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Abstract

We conduct a convergence analysis for the estimation of inertial
lift force on a spherical particle suspended in flow through a straight
square duct using the finite element method. Specifically we consider
the convergence of an inertial lift force approximation with respect to a
range of factors including the truncation of the domain, the resolution
of the tetrahedral mesh and the boundary conditions imposed at the
(truncated) ends of the domain. Additionally, we compare inertial lift
estimations obtained via a variant of the Lorentz reciprocal theorem
with those obtained via those obtained via a direct integration of fluid
stresses over the particle surface.
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1 Introduction

Inertial lift force is a phenomena in which particles/cells suspended in fluid
flow through micro-scale devices experience a small forces that perturbs their
motion from fluid streamlines. This is exploited in range of medical tech-
nologies including the separation and identification of circulating tumour
cells [13]. Inertial lift has been studied analytically for simple flows bounded
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by two walls over many decades, see for example [7, 12, 2], but for flows in
devices of practical interest it is generally necessary to compute estimates of
the inertial lift force.

Many methods for estimating the inertial lift force on a particle have
been developed and investigated in the literature including, but not limited
to, immersed boundary finite difference methods [10], direct forcing fictitious
domain methods [14, 11], spectral methods [15], and finite element meth-
ods [3]. Typically these methods are used in studies which solve the full
Navier–Stokes equations over a range of Reynolds numbers. We are inter-
ested in the estimation of the inertial lift force via a perturbation expansion
of the Navier–Stokes equations with respect to the particle Reynolds number
and with the use of a variant of the Lorentz reciprocal theorem, as described
in [9]. Whilst our research has focused on the migration of particles within
curved duct flows [5, 6], in this short paper we examine the simpler case of
straight square duct flow noting that much of what is discussed is transferable
to curved duct geometries.

We examine various aspects affecting the convergence of the inertial lift
force when approximated via the solution of several Stokes equations with
the finite element method. Section 2 provides a brief account of how the
inertial lift force is estimated. A more detailed derivation and explanation
may be found in [9], only parts essential to this paper are repeated in this
section. In Section 3 we then provide and discuss the results of a convergence
analysis for the finite element code which has been developed within the open
source computing platform FEniCS [1]. Lastly, we summarise our findings
and discuss aspects of the computation that could be improved.

2 Background

Suppose ` denotes the side length of the square cross-section, then, without
loss of generality, we may take the duct interior to be D = {x = (x, y, z) ∈
R3 : x, y ∈ [−`/2, `/2]}. A fluid, with density ρ and viscosity µ, is pumped
through the duct via a (constant) pressure gradient to produce a laminar
Poiseuille flow. A solid/rigid spherical particle with radius a and neutral
buoyancy (i.e. density ρ) is then suspended in the flow through the duct.
The location of its centre is denoted as xp = (xp, yp, zp). Necessarily one
has xp, yp ∈ [−`/2 + a, `/2 − a)] and, without loss of generality, we may
assume zp = 0 (at t = 0). The setup is depicted in Figure 1. The fluid
domain is then F = {x ∈ D : ‖x − xp‖2 ≥ a}. The particle is taken to
have a velocity up = (up, vp, wp) such that up = vp = 0 and wp = ∂zp/∂t
is constant. Additionally, the particle is free to spin about its centre with
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Figure 1: The setup of the duct.

(constant) angular velocity Ωp with z component taken to be zero.
It is convenient to work in a frame of reference that is translating in the

z direction so that the particle location remains fixed. In this frame, the
domain F remains static/fixed and, given up,Ωp as described above, the
system is steady. While we have assumed that up = vp = 0, our goal is to
estimate the hydrodynamic force on the particle in the x, y directions which
would ultimately lead to a non-zero (albeit small) up, vp.

It is useful to separate the fluid flow into the background flow p̄, ū (defined
on D), which denotes the steady laminar flow in the absence of a particle,
and the disturbance flow q,v (defined on F), which is the change in back-
ground flow caused by the presence of the particle. The background flow
has pressure p̄ = −Pz, for some constant P > 0, and velocity ū satisfy-
ing ∇2ū = −(P/µ)ez with the boundary conditions ū = 0 on ∂D. With
ū = (ū, v̄, w̄) it is straightforward to show that ū = v̄ = 0 and

w̄ =
P

µ

∞∑
k=0

4`2(−1)k

π3(2k + 1)3
cos((2k + 1)πx/`)

(
1− cosh((2k + 1)πy/`)

cosh((2k + 1)π/2)

)
.

While the fluid motion, in the presence of a particle, is assumed to be
modelled by the Navier–Stokes equations we make use of a perturbation
expansion in the (particle) Reynolds number so that one need only solve a
few Stokes’ problems to approximate the inertial lift force. For convenience
we define the functionals P(f , b),U(f , b) which, given the vector fields f , b
defined on the fluid domain F and particle surface ∂(D\F) respectively,
return the pressure and velocity fields that satisfy

∇ · (−P(f , b)I + µ (∇U(f , b) +∇U(f , b)ᵀ)) = f on F , (1a)

∇ · U(f , b) = 0 on F , (1b)

U(f , b) = 0 on ∂D , (1c)

U(f , b) = b on ∂(D\F) , (1d)

where I is the identity tensor. Lastly, given a flow p,u on F , the hydrody-
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namic force and torque on the particle is given by

F (p,u) =

∫
|x−xp|=a

n · (−pI + µ(∇u +∇uᵀ)) dS ,

T (p,u) =

∫
|x−xp|=a

(x− xp)× (n · (−pI + µ(∇u +∇uᵀ))) dS ,

where the normal n is taken to be outward pointing from the particle centre.
We are now equipped to describe the process of estimating the inertial

lift force. The following description is given in the dimensional setting but
is straightforward to non-dimensionalise (with length scale a, velocity scale
Ua/` and pressure scale µU/`, where U := w̄(0), such that the inertial terms
of the Navier–Stokes equations are found to scale with the particle Reynolds
number Rep = (ρ/µ)Ua2/`). First one needs to solve the leading order
approximation of the disturbance flow. Specifically, this is given by

q0,v0 := P(0,−ū + up + Ωp × (x− xp)),U(0,−ū + up + Ωp × (x− xp)) ,

with the particle velocity and spin such that the system is in equilibrium,
that is F (q0,v0) = T (q0,v0) = 0. Given the linearity of Stokes’ equation,
and some components of up,Ωp being zero, this can be solved by:

1. First solving each of

q0,1,v0,1 = P(0, ez),U(0, ez) ,

q0,2,v0,2 = P(0, ex × (x− xp)),U(0, ex × (x− xp)) ,

q0,3,v0,3 = P(0, ey × (x− xp)),U(0, ey × (x− xp)) ,

q0,4,v0,4 = P(0, ū),U(0, ū) .

2. Then compute F k = F (q0,k,v0,k) and T k = T (q0,k,v0,k) for k =
1, 2, 3, 4 and solve the linear system

(wpF 1 + Ωp,xF 2 + Ωp,yF 3 − F 4) · ez = 0 , (2a)

(wpT 1 + Ωp,xT 2 + Ωp,yT 3 − T 4) · ex = 0 , (2b)

(wpT 1 + Ωp,xT 2 + Ωp,yT 3 − T 4) · ey = 0 , (2c)

where Ωp = (Ωp,x,Ωp,y,Ωp,z) (recalling up = (0, 0, wp) and Ωp,z = 0).

3. Set (q0,v0) = wp(q0,1,v0,1)+Ωp,y(q0,2,v0,2)+Ωp,y(q0,3,v0,3)−(q0,4,v0,4).

The inertial lift force can now be computed by solving for the first cor-
rection to the leading order disturbance. Specifically, let

f 1 = ρ
(
(v0 + ū− wpez) · ∇v0 + v0 · ∇ū

)
, (3)
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then the first correction for the disturbance is given by

q1,v1 := P(f 1,0),U(f 1,0) .

The inertial lift force can then be computed directly as F (q1,v1) (noting it
is the x, y components that are of principal interest). Note in equation (3)
we include the −wpez · ∇v0 which is absent in [9] but can be found in [8].

However, rather than this direct approach, the inertial lift force can be
obtained without needing to explicitly solve for q1,v1. In particular, let
ûx := U(0, ex) and ûy := U(0, ey), then a variant of the Lorentz reciprocal
theorem can be used to show that

ex ·F (q1,v1) = −
∫
F
ûx ·f 1 dV , and ey ·F (q1,v1) = −

∫
F
ûy ·f 1 dV . (4)

Again we refer the reader to [9] for further details.
This second approach may appear to be more effort since two Stokes’

problems need to be solved (i.e. to find ûx, ûy) as opposed to one (for
q1,v1). However, it is important to realise that one may want to compute
ûx, ûy (and the corresponding pressure fields p̂x, p̂y) regardless in order to
estimate the drag coefficients on the particle in the respective directions. For
instance, these can then be used to determine the terminal lateral velocity a
particle may achieve as a result of the inertial lift force. In this context, the
application of the Lorentz reciprocal theorem then provides a computational
saving. Furthermore, whilst beyond the scope of this paper, it is a far more
convenient form to use for further analysis since linear expansions of v0 can
be substituted into equation (3) and subsequently (4) to obtain a wealth of
additional information about the inertial lift force at very little cost. Lastly,
the results that follow demonstrate the computation of inertial lift force via
the Lorentz reciprocal theorem is typically more accurate than the direct
estimate (from explicitly calculating F (q1v1)).

3 Results

The finite element method was implemented within the open source com-
puting platform FEniCS [1]. Our implementation uses the standard weak
formulation of Stokes’ equations (1). The domain is truncated in the z direc-
tion and two different boundary conditions are considered at the truncated
ends, the ‘natural’ boundary condition which enforces zero normal stress, and
the ‘zero’ boundary condition which enforces no-slip and no-penetration. In
the latter case, the ∇Uᵀ components can be dropped from the weak formula-
tion whereas they must remain in the case of ‘natural’ boundary conditions.



3 Results 6

2−22−120

rel. refinement

10−5

10−4

10−3

10−2

re
l.

er
ro

r

(a)

2−22−120

rel. refinement

10−3

10−2

10−1

re
l.

er
ro

r

(b)

2−22−120

rel. refinement

10−3

10−2

10−1

re
l.

er
ro

r

(c)

Figure 2: Plots showing the convergence in: (a) the leading order disturbance
flow solution q0,v0, (b) representative force and torque coefficients that de-
termine the spin and velocity of the particle, and (c) the x, y components of
the inertial lift force on the particle. See text for further details.

Tetrahedral meshes of the (truncated) domain were generated using the gmsh
software [4]. The resolution is generally made to be much coarser far from
the particle since the disturbance flow is expected to decay away from the
particle. This is a particular computational advantage from formulating the
problem in terms of the disturbance flow. Standard Taylor-Hood elements
were used, that is first/second order Lagrange elements were used for the pres-
sure/velocity spaces respectively. The minres algorithm was used to solve the
resulting linear system using an algebraic multi-grid preconditioner based on
the mass matrix. In order to estimate the error in the solution (for a given
mesh resolution) the same problem was solved using second/third order La-
grange elements for pressure/velocity respectively. The solution from the
lower order space is then projected into the higher order space so that the
difference between the two can be computed.

All computations in this section consist of a particle with radius a = 0.2
located at xp = (0.2, 0.4, 0.0) within a duct having side length ` = 2. The
duct is truncated at a distance 4` either side of the particle (i.e. with total
length 8` = 16) except where convergence with respect to domain length is
considered. Each mesh is non-uniform with surface elements whose edges
approximately five times smaller on the particle boundary compared to at
the two ends of the duct. The relative degree of refinement, denoted here
as h, is taken to be the ratio of the cube root of the average cell volume
compared to those in the coarsest mesh (consisting of ≈ 19, 000 tetrahedra
compared to the finest mesh which has ≈ 1, 600, 000 tetrahedra).

We begin by examining mesh convergence with ‘zero’ boundary conditions
at the ends of the duct (results were found to be similar for ‘natural’ boundary
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conditions and are omitted). Figure 2(a) shows the relative convergence in
the q0,v0 solution, specifically it is the 2-norm of the difference between
solutions computed in both the low and high order function spaces on each
mesh. It is clear that convergence in q0,v0 is approximately 2nd and 3rd order
respectively, as is expected for linear and quadratic elements. Of particular
interest is v0, since this plays a significant role in the estimation of the inertial
lift force via the reciprocal equation (4), and it is clear that this is reasonably
accurate, even on the coarsest mesh.

Figure 2(b) shows the relative convergence of each of F 4 ·ez,T 4 ·ex,T 4 ·ey

in blue, green and red respectively. These are representative of the coefficients
that are used to determine the velocity and spin of the particle in equation
(2). Because these depend on the pressure it is reasonable to expect h2

convergence, as indicated by the dashed black line, and the results seem
consistent with this, if not slightly better.

Figure 2(c) shows the relative convergence of the x, y components of the
inertial lift force in blue and green respectively. The solid lines are the
results of the reciprocal calculation whilst the dotted lines are from the direct
approach. The dashed black line shows the slope of h3 and seems to be a
reasonable fit. This is somewhat surprising because of the dependence of
the inertial lift on the gradient of the velocity field (and also pressure in the
case of the direct calculation) which would lead one to expect convergence at
the rate h2. Note that the reciprocal result is generally more accurate than
the direct result. The error is less than 1% for meshes with approximately
150, 000 tetrahedra or more. There is some noise in the reciprocal result on
the finer meshes which we expect is due to the finite accuracy of our best
guess at the true inertial lift force.

The main difference due to the different choice of boundary conditions was
observed in examining convergence with respect to duct length. In particular,
the drag coefficient in the z direction is especially affected. In the case
of ‘natural’ boundary conditions the solution U(0, ez) does not completely
decay far away from the particle since the imposed motion of the particle
drags a small volume of liquid through the duct with it. In contrast, this
cannot be the case when no-slip/penetration is enforced at the ends of the
duct, and ultimately results in a larger drag coefficient.

Figure 3(a) shows the relative convergence of each of F 4 ·ez,T 4 ·ex,T 4 ·ey

in blue, green and red respectively with respect to the length of the duct in the
case of ‘natural’ boundary conditions. Note that the (local) mesh resolution
was not changed as the duct length was increased, i.e. so that longer ducts
contained more tetrahedra and the convergence seen primarily reflects the
length of the duct. Interestingly, we observed that since both F 1 · ez and
F 4 ·ez are effected in a similar way, the resulting particle velocity wp obtained
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Figure 3: Plots showing differences in convergence with respect to the duct
length for: (a) drag and torque coefficients in the case of ‘natural’ boundary
conditions, (b) drag and torque coefficients in the case of ‘zero’ boundary
conditions, and (c) inertial lift force estimates in the case of ‘zero’ boundary
conditions. See text for details.

via equation (2) is quite accurate independent of the duct length (up to mesh
convergence error).

In contrast, Figure 3(b) shows virtually no convergence in the same co-
efficients when ‘zero’ boundary conditions are applied. Notice the results
are more accurate to begin with and are essentially already converged up to
the given level of refinement for the mesh. Furthermore, we find that the re-
sulting particle velocity and inertial lift coefficients do not differ significantly.
This is evident in Figure 3(c) which shows the x, y components of the inertial
lift force in blue and green respectively with solid lines denoting the result of
the reciprocal calculation while the dotted lines show the result of the direct
calculation. The results demonstrate degree of convergence remains similar
independent of duct length (and essentially reflect the degree of mesh con-
vergence). This suggests a duct length even shorter than 8 could perhaps be
used in the case of ‘zero’ boundary conditions with minimal loss of accuracy.

4 Conclusions

We have examined the convergence of a finite element code for estimating
inertial lift forces with respect to mesh resolution, duct length and boundary
conditions. From these results we conclude that imposing ‘zero’ boundary
conditions on the ends and using the reciprocal equation to estimate the
inertial lift force seems to be the most robust approach. Going forward we
would like to further optimise the local size/distribution of tetrahedra over
the domain, potentially via an analysis of the adjoint problem. The use of
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periodic boundary conditions at the ends could also be considered. Lastly, an
evaluation of the validity of the perturbation approximation to the inertial
lift force, i.e. in comparison with full Navier–Stokes solutions over a suitable
range of Rep, would also be valuable.
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