equation (21.8)

Rti = Gti = N
{
Kij

:j − tr(K):i

}

while from [17], equation (21.77)

Gtt =
1

2
N2
{

(3)R + (trK)2 − tr(K2)
}
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2.7.1 Systematic derivation

Christoffel symbols of the first kind:

Γttt = gt(t,t) − 1

2
gtt,t =

1

2
gtt,t = −1

2
(c2),t = −c c,t (2.79)

Γitt = gi(t,t) − 1

2
gtt,i = −1

2
gtt,t = +

1

2
(c2),t = +c c,t (2.80)

Γtti = Γtit = gt(t,i) − 1

2
gti,t =

1

2
gtt,i = −1

2
(c2),i = −c c,i (2.81)

Γtij = gt(i,j) − 1

2
gij,t = −1

2
gij,t = −1

2
hij,t = c Kij (2.82)

Γitj = Γijt = gi(t,j) − 1

2
gtj,i =

1

2
gij,t =

1

2
hij,t = −c Kij (2.83)

Γijk = gi(j,k) − 1

2
gjk,i = hi(j,k) − 1

2
hjk,i = (3)Γijk (2.84)

Raising the first index:

Christoffel symbols of the second kind:

Γt
tt =

c,t

c
(2.85)

Γi
tt = +c hij c,j = +c c,j (2.86)

Γt
ti = Γt

it =
c,i

c
(2.87)

Γt
ij = −Kij

c
(2.88)

Γi
tj = Γi

jr = −c Ki
j (2.89)

Γi
jk = (3)Γi

jk (2.90)

2.7.2 Riemann tensor

Now insert this into the formula for the Riemann tensor.

Ra
bcd = −2

{
Γa

b[c,d] − Γa
e[cΓ

e|b|d]

}
(2.91)

where the |b| indicates we do not anti-symmetrize over the b. Lowering the a index

Rabcd = −2
{
Γab[c,d] + gae,[dΓ

e|b|c] − Γa
e[cΓ

e|b|d]

}
(2.92)
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and rearranging

Rabcd = −2
{
Γab[c,d] + Γea[c gef Γ|fb|d]

}
(2.93)

This is equivalent, for instance, to the unnumbered equation on page 21 of [10], which

can further be simplified to

Rabcd =
1

2
{gad,bc − gbd,ac − gac,bd + gbc,ad} + Γead gef Γfbc − Γeac gef Γfbd (2.94)

This is equation (11.6) of [10]. So far this is completely general. If gab block diagonal-

izes in the manner gab = −c2
⊕

hij then we have

Rabcd =
1

2
{gad,bc − gbd,ac − gac,bd + gbc,ad} − 1

c2
Γtad Γtbc

+
1

c2
Γtac Γtbd + hmn Γmad Γnbc − hmn Γmac Γnbd (2.95)

Rijkl : If we now look at the space components of the 4-dimensional Riemann tensor

we have

Rijkl =
1

2
{gil,jk − gjl,ik − gik,jl + gjk,il} − 1

c2
Γtil Γtjk

+
1

c2
Γtik Γtjl + hmn Γmil Γnjk − hmn Γmik Γnjl (2.96)

But most of this is simply the 3-dimensional Riemann tensor

Rijkl = (3)Rijkl − 1

c2
ΓtilΓtjk +

1

c2
Γtik Γtjl (2.97)

and the rest we recognize in terms of the Kij we defined earlier, so that

Rijkl = (3)Rijkl − Kil Kjk + Kik Kjl (2.98)

which is the explicit way of doing things.

Rtijk : In a similar manner we can evaluate Rtijk as

Rtijk =
1

2
{gtk,ij − gik,tj − gtj,ik + gij,tk} − 1

c2
Γttk Γtij

+
1

c2
Γttj Γtik + hmn Γmtk Γnij − hmn Γmtj Γnik (2.99)
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which we can re-write as

Rtijk = (cKik),j − (cKij),k − c,jKik + C,kKij − cKn
k Γnij + c Kn

j Γnik

so that

Rtijk = cKik,j − cKij,k − c Kn
k Γnij + c Kn

j Γnik

that is, in terms of 3-space covariant derivatives

Rtijk = c {Kik:j − Kij:k} (2.100)

This is the second part of what we were trying to prove.

Rtitj : It only remains to calculate Rtitj . (After all Rttij , Rttti, Rtttt and so on are all

zero by symmetries of the Riemann tensor.)

So let us calculate

Rtitj =
1

2
{gtj,it − gij,tt − gtt,ij + git,tj} − 1

c2
Γttj Γtit

+
1

c2
Γttt Γtij + hmn Γmtj Γnit − hmn Γmtt Γnij

So that

Rtitj =
1

2

{−hij,tt + (c2),ij

}
− 1

c2
(−c c,j) (−c c,i) +

1

c2
(−c c,t) (c Kij)

+hmn (−cKmj) (−cKni) − hmn (c c,m) Γnij

That is:

Rtitj = (cKij),t + c c,ij + c,i c,j − c,j c,i − c,tKij + c2(Kim hmn Knj) − (c c,m) Γm
ij

So finally

Rtitj = cKij,t + c c:i:j + (K2)ij (2.101)
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Summary: Whenever the metric gab block diagonalizes in the manner gab = −c2
⊕

hij ,

then even if we allow arbitrary time dependence we have the relativity simple results

Rijkl = (3)Rijkl − Kil Kjk + Kik Kjl (2.102)

Rtijk = c {Kik:j − Kij:k} (2.103)

Rtitj = cKij,t + c c:i:j + (K2)ij (2.104)

where

Kij = − 1

2c

∂hij

∂t

Of course once we have deduced these results for the Riemann tensor, results for the

Ricci tensor and Einstein tensor can be obtained by simple contraction.

2.8 General stationary spacetime: ADM Decom-

position

For a general stationary spacetime we need to use the full ADM decomposition

gab =

[
−[c2 − v2] −vj

−vi hij

]

gab =

[
−1/c2 −vj/c2

−vi/c2 hij − vivj/c2

]

We do however have the simplification that all quantities are time-independent. (All

time derivatives vanish). Note that the ADM decomposition is in this case quite

distinct from the reverse-ADM decomposition.

We still have, thanks to Dirac

Rabcd =
1

2
{gad,bc − gbd,ac − gac,bd + gbc,ad} + Γead gef Γfbc − Γeac gef Γfbd (2.105)
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But now when we insert the inverse metric

Rabcd =
1

2
{gad,bc − gbd,ac − gac,bd + gbc,ad}

− 1

c2
Γtad Γtbc +

1

c2
Γtac Γtbd

−(vm/c2){Γtad Γmbc + Γmad Γtbc} + (vm/c2){Γmac Γtbd + Γtac Γmbd}
+(hmn − vmvn/c2) Γmad Γnbc − (hmn − vmvn/c2) Γmac Γnbd (2.106)

Rijkl : Start by looking at the space components Rijkl. We have

Rijkl =
1

2
{gil,jk − gjl,ik − gik,lj + gjk,il}

− 1

c2
Γtil Γtjk +

1

c2
Γtik Γtjl

−(vm/c2){Γtil Γmjk + Γmil Γtjk} + (vm/c2){Γmik Γtjl + Γtik Γmjl}
−(vmvn/c2) Γmil Γnjk − (vmvn/c2) Γmik Γnjl

+hmn Γmil Γnjk − hmn Γmik Γnjl (2.107)

But most of this is simply the 3-dimensional Riemann tensor, and the rest can easily

be regrouped as

Rijkl = (3)Rijkl − 1

c2
(Γtil + vmΓmil) (Γtjk + vnΓnjk) +

1

c2
(Γtik + vmΓmik) (Γtjl + vnΓnjl)

(2.108)

Now suppose we define

Kij =
1

c
{Γtij + vmΓmij} (2.109)

This is a natural generalization of our previous definition, and would allow us to again

write

Rijkl = (3)Rijkl − Kil Kjk + Kik Kjl (2.110)

but now for this “improved” definition of Kij . Let’s check what happens. Having de-

layed things as long as possible, we’ll have to start by calculating Christoffel symbols.
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2.8.1 Christoffel symbols of first kind

(Remember, stationary, no t dependence):

Γttt = gt(t,t) − 1

2
gtt,t =

1

2
gtt,t = 0 (2.111)

Γitt = gi(t,t) − 1

2
gtt,t = −1

2
gtt,i = +

1

2
(c2 − v2),i (2.112)

Γtti = Γtit = gt(t,i) − 1

2
gti,t =

1

2
gtt,i = −1

2
(c2 − v2),i (2.113)

Γtij = gt(i,j) − 1

2
gij,t = +

1

2
(gti,j + gtj,i) (2.114)

= −1

2
(vi,j + vj,i) = −v(i,j)

Γitj = Γijt = gi(t,j) − 1

2
gtj,i =

1

2
(git,j − gtj,i)

= −1

2
(vi,j − vj,i) = −v[i,j] (2.115)

Γijk = gi(j,k) − 1

2
gjk,i = hi(j,k) − 1

2
hjk,i = (3)Γijk (2.116)

Then we have

1

c
{Γtij + vm Γmij} =

1

c

{−v(i,j) + vmΓm
ij

}
= −1

c
v(i:j) (2.117)

so that in this situation

Kij = −1

c
v(i:j) (2.118)

This is compatible with the general definition of extrinstic curvature, see [17] equation

(21.67), note that our vi is minus the shift vector.

Rtijk: In a similar manner we can evaluate Rtijk as

Rtijk =
1

2
{gtk,ij − gik,tj − gtj,ik + gij,tk}

− 1

c2
Γttk Γtij +

1

c2
Γttj Γtik

−(vm/c2) {Γttk Γmij + Γmtk Γtij} + (vm/c2) {Γmtj Γtik + Γttj Γmik}
+(hmn − vmvn/c2) Γmtk Γnij − (hmn − vmvn/c2) Γmtj Γnik (2.119)
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which we can re-write as

Rtijk =
1

2
{−vk,ij + vj,ik}

− 1

c2
(Γttk + vmΓmtk) (Γtij + vmΓmij) +

1

c2
(Γttj + vmΓmtj) (Γtik + vmΓmik)

+hmn Γmtk Γnij − hmn Γmtj Γnik (2.120)

Now

Γttk + vmΓmtk = −1

2
(c2 − v2),k − 1

2
vm(vm,k − vk,m) = −1

2
(c2 − v2):k − 1

2
vm(vm:k − vk:m)

(2.121)

so that

Γttk + vmΓmtk = −1

2
(c2),k +

1

2
vm(vm:k + vk:m) = −c {c,k + vmKmk} (2.122)

So now

Rtijk =
1

2
{−vk,ij +vj,ik}− (c,k +vmKmk)Kij +(c,j +vmkmj)Kik −v[m,k]Γ

m
ij +v[m,j]Γ

m
ik

(2.123)

This can be rewritten in several ways: If we remain in a coordinate basis

Rtijk = v[j,k],i− v[m,k]Γ
m

ji− v[j,m]Γ
m

ki − (c,k + vmKmk)Kij +(c,j + vmKmj)Kik (2.124)

whence

Rtijk = v[j:k]:i − (c,k + vmKmk)Kij + (c,j + vmKmj)Kik (2.125)

This is relatively compact, but not so easy to compare to our previous result.

But we can also write

2v[j:k]:i = vj:k:i − vk:j:i = vj:i:k + vm
(3)Rm

jki − vk:i:j − vm
(3)Rm

kji

= vj:i:k + vi:j:k − vk:i:j − vi:k:j + vm

(
(3)Rm

jki − (3)Rm
kji − (3)Rm

ijk

)
= 2

(
v(i:j):k − v(i:k):j − vm

(3)Rm
ijk

)
= 2

(
[−cKij ]:k − [−cKik]:j − vm

(3)Rm
ijk

)
(2.126)

which lets us write

Rtijk = c {[Kik]:k − [Kij ]:k} − vm
[
(3)Rmijk − KmkKij + KmjKik

]
(2.127)
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that is, in view of our previous result,

Rtijk = c[Kik:j − Kij:k] − vmRmijk (2.128)

This is the tidiest we can make things in a coordinate basis. This is the analogue of

[17], equation (21.76).

For future reference define

Ωij = v[i,j] = v[i:j] (2.129)

and note the identity

Ωjk:i = [cKik]:j − [cKij]:k − vm
(3)Rm

ijk (2.130)

Note that it sometimes easier to work in what is referred to as a “non-coordinate basis”

by defining:

Rnijk ≡ na Raijk (2.131)

in which case

Rnijk =
1

c
(1; vm) (Rtijk; Rmijk) =

1

c
[Rtijk + vmRmijk] = Kik:j − Kij:k. (2.132)

This means you are not really looking in the “t” direction, but are instead looking in

the “n” direction normal to “space”.

Rtitj: Now for the Rtitj pieces. This is where things might get a little messy. From

Dirac’s general formula, applied to the present situation

Rtitj =
1

2
{gtj,it − gij,tt − gtt,ij + git,tj}

− 1

c2
Γttj Γtit +

1

c2
Γttt Γtij

−(vm/c2) {Γttj Γmit + Γmtj Γtit} + (vm/c2) {Γmtt Γtij + Γttt Γmij}
+(hmn − vmvn/c2) Γmtj Γnit − (hmn − vmvn/c2) Γmtt Γnij (2.133)

Because of time independence this greatly simplifies

Rtitj =
1

2
{−gtt,ij} − 1

c2
{Γttj Γtit}

−(vm/c2) {Γttj Γmit + Γmtj Γtit − Γmtt Γtij}
+(hmn − vmvn/c2)Γmtj Γnit − (hmn − vmvn/c2)Γmtt Γnij (2.134)
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so that

Rtitj =
1

2
{−gtt,ij} − 1

c2
(Γttj + vmΓmtj) (Γtit + vmΓmit)

+(vm/c2)Γmtt Γtij + hmnΓmtj Γnit − hmnΓmtt Γnij (2.135)

Inserting the known values of the Christoffel symbols (calculated above)

Rtitj =
1

2
(c2 − v2),ij − (c,j + vm Kmj)(c,i + vm Kmi) − 1

2
(vm/c2) (c2 − v2),m v(i,j)

+hmn v[m,j] v[n,i] − 1

2
hmn (c2 − v2),m Γnij (2.136)

That is

Rtitj =
1

2
(c2 − v2):ij − (c,j + vm Kmj)(c,i + vm Kmi) +

1

2
(vm/c) (c2 − v2),m Kij

+hmn v[m,j] v[n,i] (2.137)

But then

Rtitj = c c:ij − 1

2
(v2):ij − vm [c,j Kmi + c,i Kmj ] − vm Kmj vn Kni

+vm c,m Kij − 1

2
(vm/c) (v2),m Kij + hmn v[m,j] v[n,i] (2.138)

Which still needs to be simplified further.

For instance

1

2
(v2):ij =

1

2
(vk vk):ij = (vk vk:i):j = (vk

:j vk:i) + (vk vk:i:j) (2.139)

But

vk
:j vk:i = hkl vk:j vk:i = hkl (−cKkj + v[k:j]) (−cKli + v[l:i])

= c2(K2)ij − c(KΩ − ΩK)ij + hmn v[m,j] v[n,i] (2.140)

where with obvious notation Ωij = v[i,j] and

(KΩ − ΩK)ij = Kik gkl Ωlj − Ωik gkl Klj (2.141)
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Aside: Write (K Ω − Ω K)ij as

Kg−1Ω − Ω g−1K

then

(Kg−1 Ω − Ω g−1 K)T = ΩT [g−1]T KT − KT [g−1]T ΩT

= −Ω g−1 K + K g−1 Ω (2.142)

so this object is symmetric, as long as the minus sign is included.

Then

Rtitj = c c:ij − (vk vk:i:j) − c2(K2)ij + c(KΩ − ΩK)ij

−vm[c,jKmi + c,iKmj ] − vmKmj vn Kni

+vm c,mKij − (vm/c) (vk vk:m) Kij (2.143)

so that

Rtitj = c c:ij − (vk vk:i:j) − c2(K2)ij + c(KΩ − ΩK)ij

−vm[c,jKmi + c,iKmj ] − vm Kmj vn Kni

+vm c,m Kij + (vkvl Kkl) Kij (2.144)

Now by the Ricci identities the combination vk vk:i:j is symmetric in ij, so that we can

write:

vk vk:i:j = vk vk:(i:j) (2.145)

But now consider

vk:(i:j) =
1

2
{vk:i:j + vk:j:i} =

1

2
{(−cKki + Ωki):j + (−cKkj + Ωkj):i}

= −1

2
{(cKki):j + (cKkj):i} +

1

2
{Ωki:j + Ωkj:i} (2.146)

Then recall the identity

Ωjk:i = [cKik]:j − [cKij ]:k − vm
(3)Rm

ijk (2.147)
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to deduce

vk:(i:j) = [cKij ]:k +
1

2
vm

(
(3)Rm

ijk + (3)Rm
jik

)
(2.148)

whence

vk vk:(i:j) = vk[cKij ]:k − vk vl (3)Rkilj (2.149)

Putting this back into Rtitj we have

Rtitj = c c:ij − vk[cKij ]:k + vk vl (3)Rkilj − c2(K2)ij + c(KΩ − ΩK)ij

−vmKmj vnKni + vm c,mKij + (vkvl Kkl) Kij (2.150)

which simplifies to

Rtitj = c c:ij − vkcKij:k − c2(K2)ij + c(KΩ − ΩK)ij

−vm Kmj vn Kni + (vkvl Kkl) Kij + vkvl (3)Rkilj (2.151)

We can rewrite the last line in terms of the 4-curvature as

Rtitj = c c:ij − vk cKij:k − c2(K2)ij + c(KΩ − ΩK)ij

+vkvl Rkilj (2.152)

This is the simplest expression we can get in a coordinate basis.

Rninj : Now define in a “non-coordinate basis”.

Rninj ≡ na nb Raibj =
1

c2
(1; vi)a (1; vl)b Raibj

=
1

c2

[
Rtitj + vk Rtikj + vkRkitj + vkvlRkilj

]
=

1

c2

[
Rtitj − cvk[Kik:j − Kij:k] − cvk[Kjk:i − Kij:k] − vkvl Rkilj

]
=

1

c2

[
Rtitj − cvk[Kik:j + Kjk:i − 2Kij:k] − vkvl Rkilj

]
(2.153)

Then

c2 Rninj = c c:ij − vk c Kij:k − c2(K2)ij + c(KΩ − ΩK)ij

−c vk[Kik:j + Kjk:i − 2Kij:k] (2.154)
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There are now some simplifications

c2 Rninj = c c:ij + c vk Kij:k − c2(K2)ij + c(KΩ − ΩK)ij

−c vk[Kik:j + Kjk:i] (2.155)

To simplify this we consider the Lie derivative

LvKij = vk ∂kKij + vk
,i Kkj + vk

,j Kik (2.156)

which can also be written in terms of 3-covariant derivatives as

LvKij = vk Kij:k + vk
:i Kkj + vk

;j Kik (2.157)

so that

LvKij = vk Kij:k + hkl[(−cKki + Ωki)Klj + (−cKkj + Ωkj)Kil] (2.158)

and

LvKij = vk Kij:k − 2c (K2)ij + (KΩ − ΩK)ij (2.159)

Therefore

c2 Rninj = c c:ij + cLvKij + c2 (K2)ij − c vk[Kik:j + Kjk:i] (2.160)

Summary :

For an arbitrary stationary spacetime. taking

Kij = −1

c
v(i:j)

we have

Rijkl = (3)Rijkl − Kil Kjk + Kik Kjl (2.161)

Rtijk = c [Kik:j − Kij:k] − vm Rmijk (2.162)

Rtitj = c c:ij − vk c Kij:k − c2(K2)ij + c (KΩ − ΩK)ij + vkvl Rkilj (2.163)

We can also write this as

Rnijk ≡ na Raijk = Kij:k − Kik:j. (2.164)

and

Rninj ≡ na nb Raibj = c c:ij + cLv Kij + c2 (K2)ij − c vk[Kik:j + Kjk:i]. (2.165)
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2.8.2 Completely general ADM decomposition

For the general ADM case coordinate techniques are too messy to contemplate. The

easy results are on page 514 of [17] and boil down to

Kij = −1

c

[
1

2
∂t gij + v(i:j)

]
(2.166)

note that Kij is now a combination of the zero-shift and stationary case.

Then

Rijkl = (3)Rijkl − Kil Kjk + Kik Kjl (2.167)

and

Rnijk ≡ na Raijk = Kij:k − Kik:j (2.168)

The difficult one is then encoded in page 518, [17] which seems to assert that

Rnink ≡ na nb Raibj = [Ln K]ij + [K2]ij + a(i;j) + ai aj (2.169)

where ai is the space projection of the 4-acceleration a = (n · ∇) n.

2.8.3 The inverse-ADM decomposition

We can decompose the metric as follows

gμν =

[
−1/N2 vi/N

2

vi/N
2 hij − vivj/N

2

]
(2.170)

with

N = N(t, x, y, z), vi = vi(t, x, y, z), and hij = hij(t, x, y, z).

The inverse metric is now

gμν =

[
−[N2 − hij vi vj] vi

vi hij

]
(2.171)

where vi = hij vj and hij = [hij]
−1
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This is the reverse of ADM formulation

gμν =

⎡
⎢⎢⎢⎢⎣

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1/N2 v2/N
2 v3/N

2 v4/N
2

v2/N
2 h22 − v2v2/N

2 h23 − v2v3/N
2 h24 − v2v4/N

2

v3/N
2 h32 − v3v2/N

2 h33 − v3v3/N
2 h34 − v3v4/N

2

v4/N
2 h42 − v4v2/N

2 h43 − v4v3/N
2 h44 − v4v4/N

2

⎤
⎥⎥⎥⎥⎦

(2.172)

and

gμν =

⎡
⎢⎢⎢⎢⎣

−[N2 −∑4
i,j=1 hijvivj ] v2 v3 v4

v2 h22 h23 h24

v3 h32 h33 h34

v4 h42 h43 h44

⎤
⎥⎥⎥⎥⎦ (2.173)

For the time being, let vi = 0 then

gμν =

⎡
⎢⎢⎢⎢⎣

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1/N2 0 0 0

0 h22 h23 h24

0 h32 h33 h34

0 h42 h43 h44

⎤
⎥⎥⎥⎥⎦ (2.174)

and

gμν =

⎡
⎢⎢⎢⎢⎣

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−N2 0 0 0

0 h22 h23 h24

0 h32 h33 h34

0 h42 h43 h44

⎤
⎥⎥⎥⎥⎦ (2.175)

The 4 dimensional metric can be spilt up into one 3×3 block, and two 1×3 blocks

with two of them trivial (zero). That is

gμν =

[
−1/N2 0

0 hij

]
(2.176)

The inverse tensor is very simple

gμν =

[
−N2 0

0 hij

]
(2.177)
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where −N2 and hij are two dimensional inverses of the 1×1 matrix and 3×3 matrices

−1/N2 and hij , respectively.

The Christoffel symbols can be computed from

Γμ
σρ = gμν{gν(σ,ρ) − 1

2
gσρ,ν} (2.178)

and you can spilt them up into little sub-blocks

Γμ
σρ =

⎡
⎢⎢⎢⎢⎣

Γμ
11 Γμ

12 Γμ
13 Γμ

14

Γμ
12 Γμ

22 Γμ
23 Γμ

24

Γμ
13 Γμ

23 Γμ
33 Γμ

34

Γμ
14 Γμ

24 Γμ
34 Γμ

44

⎤
⎥⎥⎥⎥⎦ (2.179)
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2.8.4 Christoffel symbols of the 2 metrics −1/N2 and hij

Some of these blocks should have a simple interpretation in terms of Christoffel sym-

bols of the lower dimensional metrics −1/N2 and hij .

When t = time and i, j = space, for example

Γt
tt = gtν{gν(t,t) − 1

2
gtt,ν} = gtt{gt(t,t) − 1

2
gtt,t}

= gtt{1

2
gtt,t +

1

2
gtt,t − 1

2
gtt,t}

= gtt{1

2
gtt,t} = −1

2
N2{(− 1

N2
),t} = −Ṅ

N
(2.180)

Γt
ij = gtν{gν(i,j) − 1

2
gij,ν} = gtt{gt(i,j) − 1

2
gij,t}

= gtt{0 − 1

2
hij,t} = N2{1

2
hij,t} =

1

2
N2{hij,t} (2.181)

Γt
ti = gtν{gν(t,i) − 1

2
gti,ν} = gtt{gt(t,i) − 1

2
gti,t}

= gtt{1

2
gtt,i +

1

2
gti,t − 1

2
gti,t}

= gtt{1

2
gtt,i} =

1

2
N2{(− 1

N2
),i} =

∂i N

N
(2.182)

Γi
tt = giν{gν(t,t) − 1

2
gtt,ν} = gij{gj(t,t) − 1

2
gtt,j}

= gij{0 − 1

2
htt,j} = −1

2
hij{(− 1

N2
),j} = −hij ∂j N

N
(2.183)

Γi
jk = giν{gν(j,k) − 1

2
gjk,ν} = gil{gl(j,k) − 1

2
gjk,l}

= hil{hl(j,k) − 1

2
hjk,l} = [Γ(h)]ijk (2.184)

Γi
jt = giν{gν(j,t) − 1

2
gjt,ν} = gik{gk(j,t) − 1

2
gjt,k}

= gik{1

2
gkj,t +

1

2
gkt,j − 1

2
gjt,k}

=
1

2
gik gkj,t =

1

2
hik hkj,t (2.185)
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2.8.5 Collected results for the connection

There are a total of 6 sub-blocks to deal with:

Γt
tt = −1

2
N2{(− 1

N2
),t} = −Ṅ

N
(2.186)

Γt
ij = N2{1

2
hij,t} (2.187)

Γt
ti =

1

2
N2{(− 1

N2
),i} =

∂i N

N
(2.188)

Γi
tt = −1

2
hij{(− 1

N2
),j} = −hij ∂i N

N
(2.189)

Γi
jk = [Γ(h)]ijk (2.190)

Γi
jt =

1

2
hikhkj,t (2.191)

2.9 Conclusion

In this section, we analysed a generic spacetime using both ADM and reverse-ADM

(Kaluza-Klein) decompositions which split “spacetime” into “space” plus “time” in a

natural way. We use the split to describe spacetime curvature in terms of the curvature

of space and some additional structure. Furthermore, this decomposition encodes the

four-metric of spacetime in terms of a time-varying three-metric on a three-dimensional

domain together with the lapse and shift.

In addition, we used the Gauss-Codazzi and Gauss-Weingarten equations to decom-

pose the (3+1)-dimensional spacetime curvature tensor in terms of the 3-dimensional

spatial curvature tensor, the extrinsic curvature of the time slice [zero], and the grav-

itational potential. The ADM and reverse-ADM decompositions are identical in any

static spacetime. In addition, we derived the standard results in equation (2.64) to

(2.66) for the spacetime geometry in terms of the three geometry of space on a con-

stant time slice, in which this three geometry is embedded into the spacetime. Finally,

we derived equation (2.71) to (2.73) for the spacetime Einstein tensor.

We consider time dependent but block diagonal metrics in the ADM and reverse-

ADM decompositions. When the “shift vector” is zero, the ADM and reverse-ADM

decompositions are identical. Futhermore, we defined a quantity called the extrinsic
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curvature in equation (2.75). We are able to calculate the Christoffel symbols of

the first kind and second kind from section (2.7.1). Furthermore, we calculated the

Riemann tensor by using the formula from (2.91) to (2.93). Whenever the metric gab

block diagonalizes in the manner gab = −c2
⊕

hij , then even if we allow arbitrary time

dependence we have the relatively simple results as equation (2.102) to (2.104).

For a general stationary spacetime we need to use the full ADM decomposition.

However, we have the simplification that all quantities are time independent. Indeed,

the case for ADM decomposition is quite distinct from the reverse-ADM decomposi-

tion. The Christoffel symbols first kind are given in section (2.8.1). We derived the

simplest expression for the Riemann tensor in terms of a coordinate basis.

For the general ADM case coordinate techinques are too complicated to contem-

plate (page 514 of [17]). Using the inverse-ADM decomposition we can calculate the

Christoffel symbols from equation (2.178). Furthermore, we can split them up into sub-

blocks in equation (2.179). Some of these blocks can interpreted in terms of Christoffel

symbols of the 2 metrics −1/N2 and hij see (2.8.4).
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Chapter 3

Perfect fluid spheres in general

relativity

3.1 Introduction

Perfect fluid spheres are interesting because they are first approximations to any at-

tempt at building a realistic model for a general relativistic star [9, 11, 15, 20].

Although they represent a real and important astrophysical situation, explicit and

full general solutions of the perfect fluid constraints in general relativity have only

very recently been developed.

The first static spherically symmetric perfect fluid solution with constant density

was found by Schwarzschild in 1918.

He found two exact solutions to Einstein’s field equation — the “exterior solution”

(relevant outside the star) and the “interior solution” (an approximation to what

goes an inside the star). The so-called Schwarzschild solution is amazingly simple,

especially in view of the field equations which are very complicated. Indeed, the

exterior Schwarzschild solution is not a degenerate case for over-simplified situations

but physically most meaningful. It is this solution by means of which one can explain

most general relativistic effects in the planetary system. The reason is that it describes

the gravitational field outside of a spherically symmetric body like the planets and the

sun.
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Over the past 90 years a confusing tangle of specific perfect fluid spheres has been

discovered, with most of these examples seemingly independent from each other.

Many “ad hoc” tricks have been explored to solve this differential equation, often

by picking special coordinate systems, or making simple ansatze for one or other of

the metric components. The big change over the last several years has been the

introduction of “algorithmic” techniques that permit one to generate large classess of

perfect fluid spheres in a purely mechanical way. Perfect fluid spheres may be “simple”,

but they still provide a surprisingly rich mathematical and physical structure.

In this chapter we will extend these algorithmic ideas, by proving several solution-

generating theorems of varying levels of complexity. We shall then explore the formal

properties of these solution-generating theorems and then will use these theorems to

classify some of the previously known exact solution, and additionally will generate

several previously unknown perfect fluid solutions.

3.2 Six theorems for generating perfect fluid spheres

Perfect fluid spheres, either Newtonian or relativistic, are the first approximations

in developing realistic stellar models. Because of the importance of these models,

fully general solutions of the perfect fluid constraint in general relativity have been

developed over the last several years.

The central idea is to start solely with spherical symmetry, which implies that in

orthonormal components the stress energy tensor takes the form

Tâb̂ =

⎡
⎢⎢⎢⎣

ρ 0 0 0

0 pr 0 0

0 0 pt 0

0 0 0 pt

⎤
⎥⎥⎥⎦ (3.1)

and then use the perfect fluid constraint pr = pt. This is making the radial pressure

equal to the transverse pressure. By using the Einstein equations, plus spherical

symmetry, the equality pr = pt for the pressures becomes the statement

Gθ̂θ̂ = Gr̂r̂ = Gφ̂φ̂. (3.2)
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In terms of the metric components, this leads to an ordinary differential equation

[ODE], which then constrains the spacetime geometry, for any perfect fluid sphere.

Over the last 90 years, many “ad hoc” approaches to solving this differential equa-

tion have been explored. We often solve it by picking special coordinate systems, or

making simple ansatze for one or other of the metric components [3, 4, 5, 7, 8, 25]. (For

recent overviews see [9, 11, 20]. For a table of “well-known” perfect fluid solutions see

Table 3.2 on page 93.) The big recent change has been the discovery of “algorithmic”

techniques that permit one to generate large classes of perfect fluid spheres in a purely

mechanical way [13, 16, 18]. In addition, an alternative algorithmic approach is used

to generate any spherically symmetric static solution of Einstein’s equation without

recourse to the details of the material that makes it up.

Solution generating theorems

Algorithmic techniques

We would like to present “Algorithmic” techniques [16] that permit one to generate

large classes of perfect fluid spheres in a purely mechanical way. The condition of

hydrostatic eqilibrium for Newtonian gravity is

dPr

dr
= −g(r)ρ(r) = −m(r)ρ(r)

r2

where g(r) is the local acceleration due to gravity, m(r) is the mass contained within

a radius r and ρ(r) is the density.

We can simply calculate the mass within a radius r in terms of the density:

m(r) = 4π

∫ r

0

r2ρ(r) dr.

When we used ρ(r) as a known function, we have to solve a second–order differential

equation:
d2Pr

dr2
+

{
2

r
− 1

ρ

dρ

dr

}
dPr

dr
+ 4πρ2 = 0
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We can solve for Pr(r) in terms of an integral of the density:

Pr(r) =

∫
C1 − 4π

∫
r2 ρ(r) dr

r2
ρ(r) dr + C2.

We let g(r) be an arbitrary function to solve simple algebra which allows us to find

m(r). The differentiation allows us to find ρ(r) and then Pr(r), respectively:

m(r) = r2g(r) = 4π

∫ r

0

r2ρ(r) dr

⇒ ρ(r) =
2rg(r) + r2dg

dr
4πr2

⇒ Pr(r) = − 1

2π

∫
g(r)2

r
dr − 1

8π
g(r)2 + Pr(0).

In both the Newtonian and relatistic cases we have to ensure that the density is non-

negative. The pressure is finite and non-negative.

Spherical symmetry

Spherically symmetric means “having the same symmetry as a sphere”. Indeed,

“sphere” means S2, not spheres of higher dimension. Rather than the metric on a

differentiable manifold, we are concerned with those metrics that have such symme-

tries. We can characterize symmetries of the metric. By the existence of Killing

vectors, which we can see from the definition below. By demanding spherical sym-

metry we can simplify the equations of motion considerably. It turns out that for

vaccuum spherical symmetry of the metric automatically means the metric is static

and asymptotically flat. This is Birkhoff’s theorem, a proof of which can be found in

[19]. Furthermore, Spherical symmetry can be defined rigorously in terms of Killing

vector fields as follows.

Definition 3. A space-time is said to be spherically symmetric if and only if it admits

three linearly independent spacelike Killing vector fields Xa whose orbits are closed

(i.e. topological circles) and which satisfy

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2
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Then there exists a coordinate system in which the Killing vectors take on a stan-

dard form as expressed in the following result.

Proposition 1. In a spherically symmetric space-time, there exists a coordinate sys-

tem (xa) (called quasi Cartesian) in which the Killing fields Xa are of the form

X0 → 0,

Xα → ωα
β xβ , ωαβ = −ωβα.

In addition, we know that what the Killing vectors of S2 are, and that there are

three of them. Therefore, a spherically symmetric manifold is one that has three

Killing vector fields which are the commutator of the Killing vectors which is the same

in either case of those on S2.

Schwarzschild solution

The gravitational field of a homogenous spherically symmetric body is derived in

firstly Newton’s and then in Einstein’s gravitational theory. The gravitational field of

a simple Einsteinian model star consists of the exterior and the interior Schwarzschild

solutions. They are joined together at the surface of the star.

The use of arbitrary coordinates is permitted in general relativity. Indeed, the

physical significance of statements about tensor or vector components are other quan-

tities which are not always obvious. However, there are some situations where the

interpretation is almost as straightforward as in special relativity. The center point of

a local inertial coordinate system is the most obvious example. Its coordinate system,

where the principle of equivalence comes from, allows one to treat all local quantities

exactly as in special relativity. Furthermore, Schwarzschild coordinates for a spherical

system turn out to be a second example [17].

Schwarzschild geometry

The geometry of a spherical symmetric vacuum, i.e. vacuum spacetime outside the

spherical black hole is the “Schwarzschild geometry” can be described in terms of the
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Schwarzschild metric,

ds2 = −
(

1 − 2M

r

)
dt2 +

dr2

1 − 2M/r
+ r2dΩ2, (3.3)

which was derived originally as the external field of a static star. The Schwarzschild

metric seems to have a singularity at the surface where r = 2M due to its coordinates,

in which space and time change their meanings.

Schwarzschild geometry illustrates clearly the highly non-Euclidean character of

spacetime geometry when gravity becomes strong. Furthermore, it illustrates many

of techniques one can use to analyze strong gravitational fields. When appropriately

truncated, it is the spacetime geometry of a black hole and of a collapsing star as well

as of a wormhole [17].

However, that the Schwarzschild exterior solution is the unique spherically sym-

metric vacuum solution, is known as Birkhoff’s theorem. This is a theorem of general

relativity which states that all spherical gravitaional fields, whether from a star or

from a black hole, are indistinguishable at a large distances. A consequence of this is

that purely radial changes in a spherical star do not affect its external gravitational

field.

That the Schwarzschild geometry is relevant to gravitational collapse follows from

“Birkhoff’s theorem”.

Birkhoff’s theorem: Let the geometry of a given region of spacetime be spherically

symmetric, and be a solution to the Einstein field equations in vacuum. Then that

geometry is necessarily a piece of the Schwarzschild geometry [17].

In particular, Birkhoff’s theorem implies that if a spherically symmetric source like

a star changes its size, however does so always remaining spherically symmetric, then

it cannot propagate any disturbances into the surrounding space. From figure 3.1,

shows that a pulsating spherically symmetric star cannot emit gravitational waves. If

a spherically symmetric source is restricted to the region r � a for some a, then the so-

lution for r > a must be the Schwarzschild solution, or can be called the Schwarzschild

exterior solution. However, the converse is not true: a source which gives rise to an

exterior Schwarzschild solution is not necessarily spherically symmetric. Some counter-

examples are known. Therefore, in general, a source need not inherit the symmetry of
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its external field. If we take the limit of equation 3.3 as r → ∞, then the flat space

Minkowski metric of special relativity in spherical polar coordinates is obtained, which

is

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2). (3.4)

This shows that a spherically symmetric vacuum solution is necessarily asymptotically

flat [19].

Figure 3.1: A Pulsating spherical star cannot emit gravitational waves.

Firstly, start with some static spherically symmetric geometry in Schwarzschild

(curvature) coordinates

ds2 = −ζ(r)2 dt2 +
dr2

B(r)
+ r2 dΩ2 (3.5)

and then assume it represents a perfect fluid sphere. That is, Gθ̂θ̂ = Gr̂r̂ = Gφ̂φ̂. While

Gθ̂θ̂ = Gφ̂φ̂ is always fulfilled due to spherical symmetry, we get a nontrivial constraint

from Gθ̂θ̂ = Gr̂r̂.

We calculate

Gr̂r̂ = −2Brζ ′ − ζ + ζB

r2ζ
(3.6)
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and

Gθ̂θ̂ = −1

2

B′ζ + 2Bζ ′ + 2Brζ ′′ + rζ ′B′

rζ
(3.7)

We set Gr̂r̂ = Gθ̂θ̂, which supplies us with an ODE:

[r(rζ)′]B′ + [2r2ζ ′′ − 2(rζ)′]B + 2ζ = 0 . (3.8)

This reduces the freedom to choose the two functions in equation (3.5) to one.

This equation is a first order-linear non-homogeneous equation in B(r). Thus, once

you have chosen a ζ(r) — this equation can always be solved for B(r). Solving for

B(r) in terms of ζ(r) is the basis of [13, 16], (and is the basis for Theorem 1 below).

On the other hand, we can also re-group this same equation as

2r2Bζ ′′ + (r2B′ − 2rB)ζ ′ + (rB′ − 2B + 2)ζ = 0 , (3.9)

which is a linear homogeneous 2nd order ODE for ζ(r), which will become the basis

for Theorem 2 below. Thus, once you have chosen a B(r) — this equation can always

be solved for ζ(r). The question we are going to answer in this section is, how can one

systematically “deform” this geometry while still retaining the perfect fluid property?

That is, suppose we start with the specific geometry defined by

ds2 = −ζ0(r)
2 dt2 +

dr2

B0(r)
+ r2dΩ2 (3.10)

and assume it represents a perfect fluid sphere. In the following section, we will show

how to “deform” this solution by applying five different transformation theorems on

{ζ0, B0}, such that the outcome still presents a perfect fluid sphere. The outcome

of this process will depend on one or more free parameters, and so automatically

generates an entire family of perfect fluid spheres of which the original starting point

is only one member.

In addition, we analyze what happens if we apply these theorems more than once,

iterating them in various ways. We also try to find the connection between all six

different transformation theorems.
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3.2.1 The first theorem

The first theorem we present is a variant of a result first explicitly published in [16],

though another variant of this result can also be found in [20]. We first re-phrase the

theorem in [16]. This is slightly different formalism, and demonstrate an independent

way of proving it.

Definition (Idempotence): We call a transformation T idempotent if T2 = T.

Speaking loosely, we will call a theorem idempotent if whenever we apply the trans-

formation more than once, no further solutions will be obtained.

We use our proof to show that the transformation in theorem 1 is (in a certain sense

to be made precise below) “idempotent”. By applying theorem 1 more than once, no

new solutions will be found. Furthermore, the idempotence property of theorem 1 and

theorem 2, which we will soon establish, enables us to divide the class of perfect fluid

spheres into seed metrics and non-seed metrics.

Theorem 1. Suppose {ζ0(r), B0(r)} represents a perfect fluid sphere. Define

Δ0(r) =

(
ζ0(r)

ζ0(r) + r ζ ′
0(r)

)2

r2 exp

{
2

∫
ζ ′
0(r)

ζ0(r)

ζ0(r) − r ζ ′
0(r)

ζ0(r) + r ζ ′
0(r)

dr

}
. (3.11)

Then for all λ, the geometry defined by holding ζ0(r) fixed and setting

ds2 = −ζ0(r)
2 dt2 +

dr2

B0(r) + λ Δ0(r)
+ r2dΩ2 (3.12)

is also a perfect fluid sphere. That is, the mapping

T1(λ) : {ζ0, B0} �→ {ζ0, B0 + λΔ0(ζ0)} (3.13)

takes perfect fluid spheres into perfect fluid spheres. Furthermore a second application

of the transformation does not yield new information, T1 = T1(
∑

λi) is “idempotent”,

in the sense that

T1(λn) ◦ · · · ◦T1(λ2) ◦T1(λ1) = T1(
∑

λi) : {ζ0, B0} �→
{
ζ0, B0 +

(∑n

i=1
λi

)
Δ0(ζ0)

}
(3.14)
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We also note that T1 always has an inverse

[T1(λ)]−1 = T1(−λ). (3.15)

Proof for Theorem 1. Assume that {ζ0(r), B0(r)} is a solution for equation (3.8).

We want to find under what conditions does {ζ0(r), B1(r)} also satisfy equation

(3.8)? Without loss of generality, we write

B1(r) = B0(r) + λ Δ0(r) . (3.16)

Equation (3.8) can now be used to determine Δ0(r). Substitute B1(r) in equation

(3.8)

[r(rζ0)
′](B0 + λ Δ0)

′ + [2r2ζ ′′
0 − 2(rζ0)

′](B0 + λ Δ0) + 2ζ0 = 0

we can also re-group this same equation as

[r(rζ0)
′]B′

0 + [2r2ζ ′′
0 − 2(rζ0)

′]B0 + 2ζ0 + [r(rζ0)
′] Δ′

0 +
[
2r2ζ ′′

0 − 2(rζ0)
′]Δ0 = 0

That ordinary inhomogeneous first-order differential equation in B now simplifies to

[r(rζ0)
′] Δ′

0 +
[
2r2ζ ′′

0 − 2(rζ0)
′]Δ0 = 0 , (3.17)

which is an ordinary homogeneous first-order differential equation in Δ0.

Now we can calculate Δ0 by following,

[r(rζ0)
′]Δ′

0 = − [2r2ζ ′′
0 − 2(rζ0)

′]Δ0. (3.18)

Rearrange it into

Δ′
0

Δ0

=
− [2r2ζ ′′

0 − 2(rζ0)
′]

[r(rζ0)′]

=
−2rζ ′′

0

(rζ0)′
+

2

r
(3.19)

A straightforward calculation, including an integration by parts, leads to

Δ0(r) =
r2

[(rζ0)′]
2 exp

{∫
4ζ ′

0

(rζ0)′
dr

}
. (3.20)

68



We can also write this same equation as

Δ0(r) =
r2

[(rζ0)′]
2 exp

{
4

∫
ζ ′
0

ζ0

ζ0

(ζ0 + rζ ′
0)

dr

}

=
r2

[(rζ0)′]
2 exp

{
2

∫
ζ ′
0

ζ0

ζ0

(ζ0 + rζ ′
0)

dr + 2

∫
ζ ′
0

ζ0

ζ0

(ζ0 + rζ ′
0)

dr

}
. (3.21)

Adding and subtracting ±2(rζ ′
0)/(ζ0(rζ0)

′) to the argument under the integral leads

to

Δ0(r) =
r2

[(rζ0)′]
2 exp

{
2

∫
ζ ′
0

ζ0

ζ0

(ζ0 + rζ ′
0)

dr − 2

∫
ζ ′
0

ζ0

rζ ′
0

(ζ0 + rζ ′
0)

dr

}

+ exp

{
2

∫
ζ ′
0

ζ0

ζ0

(ζ0 + rζ ′
0)

dr + 2

∫
ζ ′
0

ζ0

rζ ′
0

(ζ0 + rζ ′
0)

dr

}
.

=
r2

[(rζ0)′]
2 exp

{
2

∫
ζ ′
0

ζ0

(ζ0 − rζ ′
0)

(ζ0 + rζ ′
0)

dr + 2

∫
ζ ′
0

ζ0

(ζ0 + rζ ′
0)

(ζ0 + rζ ′
0)

dr

}
. (3.22)

We can simplify to,

=
r2

[(rζ0)′]
2 exp

{
2

∫
ζ ′
0

ζ0

(ζ0 − rζ ′
0)

(ζ0 + rζ ′
0)

dr + 2

∫
ζ ′
0

ζ0
dr

}
.

Furthermore,

=
r2

[(rζ0)′]
2 exp

{
2

∫
ζ ′
0

ζ0

(ζ0 − rζ ′
0)

(ζ0 + rζ ′
0)

dr

}
exp(ln(ζ2

0 )).

Note that, exp(ln(ζ2
0)) = ζ2

0 , so we can calculate

Δ0 =

(
ζ0(r)

ζ0(r) + r ζ ′
0(r)

)2

r2 exp

{
2

∫
ζ ′
0(r)

ζ0(r)

ζ0(r) − r ζ ′
0(r)

ζ0(r) + r ζ ′
0(r)

dr

}
, (3.23)

as previously illustrated.

If we apply this transformation a second time we obtain no additional information.

To see this, consider the sequence

{ζ0, B0} �→ {ζ0, B1} �→ {ζ0, B2} . . . (3.24)
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But at the second step (and all subsequent steps), since ζ0 has not changed, so Δ1(r) =

Δ0(r). More generally, at all stages of the iteration Δi(r) = Δ0(r). We can write this

as
n∏

i=1

T1(λi) = T1

(
n∑

i=1

λi

)
. (3.25)

or in the more suggestive form
n∏

i=1

T1 � T1 (3.26)

where the symbol � indicates “equality up to relabelling of the parameters”. That

is, transformation T1 is “idempotent” up to relabelling of the parameters (see figure

3.2).

A version of Theorem 1 can also be found in [20]. Specifically, after several manip-

ulations, changes of notation, and a change of coordinate system, the transformation

exhibited in equation (16.11) of [20] can be converted into Theorem 1 above.

Applying theorem 1 to a fixed {ζ0, B0} generates a one dimensional space of perfect

fluid spheres, which leads to the corollary below:

Corollary 1. Let {ζ0, Ba} and {ζ0, Bb} both represent perfect fluid spheres, then for

all p

{ζ0, pBa + (1 − p)Bb} (3.27)

is also a perfect fluid sphere, furthermore all perfect fluid spheres for a fixed ζ0 can be

written in this form.

Proof. The result is automatic once you note that for fixed ζ0 the ODE for B is linear,

(though not homogeneous, which is why the two coefficients p and 1− p are chosen to

add up to 1) .

We defer extensive discussion of the application of this theorem and its corollary

until section 3.4, where we use this and our other generating theorems as a basis

for classifying perfect fluid spheres. At this stage we mention, only as a very simple

example, that T1 applied to Minkowski space results in the geometry of the Einstein

static universe.
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Figure 3.2: The solid lines show B(r) for 10 reapplications of Theorem 1 onto the Minkowski
metric. The dashed line corresponds to a single application with a specific choice for λonce.
It can be seen that 10 applications of Theorem 1 can be expressed by one application.

Figure 3.3: This structure shows that when we apply theorem 1 to Minkowski, we get an
Einstein static universe as a new metric.
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3.2.2 The second theorem

The second theorem we present is a new transformation theorem. This is a different

formalism, and demonstrates our independent way of proving it. Furthermore, we

would like to show the “idempotence” property of theorem 2 in this section.

Theorem 2. Let {ζ0, B0} describe a perfect fluid sphere. Define

Z0(r) = σ + ε

∫
r dr

ζ0(r)2
√

B0(r)
. (3.28)

Then for all σ and ε, the geometry defined by holding B0(r) fixed and setting

ds2 = −ζ0(r)
2 Z0(r)

2 dt2 +
dr2

B0(r)
+ r2dΩ2 (3.29)

is also a perfect fluid sphere. That is, the mapping

T2(σ, ε) : {ζ0, B0} �→ {ζ0 Z0(ζ0, B0), B0} (3.30)

takes perfect fluid spheres into perfect fluid spheres. Furthermore a second application

of the transformation does not yield new information, T2 is “idempotent” in the sense

that

T2(σn, εn) ◦ · · · ◦ T2(σ3, ε3) ◦ T2(σ2, ε2) ◦ T2(σ1, ε1) = T2(σn . . . σ3σ2σ1, εn...321), (3.31)

where

εn...321 = (ε1σ2σ3 · · ·σn) + (σ−1
1 ε2σ3 · · ·σn) + (σ−1

1 σ−1
2 ε3 · · ·σn)

+ · · ·+ (σ−1
1 σ−1

2 σ−1
3 · · · εn). (3.32)

Furthermore, theorem 2 is invertible (as long as σ �= 0):

[T2(σ, ε)]−1 = T2(1/σ,−ε). (3.33)

Reduction of order:

This is a method to find a general solution to a linear differential equation, provided

you already have one particular solution. In this method, we start with an nth–order

linear differential equation. This method is especially useful in solving a second–order

linear differential equation. It reduces the problem to one for solving a first–order

linear differential equation.
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Proof for Theorem 2. The proof of theorem 2 is based on the technique of “reduction

in order”. Assuming that {ζ0(r), B0(r)} solves equation (3.9), write

ζ1(r) = ζ0(r) Z0(r) . (3.34)

and demand that {ζ1(r), B0(r)} also solves equation (3.9). We find

2r2B0(ζ0 Z0)
′′ + (r2B′

0 − 2rB0)(ζ0 Z0)
′ + (rB′

0 − 2B0 + 2)(ζ0 Z0) = 0 (3.35)

we can expand the above equation to

2r2B0(ζ
′′
0 Z0 + 2ζ ′

0 Z ′
0 + ζ0 Z ′′

0 ) + (r2B′
0 − 2rB0)(ζ

′
0 Z0 + ζ0 Z ′

0)

+(rB′
0 − 2B0 + 2)(ζ0 Z0) = 0 (3.36)

we can also re-group this same equation as

{
2r2B0ζ

′′
0 + (r2B′

0 − 2rB0)ζ
′
0 + (rB′

0 − 2B0 + 2)ζ0

}
Z0

+(r2ζ0B
′
0 + 4r2ζ ′

0B0 − 2rζ0B0)Z
′
0 + (2r2ζ0B0)Z

′′
0 = 0 (3.37)

This linear homogeneous 2nd order ODE for Z0 now simplifies to

(r2ζ0B
′
0 + 4r2ζ ′

0B0 − 2rζ0B0)Z
′
0 + (2r2ζ0B0)Z

′′
0 = 0 , (3.38)

which is an ordinary homogeneous second-order differential equation, depending only

on Z ′
0 and Z ′′

0 . (So it can be viewed as a first-order homogeneous order differential

equation in Z ′, which is solvable.) Separating the unknown variable to one side,

Z ′′
0

Z ′
0

= −1

2

B′
0

B0
− 2

ζ ′
0

ζ0
+

1

r
. (3.39)

Re-write Z ′′
0/Z ′

0 = d ln(Z ′
0)/dt, and integrate twice over both sides of equation (3.39),

to obtain

Z0 = σ + ε

∫
r dr

ζ0(r)2
√

B0(r)
, (3.40)

depending on the old solution {ζ0(r), B0(r)}, and two arbitrary integration constants

σ and ε.
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To see that the transformation T2 defined in Theorem 2 is “idempotent” we first

show

T2 ◦ T2 � T2, (3.41)

and then iterate. The precise two-step composition rule is

T2(σ2, ε2) ◦ T2(σ1, ε1) = T2

(
σ2σ1, ε1σ2 +

ε2

σ1

)
. (3.42)

In this section we consider a two-step composition rule to find idempotence. In

particular, the most outstanding features of these steps are:

• To see “idempotence”, note that for fixed B0(r) equation (3.9) has a solution

space that is exactly two dimensional.

• Since the first application of T2 takes any specific solution and maps it into the

full two-dimensional solution space, any subsequent application of T2 can do

no more than move one around inside this two dimensional solution space —

physically this corresponds to a relabelling of parameters describing the perfect

fluid metric you are dealing with, not the generation of new solutions.

To be more explicit about this note that at step one

ζ0 → ζ1 = ζ0

⎧⎨
⎩σ1 + ε1

∫
r dr

ζ0(r)2
√

B0(r)

⎫⎬
⎭ , (3.43)

while at the second step

ζ1 → ζ2 = ζ1

⎧⎨
⎩σ2 + ε2

∫
r dr

ζ1(r)2
√

B0(r)

⎫⎬
⎭ . (3.44)

That is:

ζ2 = ζ0

⎧⎨
⎩σ1 + ε1

∫
r dr

ζ0(r)2
√

B0(r)

⎫⎬
⎭ (3.45)

×
⎧⎨
⎩σ2 + ε2

∫
r dr

ζ0(r)2
√

B0(r) [σ1 + ε1

∫
r dr/(ζ0(r)2

√
B0(r))]2

⎫⎬
⎭ .
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But this can be rewritten as

ζ2 = ζ0 Z0

⎧⎨
⎩σ2 +

ε2

ε1

∫
dZ0

Z2
0

⎫⎬
⎭

= ζ0 Z0

{
σ2 − ε2

ε1

∫
d

(
1

Z0

)}

= ζ0 Z0

{
σ2 − ε2

ε1

[
1

Z0
− 1

σ1

]}
. (3.46)

Therefore

ζ2 = ζ0

{
−ε2

ε1
+

[
σ2 +

ε2

ε1

1

σ1

]
Z0

}
. (3.47)

That is

Z1 = −ε2

ε1
+

[
σ2 +

ε2

ε1

1

σ1

]
Z0, (3.48)

= σ2σ1 +

(
σ2ε1 +

ε2

σ1

)∫
r dr

ζ0(r)2
√

B0(r)
(3.49)

from which the composition law

T2(σ2, ε2) ◦ T2(σ1, ε1) = T2

(
σ2σ1, ε1σ2 +

ε2

σ1

)
(3.50)

follows immediately. (Note that the composition law for T2 is actually a statement

about applying reduction of order to 2nd-order ODEs, it is not specifically a statement

about perfect fluid spheres, though that is how we will use it in the thesis). The

general composition law then follows by induction. To find the inverse transformation

we choose σ2 = 1/σ1 and ε1 = −ε2, for which

T2(1/σ1,−ε1) ◦ T2(σ1, ε1) = T2 (1, 0) = I. (3.51)

Comment: As other special cases of the composition law we will also mention the

results that
n∏

i=1

T2(1, εi) = T2

(
1,

n∑
i=1

εi

)
, (3.52)
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and

T2(σ, ε)n = T2

(
σn, ε

[
σn−1 + σn−3 · · · + σ−(n−3) + σ−(n−1)

])
. (3.53)

Now as long as σ > 1 then for sufficiently large n we see

T2(σ, ε)n ≈ T2

(
σn, σn−1ε

)
= σn−1 T2(σ, ε) � T2(σ, ε), (3.54)

where at the last step we have used the fact that the overall multiplicative factor σn−1

can simply be reabsorbed into a redefinition of the time coordinate. Because of this

result, we see that for fixed σ > 1 (and fixed but arbitrary ε) repeated numerical

applications of T2(σ, ε) will have a well-defined limit. In figure 3.4 we have tested the

composition law numerically.

A strictly limited version of theorem 2, with little comment on its importance, can

be found in [20]. Specifically, after several manipulations, changes of notation, and a

change of coordinate system, the transformation exhibited in equation (16.12) of [20]

can be seen to be equivalent to the sub-case σ = 0, ε = 1 of theorem 2 above.

For some purposes it is more useful to rephrase theorem 2 as below:

Corollary 2. Let {ζa, B0} and {ζb, B0} both represent perfect fluid spheres, then for

all p and q

{p ζa + q ζb, B0} (3.55)

is also a perfect fluid sphere. Furthermore, for fixed B0 all perfect fluid spheres can be

written in this form.

Proof. The result is automatic once you note that for fixed B0 the 2nd order ODE for

ζ is linear and homogeneous.

We defer extensive discussion about the application of these theorems and corollary

until section 3.4, which cover the following:

• A simple example involving T2 applied to either the Einstein static universe or

the anti-de Sitter universe results in Schwarzschild’s stellar solution (position-

independent density).

• Similarly, corollary 2 applied to a combination of the Einstein static universe and

anti-de Sitter space is another way of obtaining Schwarzschild’s stellar solution.

76



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

r

ζ(
r)

 a
fte

r 
ea

ch
 a

pp
lic

at
io

n 
of

 th
eo

re
m

 1

σ
1
=0.25, ε

1
=1

σ
2
=0.50, ε

2
=2

σ
3
=0.75, ε

3
=3

σ
4
=1.00, ε

4
=4

σ
5
=1.25, ε

5
=5

σ
6
=1.50, ε

6
=6

σ
7
=1.75, ε

7
=7

σ
8
=2.00, ε

8
=8

σ
9
=2.25, ε

9
=9

σ
10

=2.50, ε
10

=10

σ
once

=  3.46,
ε
once

=591.73

Figure 3.4: The solid lines show ζ(r) for 10 reapplications of Theorem 2 onto the Minkowski
metric. The dashed line corresponds to a single application with a specific choice for σonce and
εonce. It can be seen that 10 applications of Theorem 2 can be expressed by one application.

Note that when comparing the results of our computations with the extant literature

we shall adopt the naming conventions of the review article by Delgaty and Lake [9].

For example, some of the less standard names are:

• K-O III: The third spacetime considered by Korkina and Orlyanskii.

• M-W III: The third spacetime considered by Matese and Whitman.

• B-L: The spacetime considered by Buchdahl and Land.

• Kuch: One of several spacetimes considered by Kuchowicz.

• Heint: One of several spacetime considered by Heintmann.
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References to the primary literature can be found in Delgaty and Lake [9]. We also

add several new abbreviations:

• Martin: One of several spacetimes considered by Martin and Visser.

• S1: A special name for a particularly simple spacetime.

• P1-P8: Special names for several apparently new perfect fluid spacetimes.

See in particular tables (3.2) and (3.3) for the spacetime metrics corresponding to

these geometries.

Figure 3.5: This structure shows that when we apply theorem 2 to Minkowski, we get the
K-O III geometry.

3.2.3 The third and fourth theorems

Having now found the first and second generating theorems, is now useful to define

two new theorems by composing them. What we are going to show in the following

section is how to deform the geometry while still retaining the perfect fluid property.

To further illustrate the formalism, we will show how to classify perfect fluid spheres

by using two new generating theorems. We present theorem 3 by taking a perfect fluid

sphere solution {ζ0, B0} and applying theorem 1 onto it which gives us a new perfect

fluid sphere {ζ0, B1}. The new B1 is given in equation (3.11). We now continue with

applying theorem 2, again we get a new solution {ζ̃ , B1}, where ζ̃ now depends on
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the new B1. All together we can consider this as a single process by introducing the

following theorem:

Theorem 3. If {ζ0, B0} denotes a perfect fluid sphere, then for all σ, ε, and λ, the

three-parameters geometry defined by

ds2 = −ζ0(r)
2

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2
√

B0(r) + λ Δ0(r)

⎫⎬
⎭

2

dt2 +
dr2

B0(r) + λΔ0(r)
+ r2dΩ2

(3.56)

is also a perfect fluid sphere, where Δ0 is

Δ0(r) =

(
ζ0(r)

ζ0(r) + r ζ ′
0(r)

)2

r2 exp

{
2

∫
ζ ′
0(r)

ζ0(r)

ζ0(r) − r ζ ′
0(r)

ζ0(r) + r ζ ′
0(r)

dr

}
. (3.57)

That is

T3 = T2 ◦ T1 : {ζ0, B0} �→ {ζ0, B0 + λ Δ0(ζ0)}
�→ {ζ0 Z0(ζ0, B0 + λΔ0(ζ0)), B0 + λΔ0(ζ0)}. (3.58)

Now we would like to present another new theorem. Instead of starting with the-

orem 1 we could first apply theorem 2 on {ζ0, B0}. This gives us a new perfect fluid

sphere {ζ1, B0}, where ζ1 = ζ0 Z0(ζ0, B0) is given by equation (3.40). We now continue

with theorem 1 which leads to {ζ1, B̃} where B̃ depends on the new ζ1. Again, we can

consider this as a single process by introducing the following theorem:

Theorem 4. If {ζ0, B0} denotes a perfect fluid sphere, then for all σ, ε, and λ, the

three-parameters geometry are defined by

ds2 = −ζ0(r)
2

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2
√

B0(r)

⎫⎬
⎭

2

dt2 +
dr2

B0(r) + λΔ0(ζ1, r)
+ r2dΩ2 (3.59)

is also a perfect fluid sphere, where Δ0(ζ1, r) is defined as

Δ0(ζ1, r) =

(
ζ1(r)

ζ1(r) + r ζ ′
1(r)

)2

r2 exp

{
2

∫
ζ ′
1(r)

ζ1(r)

ζ1(r) − r ζ ′
1(r)

ζ1(r) + r ζ ′
1(r)

dr

}
, (3.60)
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depending on ζ1 = ζ0 Z0, where as before

Z0(r) = σ + ε

∫
r dr

ζ0(r)2
√

B0(r)
. (3.61)

That is

T4 = T1 ◦ T2 : {ζ0, B0} �→ {ζ0 Z0(ζ0, B0), B0}
�→ {ζ0 Z0(ζ0, B0), B0 + λΔ0(ζ0 Z0(ζ0, B0))}. (3.62)

In addition, we analyze what happens, if we apply theorems 3 or 4 more than once.

Some general comments about both new transformation theorems:

• Theorem 3 and theorem 4 are in general distinct, which can be traced back to

the fact that theorem 1 and theorem 2 do not in general commute.

• Theorem 3 and theorem 4 are in general not idempotent. That means when

we apply theorem 3 more than once further distinct solutions will be obtained.

Similarly for theorem 4.

In addition, these comments can be described in terms of the equations below.

T3 �� T4; T3 ◦ T3 �� T3; T4 ◦ T4 �� T4. (3.63)

The best way to verify this is to try a few specific examples. There may be some

specific and isolated special metrics for which theorem 3 and theorem 4 happen to be

degenerate, or idempotent, and finding such metrics is important for our classification

programme.

3.2.4 Formal properties of the generating theorems

The solution generating theorems we have developed interact in a number of interest-

ing ways and exhibit numerous formal properties that will be useful when classifying

generic perfect fluid spheres. To start with, theorem 3 (T3) and theorem 4 (T4) can

be expressed in terms of theorem 1 (T1) and theorem 2 (T2):

T3(g) := (T2 ◦ T1) g = T2 (T1(g)) ;

T4(g) := (T1 ◦ T2) g = T1 (T2(g)) .
(3.64)
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Figure 3.6: This structure shows that Theorem 3 and theorem 4 are in general distinct.
When we apply theorem 3 to Minkowski, we get the Schwarzschild Interior geometry, while
applying theorem 4 to the Minkowski, we get Martin 3 .

where g is a metric representing a perfect fluid sphere. Having this in mind, some of

the new solutions generated by starting from some specific solution can be identified.

For example:

T4 ◦ T1 ≡ T1 ◦ T2 ◦ T1 ≡ T1 ◦ T3 , (3.65)

or

T3 ◦ T3 ≡ T2 ◦ T1 ◦ T2 ◦ T1 ≡ T2 ◦ T4 ◦ T1 . (3.66)

The idempotence of T1 and T2 in this formalism is:

(T1 ◦ T1) g =T1 (T1(g)) � T1(g) ;

(T2 ◦ T2) g =T2 (T2(g)) � T2(g) .
(3.67)

Taken together, it is possible to simplify all formulae wherever T1 and T2 appear next

to each other more than once. The following examples should demonstrate how this

works:

(T2 ◦ T3) g ≡ (T2 ◦ T2 ◦ T1) g � (T2 ◦ T1) g ≡ T3(g) ;

(T1 ◦ T4) g ≡ (T1 ◦ T1 ◦ T2) g � (T1 ◦ T2) g ≡ T4(g) ,
(3.68)
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and in the same way

T4 ◦ T3 ≡ T1 ◦ T2 ◦ T2 ◦ T1 � T1 ◦ T2 ◦ T1 ≡ T1 ◦ T3 ≡ T4 ◦ T1 ;

T3 ◦ T4 ≡ T2 ◦ T1 ◦ T1 ◦ T2 � T2 ◦ T1 ◦ T2 ≡ T2 ◦ T4 ≡ T3 ◦ T2 .
(3.69)

These relationships can be used to structure the solution set generated starting from

any particular perfect fluid sphere, and moreover to classify which metrics can be

produced by our theorems, and which ones cannot. For example, the idempotence

property of theorem 1 and theorem 2 enables us to divide the class of perfect fluid

spheres into seed metrics and non-seed metrics. Seed metrics can never be generated

by using one of the two theorems T1 or T2, while non-seed metrics are connected to

other simpler metrics via one of these theorems. We formalize this in the following

subsection.

3.2.5 Seed and non-seed metrics

Definition (Seed metric): Take a metric g (or a parameterized class of metrics)

and apply theorem 1 or theorem 2 on it. Three different cases are possible:

• Each of the applications supplies us with a new solution. [T1(g) �� g �� T2(g).]

We define a metric with this behaviour as a seed metric. (We shall soon see

several examples of this behaviour.) For example, figure 2.5 show that Minkowski

is a seed metric. When we apply theorem 1 to it, we get Einstein static. While

applying theorem 2 to Minkowski, we get K-O III instead.

• Only one of the applications supplies us with a new solution, while the other one

gives us the same metric we started with. [T1(g) � g or T2(g) � g.] These met-

rics are non-seed metrics. (We shall soon see several examples of this behaviour.)

For example, figure 2.5 show that Einstein static and K-O III are both non-seed

metric. The reason is only one of the applications gives us a new solution, while

the other one still give us the same metric which are Einstein static and K-O

III, respectively.

• Both applications give us the same metric we started with. [T1(g) � g � T2(g).]

Metrics of this type are fixed points of the transformation process and we then
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also have T3(g) � g � T4(g). While we have encountered numerical examples

that seem to exhibit this behaviour, we have no analytic proof for the existence

of non-obvious fixed-point metrics. There is one obvious but not particularly

useful example of a fixed point class of metrics. If we take the ODE in equation

(3.8), and write down its most general solution as a function of the arbitrary

parameters ζ(r), then any of our solution generating theorems applied to this

most general solutions will at most move us around in the parameter space

characterizing the most general solution — the most general solution of equation

(3.8), or equivalently equation (3.9), is thus an infinite-parameter fixed point of

the generating theorems. But apart from this obvious example, it is unclear

whether other fixed point classes of metric exist.

Classifying seed and non-seed metrics are very important. In particular, the most

outstanding features of this algorithm are:

• We developed a tool to generate new solutions for a perfect fluid sphere, which

does not require to solve the Einstein equations.

• We also established the relationships among the generating theorems. Before all

metrics seem to have nothing more in common than presenting a perfect fluid

sphere.

• We invented the concept of a seed metric, which cannot be generated by our the-

orems. Starting with such a metric, a class of non-seed metric can be produced.

• This can be used to structure the solutions generated by a perfect fluid sphere

and classify which metrics can and cannot be produced by our theorems.

We can nevertheless develop several formal lemmata regarding fixed-point metrics.

For instance

Lemma 1. Suppose we have a metric such that ∀ σ, ε, λ

T3(σ, ε, λ) g � g, (3.70)
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Examples of some seed and non-seed metrics

Seed metric Non-Seed metric

Minkowski B-L

Exterior Schwarzschild Interior Schwarzschild

de Sitter Einstein static

Tolman IV (A = 0) Tolman IV , Tolman V (n = +1) , Tolman VI

M-W III K-O III

Heint IIa (C=0) Heint IIa

S1 Wyman IIa, Wyman III

Table 3.1: This table shows several seed and non-seed metrics, which satisfied the definition
of seed and non-seed metrics (see Table 3.2 for further details).

where we recall that � denotes equality up to redefinition of parameters. Then in

particular

T1(λ) g � g � T2(σ, ε) g, (3.71)

and so

T4(σ, ε, λ) g � g. (3.72)

Conversely, suppose we have a metric such that

T4(σ, ε, λ) g � g, (3.73)

then

T1(λ) g � g � T2(σ, ε) g, (3.74)

and so

T3(σ, ε, λ) g � g. (3.75)

Proof. Trivial, note that T3(σ, ε, λ = 0) = T2(σ, ε) and T3(σ = 0, ε = 0, λ) = T1(λ).

Then recall T4 = T1 ◦ T2. Similarly for the converse.
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Lemma 2. Suppose we have a metric g such that

T4 g � T3 g (3.76)

and then define g′ by

T4 g � g′ � T3 g. (3.77)

Then we have

T4 g′ � g′ � T3 g′ (3.78)

so that g′ is a “fixed point” of both T3 and T4.

Proof. Note

T4 g′ � T4 ◦ T3 g � T1 ◦ T2 ◦ T1 g � T1 ◦ T3 g � T1 ◦ T4 g � T4 g = g′ (3.79)

and similarly for T3:

T3 g′ � T3 ◦ T4 g � T2 ◦ T1 ◦ T2 g � T2 ◦ T4 g � T2 ◦ T3 g � T3 g = g′ (3.80)

Several other formal theorems along these lines can be constructed, but these seem

the most important results.

Finally, among the formal properties enjoyed by the generating theorems, we men-

tion the fact that theorems 3 and 4 are “conjugate” to each other in the following

sense

T4 ≡ T1 ◦ T2 = T1 ◦ T2 ◦ T1 ◦ [T1]
−1 = T1 ◦ T3 ◦ [T1]

−1, (3.81)

and similarly (when the appropriate inverse [T2]
−1 exists)

T3 ≡ T2 ◦ T1 = T2 ◦ T1 ◦ T2 ◦ [T2]
−1 = T2 ◦ T4 ◦ [T2]

−1. (3.82)

We can write this as

T3(σ, ε, λ) ∼ T4(σ, ε, λ), (3.83)

where ∼ denotes the concept of “similarity” under conjugation by invertible generating

theorems.

In these properties we would like to ensure that
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• We wish to emphasise that similarity ∼ is a statement that holds for particular

and fixed values of the parameters (σ, ε, λ), as opposed to � which denotes

equivalence under redefinition of parameters.

• If one is working numerically, it is much easier to ask questions involving sim-

ilarity ∼. For analytic work, it is typically easier to ask questions involving

equivalence �.

3.2.6 The fifth and sixth theorems

Two linking theorems

The last two solution generating theorems we shall present are slightly different from

those developed so far: Consider a perfect fluid sphere solution {ζ0, B0} and extend

it to a new perfect fluid sphere {ζ0Z0, B0 + Δ}. Previously, we had either set Z0 = 1

and obtained theorem 1, or we had set Δ = 0 and obtained theorem 2. In other words,

we only changed one metric component at a time. (From this point of view theorem 3

and theorem 4 are, strictly speaking, not new theorems, in that they are replaceable

by iterations of theorem 1 and theorem 2 and vice versa.) We now investigate what

happens if we place no a priori restrictions on Z and Δ, and allow both metric com-

ponents to vary simultaneously. The differential equation (3.8) for this problem now

becomes

[r(rζ0Z0)
′]Δ′ +

[
2r2(ζ0Z0)

′′ − 2(rζ0Z0)
′]Δ

+
[
r2ζ0B

′
0 + 4r2ζ ′

0B0 − 2rζ0B0

]
Z ′

0 + 2r2ζ0B0Z
′′
0 = 0. (3.84)

Note that if Δ = 0 this becomes equation (3.17), while if Z0 = 1 this becomes equation

(3.38). In general, this ODE of first-order in Δ, and — as long Z is not a constant —

inhomogeneous. In terms of Δ this ODE can be solved explicitly and the result stated

as a new theorem:

Theorem 5. Suppose {ζ0, B0} describes a perfect fluid sphere, and let Z0(r) be arbi-
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trary. Define

Δ(λ, r) = Δ0(r)

{
λ −
∫

[(4r2ζ ′
0B0 + r2ζ0B

′
0 − 2rζ0B0) Z ′

0 + 2r2ζ0B0Z
′′
0 ] {ζ0 + rζ ′

0}2

r3 (rζ0Z0)
′ ζ2

0 Z2
0

exp

{
−2

∫
(ζ0Z0)

′

ζ0Z0

ζ0Z0 − r (ζ0Z0)
′

ζ0Z0 + r (ζ0Z0)′
dr

}
dr

}
, (3.85)

where

Δ0(r) =

(
ζ0Z0

ζ0Z0 + r (ζ0Z0)′

)2

r2 exp

{
2

∫
(ζ0Z0)

′

ζ0Z0

ζ0Z0 − r (ζ0Z0)
′

ζ0Z0 + r (ζ0Z0)′
dr

}
. (3.86)

Then for all λ, the geometry defined by an arbitrary chosen Z0(r) and setting

ds2 = −ζ0(r)
2Z0(r)

2 dt2 +
dr2

B0(r) + Δ(λ, r)
+ r2dΩ2 (3.87)

corresponds to a perfect fluid sphere. That is, the mapping

T5(λ) : {ζ0, B0} �→ {ζ0 Z0, B0 + Δ(λ, ζ0)} (3.88)

takes perfect fluid spheres into perfect fluid spheres.

Note that if Z0(r) = 1 this simply reduces to theorem 1. Re-arranging equation

(3.84) in terms of Z0 leads to a second-order inhomogenous differential equation, which

cannot in general be solved for a prescribed Δ, unless one imposes further constraints.

So further exploration in that direction is moot. There is however a related theorem

(which may be easier to understand) in terms of parametric derivatives:

Theorem 6. Let {ζ(μ), B(μ)} denote a one-parameter class of perfect fluid spheres,

so that the differential equation (3.8) is satisfied for all μ. Then

[r(rζ)′]
(

dB

dμ

)′
+ [2r2ζ ′′ − 2(rζ)′]

(
dB

dμ

)
+ 2r2B

(
dζ

dμ

)′′

+(r2B′ − 2rB)

(
dζ

dμ

)′
+ (rB′ − 2B + 2)

(
dζ

dμ

)
= 0. (3.89)

In particular if dζ/dμ = 0 this reduces to the ODE (3.17), while if dB/dμ = 0 this

reduces to the ODE (3.9).
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This is simply an alternative viewpoint on the previous theorem, emphasising the

differential equation to be solved.

We again defer extensive discussion to the next section, but that this stage point

out that if we invoke theorem 5 and apply it to Minkowski space, then making the

choice Z0 = 1 + r2/a2 leads to the general Tolman IV metric — that is:

T5(Minkowski; Z0 = 1 + r2/a2) = (Tolman IV). (3.90)

Even before we systematically start our classification efforts, it is clear that the solution

generating theorems we have established will inter-relate many of the standard perfect

fluid spheres.

Figure 3.7: This structure shows that when we invoke theorem 5 and apply it to Minkowski
space, then making the choice Z0 = 1 + r2/a2 leads to the general Tolman IV metric.

3.3 Formal properties of the linking theorems

Before turning to issues of systematic classification of perfect fluid metrics, we wish

to establish a few formal properties of the linking theorems. To simplify the notation,

let us define the differential expression

D(ζ, B) ≡ [r(rζ)′]B′ + [2r2ζ ′′ − 2(rζ)′]B + 2ζ

= 2r2Bζ ′′ + (r2B′ − 2rB)ζ ′ + (rB′ − 2B + 2)ζ. (3.91)
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Then the condition for a perfect fluid sphere is simply

D(ζ, B) = 0 (3.92)

Now define

D(ζ0, B0 + Δ0) = D(ζ0, B0) + D1(ζ0; Δ0) (3.93)

Then it is easy to check that

D1(ζ0; Δ0) = [r(rζ0)
′]Δ′

0 +
[
2r2ζ ′′

0 − 2(rζ0)
′]Δ0 (3.94)

The ODE for theorem 1, where we assume {ζ0, B0} is a perfect fluid sphere, is then

D1(ζ0; Δ0) = 0. (3.95)

Now define

D(ζ0Z0, B0) = Z0D(ζ0, B0) + D2(ζ0, B0; Z0), (3.96)

then it is easy to check that

D2(ζ0, B0; Z0) = (r2ζ0B
′
0 + 4r2ζ ′

0B0 − 2rζ0B0)Z
′
0 + (2r2ζ0B0)Z

′′
0 . (3.97)

The ODE for theorem 2, where we assume {ζ0, B0} is a perfect fluid sphere, is then

D2(ζ0, B0; Z0) = 0. (3.98)

Now let us consider any simultaneous shift in ζ and B, as considered in theorem 5.

We have

D(ζ0Z0, B0 + Δ0) = D(ζ0Z0, B0) + D1(ζ0Z0; Δ0) (3.99)

= Z0D(ζ0, B0) + D2(ζ0, B0; Z0) + D1(ζ0Z0; Δ0).

But now let us write

D1(ζ0Z0; Δ0) = Z0D1(ζ0; Δ0) + D12(ζ0; Z0, Δ0), (3.100)

where a brief computation yields

D12(ζ0; Z0, Δ0) = r2ζ0Z
′
0Δ

′
0 + [2r2ζ0Z

′′
0 + 4r2ζ ′

0Z
′
0 − 2rζ0Z

′
0]Δ0. (3.101)
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Then all in all

D(ζ0Z0, B0 + Δ0) = Z0D(ζ0, B0) + Z0D1(ζ0; Δ0)

+D12(ζ0; Z0, Δ0) + D2(ζ0, B0; Z0). (3.102)

So if {ζ0, B0} and {ζ0Z0, B0 + Δ0} are both perfect fluid spheres we must have

Z0D1(ζ0; Δ0) + D12(ζ0; Z0, Δ0) + D2(ζ0, B0; Z0) = 0. (3.103)

This is

Z0 × (ODE for theorem1) + (cross term) + (ODE for theorem2) = 0. (3.104)

The cross term vanishes if either Z0 = constant or Δ0 = 0 in which case we recover

the usual theorem 1 and theorem 2. If we do things in the opposite order

D(ζ0Z0, B0 + Δ0) = Z0D(ζ0, B0 + Δ0) + D2(ζ0, B0 + Δ0; Z0); (3.105)

= Z0D(ζ0, B0) + Z0D1(ζ0, Δ0) + D2(ζ0, B0 + Δ0; Z0). (3.106)

We now have to compute

D2(ζ0, B0 + Δ0; Z0) = D2(ζ0, B0; Z0) + D21(ζ0, B0; Z0, Δ0), (3.107)

and after a brief computation

D21(ζ0, B0; Z0, Δ0) = 2r2ζ0Δ0Z
′′
0 + [r2ζ0Δ

′
0 + 4r2ζ ′

0Δ0 − 2rζ0Δ0]Z
′
0

= D12(ζ0, B0; Z0, Δ0). (3.108)

Thus the cross term is the same, no matter how you calculate it, and we still have the

identity

D(ζ0Z0, B0 + Δ0) = Z0D(ζ0, B0) + Z0D1(ζ0; Δ0)

+D12(ζ0; Z0, Δ0) + D2(ζ0, B0; Z0). (3.109)

Provided ζ0, B0 and {ζ0Z0, B0 + Δ0} are both perfect fluid spheres we again deduce

Z0D1(ζ0; Δ0) + D12(ζ0; Z0, Δ0) + D2(ζ0, B0; Z0) = 0. (3.110)
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Now this gives us another way of looking at theorem 3 and theorem 4. For theorem 3

we first apply theorem 1 so we have the two equations

D1(ζ0; Δ0) = 0; (3.111)

and

D2(ζ0, B0 + Δ0; Z0) ≡ D12(ζ0; Z0, Δ0) + D2(ζ0, B0; Z0) = 0. (3.112)

Conversely, for theorem 4 where we first apply theorem 2 we see that we need to solve

D2(ζ0, B0; Z0) = 0; (3.113)

and

D1(ζ0Z0; Δ0) ≡ Z0D1(ζ0; Δ0) + D12(ζ0; Z0, Δ0) = 0. (3.114)

For theorem 5 we pick Z0 arbitrarily, and solve the single ODE

D1(ζ0Z0; Δ0) + D2(ζ0, B0; Z0) = 0. (3.115)

This is a single first-order linear inhomogeneous ODE for Δ0, and hence solvable. (In

particular this makes it clear that theorem 5 is an inhomogeneous version of theorem

1 with a carefully arranged “source term” D2(ζ0, B0; Z0). While theorem 5 is not

“idempotent” it does satisfy the important formal property that:

Lemma 3.

T1 ◦ T5 � T5 (3.116)

which in particular tells us that the output from theorem 5 is never a seed metric.

Proof. Applying theorem 5 we need to solve

D1(ζ0Z0; Δ0) + D2(ζ0, B0; Z0) = 0 (3.117)

in order to map

{ζ0, B0} → {ζ0Z0, B0 + Δ0} (3.118)

Now apply theorem 1 to {ζ0Z0, B0+Δ0}, this means we have to solve the homogeneous

ODE

D1(ζ0Z0; Δ1) = 0 (3.119)
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But then, using properties of first-order ODEs

{D1(ζ0Z0; Δ0) + D2(ζ0, B0; Z0) = 0} ⊕ {D1(ζ0Z0; Δ1) = 0} (3.120)

⇒ {D1(ζ0Z0; Δ0 + Δ1) + D2(ζ0, B0; Z0) = 0} (3.121)

which is the ODE from theorem 5 back again.

(The net result of this observation, as we shall see in the next section, is that

theorem 5 can be used to connect one seed metric with the “descendants” of another

seed metric.)

3.4 Classifying perfect fluid spheres

We will now see the power of these transformation theorems (solution generating

theorems) by using them in a number of different ways:

• To generate several new perfect fluid spheres

• To relate various perfect previously known fluid spheres to each other.

• And also to classify the geometries we encounter.

First some minor warnings: Despite comments made in [9], Kuch 2 I ≡ Tolman V;

and Kuchb I b is a perfect fluid for general values of its parameters. Furthermore

RR–I ≡ Einstein static; RR–V = Tolman V (n = −5/4). If we had not noted these

degeneracies then our tables below would have been more extensive, but would have

conveyed no extra information.

Starting with the metric for any known perfect fluid sphere and successively ap-

plying theorem 1 and theorem 2 numerous times will supply us with endless “new”

perfect fluid sphere solutions. There are so many types of “new” solutions such as:

• Some of these “new” solutions might already be findable in the literature, some

of them might be truly novel.

• Some of these solutions can be written down in a fully explicit form.
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Some selected perfect fluid solutions

Name Metric

Minkowski −dt2 + dr2 + r2dΩ2

Einstein static −dt2 + (1 − r2/R2)−1dr2 + r2dΩ2

de Sitter −(1 − r2/R2) dt2 + (1 − r2/R2)−1 dr2 + r2dΩ2

Schwarzschild Interior −
(
A − B

√
1 − r2/R2

)2

dt2 + (1 − r2/R2)−1dr2 + r2dΩ2

Schwarzschild Exterior −(1 − 2m/r) dt2 + (1 − 2m/r)−1dr2 + r2dΩ2

S1 −r4dt2 + dr2 + r2dΩ2

K-O III −(A + Br2)2dt2 + dr2 + r2dΩ2

Kuch1 Ib −(Ar + Br ln r)2dt2 + 2dr2 + r2dΩ2

B–L −A(r2/a2)dt2 + 2(1 + r2/a2)−1dr2 + r2dΩ2

Tolman IV −B2
(
1 + r2/a2

)
dt2 + 1+2r2/a2

(1−r2/b2)(1+r2/a2)dr2 + r2dΩ2

Tolman IV (b → ∞) −B2
(
1 + r2/a2

)
dt2 + 1+2r2/a2

1+r2/a2 dr2 + r2dΩ2

Tolman V −B2r2(1+n)dt2 + (2 − n2) [1 − Ar2(2−n2)/(2+n)]−1dr2 + r2dΩ2

Tolman V (A → 0) −B2r2(1+n)dt2 + (2 − n2)dr2 + r2dΩ2

Tolman VI −(Ar1−n + Br1+n)2dt2 + (2 − n2)dr2 + r2dΩ2

Tolman VII −B2 cos
{

ln
[√

1 − 2r2/a2 + r4/b4 + r2/a2 − b2/a2
]1/2

+ θ

}2

+(1 − 2r2/a2 + r4/b4)−1dr2 + r2dΩ2

Tolman VIII −A2r2(n−1)(n−4)/n
(

−n2

(n2−4n+2)(n2−8n+8) + Br−(n2−8n+8)/n + Cr−2(n2−4n+2)/n
)

+
(

−n2

(n2−4n+2)(n2−8n+8) + Br−(n2−8n+8)/n + Cr−2(n2−4n+2)/n
)−1

dr2 + r2dΩ2

Kuch 68 II − (1 − 2m/r) dt2 +
[
(1 − 2m/r)

(
1 + C(2r − 2m)2

)]−1 dr2 + r2dΩ2

Kuch 68 I −
(
A
√

1 − 2m/r + B
[
r2/m2 + 5r/m − 30 + 15

√
1 − 2m/r ln{1 − r/m −√r(r − 2m)/m}

])2

dt2

+(1 − 2m/r)−1dr2 + r2dΩ2

M–W III −Ar(r − a) + 7/4
1−r2/a2 dr2 + r2dΩ2

Kuch I b −r2[A + B arctanh(a/
√

a2 + r2)]2dt2 + 2(1 + r2/a2)−1dr2 + r2dΩ2

Heint IIa (C=0) −(1 + ar2)3dt2 + [(1 + ar2)/(1 − ar2/2)]dr2 + r2dΩ2

Heint IIa −(1 + ar2)3dt2 +
[
1 − 3ar2

2(1+ar2) + Cr2

(1+ar2)
√

1+4ar2

]−1

dr2 + r2dΩ2

Table 3.2: Some well-known perfect fluid spheres and their coresponding metrics. Note
that we have often reparameterized these metrics to make them easier to deal with, and so
their appearance (but not the substance) may differ from other sources [9, 11, 20]. Metric S1
is a special case of K–O III, Tolman V, and Tolman VI, notable for its extreme simplicity.
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Some apparently new perfect fluid solutions

Name Metric

Martin 1 −(Ar + Br ln r)2dt2 + 2 2A+2B ln r+B
2A+2B ln r+B−Cr2 dr2 + r2dΩ2

Martin 2 −Ar(r − a)dt2 + 7
4

(
1 − r2

a2 − B (r−a)r7/3

(4r−3a)4/3

)−1

dr2 + r2dΩ2

Martin 3 −(1 + ar2)2dt2 + [1 − br2/(1 + 3ar2)2/3]−1dr2 + r2dΩ2

P1 −(1 + ar2)2
[
A + B

∫ (1+ar2)−2√
1−br2/(1+3ar2)2/3

rdr

]2
dt2 + [1 − br2/(1 + 3ar2)2/3]−1dr2 + r2dΩ2

P2 −(Ar + Br ln r)2
[
σ + ε

∫
(Ar + Br ln r)−2

(
2 2A+2B ln r+B

2A+2B ln r+B−Cr2

)−1/2

rdr

]2
dt2

+2 2A+2B ln r+B
2A+2B ln r+B−Cr2 dr2 + r2dΩ2

P3 −(1 + ar2)3
[
A + B

(5+2ar2)
√

1−ar2/2

(1+ar2)3/2

]2
dt2 + [(1 + ar2)/(1 − ar2/2)]dr2 + r2dΩ2

P4 −r4

(
A + B

∫
dr

r3
√

1+λr2/3

)2

dt2 + (1 + λr2/3)−1dr2 + r2dΩ2

P4 −r4
(
A + B

[
15
16λ3 tanh−1(1/

√
1 + λr2/3) − 1

16

√
1 + λr2/3(8r−2 − 10λr−4/3 + 15λ2r−2/3)

])2
dt2

+(1 + λr2/3)−1dr2 + r2dΩ2

P5 −r
(
A
√

r − a + B
√

r + a
)2 + 7/4

1−r2/a2 dr2 + r2dΩ2

P6 −r(r − a)

⎛
⎝A + B

∫
dr

(r−a)

r
1− r2

a2 −B (r−a)r7/3

(4r−3a)4/3

⎞
⎠

2

+ 7
4

(
1 − r2

a2 − B (r−a)r7/3

(4r−3a)4/3

)−1

dr2 + r2dΩ2

P7 −B2
(
1 + r2/a2

) [
A + B

∫ √
a2−2r2√

b2−r2(a2−r2)3/2 rdr
]2

dt2 + 1+2r2/a2

(1−r2/b2)(1+r2/a2)dr2 + r2dΩ2

P8 −(1 + ar2)3

⎡
⎣A + B

∫
r dr

(1+ar2)2
r

1− 3ar2
2(1+ar2)

+ Cr2

(1+ar2)
√

1+4ar2

⎤
⎦

2

dt2 +
[
1 − 3ar2

2(1+ar2) + Cr2

(1+ar2)
√

1+4ar2

]−1

dr2 + r2dΩ2

Table 3.3: Some apparently new prefect fluid spheres and their coresponding metrics.
Sometimes the relevant integrals cannot be done in elementary form. When they can be
done they are explicitly shown.

• Some solutions are explicit but not elementary, in the sense that while the metric

components can be exhibited as specific and explicit integrals, these integrals

cannot be done in elementary form.

• Some solutions are so complex that present day symbolic manipulation programs

quickly bog down.

94



(For specific symbolic computations we have used a vanilla installation of Maple. See

appendix C for some sample worksheets).

Some seed geometries and their descendants

Seed Theorem1 Theorem2 Theorem 3 Theorem 4

Minkowski Einstein static K-O III interior Schwarzschild Martin 3
exterior Schwarzschild Kuch68 II Kuch 86 I [integral] [integral]
de Sitter Tolman IV interior Schwarzschild P7 [integral]
Tolman V (A = 0) Tolman V Tolman VI Wyman III Wyman IIa
S1 Tolman V (n = +1) K–O III P4 Martin 3
M–W III Martin 2 P5 P6 [integral]
Heint IIa (C=0) Heint IIa P3 P8 [integral]

Table 3.4: Seed solutions and their generalizations derived via theorems 1–4. The notation
“[integral]” denotes a metric so complicated that explicitly writing out the relevant integral
is so tedious that it does not seem worthwhile.

Some non-seed perfect fluid geometries and their descendants

Base Theorem1 Theorem2 Theorem 3 Theorem 4

Tolman IV Tolman IV P7 P7 [integral]

B-L B-L Kuchb I b Kuchb I b [integral]

Heint IIa Heint IIa P8 P8 [integral]

Tolman VI Wyman IIa Tolman VI [integral] Wyman IIa

Kuch1 Ib Martin 1 Kuch1 Ib P2 Martin 1

K–O III Martin 3 K–O III P1 Martin 3

Table 3.5: Non-seed solutions and their generalizations.

We present several tables and diagrams to summarize the situation. Two tables

are used to provide the names and explicit metrics for the perfect fluid spheres we

consider. Two other tables are used to describe the inter-relationships of these perfect
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fluid spheres under T1, T2, T3, and T4. Recall that a seed metric is one for which

theorem 1 and theorem 2 both yield metrics distinct from the seed: T1(g) �� g �� T2(g).

In contrast for non-seed metrics one or the other of these theorems is trivial, either

T1(g) � g or T2(g) � g.

In these tables, we can see the notation “[integral]” means that it is definitely a

novel perfect fluid solution. However, the metric components involve an explicit inte-

gral that does not appear to be do-able by elementary methods, and is so complicated

that it does not seem worthwhile to even write it down.

By considering that theorem 1 and theorem 2 have “idempotent” properties , and

the fact that theorem 3 and theorem 4 can be expressed in terms of the first two

theorems, it is possible to structure, and therefore to graphically visualize the rela-

tionship between all metrics generated from a given seed metric. We demonstrate

this behaviour starting with Minkowski spacetime as seed metric where we are start-

ing with this trivial seed to check if it is possible to create endless new perfect fluid

spheres. The first few steps can be carried out explicitly, and show that Minkowski

space generates several well known interesting perfect fluid models.

In figure 3.8 all the ideas from the previous sections are used. Each box represents a

specific metric (perfect fluid sphere) while the arrows correspond to the application of

the different theorems. The horizontal arrows correspond to an application of theorem

1 and the vertical arrows to an application of theorem 2. In addition, the vectors

pointing along the diagonals can either indicate an application of theorem 3 or theorem

4. A dotted arrow corresponds to the application of theorem 3 while the dashed arrow

represents an application of theorem 4.

Figure 3.2 shows that after applying theorem 1 to the Minkowski seed metric, we

get the Einstein static universe. By the idempotence of theorem 1 n applications of

T1 to the seed metric still results in the Einstein static. Similary, any number of

applications of theorem 2 after the first (which leads to the K–O III solution) does

not give us any further new solutions (see figure 3.4) so we can see form this figure

that theorem 2 is “idempotent”. In addition, we can also see that the first and second

generating theorems are not commutative. Application of theorem 1 and theorem 2 in

that order to the Minkowski seed metric results in the Schwarzschild Interior geometry,
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Figure 3.8: Structure graph for Minkowski space used as seed metric.

whereas application of theorem 1 after theorem 2 gives us the Martin 3 solution, which

is quite distinct from the three-parameter Schwarzschild interior solution. Indeed, it

seems as if it is possible to create endless new solutions for a perfect fluid sphere out

of the Minkowski metric (or any other of the seed metrics). After several iterations

the calculations become more complex, and can no longer be carried out analytically.

We then resort to numerical computation to find out whether theorem 3 and theorem

4 have some sort of numerical limit, a numerical fixed point, or not. Depending on

the choice for (λ, σ, ε) both theorems converge very quickly. Specifically, we used

Matlab to numerically analyze the evolution of ζ(r) and B(r) after applying theorem 3
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several times to the Minkowski metric. Numerical results are summarized in figure 3.9.

This figure indicates that theorem 3 and theorem 4 both appear to have well defined

numerical limits, though we have no direct analytic solution for the fixed point metric.

Figure 3.9: Numerical implementations of Theorem 3 and Theorem 4 can be used to
investigate the behavior for n applications, if the number of applications goes to infinity.
For specific choices of parameters λi, σi, and εi, multiple reapplications of Theorem 3 and
Theorem 4 approach a limit, in the sense that both metric components are converging towards
there fixed-points.
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3.5 Discussion

We have developed several transformation theorems that map perfect fluid spheres to

perfect fluid spheres using Schwarzschild coordinates. We used these transformations

as a basis for classifying different types of perfect fluid sphere solutions. Applying

these theorems on a known perfect fluid sphere, different solutions are often obtained.

Some of the solutions are already known in the literature but most of them are novel.

Moreover, we can classify which metrics can be produced by our theorems, and which

ones cannot. The first theorem we presented is in a slightly different formalism, and

demonstrates an independent way of proving it. Indeed, the second theorem we pre-

sented is a new transformation theorem. The idempotence property of Theorem 1 and

Theorem 2 can divide the class of perfect fluid spheres into seed and non-seed met-

rics. Classifying seed and non-seed metrics are important because we have developed

a tool to generate new solutions for a perfect fluid sphere, which does not require us

to directly solve the Einstein equations. Indeed, the whole procedure was set up in

such a way that we are implicitly and indirectly solving the Einstein equations, but

the utility of the transformation theorems is that one does not have to go back to first

principles for each new calculation.

We established two new theorems by composing first and second generating theo-

rems. They are in general distinct, which can be traced back to the fact that Theorem

1 and Theorem 2 do not, in general, commute. Indeed, Theorem 3 and Theorem 4

are, in general, not idempotent. That means when we apply Theorem 3 or Theorem

4 more than once, further solutions will in general be obtained. In addition, we can

see the power of these transformation theorems as we can generate several new perfect

fluid spheres and also can classify the geometries we encountered.

Furthermore, we have also established several relationships among the generating

theorems. Previously, all metrics seemed to have nothing more in common than pre-

senting a perfect fluid sphere. We have developed the concept of a seed metric, which

is one that cannot be generated by our theorems. Starting with a seed metric and

applying our theorems, it is possible to structure, therefore to visualize, the relation-

ship between all metrics generated from a given seed metric in a graph. Based on this

example it is possible to create endless new solutions out of the Minkowski metric. We
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also used a numeric program to investigate whether Theorem 3 and Theorem 4 have

fixed point limits. Both seem to converge very quickly. The situation is summarized

graphically in figures (3.1) to (3.9), and in tabular form in tables (3.1) to (3.5).
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Chapter 4

Solution generating theorems —

other coordinates

Consider other coordinate systems: This chapter generalizes the theorems which we

derived for Schwarzschild coordinates to a number of other coordinate systems. This

may allow us to develop extra relations between the known solutions.

In all cases we give the metric and the pressure isotropy condition Gr̂r̂ = Gθ̂θ̂.

Finch and Skea [11] estimate that about 55% of all work on fluid spheres is carried out

in Schwarzschild coordinates, that isotropic coordinates account for 35% of research,

and that the remaining 10% is spread over multiple special cases (see below).

4.1 General diagonal coordinates:

Consider the metric:

ds2 = −ζ(r)2 dt2 +
dr2

B(r)
+ R(r)2dΩ2 (4.1)

and then assume it represents a perfect fluid sphere. That is, Gθ̂θ̂ = Gr̂r̂ = Gφ̂φ̂. The

equation Gθ̂θ̂ = Gφ̂φ̂ is always fulfilled due to spherical symmetry.

Calculate

Gr̂r̂ =
ζB(R′)2 + 2BRζ ′R′ − ζ

R2ζ
(4.2)
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and

Gθ̂θ̂ = −1

2

2Bζ ′R′ + 2ζR′′B + ζB′R′ + 2Rζ ′′B + Rζ ′B′

Rζ
(4.3)

We set Gr̂r̂ = Gθ̂θ̂, which supplies us with an ODE. This ODE reduces the freedom to

choose the three functions in equation (4.1) to two:

[R(Rζ)′]B′ + [2RR′′ζ + 2R2ζ ′′ − 2RR′ζ ′ − 2(R′)2ζ ]B + 2ζ = 0. (4.4)

This is first order-linear non-homogeneous in B(r), and second-order linear homoge-

neous in ζ(r). Note in particular it is linear in both ζ(r) and B(r) and the comment

below equation (16.10) in “exact solutions” [20] (while true) completely misses the

mark. There is nothing particularly nice about the R(r) dependence.

4.2 Schwarzschild (curvature) coordinates:

This is the basis of the theorems which were previously derived above.

Consider the metric

ds2 = −ζ(r)2 dt2 +
dr2

B(r)
+ r2dΩ2 (4.5)

and the ODE

[r(rζ)′]B′ + [2r2ζ ′′ − 2(rζ)′]B + 2ζ = 0. (4.6)

This is first order-linear non-homogeneous in B(r), and second-order linear homoge-

neous in ζ(r). Solving for B(r) in terms of ζ(r) is the basis of the [16], (and is the

basis for Theorem 2 in chapter 3).

Sometimes people prefer to write B(r) in terms of m(r)

ds2 = −ζ(r)2 dt2 +
dr2

1 − 2m(r)
r

+ r2dΩ2 (4.7)

or even μ(r) = m/r3, but there is no qualitative gain in doing so.

If we re-group things in terms of ζ we find

2r2ζ ′′ + (r2B′ − 2rB)ζ ′ + (rB′ − 2B + 2)ζ = 0, (4.8)
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which is a linear homogeneous 2nd order ODE. This is the basis of Theorems 1 and 3

in the above section.

4.3 Isotropic coordinates:

Consider the metric

ds2 = −ζ(r)2 dt2 +
1

ζ(r)2 B(r)2
{dr2 + r2dΩ2} (4.9)

Calculate

Gr̂r̂ = (ζ ′)2B2 − (B′)2ζ2 + 2B′Bζ2/r (4.10)

and

Gθ̂θ̂ = −(B′)2ζ2 + ζ2BB′′ − (ζ ′)2B2 + B′Bζ2/r (4.11)

We set Gr̂r̂ = Gθ̂θ̂, which supplies us with an ODE. This ODE reduces the freedom to

choose the two functions in equation (4.9) to one:(
ζ ′

ζ

)2

=
B′′ − B′/r

2B
. (4.12)

There are several ways of improving this. If we write ζ(r) = exp(
∫

g(r)dr) then we

have an algebraic equation for g(r):

g(r) = ±
√

B′′ − B′/r
2B

. (4.13)

Conversely, the isotropy condition can be written in terms of B(r) as:

B′′ − B′/r − 2g2B = 0. (4.14)

This is about as simple as you can make things.

There is an improvement in writing B(r) = exp(2
∫

h(r)dr) so that

g(r)2 = 2h(r)2 + h′(r) − h(r)/r (4.15)

which is the basis of [18].
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4.3.1 The seventh and eighth theorems

Theorem 7. In Isotropic coordinates, if {ζ(r), B(r)} describe a perfect fluid then so

does {ζ(r)−1, B(r)}. This is the Buchdahl transformation in disguise.

That is, the geometry defined by holding B0(r) fixed and setting

ds2 = − 1

ζ0(r)2
dt2 +

ζ0(r)
2

B0(r)2
{dr2 + r2dΩ2} (4.16)

is also a perfect fluid sphere. Alternatively, the mapping

T7 : {ζ0, B0} �→ {ζ−1
0 , B0

}
(4.17)

takes perfect fluid spheres into perfect fluid spheres.

Proof for Theorem 7: Assuming that {ζ0(r)
−1, B0(r)} solves equation (4.12).

We consider L.H.S. of the equation (4.12),

ζ0 → ζ1 :

(
ζ ′
0

ζ0

)2

→
((

ζ−1
0

)′
ζ−1
0

)2

=

((−ζ ′
0 ζ−2

0

)
ζ−1
0

)2

=

(−ζ ′
0

ζ0

)2

=

(
ζ ′
0

ζ0

)2

(4.18)

This shows that {ζ(r), B(r)} describe a perfect fluid then so does {ζ(r)−1, B(r)}.
The transformation T7 defined in Theorem 7 is a “square root of unity” in the

sense that:

T7 ◦ T7 = I, (4.19)

To see this, consider the sequence

{ζ0, B0} �→ {ζ1, B0} �→ {ζ2, B0} . . . (4.20)

In this section we consider a two-step composition to check that T7 is a square root of

unity. In particular, to be more explicit about this note that at step one

ζ1 = ζ−1
0 (4.21)

while at the second step

ζ2 = ζ−1
1 = (ζ−1

0 )−1 = ζ0 (4.22)

For reasons of convenience and without loss of generality, we can write for ζ(r), after

applying thorem 1 n-times, as : ζ(r) = ζ(r)−1, for n = odd number and ζ(r) = ζ(r),

for n = even number.
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Theorem 8. Let {ζ0(r), B0(r)} describe a perfect fluid sphere. Define

Z0 =

{
σ + ε

∫
rdr

B0(r)2

}
. (4.23)

Then for all σ and ε, the geometry defined by holding ζ0(r) fixed and setting

ds2 = −ζ0(r)
2 dt2 +

1

ζ0(r)2 B0(r)2 Z0(r)2
{dr2 + r2dΩ2} (4.24)

is also a perfect fluid sphere. That is, the mapping

T8(σ, ε) : {ζ0, B0} �→ {ζ0, B0 Z0(B0)} (4.25)

takes perfect fluid spheres into perfect fluid spheres.

Proof for Theorem 8. The proof of theorem 8 is based on the technique of “reduction

in order”. Assuming that {ζ0(r), B0(r)} solves equation (4.14), write

B1(r) = B0(r) Z0(r) . (4.26)

and demand that {ζ0(r), B1(r)} also solves equation (4.14). We find

(B0 Z0)
′′ − (B0 Z0)

′/r − 2g2(B0 Z0) = 0. (4.27)

we can expand the above equation to

(B′′
0 Z0 + 2B′

0 Z ′
0 + B0 Z ′′

0 ) − (B′
0 Z0)/r − (B0 Z ′

0)/r − 2g2(B0 Z0) = 0. (4.28)

we can also re-group this same equation as{
B′′

0 − B′
0/r − 2g2B0

}
Z0 + 2B′

0Z
′
0 + B0Z

′′
0 − (B0Z

′
0)/r = 0. (4.29)

A linear homogeneous 2nd order ODE for B now simplifies to

(2B′
0 − B0/r)Z

′
0 + B0Z

′′
0 = 0 , (4.30)

which is an ordinary homogeneous second-order differential equation, depending only

on Z ′
0 and Z ′′

0 . (So it can be viewed as a first-order homogeneous order differential

equation in Z ′, which is solvable.) Separating the unknown variable to one side,

Z ′′
0

Z ′
0

= −2
B′

0

B0

+
1

r
. (4.31)
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Re-write Z ′′
0/Z ′

0 = d ln(Z ′
0)/dr, and integrate twice over both sides of equation (4.31),

to obtain

Z0(r) =

{
σ + ε

∫
r dr

B0(r)2

}
. (4.32)

depending on the old solution {ζ0(r), B0(r)}, and two arbitrary integration constants

σ and ε.

“Idempotence” Proof for Theorem 8. To see that the transformation T8 defined in

Theorem 8 is “idempotent” we first show

T8 ◦ T8 � T8, (4.33)

and then iterate. The precise two-step composition rule is

T8(σ2, ε2) ◦ T8(σ1, ε1) = T8

(
σ2σ1, ε1σ2 +

ε2

σ1

)
. (4.34)

In this section we consider a two-step composition rule to find idempotence. In par-

ticular, the most outstanding features of these steps are:

• To see “idempotence”, note that for fixed ζ0(r) equation (4.14) has a solution

space that is exactly two dimensional.

• Since the first application of T8 takes any specific solution and maps it into the

full two-dimensional solution space, any subsequent application of T8 can do

no more than move one around inside this two dimensional solution space —

physically this corresponds to a relabelling of parameters describing the perfect

fluid metric you are dealing with, not the generation of new solutions.

To be more explicit about this note that at step one

B0 → B1 = B0

⎧⎨
⎩σ1 + ε1

∫
r dr

B0(r)2

⎫⎬
⎭ , (4.35)

while at the second step

B1 → B2 = B1

⎧⎨
⎩σ2 + ε2

∫
r dr

B1(r)2

⎫⎬
⎭ . (4.36)
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That is:

B2 = B0

⎧⎨
⎩σ1 + ε1

∫
r dr

B0(r)2

⎫⎬
⎭ (4.37)

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ2 + ε2

∫
r dr

B0(r)2 [σ1 + ε1

∫
r dr/B0(r)2]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

But this can be rewritten as

B2 = B0 Z0

⎧⎨
⎩σ2 +

ε2

ε1

∫
dZ0

Z2
0

⎫⎬
⎭

= B0 Z0

{
σ2 − ε2

ε1

∫
d

(
1

Z0

)}

= B0 Z0

{
σ2 − ε2

ε1

[
1

Z0
− 1

σ1

]}
. (4.38)

Therefore

B2 = B0

{
−ε2

ε1

+

[
σ2 +

ε2

ε1

1

σ1

]
Z0

}
. (4.39)

That is

B1 = −ε2

ε1
+

[
σ2 +

ε2

ε1

1

σ1

]
Z0, (4.40)

from which the composition law follows:

T8(σ2, ε2) ◦ T8(σ1, ε1) = T8

(
σ2σ1, ε1σ2 +

ε2

σ1

)
(4.41)

Note that this almost identical to the computation performed in the Schwarzschild

coordinates because idempotence of the theorem is a result of “reduction of order” not

something special to general relativity.
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4.3.2 Two linking generating theorems:

Having now found the first and second generating theorems, is now useful to find the

connection between them. We start by taking a perfect fluid sphere solution {ζ0, B0}
and applying theorem 7 onto it which gives us a new perfect fluid sphere {ζ1, B0}. The

new ζ1 = ζ−1
0 . We now continue with applying theorem 8, again we get a new solution

{ζ−1
0 , B1}, where B1 now depends on the B0. All together we can consider this as a

single process by introducing the following corollary:

Corollary 3. If {ζ0, B0} denotes a perfect fluid sphere, then for all σ and ε, the

two-parameters geometry defined by

ds2 = − 1

ζ0(r)2
dt2 +

ζ0(r)
2

B0(r)2 Z0(r)2
{dr2 + r2dΩ2} (4.42)

is also a perfect fluid sphere, where Z0 is

Z0(r) =

{
σ + ε

∫
rdr

B0(r)2

}
. (4.43)

That is

T8 ◦ T7 : {ζ0, B0} �→ {ζ−1
0 , B0} �→ {ζ−1

0 , B0 Z0(B0)} (4.44)

Instead of starting with theorem 7 we could first apply theorem 8 on {ζ0, B0}. This

gives us a new perfect fluid sphere {ζ0, B1}, where B1 = B0 Z0(B0) is given by equa-

tion (4.32). We now continue with theorem 7 which leads to {ζ1, B1}, where ζ1 = ζ−1.

Again, we can consider this as a single process by introducing the following corollary:

Corollary 4. If {ζ0, B0} denotes a perfect fluid sphere, then for all σ and ε, the

two-parameters geometry defined by

ds2 = − 1

ζ0(r)2
dt2 +

ζ0(r)
2

B0(r)2 Z0(r)2
{dr2 + r2dΩ2} (4.45)

is also a perfect fluid sphere, where Z0 is

Z0(r) =

{
σ + ε

∫
rdr

B0(r)2

}
. (4.46)
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That is

T7 ◦ T8 : {ζ0, B0} �→ {ζ0, B0 Z0(B0)} �→ {ζ−1
0 , B0 Z0(B0)} (4.47)

There are general comments about the relationship between both transformation

theorems.

• These two transformation operations are independent of each other.

• The transformation T7 defined in Theorem 7 is a “square root of unity”.

• Theorem 8 is in general idempotent. That means when we apply theorem 8 more

than once no further solution will be obtained.

• Theorem 7 and theorem 8 are in general commute.

In addition, these comments can be described in terms of the equations below.

T7 �� T8; T7 ◦ T7 � I; T8 ◦ T8 � T8; T7 ◦ T8 � T8 ◦ T7. (4.48)

4.4 Gaussian polar coordinates:

Consider the metric

ds2 = −ζ(r)2 dt2 + dr2 + R(r)2dΩ2 (4.49)

and then assume it represents a perfect fluid sphere. That is, Gθ̂θ̂ = Gr̂r̂ = Gφ̂φ̂. Now

Gθ̂θ̂ = Gφ̂φ̂ is always fulfilled due to spherical symmetry.

We calculate

Gr̂r̂ = −2ζ ′RR′ − ζ + ζ(R′)2

R2ζ
(4.50)

and

Gθ̂θ̂ = −ζ ′R′ + R′′ζ + ζ ′′R
Rζ

(4.51)

We set Gr̂r̂ = Gθ̂θ̂, which supplies us with an 2nd order ODE for ζ(r), which reduces

the freedom to choose the two functions to one:

ζ ′′R2 − ζ ′RR′ + ζ [1 − (R′)2 + R′′R] = 0 (4.52)
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Figure 4.1: This structure shows that Theorem 7 and Theorem 8 are in general distinct.
When we apply Theorem 7 to seed metric, we get a new solution, while applying Theorem 8
to seed metric, we get the other new solution. Furthermore, the diagram shows that Theorem
7 and Theorem 8 in general commute.

We can rewrite this equation as

ζ ′′ − ζ ′R
′

R
+ ζ

{
1 − (R′)2 + R′′R

R2

}
= 0 (4.53)

4.4.1 The ninth theorem

Theorem 9. Suppose {ζ0(r), R0(r)} represents a perfect fluid sphere. Define

Λ0(r) =

{
σ + ε

∫
R0(r)dr

ζ0(r)2

}
. (4.54)

Then for all σ and ε, the geometry defined by holding R0(r) fixed and setting

ds2 = −ζ0(r)
2Λ0(r)

2 dt2 + dr2 + R0(r)
2dΩ2 (4.55)
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is also a perfect fluid sphere. That is, the mapping

T9(σ, ε) : {ζ0, R0} �→ {ζ0 Λ0(ζ0, R0), R0} (4.56)

takes perfect fluid spheres into perfect fluid spheres.

Proof for Theorem 9. The proof of theorem 9 is again based on the technique of “re-

duction in order”. Assuming that {ζ0(r), R0(r)} solves again equation (4.52), write

ζ1(r) = ζ0(r) Λ0(r) . (4.57)

and demand that {ζ1(r), R0(r)} also solves equation (4.52). We find

(ζ0 Λ0)
′′ − (ζ0 Λ0)

′R
′

R
+ (ζ0 Λ0)

{
1 − (R′)2 + R′′R

R2

}
= 0 (4.58)

we can expand the above equation to

(ζ ′′
0 Λ0 +2ζ ′

0 Λ′
0 + ζ0 Λ′′

0)− (ζ ′
0 Λ0 + ζ0 Λ′

0)
R′

R
+(ζ0 Λ0)

{
1 − (R′)2 + R′′R

R2

}
= 0 (4.59)

we can also re-group this same equation as{
ζ ′′
0 − ζ ′

0

R′

R
+ ζ0

{
1 − (R′)2 + R′′R

R2

}}
Λ0 + 2ζ ′

0 Λ′
0 + ζ0 Λ′′

0 − ζ0 Λ′
0

R′

R
= 0. (4.60)

A linear homogeneous 2nd order ODE for ζ now simplifies to

(2ζ ′
0 − ζ0

R′

R
)Λ′

0 + ζ0 Λ′′
0 = 0 , (4.61)

which is an ordinary homogeneous second-order differential equation, depending only

on Λ′
0 and Λ′′

0. (So it can be viewed as a first-order homogeneous order differential

equation in Λ′
0, which is solvable.) Separating the unknown variable to one side,

Λ′′
0

Λ′
0

= −2
ζ ′
0

ζ0
+

R′
0

R0
. (4.62)

Re-write Λ′′
0/Λ′

0 = d ln(Λ′
0)/dr, and integrate twice over both sides of equation (4.62),

to obtain

Λ0(r) =

{
σ + ε

∫
R0(r) dr

ζ0(r)2

}
. (4.63)

depending on the old solution {ζ0(r), R0(r)}, and two arbitrary integration constants

σ and ε.
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“Idempotence” Proof for Theorem 9. To see that the transformation T9 defined in

Theorem 3 is “idempotent” we first show

T9 ◦ T9 � T9, (4.64)

and then iterate. The precise two-step composition rule is

T9(σ2, ε2) ◦ T9(σ1, ε1) = T9

(
σ2σ1, ε1σ2 +

ε2

σ1

)
. (4.65)

In this section we consider a two-step composition rule to find idempotence. In par-

ticular, the most outstanding features of these steps are:

• To see “idempotence”, note that for fixed R0(r) equation (4.53) has a solution

space that is exactly two dimensional.

• Since the first application of T9 takes any specific solution and maps it into the

full two-dimensional solution space, any subsequent application of T9 can do

no more than move one around inside this two dimensional solution space —

physically this corresponds to a relabelling of parameters describing the perfect

fluid metric you are dealing with, not the generation of new solutions.

To be more explicit about this note that at step one

ζ0 → ζ1 = ζ0

⎧⎨
⎩σ1 + ε1

∫
R0(r) dr

ζ0(r)2

⎫⎬
⎭ , (4.66)

while at the second step

ζ1 → ζ2 = ζ1

⎧⎨
⎩σ2 + ε2

∫
R0 dr

ζ1(r)2

⎫⎬
⎭ . (4.67)
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That is:

ζ2 = ζ0

⎧⎨
⎩σ1 + ε1

∫
R0(r) dr

ζ0(r)2

⎫⎬
⎭ (4.68)

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ2 + ε2

∫
R0(r) dr

ζ0(r)2 [σ1 + ε1

∫
R0(r) dr/ζ0(r)2]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

But this can be rewritten as

ζ2 = ζ0 Z0

⎧⎨
⎩σ2 +

ε2

ε1

∫
dZ0

Z2
0

⎫⎬
⎭

= ζ0 Z0

{
σ2 − ε2

ε1

∫
d

(
1

Z0

)}

= ζ0 Z0

{
σ2 − ε2

ε1

[
1

Z0
− 1

σ1

]}
. (4.69)

Therefore

ζ2 = ζ0

{
−ε2

ε1
+

[
σ2 +

ε2

ε1

1

σ1

]
Z0

}
. (4.70)

That is

ζ1 = −ε2

ε1
+

[
σ2 +

ε2

ε1

1

σ1

]
Z0, (4.71)

from which the composition law follows:

T9(σ2, ε2) ◦ T9(σ1, ε1) = T9

(
σ2σ1, ε1σ2 +

ε2

σ1

)
(4.72)

Again, note simularities to what happens in Schwarzschild coordinates.
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Figure 4.2: This structure shows that Theorem 9 is idempotent. When we apply Theorem
9 to Minkowski as a seed metric, we get the K-O III as a new solution.

4.5 Buchdahl coordinates:

Consider the metric

ds2 = −ζ(r)−1 dt2 + ζ(r)dr2 + ζ(r)R(r)2dΩ2 (4.73)

and then assume it represents a perfect fluid sphere. That is, Gθ̂θ̂ = Gr̂r̂ = Gφ̂φ̂. Note

Gθ̂θ̂ = Gφ̂φ̂ is always fulfilled due to spherical symmetry. We calculate

Gr̂r̂ =
1

4

(−4 ζ2 (R′)2 + 4 ζ2 + (ζ ′)2 R2

ζ3 R2

)
(4.74)

and

Gθ̂θ̂ = −1

4

(
4 ζ2 R′′ + (ζ ′)2 R

ζ3 R

)
(4.75)

We set Gr̂r̂ = Gθ̂θ̂, which supplies us with an 2nd order ODE for ζ(r), which reduces

the freedom to choose the two functions to one:(
ζ ′

ζ

)2

= −2[1 − (R′)2 + RR′′]
R2

. (4.76)

This coordinate system is a sort of cross between isothermal and proper radius.

Theorem 10. If {ζ(r), R(r)} describes a perfect fluid then so does {ζ(r)−1, R(r)}.
This is the Buchdahl transformation in yet another disguise.

The geometry defined by holding R0(r) fixed and setting

ds2 = −ζ0(r) dt2 +
1

ζ0(r)
dr2 +

R0(r)
2

ζ0(r)
dΩ2 (4.77)
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is also a perfect fluid sphere. That is, the mapping

T10 : {ζ0, R0} �→ {ζ−1
0 , R0

}
(4.78)

takes perfect fluid spheres into perfect fluid spheres.

4.6 Synge isothermal coordinates:

Consider

ds2 = −ζ(r)−2 {dt2 − dr2} + {ζ(r)−2 R(r)2dΩ2} (4.79)

and then assume it represents a perfect fluid sphere. That is, Gθ̂θ̂ = Gr̂r̂ = Gφ̂φ̂. While

Gθ̂θ̂ = Gφ̂φ̂ is always fulfilled due to spherical symmetry. We calculate

Gr̂r̂ = −3R2 (ζ ′)2 − 4RζR′ ζ ′ + (R′)2ζ2 − ζ2

R2
(4.80)

and

Gθ̂θ̂ = −3R(ζ ′)2 − 2ζR′ζ ′ − 2R ζζ ′′ + ζ2R′′

R
(4.81)

We set Gr̂r̂ = Gθ̂θ̂, which supplies us with an 2nd order ODE for ζ(r), which reduces

the freedom to choose the two functions in equation

ζ ′′ − ζ ′R
′

R
− ζ

{
1 − (R′)2 + RR′′

2R2

}
= 0. (4.82)

This is very similar equation to Gaussian polar.

Theorem 11. Suppose {ζ0(r), R0(r)} represents a perfect fluid sphere. Define

A0(r) =

{
σ + ε

∫
R0(r)dr

ζ0(r)2

}
. (4.83)

Then for all σ and ε, the geometry defined by holding R0(r) fixed and setting

ds2 = − 1

ζ0(r)2 A0(r)2

{
dt2 − dr2

}
+

R0(r)
2

ζ0(r)2 A0(r)2
dΩ2 (4.84)
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is also a perfect fluid sphere. That is, the mapping

T11(σ, ε) : {ζ0, R0} �→ {ζ0 A0(ζ0, R0), R0} (4.85)

takes perfect fluid spheres into perfect fluid spheres.

Proof for Theorem 11. The proof of theorem 11 is based on the technique of “reduction

in order”. Assuming that {ζ0(r), R0(r)} solves equation (4.82), write

ζ1(r) = ζ0(r) A0(r) . (4.86)

and demand that {ζ1(r), R0(r)} also solves equation (4.82). We find

(ζ0 A0)
′′ − (ζ0 A0)

′R
′

R
+ (ζ0 A0)

{
1 − (R′)2 + RR′′

2R2

}
= 0 (4.87)

we can expand the above equation to

(ζ ′′
0 A0 +2ζ ′

0 A′
0 + ζ0 A′′

0)− (ζ ′
0 A0 + ζ0 A′

0)
R′

R
+(ζ0 A0)

{
1 − (R′)2 + RR′′

2R2

}
= 0 (4.88)

we can also re-group this same equation as{
ζ ′′
0 − ζ ′

0

R′

R
+ ζ0

{
1 − (R′)2 + RR′′

2R2

}}
A0 + 2 ζ ′

0 A′
0 + ζ0 A′′

0 − ζ0 A′
0

R′

R
= 0. (4.89)

A linear homogeneous 2nd order ODE for ζ now simplifies to

(2ζ ′
0 − ζ0

R′

R
)A′

0 + ζ0 A′′
0 = 0 , (4.90)

which is an ordinary homogeneous second-order differential equation, depending only

on A′
0 and A′′

0. (So it can be viewed as a first-order homogeneous order differential

equation in A′
0, which is solvable.) Separating the unknown variable to one side,

A′′
0

A′
0

= −2
ζ ′
0

ζ0
+

R′
0

R0
. (4.91)

Re-write A′′
0/A

′
0 = d ln(A′

0)/dr, and integrate twice over both sides of equation (4.91),

to obtain

A0(r) =

{
σ + ε

∫
R0(r) dr

ζ0(r)2

}
. (4.92)

depending on the old solution {ζ0(r), R0(r)}, and two arbitrary integration constants

σ and ε.
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4.7 Exponential coordinates:

You can always choose to effectively use gtt itself as one of the coordinates, by picking

the functional form of gtt to be any arbitrarily specified function f(z). For instance,

choose

gtt = − exp(−2z) (4.93)

then a useful choice is

ds2 = − exp(−2z) dt2 + exp(+2z)

{
dz2

B(z)
+ R(z)2 dΩ2

}
(4.94)

and then assume it represents a perfect fluid sphere. That is, Gθ̂θ̂ = Gẑẑ = Gφ̂φ̂. Note

Gθ̂θ̂ = Gφ̂φ̂ is always fulfilled due to spherical symmetry. Calculate

Gẑẑ =
(BR2 − (R′)2B + 1) exp(−2z)

R2
(4.95)

and

Gθ̂θ̂ = −1

2

(B′R′ + 2R′′B + 2BR) exp(−2z)

R
(4.96)

We set Gẑẑ = Gθ̂θ̂, which supplies us with an 1st order ODE for B, which reduces

the freedom to choose the two functions in the metric to one for which the isotropy

constraint becomes

B′[RR′] + B[4R2 − 2(R′)2 + 2RR′′] + 2 = 0 (4.97)

Theorem 12. Suppose {B0(z), R0(z)} represents a perfect fluid sphere. Define

Υ0(z) =
R0(z)2

(R′
0(z))2

exp

{
−4

∫
R0(z)

R′
0(z)

dz

}
. (4.98)

Then for all λ, the geometry defined by holding R0(z) fixed and setting

ds2 = − exp(−2z)dt2 + exp(+2z)

{
dz2

B0(z) + λΥ0(z)
+ R0(z)2dΩ2

}
(4.99)

is also a perfect fluid sphere. That is, the mapping

T12(σ, ε) : {B0, R0} �→ {B0 Υ0(R0), R0} (4.100)

takes perfect fluid spheres into perfect fluid spheres.
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Proof for Theorem 12. Assume that {B0(z), R0(z)} is a solution for equation (4.97).

We want to find under what conditions does {B1(z), R0(z)} also satisfy equation

(4.97)? Without loss of generality, we write

B1(z) = B0(z) + λ Υ0(z) . (4.101)

Equation (4.97) can now be used to determine Υ0(z). Substitute B1(z) in Equation

(4.97)

(B0 + λ Υ0)
′[R0R

′
0] + (B0 + λ Υ0)[4R

2
0 − 2(R′

0)
2 + 2R0R

′′
0] + 2 = 0 (4.102)

we can also re-group this same equation as

[R0R
′
0]B

′
0 + [4R2

0 − 2(R′
0)

2 + 2R0R
′′
0 ]B0 + 2

+ [R0R
′
0] Υ

′
0 +
[
4R2

0 − 2(R′
0)

2 + 2R0R
′′
0

]
Υ0 = 0 (4.103)

That ordinary inhomogeneous first-order differential equation in B now simplifies to

[R0R
′
0] Υ

′
0 +
[
4R2

0 − 2(R′
0)

2 + 2R0R
′′
0

]
Υ0 = 0 , (4.104)

which is an ordinary homogeneous first-order differential equation in Υ0.

Now we can calculate Υ0 by following,

[R0R
′
0] Υ

′
0 = − [4R2

0 − 2(R′
0)

2 + 2R0R
′′
0

]
Υ0. (4.105)

Rearrage it into

Υ′
0

Υ0
=

− [4R2
0 − 2(R′

0)
2 + 2R0R

′′
0 ]

[R0R′
0]

= −4
R0

R′
0

+ 2
R′

0

R0
− 2

R′′
0

R′
0

(4.106)

A straightforward calculation, including an integration by parts, leads to

Υ0(z) =
R2

0

(R′
0)

2
exp

{
−4

∫
R0

R′
0

dz

}
. (4.107)
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4.8 Discussion

We have developed several transformation theorems that map perfect fluid spheres

to perfect fluid sphere using other coordinates. We derived the seventh and eighth

theorems using Isotropic coordinates. The transformation in Theorem 7 is a “square

root of unity”. Indeed, Theorem 8 is alomost identical to the calculation performed

in the Schwarzschild coordinates. In addition, the idempotence of this theorem is a

result of “reduction of order”, which is not special to general relativity. We are able to

classify the connection between both transformation theorems. The two transforma-

tion operations are independent of each other. Furthermore, both theorems in general

commute. Figure 4.1 shows that after applying Theorem 7 to the seed metric, we get a

new solution while applying Theorem 8 to seed metric, we get the other new solution.

By the idempotence of Theorem 8 n applications of T8 to the seed metric still results

in the same non-seed metric. Furthermore, the diagram shows that Theorem 7 and

Theorem 8 in general commute.

In Gaussian polar coordinates, we established another transformation theorem,

which has many similarities to the results in Schwarzschild coordinates. Figure 4.2

shows that Theorem 9 is idempotent. When we apply Theorem 9 to Minkowski as a

seed metric, we get the K-O III as a new solution.

Furthermore, we have also established the transformation theorem using Buchdahl

coordinates. Theorem 10 is the Buchdahl transformation in yet another disguise.

In Synge isothermal coordinates, we presented Theorem 11 is a transformation the-

orem. However, this transformation is almost identical to the computation performed

in the Schwarzschild coordinates.

The last solution generating theorem we presented using exponential coordinates.

Indeed, this Theorem 12 also map perfect fluid spheres to perfect fluid spheres.
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Chapter 5

TOV equation - related theorems

5.1 Introduction

The Tolman-Oppenheimer-Volkoff (TOV) equations describe the hydrostatic equilib-

rium of perfect fluid stars without rotation in general relativity. We can solve the

TOV equations by constructing the equation of state for the entire region of nonzero

density starting from the higher density at center to the surface density. In this chap-

ter, we can rephrase Theorems 1, 2, 3 and 4 directly in terms of the TOV equation.

In addition, we also can rephrase all these theorems, which apply in Schwarzschild

coordinates directly in terms of the pressure profile and density profile.

5.2 TOV equation

5.2.1 Interior equation

In general relativity [24], continuous matter distributions and fields again are described

by a stress-energy tensor Tab. The stress tensor of a perfect fluid is given by

T ab = ρ uaub + p (gab + uaub) (5.1)

where ρ(r) is density of mass-energy distribution in rest-frame of fluid, u is 4-velocity

of fluid, and p is isotropic pressure in rest-frame of fluids.
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We know that

Gab = 8πGN Tab (5.2)

We set GN = 1 for convenience, and note that:

∇aG
ab = 0 (5.3)

We know that as contracted Bianchi identity.

The equation of motion for the matter is

∇bT
ab = 0 (5.4)

We define

ua =
dxa

dτ
(5.5)

This is the 4-velocity of a fluid element. We also define

Aa =
d2xa

dτ 2 =
dua

dτ
(5.6)

This is the 4-accerelation.

In the rest frame of the fluid element ua = (c,
−→
0 ) and, Aa = (0,−→a ).

It follows that uaA
a = 0.

It is an invariant quantity. In other words, the 4-acceleration of a particle is always

orthogonal to its 4-velocity. Writing

d

ds
= (u∇) (5.7)

We see

0 =
d

ds
(−1) =

d

ds
(gab uaub) = 2 ua

d

ds
ua = 2 ua (u∇)ua = 2 uaA

a = 0 (5.8)

Now consider ∇bT
ab; we can write this as

∇bT
ab = ∇b

[
ρuaub + p(gab + uaub)

]
= (∇bρ)uaub + (∇bp)(gab + uaub)

+(ρ + p)(∇bu
a)ub + (ρ + p)ua(∇bu

b)

=
[
(∇bρ)ub + (ρ + p)(∇ · u)

]
ua

+
[
(ρ + p)Aa + ∇bp(gab + uaub)

]
= 0 (5.9)
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Writing out equation (5.4) in terms of ρ, p, and ub, and projecting the resulting

equation parallel and perpendicular to ua, we can spilt up the equation into two

equations:

[
(∇bρ)ub + (ρ + p)(∇ · u)

]
ua = 0, (5.10)[

(ρ + p)Aa + ∇bp(gab + uaub)
]

= 0. (5.11)

with uaua = −1, and Aaua = 0, because they are orthogonal to each other.

Figure 5.1: The diagram shows that when we write out equation (5.4) in terms of ρ, p, and
ub, and projecting the resulting equation parallel and perpendicular to ua, we can spilt up
the equation in to two equations.

Now use (∇bp) gabua = (∇bp)ub, and (∇bp) uaubua = −(∇bp)ub. This means

(∇bp) gabua and (∇bp) uaubua have the same magnitude but opposite direction. We

conclude

∇ · (ρu) + p∇ · u = 0 (5.12)

and

Aa = −(gab + uaub)∇bp

ρ + p
. (5.13)
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5.3 A perfect fluid sphere in Schwarzschild coordi-

nates

In the Schwarzschild cooridinates [24], the metric of an arbitrary static, spherically

symmetric spacetime can be put into the simple form

ds2 = −f(r) dt2 + h(r) dr2 + r2(dθ2 + sin2 θ dφ2) (5.14)

when GN = 1, then Gab = 8πTab.

The Einstein equations yield,

8πρ = G00 = R00 +
1

2
(R0

0 + R1
1 + R2

2 + R3
3)

= (rh2)−1 h′ + r−2(1 − h−1), (5.15)

8πp = G11 = R11 − 1

2
(R0

0 + R1
1 + R2

2 + R3
3)

= (rfh)−1f ′ − r−2(1 − h−1), (5.16)

8πp = G22 =
1

2
(fh)−1/2 d

dr
[(fh)−1/2f ′]

+
1

2
(rfh)−1f ′ − 1

2
(rh2)−1h′. (5.17)

We assume h is

h(r) =

[
1 − 2m(r)

r

]−1

, (5.18)

and if we write

f = exp(2φ), (5.19)

the equation (5.16) becomes

dφ

dr
=

[m(r) + 4 πp(r) r3]

r2 [1 − 2m(r)/r]
. (5.20)
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Proof for hydrostatic equilibrium . We substitute equations (5.18) and (5.19) into equa-

tion (5.16) we get,

8πp = (rfh)−1 − r−2(1 − h−1)

=
f ′

f

1

rh
− (1 − h−1)

r2

= 2
dφ

dr

1 − 2m(r)
r

r
−

2m(r)
r
r2

= 2
dφ

dr

r − 2m(r)

r2
− 2m(r)

r3

2
dφ

dr

r − 2m(r)

r2
= 8πp +

2m(r)

r3

dφ

dr
=

4πp +
m(r)
r3

r − 2m(r)
r2

=
[m(r) + 4 πp r3]

r2 [1 − 2m(r)/r]
(5.21)

as previously illustrated.

To see what happens to the pressure and density it will be useful to consider the

TOV equation.
dp

dr
=

−[ρ(r) + p(r)] [m(r) + 4πp(r) r3]

r2 [1 − 2m(r)/r]
(5.22)

Proof. Consider the stress energy of a perfect fluid is in the equation (5.1) and it

satisfies the equation (5.4) which yield,

(p + ρ)ua∇aub + (gab + uaub)∇ap = 0 (5.23)

Now consider,

(e1)b∇aT
ab = 0, (5.24)

where, (e1)b = h1/2(dr)b = h−1/2(∂/∂r)b

We can reduce the equation (5.24) into the equation (5.25) because (e1)b is pointing
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in the r-direction, which is perpendicular to ua.

(e1)b [(p + ρ) ua∇au
b + (δb

a + uau
b) ∇ap] = 0 (5.25)

h−1/2 (0, 1, 0, 0)b[(p + ρ) ua∇au
b + (δb

a + uau
b) ∇ap] = 0

h−1/2(p + ρ) (ua∇au
b)b + h−1/2 dp

dr
= 0

Now we consider,

(ua∇au
b) = ua

[
∂au

b + Γb
cau

c
]

= ua Γb
cau

c

=
1

f
Γb

tt =
1

f

1

2
gbc [−gtt,e + gte,t + get,t]

=
1

f
gbe 1

2
(f),e =

1

2

1

f
∇bf

= ∇bφ =
dφ

dr
(5.26)

Now we substitute equation (5.20) into equation (5.25) we get,

h−1/2(p + ρ)
dφ

dr
+ h−1/2 dp

dr
= 0

dp

dr
= −(p + ρ)

dφ

dr
dp

dr
= −(p + ρ)

[m(r) + 4πp(r) r3]

r2[1 − 2m(r)/r]
(5.27)

Equation (5.27) is known as the Tolman-Oppenheimer-Volkoff equation of hydrostatic

equilibrium.

This equation applies only for a perfect fluid (pr = pt) in Schwarzschild coor-

dinates. There are generalizations appropriate to other coordinate systems. In the

non-relativistic Newtonian approximation this simplifies to (p � ρ, 2m(r)/r � 1):

dp

dr
= − [ρ(r) m(r)]

r2
(5.28)

which is something that is very easy to derive in Newton’s theory of gravity.

If we assume ρ(r) and hence m(r) are given, then the TOV is a nonlinear first-order
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ODE for p(r) called a Riccatti equation. Given p(0) a unique solution p(r) necessarily

exists, and can be used to reconstruct the function ζ(r) via:

ζ(r) = exp

{∫
[m(r) + 4 πp(r) r3]

r2 [1 − 2m(r)/r]
dr

}
(5.29)

Proof. Firstly, start with some static spherically symmetric geometry in Schwarzschild

(curvature) coordinates

ds2 = −ζ(r)2 dt2 +
dr2

B(r)
+ r2 dΩ2 (5.30)

and then assume it represents a perfect fluid sphere.

When

8πp = Grr =
2Bζ ′r − ζ + Bζ

r2ζ

8πp =
2B

r

ζ ′

ζ
− 1

r2
+

B

r2

2B

r

ζ ′

ζ
= 8πp +

1

r2
− B

r2

ζ ′

ζ
=

4πpr

B
+

(1 − B)

2Br
(5.31)

when B = 1 − 2m(r)/r, then we get

ζ ′

ζ
=

4πpr

(1 − 2m(r)/r)
+

1 − (1 − 2m(r)/r)

2 (1 − 2m(r)/r)r

ζ ′

ζ
=

m(r) + 4πp r3

r2 (1 − 2m(r)/r)

d ln(ζ)

dr
=

m(r) + 4πp r3

r2 (1 − 2m(r)/r)

ln(ζ) =

∫ (
m(r) + 4πp r3

r2 (1 − 2m(r)/r)

)
dr

exp(ln(ζ)) = exp

{∫
[m(r) + 4πp r3]

r2 [1 − 2m(r)/r]
dr

}

ζ = exp

{∫
[m(r) + 4πp r3]

r2 [1 − 2m(r)/r]
dr

}
(5.32)

as required.
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In this way, starting from ρ(r) you can construct first the function m(r) = 4π
∫

ρ(r)r2 dr,

then (via the TOV) the pressure profile p(r), and finally via the above the gravitational

redshift ζ(r).

Suppose in contrast that the pressure profile p(r) is given, then the TOV equation

can be rearranged into a nonlinear first order PDE for m(r):

1

4πr2

dm(r)

dr
= −p(r) − r2 [1 − 2m(r)/r]

[m(r) + 4π p(r) r3]

dp

dr
(5.33)

Proof. We substitute equations (5.18) and (5.19) into equation (5.15) to get,

dm(r)

dr
= 4πρ(r)r2, (5.34)

and rearrange in term of ρ(r) so,

ρ(r) =
1

4πr2

dm(r)

dr
(5.35)

rearrange the equation (5.22) into,

ρ(r) = −p(r) − r2 [1 − 2m(r)/r]

[m(r) + 4π p(r) r3]

dp

dr
(5.36)

now substitute equation (5.35) into equation (5.36), we get

1

4πr2

dm(r)

dr
= −p(r) − r2 [1 − 2m(r)/r]

[m(r) + 4π p(r) r3]

dp

dr
(5.37)

This is an Abel equation (2nd type, class A). There is no simple general solution.

However given p(r) and the initial data m(0) = 0 this can in principle be solved to

determine m(r). Once this is done ζ(r) is again reconstructed via

ζ(r) = exp

{∫
[m(r) + 4πp(r) r3]

r2[1 − 2m(r)/r]
dr

}
(5.38)
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5.4 Solution generating theorems

5.4.1 Four theorems

The first four theorems we presented in chapter 3 were first explicitly published in

[6]. We now rephrase the theorems in slightly different formalism, and demonstrate

an independent way of proving them. Indeed, we can re-write these theorems directly

in terms of pressure and density profiles p(r) and ρ(r).

Firstly, start with some static spherically symmetric geometry in Schwarzschild

(curvature) coordinates

ds2 = −ζ0(r)
2 dt2 +

dr2

1 − 2m0(r)
r

+ r2 dΩ2 (5.39)

and then assume it represents a perfect fluid sphere. Our original four theorems can

be written in the form

Theorem 1. Suppose {ζ0(r), m0(r)} represents a perfect fluid sphere. Define

m1(r) =

(
ζ0(r)

ζ0(r) + r ζ ′
0(r)

)2

r3 exp

{
2

∫
ζ ′
0(r)

ζ0(r)

ζ0(r) − r ζ ′
0(r)

ζ0(r) + r ζ ′
0(r)

dr

}
. (5.40)

Then for all λ, the geometry defined by holding ζ0(r) fixed and setting

ds2 = −ζ0(r)
2 dt2 +

dr2

1 − 2[m0(r) + λ m1(r)]
r

+ r2dΩ2 (5.41)

is also a perfect fluid sphere.

Theorem 2. Let {ζ0(r), m0(r)} describe a perfect fluid sphere. For all σ and ε, the

geometry defined by holding m0(r) fixed and setting

ds2 = −ζ0(r)
2

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2

√
1 − 2m0(r)

r

⎫⎬
⎭

2

dt2 +
dr2

1 − 2m0(r)
r

+ r2dΩ2 (5.42)

is also a perfect fluid sphere.
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Theorem 3. Let {ζ0(r), m0(r)} describe a perfect fluid sphere. For for all σ, ε, and

λ, the three-parameters geometry defined by

ds2 = −ζ0(r)
2

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2

√
1 − 2[m0(r) + λ m1(r)]

r

⎫⎬
⎭

2

dt2

+
dr2

1 − 2[m0(r) + λ m1(r)]
r

+ r2 dΩ2 (5.43)

is also a perfect fluid sphere, where m1(r) is defined as above.

Theorem 4. Let {ζ0(r), m0(r)} describe a perfect fluid sphere. For all σ, ε, and λ,

the three-parameters geometry defined by

ds2 = −ζ0(r)
2

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2

√
1 − 2m0(r)

r

⎫⎬
⎭

2

dt2+
dr2

1 − 2[m0(r) + λ m̃1(r)]
r

+r2dΩ2

(5.44)

is also a perfect fluid sphere, where m̃1(r) is defined as

m̃1(r) =

(
ζ(r)

ζ(r) + r ζ ′(r)

)2

r3 exp

{
2

∫
ζ ′(r)
ζ(r)

ζ(r)− r ζ ′(r)
ζ(r) + r ζ ′(r)

dr

}
, (5.45)

depending on ζ = ζ0ζ1, where

ζ1(r) =

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2

√
1 − 2m0(r)

r

⎫⎬
⎭ . (5.46)

5.4.2 Four theorems in terms of pressure and density

We can re-write these theorems in terms of pressure and density profiles p(r) and ρ(r).

Consider Theorem 1. By definition ζ is unaffected under the transformation. But

we have a formula for ζ(r) in terms of p(r) and m(r). Let m2(r) = m0(r) + λm1(r)

and p2(r) be the mass profile and pressure profile after applying theorem 1. Then

[m0(r) + 4πp0(r) r3]

r2 [1 − 2m0(r)/r]
=

[m2(r) + 4πp2(r) r3]

r2 [1 − 2m2(r)/r]
(5.47)

130



which we can rearrange to yield

m2(r) + 4πp2(r) r3 = [m0(r) + 4πp0(r) r3]
[1 − 2m2(r)/r]

[1 − 2m0(r)/r]
(5.48)

Furthermore, we can rearrange it into

4πp2(r) r3 = −m2(r) + [m0(r) + 4πp0(r) r3]
[1 − 2m2(r)/r]

[1 − 2m0(r)/r]
(5.49)

Now we substitute m2(r) = m0(r) + λm1(r) into equation (5.49),

4πp2(r) r3 = −m0(r) − λm1(r) + [m0(r) + 4πp0(r) r3]
[1 − 2(m0(r) + λm1(r))/r]

[1 − 2m0(r)/r]
(5.50)

After a bit of algebra:

4πp2(r) r3 =
−λm1(r) + 4πp0(r) − 8πp0(r) r2 m0(r) − 8λπp0(r) r2 m1(r)

[1 − 2m0(r)/r]

=
−λm1(r)(1 − 8πp0(r) r2)

[1 − 2m0(r)/r]
+

4πp0(r) r3[1 − 2m0(r)/r]

[1 − 2m0(r)/r]

= 4 πp0(r) r3 − λm1(r)(1 + 8πp0(r) r2)

[1 − 2m0(r)/r]
(5.51)

rearrange it in terms of p2(r),

p2(r) = p0(r) − λm1(r)

[
1

4πr3

] [
1 + 8πp0(r) r2

1 − 2m0(r)/r

]
(5.52)

This allows us to rewrite Theorem 1 as follows:

Theorem 13 (Theorem 1B:). Suppose we are given a pair of functions p0(r) and ρ0(r)

that satisfy the TOV.

We use these functions to construct m0(r), ζ0(r), and m1(r) as follows:

m0(r) = 4π

∫ r

0

ρ0(r̄) r̄2 dr̄ (5.53)

ζ0(r) = exp

{∫
[m0(r) + 4πp0(r) r3]

r2 [1 − 2m0(r)/r]
dr

}
(5.54)
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m1(r) =

(
ζ0(r)

ζ0(r) + r ζ ′
0(r)

)2

r3 exp

{
2

∫
ζ ′
0(r)

ζ0(r)

ζ0(r) − r ζ ′
0(r)

ζ0(r) + r ζ ′
0(r)

dr

}
(5.55)

Then for all λ, the pair of functions

p2(r) = p0(r) − λm1(r)

[
1

4πr3

] [
1 + 8πp0(r)r

2

1 − 2m0(r)/r

]
(5.56)

ρ2 = ρ0(r) +
λ

4πr2

dm1(r)

dr
(5.57)

also satisfies the TOV and so defines a perfect fluid sphere.

Similar logic can be applied to theorem 2. Note that in that case you are considering

the transformation

m0(r) → m2(r) = m0(r) (5.58)

ζ0(r) → ζ2(r) = ζ0(r)

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2

√
1 − 2m0(r)

r

⎫⎬
⎭ (5.59)

So that m0(r) remains fixed. Now from the Gr̂r̂ component of the Einstein tensor:

consider the equation below

ζ ′

ζ
=

m(r) + 4πp(r) r3

r2 (1 − 2m(r)/r)
(5.60)

and rearrange this equation in term of p(r)

ζ ′

ζ
r2 (1 − 2m(r)/r) = m(r) + 4πp(r) r3

4πp(r) r3 = −m(r) + r2 (1 − 2m(r)/r)
ζ ′

ζ

p(r) = −m(r)

4πr3
+

1

4πr
(1 − 2m(r)/r)

ζ ′

ζ
(5.61)

when
m(r)

4πr3
=

m(r)/3

(4π/3) r3
=

1

3
ρ̄(r) (5.62)

Now we have p(r) equal to

p(r) = −1

3
ρ̄(r) +

1

4πr
(1 − 2m(r)/r)

ζ ′(r)
ζ(r)

(5.63)
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Then in particular

p2(r) = −1

3
ρ̄0(r) +

1

4πr
(1 − 2m0(r)/r)

ζ ′
2(r)

ζ2(r)
(5.64)

so that

p2(r) = −1

3
ρ̄0(r) +

1

4πr

(
1 − 2m0(r)

r

)
⎡
⎣ζ0(r)

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)
2

√
1 − 2m0(r)

r

⎫⎬
⎭
⎤
⎦

′

ζ0(r)

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)
2

√
1 − 2m0(r)

r

⎫⎬
⎭
(5.65)

That is

p2(r) = −1

3
ρ̄0(r) +

1

4πr

(
1 − 2m0(r)

r

)
ζ ′
0(r)

ζ0(r)

+
1

4πr

(
1 − 2m0(r)

r

)
⎧⎨
⎩ε r

ζ0(r)
2

√
1 − 2m0(r)

r

⎫⎬
⎭⎧⎨

⎩σ + ε

∫
r dr

ζ0(r)
2

√
1 − 2m0(r)

r

⎫⎬
⎭

(5.66)

we know p(r) = −1
3 ρ̄(r) + 1

4πr (1 − 2m(r)/r)
ζ ′
0(r)

ζ0(r)
, so that

p2(r) = p0(r) +
ε

4π

√
1 − 2m0(r)

r ζ0(r)
−2

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2

√
1 − 2m0(r)

r

⎫⎬
⎭

−1

(5.67)

This leads us to:

Theorem 14 (Theorem 2B:). Suppose we are given a pair of functions p0(r) and ρ0(r)

that satisfy the TOV.

Use these functions to construct m0(r) and ζ0(r) as follows:

m0(r) = 4π

∫ r

0

ρ0(r̄) r̄2 dr̄ (5.68)
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ζ0(r) = exp

{∫
[m0(r) + 4πp0(r) r3]

r2 [1 − 2m0(r)/r]
dr

}
(5.69)

Then for all σ and ε, the pair of functions

ρ2(r) = ρ0(r) (5.70)

p2(r) = p0(r) +
ε

4π

√
1 − 2m0(r)

r
ζ0(r)

−2

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2

√
1 − 2m0(r)

r

⎫⎬
⎭

−1

(5.71)

also satisfies the TOV and so defines a perfect fluid sphere.

Having now found these theorems 1B and 2B, is now useful to define a new theorem

by composing them. All together we can consider this as a single process by introducing

the following theorem:

Theorem 15 (Theorem 3B:). Suppose we are given a pair of functions p0(r) and ρ0(r)

that satisfy the TOV.

Use these functions to construct m0(r), ζ0(r), and m1(r) as follows:

m0(r) = 4π

∫ r

0

ρ0(r̄) r̄2 dr̄ (5.72)

ζ0(r) = exp

{∫
[m0(r) + 4πp0(r) r3]

r2 [1 − 2m0(r)/r]
dr

}
(5.73)

m1(r) =

(
ζ0(r)

ζ0(r) + r ζ ′
0(r)

)2

r3 exp

{
2

∫
ζ ′
0(r)

ζ0(r)

ζ0(r) − r ζ ′
0(r)

ζ0(r) + r ζ ′
0(r)

dr

}
(5.74)

Then for all σ, ε, and λ, the pair of functions

p2(r) = p0(r) − λm1(r)

[
1

4πr3

] [
1 + 8πp0(r) r2

1 − 2m0(r)/r

]

+
ε

4π

√
1 − 2m2(r)

r
ζ0(r)

−2

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2

√
1 − 2m2(r)

r

⎫⎬
⎭

−1

(5.75)

ρ2 = ρ0(r) +
λ

4πr2

dm1(r)

dr
(5.76)

where m2(r) = m0(r) + λm1(r), also satisfy the TOV and so define a perfect fluid

sphere.
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Theorem 16 (Theorem 4B:). Suppose we are given a pair of functions p0(r) and ρ0(r)

that satisfy the TOV.

Use these functions to construct m0(r), ζ0(r), and m1(r) as follows:

m0(r) = 4π

∫ r

0

ρ0(r̄) r̄2 dr̄ (5.77)

ζ0(r) = exp

{∫
[m0(r) + 4πp0(r) r3]

r2 [1 − 2m0(r)/r]
dr

}
(5.78)

m̃1(r) =

(
ζ(r)

ζ(r) + r ζ ′(r)

)2

r3 exp

{
2

∫
ζ ′(r)
ζ(r)

ζ(r) − r ζ ′(r)
ζ(r) + r ζ ′(r)

dr

}
, (5.79)

depending on ζ = ζ0ζ1, where

ζ1(r) =

⎧⎨
⎩σ + ε

∫
r dr

ζ0(r)2

√
1 − 2m0(r)

r

⎫⎬
⎭ . (5.80)

Then the pair of functions

p2(r) = p0(r) − λm1(r)

[
1

4πr3

] [
1 + 8πp0(r)r

2

1 − 2m0(r)/r

]
(5.81)

ρ2 = ρ0(r) +
λ

4πr2

dm̃1(r)

dr
(5.82)

also satisfy the TOV and so define a perfect fluid sphere.

5.4.3 Discussion

In this chapter we have rephrased the theorems 1, 2, 3, and 4 of chapter 3 directly

in terms of the TOV equation, and consequently in terms of the pressure profile and

density profile. We have done this by rephrasing theorem 1 in a slightly different

formalism, and developing an independent proof that is easy to rewrite in terms of

the pressure and density profiles — ρ(r) and p(r) — resulting in the theorem we call

theorem 1B. Similar logic, involving the transformation T2, can be applied to theorem

2 — now leading to theorem 2B. With these new theorems 1B and 2B in hand, we

can compose them in various ways to obtain theorems 3B and 4B.
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Some seed geometries and their descendants in term of pressure and density via Theorem 1B

Seed p0(r) pTh1(r) ρ0(r) ρTh1(r)
Minkowski 0 − λ

4π 0 3λ
4π

exterior Schwarzschild 0 3500 λ (r−a)2

π r2 0 − 3500 λ (r−a)(3r−5a)
πr2

de Sitter − 3
8πR2 p0(r) − λ(R2−3r2)

4π(−R2+2r2)
3

8πR2 ρ0(r) + λ
4 π

(7R2r2−3R4−6r4)
(−R2+2r2)2

Tolman V (A = 0) − (n+1)2

8r2π(n2−2) p0(r) − λr

 
− (2n+n2)

(n+2)

!
(2n+3)

4 π(n+2)2
−1+n2

8r2π(−2+n2) ρ0(r) + λr

 
− (2n+n2)

(n+2)

!
(3+2n)(2−n)

4 π(n+2)3

S1 1
2πr2 p0(r) − 5λ

36 πr(4/3) 0 5λ
108 πr(4/3)

M–W III − (a−6r) (a+2r)
56 π r2a2 p0(r) + λ

(
r
5

)( 1
3 ) (r−a)(2a+3r)

9 (a+r)(−4r+3a)(
4
3 )

3 (a2+4 r2)
56 πr2a2 ρ0(r) + λ

9 π

(
r
5

)( 1
3 ) (12r2−21ar+10a2)

(−4r+3a)(
7
3 )

Heint IIa (C = 0) − 9a(−1+ar2)
16π(1+ar2)2 p0(r) − λ(7ar2+1)

12
√

3 π(1+ar2)2
√−4ar2−1

3a (3+ar2)
16π(1+ar2)2 ρ0(r) − λ(1+3ar2)

4
√

3π(1+ar2)2 (−4ar2−1)(
3
2 )

Table 5.1: Seed solutions and their generalizations derived via theorems 1B in terms of
pressure and density profile.

Some seed geometries and their descendants in term of pressure and density via Theorem 2B

Seed pTh2(r) ρTh2(r)

Minkowski ε

4 π
“
σ+ εr2

2

” 0

exterior Schwarzschild 1

2 π(r2+5ra−30 a2+
2 σ

√
r(r−2a)

ε
+15

√
r(r−2a) a2 ln(r−a+

√
r(r−2a)))

0

de Sitter p0(r) + ε

4π
√

R2−r2

„
σ
R

+ ε R2√
−R2+r2

« ρ0(r)

Tolman V (A = 0) p0(r) +
ε

2−n2

2 πr2
“
2B2nr(1+n)

q
1

2−n2 −ε
” ρ0(r)

S1 p0(r) + ε

4 πr4(σ− ε
2r2 )

0

M–W III p0(r) + ε
2
√

7 πAraσ(r−a)√
a2−r2

+7 πra ε
ρ0(r)

Heint IIa (C=0) p0(r) + ε

8 π
(1+ar2)(7/2)√

4−2ar2

„
σ+

2ε (5+2ar2)

27a (1+ar2)(3/2)
√

4−2ar2

« ρ0(r)

Table 5.2: Seed solutions and their generalizations derived via theorems 2B in terms of
pressure and density profile.
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Some seed geometries and their descendants in term of pressure and density via Theorem 3B

Seed pTh3(r) ρTh3(r)

Minkowski p0(r) + ε
4 πσ√
1−2λr2

− 2 πε
λ

ρTh1(r)

exterior Schwarzschild [integral] ρTh1(r)

de Sitter p0(r) − λ(R2−3 r2)
4 π(−R2+2 r2) ρTh1(r)

+
ε

r
1− r2

R2 + 2λr2(−R2+r2)
(−R2+2r2)

4 π(R2−r2)2

0
BBBB@ σ

R2 +ε

∫
rR2

(R2−r2)

s
1− r2

R2 +2λr2(−R2+r2)
(−R2+2r2)

dr

1
CCCCA

Tolman V (A = 0) p0(r) − λr
(1+n)(−2n)

(2+n) (3+2n)
4 π(2+n)2 ρTh1(r)

− ε

s
1

(2−n2)
+ 2λr

2(2−2n2)
(2+n)

(2+n)2

4 πB2r(1+n)2

0
BBBB@σ+ε

∫
r(−1−2n)

B2

vuuut 1
(2−n2)

+2λr

2(2−2n2)
(2+n)

(2+n)2

dr

1
CCCCA

S1 p0(r) + λ
12 r(4/3) π

+ ρTh1(r)
ε„

2πr4

„
6σ√

9−2 λr(2/3)
+ε

„
− 1

r2 + 5λ
3

„
− 1

6r(4/3) + λ
9

„
− 1

2r(2/3) − λ

3
√

9−2 λr(2/3)
arctanh

„
3√

9−2 λr(2/3)

««««««

M–W III p0(r) − λ
9

(
r
5

)(1/3) (2a−3r)
(−4r+3a)(4/3) ρTh1(r)

+
ε

r
(a2−r2)

7a2 + 2 λr(7/3) (r−a)5(2/3)

45 (−4r+3a)(4/3)

2πAr(r−a)

0
BBBB@σ+ε

∫
1

A(r−a)

s
(a2−r2)

7a2 +2 λr(7/3) (r−a)5(2/3)

45 (−4r+3a)(4/3)

dr

1
CCCCA

Heint IIa (C=0) p0(r) − λ(7ar2+1)

12 π
√−4ar2−1

ρTh1(r)

−
ε

s
1

(1+ar2)

„
(2−ar2)− 4 λr2

3
√

−12ar2−3

«

4 π(1+ar2)3

0
BBBB@σ+ε

∫
r

(1+ar2)

vuut (2−ar2)− 4 λr2

3
√

−12ar2−3

! dr

1
CCCCA

Table 5.3: Seed solutions and their generalizations derived via theorems 3B in terms of
pressure and density profile. The notation “[integral]” denotes a metric so complicated that
explicitly writing out the relevant integral is so tedious that it does not seem worthwhile.
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Some seed geometries and their descendants in term of pressure and density via Theorem 4B

Seed pTh4(r) ρTh4(r)

Minkowski pTh1(r)
λ(5 ε r2+6 σ)

4 π(2 σ+3 ε r2)(5/3)

exterior Schwarzschild pTh1(r) [integral]

de Sitter pTh1(r) [integral]

Tolman V (A = 0) pTh1(r) [integral]

S1 pTh1(r)
λ(10 σr2−3 ε)

4 π(6 σr2−ε)(5/3)

M–W III pTh1(r) [integral]

Heint IIa (C=0) pTh1(r) [integral]

Table 5.4: Seed solutions and their generalizations derived via theorems 4B in terms of
pressure and density profile. The notation “[integral]” denotes a metric so complicated that
explicitly writing out the relevant integral is so tedious that it does not seem worthwhile.

We present several tables that exhibit seed solutions and the geometries generated

from them by combining all the various theorems. Table (5.1) shows some seed ge-

ometries and their descendants as obtained via theorem 1B, and similarly table (5.2)

shows some seed geometries and their descendants obtained via theorem 2B. Finally

table (5.3) and (5.4) deal with theorems 3B and 4B. We emphasise that theorem 2B

does not affect the density profile, and only the pressure profile changes.
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Chapter 6

Conclusions

As the range of problems tackled is so diverse, it is hard to think of a concise way of

summarising all of them. Indeed, to a large extent much of the work has already has

summarised them at the end of each section. Instead of explaining the problems again

and how far through completion they are, I would like to leave with list of things that

I believe are useful to understand the overall concept of the thesis.

This thesis has been written with the goal of making it accessible to people with

a basic background in general relativity, especially in coordinate conditions, perfect

fluid spheres in general relativity.

6.1 The main analysis: Structure of the thesis

• The thesis summarized the basic concept of special relativity to make general

relativity easier to understand. General relativity is the relativistic theory of

gravitation. It is required from any new physical theory to satisfy the so called

principle of correspondence.

• Coordinate conditions are important for the long time scale simulations of rel-

ativistic systems. We demonstrated the importance of coordinate conditions in

general relativity and proposed a method of looking for nice solutions of the

Einstein equations. In addition, a number of examples are given to illustrate the
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method.

• We introduced “algorithmic” techniques that permit one to generate large classess

of perfect fluid spheres in a purely mechanical way. Furthermore, we extended

these algorithmic ideas, by proving several solution-generating theorems of vary-

ing levels of complexity. We have developed several transformation theorems

that map perfect fluid spheres to perfect fluid spheres using Schwarzschild co-

ordinates. Furthermore, we used these transformations as a basis for classifying

different types of perfect fluid sphere solutions.

• In chapter 4, we have developed several transformation theorems that map per-

fect fluid spheres to perfect fluid sphere using other coordinates.

• We rephased Theorems 1, 2, 3 and 4 in chapter 3 directly in terms of the TOV

equation.

6.2 Further interesting issues

I would like to leave with the list of things that I believe are interesting to continue to

analyze. In addition, all the lists below are further issues that might be interesting to

looking at.

• For a Riemannian geometry in (2+1) dimensions, we can calculate the Ricci

Scalar, the Ricci tensor and the Riemann tensor. However, all results are too

difficult to analyze in detail. This is one of the physically interesting cases, and

this is a case that I would like to examine in more detail.

• Similar for a Riemannian geometry in (3+1) dimensions. This is also one of

the physical interesting case, and this is the case that will be most difficult to

analyze in detail. This is a challenging case that I would like to work through in

more detail.

• We analysed a generic spacetime using both ADM and reverse-ADM (Kaluza–

Klein) decompositions. However, we found that for the general ADM case co-

ordinate techniques are too complicated to contemplate (page 514 of [17]). The

140



inverse ADM decomposition can calculated the Christoffel symbols from equa-

tion (2.178). This is so interesting to find the techniques for contemplation.

• The other things that would be interesting is consider other coordinate systems:

Generalize the theorems which we derived for Schwarzschild coordinates or co-

ordinates in Chapter 4 to a number of other coordinate systems. This may allow

us to develop extra relations between the known solutions.

• For Theorem 8 in Isotropic coordinate, it would be interesting to see what would

happen when we feed this theorem a Minkowski space seed. In addition, this is

interesting to find simple ways of generating interesting solutions.

• For Theorem 9 in Gaussian polar coordinate, Theorem 10 in Buchdahl coordi-

nates, Theorem 11 in Synge isothermal coordinates, and Theorem 12 in Expo-

nential coordinates, it would be interesting to see what would happen when we

feed this theorem a Minkowski space seed. In addition, this is intersting to find

the way that we can do to R(r) to make its ODE look nicer.

All the above suggestions would be interesting and feasible, although some of them

would be more tedious to extend to standard results in general relativity. However,

this thesis would provide a platform for better understanding coordinate conditions

and the perfect fluid sphere in general relativity. This thesis developed a way of looking

for nice new solutions of the Einstein equations. Furthermore, the goal of this thesis

was to classify the different types of perfect fluid sphere solutions. This thesis has

hopefully served as a brief introduction the “Algorithms” ideas by showing how to

prove several solution-generating theorems of varying levels of complexity. Finally, we

illustrated the formalism to develop extra relations between the known solutions for

Schwarzschild coordinates and other coordinates. The generating theorems in perfect

fluid spheres lead to additional useful “exact solutions”.
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Appendix A

Generating perfect fluid spheres in

general relativity

Petarpa Boonserm, Matt Visser, and Silke Weinfurtner

Electronic preprint gr-qc/0503007.

Published as Physical Review D 71 (2005) 124037

Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing

the interior of a particular idealized general relativistic star — a static spherically

symmetric blob of fluid with position independent density — the general relativity

community has continued to devote considerable time and energy to understanding

the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of

specific perfect fluid spheres has been discovered, with most of these specific examples

seemingly independent from each other. To bring some order to this chaos, in this

article we develop several new transformation theorems that map perfect fluid spheres

into perfect fluid spheres. These transformation theorems sometimes lead to unex-

pected connections between previously known perfect fluid spheres, sometimes lead to

new previously unknown perfect fluid spheres, and in general can be used to develop

a systematic way of classifying the set of all perfect fluid spheres.
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A.1 Introduction

General relativistic perfect fluid spheres, or more precisely general relativistic static

perfect fluid spheres, are interesting because they are first approximations to any at-

tempt at building a realistic model for a general relativistic star [1, 2, 3, 4]. The

central idea is to start solely with spherical symmetry, which implies that in orthonor-

mal components the stress energy tensor takes the form

Tâb̂ =

⎡
⎢⎢⎢⎣

ρ 0 0 0

0 pr 0 0

0 0 pt 0

0 0 0 pt

⎤
⎥⎥⎥⎦ (A.1)

and then use the perfect fluid constraint pr = pt, making the radial pressure equal to

the transverse pressure. By using the Einstein equations, plus spherical symmetry, the

equality pr = pt for the pressures becomes the statement

Gθ̂θ̂ = Gr̂r̂ = Gφ̂φ̂. (A.2)

In terms of the metric components, this leads to an ordinary differential equation

[ODE], which then constrains the spacetime geometry, for any perfect fluid sphere.

Over the last 90 years, many “ad hoc” approaches to solving this differential equa-

tion have been explored, often by picking special coordinate systems, or making simple

ansatze for one or other of the metric components [5, 6, 7, 8]. (For recent overviews

see [1, 2, 3].) The big change over the last several years has been the introduction of

“algorithmic” techniques that permit one to generate large classes perfect fluid spheres

in a purely mechanical way [9, 10, 11]. In this article we will extend these algorithmic

ideas, by proving several solution-generating theorems of varying levels of complex-

ity. We shall then explore the formal properties of these solution-generating theorems

(which generate the notion of the Buchdahl transformation) and then will use these

theorems to classify some of the previously known exact solutions, and additionally

will generate several new previously unknown perfect fluid solutions.
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A.2 Solution generating theorems

Start with some static spherically symmetric geometry in Schwarzschild (curvature)

coordinates

ds2 = −ζ(r)2 dt2 +
dr2

B(r)
+ r2 dΩ2 (A.3)

and assume it represents a perfect fluid sphere. That is, Gθ̂θ̂ = Gr̂r̂ = Gφ̂φ̂. While

Gθ̂θ̂ = Gφ̂φ̂ is always fulfilled due to spherical symmetry, setting Gr̂r̂ = Gθ̂θ̂ supplies us

with an ODE

[r(rζ)′]B′ + [2r2ζ ′′ − 2(rζ)′]B + 2ζ = 0 , (A.4)

which reduces the freedom to choose the two functions in equation (A.3) to one. This

equation is a first order-linear non-homogeneous equation in B(r). Thus — once you

have chosen a ζ(r) — this equation can always be solved for B(r). Solving for B(r)

in terms of ζ(r) is the basis of [10, 11], (and is the basis for Theorem 1 below). On

the other hand, we can also re-group this same equation as

2r2Bζ ′′ + (r2B′ − 2rB)ζ ′ + (rB′ − 2B + 2)ζ = 0 , (A.5)

which is a linear homogeneous 2nd order ODE for ζ(r), which will become the basis

for Theorem 2 below. The question we are going to answer in this section is, how to

systematically “deform” this geometry while still retaining the perfect fluid property.

That is, suppose we start with the specific geometry defined by

ds2 = −ζ0(r)
2 dt2 +

dr2

B0(r)
+ r2dΩ2 (A.6)

and assume it represents a perfect fluid sphere. We will show how to “deform” this

solution by applying five different transformation theorems on {ζ0, B0}, such that

the outcome still presents a perfect fluid sphere. The outcome of this process will

depend on one or more free parameters, and so automatically generates an entire

family of perfect fluid spheres of which the original starting point is only one member.

In addition, we analyze what happens if you apply these theorems more than once,

iterating them in various ways.
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A.2.1 Four theorems

The first theorem we present is a variant of a result first explicitly published in [11],

though another variant of this result can also be found in [3]. We first re-phrase the

theorem in of [11] slightly different formalism, and demonstrate an independent way

of proving it. Using our proof it is easy to show that by applying theorem 1 more than

once no further solutions will be obtained, therefore the transformation in theorem 1

is, (in a certain sense to be made precise below), “idempotent”.

Theorem 1. Suppose {ζ0(r), B0(r)} represents a perfect fluid sphere. Define

Δ0(r) =

(
ζ0(r)

ζ0(r) + r ζ ′
0(r)

)2

r2 exp

{
2

∫
ζ ′
0(r)

ζ0(r)

ζ0(r) − r ζ ′
0(r)

ζ0(r) + r ζ ′
0(r)

dr

}
. (A.7)

Then for all λ, the geometry defined by holding ζ0(r) fixed and setting

ds2 = −ζ0(r)
2 dt2 +

dr2

B0(r) + λ Δ0(r)
+ r2dΩ2 (A.8)

is also a perfect fluid sphere. That is, the mapping

T1(λ) : {ζ0, B0} �→ {ζ0, B0 + λΔ0(ζ0)} (A.9)

takes perfect fluid spheres into perfect fluid spheres. Furthermore a second application

of the transformation does not yield new information, T1 is “idempotent”, in the sense

that

T1(λn) ◦ · · · ◦ T1(λ2) ◦ T1(λ1) : {ζ0, B0} �→
{
ζ0, B0 +

(∑n

i=1
λi

)
Δ0(ζ0)

}
(A.10)

We also note that T1 always has an inverse

[T1(λ)]−1 = T1(−λ). (A.11)

Proof for Theorem 1. Assume that {ζ0(r), B0(r)} is a solution for equation (A.4). Un-

der what conditions does {ζ0(r), B1(r)} also satisfy equation (A.4)? Without loss of

generality, we write

B1(r) = B0(r) + λ Δ0(r) . (A.12)
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Equation (A.4) can now be used to determine Δ0(r). That ordinary inhomogeneous

first-order differential equation in B now simplifies to

[r(rζ0)
′] Δ′

0 +
[
2r2ζ ′′

0 − 2(rζ0)
′]Δ0 = 0 , (A.13)

which is an ordinary homogeneous first-order differential equation in Δ0. A straight-

forward calculation, including an integration by parts, leads to

Δ0(r) =
r2

[(rζ0)′]
2 exp

{∫
4ζ ′

0

(rζ0)′
dr

}
. (A.14)

Adding and subtracting ±2(rζ ′2
0 )/(ζ0(rζ0)

′) to the argument under the integral leads

to

Δ0 =

(
ζ0(r)

ζ0(r) + r ζ ′
0(r)

)2

r2 exp

{
2

∫
ζ ′
0(r)

ζ0(r)

ζ0(r) − r ζ ′
0(r)

ζ0(r) + r ζ ′
0(r)

dr

}
, (A.15)

as advertised.

If we apply this transformation a second time we obtain no additional information.

To see this, consider the sequence

{ζ0, B0} �→ {ζ0, B1} �→ {ζ0, B2} . . . (A.16)

But at the second step (and all subsequent steps), since ζ0 has not changed, so Δ1(r) =

Δ0(r). More generally, at all stages of the iteration Δi(r) = Δ0(r). We can write this

as
n∏

i=1

T1(λi) = T1

(
n∑

i=1

λi

)
. (A.17)

or in the more suggestive form
n∏

i=1

T1 � T1 (A.18)

where the symbol � indicates “equality up to relabelling of the parameters”. That

is, transformation T1 is “idempotent” up to relabelling of the parameters (see figure

A.1).

A version of Theorem 1 can also be found in [3]. Specifically, after several manip-

ulations, changes of notation, and a change of coordinate system, the transformation

exhibited in equation (16.11) of [3] can be converted into Theorem 1 above.
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Figure A.1: The solid lines show B(r) for 10 reapplications of Theorem 1 onto the
Minkowski metric. The dashed line corresponds to a single application with a specific choice
for λonce. It can be seen that 10 applications of Theorem 1 can be expressed by one appli-
cation.

Applying theorem 1 to a fixed {ζ0, B0} generates a one dimensional space of perfect

fluid spheres, which leads to the corollary below:

Corollary 5. Let {ζ0, Ba} and {ζ0, Bb} both represent perfect fluid spheres, then for

all p

{ζ0, pBa + (1 − p)Bb} (A.19)

is also a perfect fluid sphere, furthermore all perfect fluid spheres for a fixed ζ0 can be

written in this form.

Proof. The result is automatic once you note that for fixed ζ0 the ODE for B is linear,
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(though not homogeneous, which is why the two coefficients p and 1− p are chosen to

add up to 1) .

We defer extensive discussion of the application of this theorem and its corollary

until section A.3, where we use this and our other generating theorems as a basis

for classifying perfect fluid spheres. At this stage we mention, only as a very simple

example, that T1 applied to Minkowski space results in the geometry of the Einstein

static universe.

Theorem 2. Let {ζ0, B0} describe a perfect fluid sphere. Define

Z0(r) = σ + ε

∫
r dr

ζ0(r)2
√

B0(r)
. (A.20)

Then for all σ and ε, the geometry defined by holding B0(r) fixed and setting

ds2 = −ζ0(r)
2 Z0(r)

2 dt2 +
dr2

B0(r)
+ r2dΩ2 (A.21)

is also a perfect fluid sphere. That is, the mapping

T2(σ, ε) : {ζ0, B0} �→ {ζ0 Z0(ζ0, B0), B0} (A.22)

takes perfect fluid spheres into perfect fluid spheres. Furthermore a second application

of the transformation does not yield new information, T2 is “idempotent” in the sense

that

T2(σn, εn) ◦ · · · ◦ T2(σ3, ε3) ◦ T2(σ2, ε2) ◦ T2(σ1, ε1)

= T2(σn . . . σ3σ2σ1, εn...321), (A.23)

where

εn...321 = (ε1σ2σ3 · · ·σn) + (σ−1
1 ε2σ3 · · ·σn)

+(σ−1
1 σ−1

2 ε3 · · ·σn) + · · · + (σ−1
1 σ−1

2 σ−1
3 · · · εn). (A.24)

Furthermore, theorem 2 is invertible (as long as σ �= 0):

[T2(σ, ε)]−1 = T2(1/σ,−ε). (A.25)
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Proof for Theorem 2. The proof of theorem 2 is based on the technique of “reduction

in order”. Assuming that {ζ0(r), B0(r)} solves equation (A.5), write

ζ1(r) = ζ0(r) Z0(r) . (A.26)

and demand that {ζ1(r), B0(r)} also solves equation (A.5). We find

(r2ζ0B
′
0 + 4r2ζ ′

0B0 − 2rζ0B0)Z
′
0 + (2r2ζ0B0)Z

′′
0 = 0 , (A.27)

which is an ordinary homogeneous second-order differential equation, depending only

on Z ′
0 and Z ′′

0 . (So it can be viewed as a first-order homogeneous order differential

equation in Z ′, which is solvable.) Separating the unknown variable to one side,

Z ′′
0

Z ′
0

= −1

2

B′
0

B0
− 2

ζ ′
0

ζ0
+

1

r
. (A.28)

Re-write Z ′′
0 /Z ′

0 = d ln(Z ′
0)/dt, and integrate twice over both sides of equation (A.28),

to obtain

Z0 = σ + ε

∫
r dr

ζ0(r)2
√

B0(r)
, (A.29)

depending on the old solution {ζ0(r), B0(r)}, and two arbitrary integration constants

σ and ε.

To see that the transformation T2 defined in Theorem 2 is “idempotent” we first

show

T2 ◦ T2 � T2, (A.30)

and then iterate. The precise two-step composition rule is

T2(σ2, ε2) ◦ T2(σ1, ε1) = T2

(
σ2σ1, ε1σ2 +

ε2

σ1

)
. (A.31)

To see “idempotence”, note that for fixed B0(r) equation (A.5) has a solution space

that is exactly two dimensional. Since the first application of T2 takes any specific

solution and maps it into the full two-dimensional solution space, any subsequent

application of T2 can do no more than move one around inside this two dimensional

solution space — physically this corresponds to a relabelling of parameters describing
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the perfect fluid metric you are dealing with, not the generation of new solutions. To

be more explicit about this note that at step one

ζ0 → ζ1 = ζ0

⎧⎨
⎩σ1 + ε1

∫
r dr

ζ0(r)2
√

B0(r)

⎫⎬
⎭ , (A.32)

while at the second step

ζ1 → ζ2 = ζ1

⎧⎨
⎩σ2 + ε2

∫
r dr

ζ1(r)2
√

B0(r)

⎫⎬
⎭ . (A.33)

That is:

ζ2 = ζ0

⎧⎨
⎩σ1 + ε1

∫
r dr

ζ0(r)2
√

B0(r)

⎫⎬
⎭ (A.34)

⎧⎨
⎩σ2 + ε2

∫
r dr

ζ0(r)2
√

B0(r) [σ1 + ε1

∫
r dr/(ζ0(r)2

√
B0(r)]2

⎫⎬
⎭

But this can be rewritten as

ζ2 = ζ0 Z0

⎧⎨
⎩σ2 +

ε2

ε1

∫
dZ0

Z2
0

⎫⎬
⎭ = ζ0 Z0

{
σ2 − ε2

ε1

∫
d

(
1

Z0

)}

= ζ0 Z0

{
σ2 − ε2

ε1

[
1

Z0
− 1

σ1

]}
. (A.35)

Therefore

ζ2 = ζ0

{
−ε2

ε1
+

[
σ2 +

ε2

ε1

1

σ1

]
Z0

}
. (A.36)

That is

Z1 = −ε2

ε1
+

[
σ2 +

ε2

ε1

1

σ1

]
Z0, (A.37)

from which the composition law

T2(σ2, ε2) ◦ T2(σ1, ε1) = T2

(
σ2σ1, ε1σ2 +

ε2

σ1

)
(A.38)
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follows immediately. (Note that the composition law for T2 is actually a statement

about applying reduction of order to 2nd-order ODEs, it is not specifically a statement

about perfect fluid spheres, though that is how we will use it in the current article.) The

general composition law then follows by induction. To find the inverse transformation

we choose σ2 = 1/σ1 and ε1 = −ε2, for which

T2(1/σ1,−ε1) ◦ T2(σ1, ε1) = T2 (1, 0) = I. (A.39)

Comment: As other special cases of the composition law we also mention the results

that
n∏

i=1

T2(1, εi) = T2

(
1,

n∑
i=1

εi

)
, (A.40)

and

T2(σ, ε)n = T2

(
σn, ε

[
σn−1 + σn−3 · · · + σ−(n−3) + σ−(n−1)

])
. (A.41)

Now as long as σ > 1 then for sufficiently large n we see

T2(σ, ε)n ≈ T2

(
σn, σn−1ε

)
= σn−1 T2(σ, ε) � T2(σ, ε), (A.42)

where at the last step we have used the fact that the overall multiplicative factor σn−1

can simply be reabsorbed into a redefinition of the time coordinate. Because of this

result, we see that for fixed σ > 1 (and fixed but arbitrary ε) repeated numerical

applications of T2(σ, ε) will have a well-defined limit. In figure A.2 we have tested the

composition law numerically.

A strictly limited version of theorem 2, with little comment on its importance, can

be found in [3]. Specifically, after several manipulations, changes of notation, and a

change of coordinate system, the transformation exhibited in equation (16.12) of [3]

can be seen to be equivalent to the sub-case σ = 0, ε = 1 of theorem 2 above.

For some purposes it is more useful to rephrase theorem 2 as below:

Corollary 6. Let {ζa, B0} and {ζb, B0} both represent perfect fluid spheres, then for

all p and q

{p ζa + q ζb, B0} (A.43)
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