
Deep Learning-based Image
Analysis for High-content

Screening

by

Dylon Zhiheng Zeng

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Data Science.

Victoria University of Wellington
2021

Abstract

High-content screening is an empirical strategy in drug discovery to
identify substances capable of altering cellular phenotype — the set of
observable characteristics of a cell — in a desired way. Throughout the
past two decades, high-content screening has gathered significant atten-
tion from academia and the pharmaceutical industry. However, image
analysis remains a considerable hindrance to the widespread application
of high-content screening. Standard image analysis relies on feature engi-
neering and suffers from inherent drawbacks such as the dependence on
annotated inputs. There is an urging need for reliable and more efficient
methods to cope with increasingly large amounts of data produced.

This thesis centres around the design and implementation of a deep
learning-based image analysis pipeline for high-content screening. The
end goal is to identify and cluster hit compounds that significantly alter
the phenotype of a cell. The proposed pipeline replaces feature engineer-
ing with a k-nearest neighbour-based similarity analysis. In addition, fea-
ture extraction using convolutional autoencoders is applied to reduce the
negative effects of noise on hit selection. As a result, the feature engineer-
ing process is circumvented. A novel similarity measure is developed to
facilitate similarity analysis. Moreover, we combine deep learning with
statistical modelling to achieve optimal results. Preliminary explorations
suggest that the choice of hyperparameters have a direct impact on neural
network performance. Generalised estimating equation models are used
to predict the most suitable neural network architecture for the input data.

Using the proposed pipeline, we analyse an extensive set of images ac-
quired from a series of cell-based assays examining the effect of 282 FDA

approved drugs. The analysis of this data set produces a shortlist of drugs
that can significantly alter a cell’s phenotype, then further identifies five
clusters of the shortlisted drugs. The clustering results present groups of
existing drugs that have the potential to be repurposed for new therapeu-
tic uses. Furthermore, our findings align with published studies. Com-
pared with other neural networks, the image analysis pipeline proposed
in this thesis provides reliable and better results in a shorter time frame.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my
supervisor Dr. Binh Nguyen, for his time, illuminating ideas, and research
guidelines. Conducting this master’s research seemed like a daunting task
initially due to immense input data. Without my supervisor’s generous
support and guidance, I could not have finished this research.

A massive thank you to Prof. Ivy Liu and Prof. Philip Morrison for
inviting me to work on an analytics project, increasing my knowledge and
understanding in the statistics area. Thank you to Kang Wang, who has
helped with the design of research methods. I also extend my thanks to
my friends and colleagues for their moral support.

Most importantly, my family has my heartfelt gratitude. They have
been nothing but supportive of my life choices. Thank you for always
keeping faith in me, giving me the mental energy to finish this degree.

Last but not least, I thank all the people who have assisted with my
studies at Victoria University of Wellington, including the friendly staff in
the School of Mathematics and Statistics, and the Student and Academic
Services team in the Faculty of Science office.

I was financially supported by the Wellington Master’s by Thesis Schol-
arship from Victoria University of Wellington, New Zealand.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Works . 3
1.3 Pipeline Overview . 5
1.4 Issues Addressed . 7

1.4.1 Data Preprocessing Stage 7
1.4.2 Hit Selection Stage . 8
1.4.3 Cluster Analysis Stage 9
1.4.4 Summary . 9

1.5 Contributions . 10
1.6 Thesis Outline . 11

2 Background 13
2.1 Linear Regression . 13

2.1.1 Types of Outcome . 13
2.1.2 Linear Regression Model Structure 14

2.2 Generalised Linear Models . 16
2.2.1 Link function . 16
2.2.2 GLM Model Structure 17

2.3 Generalised Estimating Equations 19
2.3.1 Motivation . 19
2.3.2 Working Correlation Structure 20
2.3.3 GEE Model Structure 21

iv

CONTENTS v

2.3.4 Model Selection . 24
2.3.5 Result Analysis . 28

2.4 Machine Learning . 30
2.4.1 Definitions . 30
2.4.2 Categories of Machine Learning 32

2.5 Basic Autoencoder . 34
2.5.1 Neuron . 35
2.5.2 Activation Function 36
2.5.3 Basic Autoencoder Architecture 38
2.5.4 Backpropagation . 40

2.6 Convolutional Autoencoder 43
2.6.1 Convolutional Layer 44
2.6.2 Pooling Layer . 45
2.6.3 Convolutional Autoencoder Architecture 46
2.6.4 Challenges . 49

2.7 Chapter Summary . 51

3 Data Preprocessing Stage 52
3.1 Data Preprocessing Overview 52
3.2 Preliminary Explorations . 54

3.2.1 Intensity Recalibration 55
3.2.2 Cell Detection and Cropping 57
3.2.3 Data Cleansing . 61

3.3 Data Preprocessing Design . 62
3.4 Results and Discussion . 63
3.5 Chapter Summary . 64

4 Hit Selection Stage 65
4.1 Hit Selection Overview . 65
4.2 Preliminary Explorations . 67

4.2.1 Novel Comparison Scheme 67
4.2.2 Convolutional Autoencoder 73

vi CONTENTS

4.2.3 Hyperparameters Selection with GEE 78
4.2.4 Hit Selection . 84

4.3 Hit Selection Design . 86
4.4 Results and Discussion . 88
4.5 Chapter Summary . 94

5 Cluster Analysis Stage 95
5.1 Cluster Analysis Overview 95
5.2 Preliminary Explorations . 96

5.2.1 Distance Matrix . 97
5.2.2 Hierarchical Clustering 98

5.3 Cluster Analysis Design . 100
5.4 Results and Discussion . 101
5.5 Chapter Summary . 107

6 Conclusions 109

List of Tables

2.1 Common link functions. 17
2.2 Common working correlation structures. 21

3.1 Minimum pixel intensity and intended adjustment by batch. 56

4.1 The choices of hyperparameters for the MNIST data set. . . . 78
4.2 Summary of the 20 image groups from the MNIST data set. . 79
4.3 Five best sets of hyperparameters for the MNIST data set. . . 82
4.4 The choices of hyperparameters for the MNIST data set (com-

plete). 84
4.5 Similarities between image groups and the negative control. 85
4.6 The CAE-aided comparison scheme outperforms common

unsupervised clustering tools for the MNIST data set. 86
4.7 The choices of hyperparameters for the cell image data set

(complete). 91
4.8 Drug codes in each shortlist based on different thresholds. . 93

vii

List of Figures

1.1 A conceptual outline of the image analysis pipeline for high-
content screening. 6

2.1 A flowchart of the backward elimination algorithm. 26

2.2 Overview of Artificial Intelligence. 31

2.3 An example of a supervised learning task. 33

2.4 An example of an unsupervised learning task. 33

2.5 An overview of reinforcement learning. 34

2.6 The mathematical model of a single neuron in a neural net-
work. 35

2.7 Shape of common activation functions. 37

2.8 An example of autoencoder architecture. 39

2.9 An example of backpropagation. 41

2.10 An illustration of how an unactivated feature map is made. . 44

2.11 Illustrations of max pooling and average pooling. 46

2.12 Architecture of an example convolutional autoencoder. . . . 48

3.1 Data preprocessing is the first stage in the proposed pipeline. 53

3.2 An example of raw data. 54

3.3 Demonstrations of findContours. 58

3.4 Demonstrations of watershed. 59

3.5 Comparison of findContours and watershed. 60

3.6 Some examples of the discarded windows. 61

viii

LIST OF FIGURES ix

3.7 Detailed steps in the data preprocessing stage. 62

3.8 Some examples of the processed images. 63

4.1 Hit selection is the second stage in the proposed pipeline. . . 66

4.2 Illustrations of three popular distance metrics. 70

4.3 An example demonstrating indicator selection. 72

4.4 A confusion matrix for calculating accuracy. 73

4.5 Evolution of reconstruction losses with different activation
functions. 74

4.6 Reconstruction examples using different convolutional au-
toencoder architectures. 75

4.7 Reconstruction examples of the MNIST handwritten digits. . 77

4.8 Visual inspection for normality in residuals for a GEE model
with identity link function (MNIST). 82

4.9 Visual comparison of decision scores using GEE. 83

4.10 Detailed steps in the hit selection stage. 87

4.11 Visual inspection for normality in residuals for a GEE model
with identity link function (cell images). 90

4.12 Evolution of reconstruction losses for the training set and
the validation set. 91

4.13 Distribution of similarity measures. 92

5.1 Cluster analysis is the last stage in the proposed pipeline. . . 96

5.2 Distance matrix for the shortlisted image groups that are
different from digit ’5’, MNIST. 97

5.3 Dendrogram of hierarchical clustering using correlation (av-
erage). 99

5.4 Detailed steps in the cluster analysis stage. 100

5.5 Distance matrix for the shortlist based on classification ac-
curacy. 101

5.6 Cluster dendrograms based on different shortlist. 102

5.7 2D projections of some extracted features. 105

x LIST OF FIGURES

5.8 An overview of 2D projections of some extracted features. . 106
5.9 Some windows of cells from different drug groups. 107

Chapter 1

Introduction

This thesis centres around the design and implementation of a deep learning-
based image analysis pipeline for high-content screening. The tremendous
amounts of input data in this research are microscopic images of cells —
treated with over 282 FDA approved drugs — from large scale assays.
Subcellular structures, including cell membrane and nucleus, are clearly
visible. The end goal, or the overall output, is first to produce a shortlist of
drugs that significantly modulate cellular phenotype, then cluster the said
drugs for repurposing reasons.

1.1 Motivation

In recent years, phenotypic screening [58] has fallen back into favour in the
pharmaceutical industry. While target-based screening relies on a prede-
fined disease-modifying target such as proteins [68], phenotypic screening
identifies candidate drug compounds without knowing their biological
target. In phenotypic screening, compounds are tested in assays to select
ones with a desirable therapeutic effect on cells. The main advantage of
phenotypic screening is that it broadens the search space by lifting the lim-
itation of having a target, increasing the chance of discovering pioneering
drugs. Besides, phenotypic screening could provide direct information on

1

2 CHAPTER 1. INTRODUCTION

how a compound affects a disease-relevant phenotype [9].

When conducted on a large scale with fluorescence imaging, advanced
microscopy, robotic handling, and image analysis, this type of phenotypic
screening is known as high-content screening [36]. First described in a
paper by Giuliano (1997) [29], high-content screening has been used ex-
tensively in the pharmaceutical industry to increase the scope of data col-
lected from assays. In contrast to traditional high-throughput screening,
which has a single read-out averaged over all cells within a microplate
well, high-content screening allows simultaneous monitoring of various
cellular phenotypes through some form of image analysis [9].

In high-content screening, vast quantities of candidate compounds are
tested in a microplate format for their ability to induce phenotypic changes
in cell populations. These cells are then visualised by staining subcel-
lular structures, like cell membrane and nucleus, with fluorescent dyes;
and captured by automated high-resolution microscopy. Once obtained,
the microscopic images are analysed to assess complex spatiotemporal ef-
fects of drugs on a cell’s particular morphology. A drug compound with
the desired impact on cells is called a hit. In this case, the desired im-
pact is significant modulation of phenotype. With the rise of Artificial
Intelligence, various parts of high-content screening have been supported
by machine learning algorithms [84]. Image analysis, however, remains a
major hurdle in high-content screening. Phenotypic changes induced by
drug compounds can be highly variable, demanding considerable efforts
in identifying them.

Traditional image analysis relies on feature engineering to find drug
compounds that modulate phenotype [33]. Simply put, feature engineer-
ing is a process to create quantitative variables from the spatial character-
istics of image data, such as cell size, shape, nucleus size, intensity, etc.
[72]. The features created vary in significance. As a result, feature engi-
neering is closely followed by feature selection — choosing the most rel-
evant subset of features for predictions. In standard practice, the images

1.2. RELATED WORKS 3

of drug-treated cell populations are first segmented into single cells. Then
features are created manually, and their values are measured by some care-
fully designed automated process [33]. Knowing what features to create
requires hands-on experience, thorough understanding, and an eye for de-
tail. Moving on to feature selection. The irrelevant features are removed
either manually or by a machine learning algorithm. The phenotypic pro-
file of a drug, hence, is a multidimensional measurement of the selected
features. Finally, the drugs profiles are compared and clustered to deter-
mine anomalies.

When features are well defined, it is easier for machine learning algo-
rithms to pick up on patterns and detect anomalies. As a result, the al-
gorithms can be more concise and accurate. The feature engineering pro-
cess is so vital to the overall success yet so elusive and circumstantial that
some describe it as an art [21]. Therefore, feature engineering is inevitably
subject to personal bias and extremely time-consuming to perform right.
There is always a need for a more time-efficient unsupervised machine
learning approach in image analysis that circumvents feature engineering.
To fill this void, we propose a deep learning-based image analysis pipeline
for high-content screening.

1.2 Related Works

Most image analysis approaches in high-content screening have followed
two paths: supervised profiling with feature engineering and unsuper-
vised clustering with feature extraction. In this context, ’unsupervised’
means that features are not predefined. Feature extraction is a dimension-
ality reduction technique that produces distilled representation of the in-
put [83].

Supervised approaches identify drugs that modulate phenotype using
predefined features. Giuliano et al. (2004) [28] used the measurements
of multiple features to create phenotypic profiles for 22 drug compounds

4 CHAPTER 1. INTRODUCTION

and performed hierarchical cluster analysis. On a similar theme, Perlman
et al. (2004) [77] quantified phenotypic changes using multidimensional
features and profiled the effects of drugs in human cells. Loo et al. (2007)
[60] classified treated and untreated cancer cells using a support vector
machine with up to 300 features, then used the classification results to
create drug profiles.

On the other hand, unsupervised approaches work by clustering in-
trinsic cellular structures in the input images, mostly using some form of
convolutional neural network. Therefore these approaches do not require
predefined features. Pawlowski et al. (2016) [75] performed unsupervised
feature extraction on microscopy images using convolutional neural net-
works and achieved an overall classification accuracy of up to 91%. In a
similar vein, Zhang et al. (2017) [98] classified cervical cells with convo-
lutional neural networks. By using deep features, Zhang et al. achieved a
classification accuracy of 98.3%. Caicedo et al. (2018) [11] went one step
further with convolutional neural networks as they proposed to classify
each treatment against each other, lifting the requirement for negative con-
trol. While effective, this approach had an underlying assumption that
most treatments, i.e. drugs, did not induce phenotypic changes. Akram et
al. (2019) [4] proposed a convolutional neural network-based framework
to detect defects in photovoltaic cells. They achieved a 93.0% accuracy on
an electroluminescence image data set.

In recent years, autoencoders have entered the horizon in medical data
analysis. The task of autoencoders is to extract refined representations of
inputs without feature engineering. Miotto et al. (2016) [67] derived pa-
tient representations from health records, such as doctor visits and test re-
sults, using autoencoders. Based on 76214 patient representations, Miotto
et al. predicted the chances of patients developing 78 diseases. Their re-
sults with autoencoders outperformed the predictions based on raw data
as well as the predictions based on other feature learning algorithms. Chen
et al. (2017) [13] proposed a framework based on convolutional autoen-

1.3. PIPELINE OVERVIEW 5

coders to analyse computed tomography (CT) images. Lung nodule rep-
resentations learned by the framework could help assist diagnosis. Re-
sults from experiments showed that the framework was superior to other
supervised approaches. Chen et al. stated that the framework could also
be extended to similarity analysis. Khamparia et al. (2020) [52] used a
combination of convolutional and variational autoencoders to detect ab-
normal cells that might develop into cervical cancer. The use of variational
autoencoder further reduced data dimensionality. Their hybrid network
achieved an accuracy of up to 99.4%, better than traditional machine learn-
ing methods.

Unsupervised feature extraction in microscopic image analysis is still
new. Therefore, there is no consensus on optimal practice. Furthermore,
the high variability in different image data sets demands a tailored solu-
tion for each problem. As a result, the accuracy numbers of neural net-
works on different data sets cannot be compared directly. In this thesis,
an alternative approach to image analysis is presented. Specifically, we
propose a deep learning-based image analysis pipeline for high-content
screening that circumvents feature engineering. This pipeline is primarily
designed for an extraordinary data set comprising images of cells treated
with over 282 FDA approved drugs. However, with minor modifications
on the neural network such as adjusting input dimensions, the pipeline is
also generalisable to other data sets.

1.3 Pipeline Overview

This section gives an overview of the pipeline covered in this thesis, as
illustrated in Figure 1.1.

The input data to the pipeline are microscopic images of cell popula-
tions — treated with over 282 FDA approved drugs — from large scale
assays. Subcellular structures, including cell membrane and nucleus, are
clearly visible. These are grayscale images in which only one colour chan-

6 CHAPTER 1. INTRODUCTION

Data Preprocessing

Hit Selection

Cluster Analysis

Raw image

Processed image

Image subset

Drug shortlistDrug groups

Pipeline

Figure 1.1: A conceptual outline of the image analysis pipeline for high-
content screening.

nel exists. Each pixel in a grayscale image has an intensity value, repre-
senting the amount of blackness.

There are three key stages in the pipeline. Raw image data are first
processed at Data Preprocessing to downsize and get cleansed. The pro-
cessed images then proceed to Hit Selection to produce a shortlist of drugs.
Finally, images corresponding to the shortlisted drugs — a subset of the
processed images — move on to Cluster Analysis to identify groups hid-
den in the shortlist.

There are two outputs from the pipeline. The first one is a shortlist
of drugs that significantly modulate cellular phenotype, produced at the
end of the hit selection stage. The second one, produced at the end of the

1.4. ISSUES ADDRESSED 7

cluster analysis stage, is clustering information of the shortlist indicating
groups of drugs that induce similar phenotypic changes. This is valuable
information for drug repurposing reasons. Instead of image-wise predic-
tion, we are only interested in group-wise prediction in this research. For
example, we want to evaluate the effect of a drug based on a collection of
images, rather than an evaluation for each image.

1.4 Issues Addressed

Due to high cell-to-cell variability and noise, unsupervised feature extrac-
tion for image analysis can be challenging to achieve. While supervised
approaches produce detailed profiles of cellular phenotype for each drug
compound based on predefined features, unsupervised learning relies on
detecting anomalous drugs (i.e. hits) that are different from the negative
control. With increasing computational power, deep neural networks play
a more critical role in machine learning as they are, in general, more pow-
erful and more robust algorithms [8]. This section briefly describes the
key issues addressed in designing an unsupervised deep learning-based
image analysis pipeline for high-content screening.

1.4.1 Data Preprocessing Stage

Data preprocessing is a critical first stage in the proposed pipeline. The
later tasks — hit selection and cluster analysis — require well-presented
input data to be accurate. Since the raw data are microscopic images of
cell populations, they are not ready to proceed to hit selection right away.
The assays were conducted in batches; thus, we must first recalibrate pixel
values in the images. Cell localisation is the second step. Similar to facial
recognition, where faces need to be located before anything else, we need
to locate and crop out single cells. Last but not least, cells that are not
distinctly visible or not in complete shapes must be removed.

8 CHAPTER 1. INTRODUCTION

1.4.2 Hit Selection Stage

Hit selection is the second stage in the pipeline and the most important
one. In this research, a drug compound with the ability to modulate cel-
lular phenotype significantly is considered a hit. To identify hits, we first
need to define non-hits. Fortunately, Dimethyl Sulfoxide (DMSO) — a
widely used safe solvent which offered no impact on phenotype [6] [43]
— is among the tested drug compounds. DMSO is therefore considered
the negative control. Drugs that induce phenotypic changes significantly
different from the negative control are flagged as hits.

We propose a hit selection procedure with similarity analysis using un-
supervised feature extraction, circumventing the feature engineering pro-
cess. An effective comparison scheme must be developed to enable simi-
larity analysis. In the proposed pipeline, hit selection is assisted by a con-
volutional autoencoder — an unsupervised deep neural network. The task
of the convolutional autoencoder is to construct condensed representa-
tions of the microscopic images. These lower-dimensional representations
are compared with the negative control using a novel similarity measure
in order to select hits. The purpose we use lower-dimensional representa-
tions is threefold [67]:

1. The condensed representations are less susceptible to noise.

2. Intrinsic patterns are more visible in condensed representations.

3. The condensed representations are smaller in terms of storage usage.

In summary, the distilled version of images boosts hit selection accuracy
and requires less computational resources.

The hyperparameters used to define an autoencoder architecture must
be determined. They are not trivial as the performance of the autoencoder
depends closely on their values. A generalised estimating equation model
is used to predict the optimal hyperparameters.

1.4. ISSUES ADDRESSED 9

1.4.3 Cluster Analysis Stage

The final stage in the proposed pipeline is cluster analysis, where we find
clusters among the hit compounds. Once we have a shortlist of drug com-
pounds, we are interested in finding groups that induce similar pheno-
typic changes. Since the tested drugs are all FDA approved to begin with,
those within the same group have the potential to be repurposed. Of
course, more experiments and clinical trials must be conducted to make
the repurposing decision scientifically sound, but those are out of the scope
of image analysis in this pipeline.

In clustering, we must measure the similarity between each pair of hit
compounds. Fortunately, the comparison scheme used in the hit selection
stage also fits this occasion. Thus, instead of comparing drug compounds
to the negative control, we compare them with each other in the shortlist.

1.4.4 Summary

The key issues addressed in the proposed pipeline can be summarised as
follows.

1. Data preprocessing stage:

• Recalibrate intensities from different assay batches;

• Detect and crop out single-cell structures;

• Filter out incomplete cells and impurities.

2. Hit selection stage:

• Develop a novel scheme for comparing representations;

• Construct a generalised estimating equation model to predict
optimal hyperparameters of convolutional autoencoder tailored
for the input images;

10 CHAPTER 1. INTRODUCTION

• Use the convolutional autoencoder to obtain condensed repre-
sentations of input images;

• Compare representations with the negative control to obtain
similarity measures;

• Determine an appropriate similarity threshold at which drugs
are considered as hits.

3. Cluster analysis stage:

• Compare representations of each pair of hit compounds to ob-
tain similarity measures;

• Select an appropriate approach for cluster analysis;

• Cluster hit compounds based on the similarity measures.

1.5 Contributions

This thesis contributes in the following ways:

1. This thesis shows how to select an optimal set of hyperparameters
for a deep neural network using statistical modelling. Compared
with other practices, this method provides more solid scientific ground-
ing. An experiment with labelled data provides empirical evidence
on the effectiveness of this method.

2. This thesis presents a novel comparison scheme, including a novel
similarity measure, useful in similarity analysis. In general, this com-
parison scheme can apply to image classification of any kind. A key
feature of this scheme is that it is essentially nonparametric, mean-
ing there is no assumption about the input. Explorations show that,
when used as an image classifier, the convolutional autoencoder-
aided comparison scheme outperforms common neural networks by
a wide margin.

1.6. THESIS OUTLINE 11

3. This thesis explores the properties of convolutional autoencoders
with empirical evidence. Results show that autoencoders are use-
ful in dimensionality reduction. However, they are not as useful in
cluster analysis on their own. Results also show that the encoder
component is less susceptible to overfitting.

4. This thesis presents the design and the implementation of a deep
learning-based image analysis pipeline for high-content analysis. A
key feature of this pipeline is that it does not require feature engi-
neering, saving a great amount of time and human efforts while pro-
ducing better results. After testing, the pipeline is applied to an im-
mense and intricate image data set to select drugs that have the po-
tential to be repurposed. The results of this research can ultimately
help discover new therapeutic uses for existing drugs.

1.6 Thesis Outline

The rest of this thesis is structured as follows.

• Chapter 2 reviews aspects of statistical modelling and machine learn-
ing relevant to this research, emphasising generalised estimating equa-
tions and convolutional autoencoder.

• Chapter 3 discusses the data preprocessing stage where images are
transformed into a standard format compatible with the neural net-
work used.

• Chapter 4 discusses the hit selection stage where drug compounds
that induce significant phenotypic changes are identified using a novel
convolutional autoencoder-aided comparison scheme.

• Chapter 5 discusses the cluster analysis stage where shortlisted drugs
are clustered into groups based on the way they alter cellular pheno-

12 CHAPTER 1. INTRODUCTION

type. The clustering results help discover drugs that have the poten-
tial for repurposing.

• Chapter 6 briefly concludes the content of this thesis.

Chapter 2

Background

This chapter reviews aspects of statistical modelling and machine learn-
ing relevant to this research. The emphasis is on generalised estimating
equations and convolutional autoencoder.

2.1 Linear Regression

Linear regression is a statistical technique that models a continuous de-
pendent variable (Y) — the outcome — as a linear function of one or more
independent variables (X). The purpose of regression models is to sum-
marise data or predict the results of interventions.

2.1.1 Types of Outcome

Independent Outcomes

In statistics, two events are independent if the occurrence of one does not
depend on the occurrence of the other [81]. The independence of events A
and B can be written as

P (A and B) = P (A)× P (B), (2.1)

13

14 CHAPTER 2. BACKGROUND

where P is the notation for probability.
The independence of outcomes is a common assumption in research,

meaning that the outcome from a sample subject is independent of those
from other subjects. While independence is a statistical assumption, its
implementation relies on the correct conduct of the experiment. Thus,
reasonable experimental control should be in place to ensure that obser-
vations on the same variable do not influence each other.

Correlated Outcomes

For various reasons, correlated outcomes are collected in many kinds of
research. Two outcomes are correlated if not independent, that is

P (A and B) 6= P (A)× P (B). (2.2)

Correlated outcomes tend to be similar. Outcomes are correlated if they
are repeated observations of a variable over time from the same subject,
as in longitudinal studies, or observations of multiple variables from the
same subject. Outcomes from different research subjects may also be cor-
related if they are from the same group, such as the heights of family mem-
bers. Statistical inferences are only valid if the research method accounts
for any correlation among outcomes.

2.1.2 Linear Regression Model Structure

Predicting the continuous outcome (Y) by the values of one or more ex-
planatory variables (X), sometimes called predictors, is intuitive and straight-
forward logic. Linear regression has this prediction property embedded
and assumes that X and Y ’s relationship is linear. Depending on the
circumstances, one can enhance the predictive capability of a model by
adding more explanatory variables. The GPA of a student, for example,
may depend on hours studied, number of courses taken, GPA from the
previous year etc. A linear regression model with only one explanatory

2.1. LINEAR REGRESSION 15

variable is called simple linear regression; the one with several explana-
tory variables is called multiple linear regression [25]. The multiple linear
regression model takes the standard form as in Eq. (2.3).

yi = β0 + β1xi1 + β2xi2 + . . .+ βpxip + εi = xTi β + εi (2.3)

For each subject i, i = 1, . . . , n, yi is the continuous outcome given xi; xij is
the jth explanatory variable, j = 1, . . . , p; βj is the jth unknown parameter
describing the strength of association between xij and yi; εi represents the
residual, the difference between true and model-predicted values of yi (i.e.
εi = yi − xTi β), E(εi) = 0; xTi denotes the transpose of vector xi, xTi =

[1, xi1, xi2, . . . , xip].
For a linear regression model to work properly, there are four assump-

tions to be satisfied [25]:

1. Linearity: The true relationship between any explanatory variable
xij and conditional outcome yi is linear.

2. Normality: Each conditional outcome yi follows a normal distribu-
tion [74] (means of these distributions are not necessarily the same),
implying that each εi is also normally distributed. There is no as-
sumption on the distribution of observed outcomes Y (i.e. Y =

{y1, y2, . . . , yi}).

3. Independence: The observations, especially the outcomes, from dif-
ferent research subjects are independent. This is an underlying as-
sumption for linear regression, e.g. yi’s are independent of each
other.

4. Homoscedasticity: The residuals have the same finite variance across
all values of xij .

In addition to the assumptions above, researchers must also beware
of multicollinearity and outliers. Multicollinearity arises when the corre-
lation between explanatory variables is high, and it will compromise the

16 CHAPTER 2. BACKGROUND

validity of model inferences. In the case of multicollinearity, a common
remedy is to drop one of the correlated predictors. Outliers are also harm-
ful to linear regression models, leading to inaccurate predictions for a wide
range of predictor values. It is a general practice to inspect and remove ex-
treme outliers before model fitting.
β̂ — the estimator of model parameter vector β — is found by min-

imising the sum of squared residuals [51]. In other words, β̂ solves the
following minimisation problem.

Find min
β
Q(β), for Q(β) =

n∑
i=1

(yi − x̂Ti β̂)2,

where Q is the objective function.

2.2 Generalised Linear Models

Generalised linear models (GLMs) are a generalisation of regression mod-
els that alleviates the requirement for normality on the conditional distri-
bution of outcome by introducing a link function [71]. These models are
flexible and convenient, accommodating to a wide range of research cir-
cumstances while keeping the familiar structure of linear regression.

2.2.1 Link function

In reality, the conditional distribution of outcome is not always normal.
GLMs assume that, given a set of predictor values, the outcome follows
one of the distributions from the exponential family [5], such as normal,
binomial, gamma, and Poisson. GLMs connect the vector of explanatory
variables xi with the conditional mean of outcome µi, i.e. µi = E(yi),
through an additional monotonic function — the link function g. A mono-
tonic function is either ever-increasing or ever-decreasing as the value of
independent variable increases. Eq. (2.4) below expresses this relation-
ship.

2.2. GENERALISED LINEAR MODELS 17

g(µi) = xTi β (2.4)

Various link functions are available based on the characteristics of data
and the assumed conditional distribution of outcome [64]. Some examples
are displayed in Table 2.1.

Table 2.1: Common link functions.

Model Distribution of yi Link g(µi)

Linear Regression Normal Identity µi

Logistic Regression Binomial Logit ln
(

µi
1−µi

)
Gamma GLM Gamma Log lnµi

Gamma GLM Gamma Inverse µ−1i
Poisson Regression Poisson Log lnµi

2.2.2 GLM Model Structure

GLMs take the standard form shown in Eq. (2.4). There is no residual
term because it has no standard form. In linear regression, residuals are
normally distributed with zero mean and are independent of any explana-
tory variables. Whereas in GLMs, residual depends closely on both the
distribution and the value of predictors. A GLM fitted on binary data [15],
for example, has residual in the form of probability. Bounded by 0 and
1, this limited range of probability suggests that the residual’s distribution
inevitably depends on the predicted probability. The lack of comparability
makes residual less informative in GLMs than in linear regression models.
Consequently, homoscedasticity is no longer an assumption for GLMs.

In Eq. (2.4), the transformed conditional mean g(µi) is linearly related
to explanatory variables. It is the conditional mean µi, rather than the con-
ditional outcome yi itself, that gets transformed. Therefore, a generalised

18 CHAPTER 2. BACKGROUND

linear model, e.g. lnµi = xTi β, is not the same thing as a linear regres-
sion model with transformed outcome, e.g. ln yi = xTi β. An exception is
when the assumed conditional distribution of outcome is normal and g is
the identity link, as shown in Eq. (2.5), then linear regression becomes a
special case of GLMs. In this regard, Eq. (2.3) and Eq. (2.5) describe the
same model.

E(yi) = µi = xTi β (2.5)

For each subject i, i = 1, . . . , n, µi is the expected value of conditional out-
come yi; xTi denotes the transpose of predictor vector xi, xTi = [1, xi1, xi2,

. . . , xip]; β is the vector of unknown parameters.
For a generalised linear model to work properly, there are three as-

sumptions to be satisfied [20]:

1. Linearity: The true relationship between any explanatory variable
xij and transformed conditional mean of outcome g(µi) is linear.

2. Normality: Each conditional outcome yi follows the same distribu-
tion from the exponential family (parameters of these distributions
are not necessarily the same). There is no assumption on the distri-
bution of observed outcomes Y (i.e. Y = {y1, y2, . . . , yi}).

3. Independence: The observations, especially the outcomes, from dif-
ferent research subjects are independent. This is an underlying as-
sumption for linear regression, e.g. yi’s are independent of each
other.

Similar to multiple linear regression, researchers must also beware of
multicollinearity and outliers in GLMs. Multicollinearity and outliers are
briefly discussed in Section 2.1.2.

The estimation of parameters is usually done on computers because
it uses an iterative procedure called maximum likelihood estimation [70].
This procedure repeats until successive estimates change by a small enough

2.3. GENERALISED ESTIMATING EQUATIONS 19

amount. Intuitively, β̂ maximises the likelihood of obtaining the observed
outcomes. Therefore, a large amount of data is required for reliable pre-
dictions.

2.3 Generalised Estimating Equations

Generalised estimating equations (GEEs) take the generalisation idea of
GLMs one step further — they can be thought of as an extension of GLMs
to correlated outcomes. GEEs on their own are not regression models but
a technique for estimating model parameters. In this subchapter, we refer
the term ’GEEs’ to the regression models solved by GEEs.

2.3.1 Motivation

The distilling of useful information from raw data into prediction models
has become effortless thanks to increasing computational power. The va-
lidity of such models, however, still hinges on the basic assumptions to
hold true.

A fundamental assumption of GLMs is that the observed outcomes are
independent of each other, which is not always guaranteed. For instance,
a nature reserve ranger tries to model the predator and prey dynamics
and records the antelope population (predictor) and the lion population
(outcome) every year. Lions have a long lifespan. The number of lions
this year depends heavily on the number from last year. Therefore the low
variability in predator population reduces the informative sample size. Al-
though the model parameter estimator will remain unbiased in this case,
the variance estimator will be unreliable [65]. Fitting GLMs to correlated
outcomes is likely to overstate the effect of predictors, resulting in more
false positives [82], i.e. an effect deemed significant when it is not.

However, correlated data are still useful data. In general, the correla-
tion in outcomes is determined by the structure of the experiment. It is

20 CHAPTER 2. BACKGROUND

hard to eradicate once data are collected. Repeating an experiment is of-
ten out of the equation because data collection is a slow and costly task. At
the same time, correlated outcomes carry helpful information that could
improve prediction accuracy. In GLMs, more data points help the algo-
rithm choose a solution that is the most representative of the data and the
least affected by noise. In some scenarios, especially when explanatory
variables are categorical, insufficient data points could fail to estimate the
desired model. Thus, it is better to account for correlation rather than to
work around it.

2.3.2 Working Correlation Structure

Generalised estimating equations (GEEs), as proposed by Liang and Zeger
(1986) [59], are designed for data of correlated and clustered nature. Specif-
ically, research subjects are independent of each other but observations
within each subject are correlated. The research subject can be an individ-
ual or a group of individuals with common characteristics. For example if
we measure mental wellbeing in a neighbourhood, results from the same
household are likely to be correlated because family members tend to have
similar wellbeing. Results from different households, however, are still in-
dependent. GEEs account for the within-subject correlation by using a
working correlation structure R(α), where α is a set of parameters char-
acterising R(α). Although the true correlation may vary, the same R(α) is
assumed for all research subjects.

The correlation structure R(α) is referred to as a ’working’ correla-
tion matrix by Liang and Zeger because it does not have to be true for
the estimators of model parameters and variances to be consistent [59].
This means, even if the working correlation structure R(α) is misspeci-
fied, GEEs provide consistent estimates as long as the regression model
for marginal mean is correct and the sample size goes to infinity. However,
infinite sample size is not achievable in practice. These estimators will be-

2.3. GENERALISED ESTIMATING EQUATIONS 21

come increasingly inefficient, i.e. large variance, and untrustworthy as
R(α) gets further away from the true correlation structure. As a result, re-
liable inferences still depend on a reasonable choice of R(α). Some widely
used correlation structures are shown in Table 2.2, where Rab denotes the
(a, b)th element of R(α).

Table 2.2: Common working correlation structures.

Structure Definition Example

Independent Rab =

{
1 a = b

0 a 6= b

1 0 0

0 1 0

0 0 1

Exchangeable Rab =

{
1 a = b

α a 6= b

1 α α

α 1 α

α α 1

Unstructured Rab =

{
1 a = b

αab a 6= b

 1 α12 α13

α21 1 α23

α31 α32 1

Autoregressive-1 Rab =

{
1 a = b

α|a−b| a 6= b

 1 α α2

α 1 α

α2 α 1

2.3.3 GEE Model Structure

The generalised estimating equations (GEEs) extend the generalised lin-
ear models to correlated outcomes while keeping the familiar idea of link
function. GEEs model the marginal mean of outcome, rather than the joint
distribution of outcomes. To be more precise, GEEs estimate the average
outcome for all subjects across the population who share common values
of the explanatory variables [97], rather than the subject-specific outcome.
GEEs arise from quasi-likelihood [95] principles which only require the

22 CHAPTER 2. BACKGROUND

marginal mean to be correctly specified given a link function and predic-
tors, and its variance to be specified given the marginal mean. As a result,
GEEs do not postulate distributional assumptions.

This section borrows notation and expression extensively from Liang
and Zeger (1986) [59] and Wang (2014) [93]. To begin, suppose m is the
maximum number of observed outcomes for each subject. For each subject
i, i = 1, . . . , n, yTi = [yi1, yi2, . . . , yim] where yit denotes the tth outcome
with the expectation E(yit) = µit, t = 1, . . . ,m; µi is the vector of marginal
means, µTi = [µi1, µi2, . . . , µim]; xTit denotes the transpose of corresponding
tth predictor vector, xTit = [1, xit1, xit2, . . . , xitp]. Let g be a link function and
β be the vector of unknown model parameters. GEEs have a standard
form for the marginal mean µit similar to GLMs, as shown in Eq. (2.6).

g(µit) = xTitβ (2.6)

The variance of yit is written as

var(yit) = ν(µit)φ
−1 (2.7)

where ν(µit) is the variance function in terms of the marginal mean and
φ is a scale parameter. ν(µit) and φ depend on the data type of outcomes.
For continuous outcomes, ν(µit) = 1 and φ represents the error variance.
For binary outcomes, ν(µit) = µit(1 − µit) and φ is estimated based on
overdispersion. For count outcomes, ν(µit) = µit and φ is estimated based
on overdispersion. Let R(α) be the working correlation structure charac-
terised by α, the covariance matrix for yi is given by

Vi(α) = A
1
2
i R(α)A

1
2
i φ
−1. (2.8)

where Ai is a diagonal matrix with ν(µit) as the tth element. Vi(α) is identi-
cal to cov(yi) if the working correlation structure is indeed true. Finally, the
estimator of parameters β̂ solves the estimating equation as in Eq. (2.9).

2.3. GENERALISED ESTIMATING EQUATIONS 23

U(β) =
n∑
i=1

DT
i Vi(α̂)−1(yi − µi) = 0 (2.9)

where Di = ∂µi
∂β

, and α̂ is a consistent estimator of α. If Vi(α̂) is properly
specified, then E[U(β)] = 0 and cov[U(β)] = DT

i V
−1
i Di are both asymptot-

ically true. In that case, U(β) resembles a score function, i.e. the derivative
of log-likelihood with respect to the parameter vector, ensuring consistent
parameter and variance estimators.

GEEs have milder assumptions compared to GLMs, they are [20]:

1. The marginal mean of outcome µit in terms of a link function g is a
linear function of explanatory variables xit. This is the most crucial
assumption of GEEs.

2. The variance of marginal mean is a function of marginal mean, as
described in Eq. (2.7). A variance function is assumed. However,
this variance function does not have to be true for the parameter es-
timator and the variance estimator to be consistent. It assumes the
marginal distribution, but not the full joint distribution.

3. Outcomes are correlated within a subject but independent between
subjects. A within-subject correlation structure is assumed. How-
ever, this correlation structure does not have to be true for the pa-
rameter estimator in the mean model and the variance estimator to
be consistent, using the sandwich method.

Considering that consistent estimators are more efficient when the ef-
fective sample size is large, GEEs require a large quantity of independent
subjects or independent clusters. Similar to multiple linear regression, re-
searchers must also beware of multicollinearity and outliers in GEE mod-
els. Multicollinearity and outliers are briefly discussed in Section 2.1.2.

Due to the sheer amount of computation involved, GEEs are usually
solved by an iterative procedure on computers.

24 CHAPTER 2. BACKGROUND

2.3.4 Model Selection

Model selection in GEEs refers to a three-step process corresponding to
the assumptions:

1. Select a regression model for the marginal mean µ, i.e. the model
described in Eq. (2.6). This step is the most crucial since the consis-
tency of parameter and variance estimators ultimately depends only
on a correctly specified regression model [20]. Therefore, one should
carefully inspect the data and choose a link function suitable for the
outcome data type and the characteristics of the data. Furthermore,
the transformed marginal mean has to be a linear function of the
explanatory variables. The choice of explanatory variables affects
not only the performance of the regression model but also all down-
stream inferences. How to select significant explanatory variables is
further elaborated on later in this section.

2. Select an appropriate variance function, i.e. ν(µ) in Eq. (2.7). A cor-
rectly specified ν(µ) increases the efficiency of the whole selection
process [19]. Instead of a complete distribution, only the relationship
between marginal mean and its variance needs to be specified. Sim-
ilar to link function, the choice of ν(µ) is usually determined by the
outcome data type and the characteristics of the data [94]. Therefore,
it is the most straightforward selection of the three. Zeger and Liang
(2014) [96] described that, although less efficient, an incorrect choice
of ν(µ) still produces consistent parameter and variance estimators.

3. Select an appropriate correlation structure, i.e. R(α) as discussed
in Section 2.3.2. Although a misspecified working correlation struc-
ture still leads to consistent parameter and variance estimators, a
correctly specified one enhances the efficiency of these estimators
[50]. When the sample size is small, the interpretation of variance
becomes more trustworthy as the correlation structure gets closer to

2.3. GENERALISED ESTIMATING EQUATIONS 25

the true one. And variance, in turn, plays a huge role in the sig-
nificance test for the predictors. There are several selection criteria
available for the correlation structure, such as RJ [79], ESS [87], QIC
[73], and CIC [39] to name a few. The selection is straightforward
using these criteria, either jointly or separately.

In this section, the selection of explanatory variables is discussed in
more detail. Considering that GEEs is an approach based on quasi-likelihood
principles that do not explicitly specify the full likelihood, all likelihood-
based model selection methods are unavailable for GEEs. There is no con-
sensus on how to perform model selection, as in choosing the significant
predictors. Some suggest that QIC is also suitable for model selection, but
its performance is not well when neither the predictors nor the correlation
structure is confirmed [16] [93] [17].

Backward Elimination

A logical solution to this problem is backward elimination [3], the simplest
yet reliable model selection method. Compared to those selection meth-
ods with a single goodness-of-fit statistic for the whole model, backward
elimination is a more intuitive algorithm that considers all relevant effects
of candidate variables and removes the most insignificant ones early on.
Another advantage is that backward elimination can be made fully auto-
mated by an algorithm.

A flowchart for this algorithm is demonstrated in Figure 2.1. Backward
elimination starts with a full model, which includes all candidate predic-
tors as well as the possible interactions of these predictors depending on
circumstances. Then, all these terms are tested for significance and the
most insignificant one is deleted. The model is updated and refitted. This
process repeats until all terms remaining are significant at desired signifi-
cance level [78]. For better interpretability, it is a general practice to keep
all lower-order terms in the model regardless of their statistical signifi-

26 CHAPTER 2. BACKGROUND

StartFull model

Is X a factor of a
higher-order term in

the model?

Run significance
tests for all terms

Select the most
insignificant term X

Does X serve a
special purpose by
being in the model?

NO

Is X's p-value lower
than a predefined

threshold?

NO

Select the next most
insignificant term as X

YES

YES

Delete this term
and refit model

NO Optimal model
reached

YES

Stop

Figure 2.1: A flowchart of the backward elimination algorithm.

cance if they are a factor of a significant higher-order term. For example,
A, B, C, AB, BC, AC are factors of the term ABC, however AD is not a
factor. It is also advisable to keep the terms meaningful to the research
purposes in the model, even when they are deemed insignificant by tests.
If a researcher tries to identify the relationship between sunlight exposure
and skin cancer, these two variables should be included in the model re-
gardless. Sometimes, the insignificance is a finding in itself.

2.3. GENERALISED ESTIMATING EQUATIONS 27

Test of Significance

In a significance test, a null hypothesis — which usually claims there is no
relationship between variables — is assessed by measuring how well the
observed data match this claim [69]. The test result is given by a probabil-
ity value, i.e. p-value, which is a continuous number from 0 to 1 describing
the chances of obtaining the observed data as a random occurrence if the
null hypothesis is in fact true. For example, a p-value of 0.05 suggests that
the probability of wrongly rejecting a null hypothesis is 5% [38]. In prac-
tice, 0.05 is a common threshold for p-value — any number larger than
0.05 shows statistical evidence that supports the null hypothesis.

Wald test [91] is a common significance test used in regression model
selection. For a null hypothesis H0 : βx = 0, implying the predictor x is
not a significant factor in the outcome, the Wald statistic W is defined as

W =
(β̂x − 0)2

v̂ar(β̂x)
(2.10)

if x is numerical or binary. β̂x is the parameter estimator for x and v̂ar(β̂x)

is the variance estimator of β̂x. Here, W follows an asymptotic χ2 distribu-
tion [34] with one degree of freedom if the null hypothesis is true. If x is
categorical with more than two levels, W can be written as

W = (β̂x − 0)T [ĉov(β̂x)]−1(β̂x − 0) (2.11)

where β̂x is the estimator of parameter vector βx associated with the levels
of x, and ĉov(β̂x) denotes the covariance matrix estimator of β̂x associated
with the levels of x. Under null hypothesis, this statistic W follows an
asymptotic χ2 distribution with d degrees of freedom where d is the num-
ber of nonredundant parameters in βx [2].

28 CHAPTER 2. BACKGROUND

2.3.5 Result Analysis

Following model selection, fitting the best model yields parameter and
variance estimates for the significant predictors. A typical research objec-
tive is to determine whether intervention on predictors significantly alters
model outcome. For GEEs, this objective is realised by comparing two
marginal means of outcome derived from different predictor values or,
more specifically, by examining confidence intervals.

Confidence Interval

A confidence interval provides a range of more likely estimates of the fixed
and unknown parameter. To be especially precise, a 95% confidence inter-
val means that if an experiment is repeated multiple times and a confi-
dence interval is constructed for each experiment, in the long run, 95%
of these intervals will capture the true parameter [18]. A 95% confidence
interval for a parameter β in a GEE model is written as

(
β̂ − t2.5%,n−k[v̂ar(β̂)]

1
2 , β̂ + t2.5%,n−k[v̂ar(β̂)]

1
2

)
,

where β̂ is a point estimator of β based on the observed data, t2.5%,n−k is the
critical value of Student’s t-distribution [23] with n−k degrees of freedom
and a 95% confidence level (2.5% two-tailed), k is the number of parame-
ters in the model including intercept, v̂ar(β̂) is the variance estimator of β̂.
A common rule of thumb is that when the degree of freedom df is at least
30, t2.5%,df can be approximated by the critical value of a standard normal
distribution with mean 0 and variance 1, or z2.5% [54]. The lower and the
upper limits of this confidence interval satisfy

P
(
β̂ − t2.5%,n−k[v̂ar(β̂)]

1
2 ≤ β ≤ β̂ + t2.5%,n−k[v̂ar(β̂)]

1
2

)
= 0.95, (2.12)

where P is the notation for probability [18].

2.3. GENERALISED ESTIMATING EQUATIONS 29

Comparing Marginal Means

When determining whether two marginal means are significantly different
in GEEs, a common pitfall is to construct one confidence interval for each
marginal mean and check for overlap. While this procedure is easy to per-
form, it is not statistically accurate. The correct approach is to examine if
the confidence interval of their difference includes zero [31]. Considering
that the link function is monotonic, it is easier to compare the transformed
marginal means instead of the marginal means themselves for the same re-
sult. Suppose we have two vectors of predictor values x1 and x2. The 95%
confidence interval of the difference between the transformed marginal
means, i.e. g(µ̂1)− g(µ̂2), takes the following form

(
M − t2.5%,n−k[v̂ar(M)]

1
2 , M + t2.5%,n−k[v̂ar(M)]

1
2

)
,

where M = xT1 β̂ − xT2 β̂ = (x1 − x2)
T β̂, β̂ is the estimator of parameter

vector β, and v̂ar(M) is the variance estimator of M . v̂ar(M) can then be
calculated as in Eq. (2.13), where ĉov(β̂) is the covariance matrix estimator
of β̂ [20].

v̂ar(M) = v̂ar(xT1 β̂ − xT2 β̂) = (x1 − x2)
T ĉov(β̂)(x1 − x2) (2.13)

The decision rule is simple: if this confidence interval includes zero,
the marginal means derived from x1 and x2 are not significantly differ-
ent at a 5% (i.e. 1-95%) significance level; if this confidence interval does
not include zero, the marginal means derived from x1 and x2 are signifi-
cantly different at a 5% significance level. By examining confidence inter-
vals in this manner, researchers are able to answer research questions such
as whether smoking increases the chance of developing lung cancer.

30 CHAPTER 2. BACKGROUND

2.4 Machine Learning

Machine learning is one of the hottest research topics and is incredibly
prevalent in data-abundant industries. Machine learning is about design-
ing computer algorithms that can learn from experience and improve problem-
solving ability automatically [27].

2.4.1 Definitions

Machine Learning

Machine learning is generally considered a subfield of Artificial Intelli-
gence that progressively parses data and makes informed decisions for
a given intellectual task, including pattern identification, speech recog-
nition, image classification etc. [55]. Machine learning algorithms are
usually autonomous problem-solving tools that can ’learn’ from a train-
ing data set without being explicitly programmed, then independently
translates this ’knowledge’ to actions or predictions for new cases. For
instance, the autocorrect feature on computers and smartphones — guess-
ing the correct word you mean to type — has machine learning behind it.
The more you type and the more you use autocorrect, the better its sug-
gestions become. Such suggestions are made by finding distinct typing
patterns based on past inputs. More specifically, this results from complex
decision-making systems that adapt themselves every time a suggestion
is accepted or denied. In machine learning, the decision-making process
is not programmed to be static but dynamic and data-driven through ad-
justing algorithm parameters [85]. Furthermore, mathematics and statis-
tics play a huge role in machine learning, where parameters are in the
hundreds if not thousands [61]. Therefore, state-of-the-art techniques are
usually employed to enhance performance, including but not limited to
mathematical optimisation, probability analysis, and cluster analysis.

2.4. MACHINE LEARNING 31

Deep Learning

Deep learning is a subfield of machine learning. In deep learning, algo-
rithms are organised in multiple layers called an artificial neural network
[48]. Consecutively, each layer builds on the output of the previous layer
and serves a different function. The artificial neural network structure
mimics the biological neural network of a human brain, resulting in ad-
vanced learning capability and superior problem-solving power [8]. In
general, deep learning algorithms require a larger data set for training.
However, once properly trained, deep learning usually outperforms basic
machine learning by a considerable margin [8] [27].

Artificial Intelligence
A program that imitates

human behaviour

Machine Learning
An algorithm that progressively

improves performance

Deep Learning
A multilayer network

that provides more

sophisticated functions

Figure 2.2: Overview of Artificial Intelligence. Machine learning and deep
learning are both subfields of Artificial Intelligence. Deep learning is also
a subfield of machine learning.

32 CHAPTER 2. BACKGROUND

2.4.2 Categories of Machine Learning

There are a few broad categories machine learning algorithms can fit into,
based on the type of input data and the nature of task involved. This sec-
tion briefly describes one classification approach related to human guid-
ance.

Supervised Learning

In supervised learning, the input data fed to the learning algorithm in-
clude the desired output [27]. Typical supervised learning tasks include
classification and regression. Take image classification as an example, de-
scribed in Figure 2.3. Animal pictures and the correct label of the pictures,
such as ’dog’ or ’horse’, are put into an algorithm as training data. This
algorithm then tries to develop a mapping function from pictures to cor-
rect animal labels. For each prediction, the algorithm compares its output
to the given label and adjust accordingly. Here, the labels act as human
guidance to teach this algorithm about the expected solution. Supervised
learning typically demands immense labelled data, which can be a luxuri-
ous resource on a large scale.

Unsupervised Learning

Contrary to supervised learning, unsupervised learning is applied when
data is unlabelled. Meaning that the desired output is not available to
guide decision-making [27]. Such algorithms rely on clustering data and
making predictions accordingly. A typical application of unsupervised
learning is personalised product recommendation. As shown in Figure
2.4, if a customer has purchased a flight ticket in recent history, there is a
higher chance that this individual is also interested in a travel insurance.
Unsupervised learning can make personalised recommendations based on
purchase history.

2.4. MACHINE LEARNING 33

HORSE

HORSE

DOG

DOG

???

Training data New case

Figure 2.3: An example of a supervised learning task. The machine learn-
ing algorithm is taught to classify new cases into known clusters. (image
source: Pexels)

Travel

insurance

House

insurance

Motor

insurance

Flight ticket

Training data New case

Flight ticket

Figure 2.4: An example of an unsupervised learning task. The machine
learning algorithm groups available products into clusters and makes
product recommendations based on clustering results.

Reinforcement Learning

Reinforcement learning is preferred over supervised/unsupervised learn-
ing when the objective is to make a sequence of circumstantial decisions

34 CHAPTER 2. BACKGROUND

[27]. This system, called an agent, differs from other learning approaches
in that it gets a reward or a penalty each time an action is performed. Then,
in an iterative manner, the agent learns from the current environmental
state and the reward/penalty received before updating its policy (i.e. a set
of rules for selecting action in a given environmental state) and selecting
an action based on the policy. The end goal is to maximise reward over
time. This process is demonstrated in Figure 2.5. Typical applications of
reinforcement learning include chess-playing program, self-balance walk-
ing robot, and dialogue creation.

Agent

Environment

Reward / Penalty Policy

Update

Action

State

Figure 2.5: An overview of reinforcement learning. The machine learn-
ing agent observes the environmental state and selects an action based on
current policy. Then, subject to the reward or the penalty received for this
action, the agent updates its policy and select a new action accordingly.
This process iterates until an optimal policy is reached.

2.5 Basic Autoencoder

An autoencoder is an unsupervised deep learning neural network that
aims to recreate its input as output through an information bottleneck.
Autoencoders are particularly useful in feature extraction or dimensional-
ity reduction [41]. In this section, we briefly discuss the basic principles
behind an autoencoder.

2.5. BASIC AUTOENCODER 35

2.5.1 Neuron

The simplest computational unit of a neural network is a neuron which
is a mathematical analogue to brain neurons [32]. Neurons act in paral-
lel to form a layer. Layers work in series to form a neural network. Each
neuron in the neural network receives input from neurons in the previ-
ous layer, and its output, in turn, proceeds to neurons in the next layer.
This type of connection is kept between layers. Neurons within the same
layer typically do not connect. Figure 2.6 shows how a neuron processes
information.

𝑥1

𝑥2

𝑥𝑛

𝑤1

𝑤2

𝑤𝑛

.

.

.

𝑓

𝑘=1

𝑛

𝑥𝑘𝑤𝑘 + 𝑏

𝑓

𝑘=1

𝑛

𝑥𝑘𝑤𝑘 + 𝑏

𝑂𝑢𝑡𝑝𝑢𝑡

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑝𝑢𝑡

𝐶𝑒𝑙𝑙

Figure 2.6: The mathematical model of a single neuron in a neural net-
work. Adapted from Karpathy (2015) [49].

In Figure 2.6, information flows from input to output without circling
back, referred to as a feed-forward network [49]. First, the neuron receives
input data xk from multiple different neurons in the previous layer and
multiplies them by weights wk assigned to each input respectively. Then,
bias b is added to the sum of products before an activation function f is
applied to transform this sum. Activation functions are later discussed in
the next section. The final output proceeds to feed other neurons in the
next layer. Neurons ’learn’ by adjusting weights wk to produce a favorable
output.

36 CHAPTER 2. BACKGROUND

2.5.2 Activation Function

An activation function is applied to each neuron at the very end. It can be
considered as a final modification to the output in order to introduce non-
linearity, which helps the neural network learn complex features [40]. Due
to the linear nature of the sum of weighted input in a neuron, it is some-
times difficult to model nonlinear patterns without an activation function.
Consider a model with a single neuron, i.e. y = xw + b. In the absence of
an activation function, the output y is always on a straight line once the
optimal weight ŵ and bias b̂ are found. An activation function also func-
tions as a threshold, keeping output values restricted to the desired range
[40]. In a deep neural network, the total number of model parameters, in-
cluding weights and biases, can be in the millions. An activation function
with a range from zero to one, for example, can keep the output from sky-
rocketing. Examples of common activation functions are rectified linear
units (ReLU) [30], scaled exponential linear units (SELU, with default val-
ues λ = 1.0507, α = 1.6733) [53], sigmoid, and tanh. Their definitions are
written below as in Eq. (2.14-2.17). The shape of these activation functions
are displayed in Figure 2.7.

ReLU(x) = max(0, x) (2.14)

SELU(x) =

λα(expx − 1) x < 0

λx x ≥ 0
(2.15)

sigmoid(x) =
1

1 + exp−x
(2.16)

tanh(x) =
expx − exp−x
expx + exp−x

(2.17)

The choice of activation function can also affect training efficiency sig-
nificantly. During neural network training, the change in objective func-
tion with respect to model parameters are computed by the chain rule in
each iteration. This computation starts from the last layer and iterates

2.5. BASIC AUTOENCODER 37

(a) Reconstruction loss for validation 1 set. (b) Four popular activation functions.

Figure 13. Evolution of the reconstruction loss when using different activation functions.

5.6 Anomaly Detection
After testing different configurations with the validation 1 set, the optimal model is finalised. Next step is to set a classification
threshold on reconstruction loss to capture the most outlying data points. To do that we use the validation 2 set. The
convolutional autoencoder (CAE) has never seen this set of data before, hence it offers an unbiased estimation of the threshold.
For threshold, the usual percentile method, where a percentage of data points with the highest loss are flagged as anomalies,
is inapplicable here because by design all images in the validation 2 set are considered normal. Instead, we use a modified
Z-score25 with median absolute deviation (MAD) to define anomalies.

MAD = median(|li− l̂|) (10)

Mi =
0.6745× (li− l̂)

MAD
(11)

where li is the loss for the ith image, l̂ is the median of all losses for validation set 2, and Mi denotes the modified Z-score for
the ith image. MAD converges to the 0.75 quantile of the standard normal distribution, which is 0.6745.

A score of 3.5 is recommended as a cutoff threshold in the modified Z-score method25, meaning any image with a modified
Z-score larger than 3.5 should be consider as non-5. Looking at the distribution of loss for validation 2 set in Fig.15.b, we think
a score of 5 (equivalent to 0.023 in loss) is a more appropriate choice for threshold because we rather have less false positive
predictions. The final step is to pass the test set data into our CAE and classify anomalies using that threshold.

Figure 14. Confusion matrix

12/16

Figure 2.7: Shape of common activation functions.

backwards, resulting in a gradually diminishing gradient across layers if
the activation function has a gradient range between zero and one [42].
The vanishing gradient problem, where training stops prematurely due
to diminished gradients and static parameters, worsens when the neural
network has many layers. This problem is further elaborated on in Section
2.5.4. Glorot et al. (2011) [42] concluded that ReLU can prevent the vanish-
ing gradient problem as its linearity helps the gradients flow well through
the layers. Starting with ReLU in network construction has become a rule
of thumb in deep learning. Other activation functions are only preferred

38 CHAPTER 2. BACKGROUND

circumstantially.

2.5.3 Basic Autoencoder Architecture

Autoencoder is a type of neural network that comprises multiple layers of
parallel neurons. The idea behind autoencoder is to force high-dimensional
input data through an information bottleneck, transforming it into a low-
dimensional representation in the process, and reproduce the input data
from that representation [41]. By mapping the input onto a space of re-
duced dimensionality, the neural network is able to learn and extract a
variety of features. The architecture of an autoencoder is defined by its hy-
perparameters — the preset values that cannot be updated during training
[32]. Hyperparameters of an autoencoder include: the activation function
of neurons, the number of filters in each layer, the total number of lay-
ers, and the loss function. An example of autoencoder performing feature
extraction is illustrated as in Figure 2.8.

In Figure 2.8, every circle represents a neuron. The latent vector B, or
the bottleneck information, is the result of input vectorX (XT = [x1, x2, x3,

x4]) mapped onto a latent space through a series of interconnecting neu-
rons called an encoder. Subsequently, the decoder — a mirror version of
the encoder — maps B back onto the same space as X . The reconstruc-
tion of X is Xo (XT

o = [xo1, xo2, xo3, xo4]). Hence an autoencoder can be
abstractly described as Eq. (2.18-2.19), where En denotes the encoding
process and De denotes the decoding process.

En(X) = B (2.18)

Xo = De(B) (2.19)

The autoencoder progressively learns and selects essential characteristics
of the input, or features, by minimising a reconstruction loss which is
closely related to the difference betweenX andXo [41].

2.5. BASIC AUTOENCODER 39

𝑥1

𝑥2

𝑥𝑛

𝑤1

𝑤2

𝑤𝑛

.

.

.

𝑓

𝑘=1

𝑛

𝑥𝑘𝑤𝑘 + 𝑏

𝑓

𝑘=1

𝑛

𝑥𝑘𝑤𝑘 + 𝑏

𝑂𝑢𝑡𝑝𝑢𝑡

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑝𝑢𝑡

𝐶𝑒𝑙𝑙

𝐼𝑛𝑝𝑢𝑡 𝑋 𝑂𝑢𝑡𝑝𝑢𝑡 𝑋𝑜𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝐵

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐷𝑒𝑐𝑜𝑑𝑒𝑟

𝑥1

𝑥2

𝑥3

𝑥4

𝑥𝑜1

𝑥o2

𝑥𝑜3

𝑥𝑜4

Figure 2.8: An example of autoencoder architecture. The neural network
consists of an encoder and a decoder. The goal is to minimise the recon-
struction loss, defined as a function of inputX and output Xo which rep-
resents the difference in information between the two.

In this basic setting, layers are fully connected. The term ’fully con-
nected’ refers to a connection arrangement where each neuron is connected
to all the neurons in its adjacent layers. Neurons within the same layer,
however, are not connected. The hourglass shape structure is particularly
crucial in autoencoder. Without forcing such an information bottleneck,
the autoencoder could have learned to ignore the compression process en-
tirely and copy information from input directly to output for the smallest
possible reconstruction loss. Consequently, the bottleneck B would have
carried roughly the same amount of information as the inputX , defeating
the purpose of feature extraction.

In essence, the training of an autoencoder can be described as the fol-
lowing minimisation problem.

40 CHAPTER 2. BACKGROUND

Find min
m

L(X,Xo),

where m represents all the model parameters (weights and biases) and L

is the desired objective function, also called loss function. The choice of
loss function L is circumstantial. Some of the widely used ones are mean
squared error, mean absolute error, and cross-entropy [32]. Therefore L
should be chosen in an integrated manner, giving attention to the nature of
problem, the objective of research, and the type of data. Ideally when loss
function is minimised, X and Xo become almost identical. Nonetheless,
the output will never be exactly the same as the input. Since some infor-
mation, no matter how trivial, is inevitably lost while squeezing through
the bottleneck. A 100% restoration would have implied that there is no
dimensionality reduction inside the encoder. Once properly trained, the
bottleneckB becomes a lower-dimensional representation ofX .

As a dimensionality reduction technique, autoencoders help filter out
non-important information, leaving the essential features most represen-
tative of the input. The potential applications are vast.

2.5.4 Backpropagation

The model parameter estimators have no closed forms in a neural net-
work. Moreover, the enormous number of parameters means that solving
by exhaustion is not practical. Therefore, their optimal values are found
by an iterative process. During the training of a feed-forward neural net-
work, parameters are iteratively updated by an optimisation algorithm
called backpropagation [80]. Backpropagation works by passing on gra-
dient information from the last layer backwards to the first one. A simple
example is illustrated in Figure 2.9.

In Figure 2.9, the neural network has three layers: input layer a, hidden
layer b, and output layer c. To find out how to adjust the parameters,
Rumelhart et al. (1986) [80] suggested the use of partial derivatives and

2.5. BASIC AUTOENCODER 41

𝑤𝑎1

𝑁𝑒𝑢𝑟𝑜𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 𝑋𝑜

.

.

.

𝑥𝑜1
𝑤𝑐1

.

.

.

𝑁𝑒𝑢𝑟𝑜𝑛𝐼𝑛𝑝𝑢𝑡 𝑋

𝑥1
.

.

.

.

.

.

𝑤𝑏1

𝑁𝑒𝑢𝑟𝑜𝑛

.

.

.

𝑎1 𝑏1 𝑐1

.

.

.

.

.

.

𝐹𝑙𝑜𝑤 𝑜𝑓 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Figure 2.9: An example of backpropagation. Input information propa-
gates from left to right, whereas gradient information propagates back-
ward from right to left. Hence the name backpropagation.

the chain rule. To demonstrate his ideas, we look at a simple example.
Suppose L is the loss function of inputX and outputXo, then the update
in weight wc1 of neuron c1 in the last layer c can be expressed by

wi+1
c1 = wic1 − η

∂L

∂wc1
,

where η is the learning rate, wic1 is the current weight, wi+1
c1 is the new

weight, and the partial derivative ∂L
∂wc1

is the gradient of L with respect to
wc1. Recall that, described in Section 2.5.1 and Section 2.5.3, loss function
L is a function of the output Xo, whose component can be expressed in
terms of an activation function and a linear function of weighted inputs
and bias. Therefore, by the chain rule, the gradient ∂L

∂wc1
can be further

written as

∂L

∂wc1
=

∂L

∂Xo

∂Xo

∂xo1

dxo1
dAc1

dAc1
dSc1

∂Sc1
∂wc1

,

where Ac1 and Sc1 are the activation function and linear function for neu-
ron c1 respectively, notation d represents total derivative.

42 CHAPTER 2. BACKGROUND

The neuron c1 is related to only one of the output components, i.e. xo1.
For a neuron in the second last layer, b1, its weights affect multiple com-
ponents of the output. Hence the update of one of its weight wb1 can be
expressed by

wi+1
b1 = wib1 − η

∂L

∂wb1
,

where
∂L

∂wb1
=

n∑
i=1

∂L

∂Xo

∂Xo

∂xoi

dxoi
dAci

dAci
dSci

∂Sci
∂Ab1

dAb1
dSb1

∂Sb1
∂wb1

,

and n is the number of neurons in the next layer c that are connected to
b1. To update the weights of a neuron in this second last layer, we need to
use the product of two gradients (e.g. dAc1

dSc1
and dAb1

dSb1
). Image a deep neural

network with 100 layers. We would need the product of 100 gradients to
update the weights in the first layer. If the gradients have a range between
zero and one, the change in loss function with respect to the weights in the
first layer will become minuscule. This phenomenon is called a vanishing
gradient problem.

Learning rate η indicates how large a step the weight takes in the right
direction. If η is too large, the precision of the optimisation algorithm is
reduced, possibly resulting in a constant back-and-forth motion around
the optimal value. If η is too small, the training time of neural network is
prolonged. Therefore in some cases, η is set as an adaptive value based on
a convergence measure for the loss function. The training process usually
halts when the convergence measure is small enough [32].

There are three optimisation approaches to implement backpropaga-
tion: batch gradient descent, stochastic gradient descent, and mini-batch
gradient descent [32].

1. Batch gradient descent calculates the loss function for each training
sample but only updates model parameters after all samples in the
training data set are evaluated. The parameters are updated based

2.6. CONVOLUTIONAL AUTOENCODER 43

on an aggregated gradient. This approach is considered computa-
tionally efficient as parameters are adjusted once per epoch — a com-
plete evaluation cycle through the training data set. Due to less fre-
quent updates, convergence is more stable. However, it may take a
long time to converge for large data sets.

2. Stochastic gradient descent, contrarily, calculates loss function and
updates model parameters for each training sample in the data set.
This approach is effective in reaching global minima yet computa-
tionally expensive, which may lead to a longer training time. In ad-
dition, this stochastic approach also fluctuates the optimisation pro-
cess because frequent updates amplify the impact of noise.

3. Mini-batch gradient descent finds a middle ground between batch
and stochastic gradient descent, where training samples are split into
small batches before employing batch gradient descent to each batch.
Mini-batch is the most common approach among the three as it in-
corporates the benefits of the other two. To use mini-batch gradient
descent, one must first choose a batch size. A rule of thumb is to se-
lect a power of two to fit the memory size of hardware. For example,
16, 32, 64, 128 are common choices of batch size. Small batch size
converges quickly but is noisy. Large batch size converges slowly
but more stable. Masters et al. (2018) [63] and Bengio (2012) [7] both
suggested that 32 is a good default value. Once selected, it is advis-
able to keep batch size fixed while optimising model parameters.

2.6 Convolutional Autoencoder

A convolutional autoencoder is a variant of the basic autoencoder where
a convolutional layer is used. This type of neural network preserves the
spatial patterns of data, therefore it is preferable when dealing with images
[62] [22]. The core constituents of a convolutional autoencoder are the

44 CHAPTER 2. BACKGROUND

convolutional layer and the pooling layer.

2.6.1 Convolutional Layer

The convolutional layer is usually the first layer in convolutional neural
network (CNN) [26] [56]. In CNN, input data such as images are assumed
to possess spatial structures which cannot be fully appreciated using stan-
dard fully connected layers. A convolutional layer, on the other hand,
extracts information locally and therefore retains the pattern.

𝑤𝑎1

𝑁𝑒𝑢𝑟𝑜𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 𝑋𝑜

.

.

.

𝑥𝑜1
𝑤𝑐1

.

.

.

𝑁𝑒𝑢𝑟𝑜𝑛𝐼𝑛𝑝𝑢𝑡 𝑋

𝑥1
.

.

.

.

.

.

𝑤𝑏1

𝑁𝑒𝑢𝑟𝑜𝑛

.

.

.

𝑎1 𝑏1 𝑐1

.

.

.

.

.

.

𝐹𝑙𝑜𝑤 𝑜𝑓 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑝𝑢𝑡 𝑍𝑒𝑟𝑜 𝐿𝑜𝑐𝑎𝑙 𝐹𝑖𝑙𝑡𝑒𝑟 𝐹𝑒𝑎𝑡𝑢𝑟𝑒
𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝑚𝑎𝑝

𝑓𝑖𝑒𝑙𝑑 (𝑝𝑎𝑟𝑡)

4+8=12

Figure 2.10: An illustration of how an unactivated feature map is made.
The local receptive field and the filter are multiplied element by element.
In this case, 12 is the sum of all elements in the product matrix; therefore,
it is put in the top right corner of the feature map corresponding to the
position of local receptive field.

In a convolutional layer, convolutional kernels known as filters are ad-
ministered. A filter is a small weight matrix with the same number of
channels as the input image. It moves across the input image, striding
one pixel at a time, extracting a patch of input with the same dimensions
as the filter. This patch, called a local receptive field, is then multiplied
element-wise by the filter. Finally, the elements of the product matrix are

2.6. CONVOLUTIONAL AUTOENCODER 45

summed to yield a convolved output value representing a pixel in the un-
activated feature map. This procedure repeats as the filter shifts through
the whole input image until all pixels in the feature map are filled [62].
Padding the input image with ring(s) of zero pixels along its edge ensures
that the output image is of the same size as the input. Once the feature
map is complete, a bias is added to each feature map before it gets acti-
vated by an activation function. The activated feature map then proceeds
to the next layer. Figure 2.10 shows a filter at work.

As each feature map has shared filter weights and bias, a convolutional
layer has much fewer parameters than a fully connected layer [35]. In
essence, a filter is trained to extract key features in the input image which
are the most useful in reconstructing it. Depending on the weights, a filter
can act as an edge detector, a corner detector, etc.

2.6.2 Pooling Layer

Closely following a convolutional layer is a pooling layer. The primary
function of pooling layers is to perform pooling operation and reduce di-
mensionality. The concepts of filter and local receptive field apply in pool-
ing layers. However, unlike convolutional layers, the filters have no train-
able weights and the local receptive fields are not overlapping at all [62].
The untrainable filters in a pooling layer usually serve one of two pur-
poses: finding the maximum or finding the average. Figure 2.11 demon-
strates both max and average pooling with the same input.

Pooling layers are essential in a convolutional autoencoder as they down-
samples the input and thus enables the signature information bottleneck.
Furthermore, on account of lower-dimensional output, pooling layers fur-
ther reduce the overall trainable parameters in the neural network. This
forces the filters to be more applicable.

46 CHAPTER 2. BACKGROUND

𝑤𝑎1

𝑁𝑒𝑢𝑟𝑜𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 𝑋𝑜

.

.

.

𝑥𝑜1
𝑤𝑐1

.

.

.

𝑁𝑒𝑢𝑟𝑜𝑛𝐼𝑛𝑝𝑢𝑡 𝑋

𝑥1
.

.

.

.

.

.

𝑤𝑏1

𝑁𝑒𝑢𝑟𝑜𝑛

.

.

.

𝑎1 𝑏1 𝑐1

.

.

.

.

.

.

𝐹𝑙𝑜𝑤 𝑜𝑓 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑝𝑢𝑡 𝑍𝑒𝑟𝑜 𝐿𝑜𝑐𝑎𝑙 𝐹𝑖𝑙𝑡𝑒𝑟 𝐹𝑒𝑎𝑡𝑢𝑟𝑒
𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝑚𝑎𝑝

𝑓𝑖𝑒𝑙𝑑 (𝑝𝑎𝑟𝑡)

4+8=12

22.5 22.5

20.3 15.8

33 36

33 27

𝑀𝑎𝑥 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔

Figure 2.11: Illustrations of max pooling and average pooling. In max
pooling, the maximum value of each local receptive field is selected. In
average pooling, the average of each local receptive field is selected.

2.6.3 Convolutional Autoencoder Architecture

In summary, a convolutional autoencoder is nothing more than an assem-
bly of alternating convolutional layers and pooling layers. In the decoder,
where dimensionality needs to increase, upsampling layers replace pool-
ing layers. Upsampling layers repeat each row and column of the input to
upsize it.

Intuitively, the number of filters is the number of features that a neural
network can potentially learn. Feature maps become more abstract after
each convolution, showing fewer features. Thus, for better convergence,
a rule of thumb is to reduce the number of filters in a convolutional layer
deeper in the encoder.

Training deep neural networks can be challenging, especially when ini-
tial weights are random. The ever-changing weights trigger instability in
the distribution of inputs to layers deep in the neural network, forcing
the optimisation algorithm to adapt indefinitely. To address this problem,
Ioffe and Szegedy (2015) [45] proposed a technique called batch normali-
sation. In batch normalisation, input data are standardised using the mean
and the standard deviation of each batch to pursue a stable data distribu-
tion passing on to the next layer. This operation is written as in Eq. (2.20),
where x is the input value, xnorm is the normalised value, µ and σ are the

2.6. CONVOLUTIONAL AUTOENCODER 47

mean and the standard deviation of a given batch of inputs respectively.

xnorm =
x− µ
σ

(2.20)

Normalising the inputs has a significant effect in reducing the number
of epochs required in training. Ioffe et al. (2015) [45] found that convolu-
tional layers with batch normalisation helped reduce the number of train-
ing steps by half while maintaining the same level of accuracy. Both Ioffe
et al. (2015) [45], and Kaiming He, et al. (2015) [37] suggested that the
batch normalisation operation should be placed right before the nonlin-
earity. Pooling layers have no trainable weights and thus are not in need
of stable distribution of inputs. Therefore, batch normalisation can be an
integral part of a convolutional layer right before the activation function.

Figure 2.12 shows the architecture of an example convolutional autoen-
coder with two convolutional layers in its encoder component. In this ex-
ample, the input imageX is 100 by 100 in size and has one colour channel,
thus 100*100*1. A convolutional layer with 16 filters processesX and pro-
duces a 100*100*16 output feeding into a max pooling layer. The pooling
layer downsizes the image into 50*50*16 without reducing the number of
feature maps. Another pair of convolutional/pooling layers with 8 filters
further condenses the image into a 25*25*8 bottleneck B. Compared with
the original image X , which has 100*100*1=10000 data points, this bot-
tleneck B has 5000 data points — half of the initial value. Therefore B
is a condensed representation of X . Opposite operations happen inside
the decoder. The bottleneckB is first upsampled by an upsampling layer.
Then it passes on to a convolutional layer with 16 filters, mirroring the
position of its counterpart in the encoder. Following that is another pair
of upsampling and convolutional layers with 1 filter to resconstruct the
image back to 100*100*1. The final output is Xo, with the same dimen-
sions as input X . At first glance, the encoder and the decoder may seem
unbalanced due to different numbers of filters. In fact, they are perfectly
balanced in terms of trainable parameters. Since we assume filter number

48 CHAPTER 2. BACKGROUND

100*100*1 50*50*16 25*25*8 50*50*8 100*100*16 100*100*1

100*100*16

50*50*8

25*25*8

50*50*16

100*100*1

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑤𝑖𝑡ℎ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑝𝑢𝑡 𝑋 𝑂𝑢𝑡𝑝𝑢𝑡 𝑋𝑜

𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝐵

25*25*8

𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝐵

(a)

100*100*1 50*50*16 25*25*8 50*50*8 100*100*16 100*100*1

100*100*16

50*50*8

25*25*8

50*50*16

100*100*1

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑤𝑖𝑡ℎ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑝𝑢𝑡 𝑋 𝑂𝑢𝑡𝑝𝑢𝑡 𝑋𝑜

𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝐵

25*25*8

𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝐵

(b)

Figure 2.12: Architecture of an example convolutional autoencoder. (a)
The encoder component. Two convolutional layers with 16 and 8 filters re-
spectively. 1320 trainable parameters in total. (b) The decoder component.
Two convolutional layers with 16 and 1 filter respectively. 1313 trainable
parameters in total.

2.6. CONVOLUTIONAL AUTOENCODER 49

decreases deeper into the encoder, and the decoder has a mirrored struc-
ture, the two non-trainable hyperparameters left are the layer number and
the filter number in the first convolutional layer.

There are two major differences between convolutional neural network
(CNN) and convolutional autoencoder (CAE). CAE has an information
bottleneck, and CNN has fully connected layers before final output [47]
[62].

2.6.4 Challenges

The rapid development of Artificial Intelligence and machine learning tech-
nologies presents enormous opportunities. General analytical tasks, such
as pattern recognition and classification, can be accomplished more ef-
fectively and at a lower cost using neural networks. Applications of AI-
powered products and services will be numerous in traditional and mod-
ern industries alike. While neural networks are efficient and effective in
replacing human workforce, they still face several major challenges. This
section briefly discusses some of these challenges in deep neural networks.

Selection of hyperparameters

Deep neural networks have hyperparameters that define their architec-
ture. Unfortunately, there is no universal solution as to how to select these
hyperparameters [88]. This problem is especially noticeable with unsu-
pervised learning, where there is no validation of performance due to the
lack of labels. As a result, researchers have been relying on labelled bench-
mark data sets to evaluate the performance of neural networks. The real-
ity, however, is that a neural network that works fine with one data set may
struggle with another one. This is because both the choice of neural net-
work and its hyperparameters are circumstantial. For example, 32 filters
may be too many for clustering handwriting digits, but it is not enough for
clustering animal pictures. Like there are multiple solutions to a problem,

50 CHAPTER 2. BACKGROUND

multiple neural networks can serve the same purpose with similar accu-
racy as long as the hyperparameters are set appropriately. This calls for
a practical and efficient hyperparameter selection approach. We elaborate
on this matter in the next chapter.

Interpretability

Deep neural networks are infamously challenging to interpret. The inter-
pretability worsens with unlabeled data. Some describe them as a black-
box approach, and adequately so. Even when weights and feature maps
are on hand, the predictions made by a neural network are not easily inter-
pretable in terms of logic [89]. Ideally, a user should be able to tell which
features do the filters capture or the logic behind selecting these filters.
Sadly, the plausibility of such predictions still relies almost solely on our
trust in the learning algorithm. Sometimes, even neural network design-
ers cannot understand the theoretical grounding of the predictions. Thus,
there is an urging need for accurate and transparent learning algorithms
in high-stakes sectors such as criminal justice, banking and healthcare.

Data preprocessing

Well-presented input data is key to machine learning success. Data pre-
processing quality affects the performance of neural networks significantly.
One of the reasons researchers often rely on benchmark data sets for evalu-
ation is that benchmark data sets are well preprocessed. However, in real-
world scenarios, that luxury is no longer there. Since real-world data can
be pretty unpredictable, preprocessing the data and making them compat-
ible with existing neural networks is a tall order. This, again, is particularly
difficult in unsupervised learning such as clustering, where validation is
not possible.

2.7. CHAPTER SUMMARY 51

2.7 Chapter Summary

This chapter briefly reviewed the key concepts used in this research and
the scientific foundations upon which they are built. We refer to the con-
tent of this chapter later in this thesis. Starting from the next chapter, we
present the proposed pipeline in three sequential stages: data preprocess-
ing, hit selection, and cluster analysis.

Chapter 3

Data Preprocessing Stage

This chapter discusses the first stage in the pipeline — data preprocess-
ing. The content of this chapter includes an overview, preliminary explo-
rations, the final design, results, and a brief summary.

3.1 Data Preprocessing Overview

Data preprocessing is the crucial first stage in the pipeline, as shown in
Figure 3.1. The 61560 raw images are 2048*2048*1 in dimensions, mean-
ing there are 2048 pixels in height and width and there is only one colour
channel (grayscale). These are 16-bit images. Therefore, pixel intensity has
a range from 0 to 216 − 1 (or 65535). As shown in Figure 3.2, each image
contains cell populations treated by a given drug the identity of which we
do not know. However, we are given the identity of drug 0, which is the
negative control Dimethyl Sulfoxide (DMSO). Raw images are organised
under 282 FDA approved drugs, each with varying numbers of images.
The total storage size of raw images is around 500 GB. Considering the as-
says are conducted in batches, we need to recalibrate the pixel intensities
so that all images share the same zero background intensity. To do that, we
assume the lowest intensity of all images in each batch is the background
intensity. Background intensity is a benchmark used in recalibration. Then

52

3.1. DATA PREPROCESSING OVERVIEW 53

Data Preprocessing

Hit Selection

Cluster Analysis

Raw image

Processed image

Image subset

Drug shortlistDrug groups

Pipeline

Figure 3.1: Data preprocessing is the first stage in the proposed pipeline.

single-cell structures are detected and cropped out. These cropped out im-
ages are referred to as ’windows’ in this chapter. The size of the windows
should be large enough to contain one cell comfortably. Finally, windows
that contain an incomplete cell are no good for the research, thus deleted.
At the end of this stage, the desired outputs are windows of clear and
complete single cell ready to be passed to the hit selection stage.

Three issues are addressed in this stage:

1. Recalibrate intensities from different assay batches;

2. Detect and crop out single-cell structures;

3. Filter out incomplete cells and impurities.

54 CHAPTER 3. DATA PREPROCESSING STAGE

Figure 3.2: An example of raw data. The 2048*2048 image shows cell pop-
ulation after treatment.

Assumption made in data preprocessing:

1. The lowest intensity of all images in each batch is the background
intensity.

3.2 Preliminary Explorations

This section describes some of the necessary explorations of data and meth-
ods. The explorations provide a better demonstration of the task as well as
a collection of considerations behind the choices made in the final design.

3.2. PRELIMINARY EXPLORATIONS 55

3.2.1 Intensity Recalibration

The first task in the line is intensity recalibration. We avoid calling it
’normalisation for batches’ here because batch normalisation is a differ-
ent technique entirely. Intensity could be affected by on-site factors, such
as equipment and lighting, when the image was captured. The assays as-
signed to 282 FDA approved drugs were not conducted at the same time
but in 21 batches. External factors could vary for different assay batches,
but they were considered the same within each batch. Intensity is additive.
Any effects caused by external factors, therefore, add to the existing inten-
sity. As a result, the most intuitive solution to recalibration is to deduct
the background intensity from each batch. In doing so, we bring all inten-
sities from different assay batches together on an equal footing. The raw
data are 16-bit images with intensities ranging from 0 to 65536. Table 3.1
includes the minimum intensity for each batch, which is assumed to be the
background intensity, as well as the intended adjustments corresponding
to the minimum. The recalibration imposes no effect on spatial structures.
Once recalibrated, background intensities from different batches should
all become zero.

56 CHAPTER 3. DATA PREPROCESSING STAGE

Table 3.1: Minimum pixel intensity and intended adjustment by batch.

Assay batch Minimum intensity Intended adjustment
1 108 -108
2 108 -108
3 110 -110
4 110 -110
5 110 -110
6 110 -110
7 110 -110
8 110 -110
9 110 -110

10 110 -110
11 112 -112
12 106 -106
13 106 -106
14 108 -108
15 108 -108
16 106 -106
17 110 -110
18 108 -108
19 112 -112
20 110 -110
21 112 -112

3.2. PRELIMINARY EXPLORATIONS 57

3.2.2 Cell Detection and Cropping

Next comes cell detection and cropping. A raw input image with dimen-
sions of 2048*2048 is too large for any nontrivial algorithm to learn directly.
To boost accuracy, we must segment the image into windows that contain
only one cell. There are two free tools available in Python [90] for the task;
both are functions of OpenCV [10]. These two tools are findContours and
watershed.

findContours uses contour lines similar to the topographic maps for
mountain climbing. Contour lines mark the regions in which intensities
are higher than a predefined threshold. Figure 3.3 demonstrates the way
findContours works. First, an input image is converted into a binary im-
age with intensities of either 1 or 0. The business rule is that any intensity
equal to or higher than a predefined threshold is converted into 1. Then
for each object containing 1’s, a curve is created joining all the points along
the boundary. These curves are contour lines for object detection.

Compared with findContours, watershed is a more advanced tool. wa-
tershed works by first identifying regions of sure background and sure ob-
jects, then determining the boundary between them using an algorithm.
Figure 3.4 demonstrates the way findContours works. Two thresholds are
required for watershed, one for regions that are definitely background (white
areas), the other for regions that are definitely objects (white areas sur-
rounding by black bands). The black bands, therefore, are regions of un-
certainty. A watershed algorithm refines the bands, thinning them in a con-
trolled manner to mark the boundary.

58 CHAPTER 3. DATA PREPROCESSING STAGE

(a) (b)

(c)

Figure 3.3: Demonstrations of findContours. (a) The original image. (b) The
binary image based on a predefined threshold. (c) Cell detection using
contour lines.

3.2. PRELIMINARY EXPLORATIONS 59

(a) (b)

(c) (d)

Figure 3.4: Demonstrations of watershed. (a) The original image. (b) White
areas are sure background. (c) White areas surrounding by black bands
are sure objects. (d) Cell detection using an algorithm.

60 CHAPTER 3. DATA PREPROCESSING STAGE

(a) (b)

Figure 3.5: Comparison of findContours and watershed. (a) Cell detection
using findContours. (d) Cell detection using watershed.

Figure 3.5 displays a comparison of findContours and watershed in cell
detection, each with unique advantages. findContours is easier to employ,
requiring only one threshold. Boundaries are well defined. However, it
cannot detect objects that are touching the edge of the image, which is im-
portant in filtering out incomplete cells. watershed provides thicker, less
refined boundaries. However, it automatically deselects objects that are
too small (i.e. noise) as well as objects that are touching the edge. In
this research, where well-presented inputs are desired, we go for the more
thorough yet less automatic approach — findContours. Although a consid-
erable amount of extra coding is required for findContours to work prop-
erly, it offers a significantly clearer boundary of cell. We set the threshold
to a recolibrated intensity of 5. This threshold is somewhat arbitrary. It
does not matter if we pick up small impurities during the process; they
are removed in the next step.

Following cell detection, each cell is cropped out and placed in the mid-
dle of an empty window. The dimensions of these windows determine the

3.2. PRELIMINARY EXPLORATIONS 61

size of inputs to the next stage. If the windows are too large, extra compu-
tational resources are required to process them. By close examinations, we
choose a 120*120 window that is adequate for most single-cell structures.
Any object that does not fit into this window is considered to have at least
two closely positioned cells and is deleted consequently.

3.2.3 Data Cleansing

Cleansing is the final step in the data preprocessing stage. The task for data
cleansing is to delete the windows containing incomplete cells and the
windows containing only impurities. This step is quite straightforward.
We delete windows if the cell they contain is touching the edge in the
original image. Moreover, we delete windows if the average intensity of
the entire window does not reach a certain threshold. Failing to exceed the
threshold indicates that the window’s content is small impurities rather
than a complete cell. The threshold is arbitrary to some extent because
the gap in average intensity between impurities and a full cell is huge.
We set this average intensity threshold to 5. Figure 3.6 displays some of
the discarded windows. The first two windows from the left in Figure
3.6 contain only impurities; the next two windows contain an incomplete
cell (cut by edge); the last window from the left contains a cell cluster
that manages to squeeze inside a window because part of the cluster is
an incomplete cell (cut by edge). This kind of clusters is discarded due to
close proximity to the edge.

Figure 3.6: Some examples of the discarded windows.

62 CHAPTER 3. DATA PREPROCESSING STAGE

3.3 Data Preprocessing Design

This section provides a concise and final design of the data preprocessing
stage. Figure 3.7 outlines the steps taken in data preprocessing. Consider-
ations behind the design are included in Section 3.2.

Raw image

Cell Detection
and Cropping

Intensity
Recalibration

Data Cleansing

Processed image

Data
Preprocessing

Figure 3.7: Detailed steps in the data preprocessing stage.

Intensity Recalibration

1. Adjust pixel intensities of raw images based on the background in-
tensity of assay batch. Intended adjustments are shown in Table 3.1.

Cell Detection and Cropping

1. Apply the findContours function from the OpenCV package to the
recalibrated images for cell detection. Binary threshold used in find-
Contours is set to 5.

2. Crop out the detected cells and place them in the middle of an empty
window of size 120*120. Objects larger than 120*120 are discarded.

3.4. RESULTS AND DISCUSSION 63

Data Cleansing

1. Discard windows containing a cell that is touching the edge in the
corresponding raw image.

2. Discard windows with an average intensity below 5.

3.4 Results and Discussion

Most windows discarded during cropping were cell clusters formed by
multiple closely positioned cells. They were not single-cell structures.
Meanwhile, most windows discarded during data cleansing were impuri-
ties as well as incomplete cells. A small proportion of these windows were
cell clusters with an incomplete cell cut by an edge. Figure 3.8 presents
some example windows produced after preprocessing. Each window con-
tains exactly one complete cell. Furthermore, subcellular structures such
as membrane and nucleus are clearly visible. From 61560 raw images, we
obtained 1935920 such windows.

Figure 3.8: Some examples of the processed images, referred to as win-
dows.

The data preprocessing stage is crucial to the overall success of this
pipeline. Well presented inputs boost the precision and accuracy of a neu-

64 CHAPTER 3. DATA PREPROCESSING STAGE

ral network significantly. In addition, the storage size of inputs was sig-
nificantly reduced by cutting out the empty spaces between cells. As a
result, while the original raw images had a total storage size of around
500 GB, the windows had a total storage size of just 111 GB in float32 data
type. Float32 is the default format of input that goes into a neural net-
work in Keras [14], the deep learning platform we used. Keras also allows
float16 as input which takes 16 bits of memory instead. The float16 data
type, however, comes with a cost of lower computation precision. There-
fore, we chose float32 as the input data type because it provided a good
balance between precision and storage space.

3.5 Chapter Summary

This chapter described the design and the implementation of data prepro-
cessing steps. We managed to distil 61560 raw images into 1935920 smaller
windows containing clear and complete single-cell structures using these
steps. In doing so, we reduced the total storage size to 111 GB, around
22% of the original size. Moreover, cells were well positioned — right at
the centre of a window. Such arrangement was beneficial to the overall
precision and accuracy of the neural network. Next, the outputs from data
preprocessing, in a compatible data type, proceed to the hit selection stage
as inputs.

Chapter 4

Hit Selection Stage

This chapter discusses the second stage in the pipeline — hit selection. The
content of this chapter includes an overview, preliminary explorations, the
final design, results, and a brief summary.

4.1 Hit Selection Overview

Hit selection is the second stage in the pipeline, as shown in Figure 4.1.
The outputs from the previous stage, 1935920 windows containing single-
cell structures, are the inputs that feed into hit selection. These windows,
organised under 282 drug codes, are 120*120 in size and have only one
colour channel. We do not know the identities of drug codes until the
very end of this research, except for drug 0 which is the negative control
Dimethyl Sulfoxide (DMSO). The task is to select a shortlist of drugs out
of the remaining 281 that induce significant phenotypic changes, i.e. the
hits. In other words, we are tasked to select drugs whose associated win-
dows have significantly different content from the DMSO’s. To do that,
we must assume most images associated with a certain drug are homoge-
neous. If one drug induces two distinctly different phenotypic changes,
this pipeline might not work as planned. Since we do not intend to go the
feature engineering route and do not have a true shortlist, this becomes an

65

66 CHAPTER 4. HIT SELECTION STAGE

Data Preprocessing

Hit Selection

Cluster Analysis

Raw image

Processed image

Image subset

Drug shortlistDrug groups

Pipeline

Figure 4.1: Hit selection is the second stage in the proposed pipeline.

unsupervised image classification problem in terms of both features and
labels. At the end of this stage, there are two desired outputs. One is
the shortlist of drug codes; the other is the windows associated with the
shortlisted drugs.

To select hits, we must address the following five issues:

1. Develop a novel scheme for comparing representations;

2. Construct a generalised estimating equation model to predict opti-
mal hyperparameters of convolutional autoencoder tailored for the
input images;

3. Use the convolutional autoencoder to obtain condensed representa-
tions of input images;

4.2. PRELIMINARY EXPLORATIONS 67

4. Compare representations with the negative control to obtain similar-
ity measures;

5. Determine an appropriate similarity threshold at which drugs are
considered as hits.

Assumptions made in hit selection:

1. Each drug induces only one type of phenotypic changes.

4.2 Preliminary Explorations

This section describes some of the necessary explorations of data and meth-
ods. The explorations provide a better demonstration of the task as well as
a collection of considerations behind the choices made in the final design.

4.2.1 Novel Comparison Scheme

This section describes a novel comparison scheme that can produce a sim-
ilarity measure about two unlabelled image groups. There are some objec-
tives we would like to achieve using the comparison scheme:

• Groups of different spatial structures are easily distinguishable.

• Groups of similar spatial structures are not distinguishable.

• Read-out is concise, preferably a single score describing the similar-
ity between two groups of images.

• The comparison scheme is nonparametric and only requires image
inputs.

• The comparison scheme is time-efficient.

• The comparison scheme is generalisable to other similar data sets.

68 CHAPTER 4. HIT SELECTION STAGE

According to the objectives above, the ideal comparison scheme would
take two groups of images as inputs and nothing else, then produce a sim-
ilarity measure based on the spatial structures in the images. One seem-
ingly intelligent solution is a deep convolutional neural network. How-
ever, such a network is difficult to build and even more time-consuming
and resource-demanding to train appropriately. Sometimes, working smart
is more efficient than working hard. Instead, we can take advantage of
the fact that only two groups of images are compared at one time. We
present a novel comparison scheme that meets all the requirements. It
may not seem intellectual at first. However, results suggest that the pro-
posed scheme is reliable and effective.

Brief Outline

We are inspired by the idea of confusion in decision-making, where one
is unsure of how to choose. This uncertainty can translate to a 50-50 pre-
diction. In the proposed comparison scheme, two groups of input images
(e.g. A and B) are first converted into multidimensional vectors. Then for
each input image (i.e. the target), a certain number of its nearest neigh-
bours are identified using a distance metric of choice. Next, a simple al-
gorithm predicts an indicator for the target based on the distances and
the nearest neighbours information. The indicator is an educated guess
of where the target comes from, either group A or group B. Finally, we
compare the predicted indicators with the true information and calculate
a classification accuracy. If the two image groups contain the same spatial
structures, the algorithm is confused. Consequently, the predicted indi-
cators would be a random guess of either A or B. A classification accu-
racy close to 50% would suggest similar spatial structures in both groups.
On the other hand, if the two image groups contain distinctively different
structures, the classification accuracy would be close to 100%. We use this
accuracy as a similarity measure.

4.2. PRELIMINARY EXPLORATIONS 69

Distance Metrics

There are many distance metrics available such as Euclidean, Manhattan,
and Cosine [44]. When measuring the distance between point P and point
Q, Euclidean distance DistE is the length of the shortest line segment be-
tween them. DistE can be written as in Eq (4.1).

DistE(P,Q) =

√√√√ n∑
i=1

(pi − qi)2 (4.1)

In Eq (4.1), pi and qi are the Euclidean vectors starting from origin; n is
the dimension of space that P and Q occupy. Manhattan distance, also
known as city block distance, is the sum of absolute differences between
the elements of two vectors. With the same notations, Manhattan distance
DistM can be written as in Eq (4.2) below.

DistM(P,Q) =
n∑
i=1

|pi − qi| (4.2)

Finally, cosine distance is cosine of the angle between two vectors. Cosine
distance DistC is defined in Eq (4.3).

DistC(P,Q) =

∑n
i=1 piqi√∑n

i=1 p
2
i

√∑n
i=1 q

2
i

(4.3)

Figure 4.2 below illustrates an example of the distance metrics in 2D.
Euclidean distance, equal to

√
(xp − xq)2 + (yp − yq)2 in this case, is the

most intuitive one among the three as it represents the shortest distance
from P to Q in a straight line. Manhattan distance is the total distance
from P to Q along axes, or |xp − xq| + |yp − yq|. Finally, cosine distance is
simply the cosine of the angle between P and Q.

In high-dimensional spaces, data points become increasingly sparse
that common distance metrics, e.g. Euclidean, are less meaningful. The
sparsity causes data points to further differ from their neighbours. As a
result, data points become increasingly equidistant to each other, making

70 CHAPTER 4. HIT SELECTION STAGE

𝑃(𝑥𝑝, 𝑦𝑝)

𝑂𝑟𝑖𝑔𝑖𝑛

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛

𝐶𝑜𝑠𝑖𝑛𝑒 θ
𝑄(𝑥𝑞, 𝑦𝑞)

𝑋

𝑌

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠

𝐴 𝐵

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠

𝐴

𝐵

𝑇𝑟𝑢𝑒 𝐴
(𝑇𝐴)

𝑇𝑟𝑢𝑒 𝐵
(𝑇𝐵)

𝐹𝑎𝑙𝑠𝑒 𝐴
(𝐹𝐴)

𝐹𝑎𝑙𝑠𝑒 𝐵
(𝐹𝐵)

Figure 4.2: Illustrations of three popular distance metrics.

the distance information insignificant. This phenomenon is referred to as
the curse of dimensionality [44]. A logical workaround is to decrease di-
mensionality, which we employ. In addition, the lower exponent a metric
has, the better it adapts to high-dimensional spaces [1]. For example, Man-
hattan distance, being a sum of differences, has an exponent of 1, whereas
Euclidean and cosine distance have an exponent of 2. However, it should
still be a case by case decision. Thus, we leave this choice open for now as
a hyperparameter.

Indicator Prediction

The proposed comparison scheme uses an algorithm to predict an indica-
tor for each input image, referred to as a target in this section. This indi-
cator is an educated guess of the image group the target comes from. To
make such a guess, we select a fixed number of neighbour vectors closest
to the target in terms of a distance metric. The nearest neighbours, and
their distances to the target, are inputs of the algorithm. This algorithm
can be described as follows.

1. Input: any two groups of vectors.

4.2. PRELIMINARY EXPLORATIONS 71

2. Mark the two input groups as group A and group B, and record this
true indicator for each input vector.

3. For each vector from either group, i.e. the target, find its K nearest
neighbours among the two groups with regard to a distance metric
of choice.

4. Record the true indicators and the distances from the target for the
nearest neighbours.

5. Calculate the sum of squared distances SA for the nearest neighbours
from group A.

6. Calculate the sum of squared distances SB for the nearest neighbours
from group B.

7. Compare SA and SB. If SA is smaller, the predicted indicator for this
target is A; otherwise, the predicted indicator is B.

8. Output: a predicted group indicator for each input vector.

Figure 4.3 shows a simple 2D example in which there are four vectors
from groupA (green) and four vectors from groupB (red). SupposeK = 3

and the distance metric of choice is Euclidean. For a specific target vector
from group B, as shown in Figure 4.3, we select three neighbours closest
to the target in terms of Euclidean distance. In summary, one group B

neighbour with distance 2, and two group A neighbours with distances 4
and 5 respectively. SA = 42 + 52 = 41. SB = 22 = 4. SB is smaller; thus, the
target is given a predicted indicator B.

The number of nearest neighbours directly affects prediction accuracy.
Therefore it is treated as a hyperparameter. Moreover, fast queries of near-
est neighbours has been enabled by powerful similarity search tools such
as Faiss [46]. It only takes seconds to run for an entire data set. The pre-
dicted indicators and the true indicators are collected to produce a simi-
larity measure. This process is detailed below.

72 CHAPTER 4. HIT SELECTION STAGE

𝐵(𝑥𝐵, 𝑦𝐵)

𝑇𝑎𝑟𝑔𝑒𝑡

5
4

2

𝐺𝑟𝑜𝑢𝑝 𝐴

𝐺𝑟𝑜𝑢𝑝 𝐵

Figure 4.3: An example demonstrating indicator selection.

Similarity Measure

Following indicator prediction, we calculate a classification accuracy based
on the predicted indicators and the real indicators. Figure 4.4 shows a
confusion matrix used in calculating a classification accuracy. When a pre-
dicted indicator matches the actual one, it counts as a true A or a true B.
Otherwise, it counts as a false A or a false B. The balanced accuracy is
given by Eq. (4.4).

Balanced accuracy = (
TA

TA+ FA
+

TB

TB + FB
)÷ 2× 100% (4.4)

An accuracy close to 50% suggests a close resemblance between the
vectors in group A and those in group B. If the vectors are different, the
algorithm would be able to distinguish where a vector comes from. Con-
sequently, the majority of predictions would be TA’s or TB’s and the ac-

4.2. PRELIMINARY EXPLORATIONS 73

curacy would be close to 100%. This accuracy serves as an effective and
intuitive similarity measure.

The comparison scheme is tested later in this chapter.

𝐴(𝑥𝐴, 𝑦𝐴)

𝑂𝑟𝑖𝑔𝑖𝑛

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛

𝐶𝑜𝑠𝑖𝑛𝑒
𝐵(𝑥𝐵

𝑋

𝑌

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠

𝐴 𝐵

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠

𝐴

𝐵

𝑇𝑟𝑢𝑒 𝐴
(𝑇𝐴)

𝑇𝑟𝑢𝑒 𝐵
(𝑇𝐵)

𝐹𝑎𝑙𝑠𝑒 𝐴
(𝐹𝐴)

𝐹𝑎𝑙𝑠𝑒 𝐵
(𝐹𝐵)

Figure 4.4: A confusion matrix for calculating accuracy.

4.2.2 Convolutional Autoencoder

In this section, we discuss some explorations about convolutional autoen-
coder. Background of convolutional autoencoders is discussed in Section
2.6. Considering that the windows of cells are not labelled, the explo-
rations conducted in this section rely on a well presented labelled data set
of handwritten digits — MNIST [57]. MNIST contains around 70000 hand-
written samples of numbers from 0 to 9. The images have dimensions
28*28*1. The two data sets, windows of cells and MNIST, are strikingly
similar. Both of them are organised in groups and in similar formats —
they are all squared images with darker content at the centre surrounded

74 CHAPTER 4. HIT SELECTION STAGE

by a white background. The groups of digits can well imitate the groups
of drugs, where some are more similar than others.

Figure 4.5: Evolution of reconstruction losses with different activation
functions. While all activation functions converge eventually, fast conver-
gence saves training time and is preferred. Hyperparameters: 2 convolu-
tional layers in encoder, 16 filters in the first convolutional layer

Figure 4.5 shows how activation functions affect training time. We
trained four convolutional autoencoders with the same 5000 samples of
handwritten ’5’ in a preliminary test run. The hyperparameters, as dis-
cussed in Section 2.6.3, were 2 layers and 16 filters. In addition, training
samples were augmented slightly to include randomness in the training
set, a technique called online augmentation [86]. The augmentation ran-
domly selected samples from the training set. As a result, each training

4.2. PRELIMINARY EXPLORATIONS 75

cycle contained 128 batches of 32 samples instead of an entire epoch. As
discussed in Section 2.5.2, ReLU helps tackle the vanishing gradient prob-
lem. However, ReLU being linear reduced the network’s ability to learn
patterns fast. Sigmoid, on the other hand, was the first to converge. To
achieve a balance, we chose ReLU as the activation function except for the
last layer, where we used sigmoid. The combination of ReLU and sigmoid
had a similar short convergence time as sigmoid while resisting vanishing
gradient. Next we look at how other hyperparameters that directly affect
the reconstruction, keeping activation functions fixed.

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐷𝑒𝑐𝑜𝑑𝑒𝑟

64 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 32 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 16 𝑓𝑖𝑙𝑡𝑒𝑟𝑠

4 𝑙𝑎𝑦𝑒𝑟𝑠

3 𝑙𝑎𝑦𝑒𝑟𝑠

2 𝑙𝑎𝑦𝑒𝑟𝑠

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

Figure 4.6: Reconstruction examples using different convolutional autoen-
coder architectures. The varying hyperparameters are the number of con-
volutional layers in the encoder, and the number of filters in the first con-
volutional layer. Activation function of choice is ReLU+sigmoid.

Figure 4.6 shows some reconstructions of the same original image of
’5’ using nine different convolutional autoencoder architectures. It is clear
that filter number and layer number affect the reconstruction significantly.
Intuitively, as the number of filters increases, a convolutional neural net-

76 CHAPTER 4. HIT SELECTION STAGE

work can learn more features. In the meantime, as the number of layers
increases, the features learned can be more complex. Nevertheless, more
layers and filters bring in more trainable parameters and therefore require
more training samples. No enough trainable parameters, on the other
hand, lead to poor performance. Looking across the columns in Figure
4.6, 16 filters are not enough for a 4-layer encoder. 32 filters and 64 fil-
ters provide better results. Looking vertically, 2-layer architectures seem
to perform well. However, there is a pitfall in selecting an autoencoder ar-
chitecture where the bottleneck carries equal or more information than the
original image. As discussed in Section 2.5.3, we need an information bot-
tleneck for dimensionality reduction. The bottleneck is related to pooling
layers. In this exploration, 2-32 and 2-64 did not force a bottleneck. Con-
sequently, these two architectures are not suitable. 4-16 and 4-32 had a
bottleneck that was too small in terms of information volume, resulting in
poor reconstructions. For another data set, however, this bottleneck may
be just enough.

This exploration shows that layer number and filter number should
be situational choices based on the complexity, size, and available data of
input. Next, we explore the functionality of convolutional autoencoders.
The architecture of autoencoders, as discussed in Section 2.5, is in an hour-
glass shape. We gradually decrease the number of filters in the encoder
(halve at each consecutive layer), and mirror the encoder to construct a
decoder. As a result, the filter problem is simplified. We only need to
determine the filter number in the first convolutional layer.

Figure 4.7 displays some reconstruction examples from the test data
set. The convolutional autoencoder, trained by digit ’5’ only, tried to morph
other digits into a hybrid form similar to the training data. The reconstruc-
tion loss for ’5’ is logically the smallest. If a digit is not ’5’, e.g. ’3’, the
morphing creates a difference between the original and the reconstructed
image, increasing the reconstruction loss. We can see the reconstructed ’3’
becomes a ’5’ in Figure 4.7. One would presume that reconstruction loss

4.2. PRELIMINARY EXPLORATIONS 77

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐷𝑒𝑐𝑜𝑑𝑒𝑟

64 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 32 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 16 𝑓𝑖𝑙𝑡𝑒𝑟𝑠

4 𝑙𝑎𝑦𝑒𝑟𝑠

3 𝑙𝑎𝑦𝑒𝑟𝑠

2 𝑙𝑎𝑦𝑒𝑟𝑠

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

Figure 4.7: Reconstruction examples of MNIST digit ’3’, ’5’, ’0’, ’1’. The
convolutional autoencoder was trained solely on the digit ’5’. Hyperpa-
rameters: 2 convolutional layers in encoder, 16 filters in the first convolu-
tional layer

increases as a digit bears less resemblance to ’5’. This presumption, how-
ever, is not true. The original and reconstructed images of ’1’, for example,
are very similar, resulting in a small reconstruction loss.

Convolutional autoencoders on their own, or with additional fully con-
nected layers at the end, can be used for classification purposes utilising
reconstruction loss. Nevertheless, the results are shown to be poor. The
fact that the basic shapes and orientation are retained in Figure 4.7 sug-
gests that the encoder did an excellent job condensing an original image
into distilled representations. The decoder, however, tended to overfit
training data. This theory is later confirmed in Section 4.2.4.

In summary, the convolutional autoencoder on its own is a potent di-
mensionality reduction tool but not much else. As a classifier, its accuracy
would not be good enough.

78 CHAPTER 4. HIT SELECTION STAGE

4.2.3 Hyperparameters Selection with GEE

Hyperparameters selection is a multi-step process. The proposed pipeline
has several hyperparameters to be defined. For example, the hyperparam-
eters in the convolutional autoencoder are: convolutional layer number in
the encoder, filter number in the first convolutional layer, activation func-
tion, and batch size. In addition, there are two more hyperparameters
in the comparison scheme: distance metric and number of nearest neigh-
bours. Some of these are already selected based on literature reviews and
explorations described in Section 2.5.4 and Section 4.2.2. Table 4.1 sum-
marises the hyperparameters and the intended choices in this pipeline.

Table 4.1: The choices of hyperparameters for the MNIST data set.

Component Hyperparameter Choice
Conv. autoencoder Layer number To be defined
Conv. autoencoder Filter number To be defined
Conv. autoencoder Activation function ReLU+sigmoid
Conv. autoencoder Batch size 32

Comparison scheme Distance metric To be defined
Comparison scheme Nearest neighbours number To be defined

We use generalised estimating equations (GEE), discussed in Section
2.3, to select four hyperparameters: layer number, filter number, distance
metric, and nearest neighbour number. These hyperparameters are cate-
gorical. For example, 4 layers are not exactly twice as good as 2 layers. The
hyperparameter selection is a composite process. We aim to select a set of
hyperparameters that helps produce higher classification accuracies.

To simulate the hit selection problem, we divide the MNIST data set
into 20 equal-size groups — two for each digit. Images within the same
group are associated with the same digit, the identity of which is not dis-
closed. The idea is to select 1 of these 20 groups as a negative control, then
select the groups that are significantly different from negative control us-

4.2. PRELIMINARY EXPLORATIONS 79

ing a comparison scheme. At the end of this exploration, we can validate
the results with their true identity. Table 4.2 summarises these 20 groups.
Group A is the negative control.

Table 4.2: Summary of the 20 image groups from the MNIST data set.

Group Samples Label Group Samples Label
A 3000 ’5’ K 3000 Unknown
B 3000 Unknown L 3000 Unknown
C 3000 Unknown M 3000 Unknown
D 3000 Unknown N 3000 Unknown
E 3000 Unknown O 3000 Unknown
F 3000 Unknown P 3000 Unknown
G 3000 Unknown Q 3000 Unknown
H 3000 Unknown R 3000 Unknown
I 3000 Unknown S 3000 Unknown
J 3000 Unknown T 3000 Unknown

We need a negative control and a mild positive control to select the
best set of hyperparameters for the input data. The positive control can be
selected using the comparison scheme introduced in Section 4.2.1. It does
not need to be a strong negative control. Anything mildly dissimilar will
suffice, no matter what distance metric or number of nearest neighbours
we use. In this case, our first try — group B — has a classification accu-
racy of 95.3% (Manhattan, K = 3). Thus, group B is good enough to be a
mild positive control. (In hindsight, 95.3% was one of the lowest out of 19
groups, and that was before feature extraction. A solid piece of evidence
showing the robustness of the comparison scheme.) 300 samples from the
negative control, i.e. group A, are set aside for testing. This 300 samples
serve as testing samples.

The next step is to train several convolutional autoencoders with dif-
ferent sets of hyperparameters. The training data set can be a random

80 CHAPTER 4. HIT SELECTION STAGE

selection of the image groups. For example, we randomly select K, M, T,
plus the negative control A and mild positive control B. The neural net-
work does not have any classification function at all, only dimensionality
reduction. Nonetheless, it is essential to diversify the training data set to
increase generalisability. Limited by length, we do not show the training
details here.

Next, we select 300 independent sample groups from group A and B.
Each sample group is randomly selected without replacement and con-
tains 300 unique samples from group A and 300 unique samples from
group B. Two sample groups are considered independent if the selection
method is independent [76]. Therefore, while we only have 5700 unique
samples total in group A and B (300 from group A are set aside), we make
up 300 independent and unique combinations of 600 handwritten sam-
ples.

In the final step, we select the optimal hyperparameters. One of the
trained convolutional autoencoders is assigned to each sample group and
perform feature extraction, i.e. extract a condensed representation for each
sample using a convolutional autoencoder. Then, we compare the con-
densed representations in each sample group with the testing samples us-
ing a randomly selected distance metric. 10 comparisons are performed
for each sample group — five nearest neighbour choices (1, 3, 5, 7, 9) and
two group choices (A and B) — resulting in 3000 classification accuracies.
This accuracy is discussed in Section 4.2.1. Each pair of accuracies (from
group A and group B) are then translated to a decision score using Eq.
(4.5). The decision scores are the correlated outcomes for GEE models.

S = |50%−MA|+ |100%−MB| (4.5)

In Eq. (4.5), S is the decision score, MA is the classification accuracy ob-
tained by comparing group A samples with the testing samples, MB is the
classification accuracy obtained by comparing group B samples with the
testing samples. As discussed in Section 4.2.1, 50% and 100% are the ideal

4.2. PRELIMINARY EXPLORATIONS 81

values for MA and MB respectively. Low decision scores, therefore, are
preferable.

By backward elimination, described in Section 2.3.4, we arrive at an
optimal GEE model for the decision scores. Eq. (4.6) defines this model.

Si,K = β0 +βFfi +βLli +βMmi
+βNK +βFLfi,li +βFMfi,mi

+βFNfi,K +βLMli,mi
+βLNli,K +βMK

mi,K
+

βFLMfi,li,mi
+ βNLMK,li,mi

+ βFNMfi,K,mi
+ βFLNfi,li,K

+ βFLMN
fi,li,mi,K

(4.6)

In Eq. (4.6), all predictors are categorical. For each sample group i, i =

1, 2, . . . , 300, Si,K is the decision score for K nearest neighbours, K ∈ {1, 3,
5, 7, 9}; fi represents the filter number choice for sample group i, fi ∈
{16, 32, 64}; li represents the layer number choice, li ∈ {2, 3, 4}; mi repre-
sents the distance metric choice, mi ∈ {Euclidean, Manhattan, Cosine}.
The constraints are: any β that includes at least one of the subscripts
fi = 16, li = 2, mi = Euclidean, K = 1, is equal to zero.

This GEE model has an identity link function. Therefore, normality in
residuals would suggest that GEE assumptions are all met. Using Figure
4.8, we conclude that normality is met moderately. The mean of residu-
als (-0.000386) is very close to zero and the standard deviation (0.0121) is
relatively small, indicating a good fit.

Figure 4.9 displays the model predictions, Decision scores close to zero
indicates the set of hyperparameters is more suitable for this particular
data set. The lowest decision score 0.0742 belongs to a combination of 4
layers, 64 filters, Manhattan distance, and 5 nearest neighbours. The five
best sets of hyperparameters are summarised in Table 4.3.

Although the five best sets of hyperparameters are not statistically dif-
ferent from each other at a significance level of 5% (method discussed in
Section 2.3.5), the 2-layer 64-filter architectures do not force an informa-
tion bottleneck for the MNIST data set. This is because the MNIST data
set only has one colour channel. Therefore, the second best combination is
4 layers, 64 filters, cosine distance, and 9 nearest neighbours.

82 CHAPTER 4. HIT SELECTION STAGE

Table 4.3: Five best sets of hyperparameters for the MNIST data set.

Layer Filter Distance metric Nearest neighbours Decision score
4 64 Manhattan 5 0.0742
2 64 Euclidean 3 0.0760
2 64 Euclidean 7 0.0761
2 64 Euclidean 9 0.0786
4 64 Cosine 9 0.0788

Figure 4.8: Visual inspection for normality in residuals for a GEE model
with identity link function.

4.2. PRELIMINARY EXPLORATIONS 83

Figure 4.9: Visual comparison of decision scores using GEE.

84 CHAPTER 4. HIT SELECTION STAGE

4.2.4 Hit Selection

Finally, with the help from a convolutional autoencoder, we can select hits
using the comparison scheme. The choices of hyperparameters are sum-
marised in Table 4.4.

Table 4.4: The choices of hyperparameters for the MNIST data set (com-
plete).

Component Hyperparameter Choice
Conv. autoencoder Layer number 4
Conv. autoencoder Filter number 64
Conv. autoencoder Activation function ReLU+sigmoid
Conv. autoencoder Batch size 32

Comparison scheme Distance metric Manhattan
Comparison scheme Nearest neighbours number 5

As discussed in Section 4,2,3, image groups B-T are compressed us-
ing the convolutional autoencoder (CAE) described. We then compare the
condensed representations of each image group with group A, the neg-
ative control. Results are shown in Table 4.5. Classification accuracy is
all over 99% for non-’5’. For another group of digit ’5’, the accuracy is
around 50%. This accuracy is an excellent similarity measure for obvi-
ous reasons. Furthermore, we now know that the convolutional autoen-
coder was trained on digits ’3’, ’2’, ’5’, and ’8’ only. It had never seen the
other six digits, yet it was able to distinguish non-’5’ with exceptional lev-
els of accuracy. This exploration shows that convolutional autoencoders
as dimensionality reduction tools are highly generalisable to unseen data,
given that the unseen data are in a similar format or style. This also sug-
gests that the encoder component is far less susceptible to overfitting than
the decoder component (issue discussed in Section 4.2.2). Moreover, the
classification accuracy of group A and B is 95.3% without CAE, and 99.3%
aided by CAE. This suggests feature extraction boosts accuracy signifi-

4.2. PRELIMINARY EXPLORATIONS 85

cantly.

Table 4.5: Similarities between image groups and the negative control.

Group Accuracy Label revealed Group Accuracy Label revealed
A N/A ’5’ K 0.990 ’3’
B 0.993 ’8’ L 0.992 ’9’
C 0.994 ’6’ M 0.998 ’2’
D 0.995 ’1’ N 0.501 ’5’
E 0.992 ’8’ O 0.995 ’1’
F 0.996 ’0’ P 0.995 ’7’
G 0.995 ’4’ Q 0.995 ’7’
H 0.990 ’3’ R 0.994 ’4’
I 0.993 ’6’ S 0.995 ’0’
J 0.993 ’9’ T 0.998 ’2’

In a broader sense, this novel CAE-aided comparison scheme can serve
as an effective unsupervised clustering tool for new samples. The pro-
posed comparison scheme can work on its own. It is not a neural net-
work. However, when feature extraction is performed by a convolutional
autoencoder (CAE) before classification, accuracy goes up. Considering
that the CAE only serves as a dimensionality reduction tool, it requires
significantly less training samples than other neural networks with addi-
tional functionality. We conduct an experiment using the MNIST data set.
Three clustering tools are used to classify new handwritten samples into
unknown clusters. Table 4.6 shows that the proposed comparison scheme
outperforms other common clustering tools such as support vector ma-
chine (SVM) [92] and deep adaptive clustering (DAC) [12] by a large mar-
gin in terms of overall performance. Due to limited length, the other tools
are not discussed in this thesis. The training information displayed for the
proposed scheme is for CAE only.

We used the cross-validation method to calculate a balanced accuracy

86 CHAPTER 4. HIT SELECTION STAGE

Table 4.6: The CAE-aided comparison scheme outperforms common un-
supervised clustering tools for the MNIST data set.

SVM DAC DAC Proposed scheme
Training set 30000 30000 21000 (choose 7) 21000 (choose 7)

Test set 30000 30000 30000 30000
Training time 4min 42min 30min 4min

Evaluation time 30s 5s 5s 50s
Binary accuracy 83.2% 98.6% 78.1% 99.6%

Multi-class accuracy N/A 97.5% 62.3% 97.1%

for unsupervised clustering. Seven out of ten digits were randomly cho-
sen to simulate a scenario where some of the test data were new to the
model. Compared with SVM and DAC, the proposed scheme required far
less training time yet produced a much higher balanced accuracy. This is
because the proposed scheme only used training for dimensionality reduc-
tion. More sophisticated functionality would have required more training
time. Furthermore, both SVM and DAC required careful tuning of their
hyperparameters. In comparison, the proposed scheme tuned hyperpa-
rameters automatically using statistical modelling. DAC achieved excel-
lent results when test data were known clusters. However, its accuracy
dropped drastically with unseen test data. The proposed scheme, on the
other hand, was excellent in both scenarios. It is safe to say that the pro-
posed scheme outperformed the other neural networks by a wide margin.

4.3 Hit Selection Design

This section provides a concise and final design of the hit selection stage.
Figure 4.10 outlines the steps taken in hit selection. Considerations behind
the design are included in Section 4.2.

4.3. HIT SELECTION DESIGN 87

Hit Selection

Processed image

Image subset

Comparison
Scheme

Drug shortlist

Dimensionality
Reduction

Convolutional
Autoencoder

Generalised
Estimating
Equations

Hyperparameters
Selection

Figure 4.10: Detailed steps in the hit selection stage.

Control Selection

1. Select a mild positive control using a novel comparison scheme dis-
cussed in Section 4.2.1. Anything moderately different from negative
control will suffice.

2. Set aside a small testing group of samples from negative control
(DMSO) for hyperparameters selection.

Hyperparameters Selection

1. Train several convolutional autoencoders with various hyperparam-
eters on a small subset of input data.

2. Select 300 independent sample groups from the negative control and
the mild positive control.

3. Use different sets of hyperparameters as treatments, then compare
the sample groups with the testing group in the comparison scheme.

4. Collect classification accuracies and use them as similarity measures
to calculate decision scores.

88 CHAPTER 4. HIT SELECTION STAGE

5. Construct a GEE model to predict the most suitable set of hyperpa-
rameters.

Hit Selection

1. Apply dimensionality reduction to the processed images using a con-
volutional autoencoder with the selected hyperparameters.

2. Compare condensed representations of drug-treated cells and DMSO-
treated cells in the comparison scheme.

3. Select a similarity threshold for the hits.

4. Select hits based on the similarity measure.

5. Collect a subset of images associated with hit compounds for the
next stage.

4.4 Results and Discussion

According to design (Section 4.3), we first selected a mild positive con-
trol using the proposed comparison scheme without dimensionality re-
duction. This process took 39 seconds for each trial. In the twelfth trial,
drug 13 with a classification accuracy of 73% was selected as the mild pos-
itive control.

In hyperparameters selection, the optimal GEE model (discussed in
Section 2.3) selected by backward elimination (discussed in Section 2.3.4)
can be described as Eq (4.7). This model uses an identity link function and
contains all main effects and interactions. We were not interested in de-
ciphering the relationships between variables but only selecting the best
set of hyperparameters. Therefore, it was acceptable to have a relatively
complicated model.

4.4. RESULTS AND DISCUSSION 89

Si,K = β0 +βFfi +βLli +βMmi
+βNK +βFLfi,li +βFMfi,mi

+βFNfi,K +βLMli,mi
+βLNli,K +βMK

mi,K
+

βFLMfi,li,mi
+ βNLMK,li,mi

+ βFNMfi,K,mi
+ βFLNfi,li,K

+ βFLMN
fi,li,mi,K

(4.7)

In Eq. (4.6), all predictors are categorical. For each sample group i, i =

1, 2, . . . , 300, Si,K is the decision score for K nearest neighbours, K ∈ {1, 3,
5, 7, 9}; fi represents the filter number choice for sample group i, fi ∈
{16, 32, 64}; li represents the layer number choice, li ∈ {2, 3, 4}; mi repre-
sents the distance metric choice, mi ∈ {Euclidean, Manhattan, Cosine}.
The constraints are: any β that includes at least one of the subscripts
fi = 16, li = 2, mi = Euclidean, K = 1, is equal to zero. Normality of
residuals can be examine using Figure 4.11.

As observed, the normality assumption is moderately met. The resid-
uals have a mean of -0.000612 and a standard deviation of 0.0115. A mean
close to zero and a small standard deviation combined indicate a good fit.
Therefore, all GEE assumptions are met.

Table 4.7 summarises the best set of hyperparameters selected by the
GEE model. This set had a decision score of 0.109, the best of combina-
tions. Interestingly, the most suitable number of layers was 3 for the cell
data set and was 4 for the MNIST data set. This choice can be partly ex-
plained by the fact that a 3-layer 64-filter architecture compresses input to
25% of the original size, while a 4-layer 64-filter architecture compresses
input to 4% of the original size. The compression rate for a 4-layer archi-
tecture is acceptable for a simpler data set such as MNIST, but too high
for a complex data set such as the cell images. Nonetheless, 25% of the
original size in terms of storage space is impressive enough. This process
further reduced the total storage size to 28 GB, much smaller than the un-
processed raw image data set (over 500 GB).

The convolutional autoencoder was trained on windows of cells associ-
ated with 15 different drugs, including negative control and mild positive
control, to ensure diversity in training samples. The training set included

90 CHAPTER 4. HIT SELECTION STAGE

Figure 4.11: Visual inspection for normality in residuals for a GEE model
with identity link function.

101763 windows, whereas the validation set included 15420 windows —
a ratio of 6.6 to 1. Figure 4.12 displays the evolution of losses. The train-
ing process was smooth in general, and it took 26 minutes to converge.
Windows were augmented online before training. The augmentation al-
gorithm randomly selected samples from the training set and randomly
rotated them at an angle between -20 to 20 degrees. This was to increase
generalisability. As a result, each training cycle contained 128 batches of
32 samples instead of an entire epoch. Early stopping was in place to halt
the training when convergence was reached.

4.4. RESULTS AND DISCUSSION 91

Table 4.7: The choices of hyperparameters for the cell image data set (com-
plete).

Component Hyperparameter Choice
Conv. autoencoder Layer number 3
Conv. autoencoder Filter number 64
Conv. autoencoder Activation function ReLU+sigmoid
Conv. autoencoder Batch size 32

Comparison scheme Distance metric Manhattan
Comparison scheme Nearest neighbours number 5

Figure 4.12: Evolution of reconstruction losses for the training set and the
validation set. Both losses converge at around 130 training circles.

92 CHAPTER 4. HIT SELECTION STAGE

After feature extraction, we used the proposed comparison scheme to
compare the negative control (DMSO) and other drugs, then calculate clas-
sification accuracies. The classification accuracies can be considered as a
similarity measure, where an accuracy close to 50% indicates high levels
of similarity and an accuracy close to 100% indicates low levels of simi-
larity. Figure 4.13 shows the distribution of the similarity measures. The
majority of drugs are considerably similar to the negative control. If we
use a threshold of 0.8, 5 drugs are shortlisted; a threshold of 0.75 shortlists
9 drugs; 0.7 shortlists 16 drugs. We considered all three scenarios. Table 4.8
shows the three shortlists and the corresponding classification accuracies.
The condensed representations associated with the shortlisted drugs pro-
ceed to the next stage in the pipeline — clustering analysis — to identify
groups of drugs that induce similar phenotypic changes.

Figure 4.13: Distribution of similarity measures.

4.4. RESULTS AND DISCUSSION 93

Table 4.8: Drug codes in each shortlist based on different thresholds.
Acc.=Classification accuracy

Shortlist(0.8) Acc. Shortlist(0.75) Acc. Shortlist(0.7) Acc.
27 0.917 27 0.917 27 0.917
63 0.894 63 0.894 63 0.894
252 0.842 252 0.842 252 0.842
87 0.814 87 0.814 87 0.814
86 0.808 86 0.808 86 0.808

132 0.788 132 0.788
115 0.767 115 0.767
44 0.760 44 0.760

209 0.755 209 0.755
199 0.744
177 0.740
241 0.738
39 0.736
13 0.733
88 0.728

212 0.718

94 CHAPTER 4. HIT SELECTION STAGE

4.5 Chapter Summary

This chapter described the design and the implementation of hit selection
steps. We managed to further compress cell windows to a total storage size
of 28 GB using a convolutional autoencoder. This was a distilled version
of the original raw data over 500 GB, retaining the most representative fea-
tures. Furthermore, we compared features of the negative control (DMSO)
with those of each drug. The result was a shortlist of 5 drugs that were the
most capable of inducing significant phenotypic changes. Based on the
threshold chosen, the shortlist could extend to 9 or 16 drugs. Next, we aim
to identify clusters of drugs in the shortlist using their image features.

Chapter 5

Cluster Analysis Stage

This chapter discusses the last stage in the pipeline — cluster analysis. The
content of this chapter includes an overview, preliminary explorations, the
final design, results, and a brief summary.

5.1 Cluster Analysis Overview

Cluster analysis is the last stage in the pipeline, as shown in Figure 5.1.
This stage is very similar to hit selection. In hit selection, condensed rep-
resentations of cells (i.e. the extracted features) were compared with the
negative control. Whereas in cluster analysis, representations associated
with the shortlisted drugs are compared with each other. The result is a
distance matrix showing similarity measures of each pair of shortlisted
drugs. Due to the proven generalisability of the convolutional autoen-
coder as a dimensionality reduction tool, as discussed in Section 4.2.4, we
can use the trained autoencoder for new unseen samples. Thus, no new
training is required. A novel comparison scheme introduced in Section
4.2.1 produces all the similarity measures. The desired outputs at the end
of this stage are clusters of drugs that have the potential to be repurposed.

Two issues are addressed in this stage:

95

96 CHAPTER 5. CLUSTER ANALYSIS STAGE

Data Preprocessing

Hit Selection

Cluster Analysis

Raw image

Processed image

Image subset

Drug shortlistDrug groups

Pipeline

Figure 5.1: Cluster analysis is the last stage in the proposed pipeline.

1. Compare shortlisted drugs with each other and obtain a distance ma-
trix;

2. Perform hierarchical clustering to obtain groups of drugs that have
the potential to be repurposed.

5.2 Preliminary Explorations

This section describes some of the necessary explorations of data and meth-
ods. The explorations provide a better demonstration of the task as well as
a collection of considerations behind the choices made in the final design.

5.2. PRELIMINARY EXPLORATIONS 97

5.2.1 Distance Matrix

The first step in cluster analysis is to obtain a distance matrix with all the
similarity measures. This process is identical to the one we described in
Section 4.2.4, except that the convolution autoencoder is already set up
and trained. As a result, this stage is the most straightforward one in the
pipeline. We use the comparison scheme to calculate the similarity mea-
sures. To better demonstrate the process, we again use the example from
Section 4.2.4. From Section 4.2.4, we have a shortlist of 18 image groups
significantly different from the negative control (i.e. the digit ’5’). Next, we
calculate the classification accuracy for each pair of the shortlisted image
groups. Figure 5.2 shows the distance matrix obtained.

Figure 5.2: Distance matrix for the shortlisted image groups that are dif-
ferent from digit ’5’, MNIST.

Considering that the digit labels were only revealed at the end, the
comparison scheme did an excellent job classifying the same digits to-
gether. As shown in Figure 5.2, image groups associated with the same

98 CHAPTER 5. CLUSTER ANALYSIS STAGE

digit have a classification accuracy of around 50%, indicating high levels of
similarity. In addition, image groups associated with different digits have
a classification accuracy of around 100%, indicating low levels of similar-
ity. Furthermore, the classification process only took 19 seconds because
we already had the features extracted from the hit selection stage. The
classification accuracy and short process time were solid evidence that the
comparison scheme worked as intended.

5.2.2 Hierarchical Clustering

Hierarchical clustering is a simple process that groups similar objects to-
gether one at a time based on a numerical similarity measure. For exam-
ple, the most similar pair is clustered first, then the similarity measure for
this cluster becomes the average of its elements’ similarity measures. This
step repeats until all objects are clustered into one group eventually. In this
pipeline, the similarity measure has always been classification accuracy.
However, we can add an additional layer of robustness to the clustering
results using the correlation of classification accuracies as the similarity
measure for clustering. Thus, instead of evaluating which pair are the
most similar, we look at which pair has the most similar pattern in their
corresponding classification accuracies with all other objects. Correlation
can be calculated by Eq. (5.1), where r is the correlation, xi’s are classifi-
cation accuracies of drug X with others, x̄ is the mean accuracy for X , yi’s
are classification accuracies of drug Y with others, ȳ is the mean accuracy
for Y .

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(5.1)

There are various packages available to automate this straightforward
process, the built-in hclust function in R is a convenient choice. Figure 5.3
shows the clustering results. A correlation of 1 indicates high levels of
correlation, while a correlation of 0 indicates low levels of correlation. For

5.2. PRELIMINARY EXPLORATIONS 99

the MNIST data set, ’4’, ’9’, and ’7’ are correlated at a very low level, ’3’
and ’8’ are correlated at a very low level.

Figure 5.3: Dendrogram of hierarchical clustering using correlation (aver-
age).

There are various packages available to automate this straightforward
process, the built-in hclust function in R is a convenient choice. Figure
5.3 shows the clustering results. A correlation of 1 indicates high levels
of correlation, while a correlation of 0 indicates low levels of correlation.
For the MNIST data set, image groups associated with the same digit are
clustered together with a correlation around 1. This suggests impressive
clustering results. Moreover, ’4’, ’9’, and ’7’ are correlated at a shallow
level; ’3’ and ’8’ are correlated at a shallow level. These clustering results
align with common perceptions.

100 CHAPTER 5. CLUSTER ANALYSIS STAGE

5.3 Cluster Analysis Design

This section provides a concise and final design of the cluster analysis
stage. Figure 5.4 outlines the steps taken in cluster analysis. Considera-
tions behind the design are included in Section 5.2.

Image subset

Hierarchical
Clustering

Distance Matrix

Drug groups

Cluster
Analysis

Figure 5.4: Detailed steps in the cluster analysis stage.

Distance Matrix

1. Calculate classification accuracies for each pair of drugs in the short-
list, and contruct a distance matrix.

2. Calculate the correlation between drugs based on classification accu-
racies.

Hierarchical Clustering

1. Apply the built-in hclust function inR to perform clustering analysis.

2. Examine the cluster dendrogram and make grouping decisions ac-
cordingly.

5.4. RESULTS AND DISCUSSION 101

5.4 Results and Discussion

Figure 5.5 shows the distance matrix comprising classification accuracies
of each pair of drugs. This distance matrix was for the shortlist with a 0.7
threshold, one of the hit selection outputs. Each drug on this shortlist had
a classification accuracy of at least 0.7 with the negative control. Consider-
ing the classification was by pair, the accuracy for a particular pair of drugs
did not change with the number of drugs in the list. Therefore, Figure 5.5
includes the distance matrice for the other two shortlists (threshold=0.75
and 0.80) as well. We put the abbreviations of drug names instead of drug
codes because this was the final stage. Some clusters are obvious just from
looking at the distance matrix. For example, TOR and MEY have almost
identical classification accuracies.

Figure 5.5: Distance matrix for the shortlist based on classification accu-
racy.

102 CHAPTER 5. CLUSTER ANALYSIS STAGE

(a) (b)

(c)

Figure 5.6: Cluster dendrograms based on different thresholds. (a) Short-
list threshold: 0.8. (b) Shortlist threshold: 0.75. (b) Shortlist threshold: 0.7.

5.4. RESULTS AND DISCUSSION 103

Figure 5.6 shows the cluster dendrograms obtained by hierarchical clus-
tering using correlation (average). The drug groups present in the short-
list with a 0.8 threshold remain unchanged in the shortlist with a 0.75 or
0.7 threshold. We did not know the true clustering structure of the data
because there is none. There is no true answer as to which threshold to
choose. All the clustering information is useful in future clinical trials or
experiments to determine drugs that can be repurposed for new therapeu-
tic uses. However, at this stage, we can look at some latent representations
from each group and visually inspect their similarity.

First, we check the condensed representations and see if there is evi-
dence for the clustering result. Figure 5.7 and Figure 5.8 show some of
the extracted features projected from higher-dimensional latent space to
two-dimensional space using UMAP [66]. Each data point in these figures
represents a highly condensed representation of an image. These repre-
sentations are organised under each drug and coloured by the drug group
they are in. In Figure 5.7, we can clearly see separations between drug
groups. For example, the drug group in orange colour are clustered to
the lefthand side. Figure 5.8 shows distinctive groupings of data points.
Blue dots are clustered at the top, away from other drug groups, while
red dots occupy the bottom right corner. The separation suggests that the
feature extraction was a success. Research has found that Methotrexate
(AME) and Nisoldipine (NIS) are both repurposeable for treating treating
rheumatoid arthritis [24]. While cellular biology is out of the scope of this
thesis, that published research does support our findings. Next, we take a
look at the real images of cells.

Figure 5.9 shows some processed windows of cells from different drug
groups. The first two rows are from the blue drug group. We can see a sim-
ilarity between these two rows of images, a piece of visual evidence that
the comparison scheme was working in an intended way. Row three and
four are from the yellow drug group and the red drug group, respectively.
The reasoning behind this clustering is obvious. Compared with the first

104 CHAPTER 5. CLUSTER ANALYSIS STAGE

two rows, row three contains significantly larger cells. In addition, the
subcellular structures between rows three and four are quite different as
the cells in row four have smaller nuclei. Row three cells also have spikes
attached to their membranes.

5.4. RESULTS AND DISCUSSION 105

Figure 5.7: 2D projections of some extracted features. Each dot represents
a two-dimensional representation of features. Features are coloured by
drug group.

106 CHAPTER 5. CLUSTER ANALYSIS STAGE

Figure 5.8: An overview of 2D projections of some extracted features. Each
dot represents a two-dimensional representation of features. Features are
coloured by drug group.

5.5. CHAPTER SUMMARY 107

Figure 5.9: Some windows of cells from different drug groups.The first
two rows are from the blue drug group, the third row is from the yellow
drug group, the last row is from the red drug group.

5.5 Chapter Summary

This chapter described the design and the implementation of cluster anal-
ysis steps. Going in the clustering analysis, we had almost everything
ready from the hit selection stage. For example, the condensed features
were already ready. As a result, the only procedure in this stage was to

108 CHAPTER 5. CLUSTER ANALYSIS STAGE

compare the features associated with each pair of shortlisted drugs. Using
correlation of classification accuracy as a metric, we clustered the drugs
for each shortlist and produced groups of drugs that induce similar phe-
notypic changes. The objectives set in this research have been fulfilled.
Furthermore, we visually inspect the images as well as the extracted fea-
tures of the images. The inspection firmly supports the clustering results.

Chapter 6

Conclusions

This thesis involved two major research areas, including statistics and
machine learning. This thesis aimed to integrate the knowledge from
both fields to develop an image analysis pipeline for high-content data.
That goal was successfully achieved. Although the cell images were non-
labelled, we used another labelled data set (MNIST) to demonstrate the
efficiency and accuracy of the proposed pipeline. The results show that
this pipeline is superior to other neural networks in terms of overall per-
formance. Details of the comparison are included in Section 4.2.4. In par-
ticular, the proposed pipeline could achieve an unsupervised clustering
accuracy of 99.6% (cross-validation with three digits unseen during the
training phase) with just 4 minutes of training time. This was far less than
the training time for other neural networks, e.g. DAC needed 30 minutes
to achieve 78.1% accuracy. This outstanding performance arises from the
close integration of mathematics and machine learning. The highlights of
the proposed pipeline can be summarised below.

1. Simple neural network architecture;

2. Automatic tuning of hyperparameters using statistical modelling;

3. Does not require feature engineering or feature selection;

109

110 CHAPTER 6. CONCLUSIONS

4. Does not require training labels or the number of clusters;

5. Does not require re-training for unseen clusters.

We applied the pipeline to a massive high-content data set of over 500
GB. By careful data management, we were able to compress the data set
to 28 GB, around 5% of the original storage size. As a result, the con-
densed representations were much easier to maneuver and work with. Us-
ing the proposed pipeline, we produced three shortlists containing drugs
that have the potential to be repurposed for new therapeutic uses. The
proposed pipeline reduced high-content data processing time from days
to just hours and at a higher accuracy. Details of the results are presented
in Section 5. Our clustering results align with some published studies,
described in Section 5.4. Ultimately, our work could help discovery new
therapeutic uses for existing drugs.

Last but not least, we reviewed some statistical and machine learning
techniques in Section 2, such as generalised linear models, generalised es-
timating equations, convolutional neural networks, and convolutional au-
toencoders. We looked at the conventional approaches and explored novel
methods that are faster, more robust, and more accurate. We developed a
novel comparison scheme that does not require any training yet is able to
produce accurate similarity measures for unseen data.

There is so much more to explore in the combined field of mathemat-
ics and machine learning. For example, the upgrade from convolutional
autoencoders to other more advanced dimensionality reduction tools can
further improve overall performance. Instead of making AI programs
more intelligent, we have learned that replacing AI with advanced math-
ematical algorithms would have saved more time. Model training in ma-
chine learning is a double-edged sword. On the one hand, it is effective
and carefree; on the other hand, it becomes dependent on a predefined set
of data. Sometimes, multiple training sessions are required for the neural
network to adapt to new data — not ideal for many real-world scenar-

111

ios. Therefore it is always wise to ask if the problem really needs a neural
network to begin with.

Bibliography

[1] AGGARWAL, C. C., HINNEBURG, A., AND KEIM, D. A. On the sur-
prising behavior of distance metrics in high dimensional space. In
International Conference on Database Theory (2001), Springer, pp. 420–
434.

[2] AGRESTI, A. Categorical Data Analysis, 2nd ed. John Wiley and Sons,
2002, pp. 11–13.

[3] AGRESTI, A. Statistical Methods for the Social Sciences, 5th ed. Pearson,
2018, pp. 420–422.

[4] AKRAM, M. W., LI, G., JIN, Y., CHEN, X., ZHU, C., ZHAO, X.,
KHALIQ, A., FAHEEM, M., AND AHMAD, A. Cnn based automatic
detection of photovoltaic cell defects in electroluminescence images.
Energy 189 (2019), 116319.

[5] ANDERSEN, E. B. Sufficiency and exponential families for discrete
sample spaces. Journal of the American Statistical Association 65, 331
(1970), 1248–1255.

[6] BALAKIN, K. V., SAVCHUK, N. P., AND TETKO, I. V. In silico ap-
proaches to prediction of aqueous and dmso solubility of drug-like
compounds: trends, problems and solutions. Current Medicinal Chem-
istry 13, 2 (2006), 223–241.

112

BIBLIOGRAPHY 113

[7] BENGIO, Y. Practical recommendations for gradient-based training
of deep architectures. In Neural Networks: Tricks of the Trade. Springer,
2012, pp. 437–478.

[8] BIANCHINI, M., AND SCARSELLI, F. On the complexity of neural
network classifiers: A comparison between shallow and deep archi-
tectures. IEEE Transactions on Neural Networks and Learning Systems
25, 8 (2014), 1553–1565.

[9] BOUTROS, M., HEIGWER, F., AND LAUFER, C. Microscopy-based
high-content screening. Cell 163, 6 (2015), 1314–1325.

[10] BRADSKI, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[11] CAICEDO, J. C., MCQUIN, C., GOODMAN, A., SINGH, S., AND CAR-
PENTER, A. E. Weakly supervised learning of single-cell feature em-
beddings. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2018), pp. 9309–9318.

[12] CHANG, J., AND WANG, L. Deep adaptive image clustering. In Pro-
ceedings of the IEEE International Conference on Computer Vision (2017),
pp. 5879–5887.

[13] CHEN, M., SHI, X., ZHANG, Y., WU, D., AND GUIZANI, M. Deep
features learning for medical image analysis with convolutional au-
toencoder neural network. IEEE Transactions on Big Data (2017).

[14] CHOLLET, F., ET AL. Keras, 2015. https://github.com/

fchollet/keras.

[15] COX, D. R. The regression analysis of binary sequences. Journal of the
Royal Statistical Society: Series B (Methodological) 20, 2 (1958), 215–232.

[16] CUI, J. Qic program and model selection in gee analyses. The Stata
Journal 7, 2 (2007), 209–220.

114 BIBLIOGRAPHY

[17] CUI, J., AND QIAN, G. Selection of working correlation structure and
best model in GEE analyses of longitudinal data. Communications in
Statistics—Simulation and Computation 36, 5 (2007), 987–996.

[18] CUMMING, G., AND FINCH, S. Inference by eye: confidence intervals
and how to read pictures of data. American Psychologist 60, 2 (2005),
170.

[19] DAVIDIAN, M., AND CARROLL, R. J. Variance function estimation.
Journal of the American Statistical Association 82, 400 (1987), 1079–1091.

[20] DAVIS, C. S. Statistical Methods for the Analysis of Repeated Measure-
ments. Springer, 2002, pp. 174, 274–301.

[21] DOMINGOS, P. A few useful things to know about machine
learning, 2012. Last accessed on 2021-07-1, https://homes.cs.
washington.edu/˜pedrod/papers/cacm12.pdf.

[22] DU, B., XIONG, W., WU, J., ZHANG, L., ZHANG, L., AND TAO, D.
Stacked convolutional denoising auto-encoders for feature represen-
tation. IEEE Transactions on Cybernetics 47, 4 (2016), 1017–1027.

[23] EVERITT, B. S., AND SKRONDAL, A. The Cambridge Dictionary of
Statistics, 4th ed. Cambridge University Press, 2010, pp. 419–421.

[24] FRAENKEL, L., BATHON, J. M., ENGLAND, B. R., ST. CLAIR, E. W.,
ARAYSSI, T., CARANDANG, K., DEANE, K. D., GENOVESE, M., HUS-
TON, K. K., KERR, G., ET AL. 2021 american college of rheumatol-
ogy guideline for the treatment of rheumatoid arthritis. Arthritis &
Rheumatology (2021).

[25] FREEDMAN, D. A. Statistical Models: Theory and Practice, revised ed.
Cambridge University Press, 2009, pp. 22–26.

[26] FUKUSHIMA, K., AND MIYAKE, S. Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recognition.

BIBLIOGRAPHY 115

In Competition and Cooperation in Neural Nets. Springer, 1982, pp. 267–
285.

[27] GÉRON, A. Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems,
2nd ed. O’Reilly Media, 2019, pp. 4–15, 277–291.

[28] GIULIANO, K. A., CHEN, Y.-T., AND TAYLOR, D. L. High-content
screening with siRNA optimizes a cell biological approach to drug
discovery: defining the role of p53 activation in the cellular response
to anticancer drugs. Journal of Biomolecular Screening 9, 7 (2004), 557–
568.

[29] GIULIANO, K. A., DEBIASIO, R. L., DUNLAY, R. T., GOUGH, A.,
VOLOSKY, J. M., ZOCK, J., PAVLAKIS, G. N., AND TAYLOR, D. L.
High-content screening: A new approach to easing key bottlenecks
in the drug discovery process. Journal of Biomolecular Screening 2, 4
(1997), 249–259.

[30] GLOROT, X., BORDES, A., AND BENGIO, Y. Deep sparse rectifier neu-
ral networks. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics (2011), JMLR Workshop and Con-
ference Proceedings, pp. 315–323.

[31] GOLDSTEIN, H., AND HEALY, M. J. The graphical presentation of
a collection of means. Journal of the Royal Statistical Society: Series A
(Statistics in Society) 158, 1 (1995), 175–177.

[32] GOODFELLOW, I., BENGIO, Y., AND COURVILLE, A. Deep Learning.
MIT Press, 2016, ch. 5-15. http://www.deeplearningbook.org.

[33] GOUGH, A. H., AND JOHNSTON, P. A. Requirements, features,
and performance of high content screening platforms. High Content
Screening (2007), 41–61.

116 BIBLIOGRAPHY

[34] HALD, A. Sampling distributions under normality, 1876-1908. A His-
tory of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935
(2007), 149–156.

[35] HALL, J., AND MARS, P. Limitations of artificial neural net-
works for traffic prediction in broadband networks. IEE Proceedings-
Communications 147, 2 (2000), 114–118.

[36] HANEY, S. A. High Content Screening: Science, Techniques and Applica-
tions. John Wiley and Sons, 2008, pp. 1–15.

[37] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer
vision and pattern recognition (2016), pp. 770–778.

[38] HEALEY, J. F. The Essentials of Statistics: A Tool for Social Research,
2nd ed. Cengage Learning, 2009, p. 177–205.

[39] HIN, L.-Y., AND WANG, Y.-G. Working-correlation-structure identi-
fication in generalized estimating equations. Statistics in Medicine 28,
4 (2009), 642–658.

[40] HINKELMANN, K. Neural networks, 2017. Last accessed on
2021-07-1, http://didattica.cs.unicam.it/lib/exe/

fetch.php?media=didattica:magistrale:kebi:ay_1718:

ke-11_neural_networks.pdf.

[41] HINTON, G. E., AND SALAKHUTDINOV, R. R. Reducing the dimen-
sionality of data with neural networks. Science 313, 5786 (2006), 504–
507.

[42] HOCHREITER, S., BENGIO, Y., FRASCONI, P., SCHMIDHUBER, J.,
ET AL. Gradient flow in recurrent nets: The difficulty of learning
long-term dependencies, 2001.

BIBLIOGRAPHY 117

[43] ILOUGA, P. E., WINKLER, D., KIRCHHOFF, C., SCHIERHOLZ, B.,
AND WÖLCKE, J. Investigation of 3 industry-wide applied storage
conditions for compound libraries. Journal of Biomolecular Screening
12, 1 (2007), 21–32.

[44] INDYK, P., AND MOTWANI, R. Approximate nearest neighbors: To-
wards removing the curse of dimensionality. In Proceedings of the Thir-
tieth Annual ACM Symposium on Theory of Computing (1998), pp. 604–
613.

[45] IOFFE, S., AND SZEGEDY, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International
Conference on Machine Learning (2015), PMLR, pp. 448–456.

[46] JOHNSON, J., DOUZE, M., AND JÉGOU, H. Billion-scale similarity
search with gpus. ArXiv preprint arXiv:1702.08734 (2017).

[47] KALCHBRENNER, N., GREFENSTETTE, E., AND BLUNSOM, P. A con-
volutional neural network for modelling sentences. ArXiv preprint
arXiv:1404.2188 (2014).

[48] KALUARACHCHI, T., REIS, A., AND NANAYAKKARA, S. A review of
recent deep learning approaches in human-centered machine learn-
ing. Sensors 21, 7 (2021), 2514.

[49] KARPATHY, A. CS231n convolutional neural networks for visual
recognition, 2015. Last accessed on 2021-07-1, https://cs231n.
github.io/neural-networks-1/.

[50] KAUERMANN, G., AND CARROLL, R. J. A note on the efficiency of
sandwich covariance matrix estimation. Journal of the American Statis-
tical Association 96, 456 (2001), 1387–1396.

[51] KENNEY, J. F., AND KEEPING, E. S. Mathematics of Statistics, 3rd ed.,
vol. 1. Princeton, 1962, p. 252–285.

118 BIBLIOGRAPHY

[52] KHAMPARIA, A., GUPTA, D., RODRIGUES, J. J., AND DE ALBU-
QUERQUE, V. H. C. Dcavn: Cervical cancer prediction and classifica-
tion using deep convolutional and variational autoencoder network.
Multimedia Tools and Applications (2020), 1–17.

[53] KLAMBAUER, G., UNTERTHINER, T., MAYR, A., AND HOCHREITER,
S. Self-normalizing neural networks. In Advances in Neural Informa-
tion Processing Systems (2017), pp. 971–980.

[54] KUTNER, M. H., NACHTSHEIM, C. J., NETER, J., AND LI, W. Applied
Linear Statistical Models, 5th ed. McGraw-Hill/Irwin, 2005, p. 50.

[55] LAW, M. T., TRABOULSEE, A. L., LI, D. K., CARRUTHERS, R. L.,
FREEDMAN, M. S., KOLIND, S. H., AND TAM, R. Machine learning
in secondary progressive multiple sclerosis: An improved predictive
model for short-term disability progression. Multiple Sclerosis Journal–
Experimental, Translational and Clinical 5, 4 (2019), 2055217319885983.

[56] LECUN, Y., BOSER, B., DENKER, J. S., HENDERSON, D., HOWARD,
R. E., HUBBARD, W., AND JACKEL, L. D. Backpropagation applied
to handwritten zip code recognition. Neural Computation 1, 4 (1989),
541–551.

[57] LECUN, Y., AND CORTES, C. MNIST handwritten digit database,
2010. Last accessed on 2021-07-1, http://yann.lecun.com/

exdb/mnist/.

[58] LEE, J. A., UHLIK, M. T., MOXHAM, C. M., TOMANDL, D., AND

SALL, D. J. Modern phenotypic drug discovery is a viable, neoclassic
pharma strategy. Journal of Medicinal Chemistry 55, 10 (2012), 4527–
4538.

[59] LIANG, K.-Y., AND ZEGER, S. L. Longitudinal data analysis using
generalized linear models. Biometrika 73, 1 (1986), 13–22.

BIBLIOGRAPHY 119

[60] LOO, L.-H., WU, L. F., AND ALTSCHULER, S. J. Image-based multi-
variate profiling of drug responses from single cells. Nature Methods
4, 5 (2007), 445–453.

[61] MAHESH, B. Machine learning algorithms-a review. International
Journal of Science and Research (IJSR).[Internet] 9 (2020), 381–386.

[62] MASCI, J., MEIER, U., CIREŞAN, D., AND SCHMIDHUBER, J. Stacked
convolutional auto-encoders for hierarchical feature extraction. In
International Conference on Artificial Neural Networks (2011), Springer,
pp. 52–59.

[63] MASTERS, D., AND LUSCHI, C. Revisiting small batch training for
deep neural networks. ArXiv preprint arXiv:1804.07612 (2018).

[64] MCCULLAGH, P., AND NELDER, J. A. Generalized Linear Models,
2nd ed. Chapman and Hall, 1989, pp. 30–32.

[65] MCDONALD, J. H. Handbook of Biological Statistics, 3rd ed. Sparky
House Publishing, 2014, p. 203.

[66] MCINNES, L., HEALY, J., AND MELVILLE, J. Umap: Uniform man-
ifold approximation and projection for dimension reduction. arXiv
preprint arXiv:1802.03426 (2018).

[67] MIOTTO, R., LI, L., KIDD, B. A., AND DUDLEY, J. T. Deep patient:
an unsupervised representation to predict the future of patients from
the electronic health records. Scientific Reports 6, 1 (2016), 1–10.

[68] MOFFAT, J. G., VINCENT, F., LEE, J. A., EDER, J., AND PRUNOTTO,
M. Opportunities and challenges in phenotypic drug discovery: An
industry perspective. Nature Reviews Drug Discovery 16, 8 (2017), 531–
543.

[69] MOORE, D. S., NOTZ, W., AND FLIGNER, M. A. The Basic Practice of
Statistics, 5th ed. W. H. Freeman New York, 2010, pp. 400–405.

120 BIBLIOGRAPHY

[70] MYUNG, I. J. Tutorial on maximum likelihood estimation. Journal of
Mathematical Psychology 47, 1 (2003), 90–100.

[71] NELDER, J. A., AND WEDDERBURN, R. W. M. Generalized linear
models. Journal of the Royal Statistical Society: Series A (General) 135, 3
(1972), 370–384.

[72] NG, A. Machine learning and ai via brain simulations, 2013. Last ac-
cessed on 2021-07-1, https://machinelearningmastery.com/
discover-feature-engineering-how-to-engineer-features-and-how-to-get-good-at-it/.

[73] PAN, W. Akaike’s information criterion in generalized estimating
equations. Biometrics 57, 1 (2001), 120–125.

[74] PATEL, J. K., AND READ, C. B. Handbook of the Normal Distribution,
2nd ed. Marcel Dekker, 1996, pp. 19–24.

[75] PAWLOWSKI, N., CAICEDO, J. C., SINGH, S., CARPENTER, A. E.,
AND STORKEY, A. Automating morphological profiling with generic
deep convolutional networks. BioRxiv (2016), 085118.

[76] PECK, R., OLSEN, C., AND DEVORE, J. L. Introduction to Statistics and
Data Analysis, 4th ed. Cengage Learning, 2012, pp. 639–640.

[77] PERLMAN, Z. E., SLACK, M. D., FENG, Y., MITCHISON, T. J., WU,
L. F., AND ALTSCHULER, S. J. Multidimensional drug profiling by
automated microscopy. Science 306, 5699 (2004), 1194–1198.

[78] RATNER, B. Variable selection methods in regression: Ignorable prob-
lem, outing notable solution. Journal of Targeting, Measurement and
Analysis for Marketing 18, 1 (2010), 65–75.

[79] ROTNITZKY, A., AND JEWELL, N. P. Hypothesis testing of regression
parameters in semiparametric generalized linear models for cluster
correlated data. Biometrika 77, 3 (1990), 485–497.

BIBLIOGRAPHY 121

[80] RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Learning
representations by back-propagating errors. Nature 323, 6088 (1986),
533–536.

[81] RUSSELL, S., AND NORVIG, P. Artificial Intelligence: A Modern Ap-
proach, 3rd ed. Pearson Education, 2009, p. 494.

[82] SAINANI, K. The importance of accounting for correlated observa-
tions. PM&R 2, 9 (2010), 858–861.

[83] SARANGI, S., SAHIDULLAH, M., AND SAHA, G. Optimization of
data-driven filterbank for automatic speaker verification. Digital Sig-
nal Processing 104 (2020), 102795.

[84] SCHEEDER, C., HEIGWER, F., AND BOUTROS, M. Machine learning
and image-based profiling in drug discovery. Current Opinion in Sys-
tems Biology 10 (2018), 43–52.

[85] SCHULD, M., SINAYSKIY, I., AND PETRUCCIONE, F. An introduction
to quantum machine learning. Contemporary Physics 56, 2 (2015), 172–
185.

[86] SHORTEN, C., AND KHOSHGOFTAAR, T. M. A survey on image data
augmentation for deep learning. Journal of Big Data 6, 1 (2019), 1–48.

[87] SHULTS, J., AND CHAGANTY, N. R. Analysis of serially correlated
data using quasi-least squares. Biometrics (1998), 1622–1630.

[88] STEINBACH, M., ERTÖZ, L., AND KUMAR, V. The challenges of clus-
tering high dimensional data. In New Directions in Statistical Physics.
Springer, 2004, pp. 273–309.

[89] TEDJOPURNOMO, D. A., BAO, Z., ZHENG, B., CHOUDHURY, F., AND

QIN, A. A survey on modern deep neural network for traffic predic-
tion: Trends, methods and challenges. IEEE Transactions on Knowledge
and Data Engineering (2020).

122 BIBLIOGRAPHY

[90] VAN ROSSUM, G., AND DRAKE, F. L. Python 3 Reference Manual. Cre-
ateSpace, 2009.

[91] WALD, A. Tests of statistical hypotheses concerning several param-
eters when the number of observations is large. Transactions of the
American Mathematical Society 54, 3 (1943), 426–482.

[92] WANG, L. Support Vector Machines: Theory and Applications, vol. 177.
Springer Science & Business Media, 2005.

[93] WANG, M. Generalized estimating equations in longitudinal data
analysis: a review and recent developments. Advances in Statistics
2014 (2014).

[94] WANG, Y.-G., AND HIN, L.-Y. Modeling strategies in longitudinal
data analysis: Covariate, variance function and correlation structure
selection. Computational Statistics & Data Analysis 54, 12 (2010), 3359–
3370.

[95] WEDDERBURN, R. W. M. Quasi-likelihood functions, generalized lin-
ear models, and the Gauss — Newton method. Biometrika 61, 3 (1974),
439–447.

[96] ZEGER, S. L., AND LIANG, K.-Y. Quasi-likelihood. Wiley StatsRef:
Statistics Reference Online (2014).

[97] ZEGER, S. L., LIANG, K.-Y., AND ALBERT, P. S. Models for longitu-
dinal data: A generalized estimating equation approach. Biometrics
(1988), 1049–1060.

[98] ZHANG, L., LU, L., NOGUES, I., SUMMERS, R. M., LIU, S., AND

YAO, J. Deeppap: Deep convolutional networks for cervical cell clas-
sification. IEEE Journal of Biomedical and Health Informatics 21, 6 (2017),
1633–1643.

