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Abstract

Artificial intelligence systems have become proficient at linking environ-
mental features to targets to describe simple patterns in data. However,
these systems can struggle with many real-world problems that entail hi-
erarchical patterns within patterns, for example, in recognizing object on-
tologies where one object is made-up of other objects. Although it is pos-
sible to capture such complex structures by utilizing state-of-the-art deep
networks, the knowledge is often stored in layers that do not take advan-
tage of the potential benefits provided by reusing patterns within a layer
of the system.

Biological nervous systems can learn knowledge from simple and small-
scale problems and then apply it to resolve more complex and large-scale
problems in similar and related domains. However, rudimentary attempts
to apply this transfer learning in artificial intelligence systems have strug-
gled. This may be due to the homogeneous nature of their knowledge
representation. The current understanding of the learning mechanisms in
the brains of human and non-human animals can be used as inspiration
to improve learning in artificial agents. Research into lateral asymmetry
of the brain shows that it enables modular learning at different levels of
abstraction that facilitate transfer between tasks.

The proposed thesis is that an artificial intelligence system that enables
lateralization and modular learning at different levels of abstraction has
the ability to solve complex hierarchical problems that a similar homoge-
neous system can not. The comprehensive goal of this thesis is to accom-
plish lateralized learning, inspired by the principles of biological intelli-
gence, in artificial intelligence systems. The objectives are to show that



lateralization and modular learning assist the novel systems to encapsu-
late the underlying knowledge patterns in the form of building blocks of
knowledge. These building blocks of knowledge are to be tested on ana-
lyzable Boolean tasks as well as practical computer vision and navigation
tasks. Academic contributions are related to the novel methods of the link-
ing, transfer, and sharing of learned knowledge which are based on the
analogous strategies of the brain.

This thesis proposes a general framework for lateralized artificial in-
telligence systems. The novel lateralized framework spans key aspects
of knowledge perception, knowledge representation and utilization, and
patterns of connectivity. It determines the essential functionality, critical
methods, and associated parameters that are required to be incorporated
into an artificial intelligence system to behave as a lateralized artificial in-
telligence system.

This thesis creates a novel evolutionary machine learning system, by
adapting the lateralized framework, to obtain a proof-of-concept of the
lateralized approach. Considering the same problem at different levels
of abstraction enables the novel system to reframe a complex problem
as a simple problem and efficiently resolve it. The results on analyzable
Boolean tasks show that the problems that contain a natural hierarchy of
patterns are solved to a scale that exceeds previous work (i.e. 18-bit hi-
erarchical multiplexer problem), and reusing learned general patterns as
constituents for future problems advances transfer learning (e.g. n-bit par-
ity problem effectively becomes a sequence of 2-bit parity problems).

This thesis creates a novel lateralized artificial intelligence system, by
adapting the lateralized framework, that shows robustness in a real-world
domain that includes uncertainty, noise, and irrelevant and redundant
data. The results of image classification tasks show that the lateralized
system efficiently learns hierarchical distributions of knowledge, demon-
strating performance that is similar to (or better than) other state-of-the-
art deep systems as it reasons using multiple representations. Crucially,



the novel system outperformed all the state-of-the-art deep models for
the classification (binary classes) of normal and adversarial images by
0.43% − 2.56% and 2.15% − 25.84%, respectively. This thesis creates an-
other novel multi-class lateralized system for computer vision problems to
show that the lateralized approach can be scaled and not limited to learn-
ing classifier systems.

Both the Boolean and computer vision problems are single step prob-
lems in the spatial domain. However, most biological tasks, which exhibit
heterogeneity, are temporal in nature. This thesis creates a novel frame-of-
reference based artificial intelligence system, by adapting the lateralized
framework, to address perceptual aliasing in multi-step decision making
tasks. Considering aliased states at a constituent level enables the novel
system to place them appropriately in holistic level policies. Consequently,
the novel system transforms a non-Markov environment into a determin-
istic environment and efficiently resolves it. Experimental results show
that the novel system effectively solves complex aliasing patterns in non-
Markov environments that have been challenging to artificial agents. For
example, the novel system utilizes only 6.5, 3.71, and 3.22 steps to resolve
Maze10, Littman57, and Woods102, respectively.

A final contribution of this work is to obtain evidence of the bene-
fits/costs of lateralization from artificial intelligence in order to inform
cognitive neuroscience. Given that lateralization is ubiquitous in brains,
evolutionary benefits can be assumed, at least in some domains. But that
does not mean those benefits extend to all domains. The cognitive neuro-
science research community has been struggling to determine the trade-off
between the benefits and costs of lateralization. It has been hypothesized
that lateralization has benefits that may counterbalance its costs. Lateral-
ization has been associated with both poor and good performance. This
thesis demonstrates the value of viable artificial systems for testing the
costs and benefits of lateralization in biological systems.



iv



Dedication

To all, especially my father

S.M. Hassan

, who spent their lives supporting and caring for deprived members of the com-
munity

v



vi



Acknowledgments

All praise unto ALLAH, Lord of all the worlds, Who enabled me to learn
a little more about His universe.

First and foremost, I would like to express my deep gratitude to my su-
pervisors Prof. Will N. Browne and A/Prof. Gina M. Grimshaw for their
guidance, enlightenment, and support. They helped me in various ways to
shape my academic and leadership skills. They provided me unflinching
encouragement that helped me to complete this thesis. I am very fortu-
nate to have supervisors who spent many dedicated hours reviewing my
drafts, even on weekends and holidays. I am indebted to my supervisors
more than they know.

I offer my utmost gratitude to Prof. Will for his valuable bits of ad-
vice, critical analyses, and thought-provoking suggestions. He was avail-
able for a discussion at any time despite his busy schedule. Thanks Will!
Needless to mention A/Prof. Gina, who had been a source of inspiration.
Despite my engineering background, she helped me understand neuro-
science concepts, especially at the start of my Ph.D. I am extremely grate-
ful to Gina for the detailed feedback on my writing, especially w.r.t. multi-
disciplinary audience.

Special thanks to Science for Technological Innovation for awarding
me the doctoral scholarship and to both my supervisors for supporting
my application. I would also like to appreciate the support rendered by
the Faculty of Science and the members of the Evolutionary Computation
Research Group. I am indebted to the Victoria University of Wellington

vii



viii

Students’ Association for awarding me the Gold Award and the School
of Engineering and Computer Science for nominating me for the Landers
Award. I am very thankful to the selection board for providing me the
opportunity to serve the Vic Muslims Club and the cooperative behavior
of the club members. I gratefully acknowledge the support for the Mus-
lim community rendered by Victoria University, different organizations,
society, government, and the honorable prime minister Jacinda Ardern.

Words are inadequate in expressing my gratitude for the blessings, un-
ending support, and prayers of my beloved parents (S.M. Hassan and late
Shamim Hassan) and parents-in-law (Col.(r) Naseer Ahmad and Tasneem
Naseer). I acknowledge the sacrifice of my beloved father to sending me
abroad, even though it was very hard for him due to emotional attach-
ment. I owe my deepest gratitude to my brother (Ch. Kaleem) and my
sisters for unconditional love, encouragement, and support. I am very
grateful to have had a chance to share my Ph.D. journey with extraordi-
nary friends and colleagues. I gratefully acknowledge the endless love,
sacrifice, and support of my beloved wife and truest friend Muniba AB.
I apologize to my kids (Zalayed, Omaiza, Zunairah, and Nabiha) for not
giving them their deserved time.



Publications

� Abubakar Siddique, Will N. Browne, and Gina M. Grimshaw. “Lat-
eralized Learning to Solve Complex Boolean Problems” In IEEE Trans-
actions on Cybernetics, (IF = 11.448, successfully passed the second
round) (cf. Chapter 5)

� Abubakar Siddique, Will N. Browne, and Gina M. Grimshaw. “Lat-
eralized learning for robustness against adversarial attacks in a vi-
sual classification system” In Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO 2020), ACM, pp. 395-403. (cf.
Chapter 6)

� Abubakar Siddique, Will N. Browne, and Gina M. Grimshaw. “Frame-
of-Reference based Learning: Overcoming Perceptual Aliasing in Multi-
Step Path Planning Tasks” In IEEE Transactions on Evolutionary Com-
putation (TEVC), (IF = 11.554), (cf. Chapter 7)
DOI: 10.1109/TEVC.2021.3102241

� Abubakar Siddique, Will N. Browne, and Gina M. Grimshaw. “Learn-
ing classifier systems: appreciating the lateralized approach” In Ge-
netic and Evolutionary Computation Conference Companion (IWLCS 2020),
pp. 1807–1815. (cf. Chapter 8)

� Abubakar Siddique, Will N. Browne, and Gina M. Grimshaw. “Lat-
eralized learning for robustness against adversarial attacks in a multi-
class visual classification system” In IEEE Transactions on Emerging
Topics in Computational Intelligence, (being prepared), (cf. Chapter 6)

ix



x

� Abubakar Siddique, Will N. Browne, and Gina M. Grimshaw. “Lat-
eralization in Agents’ Decision Making: Evidence of Benefits/Costs
from Artificial Intelligence” In Symmetry, Special Issue “Cognitive and
Neurophysiological Models of Brain Asymmetry” (being prepared), (cf.
Chapter 8)



Contents

1 Introduction 1
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . 12
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Background 23
2.1 Natural Cognitive Architecture . . . . . . . . . . . . . . . . . 24

2.1.1 Hemispheric Lateralization . . . . . . . . . . . . . . . 25
2.1.2 Semantic Knowledge . . . . . . . . . . . . . . . . . . . 30
2.1.3 Frames of Reference . . . . . . . . . . . . . . . . . . . 38
2.1.4 Benefits and Costs of Lateralization . . . . . . . . . . 44

2.2 Artificial Cognitive Architecture . . . . . . . . . . . . . . . . 46
2.2.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.2 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.3 Action Selection . . . . . . . . . . . . . . . . . . . . . . 48
2.2.4 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.5 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Artificial Learning Methods . . . . . . . . . . . . . . . . . . . 49
2.3.1 Neuroscience Inspired AI . . . . . . . . . . . . . . . . 51

xi



xii CONTENTS

2.3.2 Evolutionary Computation . . . . . . . . . . . . . . . 54
2.4 Associated Techniques . . . . . . . . . . . . . . . . . . . . . . 62

2.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.2 Adversarial Attacks . . . . . . . . . . . . . . . . . . . 63

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Benchmark Problems and Approaches 65
3.1 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Boolean Problems . . . . . . . . . . . . . . . . . . . . . 66
3.1.2 Computer Vision Problems . . . . . . . . . . . . . . . 70
3.1.3 Navigation Problems . . . . . . . . . . . . . . . . . . . 71

3.2 Benchmark Approaches . . . . . . . . . . . . . . . . . . . . . 74
3.2.1 Existing Lateralized AI Systems . . . . . . . . . . . . 75
3.2.2 Relevant Approaches for Boolean Problems . . . . . . 75
3.2.3 Relevant Approaches for Computer Vision Problems 78
3.2.4 Relevant Approaches for Navigation Problems . . . . 79

3.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Lateralized Framework 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.1 Chapter Objectives . . . . . . . . . . . . . . . . . . . . 89
4.1.2 Chapter Organisation . . . . . . . . . . . . . . . . . . 90

4.2 Lateralization in Vertebrate Brains . . . . . . . . . . . . . . . 91
4.2.1 Representation and Processing . . . . . . . . . . . . . 91
4.2.2 Coordination . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.3 Goal-driven Processing . . . . . . . . . . . . . . . . . 93

4.3 Lateralized Framework . . . . . . . . . . . . . . . . . . . . . . 93
4.3.1 Features of a Lateralized AI System . . . . . . . . . . 94
4.3.2 Lateralized Architecture . . . . . . . . . . . . . . . . . 96

4.4 Problem Domains . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 104



CONTENTS xiii

5 Lateralization for Boolean Problems 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1 Chapter Objectives . . . . . . . . . . . . . . . . . . . . 110

5.1.2 Chapter Organisation . . . . . . . . . . . . . . . . . . 111

5.2 Lateralized System . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Knowledge Identification . . . . . . . . . . . . . . . . 113

5.2.2 Resolve Problem . . . . . . . . . . . . . . . . . . . . . 118

5.2.3 Learning Methodology . . . . . . . . . . . . . . . . . . 120

5.3 Walk-Through of the Algorithms . . . . . . . . . . . . . . . . 123

5.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.1 Problem Domains . . . . . . . . . . . . . . . . . . . . . 126

5.4.2 Learning Order . . . . . . . . . . . . . . . . . . . . . . 129

5.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . 129

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5.1 Multiplexer Problems . . . . . . . . . . . . . . . . . . 131

5.5.2 Parity problems . . . . . . . . . . . . . . . . . . . . . . 133

5.5.3 Hierarchical Problems . . . . . . . . . . . . . . . . . . 139

5.6 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . 142

5.6.1 Overhead of Irrelevant Sub-problems to LateralXCS . 142

5.6.2 Interpretation of Decisions . . . . . . . . . . . . . . . 144

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 150

6 Lateralization for CV Problems 153

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.1.1 Chapter Objectives . . . . . . . . . . . . . . . . . . . . 156

6.1.2 Chapter Organisation . . . . . . . . . . . . . . . . . . 157

6.2 Binary-class Lateralized System . . . . . . . . . . . . . . . . . 158

6.2.1 Lateralized System . . . . . . . . . . . . . . . . . . . . 158

6.2.2 Experimental Design . . . . . . . . . . . . . . . . . . . 165

6.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 167



xiv CONTENTS

6.2.4 Experimental Analysis . . . . . . . . . . . . . . . . . . 169
6.3 Multi-class Lateralized System . . . . . . . . . . . . . . . . . 173

6.3.1 Lateralized System . . . . . . . . . . . . . . . . . . . . 173
6.3.2 Experimental Design . . . . . . . . . . . . . . . . . . . 180
6.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 181

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 187

7 Lateralization for Navigation Problems 189
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.1.1 Chapter Objectives . . . . . . . . . . . . . . . . . . . . 195
7.1.2 Chapter Organisation . . . . . . . . . . . . . . . . . . 196

7.2 Frame-of-Reference based System . . . . . . . . . . . . . . . . 196
7.2.1 Code-paths . . . . . . . . . . . . . . . . . . . . . . . . 196
7.2.2 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.2.3 Adjacent States Map . . . . . . . . . . . . . . . . . . . 201
7.2.4 Aliasing Identification and Disambiguation . . . . . . 201
7.2.5 Predict Aliased Version . . . . . . . . . . . . . . . . . 206
7.2.6 Overall Strategy . . . . . . . . . . . . . . . . . . . . . . 208

7.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 212
7.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . 212

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . 215
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 223

8 Discussions 225
8.1 Lateralized Systems . . . . . . . . . . . . . . . . . . . . . . . . 226
8.2 Relevant Approaches . . . . . . . . . . . . . . . . . . . . . . . 231

8.2.1 Ensemble Systems . . . . . . . . . . . . . . . . . . . . 231
8.2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . 232
8.2.3 Granular Computing . . . . . . . . . . . . . . . . . . . 234



CONTENTS xv

8.3 Evidence of Benefits/Costs from AI . . . . . . . . . . . . . . 236
8.3.1 Lateralization in AI . . . . . . . . . . . . . . . . . . . . 238

8.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 240

9 Conclusions and Future Work 243
9.1 Achieved Objectives . . . . . . . . . . . . . . . . . . . . . . . 244
9.2 Main Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.2.1 Lateralized Framework . . . . . . . . . . . . . . . . . 247
9.2.2 Proof-of-Concept of the Lateralized Approach . . . . 250
9.2.3 Robustness of the Lateralized Approach . . . . . . . . 251
9.2.4 Effectiveness of the Lateralized Approach . . . . . . . 253

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.3.1 Lateralized AI Systems for Neuroscience . . . . . . . 254
9.3.2 Lateralized Ensemble Systems . . . . . . . . . . . . . 255
9.3.3 Lateralized Deep Learning . . . . . . . . . . . . . . . 256
9.3.4 Lateralized Granular Computing . . . . . . . . . . . . 257



xvi CONTENTS



1
Introduction

Biological nervous systems can learn knowledge from simple
and small-scale problems and then apply it to resolve more com-
plex and large-scale problems in similar and related domains.
However, rudimentary attempts to apply this transfer learning
in artificial intelligence systems have struggled. This may be
due to the homogeneous nature of their knowledge representa-
tion. Research into lateral asymmetry of the brain shows that it
enables modular learning at different levels of abstraction that
facilitate transfer between tasks. This thesis will draw inspi-
ration from the architecture of biological intelligence to create
machine learning systems. This chapter introduces the main
concepts and research questions that will be addressed in this
thesis.

1.1 Scope

The behavior exhibited by machines, based on the principles of natural in-
telligence, is called artificial intelligence (AI). Recently, AI has been boosted

1



2 CHAPTER 1. INTRODUCTION

by the revolution in science and technology that yields both computers
with high processing power and a large amount of data. Consequently, a
broad range of AI-based systems has been developed that are playing crit-
ical roles in many aspects of everyday life ranging from self-driving cars to
security and surveillance [1, 2, 3, 4, 5, 6, 7]. An artificially intelligent agent
is a system (or a machine) that gets input from the environment, analyses
it, and takes appropriate action under some criteria, e.g. to maximize its
current or future rewards. Moreover, a system falls under the AI domain
if it has the ability to learn from the environment and solves a problem in
such a way that it mimics human cognition [8].

AI has become proficient at linking environmental features to describe
simple patterns in data. However, AI systems can struggle with many
real-world problems that entail hierarchical patterns within patterns; for
example, recognizing object ontologies where one object is made-up of
other objects. Although it is possible to capture the overall complex struc-
tures by utilizing state-of-the-art deep networks, the knowledge is often
stored in layers that do not take advantage of the potential benefits pro-
vided by reusing patterns within the layers elsewhere in the system [9].
Moreover, conventional AI systems may learn complex patterns but they
need a huge/deep network of homogeneous knowledge, human-in-the-
loop intervention, and complex architectures [9, 10, 11]. This thesis con-
siders how AI, especially machine learning, can better model hierarchical
relationships and therefore produce better solutions to complex problems.

Machine learning (ML) is an important field of AI. It enables machines
to interact with their environments and learn through experience [12].
The discipline has five major tribes: symbolists, Bayesians, analogizers,
connectionists, and evolutionaries [13]. Symbolist researchers represent
knowledge in the form of symbols. To a symbolist, intelligence arises
from the manipulation of knowledge represented as symbols. Bayesian
researchers use reasonable expectations to represent a state of knowledge.
A Bayesian represents knowledge as a set of expectations based on cumu-
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lative evidence. The resultant system works on the principle that some
hypotheses become more likely as compared to others based on evidence,
as the learning proceeds. Analogizing researchers consider the similari-
ties between the environmental data. They work on the principle that if
two instances share some features then there is a reason to believe that
they have knowledge (other features) to share. Although these perspec-
tives have had some success in solving problems, contemporary research
in machine learning is dominated by connectionist and evolutionary per-
spectives. The focus of this thesis is on connectionist and evolutionary
viewpoints, as described below.

Connectionist researchers represent knowledge in the form of artifi-
cial neural networks. The connections between the nodes of a network
have weights. These weights are updated, by utilizing methods such as
backpropagation, to support the desired learning of input to output re-
lationships. These networks can have multiple layers that store knowl-
edge in a distributed fashion. These networks generate a homogeneous
knowledge representation, such that all features are treated equally in each
layer, to learn a linearly separable relationship between features and tar-
get. Connectionist systems are useful because they identify and learn pat-
terns within the data.

Evolutionary researchers represent knowledge in the form of geno-
types, such as strings, trees, or rules. Inspired by biological evolution,
an evolutionary system creates rules, solutions, or models of the data. A
rule is a fundamental building block of knowledge (BBK).1 Traditionally,
a rule has two parts, i.e. a condition and an action. A rule recommends an
action if its condition matches the environmental state. An evolutionary
system can utilize rules to decide actions based on the current condition,
i.e. if ‘condition’ then ‘action’. Moreover, a rule has fitness value based on
its usefulness. When rules are being formed, each is treated equally. How-

1A BBK is a unit of knowledge utilized by the AI agent to represent a part of a problem
or whole problem.
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ever, as learning proceeds, rules that have greater fitness and better fill
niches2 survive, while those that are less fit do not. Consequently, niches
and fitness of rules start to build.

The connectionists’ approach is a prime example of homogeneous sys-
tems, presented below.

Homogeneous Systems: The prefix “homo” is derived from Greek, mean-
ing “same”. Knowledge that is represented (stored) in the same manner
can be referred to as homogeneous knowledge. For example, the knowl-
edge stored in a layer in artificial neural networks treats each pixel in the
same way even if the connecting weights are different. In this thesis, an
AI system is called a homogeneous system if it equally considers all the
features of an input environmental signal in the same manner.

A deep network with a convolution filter and a single pathway stride is
an obvious example of a homogeneous system. Similarly, a deep network-
based system with different convolution filters (e.g. 3×3, 5×5) and differ-
ent pathway strides, which are combined in the end in an ensemble way, is
still a homogeneous system. The majority of AI systems are homogeneous.
Homogeneous systems cannot differentiate between constituent level sim-
ple features and holistic level complex features because each feature needs
to exist at the same time to be compared.

Homogeneous systems work well when there are only simple features
in the domain or the relationship between features and target (e.g. class
or action) is linearly separable (i.e. a linear combination of features can
be used to separate out specific targets) [14, 15]. However, these sys-
tems struggle when there are complex patterns of features in the domain
[16, 17]. Often these complex features are made-up of patterns of features,
i.e. hierarchical patterns within patterns. The ability to consider the prob-
lem at multiple levels may effectively resolve such complex hierarchical
features.

2A niche is an area of the sample space where the neighboring instances share a com-
mon property.
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The evolutionaries’ approach has the inherent support for heterogene-
ity. Heterogeneous systems are explained below.

Heterogeneous Systems: The word “hetero” is also Greek prefix, which
means “different”. The knowledge that is represented (stored) at different
levels of abstraction can be referred to as heterogeneous knowledge. In
this thesis, an AI system is called a heterogeneous system if it has the abil-
ity to consider an input environmental signal at different levels of abstrac-
tion simultaneously to generate a heterogeneous knowledge representa-
tion. A deep network with different convolution filters (e.g. 3 × 3, 5 × 5)
and different pathway strides, which are applied at different parts of the
same image such that they can share their findings within the hidden lay-
ers can be considered as a heterogeneous system. Capsule networks are
a step toward creating heterogeneous neural networks [18] they extract
different spatial relationships of features within a single layer. Holistic
level features are generally heterogeneous as they may entail hierarchical
patterns within patterns. Heterogeneous features can be parsimonious as
they only encode necessary information. However, it is still not clear how
these heterogeneous features could be represented at different levels of
abstraction, i.e. at a constituent level and holistic level, parsimoniously.

A level of abstraction can be considered as a perspective to address a
problem. For example, in a visual task, a local viewpoint (eyes, nose, and
mouth of a cat) and big-picture (whole cat) are two different levels of ab-
straction. Moreover, a constituent level means a representation of the most
basic elements of knowledge, i.e. individual features and simple niches;
whereas, a holistic level means a more abstract knowledge representation;
i.e. higher-order features extracted across niches.

The raw features from the environment can be considered the lowest
level in abstraction. These are linked together in a rule in a series of dis-
junctive/conjunctive normal forms. If higher-level features can be con-
structed, this forms the next level of the hierarchy and so forth. The ability
to use heterogeneous features as a complex single feature, known as fea-
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ture construction, is not often leveraged in existing learning systems.

Biological Inspiration: A biological brain is not an amorphous system.
It is made up of different modules that communicate through electro-
chemical signals. These modules can be considered as metamodel nodes
that subserve exiguous low-level functions. Moreover, metamodel nodes
form local networks that are linked through excitatory and inhibitory con-
nections. Each module solves a specific problem or part of a problem.
The knowledge learned from small-scale and simple problems can be re-
utilized by the brain to solve large-scale and complex problems in similar
and related domains [19, 20, 21, 22, 23].

Two organizing principles of vertebrate (and many invertebrate) brains
— lateralization and modularity of function — support reuse of learned
knowledge at different levels of abstractions [20, 24, 25, 26, 27, 28]. The
propensity of a specific cognitive process to be performed more efficiently
and precisely by one hemisphere as compared to the other is called hemi-
spheric lateralization [29]. At the macro-structural view, the left and right
hemispheres look alike. However, they have distinct neuroanatomy, neu-
rochemistry, and functional architecture [29, 30]. An environmental signal
is simultaneously presented to both the hemispheres such that they pro-
cess it at different levels, i.e. constituent level and holistic level. Lateral-
ization enables the biological brain to process both individual features and
global patterns in parallel. For example, in many domains, the left hemi-
sphere processes elementary (constituent) information while the right hemi-
sphere works at a higher (holistic) level of abstraction. It has been hypoth-
esized that this asymmetry enhances cognition as well as neural efficiency
[21, 23, 31].

In biological intelligence, both hemispheres contribute to most higher-
order cognitive and perceptual tasks, and the differences between them
are more relative than absolute. Some hemispheric differences are con-
cerned with the scale at which the same sensory inputs are represented for
subsequent processing. For example, in visual perception, the left hemi-
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sphere processes information at a local (or constituent) level while the
right hemisphere processes information at a more global (holistic) level
[32, 33, 34]. Hence in a face recognition/identification task, the individ-
ual features of the face are identified by the left hemisphere, e.g. eyes,
nose, lips, etc; whereas, the configural arrangement of the face is han-
dled by the right hemisphere. Similarly, in speech perception, the left
hemisphere processes segmental information (individual phonemes that
make-up words) while the right hemisphere processes super-segmental
information (global intonational patterns that reflect emotion or intention
of the speaker) [35, 36, 37].

Lateralization is one-way brains achieve heterogeneity. Other neural
systems also use heterogeneous representations. For example, in navi-
gation, different frames of reference are utilized to provide multiple rep-
resentations of an environment from different viewpoints [27, 28]. This
frame-of-reference (FoR) based learning enables the biological brain (ver-
tebrate and many invertebrate) to process the same information at differ-
ent levels of abstraction, i.e. constituent level (local viewpoint) and holistic
level (world viewpoint or complete map) [24, 26]. For example, animals
log their position with respect to three frames of reference while navigat-
ing through an environment, i.e. egocentric, allocentric, and routecentric
[27, 28, 38, 39]. Egocentric FoR provides a local viewpoint from the ani-
mal’s perspective; allocentric FoR provides a global map of the environ-
ment (a bird’s eye view), while route-centric FoR describes the path of the
animal through the environment. These three FoRs are BBKs, when com-
bined, provide a world viewpoint (complete map) of the environment.

Effective cognition requires that complementary computations (whether
distributed across hemispheres or modules) be coordinated. Recognizing
faces requires that we integrate individual features (left) with their config-
ural arrangement (right) [40]; understanding a joke requires that we inte-
grate the literal meanings of individual words (left) with their alternative
subtext (right) [41]; understanding a song requires that we integrate the
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lyrics (left) with the melody (right) [42]. It is the coordination between the
left and right hemispheres that enables the transfer of critical information
at different levels of abstraction.

Vertebrate brains have the ability to select the computations required
to perform a specific task from the most suitable and relevant hemisphere.
Goal-driven processes analyze the problem at hand and shift control to the
superior and suitable hemisphere. For example, if the emotional state of
a conversational partner is most relevant, outputs from right hemisphere
speech processing systems will dominate; however, if the linguistic ele-
ments are of concern, then left hemisphere computations are prioritized
[31, 43]. The connections between hemispheres in vertebrate brains can
be excitatory or inhibitory, allowing for either integration or inhibition, as
goals dictate [44]. The ability to identify which hemisphere is best matched
to the task is important in practical situations.

Although the representation of the environment at different (i.e., con-
stituent and holistic) levels of abstraction may yield benefits, it could also
increase workload and waste resources. An effective system should there-
fore reuse features that occur at both constituent and holistic levels, and
not simply enumerate each level. Moreover, it should make good use of
excitatory and inhibitory signals to avoid redundant processing.

The importance of considering the same problem at different levels of
abstraction can be illustrated by a problem that originated in steel mills
twenty years ago [45, 46], when existing data mining techniques missed a
critical relationship that was present in the data. In steel mills, the width of
a steel strip needs to be guided into downstream manufacturing processes.
For example, if the side-guide-setting was 80cm and the width of the strip
was 82cm then there would be a problem. Similarly, if the side-guide-
setting was 70cm and the width of the strip was 74cm then there would be
a problem. Data mining techniques were able to extract this information
about individual problems but could not extract the more abstract infor-
mation that if the side-guide-setting is less than the width of the strip, then there
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would be problems. Data mining techniques could only consider the con-
stituent level and therefore missed the global problem. There are many
similar examples in the real-world. For example, when we recognize a car,
we can identify it as a vehicle for transportation, but we can also identify
windscreen or hubcaps, depending on the problem we are trying to solve.
In real-life we often face problems that have multiple parts and are also
multifaceted, where it is useful to be able to consider the lower level of
detail and/or higher levels of abstraction.

Conventional AI systems do not have the ability to consider the same
input signal at different levels of abstraction, i.e. constituent level and
holistic level. Considering the same problem at different levels of abstrac-
tion may enable AI systems to reformulate a complex problem as a simple
problem and efficiently resolve it. These limitations motivate the devel-
opment of new heterogeneous feature-based techniques, that incorporate
principles of lateralization and modular learning, to solve complex prob-
lems. It is worth developing heterogeneous feature-based systems to solve
complex hierarchical problems. However, it is not clear/known how lat-
eralization can be incorporated in AI systems, i.e. (i) how to process the
same input signal at different levels of abstraction such that the constituent
and holistic levels can be considered in a complementary manner, (ii) how
to (re)utilize the features (constituent level and holistic level) that are com-
puted due to the processing of the input signal at multiple levels, (iii) how
to use excitatory and inhibitory signals to avoid extraneous processing and
produce optimal solutions.

1.2 Motivations

The majority of existing AI systems develop a huge network of homoge-
neous knowledge to solve complex problems, which is neither reusable
nor scalable, and so fail in unexpected situations [9, 16, 47, 48]. Transfer
learning of basic features has been used but this does not consider fea-



10 CHAPTER 1. INTRODUCTION

ture manipulation or take advantage of the relationship between patterns
within patterns. Although AI systems are becoming trusted sufficiently to
be used in daily life [1, 4], they are still unable to exhibit the intelligence of
a four-year-old human child in many domains [49, 50].

Modern classifier systems can effectively classify targets that consist
of simple, homogeneous features. However, they struggle to deal with
many real-world problems that entail hierarchical patterns within pat-
terns. For example, when classifying instances of environmental features
in the Boolean domain, evolutionary computing is proficient at linking fea-
tures together but can fail to detect patterns that are made up of patterns of
features [51]. Although it is possible to capture such complex structures in
homogeneous systems, they require large/deep networks of knowledge
and do not take advantage of the potential to transfer knowledge between
levels in the hierarchy [9]. Thus a new system is needed that can han-
dle complex hierarchical patterns by (re)utilizing BBKs at constituent and
holistic levels of abstraction.

One problem with homogeneous knowledge representation is that it
does not exhibit robustness against noisy and irrelevant data. For exam-
ple, connectionist systems are highly vulnerable to adversarial attacks in
visual classification tasks [48, 52]. A single, targeted pattern can disrupt
classification performance. Moreover, a small (imperceptible to a human)
perturbation to an image can fool many homogeneous systems resulting in
the wrong prediction made with high confidence [53, 54]. Homogeneous
systems work well when the relationship between features and target is
linearly separable. These systems encourage linear behavior for perfor-
mance efficiency. However, this hallmark can be exploited to fool homo-
geneous systems [52, 55, 56].

The majority of homogeneous systems struggle to capture complex
structures in an environment spatially (in single-step problem domains)
but also temporally (in multi-step domains). For example, perceptual alias-
ing is a long-standing problem for artificial agents in applying reinforce-
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ment learning (RL) to many multi-step tasks [10, 16, 57, 58, 59, 14, 60]. It
occurs when the agent’s internal representation confounds external world
states, i.e. the agent’s current perception is unable to distinguish envi-
ronmental states which appear identical but require different actions [57].
One reason may be that the agent only has a local FoR, and cannot act si-
multaneously on the global level (i.e. cannot make decisions informed by
the world level map). FoR based learning is a feature of vertebrate intelli-
gence that allows multiple representations of an environment at different
levels of abstraction. Thus a FoRs-based learning agent is needed that
can consider the input environmental signal at different levels of abstrac-
tion to handle perceptual aliasing problems. This enables the resolution
of patterns made-up of patterns of features. Heterogeneous features could
represent knowledge at different levels of abstraction in compact build-
ing blocks of knowledge that are relevant and sufficient to solve a specific
problem [17]. However, it needs to be investigated how these features can
be combined or recombined to form hierarchies of knowledge.

The motivation is to develop a new technique that can incorporate lat-
eralization and modular learning to exhibit robustness against noisy and
irrelevant data and solve complex problems. The performance benefits of
lateralization are so far not clear. Lateralized AI systems have not been
investigated for the following reasons: (i) a simple problem does not need
lateralization; (ii) lateralized systems need to process the same input sig-
nal at the constituent level and holistic level, which appears to double the
workload. So a major performance benefit is needed in compensation; (iii)
two different techniques are required to process the same signal at con-
stituent and holistic levels; (iv) it is not always clear how to take a single
instance and split it up (decompose) such that the constituent and holistic
level can be considered not just at the same time, but also in a complemen-
tary manner; (v) it is not known how to utilize excitatory and inhibitory
signals for the selection of appropriate knowledge structures to avoid ex-
traneous computations; (vi) it is not clear how to store and (re)use learned
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lateralized knowledge in similar, related, and different domains; (vii) the
robustness of lateralized systems, to handle uncertainty and noise in data,
is unknown; (viii) lack of availability of an underlying lateralized frame-
work that can be adapted to create lateralized artificially intelligent sys-
tems for a wide range of problem domains; (ix) it is not clear whether lat-
eralization can be applied to a wide range of problems and scenarios, e.g.
single or multiple steps, supervised or reinforcement learning, Boolean or
real-valued features, and Markov or partially observable Markov decision
processes.

1.3 Thesis Statement

The proposed thesis is that:

An artificial intelligence system that enables lateralization and
modular learning at different levels of abstraction has the ability
to solve complex hierarchical problems that a similar homoge-
neous system cannot.

1.3.1 Research Questions

This thesis raises the following research questions:

(i) How to create a lateralized framework for AI systems? Lateralization is a
significant feature of biological intelligence. It is ubiquitous in ver-
tebrates and manifests its advantages in survival and reproduction.
Lateralization has not been investigated as a feature in AI systems. It
is a challenging task to devise a lateralized framework, inspired by
the principles of natural intelligence, that can be adapted to develop
AI systems for a wide range of problem domains. This includes the
identification of critical methods and associated parameters that are
required for an AI system to behave as a lateralized AI system.
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(ii) How to simultaneously process a single environmental input at different
levels of abstraction? Biological intelligence simultaneously processes
the same environmental signal at different levels of abstraction, i.e.
at the constituent level and the holistic level. Many real-world and
complex problems entail hierarchical patterns within patterns. Novel
techniques must be developed that empower AI agents to consider
the given environmental instances at different levels of abstractions.

(iii) How to create a heterogeneous representation of knowledge that can be
(re)used at different levels of abstraction? Heterogeneity can be seen in
biological intelligence, which can learn new knowledge from simple
and small-scale problems and then apply it to resolve more complex
problems in similar and related domains. It is challenging for AI
agents to effectively resolve problems that consist of complex het-
erogeneous patterns of features, i.e. hierarchical patterns within pat-
terns. It is required to investigate how to create novel strategies that
have the ability to (re)utilize knowledge components at different lev-
els of abstraction. For example, a holistic knowledge component at
one level could be (re)utilized as a constituent knowledge compo-
nent at a higher level of abstraction.

(iv) When and how to inhibit or excite different system components? The con-
nections between hemispheres in vertebrate brains can be excitatory
or inhibitory, allowing for either integration or inhibition of compu-
tational structure, as goals dictate. This ability to identify the most
suitable and relevant hemisphere with respect to the task is impor-
tant for real-life problems. It needs to be investigated how novel
techniques can be developed that have the ability to enable commu-
nication between different system components through inhibition
and excitation signals to efficiently resolve the problem and avoid
extraneous computations.
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1.4 Goals

The comprehensive goal of this thesis is to accomplish lateralized learn-
ing, inspired by the principles of biological intelligence, in AI systems. In
order to achieve this goal and answer the research questions, the following
objectives have been set:

1. Create a general framework for lateralized AI systems. This objective aims
to devise a general framework that can be adapted to develop a lat-
eralized AI system for a wide range of problem domains. To achieve
this objective, the following sub-objectives have been set:

(i) Establish the essential principles of lateralization from cogni-
tive neuroscience, especially drawing from the cognitive archi-
tecture in vertebrate brains. The following aspects of lateraliza-
tion that are relevant to this thesis will be explored in detail: (a)
representation and processing of sensory information received
from the environment, (b) coordination between hemispheres
and integration of knowledge among different regions of the
brain, and (c) achieving goal-driven processing through inhibi-
tion and excitation signals for performance efficiency.

(ii) Devise a fundamental framework for lateralized AI systems.
Identify the important features of a lateralized AI system, which
may include knowledge perception, knowledge representation
and utilization, and connectivity patterns. Determine the essen-
tial functionality that is required to be incorporated into an AI
system to behave as a lateralized AI system.

It is important to note that an individual lateralized AI system needs
to be developed for a specific task by adapting the general frame-
work of the novel lateralized AI system. This framework includes
all the critical functions of a lateralized AI system. Each novel lat-
eralized system needs to include the essential functionality of the
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fundamental framework. If any of the essential functions of the fun-
damental framework are missed, the system will not be a lateralized
AI system.

2. Develop a lateralized AI system and test on interrogatable, single-step, scal-
able, and complex problem domains. The first step will be to develop a
novel lateralized AI system for complex Boolean problems to obtain
the proof-of-concept of the lateralized approach. The RL technique
will be applied to solve single-step classification tasks. To achieve
this objective, the following sub-objectives have been set:

(i) Develop a lateralized system such that a single input can be pro-
cessed at different levels of abstraction, i.e. at the constituent
level and/or the holistic level. Instead of mapping features to
knowledge in a homogeneous manner that considers all input
features equally, the problem will be split into two halves. One
half will map sub-groups of features to knowledge at a con-
stituent level, whereas the other will map all features to knowl-
edge at a holistic level.

(ii) Represent BBKs in a heterogeneous manner. Different sized
blocks of knowledge can be recombined in a recursive manner,
i.e. a holistic block can be (re)used as a constituent block at a
higher level of abstraction.

(iii) Identify and reuse the relevant BBKs to efficiently resolve com-
plex Boolean problems, i.e. those consisting of patterns of pat-
terns.

(iv) Enable communication between different system components
through inhibition and excitation signals to efficiently resolve
the problem and avoid extraneous computations.

3. Develop a lateralized AI system that shows robustness in a real-world do-
main that includes uncertainty, noise, and irrelevant and redundant data.
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This objective will show that the underlying lateralized framework
can be adapted to complex real-world problems. A novel lateralized
AI system will be developed to show robustness against adversarial
attacks. The supervised learning technique will be applied to solve
single-step visual classification tasks. To achieve this objective, the
following sub-objectives have been set:

(i) Develop a lateralized system that can simultaneously process a
single visual input at constituent and holistic level of abstrac-
tion.

(ii) Represent knowledge in a heterogeneous manner. Different knowl-
edge components are utilized or re-utilized at different levels of
abstraction, i.e. a holistic knowledge component at one level
can be (re)utilized as a constituent knowledge component at a
higher level of abstraction. Different system components co-
ordinate to reuse the learned knowledge at different levels of
abstraction.

(iii) Enable communication between different system components
through inhibition and excitation signals to efficiently resolve
the problem and avoid extraneous computations.

4. Develop a frame-of-reference based AI system to address perceptual alias-
ing in multi-step decision making tasks. Both the Boolean and visual
problems are single step problems in the spatial domain. However,
most biological tasks, where heterogeneity is applied, are temporal
in nature, requiring multiple steps to achieve a solution. This objec-
tive aims to evaluate the effectiveness of the heterogeneous feature-
based approach in the temporal domain. A novel FoR based AI sys-
tem will be developed to evaluate the effectiveness of the novel ap-
proach in resolving perceptual aliasing in multi-step decision mak-
ing tasks. The reinforcement learning technique will be applied to
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resolve multi-step state-action transitions. To achieve this objective,
the following sub-objectives have been set:

(i) Create a novel FoRs based system that has the ability to process
a single input at different levels of abstractions to provide mul-
tiple environmental views, i.e. a local viewpoint (constituent
knowledge) and a world viewpoint (holistic knowledge, com-
plete map) of the same state.

(ii) Create a heterogeneous representation of knowledge, i.e. local
viewpoint (constituent knowledge) and world viewpoint (com-
plete map, holistic knowledge). This knowledge will be utilized
or re-utilized at different levels of abstraction to generate con-
stituent representation and holistic representation, which will
allow interpretation of learned policies.

(iii) Integrate different building blocks of knowledge at different lev-
els of abstraction to generate an unambiguous representation of
knowledge. The resultant knowledge will be used to disam-
biguate complex patterns of aliased states, which will enable
the learning of stable policies.

(iv) Create a strategy to activate/deactivate policies3 such that the
agent can reach the goal state by using the minimum number of
steps.

1.5 Major Contributions

This thesis makes the following major contributions to the fields of ma-
chine learning and AI.

(i) This thesis proposes a general framework for creating a lateralized
AI system for the first time. The important features of a lateralized

3A policy, like a route, can be considered as a large pattern prescribing state transitions
from a starting to the goal state.
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AI system are identified as knowledge perception, knowledge rep-
resentation and utilization, and connectivity patterns. Moreover, the
critical functions are identified that are needed to be implemented by
an AI system to behave as a lateralized system, i.e. simultaneous pro-
cessing of input signal at different levels of abstraction, coordination
and integration of knowledge among different system components,
utilization of inhibition and excitation signals to avoid extraneous
computations. This framework can be adapted to develop a lateral-
ized AI system for a wide range of problem domains. Supporting
evidence is provided in the following contributions.

(ii) Lateralization and modular learning are successfully applied at dif-
ferent levels of abstraction to resolve single-step, scalable, and com-
plex problems. A novel strategy is developed to consider the same
problem at different levels of abstraction (i.e. constituent level and
holistic level). Considering the same problem at different levels of
abstraction enables the novel system to reframe complex problems as
simple problems and efficiently resolve them. The results of analyz-
able Boolean tasks show that the lateralized system has the ability to
encapsulate underlying knowledge patterns in the form of building
blocks of knowledge. Problems with a natural hierarchy of patterns
are solved to a scale beyond previous work, and reusing learned gen-
eral patterns as constituents for future problems advances transfer
learning.

(iii) Lateralization is successfully applied to develop a visual classifica-
tion system that exhibited robustness against uncertainty, noise, ir-
relevant, and redundant data. A new technique is developed to si-
multaneously process the visual input from an environment at dif-
ferent levels of abstraction, i.e. constituent level and holistic level. A
novel strategy is created to handle simple problem instances at the
context phase, whereas, more attention is automatically given to the
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noisy and corrupt problem instances based on the feedback from the
context phase. It enables the novel lateralized system to make correct
decisions for badly corrupted images where either the constituent
predictions are confused or the holistic prediction favors the wrong
class. A novel strategy to inhibit or excite the most appropriate learn-
ing component of the lateralized system is implemented. It offers ef-
ficiencies and effectiveness beyond ensemble or co-evolutionary ap-
proaches. The experimental results demonstrate that the lateralized
system successfully exhibits robustness against adversarial attacks.
The novel system outperformed state-of-the-art deep models for the
classification of normal and adversarial images.

(iv) FoR based learning is successfully applied at different levels of ab-
straction to learn stable policies for multi-step tasks in partially ob-
servable Markov environments. A novel code-path based strategy is
developed to consider the same environmental instance at different
viewpoints, i.e. local viewpoint (constituent-level BBKs, egocentric
FoR) and world map (holistic-level BBKs, allocentric and routecen-
tric FoRs). This empowers the learning agent to successfully address
perceptual aliasing problems by identifying and disambiguating the
aliasing patterns. The experiments demonstrate that the novel sys-
tem has the ability to utilize or re-utilize relevant learned BBKs at
different levels of abstraction to learn aliasing patterns consisting of
patterns of features. A step-change in performance is achieved, e.g.
the state-of-the-art heavily aliased mazes are successfully resolved.

1.6 Thesis Organization

The remainder of this thesis is organized as follows. The literature review
of the required background knowledge is presented in Chapter 2. Chapter
3 presents the benchmark problems and approaches that are used to evalu-
ate the effectiveness and robustness of the developed systems. Each of the
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four subsequent chapters addresses one of the established research objec-
tives, respectively. A comprehensive discussion on lateralized approach,
implemented for different problem domains, is presented in Chapter 8.
Finally, Chapter 9 presents the conclusion and future work.

Chapter 2 provides a literature review of the required and relevant
background knowledge from Cognitive Neuroscience to AI. It includes
a detailed description of lateralization and modularity in biological intel-
ligence. This chapter also illustrates the different machine learning tech-
niques that are used to develop lateralized systems for this thesis.

Chapter 3 describes a wide range of benchmark problems, drawn from
different domains, that are utilized to evaluate the effectiveness and ro-
bustness of the developed lateralized systems. It includes single and mul-
tiple step problems, supervised and reinforcement learning problems, Boolean
and real-valued features problems, and problems that entail Markov or
partially observable Markov decision processes. Finally, it presents the
relevant state-of-the-art benchmark techniques that have previously been
developed to address the hierarchical problems that are used to evaluate
the lateralized AI systems.

Chapter 4 presents the general framework that can be used to develop
a lateralized AI system for a wide range of problem domains. It explains
all the critical methods and associated features of a lateralized AI system.
Finally, it illustrates a basic architecture that can be adapted to develop a
lateralized system for problems in a wide range of domains.

Chapter 5 presents a novel lateralized AI system which is developed
to solve complex Boolean problems. It illustrates how the lateralized ap-
proach enables the novel system to reframe a complex problem as a simple
problem and efficiently resolve it. Finally, this chapter presents the ex-
perimental results which demonstrate that the lateralized system solved
complex Boolean problems beyond previous work, e.g 18-bit hierarchical
multiplexer problem and n-bit parity problem.

Chapter 6 presents two novel lateralized AI systems which are devel-
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oped to show robustness against noisy and irrelevant data in computer vi-
sion problems. It explains a novel strategy that is developed to inhibit or
excite the most appropriate learning structure. This empowers the novel
systems to effectively and efficiently resolve the corrupt images. Finally,
this chapter presents the experimental results which demonstrate that the
lateralized system successfully exhibited robustness against adversarial
attacks beyond previous work.

Chapter 7 presents a novel frame-of-reference based AI system which
is developed to resolve perceptual aliasing problems in non-Markov en-
vironments (navigation problems). It explains a novel code-path based
strategy to provide environmental viewpoints at different levels of ab-
straction, i.e. local viewpoint and world map. Finally, the experimental
results have presented that show the effectiveness of the novel approach in
resolving perceptual aliasing problems in state-of-the-art complex mazes,
e.g. Maze10.

Chapter 8 provides a comprehensive discussion of the lateralized frame-
work for AI systems and its adaption for different problem domains. The
limitations of the lateralized approach and obstacles in developing later-
alized AI systems are discussed. Moreover, it provides insight into the
benefits and costs of lateralization for agents addressing complex tasks.

Chapter 9, concludes this thesis. It highlights the achieved objectives
and major research contributions of this thesis. This chapter also suggests
open questions and opportunities arising for future research work.



22 CHAPTER 1. INTRODUCTION



2
Background

The background chapter serves as a foundation for this thesis. It
highlights the important aspects of the research topic, identifies
the research gaps, and critically evaluates the relevant research
studies. As the main aim of this thesis is to create lateralized
artificially intelligent systems based on the evidence from cog-
nitive neuroscience, a more thorough revision of cognitive ar-
chitecture, in vertebrate brains, is provided than is typical in
an engineering thesis. The goals of this chapter are three-fold:
first, to introduce the relevant principles of cognitive neuro-
science that will inform the work and to describe the trade-off
between the benefits and costs of lateralization in biological in-
telligence; second, to present relevant aspects of biological and
artificial cognitive architectures; third, to review the current
state of knowledge, from machine learning, that will provide a
foundation upon which the novel modular systems will be con-
structed.

23
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2.1 Natural Cognitive Architecture

Cognition is a process used by the biological brain to acquire knowledge
and comprehension based on experience, thoughts, and senses [61]. It
comprehensively incorporates critical processes such as representing an
environment, learning, reasoning, evaluating, decision making, producing
language, and generating solutions to tasks. Cognition is implemented by
neural processing mechanisms [62, 63]. Miller and Gazzaniga introduced
the term “Cognitive Neuroscience” [64] to describe a branch of science that
deals with the biological processes and features related to cognition. It ex-
plains the functionality and connectivity of the brain that allow it to pro-
duce adaptive thoughts, feelings, and actions. Cognitive processes pro-
duce new knowledge by utilizing previously learned knowledge. Accord-
ing to a broad definition of cognitive systems (natural and artificial), they
are information processing systems that can perform various tasks [61].

Biological intelligence is associated with brains. The brain of a ver-
tebrate has a complex architecture that consists of a massively parallel,
extremely interconnected, and distributed system. It has the ability to
efficiently utilize parallel and distributed resources to achieve learning,
recognition, reasoning, evaluating, communicating, decision making, and
executing actions. Cognitive integration is accomplished when the brain
exploits all of the resources to understand the current situation, compre-
hend the environment, recall relevant past memories, analyze future per-
spectives, and decide actions accordingly [65].

A biological brain is not an amorphous system. It is made up of differ-
ent modules that communicate through electrochemical signals [21, 22].
These modules can be considered as metamodel nodes that subserve ex-
iguous low-level functions. Moreover, metamodel nodes form local net-
works that are linked through excitatory and inhibitory connections [23].
In biological brains, cognition arises out of networks of neurons which
are organized in ways that are modular but interconnected. Each module
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solves a specific problem or part of a problem. The knowledge learned
from small-scale and simple problems is (re)utilized by the brain to solve
large-scale and complex problems in similar and related domains [19, 20].

Vertebrate brains have a functional architecture that allows them to ab-
stract knowledge from simple and small-scale problems and then reuse it
to solve complex problems. It is not the intention of this thesis to model
the specific architecture of a specific species; rather it takes inspiration
from basic principles of functional organization that are fundamental to
vertebrate intelligence. This thesis focuses on three such principles: later-
alization, semantic knowledge, and frames-of-reference.

2.1.1 Hemispheric Lateralization

The propensity of a specific cognitive process to be performed more effi-
ciently and precisely by one hemisphere as compared to the other is called
hemispheric lateralization [29]. A brain can be divided into two major
parts, i.e. left and right cerebral hemispheres. These hemispheres are sep-
arated by the medial longitudinal fissure, as shown in Fig. 2.1. They pri-
marily communicate with each other through the corpus callosum. At the
macro-structural view, the left and right hemispheres look alike. How-
ever, they have a distinct neuroanatomy, neurochemistry, and functional
architecture [29, 30].

Hemispheric differences, with respect to structure, functionality, and
connectivity, are too complex to be encapsulated in a simple dichotomy.
Lateralization, with respect to structure, can be divided into two major
types, i.e. module asymmetry and circuit asymmetry [67].

Module asymmetry is a type of lateralization in which a specific mod-
ule or circuit component exists in only one hemisphere. It is an obvious
type of hemispheric lateralization. For example, in hermit crabs, motor
neurons that innervate pleopods are only on the left side of the brain [68].
In fruit-flies, Drosophila melanogaster (which has an asymmetrical body)
has an unknown structure only in the right hemisphere [69]. Similarly, the
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Figure 2.1: Human brain seen from the front (Source: [66]).

parapineal nucleus is only on the left side of the fish brain [67].

Circuit asymmetry is a type of lateralization in which an asymmetric
circuit, with similar types of neurons, exists in both hemispheres. How-
ever, these circuits may have different synaptic connectivity of neurons, a
different number of neurons, and neurons of different sizes. This type of
asymmetry provides the simplest way to evolve lateralization in the brain,
hence can be commonly observed at different levels of structural organi-
zation of the brain. For example, in chicks, thalamofugal fibres that are
opposite to the side of the light-stimulated eye are more numerous than
the thalamofugal fibres on the other side. Similarly, circuit asymmetry can
also be observed in pigeons (tectofugal pathway), crabs (different sizes
and numbers of cheliped motor neurons), and rats (hippocampal subcel-
lular synaptic asymmetry ) [67, 70, 71, 72].

Language is strongly associated with the left hemisphere, but the right
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hemisphere complements the left in many aspects of language compre-
hension and production. The left hemisphere is responsible for the pro-
cessing of systemized and rigid aspects of the language, whereas, right
hemisphere takes care of the flexible aspects of the language [73]. The left
hemisphere dominates in processing the phonological units of language,
the syntax that links words together into sentences, and the literal mean-
ings of words and phrases. However, the right hemisphere makes impor-
tant contributions to language processing too, and dominates in process-
ing the rhythm and tone of voice (or prosody), and figurative or alterna-
tive meanings. Moreover, both the cerebral hemispheres apply a different
strategy for the processing of semantic information [74]. The right hemi-
sphere has superior ability to process remote, novel, and atypical semantic
relations, whereas, the left hemisphere emphasises the common or literal
meanings associated with the word [75, 76, 77, 78, 79, 80].

Although hemispheric asymmetry was originally thought to be unique
to human brains, a large body of research now demonstrates asymmetries
in the brains of mammals, birds, and fish [81, 82, 83]. Hemispheric lateral-
ization and its effects on animals’ and humans’ behaviour will be used as
inspiration for developing novel methods in this thesis. Three aspects of
lateralization are relevant for applications to AI:

Representation and Processing

Some functions are strictly lateralized to one hemisphere or the other. For
example, each hemisphere receives sensory inputs from the opposite side
of the body and controls the contralateral musculature. But, for higher-
order cognition, differences between hemispheres are more relative than
absolute, with both hemispheres contributing to most tasks. Often these
hemispheric differences concern the scale at which the same sensory in-
puts are represented for subsequent processing. For example, in visual
perception, the left hemisphere processes information at a local (or con-
stituent) level while the right hemisphere processes information at a more
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global (holistic) level [32, 33, 34]. Similarly, in speech perception, the left
hemisphere processes segmental information (individual phonemes that
make up words) while the right hemisphere processes super-segmental
information (global intonational patterns that reflect emotion or intention
of the speaker) [35, 36, 37].

These fundamental differences in representational scale may arise thro-
ugh filtering. For example, the Double Filtering by Frequency model pro-
poses that the left hemisphere acts as a high pass filter, allowing it to rep-
resent detailed information that is available in high spatial or temporal
frequencies. At the same time, the right hemisphere acts as a low pass fil-
ter, allowing it to represent global patterns that emerge in low spatial or
temporal frequencies [84, 85]. Such complementary forms of representa-
tion are not limited to sensory information, however. For example in lan-
guage processing, the left hemisphere may activate single, literal, mean-
ings of words or sentences, while the right hemisphere keeps alternative,
metaphorical, or figurative meanings active [73, 74]. This ability to rep-
resent and process the same problem instance at a local constituent level
and a global holistic level will be incorporated in the work presented in
this thesis.

The ability to consider the same problem at different levels of abstrac-
tion is an essential feature of lateralization. But left/right (or right/left)
representation is not the only way to process information at a constituent
level and holistic level. Biological brains also use heterogeneous knowl-
edge representation. Lateralization is a special type of heterogeneity. In
vertebrate brains, the same sensory information is represented and pro-
cessed by different regions at different scales. For example, in animals’
navigation an internal egocentric frame-of-reference (FoR) represents a lo-
cal viewpoint, whereas allocentric and routecentric FoRs represent the world
viewpoint of the environment [27, 28, 38, 86].



2.1. NATURAL COGNITIVE ARCHITECTURE 29

Coordination

Effective cognition requires that the computations carried out in opposite
hemispheres be coordinated. Recognizing faces requires that we integrate
individual features (left) with their configural arrangement (right) [40];
understanding a joke requires that we integrate the literal meanings of
individual words (left) with their alternative subtext (right) [41]; under-
standing a song requires that we integrate the lyrics (left) with the melody
(right) [42]. It is the coordination between the left and right hemispheres
that enables the transfer of critical information at different levels of ab-
straction. This coordination will be included in the modules created here.

Goal-driven Processing

Vertebrate brains have the ability to select the computations required to
perform a specific task from the most suitable and relevant hemisphere.
Goal-driven processes analyze the problem at hand and shift control to
the superior and suitable module/hemisphere. For example, if the emo-
tional state of a conversational partner is most relevant, outputs from right
hemisphere speech processing systems will dominate, however, if the lin-
guistic elements are of concern, then left hemisphere computations are
prioritized [31, 43]; egocentric and allocentric processing have been asso-
ciated with right and left posterior cortex, respectively [87]; dorsal stream
and frontal areas are active during egocentric coding, whereas, dorsal and
ventral regions are involved during the processing of allocentric coding
[88, 89]; similarly, sequential organization of consecutive choices is man-
aged by the left hippocampus, whereas, allocentric or map-based naviga-
tion is handled by the right hippocampus [90]. The connections between
hemispheres in vertebrate brains can be excitatory or inhibitory, allow-
ing for either integration or inhibition, as goals dictate [44]. The ability to
identify which computational structure is the most suitable to the task is
important in practical situations. In the novel lateralized artificial system,
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a strategy will be developed for the automatic activation/deactivation of
the most suitable module/policy to handle the on-going situation while
resolving a complex problem.

2.1.2 Semantic Knowledge

The study of the representation of symbols and their meanings in our brain
is called semantics. Semantic memory is factual knowledge about the
world [91]. Semantic knowledge is the reflection of the semantic database
that we have built based on verbal and non-verbal experiences. It pro-
duces meanings, expressions, responses, and conceptual generalization
for a verbal and non-verbal stimulus.

The semantic system is an example of biological intelligence system
that takes advantage of both modularity and lateralization. It illustrates
how modules and control processes interact to create a flexible knowledge
system that can create new knowledge and provide optimal solutions to
reach a given goal. The modular architectures of the novel systems will be
designed based on inspiration from the hub and spoke model and concept
formation hypothesis of biological semantic system [92, 93, 94].

Early models of semantic memory focused on its structure, proposing
either an interconnected network of concepts or lists of features that define
or characterise those concepts [95, 96, 97]. In both types of model, exposure
to an exemplar (a word, a picture, or an object itself) activates the node or
the feature list, leading to the activation of similar or nearby nodes and
features through a process called priming. In these models, conceptual
knowledge is static and localised within the semantic system.

More contemporary models emphasise the distributed and dynamic
nature of semantic knowledge. The dominant theory to take this approach
is the hub-and-spoke model. It extends earlier models by incorporating
mechanisms of learning that underpin the development of conceptual knowl-
edge [93, 94, 98]. The hub and spoke theory integrates two already exist-
ing ideas. First, concepts are developed by utilizing learned information
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Figure 2.2: Computational framework of hub and spoke model (repro-
duced from [92])

based on verbal as well as nonverbal experiences. Moreover, the modality-
specific sources of information (i.e. spokes) are distributed throughout the
cortices. Second, the interaction among these sources of information is
controlled by a single transmodal hub that is located in anterior temporal
lobes [99, 100]. A schematic illustration of the computational architecture
of hub and spoke model is shown in Fig. 2.2.

A spoke is a source of information. These spokes are interconnected
through a central node known as a hub. In the hub and spoke model,
spokes log modality-specific information in different processing units at
different layers. These spoke layers are connected to a central transmodal
hub. The model takes the inputs generated by the spokes in sequence
and shares the updated information with other spokes connected with the
hub. A neuroanatomical representation of spokes and hub is given in Fig.
2.3. It is important to note that the model is supported by data from brain
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Figure 2.3: Neuroanatomical sketch of hub and spoke model (reproduced
from [92])

damaged patients with semantic dementia (who lose entire concepts be-
cause they have lost the “hub”), and from neuroimaging studies of healthy
brains that show that the same concepts activate different distributed net-
works (or spokes) depending on the goal.

Semantic cognition is the competency to utilize, control, and general-
ize learned knowledge during the execution of verbal as well as nonverbal
tasks. It is an association of neurocognitive strategies that assist semanti-
cally inspired behaviors. These neurocognitive strategies convert noisy
sensory input into meaningful information. Consequently, a brain ob-
serves the current environment, performs identifications, and makes con-
clusions.

Semantic cognition is based on two types of neural systems, i.e. se-
mantic representation and semantic control. Semantic representation logs
conceptual knowledge based on the higher-order relationships among dif-
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ferent sources of information. These sources of information, such as motor,
linguistic, sensory, exist in different parts of the cortex. Semantic cogni-
tion extracts conceptual representations based on experience and general-
izes those concepts to other knowledge domains. Semantic control utilizes
these conceptual representations to induce conclusions and control behav-
iors accordingly [93, 94, 98, 99, 101, 102, 103, 104, 105, 106, 107].

Semantic Representation

A brain stores representations of symbols at different levels of the phys-
ical cortex. Elementary level symbols are stored in the primary and sec-
ondary sensory cortices as physical entities. In spite of their simplicity, the
symbols have a pivotal characteristic to provoke higher level multifaceted
symbolic representation. The major portion of the cortex stores the higher
level multifaceted representation of symbols by utilizing distributed neu-
ral networks. Semantic representations are the inner states that manifest
a human’s knowledge of the meaning of symbols. Symbols are the verbal
or visual representations of objects that can be used to randomly identify
the types of other objects. The complex and higher order representational
geometries can be generated by utilizing the primary symbolic represen-
tations. Symbols generate entirely different sensory representations based
on the type of physical inputs such as visual representation or auditory
representation.

Concept Formation

Semantic representation records conceptual knowledge based on the higher
order relationships among different sources of information. Concept for-
mation has remained a focus of research in many disciplines such as neu-
roscience, philosophy, cognitive science, etc. Wernicke and Meynert devel-
oped a conceptualization model to describe the neural mechanisms for the
formation and reactivation of concepts [108]. Their model made three key
assumptions, i.e. (i) Concepts are stored in the form of building blocks of
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semantic information, i.e. engrams. Specific building blocks are stored in
the locality of such brain regions that are responsible for the corresponding
knowledge domain, (ii) These regions of the building blocks are massively
interconnected, (iii) The integration of these building blocks is the basis of
conceptualization. Recently, Ralph presented the most assertive concept
formation hypothesis. He considers that instead of forming a single rep-
resentation in some specific region of the brain, the concepts are a product
of integration and manipulation of semantic information stored in various
regions of the brain [109].

Embodied theories and symbolic theories are two different hypothesis
on the procedure of concept formation. Embodied theories consider that
concepts are a product of the learned knowledge, verbal and non-verbal,
based on experience. The activation of relevant experiential knowledge,
termed as features, is still unresolved. There are two views regarding
the activation of experiential knowledge, i.e. (i) activation at the time of
creation or updating the concept (ii) activation whenever the concept is
retrieved [110]. Symbolic theorists contend that logical, consistent and
generalizable concepts cannot be generated by features only, it also re-
quires experientially independent symbols [111]. These symbolic theories
explain concept formation and generalization but they cannot explain the
associations between the concepts and their relevant experiential features.
Partially unifying theories highlight the significance and centrality of ex-
perience for the generation of concepts. In addition, these theories de-
scribe features to concepts mappings as well as generalization of knowl-
edge [112, 113, 114, 115].

The hub and spoke model enhances the idea of unifying theories and
provides explanations for the formation of coherent and generalizable con-
cepts as well as the mappings between features and concepts. It is one of
the well-supported models for semantic representation.

A concept is a coherent collection of knowledge about the world [92,
109]. According to the hub-and-spoke model, the features that comprise
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a concept are distributed throughout the brain in modal spokes (motor,
auditory, color, shape, etc.) that are formed through sensory-motor expe-
rience and/or abstracted from statistical regularities in the environment.
These modal spokes then connect to a cross-modal hub (anatomically lo-
cated in the anterior temporal lobe in humans), in which related concepts
are connected to each other. The hub is, therefore, able to represent gener-
alized concepts that are independent of any specific instance. The activa-
tion of a concept (e.g. a hammer) then entails activation of its cross-modal
hub, along with modality-specific activation of its features (how it is held,
what it is used for, its visual form, etc.) [93, 94, 98, 99, 109, 110, 100]. Al-
though the network is bilateral, left and right hubs display subtle asym-
metries by virtue of their connections to lateralized perceptual and motor
systems [116].

Semantic Control

A controlling mechanism is required to make sure that the system gen-
erates the most relevant semantic representations and conclusions with
respect to the current task as well as ongoing situation. Sometimes tasks
have unconventional semantic requirements such as to highlight inferior
meanings, utilize submissive features, or suppress a conceptual associ-
ation. Moreover, the interpretation of the same concepts may generate
different meanings with respect to time and nature of the ongoing task.
Therefore a semantic control mechanism exists within the neural network,
which is called the controlled semantic cognition framework. This mecha-
nism utilizes the semantic representations and controls the semantic cog-
nition to produce relevant meanings of the concepts with respect to the
ongoing situation [92].

The controlled semantic cognition theory proposes both semantic rep-
resentation and semantic control networks within the semantic framework.
These networks have separate existence but they communicate with each
other to generate conceptual meaning with respect to the current task. This
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Figure 2.4: Controlled semantic cognition (reproduced from [92])

hypothesis resolved a challenge related to specificity and generalization.
Concepts are supposed to be generalized as well as have specific mean-
ings in association with the task at hand. According to the hub and spoke
model, generalized concepts are formed by the interaction of transmodal
hub and modality-specific semantic information, whereas the context of
the current task is represented by a region through a separate semantic
control network. These two networks integrate with each other to generate
most appropriate behavior in association with time, context, and situation
as shown in Fig. 2.4.

The learned semantic knowledge (e.g. about birds, flowers, trees, and
fishes) is distributed across modality-specific nodes (e.g. what they look
like, move like, and colors they have). These distributed nodes are linked
together through the amodal hub. It is required to have different repre-
sentations of the learned semantic knowledge to fulfil different goals, for
example, to spot a bird, its color is highly relative, whereas, to catch a bird,
its motion (hops) is the most valuable feature. These two tasks require fo-
cus on two different features (color vs motion). Therefore, the integrative
layer utilizes task-independent structure in the transmodal hub to gener-
ate task-dependent representations, as shown in the Fig. 2.5.

Not all features of a concept are relevant in all contexts. Anatomically
distinct semantic control mechanisms (localized in the frontal cortex) ac-
tivate the most relevant meanings with respect to the current task or sub-
task [92]. For example, when asked to describe the similarities between a
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Figure 2.5: Illustrative example for controlled semantic cognition (repro-
duced from [92])
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fire extinguisher and a tomato, people show increased activation in color-
processing areas of the brain. In contrast, reflecting on the similarity be-
tween hammers and hacksaws activates areas that generate motor move-
ments. Controlled semantic cognition therefore allows for concepts to be
constructed from learned building blocks of knowledge (BBKs) as dictated
by current needs [92, 93, 94, 98, 99, 101].

Concepts are therefore flexible; able to represent both generalizable
and task-specific knowledge. This flexible use of concepts needs to be
incorporated in this work to allow the representation of knowledge at dif-
ferent levels of abstraction through the activation of relevant BBKs. Both
specific and generalized knowledge need to be utilized in concert to re-
solve heterogeneous problems. The cognitive concept hypothesis will be
utilized to generate a block of knowledge (named concept) for each learned
problem (see Chapter 5). The novel lateralized system will have the ability
to utilize a learned BBK at a constituent level or holistic level depending
on its occurrence in the problem instance.

2.1.3 Frames of Reference

Frames-of-reference play critical role in animals’ navigation. They provide
another example of how neural modules can be used dynamically as BBKs
to represent complex environments and guide navigation. Although navi-
gation is most commonly studied in rats, the assumption is that the neural
and cognitive mechanisms that support learning in the rat also apply to
all mammalian (and probably all vertebrate) brains. It has been reported
that rats have the ability to efficiently utilize already learned knowledge
during the exploration of similar and novel environments [27, 86, 117].

There are several research studies that analyze an animal’s behavior
during spatial navigation in familiar and novel environments. Generally,
animals follow a specific path while moving from one position to another
in an environment. The knowledge of a specific path within an environ-
ment assists animals for fluent and elegant movement. A specific path,
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called route, can be described as a sequence of turns connected by straight
segments of different lengths. A route has a particular shape and different
routes may have similar shapes at different scales.

Animals log their positions with respect to different FoRs while navi-
gating through an environment. Egocentric, allocentric, and routecentric
are three important FoRs in this regard. Egocentric is an internal FoR,
whereas, allocentric and routecentric are external FoRs. The information
related to animal’s head direction as well as motor and sensory actions, as-
sociated with navigation, is logged via an egocentric FoR. The information
related to external cues and boundaries of the environment is logged via
an allocentric FoR, whereas, the information related to the route spaces,
distances between those spaces, and series of actions on the planned route
is logged via a routecentric FoR [38, 39, 118, 119]. This ability to represent
the same environmental state at different levels of abstraction (constituent
level or local viewpoint; holistic level or world viewpoint) will be incor-
porated in this thesis.

Different regions of the brain, cortical and subcortical, produce these
FoRs. Hippocampal place cells log a particular location of the route within
the environment, whereas, posterior parietal cortex (PPC) and retrosple-
nial cortex (RSC) neurons have the ability to log the position of the ani-
mal within the route. These regions coordinate with each other and as-
sist the animal to exhibit intelligent behavior during spatial navigation
[27, 86, 117, 120, 121, 122].

Hippocampus

The hippocampus is one of the important components in the brain of ver-
tebrates, as it is considered the hub of learning. Several studies have been
conducted to explore the role played by hippocampal interneurons during
spatial navigation. Place specific excitation in hippocampal activity was
initially discovered by O’Keefe and Dostrovsky [123]. They observed that
the peaks in the firing of hippocampal pyramidal neurons have a strong
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association with a specific location in the environment. Hence they are
called hippocampal place cells. Subsequently, a large number of exper-
imental studies have been conducted to explain the place-specific exci-
tations in the neurons of subregions of the hippocampus prominently in
Cornu Ammonis (CA1, CA3) and Dentate Gyrus (DG) [119, 124, 125, 126,
127, 128, 129].

Retrosplenial Cortex

The cortical area of the brain located towards the back (posterior) is called
the retrosplenial cortex. It plays a role in many aspects of memory and
cognition [130, 131, 132, 133, 134]. The neural connectivity and structural
location of RSC in the brain allow it to play a translational role in spa-
tial navigation. The RSC neural structure is heavily interconnected with
the regions that produce different FoRs, i.e. allocentric, egocentric, and
routecentric FoRs [135, 136]. Therefore it facilitates the transformation of
information between different FoRs. It has been reported that a subpopu-
lation of RSC neurons exhibits activity patterns associated with egocentric,
routecentric, and allocentric FoRs simultaneously [27].

Posterior Parietal Cortex

The region of parietal neocortex located behind the primary somatosen-
sory cortex is called the posterior parietal cortex. The PPC plays a signifi-
cant role in spatial navigation, planned movement, and attention. Damage
to the PPC region impairs attention, eye movement, and spatial memory
[137]. The PPC plays a significant role in transforming and mapping dif-
ferent spatial relationship. It has been identified as a cortical hub due to
its important afferent and efferent connectivity with many other cortices
and cortical regions [138].

Several studies on monkeys suggested that neural structures in pari-
etal cortex generate spatial functions such as localising sensory stimuli,
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motor actions, and attention [139, 140, 141, 142, 143]. The segregated spa-
tial functions are integrated through afferent and efferent connections of
the parietal cortex. It has been suggested, based on studies in monkeys,
that neurons in the parietal cortex exhibit activity patterns associated with
self-motion and allocentric information [142, 144, 145, 146]. In rats, it has
been observed that firing patterns of parietal neurons are directly asso-
ciated with locomotor behavior, spatial orientation, and spatial position.
These patterns allow the brain to update allocentirc spatial representations
as the animal moves [134, 147].

The role of the PPC in integrating spatial information across multiple
frames of reference is illustrated by a study by Nitz and colleagues [28].
They designed squared spiral tracks such that animals’ position always
remained within three FoRs simultaneously. The spiral tracks consisted
of five uninterrupted loops. These loops have identical shape but varying
length (gradually increasing or decreasing). Each loop has four segments
of track. This structure of track generates repeated action sequence at the
level of segments and loops. These segments and loops combined to make
a complete route. These structures are shown in Fig 2.6.

They observed that PPC neurons exhibit fast and slow firing patterns.
These firing patterns have associations with spatial locations and persist
across trials. A subgroup of PPC neurons exhibit firing patterns in con-
nection with locomotor behavior. These firing patterns recur as the loco-
motor behavior is repeated across the segments of the loop. Moreover, the
intensity of firing patterns related to turn-behavior depends on the track
position. They observed that PPC neural firing patterns are independent
of head direction, velocity of the animal, track rotation, and darkness.

Based on these experimental results they inferred that PPC neurons log
the animals’ position with respect to the three FoRs simultaneously. They
observed that firing activities for different loop segments can be differen-
tiated based on their shape or magnitude. A population of PPC neurons
exhibits firing patterns with respect to whole route position. Therefore
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Figure 2.6: (a)Route schematics (b) Track position w.r.t. segment, loop, and
complete route (source: [28])

loop and route position can be distinguished based on the firing patterns
of PPC neurons. Finally, they concluded that PPC neurons have distinct
logging patterns with respect to segments and routes, i.e. smallest and
largest external FoRs. These firing patterns collectively make a pattern
with respect to the loop, i.e. the middle FoR. These neural activities with
respect to multiple external FoRs reflect the procedure that can be used to
relate small units to the whole route.

Entorhinal cortex

The entorhinal cortex is a segment of the medial temporal lobe of the brain.
It has dual connections with hippocampus and neocortex regions. It plays
the role of a hub for the processing of memory and navigational informa-
tion. The integration of entorhinal cortex and hippocampus play a signifi-
cant role in spatial as well as declarative memories. Hafting et al. discov-
ered grid cells in entorhinal cortex and hypothesized that entorhinal cortex
neurons log a triangular grid map for spatial navigation [148]. Moreover,
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Figure 2.7: Grid Cells: (a) logging, (b) autocorrelogram patterns of grid
field, (c) triangular, (d) hexagonal. (source: [155, 156, 157])

these neurons log general information in the current context of the envi-
ronment, e.g. directional activities with respect to the environment. The
hippocampus place cells utilize this information to generate location spe-
cific representations [149].

A grid cell is an entorhinal cortex neuron whose firing activities at dif-
ferent locations in space forms a triangular grid. This triangular grid is uti-
lized by a brain’s coordinate mechanism for spatial navigation. These cells
log Euclidean space and form a positional system within the nervous sys-
tem. Grid cells’ activity patterns are independent of visual inputs and they
persist even in darkness. Moreover, the triangular grids align themselves
with respect to external cues. Any change in angular positions of exter-
nal cues results in an analogous change in the grid pattern. Grid patterns
remain the same for an environment, whereas, they maintain their spac-
ing and relative offset in a different environment. Grid cells exhibit firing
patterns across the whole environment, whereas, place cells firing activi-
ties are limited to a specific location within the environment. At a holistic
level, this triangular grid of firing activities forms a hexagonal pattern, as
shown in Fig 2.7. These firing units of triangular or hexagonal patterns
are equally spaced and they are positioned in such a way that they have a
separation of 60◦ [148, 150, 151, 152, 153, 154].
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Inspired by the above-mentioned understanding of learning in rat brai-
ns, a novel strategy will be developed to solve navigational problems. The
developed artificial agent will be able to navigate the spatial environment
by incorporating egocentric, allocentric, and route-centric FoRs analog to
the strategies adopted by rats during spatial navigation. The FoRs based
strategy for navigation needs to be applied in the algorithms created here
(see Chapter 7).

2.1.4 Benefits and Costs of Lateralization

Given that lateralization is ubiquitous in brains, some evolutionary ben-
efits can be assumed, at least in some domains. But that does not mean
those benefits extend to all domains. The research community has been
struggling to determine the trade-off between the benefits and costs of lat-
eralization. It has been hypothesized that lateralization has benefits that
may counterbalance its costs [82, 158, 159]. Across domains, lateralization
has been associated with both poor and good performance [160, 161].

The relationship between lateralization and cognitive performance ma-
ny depend on the task at hand. Some tasks show that better performance
is associated with greater lateralization. For example, lateralized chicks
have better performance to detect the model predator while searching for
food as compared to the non-lateralized chicks [31, 43, 81]. However, lat-
eralization is not universally advantageous, and may entail costs [162]. It
has been hypothesized that lateralization has benefits that may counter-
balance its costs [82, 158, 159]. The benefits of lateralization relative to its
costs is still a debatable topic.

Handedness is a physical manifestation of lateralization so could pro-
vide insight into the relationship between lateralization and cognitive per-
formance. It is the preferential use of one hand that is faster, better, more
capable, and gives a more precise performance on manual tests [163]. Al-
though most (i.e., 90%) of humans are right-handed, there is individual
variability in both the direction and degree of handedness. The relation-
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ship between handedness and cognitive abilities has been explored by sev-
eral studies but is ambiguous yet [164]. For example, cognitive task-based
higher performance has been associated with the right-handers [165, 166].
However, the performance difference has also been associated with the
strong and weak hand preference, rather than the left- or right-handers.
That is the higher performance is associated with handedness strength
rather than handedness direction [167, 168].

Similarly, the relationship between cognitive performance and behav-
ioral lateralization (behaviourally assessed hemispheric asymmetry) is eq-
uivocal. The performance of verbal tasks, assessed with dichotic listen-
ing, is positively associated with the left-hemispheric language strength
[161, 169]. In contrast, the performance of verbal tasks, assessed with vi-
sual half-field representaion, is associated with the symmetric language
representation [161]. One speculation is that the functions that lateral-
ized at the start and end of the ontogenetic development exhibit a positive
laterality-performance correlation, whereas, the functions that lateralized
at the intermediate stage exhibit a negative laterality-performance corre-
lation [160].

Inter-hemispheric interaction is another factor that can be considered
when investigating lateralization. Brain hemispheres primarily commu-
nicate with each other through the corpus callosum. The connections be-
tween them can be excitatory or inhibitory. The excitatory signals are im-
portant for the transmission of information and allow integration. Con-
sequently, increased inter-hemispheric communication results in weaker
independent lateralization. However, inhibitory signals are also impor-
tant enabling one hemisphere to dominate processing depending on task
goals. Consequently, increased inter-hemispheric communication can re-
sult in strong lateralization [44, 170].

From the above discussion, it is clear that although there is ample evi-
dence that cognitive performance and lateralization are associated, there is
inconsistency regarding the nature of this relationship, i.e. whether later-
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alization is positively or negatively correlated with cognitive performance,
or has no effects. These inconsistencies may arise because of trade-offs be-
tween the costs and benefits of lateralization, and which dominate in a
given task. This thesis will investigate lateralization in artificial agents’
decision-making to obtain evidence of the trade-off between benefits and
costs from artificial intelligence (AI) in order to inform cognitive neuro-
science.

Research communities have been creating artificial cognitive architec-
ture, frameworks, and models that can be used to create AI systems. The
next section provides an overview of the artificial cognitive architecture.

2.2 Artificial Cognitive Architecture

An artificial cognitive architecture provides an appropriate abstraction for
defining a standard model of the human mind that can be used to de-
velop human-like artificially intelligent systems [171, 172, 173]. It explains
structures, mechanisms, functions, and general settings that are required
to yield intelligent behavior while solving complex problems. There is no
clear definition and general principles, agreed upon, to create a cognitive
architecture. Each cognitive architecture has been created with a particular
set of assumptions and premises [174]. Recently, efforts have been made
to create a standard model of mind [171], see Fig. 2.8.

A cognitive architecture may resemble an artificially intelligent system
because it has data representation, memory storage, control components,
and input/output devices. Generally, an AI system is developed as a fixed
model to solve a specific task(s). In contrast, a cognitive architecture, gen-
erally, has the ability to update itself through development and utilize
learned knowledge to solve new tasks [175].

Cognitive architectures have been created from two perspectives, i.e.
scientific and engineering. According to the scientific approach (or more
precisely psychological approach), a cognitive architecture models human
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Figure 2.8: A standard model of the mind (Reproduced from [171])

behavior and underlying cognitive processes to facilitate the investigation
of the human mind [172, 176]. In contrast, according to the engineering
approach, a cognitive architecture provides a structure of mental repre-
sentations and mechanisms that can be developed to enable intelligent
behavior to solve complex tasks [177, 178, 179, 180]. Moreover, the en-
gineering approach uses cognitive principles to achieve the best outcome,
even if it does not model the human (or animal) mind.

The important components of an artificial cognitive architecture are
presented below.

2.2.1 Perception

Perception is an important component of cognitive architecture. It pro-
vides a mechanism to convert an environmental signal into an internal
representation. Different systems may have different perception modules,
or a system may have multiple perception modules. These modules pro-
cess various types and varying amounts of data, depending on the nature
and complexity of the environmental signals. The most common sensory
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inputs are: touch, hearing, vision, smell, proprioception, and non-human
senses (keyboard, graphical user interface, sensors). Moreover, some of
the sensory inputs are generated by using simulations, e.g. vision is one
of the commonly used perceptions and the majority of the systems use
simulation-based input signal instead of actual camera captures [174].

2.2.2 Attention

The process of selecting the relevant information and ignoring the irrel-
evant information from the environmental signal is called attention or
perceptual attention. Attention plays a critical role in cognitive processes
[181]. It acts as a bottleneck that restricts the information available for fur-
ther processing. Attentional elements can be grouped into the following
three classes of information reduction mechanisms: selection, these mech-
anisms are used to select one from many; restriction, these mechanisms are
used to choose some from many; and suppression, these mechanisms are
used to suppress some from many [182].

2.2.3 Action Selection

The procedure to determine the next course of action, based on the current
situation, is called action selection. It could be divided into two parts, i.e.
decision making and motor actions (decision execution) [183]. Planning
and dynamic action selection are two major approaches to action selec-
tion. In planning, AI algorithms plan to solve a given problem or identify
a sequence of steps to reach the goal before actual execution. In dynamic
action selection, AI algorithms select the best action and execute it. The
best action is selected, based on the defined criteria, by utilizing the cur-
rent knowledge.
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2.2.4 Memory

Memory is an important component of a cognitive architecture. It can be
used to store, retrieve, and maintain information. This information is used
by an AI system, for different purposes at different stages, while solving
a problem. Depending on the nature and requirement of use, memory
can be divided into different types. Long-term memory, which includes
declarative memory, is used to store concepts, facts, and problem-solving
rules. It has the following three subtypes: semantic memory to store fac-
tual information, procedural memory to store condition-action informa-
tion, and episodic memory to store experienced information. Short-term
memory is used to store the current state of the model or information of the
goal stack. It has following two sub-types: sensory memory, also known
as perceptual memory, to store recent percepts; working memory to tem-
porarily store information that is associated with the current task or rele-
vant to the current focus [184].

2.2.5 Learning

Learning is the ability of an AI system to enhance its performance based
on experience. It can be divided into two major types, i.e. declarative and
non-declarative. Declarative learning involves explicit knowledge acqui-
sition, whereas, non-declarative learning includes procedural, perceptual,
associative, and non-associative learning [185].

2.3 Artificial Learning Methods

The intelligence exhibited by machines based on the principles of natural
intelligence is called Artificial Intelligence. The majority of AI-based sys-
tems employ artificial agents to execute various tasks. An artificially intel-
ligent agent often receives environmental input, analyses it, and generates
appropriate action that maximizes its current or future reward. Moreover,
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an artificially intelligent agent may have the ability to solve a problem in
such a way that it mimics human cognition [8].

Machine learning (ML) is an important field of AI. A large number of
machine learning applications have been developed that are playing a sig-
nificant role in many aspects of everyday life [186, 187, 188]. ML based
applications have the ability to interact with their environments, auto-
matically extract useful knowledge patterns, and learn through experience
[189].

The learning process in ML can be divided into three main categories
based on the nature of the feedback, i.e. (i) supervised learning, (ii) unsu-
pervised learning, and (iii) reinforcement learning [190]. (i) In supervised
learning, the artificially intelligent agent is trained with the set of data
such that the ground truth is known in advance. Consequently, the agent
learns a generalised function that maps inputs with the desired outputs
[191]. Some of the well-known examples of supervised learning meth-
ods are: artificial neural networks, naı̈ve Bayes, and decision tree. (ii) In
unsupervised learning, the artificially intelligent agent is trained with the
set of data such that the ground truth and reward are not available. The
agent learns the hidden patterns in the given data in the form of groups
and generates a model to predict the future instances. K-means clustering
[192] and hierarchical clustering [193] are two well-known examples of un-
supervised learning methods. (iii) In reinforcement learning, the artificial
agent directly interacts with the environment. The agent affects the envi-
ronment by generating the actions against the input data. Consequently,
the environment affects the agent through feedback in the form of reward
or punishment based on the suitability of the agent’s action. The agent
learns by generating the actions in such a way that maximizes the future
rewards from the environment [194]. Temporal difference learning is a
well-known example of a reinforcement learning method [191, 194, 195].

The novel lateralized systems for Boolean and navigation problems
will be developed by applying the reinforcement learning strategies for
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three main reasons. First, in a majority of the daily life tasks, the natural
cognitive systems learn in the absence of ground truth information. They
adapt their behavior based on the feedback (reward or punishment) from
the environment. Second, the majority of experimental studies conducted
in cognitive labs are based on a reinforcement learning strategy. Finally,
a reinforcement learning based system has the ability to learn from inex-
act input data or from a noisy environment. The novel lateralized sys-
tem for computer vision (CV) problems will be developed by applying the
supervised learning strategy because the majority of visual classification
systems apply supervised learning, especially those using deep networks.
This thesis takes inspirations from neuroscience to create AI systems for
different problem domains. The following section presents an overview
of neuroscience inspired AI.

2.3.1 Neuroscience Inspired AI

Neuroscience has been a major source of inspiration to create AI systems.
It has been playing a key role to create a wide range of AI systems ranging
from the systems that emulate human-like intelligence to the systems that
mimic brain structure [171, 196]. AI systems are generally created to effi-
ciently and precisely solve specific tasks. Cognitive neuroscience is used
as inspiration to create AI systems for problems where biological intelli-
gence outperforms AI. Instead of reproducing the underlying mechanism
or neurological architecture, AI focuses on understanding natural intelli-
gence, takes inspiration at the algorithmic level, and develops solutions.
For example, biological neural networks have been used as inspiration to
create mathematical function based artificial neural networks, see Fig. 2.9.

The biological brain is not an amorphous system. It is made of differ-
ent modules such that each module solves a specific problem or a part of
a problem. Hence, the brain can be understood at different levels and/or
perspectives, which have impacted AI [198, 199]. For example, the phe-
nomenological perspective has been used as inspiration to create AI sys-
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(a)

(b)

Figure 2.9: An artificial neuron is a mathematical function conceived as a
model of biological neurons (source [197])
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tems that utilize functionality such as episodic memory [200], imagination
[201], attention [202], continual learning [203], and transfer learning [204];
the mechanistic perspective has been used as inspiration to incorporate
neural inspired elements in standard training techniques, e.g. recurrence
in visual processing [205, 206, 207, 208, 209]; the biophysical perspective
has been used as inspiration to create AI systems such as artificial neural
networks [210, 211, 212], spiking neural networks [213], spine stabilization
[203], neurogenesis [214], and context-dependent activation [215, 216].

The efficacy of neuroscience on AI can be extended by considering the
neural systems at an abstract level and paying attention only to the rel-
evant principles. For example, a predictive gain modulation has been
observed in the neurons of the dragonfly visual system. It results in se-
lective enhanced visual responses to predicted prey-position [217], even
in the presence of another potential target [218]. From a phenomenologi-
cal perspective, this selective enhancement in visual responses in dragon-
fly’s visual system has a resemblance with the selective visual attention in
macaque’s visual cortex [219, 220]. These visual systems (both the drag-
onfly and non-human primate) are still under investigation to further ex-
plore the visual mechanisms and underlying neural circuitry. The abstract
level representation of the dragonfly visual system has been used as in-
spiration to create function level models [221] and develop target tracking
algorithms for robotics [222, 223, 224].

AI systems can be developed by taking inspiration from neuroscience,
based on the understanding of the neural systems at that time. At a later
stage, the AI systems can be enhanced and modified to accommodate the
novel findings in neuroscience. For example, place cells [123] and head-
direction cells [225] were initially observed in the hippocampus where
they play a role in spatial navigation. The hypothetical functional de-
scriptions of these cells were used as inspiration to create navigation algo-
rithms [226, 227]. Later on, there are novel discoveries in neuroscience to
explain navigation such as grid cells [228, 229, 230], 3−dimensional repre-
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sentation [231], and a general framework for navigation [232, 233]. These
advances have been incorporated into the AI systems to create novel semi-
autonomous and autonomous navigation systems [196]. This thesis aims
to create novel lateralized AI systems inspired by the principles of biologi-
cal intelligence, derived from the current understanding of learning mech-
anisms implemented in the brains of human and non-human animals.

Evolutionary computation is an important field of AI that takes inspi-
ration from the natural evolutionary process. The following section briefly
discuss the aspects of this technique that are relevant to this thesis.

2.3.2 Evolutionary Computation

Evolutionary Computation (EC) is a paradigm consisting of population
based problem solving techniques. It is a methodology that has been used
to develop cognitive systems based on the principle of biological evolu-
tion. Inspired by the natural evolution process, these techniques evolve
a population of fittest candidate solutions based on the principles of bi-
ological and Darwinian evolution. The evolutionary process consists of
selection, reproduction, updating, and deletion mechanisms. Generally,
the population is initialized by randomly generated individuals. Subse-
quently, the evolutionary process evolves the population of fitter candi-
dates based on the fitness criteria [234, 235]. Learning classifier systems
(LCSs) are a state-of-the-art rule-based machine learning technique. Ge-
netic algorithms (GA) and genetic programming are two important EC
strategies that have been used for both the basis of representation and
rule discovery in LCSs [51, 236, 15]. The novel lateralized systems will be
developed by utilizing an evolutionary computation framework of LCSs
due to their niche-based algorithm and built-in support for heterogene-
ity (i.e. different rules co-exist in the same population). The relevant EC
approaches are presented below.



2.3. ARTIFICIAL LEARNING METHODS 55

Genetic Algorithm:

Genetic algorithm is a search based heuristic method that works on the
principle of natural selection [237]. GA can generate fitter solutions for
optimization problems by applying biologically inspired operators such
as selection, cross-over, and mutation. The evolutionary process in GA
can be explained by utilizing the schema theory. A schema is a template
for describing the states of an individual member by utilizing an alphabet.
The set of alphabets often consists of specified and ‘don’t care’ symbols.
For example, if the set of the alphabet is ternary {0, 1, #} then 0 and 1 are
specified symbols, whereas # is ‘don’t care’ symbol that can be matched for
both 0 and 1. Goldberg utilizes the concept of schema for the comprehen-
sion of the behavior and performance of GA [238]. He observed that the
combination of the short-length and high-performance schemata gener-
ate high-performance individuals. He termed these schemata as building
blocks of knowledge. However, he found that these building blocks can
only be generated if there is low epistasis1 among the genes.

The normal process of GA consists of the following steps. Initially, a
population of candidate solutions is randomly generated. Then a selection
operator is applied to the population for the selection of fittest solutions.
Consequently, the crossover and mutation operators are applied to gener-
ate offspring solutions. These newly generated solutions are hypothesised
to be fitter than their parents. Moreover, to keep the population size in a
given bound, a deletion mechanism is applied that removes the weaker
solutions from the population. Finally, the evolution process of GA is re-
peated until the ending criteria are met [238].

1A problem is said to exhibit epistasis if the value of one of its features affects the
importance of another feature [239].
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Learning Classifier Systems

Learning classifier systems are a concept for developing a rule-based ma-
chine learning technique by applying discovery algorithms and learning
components. LCSs seek to identify innate patterns in the data that they
encounter. They can develop context-dependent rules based on those pat-
terns. These rules collectively provide knowledge of the environment.
Moreover, LCSs make predictions by applying this knowledge in a piece-
wise manner [240, 241]. Holland and Reitman developed the first LCS and
named it CS-1, i.e. “Cognitive System One” [242]. It is one of the earliest
AI systems that was developed on the principles of cognition.

Generally, LCSs are analogous to a rule-based artificial agent that inte-
grate machine learning and evolutionary computing to devise a solution
for the given problem. An LCS based artificial agent communicates with
the (initially unknown) environment through input sensors and output
effectors. It observes the current state of the environment and performs
a suitable action concerning the ongoing situation. Consequently, it re-
ceives a reward from the environment. The agent learns by applying a
strategy to take appropriate action that maximizes its current or future re-
wards. LCSs evolve a population of classifier rules that collectively solve
the given problem. Moreover, to keep the population within a bound,
LCSs apply different condensation and compaction techniques to remove
the weak, and redundant classifier rules from the population [243]. LCSs
have the ability to handle epistasis and heterogeneity within a problem.

A broad range of LCS based AI applications have been developed in
different domains such as behavior modeling, data mining, classification,
modeling, regression, optimization, and approximation problems. LCS
based applications can exhibit robustness against a small amount of noise,
whereas, against a large amount of noise, these applications exhibit more
robustness as compared to other AI-based applications [244].

The LCS paradigm can be comprehended by explaining its four con-
ceptual components, i.e. learning, classifier, system, and problem proper-



2.3. ARTIFICIAL LEARNING METHODS 57

ties. Learning plays a critical role in AI-based applications. Michalski et al.
provide an excellent definition of learning, i.e. “Learning is constructing
or modifying representations of what is being experienced” [245]. Learn-
ing is the process of acquiring knowledge through interaction with the
environment. It can be done off-line by utilizing already saved data or
online through direct interaction with the environment at runtime. Gener-
ally, learning is influenced by the reward received from the environment
as the system learns to improve that reward. For better performance of
LCSs, the input data is supposed to contain patterns, ideally generaliz-
able, as this is a prerequisite for learning in any AI-based application. In
the absence of such patterns, LCSs cannot learn. LCSs form a group of
learned rules, which is called a population. These rules have fitness based
on their contribution toward the optimized solution. In the learning pro-
cess, LCSs improve the strength of good rules, produce new fitter rules,
and remove the rules with poor strength. Instead of a single rule, a set of
rules constitute a solution for the given problem.

Traditionally, assigning a specific class to the given data instance is
referred as a classification. The number of available classes is generally
known before learning. For example, there are two classes in a multi-
plexer problem, i.e. ‘0’ and ‘1’. In LCSs, the term ‘action’ is used to refer to
the predicted class of a data instance. LCS utilizes rules to decide actions
based on the condition, i.e. if ‘condition’ then ‘action’. A rule has fit-
ness value based on its usefulness. These rules are the fundamental build-
ing blocks of LCS paradigm. A rule itself does not provide information
about the accuracy of ‘condition-action’ mapping and its usefulness for
the population of rules. Therefore rules have associated statistics to pro-
vide all of this information. The important rule statistics are fitness, error,
reward prediction, numerosity, lifespan, reproduction, and experience. A
rule with its statistics is referred to as a ‘classifier’.

A system can be defined as a bounded structure that takes inputs and
generates outputs. In LCSs, feedback from the environment plays a crit-
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ical role to generate appropriate and fitter rules. A system, with respect
to LCSs, has four main components, i.e. (i) rule condition matching with
input, (ii) best action selection, (iii), evaluation of the rule, and (iv) gen-
erate fitter rules. The research community has developed many variants
of each component. This variation supports the hypothesis that LCSs are a
concept rather than a technique. LCSs interact with the environment to map
domain areas with separate classes. Moreover, LCSs have different sam-
ple space and search space. The number of unique instances of a problem
domain is called sample space, whereas, the number of unique rules that
can be created to map the sample space is called the search space. For
example, a 6-bit multiplexer with ternary alphabet representation has, 26

sample space and 36 search space.

LCSs Functional Cycle

A typical functional cycle of LCSs consists of nine steps that could be
repeated for a fixed number of iterations or until a stopping criterion is
achieved. A schematic diagram of the LCSs functional cycle is shown in
Fig 2.10. The LCSs algorithm executes these steps in a sequence mentioned
by numbers in small circles. (i) In the first step, the LCSs get an input in-
stance from the environment. This input is selected randomly from the
input dataset. The selection process runs on the whole dataset in a cyclic
way. Moreover, the selection of the instances is not repeated in a cycle, i.e.
all the instances are selected only once in a single cycle. (ii) The selected
input instance is passed to the population of classifiers. The population of
the classifiers [P] is significant component of LCSs paradigm. It contains
all the classifiers generated and preserved by the system. However, the
maximum size of [P] is defined by the user. Initially, the [P] has no clas-
sifiers and new classifiers are added through covering. The covering is a
mechanism that generates new classifiers whenever there is no classifier in
[P] that matches the condition and class of current training instance. The
covering method creates a new classifier of the same class as that of train-
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Figure 2.10: Schematic of Michigan style LCS algorithm with supervised
(adapted from [239])
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ing instance in supervised learning, randomly otherwise. Moreover, this
classifier has a randomly generated conditions (including any “don’t care”
symbols for generality) that matches the conditions of the current training
instance in supervised learning, randomly otherwise. (iii) The match set
[M] consists of all the classifiers from [P] whose conditions match with the
attributes (features/states) of the current instance. (iv) The classifiers of
[M] are divided into different classes based on their actions. In the specific
case of a binary classification in supervised learning, they are divided into
correct [C] or incorrect [I] class by matching their actions with the class
of training instance. This can only occur in supervised systems, such as
UCS [246]. (v) If none of the classifier from [M] have the same class as
that of current instance, i.e. [C] is empty, then covering is activated and
a new classifier is generated. (vi) The parameters of the classifiers in [M]
are updated based on different strategies e.g. in supervised classifiers the
fitness of a classifier is a ratio of its appearance in [C] to its appearance in
[M]. (vii) The majority of the LCSs apply subsumption techniques. It is a
strategy to remove the overspecific classifiers by merging them into more
general and accurate classifiers. (viii) Rule discovery technique is applied
at this step. Genetic algorithm is one of the commonly used technique in
LCSs. In the majority of LCSs algorithms, GA is applied at [C] instead of
[M] or [P]. It is called niche GA as it helps to explore the unique niches in
the problem space. (ix) Finally, the weak classifiers from [P] are deleted if
the size of [P] is greater than the user-specified limit.

LCS Approaches

LCSs have been developed by applying two different approaches, i.e. Michi-
gan approach and Pittsburgh approach [247, 248]. These approaches have
a different algorithmic architecture. The Michigan approach based LCSs
evolve a population of cooperative classifiers such that each individual
classifier represents a distinct and unique rule with associated parame-
ters. Therefore, GA is applied to individual classifiers. These systems can
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perform on-line as well as off-line learning. Moreover, these systems have
incremental learning and the whole population of the classifiers produces
the learned solution. This approach is different from other evolutionary
computation techniques, because it does not require population initiali-
sation [239]. In a majority of the cases, LCSs start learning with empty
population of rules. Covering is applied to generate the matching rules if
no existing rule match the current problem instance. Initially, LCSs were
developed by applying the Michigan approach and to date, the majority
of LCSs are based on this approach. Pittsburgh LCSs evolve a popula-
tion of rule-sets such that each rule-set forms a classifier with associated
parameters. Therefore, GA is applied to rule-sets. Generally, these sys-
tems perform batch learning and the best rule-set from the population is
selected as the learned solution.

The strategy applied to evaluate the fitness of a classifier plays a sig-
nificant role in the performance of LCSs. There are two main types of
LCSs based on the technique they apply to compute the fitness of the clas-
sifier i.e. strength-based LCSs and accuracy-based LCSs. Strength is a
measure of the reward received from the environment and the fitness of
the classifier is computed based on the value of the reward. This strat-
egy can balance the classifiers in case of infrequent niches. However, it
yields overgeneral classifiers that decrease the performance in a majority
of cases. ZCS is a good example of Michigan style strength-based systems
[249]. However, the consistency in prediction is often a more important
factor than the value of the reward. The fitness of the classifier is computed
based on the consistency of predicting the reward correctly. This strategy
does not produce overgeneral classifiers and leads the system to generate
maximally general as well as accurate classifiers. The resultant solution
contains a complete mapping and has more building blocks of knowledge
as compared to ZCS. XCS is the most common example of Michigan style
accuracy based systems [250, 251].
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2.4 Associated Techniques

This section presents a brief introduction to the associated computer vi-
sion techniques (i.e. image features and adversarial attack) that are used
in this thesis (see Chapter 6). Often, image features have been used as
input instances for the classifiers. A feature can be considered as a piece
of information about the visual contents of an image. The number of fea-
tures are few as compared to the large image data (raw data of an image)
[252, 253]. Adversarial attacks have been used to generate noisy, redun-
dant, and irrelevant data [55, 52, 56]. The resultant images can be used to
evaluate the robustness of classification techniques.

2.4.1 Features

The scale-invariant feature transform (SIFT) is one of the powerful tech-
niques that has been widely used for image classification and object de-
tection [254]. The SIFT descriptor performs image measurements in the
form of receptive fields over which local scale selection is used to establish
local scale-invariant reference frames. The SIFT features are invariant to
orientation, uniform scaling, and illumination changes. Consequently, a
SIFT feature descriptor exhibits robustness against disruption by clutter,
occlusion, or noise [255, 256].

The histogram of oriented gradients (HOG) is another widely used and
well-recognized descriptor in computer vision [257]. A HOG descriptor is
generated by computing the pixel-wise histograms of gradient directions.
This distribution of local gradient empowers the HOG descriptor to accu-
rately detect complex shapes and object deformation, e.g. muscle move-
ments and facial expressions [258]. Moreover, they are invariant to color
variation, light conditions, and geometric transformations. The inclusion
of these features will assist the novel system to correctly classify objects
based on facial expressions.



2.4. ASSOCIATED TECHNIQUES 63

Original Images 

                  

Perturbations  

                  

Adversarial Images 

                                              

+ +  + 

=   =  = 

Ivory Gull Kentucky Warbler Hooded Warbler Ring Billed Gull 

Figure 2.11: Example bird images of four different species. Original im-
ages are in the first row. The relevant adversarial perturbations are in the
second row. The resultant adversarial images are in the third row.

2.4.2 Adversarial Attacks

An adversarial attack is a technique that attempts to fool AI models by
generating deceptive input [53, 54]. The fast gradient sign method (FGSM)
is one of the well-recognized and commonly used methods to generate
adversarial attacks. Deep networks encourage linear behavior for efficient
learning. However, the images generated by FGSM exploit the linearity of
a deep model in higher-dimensional space. The FGSM generates pertur-
bations to increase the loss of the classifier. For this purpose, it performs
one-step gradient updates at each pixel [55].
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In many real-life applications, the input data is not directly available
to the deep networks; instead it is passed through devices (e.g. sensors,
cameras). The iterative adversarial method is proposed to generate adver-
sarial attacks for real world applications [56]. Instead of a one-step, the
iterative method extends FGSM to make a small change (finer optimiza-
tion) in multiple iterations. The images generated by FGSM and Iterative
methods will be used to evaluate the robustness of the novel system. Sam-
ple intact and adversarial images are shown in Fig. 2.11.

2.5 Chapter Summary

The basic concepts and terminologies of cognitive neuroscience that are
relevant to this thesis have been reviewed in this chapter. This chapter
presented a brief overview of hemispheric lateralization, semantic knowl-
edge, and frames-of-reference. Moreover, it described the trade-off be-
tween the benefits and costs of lateralization in biological intelligence.
This chapter discussed the relevant aspects of natural cognitive architec-
ture that will be used as inspiration to create novel methods in this thesis.
It also presented an overview of artificial cognitive architecture. Then,
this chapter reviewed the current state of knowledge of the artificial learn-
ing methods that will be used as a foundation to develop more modular
and lateralized systems in this thesis. Finally, associated techniques to in-
teract with visual environments and test the robustness of classification
techniques are presented.

This thesis will create a lateralized framework that will be adapted to
develop lateralized AI systems for Boolean, computer vision, and naviga-
tion domains. The next chapter will present a range of benchmark prob-
lems, from different domains, that will be used to obtain proof-of-concept
and to evaluate the effectiveness and robustness of the novel lateralized
systems. Moreover, it will provide an overview of the benchmark tech-
niques that have been developed to address those complex problems that
will be used to evaluate this thesis.



3
Benchmark Problems and
Approaches

Benchmark problems and approaches are an important part of
the evaluation process in the field of artificial intelligence. They
are used for a wide range of purposes during the development of
an artificial intelligence system. For example, benchmarks are
used to obtain a proof-of-concept, to evaluate the generalizabil-
ity of solutions/approaches, to determine the advancements be-
tween state-of-the-art methods and novel methods. Moreover, a
benchmark problem may have specific characteristics that make
it particularly appropriate for evaluating a specific aspect of a
system such as reliability, scalability, or robustness.

The goals of this chapter are two fold. First, this chapter presents
a range of benchmark problems, from different domains, that
will be used to obtain proof-of-concept and to evaluate the ef-
fectiveness and robustness of the novel lateralized systems. It
highlights the important characteristics of the problem domains

65



66 CHAPTER 3. BENCHMARK PROBLEMS AND APPROACHES

that are suitable to evaluate different aspects of the novel lateral-
ized systems. Second, this chapter highlights the strengths and
limitations of the existing state-of-the-art relevant approaches
that have been developed to address those complex benchmark
problems that will be used to evaluate this thesis.

3.1 Benchmark Problems

This section presents an overview of the benchmark problems that will be
used to evaluate the novel systems developed in this thesis.

3.1.1 Boolean Problems

Boolean problems are single-step problems that have known solutions so
that the exactness of the produced solution can be interrogated. These
problems can exhibit heterogeneity and epistasis, which are characteristics
known to cause problems in classification techniques as they can not make
the assumption linear separable. A problem is said to exhibit heterogene-
ity if different patterns can cause the same effect, i.e. separate niches (a
distinct subset of features/values) map to one action/class. A problem is
said to exhibit epistasis if the value of one of its features affects the impor-
tance of another feature [239]. Boolean problems also possess identifiable
components of a solution, rather than only the solution to the complete
problem, that are transferable to other problems. This helps to evaluate
transfer learning abilities, i.e. the ability to identify and transfer important
parts of knowledge.

Boolean problems have measurable search space, dependency struc-
ture, and distributed niches (subsolutions) [244]. Although Boolean prob-
lems can be considered as ‘toy’ benchmark problems, the heterogeneity
and epistasis characteristics make them analogous to real-world problems,
such as finance, bioinformatics, and behavior modeling. These qualities
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make Boolean problems an ideal test set to obtain the proof-of-concept
and show the effectiveness of the lateralized approach.

The input problem instance space of a Boolean problem is restricted to
be binary, i.e. S ⊆ {0, 1}l where 0 is false, 1 is true, l is the length of the
problem instance. Moreover, the output of the problem instance is also
commonly binary, i.e. supports two output classes A = {0, 1}. The well
known Boolean problems (except satisfiability (SAT) problems as this cat-
egory is constraint optimization rather than classification) will be used to
check the validity of the lateralized system, i.e. multiplexer problems, par-
ity problems, and carry problems. Moreover, the effectiveness of the novel
system will be demonstrated by utilizing the more complex derived ver-
sions of these problems, i.e. hierarchical-multiplexer problems and higher-
level parity problems.

Multiplexer Problems

The Multiplexer problems are multi-modal, non-linear, and have epistasis
characteristics, i.e. address bits are critical as they determine the impor-
tance of data bits [244, 259]. A multiplexer is an electronic circuit that
selects one of the several input signals and forwards it as an output signal
[260, 261]. The selection of the output signal is based on the value of par-
ticular input lines, known as select lines or address lines. The number of
address lines has a direct relationship with the total number of input lines.
The relationship between the input lines and address lines in a multiplexer
is:

L = k + 2k (3.1)

where L is the length of the multiplexer and k is the number of re-
quired address lines. The address lines are intrinsically bounded to the
data lines such that the value of address lines determines the importance
of the corresponding data line [244, 259].
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In a multiplexer problem instance, the value encoded by the address
bits k is utilized to select one bit from the remaining 2k bits. The value
of the selected bit is considered as the output class for the given problem
instance. For example, 101011 is a problem instance of a 6−bit multiplexer
problem. Here the output class is 1 as the first k bits (10) represents the
value 2 which is the third bit from the remaining 2k bits (1011). Similarly,
the output classes for the problem instances 100010, 000111, and 110101 are
1, 0, 1, respectively.

The multiplexer is one of the complex Boolean problems. It accepts the
input strings of length given by the eq-3.1. The length of a multiplexer
increases exponentially with respect to the number of address bits that
increase the search space in a similar way. For example, the multiplexer
with 5 address bits has a length of 5 + 25 bits and its search space consists
of 237 possible combinations.

Parity Problems

The parity problems are non-linear and non-monotonic [262]. It is hard
to make any useful generalization for parity problems domain using stan-
dard ternary alphabet based condition and static numeric action [244, 263].
The parity problems are based on the total number of ones in the given in-
stance. The class of the given parity problem will be 0 or 1 if the total
number of ones in the given instance is even or odd, respectively.

Carry Problems

The carry problems are considered as niche imbalance and the solutions to
these problems have strongly overlapped rules [244]. The class of the carry
problems is based on the triggering of a carry bit, as a result of the addition
of two binary numbers of the same length. The class is one, if the addition
triggers a carry, and zero otherwise. For example, the class of a 3, 3−carry
problem instance 101110 is 1 because the addition of binary numbers 101

and 110 trigger a carry, whereas the class of the problem instance 011010
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Figure 3.1: An instance of 18-bit hierarchical multiplexer problem. The
lower layer consists of 3-bit Parity problem, whereas, the upper layer is a
6-bit multiplexer problem.

is 0 because the addition of binary numbers 011 and 010 does not trigger a
carry.

Hierarchical Boolean Problems

Hierarchical Boolean problems have an additional layer of complexity, so
they are hard to resolve as they have low sparsity and hierarchical dis-
tribution of knowledge [51, 244]. Therefore, these problems will be used
to evaluate the effectiveness of the lateralized approach. The hierarchi-
cal Boolean problems consist of two layers. The lower layer is composed
of multiple instances of a specific Boolean problem. The evaluation and
integration of the lower layer generate the instance of the upper layer.
The upper layer is another Boolean problem. For example, 18-bit hier-
archical problem may be composed of the following layers (i) lower layer
based on 3-bit even parity problem, and (ii) upper layer based on 6-bit
multiplexer problem. An example instance of the 18-bit hierarchical mul-
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(a) (b)

Figure 3.2: Sample cat and dog images with 9 and 8 points annotation of
the head, respectively.

tiplexer is shown in Fig 3.1. It is important to note that an agent has no
prior knowledge on how the bit string is split.

3.1.2 Computer Vision Problems

Computer vision (CV) problems are single-step visual classification tasks
taken from the real-world domain. The ground-truth information is often
available for these problems when humans label the data. Moreover, these
problems include uncertainty, noise, and irrelevant and redundant data.
These characteristics make CV problems ideal candidates with which to
evaluate the robustness of the lateralized approach.

CV problems need to have ground-truth information about both the
constituent level (parts) and holistic level (whole) representations. Two
lateralized systems will be developed to show the scalability and effec-
tiveness of the lateralized approach. The first lateralized system will be
developed to address binary-class image classification tasks, whereas, the
second lateralized system will be developed to address multi-class image
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classification tasks. Publicly available cat and dog datasets will be used
as exemplars to evaluate the robustness of the binary-class lateralized sys-
tem. These datasets have ground-truth information about the parts (nose,
eyes, ear, mouth, head, face) and the overall image. The cat dataset is
taken from Kaggle competition [264]. It includes more than 9000 cat im-
ages along with ground-truth files. Each image contains 9 points annota-
tion of the head, i.e. (1) Left Eye, (2) Right Eye, (3) Mouth, (4) Left Ear-1,
(5) Left Ear-2, (6) Left Ear-3, (7) Right Ear-1, (8) Right Ear-2, (9) Right Ear-3
(see Fig. 3.2a).

The dog dataset is taken from dlib (C++ library for ML) [265], which is a
modified copy (modified missed annotations and loose BBoxs) of the data
used by Liu et al. [266]. It includes more than 8000 dog images along with
the ground-truth information. Each image contains 8 points annotation of
the head, i.e. (1)head top, (2) left ear base, (3) left ear tip, (4) left eye, (5)
nose, (6) right ear base, (7) right ear tip, (8) right eye (see Fig. 3.2b).

Another publicly available Caltech-UCSD Birds-200-2011 dataset [267]
will be used as exemplar to evaluate the robustness of the multi-class lat-
eralized system. This dataset contains 11, 788 photographic images of 200
bird species. The ground-truth information about the parts and overall
image is available. Each image contains 15 points annotation of the bird,
i.e. (1) back, (2) beak, (3) belly, (4) breast, (5) crown, (6) forehead, (7) left
eye, (8) left leg, (9) left wing, (10) nape, (11) right eye, (12) right leg, (13)
right wing, (14) tail, (15) throat (see Fig. 3.3).

3.1.3 Navigation Problems

The navigation problems are multi-step path planning problems that pro-
vide virtual environments related to real-world problems. Mazes have
been used in a wide variety of navigation based research from cognitive
neuroscience to artificial intelligence [244, 27, 14, 123, 268, 269, 270, 271,
272, 273], as they approximately simulate real-world navigation problems.
Mazes have a structure that allows experimenters to easily control and
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Figure 3.3: A sample bird image with 15 points annotation of the parts
(source [267]).

trace the behavior of an agent during the learning process. They offer
a wide range of complex environments that artificial agents struggle to
solve. This includes complex non-Markov mazes that are characterized
by heterogeneity in action probability in a given state and clusters of such
aliased states. An artificial agent needs to consider the local viewpoint to
resolve aliased states within a cluster, and a world viewpoint to uniquely
identify the position of a cluster within an environment. These charac-
teristics make maze problems an ideal research paradigm with which to
evaluate the effectiveness of the lateralized approach.

A maze is a two-dimensional rectangular grid, which provides a vir-
tual environment for navigation. This will be used to evaluate the effec-
tiveness of the heterogeneous feature-based approach in the temporal do-
main1. Each cell of the two-dimensional grid is considered as a state. A
state can be empty or blocked. The agent can execute an action and transit
to a neighboring empty state but it cannot visit a blocked state. For this
thesis, an empty state is represented by 1, and a blocked state is repre-
sented by 0. For this thesis, there are eight possible actions that an agent

1A maze can be considered a temporal domain because the agent navigates the maze
through a series of steps
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Figure 3.4: (a) A sample maze, here an empty state is represented by 1 and
a blocked state is represented by 0. (b) States with sensation values, e.g.
starting from the north (star), the sensation value of state ‘A’ is 00100000.
(c) An agent with corresponding action values to visit the respective adja-
cent state.

can execute to visit an adjacent state. These actions are represented by in-
cremental numbers from A0 (starting from the top) to A7, as shown in Fig.
3.4-c.

An environmental state (input signal) is represented by a binary string
that is computed by concatenating the agent’s immediate sensation of eight
adjacent states. For example, in Fig 3.4 starting clockwise from the north
(star), the input signal for state ‘A’ is “00100000”. The third bit is ‘1’ be-
cause the state on the east side of the state A is empty. A sample maze and
input signal (binary string representation) of each empty state are shown
in Figs. 3.4-a, 3.4-b.

A maze can behave as a stochastic Markov environment for an agent
if the agent’s immediate sensation provides all the required information
to take the best action in all states/situations. Whereas, a maze can be-
have as a non-Markov environment if the agent’s immediate sensation
in a state does not provide the required information to behave optimally.
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Figure 3.5: A sample non-Markov maze with two aliased states.

Such a state of a maze could be an aliased state. The existence of multi-
ple aliased states on the navigation path generates complex hierarchical
patterns [239].

A sample non-Markov maze is shown in Fig. 3.5. The states ‘A’ and
‘B’ are two aliased states. In these states, the agent’s immediate sensation
provides the same input signal, i.e. ’00100010’. But the agent needs to
take different actions to optimally reach the goal states. That is, in-state
‘A’, the agent needs to take action ‘2’ to move to the right state; whereas,
in-state ‘B’, the agent needs to take action ‘6’ to move to the left state.
Consequently, the agent is faced with a perceptual aliasing problem.

3.2 Benchmark Approaches

This section provides a brief description of the state-of-the-art benchmark
approaches that have been developed to address the complex problems
that are used to evaluate the AI systems developed in this thesis.
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3.2.1 Existing Lateralized AI Systems

A systematic search was conducted to find studies that create lateralized
artificial intelligence systems. For this purpose, three search strings are
used, i.e. (i) “lateralized systems”, (ii) “lateralized artificial intelligence”,
and (iii) “lateralized machine learning”. The search was conducted on
popular scientific search engines, i.e. IEEE Xplore, Science Direct, Elsevier,
Scopus, and Google Scholar. The hits were less than 50 for the majority of
the search engines, however, for Google Scholar, the hits were upto 2500.
The studies that appear in the search results have the following major pat-
terns: (i) magnetic resonance imaging-based studies on different parts of
the brain to identify, highlight, or simulate lateralized functionality; (ii)
electroencephalogram based studies to learn lateralized patterns for the
identification of different diseases; (iii) studies to find a relationship be-
tween lateralized neural activity patterns and behaviors; (iv) studies to
learn brain activity. It is important to note that none of the studies is con-
ducted to create a lateralized artificial intelligence system inspired by the
hemispheric lateralization. Lateralization has not been investigated in ML
systems due to a number of reasons, which are discussed in Chapter 1.

3.2.2 Relevant Approaches for Boolean Problems

Different techniques have been developed to solve complex Boolean prob-
lems. The well-known and state-of-the-art approaches are described be-
low.

Layered Learning Genetic Programming

Layered learning genetic programming (LLGP) is a methodology for learn-
ing complex problems by (a human-in-the-loop) decomposing them into a
hierarchy of subtasks [274]. These subtasks are separately learned in a se-
quence by utilizing suitable learning algorithms. The knowledge learned
for a subtask at the lower layer of the hierarchy is utilized for the learning
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of a task at the upper layer [275, 276]. The layered learning approach is
suitable for complex problems where direct learning is intractable and hi-
erarchical decomposition is possible. The layered learning approach typ-
ically requires human intervention for the decomposition of the complex
problem and selection of a suitable algorithm for the learning of a subtask.
Moreover, the layered learning methodology requires a strict sequence of
learning to solve complex tasks [277]. In contrast, the novel lateralized sys-
tem will have the ability to simultaneously analyze the complex problem
at both the more abstract level and the constituent level. Consequently,
the novel system will identify and utilize relevant BBKs without human
intervention.

Recently, a common sub-tree based transfer learning technique has been
introduced in genetic programming (GP) [278]. The resultant system has
the ability to automatically find relevant information that can be trans-
ferred between problems. However, it could not transfer information be-
tween different problem domains. Moreover, this system struggles to com-
pletely learn complex problems such as 7− bit parity problems [278]. The
novel lateralized system will have the ability to handle heterogeneous and
complex Boolean problems.

Cartesian Genetic Programming

Cartesian genetic programming (CGP) is a methodology for developing
graph-based programs to solve a problem. In CGP, a program is repre-
sented by a two-dimensional grid of nodes in the form of a graph. The
program has the ability to implicitly reuse nodes in the graph. Conse-
quently, the mapping for genotype to phenotype in such a program is
many-to-one [279, 280]. The CGP technique generates an arbitrary se-
quence of computer programs that can solve only a particular problem;
the learned solution cannot be reused to solve other complex problems.
Moreover, the size of the solutions is very large for large-scale and com-
plex problems. Consequently, the learning is intractable [281]. The novel
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lateralized system will have the ability to generate a compact solution by
utilizing the learned BBKs at different levels of abstraction.

Cooperative Coevolution

Cooperative coevolution is a methodology for solving a complex prob-
lem by dividing it into subcomponents and resolving each subcomponent
independently [53]. The learning of subcomponents generates subpopu-
lations that can only interact through cooperative evaluation, the process
by which an individual from a subpopulation concatenates with the fitter
individuals from other subpopulations of the same group [21]. The utiliza-
tion of subjective fitness and complicated dynamics of cooperative coevo-
lution systems are the main reasons for the failure of these systems [282].
Moreover, these systems do not allow mating between the individuals of
heterogeneous subpopulations [283, 284, 285]. In contrast, the novel lat-
eralized system will have an elementary architecture where solutions will
be generated by utilizing homogeneous as well as heterogeneous BBKs.

Code Fragments based LCSs

Code fragment (CF) representation is an important encoding scheme that
has been introduced in learning classifier systems (LCSs) to achieve high-
level knowledge representation [15]. It has been used in LCSs to store and
transfer learned knowledge. A CF is a GP-like tree in which the internal
nodes have operations that are selected from a predefined set of opera-
tions, e.g. AND, OR, NOT, NAND, and XOR. The leaf nodes, in contrast,
have environment variables or previous CFs. The inclusion of CFs in LCSs
resolves previously unresolvable complex problems (such as 135-bit mul-
tiplexer (Mux) problem, n-bit Parity problem, and n-bit Mux problem), en-
ables the transfer of learned knowledge, and generates compact rule sets
for an optimal population [51, 236, 15].

However, CF-based systems struggle to solve complex problems such
as hierarchical Boolean problems (see Chapter 5). Moreover, the solution
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proposed to resolve the n-bit Mux problem requires a strict ordering of
layered learning, prior knowledge of problem decomposition, and much
human intervention [51]. Whereas, the cyclic graphs based technique (XC-
SSMA), that can solve n-bit Parity problems, is not beneficial for multi-
plexer problems. The finite state machines utilized in the action are unable
to capture the patterns in the search space [281]. Recently, CF-fitness based
techniques have been introduced to search for useful and relevant features
for efficient learning. Nevertheless, these systems struggle to completely
learn 18-bit hierarchical multiplexer (HMux) problems due to the homoge-
neous nature of their knowledge representation [286]. A novel CF-based
technique will be developed to facilitate the efficient learning of complex
BBKs at different levels of abstraction without human intervention.

3.2.3 Relevant Approaches for Computer Vision Problems

Existing techniques provide only a partial solution to adversarial attacks in
visual classification tasks. The majority of these techniques provide deep
learning based solutions. Deep learning (DL) is a methodology for ex-
tracting higher-level features and useful patterns from raw data by utiliz-
ing multiple layers in artificial neural networks [287]. A DL-based model
progressively learns by transforming each lower layer input into a higher-
level abstract representation. The chain of information transformation
from the input layer to the final output layer is known as the credit as-
signment path (CAP). The depth of the CAPs in a feedforward neural net-
work is the number of hidden layers plus one (output layer), whereas, it is
unlimited in a recurrent neural network (a signal may propagate through
a layer multiple times) [288]. Moreover, a DL model considers all the fea-
tures homogeneously. It learns by optimally placing and selecting features
at different levels that improve performance [289]. In contrast, the novel
system will have the ability to simultaneously analyze the information at
the constituent level and holistic level. Consequently, the novel system
will generate a robust solution by utilizing the learned knowledge at dif-
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ferent levels of abstraction.
Adversarial training techniques reduce over-fitting by regularizing the

deep networks, which improves robustness against adversarial attacks.
However, these techniques are considered non-adaptive due to their de-
pendency on already existing adversarial data. Moreover, the need for
adversarial training results in an increase in the training data size and ex-
pensive network architecture [55, 290]. Furthermore, it has been reported
that adversarial-trained networks can again be fooled by creating effective
adversarial examples [291].

Compression-based techniques are another approach that has been in-
vestigated as a defense against adversarial attacks. The results suggest
that compression alone is inadequate to provide an effective defense [292,
293, 294]. Moreover, it is hard to find appropriate compression for a dataset.
Smaller compressions are unable to handle adversarial perturbations, whe-
reas, larger compressions decrease the classification accuracy of clean im-
ages. Modification of the deep networks is yet another area where efforts
have been made to improve adversarial robustness. However, it has been
reported that the majority of these methods are either unable to provide
an effective defense or too complex so require very large training instances
[295, 296, 297].

3.2.4 Relevant Approaches for Navigation Problems

A stochastic environment can be considered Markov if the agent’s imme-
diate perception provides all the necessary information to decide the best
action in all situations/states. Such decision processes are called Markov
decision processes (MDPs). An environment can be considered non-Markov
if the agent’s immediate perception does not provide all the necessary in-
formation to decide the best action in all situations/states. Such hidden
states can be aliased states, which are only partially observable and the
agent needs more information to take the best action. Such decision pro-
cesses are called partially observable Markov decision processes (POMDPs)
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[239]. The majority of RL agents can easily learn Markov environments,
but they struggle to learn non-Markov environments. Many techniques
have been developed to address perceptual aliasing in non-Markov envi-
ronments. These techniques are discussed below.

Initial attempts to cope with perceptual aliasing by additionally learn-
ing an immediate perception could not solve the majority of non-Markov
environments because of impractical and strict assumptions such as noise-
less sensing, deterministic actions; and incomplete perception [57, 298,
299, 59]. Further attempts to utilize belief state methods to address per-
ceptual aliasing failed due to two factors: (i) difficulty in calculating value
functions, and (ii) updating belief states. These two factors make the be-
lief state-based strategies intractable for large and complex non-Markov
environments [300, 301, 302].

Another way to handle perceptual aliasing is to have a message list
where states and actions are stored and passed to future decisions but this
is inconvenient because of the storage size and contents. It is hard to de-
termine the optimum memory relevant to the decisions. For example, an
agent may store neutral messages and/or incorrect messages, making it
hard to search for only the appropriate messages. The resultant systems
could not evolve optimal rules and so were unable to solve the majority of
non-Markov environments [249, 303, 304, 305].

Internal memory-based systems successfully solve simple non-Markov
environments, however, they struggle to disambiguate aliased states in
complex non-Markov environments. This is due to the likelihood of path
entrainment, i.e. becoming stuck in a local optimum as once a route to the
goal has been discovered, it could be exploited such that the exploration of
potentially better routes does not occur. Moreover, multiple versions of the
same route may be stored due to a lack of generalization. Consequently,
internal memory-based systems are neither robust nor able to achieve op-
timal performance for complex problems [272]. Thus, these systems pro-
vide only ad-hoc solutions [59, 303]. Similarly, internal action-table based
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systems struggle to obtain an optimal policy for complex non-Markov en-
vironments. Moreover, they require extra computations to find an appro-
priate policy [306, 307].

Artificial agents based on the psychological principle of anticipatory be-
havioral control provide a partial solution for non-Markov environments
[273, 14]. Latent learning-based anticipatory classifier systems (ACS), and
the more advanced ACS2, predict the next state of the environment, but
still struggle to learn complex aliasing patterns. The methodology adopted
by ACSs fails to identify the aliased states in the majority of cases. Conse-
quently, the agent is unable to take the required best action [14, 273, 272,
308]. Even ACS2, with behavioral sequences, fails to efficiently address
non-Markov environments. For example, these systems struggle to ad-
dress environments with loops in states and environments that have the
same aliased states on one path [273]. Recently, Orhand et al. presented a
study that implemented behavior sequences in ACS2 [309]. The resultant
systems, BACS2 and BACS3, performed well on the majority of mazes;
however, these systems were unable to counteract all of ACS2’s inher-
ent issues to effectively resolve complex environments, such as Maze10,
Littman57, and Woods102.

Zatuchna and Bagnall applied the idea of imprinting (adopted from
psychology and ethology) to resolve non-Markov environments. They in-
corporated memory mechanisms and associative perception techniques in
a single system to address aliased states. Moreover, they modified the
evolutionary and reinforcement mechanisms of the standard LCSs. The
resultant system, named AgentP, has a complex architecture that relies on
tailored methods, such as memory and imprinting. AgentP observes and
stores many states as it progresses, which eventually renders the learn-
ing intractable. Moreover, it inherits the above-mentioned limitations and
drawbacks of ACS2 and memory-based systems. Consequently, it is still
unable to completely learn complex non-Markov environments, such as
Maze10 [60, 272].
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Deep RL is another approach to address the perceptual aliasing prob-
lem. Deep RL agents require high computational resources to handle per-
ceptual aliasing. This becomes worse in complex non-Markov environ-
ments, e.g., Minecraft [10], in which many states have common visual
features. Interactive machine learning (IML) based techniques have been
proposed to improve the performance and reduce the extraneous com-
putations utilized by the RL agents to handle perceptual aliasing in non-
Markov environments[310]. However, these techniques could not be gen-
eralized and required a human-in-the-loop to assist the agent. Moreover, it
is hard to decide when, e.g. triggering based on low confidence, action ad-
vice/critique and how much, e.g. how often and level of expertise, human
intervention is appropriate [10, 311, 11].

Another approach to handle the perceptual aliasing problem is the use
of subgoals [312, 313, 16]. However, it is hard to select an appropriate
number of subgoals and define the complexity of the subgoals. Conse-
quently, the resultant systems have poor learning efficiency. Recently, a
genetic algorithm-based strategy has been developed to find appropriate
subgoals [16]. However, this technique requires extraneous computations
and cannot find appropriate subgoals if the system fails to achieve the task
at the initial population generation.

In summary, although methods to address perceptual aliasing exist,
they either fail under challenging circumstances or entail unreasonable
computational overhead. It is hypothesized that a novel lateralized system
can identify aliased states at a constituent level and place them uniquely
in holistic level policies.

3.3 Chapter Summary

One of the important objectives in this chapter was to provide an overview
of the benchmark problems, from different domains, that will be used for
the evaluation of the novel lateralized systems. The state-of-the-art bench-
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mark problems are explained from Boolean, CV, and navigation domains
(mainly used in Chapters 5, 6, and 7, respectively). These benchmarks
include a wide range of problems, i.e. single and multiple step problems,
supervised and reinforcement learning problems, Boolean and real-valued
features problems, and problems that entail Markov or partially observ-
able Markov decision processes. Consequently, these benchmark prob-
lems provide an ideal test-bed not only to obtain the proof-of-concept but
to evaluate the robustness and effectiveness of the lateralized approach.

Another important objective was to highlight the strengths and lim-
itations of the state-of-the-art relevant benchmark approaches. EC tech-
niques have become proficient at linking environmental features to de-
scribe simple patterns in data. These techniques can easily handle sim-
ple Boolean problems but they struggle to handle complex hierarchical
Boolean problems. State-of-the-art EC techniques can only handle those
complex Boolean problems where direct learning is intractable and hi-
erarchical decomposition is possible. The majority of the EC techniques
require human-in-the-loop intervention and a strict sequence of learning.
They do not have the ability to transfer/reuse learned knowledge between
different problem domains. The lateralized framework will be adapted to
create a lateralized AI system that can automatically identify and utilize/re-
utilize learned BBKs at different levels of abstraction to solve complex
Boolean problems (see Chapter 5).

DL-based methods can efficiently and precisely handle visual classi-
fication tasks where the relationship between features and target is lin-
early separable. An adversarial attack can easily fool the majority of the
DL models. Existing state-of-the-art DL-based techniques provide only
a partial solution to handle adversarial attacks. The solutions offered by
these techniques are non-adaptive, computationally expensive, too com-
plex, and inadequate to provide an effective defense. The lateralized frame-
work will be adapted to create a lateralized AI system that can provide
robust solutions for visual classification tasks (see Chapter 6).
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Reinforcement learning agents can easily handle Markov environments
but they struggle to address perceptual aliasing in non-Markov environ-
ments. The solutions provided by the majority of the techniques are in-
tractable, complex, computationally expensive, require human-in-the-loop,
and rely on tailored methods. The lateralized framework will be adapted
to create a lateralized AI system that can utilize FoRs based Learning to
overcome perceptual aliasing in non-Markov environments (see Chapter
7).

The majority of the relevant benchmark techniques develop a huge net-
work of homogeneous knowledge to solve complex problems. These tech-
niques can effectively handle problems that consist of homogeneous pat-
terns of features. However, they struggle to address problems that consist
of complex heterogeneous patterns of features, i.e. hierarchical patterns
within patterns. Heterogeneous feature-based lateralized AI systems have
not yet been investigated. One factor that may have hampered progress
in creating lateralized AI systems is the lack of availability of an under-
lying lateralized framework. In this thesis, a novel lateralized framework
will be created that will be adapted to develop lateralized AI systems for
Boolean, CV, and navigation problem domains (see Chapters 4, 5, 6, and
7, respectively).



4
Framework of a Lateralized
Artificial Intelligence
System

Lateralization is ubiquitous in vertebrate brains and is consid-
ered an important factor in biological intelligence. The broad
distribution of lateralization phenotypes in vertebrates indicates
that a lateralized framework could enhance neural efficiency and
effectiveness in performing tasks. The cognitive architecture
of vertebrate brains provides an appropriate computational ab-
straction that can be used to create a lateralized framework.

The purpose of a framework is to provide guidance for creating
a specific type of system for a wide range of problem domains.
Eventually, it may capture community consensus and become
a cumulative reference point. Moreover, it can be revised and
extended to accommodate new findings. Such a framework is to
be created for lateralized artificial intelligence systems.
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This chapter aims to devise a novel lateralized framework in-
spired by the principles of biological intelligence, derived from
the current understanding of learning mechanisms implemented
in the brains of human and non-human animals. The goal here
is not to reproduce any specific lateralized vertebrate brain net-
work; instead, to be inspired by the principles of lateralization,
drawing on key mechanisms of knowledge perception, represen-
tation, and utilization, and patterns of connectivity within and
between cognitive modules. The novel lateralized framework
spans key aspects of knowledge perception, knowledge represen-
tation and utilization, and connectivity patterns. It determines
the essential functionality, critical methods, and associated pa-
rameters that are required to be incorporated into an AI system
to behave as a lateralized AI system. It is expected that the novel
lateralized framework can be adapted to create lateralized artifi-
cial intelligence systems for a wide range of problem domains.

4.1 Introduction

The majority of AI systems can effectively handle problems that consist
of homogeneous patterns of features. However, they struggle to address
problems that consist of complex heterogeneous patterns of features, i.e.
hierarchical patterns within patterns. For example, learning classifier sys-
tems (LCSs) can easily learn 20-bit multiplexer problems but they strug-
gle to learn 18-bit hierarchical multiplexer problems [51]; artificial agents
can easily solve deterministic environments but they struggle to handle
non-Markov environments [272]; deep networks accurately classify visual
stimuli but struggle to address adversarial images [48, 53]. Conventional
AI systems, such as LCSs and deep networks, may learn complex patterns
but they need a huge/deep network of homogeneous knowledge, human-
in-the-loop decomposition, and/or complex architectures [9]. Moreover,
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homogeneous systems are able to learn when the relationship between
features and target is linearly separable. However, this hallmark can be
exploited to fool these systems [52, 55, 56].

A plausible solution is to develop lateralized systems that can utilize
heterogeneous features. Heterogeneous features can be parsimonious as
they only encode necessary information to solve a problem (or part of a
problem) and can provide multiple representations of the same object (or
environment), i.e. at a constituent level and holistic level. This enables
hierarchies that can provide knowledge representation at different levels
of abstraction such that each knowledge component, a building block of
knowledge (BBK)1, has sufficient information to solve a specific part of
a problem or the whole problem. An input signal can be considered at
the constituent level and holistic level simultaneously. This enables the AI
systems to address both individual features and global patterns in parallel.

Biological intelligence supports this type of heterogeneity. A brain is
not an amorphous system. It is made up of different modules that com-
municate through electrochemical signals. Each module solves a specific
problem or part of a problem. The knowledge learned from small-scale
and simple problems can be re-utilized by the brain to solve large-scale
and complex problems in similar and related domains [21, 22, 23].

Two organizing principles of vertebrate (and many invertebrate) brains
— lateralization and modularity of function — support reuse of learned
knowledge at different levels of abstractions [24, 26, 27, 28]. Lateralization
enables the biological brain to process both individual features and global
patterns in parallel. For example, in many domains, the left hemisphere
processes elementary (constituent) information while the right hemisphere
works at a higher (holistic) level of abstraction. It has been reported that
this asymmetry enhances cognition as well as neural efficiency [21, 23, 31].

In this thesis, I hypothesize that the incorporation of these principles

1A BBK is a unit of knowledge that is transferable and can be used or reused to solve
a part of a problem or the whole problem.
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into AI systems could overcome the limitations inherent in conventional
homogeneous systems, allowing for an efficient and robust solution to
complex hierarchical problems. Lateralized AI systems need to have knowl-
edge representation at the constituent level and holistic level. The basic el-
ements of knowledge, i.e. individual features and simple niches2, are rep-
resented by one half of the system (which in this thesis is termed the left
half)); whereas the higher-order abstract representations that are extracted
across niches are handled by the other (right) half3. Consequently, the con-
stituent BBKs provide the local viewpoint, while the holistic BBKs provide
the big picture (world viewpoint) of the overarching patterns in the data.
This splitting of knowledge can be repeated at different levels of abstrac-
tion depending on the nature and complexity of the problem. Finally, the
left half and right half coordinate to effectively solve the problem. The
majority of real-life problems are composed of sub-problems. Hence, the
ability to simultaneously consider the problem at different levels of ab-
straction (constituent level and holistic level) is critical for efficient and
robust learning. A schematic illustration of conventional homogeneous
and novel lateralized approaches is shown in Figure 4.1.

Lateralization has not been investigated in artificial intelligence sys-
tems (see Section 1.2). One factor that may have hampered progress in
creating lateralized AI systems is the lack of availability of an underlying
lateralized framework. The lateralized framework needs to include crit-
ical components of a lateralized AI system so that it can be modified to
suit varied tasks. This framework will provide a coherent foundation that
allows researchers to create lateralized systems across domains. Instead of
creating a lateralized system for each problem domain from scratch, this
framework can be adapted, customized, and extended as per the require-
ments of the problem domain. The notion of a lateralized framework has

2The area of a sample space where neighboring instances share a common property is
called a niche.

3The terms left and right are used here metaphorically, and do not intend to model the
specific left and right hemispheres of any human or animal brain.
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Lateralized 
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Left Half Right Half 

Figure 4.1: A schematic illustration of a conventional homogeneous ap-
proach and a lateralized approach. A conventional AI approach (left
side) considers individual features and niches in a homogeneous manner.
Whereas, a lateralized AI approach (right side) splits a complex problem
in constituents and abstract knowledge. (color key: constituent, holistic,
and mix knowledge proceedings are represented by purple-white, pink-
white, and light purple-pink gradients, respectively)

its roots in biological and artificial intelligence, where efforts have been
made to create a standard models of the mind, i.e. a common computa-
tional framework across AI, cognitive neuroscience, and robotics [171].

4.1.1 Chapter Objectives

The main objective reported in this chapter is to devise a lateralized frame-
work, inspired by the principles of biological intelligence, that can be adap-
ted to develop a lateralized AI system for a wide range of problem do-
mains. To achieve this objective, this chapter aims at addressing the fol-
lowing sub-objectives:

(i) Establish the essential principles of lateralization from cognitive neu-
roscience, especially from the cognitive architecture in vertebrate bra-
ins. Identify and explore in detail the aspects of lateralization that
are relevant to this thesis. For this purpose, lateralization will be ex-
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plored from the following perspectives.

(•) The representation and processing of sensory information, re-
ceived from an environment, by the hemispheres.

(•) Coordination between hemispheres to share the relevant infor-
mation which is required to solve a problem. It includes the
integration of knowledge among different regions of the brain.

(•) Goal-driven processing through inhibition and excitation sig-
nals for performance efficiency. This perspective highlights the
needs for mechanisms to select the the most suitable and rel-
evant hemisphere for a specific task to optimise the required
computations.

(ii) Devise a general framework for lateralized AI systems, derived from
the current understanding of learning mechanisms observable in ver-
tebrate brains. The sub-objectives required to achieve this objective
are:

(•) Identify and explain the important features of a lateralized AI
system.

(•) Determine the essential functionality, critical methods, and as-
sociated parameters that are required to be incorporated into an
AI system to behave as a lateralized AI system.

(iii) Highlight the problem domains which could benefit from the later-
alized approach.

4.1.2 Chapter Organisation

The remainder of this chapter is organized as follows. Section 4.2 provides
the relevant literature from cognitive neuroscience that inspires the later-
alized framework. The lateralized framework for AI systems is presented
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in Section 4.3. It explains the important features and critical components
of a lateralized AI system. Section 4.4 describes aspects of highlighted
problem domains which could benefit from the lateralized approach. Sec-
tion 4.5 provides a further analysis of the proposed lateralized framework.
Finally, the chapter summary is presented in Section 4.6.

4.2 Lateralization in Vertebrate Brains

Vertebrate brains have a functional architecture that allows them to ab-
stract knowledge from simple and small-scale problems and then reuses it
to solve complex problems. It is not the intention of this work to model the
specific architecture of a specific species; rather it takes inspiration from
basic principles of functional organization that are fundamental to verte-
brate intelligence. This thesis focuses on lateralization, which is one such
principle.

The propensity of a specific cognitive process to be performed more
efficiently and precisely by one hemisphere as compared to the other is
called hemispheric lateralization [29]. At the macro-structural view, the
left and right hemispheres look alike. However, they have distinct neu-
roanatomy, neurochemistry, and functional architecture [29, 30]. Three as-
pects of lateralization, relevant for application to AI, are presented below.

4.2.1 Representation and Processing

Some functions are strictly lateralized to one hemisphere or the other. For
example, each hemisphere receives sensory inputs from the opposite side
of the body and controls the contralateral musculature. But, for higher-
order cognition, differences between hemispheres are more relative than
absolute, with both hemispheres contributing to most tasks. Often these
hemispheric differences concern the scale at which the same sensory in-
puts are represented for subsequent processing. For example, in visual
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perception, it is common that the left hemisphere processes information
at a local (or constituent) level while the right hemisphere processes infor-
mation at a more global (holistic) level [32, 33, 34]. Similarly, in speech per-
ception, commonly the left hemisphere processes segmental information
(individual phonemes that makeup words) while the right hemisphere
processes super-segmental information (global intonational patterns that
reflect emotion or intention of the speaker) [35, 36, 37].

These fundamental differences in representational scale may arise thro-
ugh filtering. For example, the Double Filtering by Frequency model pro-
poses that the left hemisphere acts as a high pass filter, allowing it to rep-
resent detailed information that is available in high spatial or temporal
frequencies. At the same time, the right hemisphere acts as a low pass fil-
ter, allowing it to represent global patterns that emerge in low spatial or
temporal frequencies [84, 85]. Such complementary forms of representa-
tion are not limited to sensory information, however. For example in lan-
guage processing, the left hemisphere may activate single, literal, mean-
ings of words or sentences, while the right hemisphere keeps alternative,
metaphorical, or figurative meanings active [73, 74]. This ability to rep-
resent and process the same problem instance at a local constituent level
and a global holistic level will be incorporated in the lateralized frame-
work presented here.

4.2.2 Coordination

Effective cognition requires that the computations carried out in opposite
hemispheres be coordinated. Recognizing faces requires that we integrate
individual features (left) with their configural arrangement (right) [40];
understanding a joke requires that we integrate the literal meanings of
individual words (left) with their alternative subtext (right) [41]; under-
standing a song requires that we integrate the lyrics (left) with the melody
(right) [42]. It is the coordination between the left and right hemispheres
that enables the transfer of critical information at different levels of ab-
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straction. This coordination will be included in the modules of the lateral-
ized framework.

4.2.3 Goal-driven Processing

Vertebrate brains have the ability to select the computations required to
perform a specific task from the most suitable and relevant hemisphere.
Goal-driven processes analyze the problem at hand and shift control to
the superior (suitable) hemisphere. For example, if the emotional state of
a conversational partner is most relevant, outputs from right hemisphere
speech processing systems will dominate; however, if the linguistic ele-
ments are of concern, then left hemisphere computations are prioritized
[31, 43]. The connections between hemispheres in vertebrate brains can
be excitatory or inhibitory, allowing for either integration or inhibition, as
goals dictate [44]. The ability to identify which hemisphere is best matched
to the task is important in practical situations. A strategy will be devel-
oped for the identification of the most suitable module with respect to the
given problem instance.

4.3 Lateralized Framework

The lateralized framework provides an architecture that could be used to
develop a lateralized AI system for a wide range of problem domains. The
goals of this section are two-fold: first, to highlight the important features
of a lateralized AI system and to show that how the neural principles iden-
tified in section 4.2 can be implemented in an artificial intelligence system;
and second, to present a general architecture that could be used to create
a lateralized AI system.
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4.3.1 Features of a Lateralized AI System

A lateralized AI system mimics the type of heterogeneity 4 that can be seen
in biological intelligence. It is a modular system such that each module
can solve a part of a problem or the whole problem. Moreover, it may
have the ability to learn knowledge from simple and small-scale problems
and then (re)utilize it to learn complex and large-scale problems in related
and similar domains. The important features of lateralized AI systems are
presented below.

Representation and Processing

An important feature of a lateralized AI system is the ability to simulta-
neously process the same environmental signal at different levels of ab-
straction, i.e. at the constituent level and the holistic level. Instead of con-
sidering the environmental signal homogeneously, the lateralized system
presents the environmental signal in two halves such that one half of the
system (which this thesis calls the left half) considers its constituents (el-
ementary features), whereas, the other (right) half considers it at a higher
level of abstraction (high-level features). Consequently, the left half repre-
sents the most basic elements of knowledge; i.e. individual features and
simple niches. At the same time, the other (right) half creates a more
abstract knowledge representation; i.e. higher-order features extracted
across niches. This feature empowers the lateralized system to address
the details of the problem and the higher level (big picture) at the same
time.

Coordination

The coordination between modules is an important attribute of a lateral-
ized AI system. A lateralized system enables knowledge integration by
allowing the transfer of critical information. The computations carried out

4Lateralization can be considered as a special type of heterogeneity.
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by different modules (such as hemispheres in biological intelligence) need
to be integrated. Different knowledge components can be utilized or re-
utilized at different levels of abstraction, i.e. a holistic knowledge compo-
nent at one level can be re-utilized as a constituent knowledge component
at a higher level of abstraction. Thus, this feature allows different system
components to reuse the learned knowledge at different levels of abstrac-
tion.

Goal-driven Processing

The processing of the same input signal at different levels of abstraction
essentially increases the workload. This goal-driven processing feature
plays a critical role in reducing the extra computations. It enables the
lateralized AI system to identify and utilize those modules which could
effectively solve the given problem. Moreover, it empowers the lateral-
ized system to activate or deactivate the most appropriate system module
through inhibit or excite signals, as the goal dictates.

Knowledge Identification and Utilization

The identification and utilization of the relevant (constituents and holis-
tic) BBKs is an important feature of a lateralized AI system. Although
biological brains do not have a central storage unit, lateralized AI systems
may have a heterogeneous knowledge pool. The knowledge pool stores
all the learned BBKs. A lateralized system applies strategies to automati-
cally identify and utilize relevant BBKs with respect to the given problem.
It includes the utilization of BBKs at different levels of abstraction, e.g. a
holistic level BBK for one problem may be utilized as a constituent level
BBK for another higher-level problem.
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4.3.2 Lateralized Architecture

The architecture of the lateralized framework provides an overview of
how information is presented, processed, updated, and stored in a later-
alized AI system. Moreover, it explains the flow of information and com-
munication between the system components. The core components of the
lateralized framework are perception, left-half, right-half, resolution, and
heterogeneous knowledge pool. Each of these components can be devel-
oped as a single unit or further decomposed into sub-modules, depending
on the nature and complexity of the problem domain. A schematic illus-
tration of a lateralized framework is presented in Fig. 4.2.

The knowledge associated with a learned problem needs to be stored,
for future use, in the knowledge pool. This knowledge can be stored as a
unit of knowledge (representing the constituent level) or a block of knowl-
edge (representing the holistic level). The constituent knowledge is stored
as elementary features, e.g. code fragments; whereas, holistic knowledge
is stored patterns of features, e.g. population of rules.

At the start of the learning process, the knowledge pool is empty and
system behaves as an ordinary AI system. Once the system has learned
a problem and achieved a given threshold performance accuracy (e.g. a
100%), all the learned BBKs (constituents and holistic) are stored in the
heterogeneous knowledge pool. Let K be a knowledge pool, i.e. a set that
holds n blocks of learned knowledge, as shown in equation 4.1.

K = {L0, L1, L2, L3, . . . , Ln−1} (4.1)

The perception component directly communicates with the environ-
ment to receive the input signal. Subsequently, this input signal is simul-
taneously shared with the left-half and the right-half components. Both
the components start processing in parallel. The left-half and right-half
components are the core of the lateralized framework. These components
play critical roles inspired by the brain hemispheres.
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Figure 4.2: A schematic illustration of a lateralized framework. (color key:
constituent, holistic, and mix knowledge proceedings are represented by
purple-white, pink-white, and light purple-pink gradients, respectively)
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The left-half component considers the constituents (elementary fea-
tures) of the input signal. For this purpose, the left-half identifies those
learned BBKs, from the knowledge pool, that could form the constituents
of the input signal. These knowledge components could be repeated or
combined to resolve the given problem. Initially, the left-half identifies the
set of BBKs that can be considered to solve the given problem. Ka (Ka ⊆ K)
is a set of BBKs that are applicable to solve the given problem, as shown
below.

Ka = {Li : Apt(Li) | Li ∈ K} (4.2)

where “Apt” is a function that determines whether a BBK is applicable to
the given problem or not. For example, in Boolean problems, the learned
BBK of 3−bit Parity and 4−bit Parity problems are applicable and not ap-
plicable to solve 18−bit hierarchical Mux problem, respectively; in com-
puter vision (CV) problems, the learned BBKs of ‘eye’ and ‘feather’ are
applicable and not applicable to identify a ‘cat’ image, respectively.

The left-half combines learned BBKs, from the set of applicable knowl-
edge Ka, and creates groups of knowledge blocks of size m that can solve
the given problem. These knowledge groups can be defined as:

G2 = {(Li, Lj) : Solve(Li, Lj) | Li, Lj ∈ Ka}

G3 = {(Li, Lj, Lk) : Solve(Li, Lj, Lk) | Li, Lj, Lk ∈ Ka} (4.3)

. . .

Gm = {(Li, Lj, . . . Lp) : Solve(Li, Lj, . . . Lj) | Li, Lj, . . . Lp ∈ Ka}

where Solve is a function that utilizes only the input BBKs to solve the
given problem.
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Finally, the left-half creates a set of relevant knowledge Rl by taking
the members of all the knowledge groups that can solve the given problem
with a performance accuracy above the given threshold θ, as shown below:

Rl =
m⋃
t=1

Gt | Eval(Gt) > θ (4.4)

where Eval is a method to evaluate the performance accuracy of a specific
knowledge group to solve the given problem. For example, G2 = {L0, L2},
G3 = {L1, L2, L5}, and G4 = {L0, L3, L4, L6}. The performance accuracy of
G2 and G4 is greater than the given threshold θ, whereas the performance
accuracy of G2 is less than θ. The resultant set of relevant knowledge is
Rl = {L0, L2, L3, L4, L6}. It is noted that the technique required to identify
and evaluate the constituent level BBKs needs to be developed according
to the nature of the problem. Subsequently, the left-half shares the iden-
tified relevant knowledge (Rl) with the resolution method. The pseudo-
code of the strategy adopted by the left-half is given in Algorithm 1.

The right-half addresses the higher-level abstract features of the same
input signal. For this purpose, the right-half identifies those learned BBKs
from the applicable knowledge set (eq 4.2) that could form the higher-level
abstract patterns. Subsequently, the right-half computes the performance
accuracy of each holistic level BBK to independently solve the problem.
LetRh be a set of relevant learned knowledge blocks, with their respective
performance accuracy, that can independently solve the given problem
with an accuracy above the given threshold θ, as shown in equation 4.5.

Rh =
{
(L,Eval(L)) : Eval(L) > θ ∀ L ∈ Ka

}
(4.5)

It is noted that the technique to identify and evaluate the holistic level
BBKs needs to be developed according to the nature of the problem. Dur-
ing the evaluation process, if a holistic level BBK is found with a 100%

(or above the given threshold) performance accuracy, the right-half gener-
ates an inhibit signal to the left-half, which immediately stops processing.
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Algorithm 1: Strategy adopted by the left-half to identify the rel-
evant blocks of learned knowledge.

Data: The input signal, Threshold
Result: Relevant blocks of learned knowledge

1 Receive an input signal from the environment;
2 Create Applicable Knowledge(); % Identifies the set of blocks of

knowledge that are applicable to solve the given problem (cf. 4.2).
3 Generate Knowledge Groups(); % Combines the block of

applicable knowledge and generate knowledge groups that can solve the
given problem (cf. 4.3).

4 for Each Knowledge Group do
5 Evaluate(); % Compute the performance accuracy of each

knowledge group to solve the given problem.
6 if Accuracy > Threshold then
7 % The performance accuracy is above the given threshold.
8 Add Relevant Knowledge Set(); % Add building blocks

of knowledge to the set of relevant knowledge (cf. 4.4).
9 end

10 end
11 Return Relevant Knowledge Set(); % Share the identified

relevant knowledge with the resolution method.

Otherwise, it generates an excite signal to the left-half, which allows it to
continue processing. Finally, the right-half shares the identified relevant
knowledge (Rh) with the resolution component. The pseudo-code of the
strategy adopted by the right-half is given in Algorithm 2.

The resolution method analyses the feedback from the left-half and
right-half components. If it receives an inhibit signal from the right-half,
the system recognizes that no new learning is required, and there is no
further processing on this problem. However, if it receives an excite signal
from the right-half, it analyses the feedback from the left-half. If relevant
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Algorithm 2: Strategy adopted by the right-half to identify the
holistic level learned knowledge that can independently solve the
given problem.

Data: The input signal, Accuracy Threshold
Result: Relevant blocks of learned knowledge that can

independently solve the given problem
1 Receive an input signal from the environment;
2 Identify Relevant Knowledge(); % Identify holistic level learned

blocks of knowledge that can independently solve the problem.
3 for Each Knowledge Block do
4 Evaluate(); % Compute the performance accuracy of each

knowledge block to independently solve the given problem.
5 if Accuracy > Threshold then
6 % The performance accuracy is above the threshold.
7 Save Accuracy Value(); % Save the performance accuracy

for the candidate knowledge block.
8 Add Relevant Knowledge and Accuracy(); % Add

building blocks of knowledge and associated performance
accuracy to the set of relevant knowledge (cf. 4.5).

9 end

10 end
11 for Each Relevant Knowledge Block do
12 if Accuracy > Threshold then
13 % The performance accuracy is above the threshold, say 95%.
14 Set Excite False(); % Set the flag generate excite signal as

false. Generate Inhibit Signal(); % Generate inhibit signal
to the left-half so that it can stop further processing.

15 end

16 end
17 if Generate Excite is True then
18 Generate Excite Signal(); % Generate excite signal to the

left-half so that it continuous its processing.
19 end
20 Return Relevant Knowledge(); % Share the identified relevant

knowledge with the resolution method.
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constituents or holistic BBKs exist, the system starts learning by utilizing
those BBKs. However, if no such candidate BBKs exist, the system consid-
ers it a completely new problem, behaves as an ordinary AI system, and
starts learning from a tabula rasa. The pseudo-code of the overall strategy
suggested by the lateralized framework is given in Algorithm 3.

4.4 Problem Domains

The novel lateralized approach may be beneficial for a wide range of prob-
lem domains, e.g. single or multiple-step problems, supervised or rein-
forcement learning, Boolean or real-valued features, and Markov or par-
tially observable Markov decision processes. The lateralized approach
needs to be tested against a wide range of problems from different do-
mains. The proof-of-concept of the novel lateralized approach will be ob-
tained by using complex Boolean problems, whereas, the robustness and
effectiveness of the lateralized approach will be evaluated by using com-
puter vision and navigation problems, respectively.

The lateralized approach may not work any better than standard ap-
proaches for optimization problems or other such problems where the
constituent knowledge is either not available or not re-utilized to solve
higher-level problems. It is required to first learn constituent knowledge
to take advantage of the lateralized approach. It results in extra cost and
computations, which may slow down the learning rate at the start of train-
ing. However, once the constituent knowledge is learned, the lateralized
system can utilize/re-utilize it to efficiently solve complex problems in
similar or related domains. For example, when dealing with images the
system needs to recognize salient objects at the level of constituent parts
(e.g. eyes in a face or headlights in a car) to efficiently identify whether
the class is a face or a car. However, once a class is learned, the lateralized
system could re-utilize it, e.g. for the identification of crowd vs motorway
congestion. It is considered that the lateralized systems may open a new
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Algorithm 3: Overall strategy adopted by the lateralized frame-
work to solve the given problem (cf. Fig. 4.2).

Data: The environment and system configurations
Result: Solve the given problem with no new learning, learning

from existing knowledge, or completely new learning
1 Receive an input signal from the environment;
2 Process Left-Half and Right-Half (); % Simultaneously process

the input signal at left-half and right-half modules.
3 Left-Half(); % The left-half considers the input signal at

constituents level.
4 Right-Half(); % The right-half addresses the input signal at

holistic level.
5 Resolution
6 Analyze RHSM Output(); %Iteratively search through the list

of holistic blocks of knowledge and check their performance accuracy
values.

7 if Performance Accuracy > Threshold then
8 %Performance accuracy is 100 (or above the given

threshold).
9 Generate Inhibit Signal(); %Generates an inhibit signal so

that LHSM can cease its working and further analysis on the
feedback from LHSM can be stopped.

10 Set Flag “No learning is Needed”;

11 else
12 Generate Excite Signal();
13 end
14 Analyze LHSM Output();
15 if Relevant Knowledge Groups Exist then
16 %Iteratively search through all the relevant knowledge

groups.
17 Mark Relevant Knowledge(); %Marks (set Flag) all the

learned blocks and their associated knowledge as a relevant
knowledge.

18 Set Flag “Learning From Existing Knowledge”;

19 else
20 Set Flag “Learning From Scratch”;
21 end
22 Store Learned Knowledge(); % Store all the learned

knowledge in the knowledge pool.
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door for developing systems that can efficiently learn real-world classifi-
cation problems.

4.5 Discussion

It is not the intention of this chapter to create a single lateralized frame-
work by which all the community would abide; rather to provide a solid
functional architecture of a lateralized AI system that could be further re-
fined as more is learned. Lateralization has not been thoroughly investi-
gated to create AI systems. What is sought though is to create a general
lateralized framework that highlights the important features and critical
components of a lateralized AI system. This framework provides an op-
portunity for the community to create lateralized AI systems, at least, with
similar abstract level architectures.

It is anticipated that the lateralized framework will be further evolved
as the community investigates how to create suitable lateralized systems
for different problem domains. During this process, researchers may tune
parts of this framework, suggest improvements, or implement additional
components.

4.6 Chapter Summary

The main goal of this chapter was to devise a lateralized framework that
could be adapted to develop a lateralized AI system for a wide range of
problem domains. This goal was achieved by creating a general lateralized
framework, based on the current understanding of learning principles in
vertebrate brains, for AI systems. Important features and critical compo-
nents of a lateralized AI system were presented. It is anticipated that this
framework will provide a solid basis, for the community, to create lateral-
ized AI systems for a wide range of problem domains.

In order to provide a proof-of-concept, this framework will be adapted
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to create a lateralized AI system for the Boolean problem, see Chapter 5.
The robustness of the lateralized approach will be evaluated by adapting
this framework to create two lateralized AI systems for computer vision
problems, see Chapter 6. Finally, the additional benefits of the lateralized
approach will be shown by adapting this framework for multi-step navi-
gation problems, see Chapter 7.
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5
Lateralized Learning to
Solve Complex Boolean
Problems

When classifying instances of environmental features, evolu-
tionary machine learning has become proficient at linking fea-
tures together but can miss higher-order patterns, failing to de-
tect patterns made-up of patterns of features. This abstract rea-
soning is needed as constituent patterns of features often form
higher-level general patterns in real-world tasks, e.g. in un-
derstanding speech or recognizing object ontologies. Biologi-
cal nervous systems have the ability to abstract knowledge from
simple and small-scale problems in order to then apply it to re-
solve more complex problems in similar and related domains.
It is thought that lateral asymmetry of biological brains allows
modular learning at different levels of abstraction, aiding trans-
fer between tasks.

107
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A lateralized framework for artificial intelligence systems has
been created. This chapter aims to develop a novel evolution-
ary machine learning system, by adapting the lateralized frame-
work, to obtain a proof-of-concept of the lateralized approach.
Considering the same problem at different levels of abstraction
enables the novel system to reframe a complex problem as a sim-
ple problem and efficiently resolve it. The results of analyzable
Boolean tasks show that the lateralized system has the ability
to encapsulate underlying knowledge patterns in the form of
building blocks of knowledge. Problems that contain a natural
hierarchy of patterns are resolved more effectively than in previ-
ous work (i.e. 18-bit hierarchical multiplexer problem). More-
over, reusing learned general patterns as constituents for future
problems advances transfer learning (e.g. n-bit parity problem
effectively becomes a sequence of 2-bit parity problems).

5.1 Introduction

A lateralized framework for artificial intelligence systems has been created
(see Chapter 4). The next step is to develop a novel lateralized AI system,
by adapting the lateralized framework, to obtain a proof-of-concept of the
lateralized approach. This could be achieved by testing the novel lateral-
ized system on interogatable, single-step, scalable, and complex problem
domains.

Modern classifier systems can effectively classify targets that consist of
simple, homogeneous features. However, they struggle to deal with many
real-world problems that entail hierarchical patterns within patterns. Al-
though it is possible to capture such complex structures in homogeneous
systems, they require large/deep networks of knowledge and do not take
advantage of the potential to transfer knowledge between levels in the hi-
erarchy [9]. Early attempts to address this deficiency have been made in
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Capsule networks that can be used to better model hierarchical relation-
ships [18]. However, this chapter considers how evolutionary machine
learning (EML) can also better model hierarchical relationships.

It is considered that a simple pattern can be represented as a disjunc-
tive/conjunctive normal form where the clauses consist of a limited num-
ber of literals that are the environmental features. A complex pattern can
be formed when, instead of the literals, the output of these clauses (i.e.
subclauses) based on the literals are used, which can form a hierarchy of
knowledge. These subclauses can be used/reused throughout the over-
all pattern as meta-features, where leveraging this phenomenon does not
occur in existing learning systems.

Heterogeneous features (environmental features and the constructed
meta-features) could represent knowledge at different levels of abstrac-
tion in compact building blocks of knowledge (BBKs). It is postulated that
the BBKs are relevant and sufficient to solve a specific problem [17]. Het-
erogeneous features can be parsimonious as they only encode necessary
information and represent knowledge at different levels of abstraction, i.e.
at a constituent level and holistic level. It is hypothesised that a heteroge-
neous features based lateralized EML system could efficiently learn com-
plex problems by splitting knowledge representation into constituent and
abstract components.

Component-based EML techniques, including Genetic programming
(GP), provide only a partial solution to this problem. For example, a lay-
ered learning GP (LLGP) technique has been used to cope with the hier-
archical distribution of knowledge. This technique requires a human-in-
the-loop hierarchical decomposition of the task and selection of suitable
algorithms for learning sub-tasks. Moreover, LLGP requires a strict se-
quence of learning to resolve large-scale problems [274, 276]. Similarly,
a transfer learning-based GP technique can easily solve simple classifica-
tion tasks but struggles to completely learn complex problems, e.g. 7− bit
parity problems [278]. Moreover, attempts have been made to incorporate
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extended compact genetic algorithms and the Bayesian optimization algo-
rithm in the learning classifier system to identify and utilize the relevant
building blocks of knowledge [314]. Cartesian GP (CGP) is another GP-
based technique that implicitly reuses graph nodes to address large-scale
problems [279, 315]. Although CGP has the ability to produce a many-to-
one genotype to phenotype mapping, it generates an arbitrary sequence
of computer programs that can solve only a particular problem. It also
creates very large solutions, making the learning intractable [281].

Recently, the representation of complex knowledge in hierarchical prob-
lems has been achieved by developing code fragment-based learning clas-
sifier systems (LCSs) [51, 15]. However, these systems require a huge num-
ber of training instances, strict ordering of layered learning, and much hu-
man intervention. Moreover, these systems process everything at the same
level of abstraction during the learning process, i.e. the population of rules
is still monolithic [236, 15, 241]. Consequently, these systems do not have
the ability to identify and learn higher-order abstract relationship(s) be-
tween the features and knowledge of a complex problem.

Even systems that are able to use learned subcomponents fail to achieve
the final step of efficiently integrating knowledge that is represented at
different levels. For example, cooperative coevolution methods link sub-
populations of learned subcomponents but do not allow mating between
individuals in heterogeneous subpopulations [283]. Consequently, indi-
vidual parts of the system cannot efficiently solve the whole problem be-
cause they cannot mate across levels of abstraction.

5.1.1 Chapter Objectives

The main objective reported in this chapter is to create a novel lateralized
EML system by adapting the developed lateralized framework. The sys-
tem will have the ability to apply lateralization and modular learning at
different levels of abstraction to solve complex problems. To achieve this
objective, the following sub-objectives are set:
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(i) Create a lateralized system such that a single input can be processed
at different levels of abstraction, i.e. at the constituent level and/or
the holistic level. Instead of mapping features to knowledge in a
homogeneous manner that considers all input features equally, the
problem will be split into two halves. One half will map sub-groups
of features to knowledge at a constituent level, whereas the other
will map all features to knowledge at a holistic level.

(ii) Represent BBKs in a heterogeneous manner. Different sized blocks
of knowledge can be recombined in a recursive manner, i.e. a holis-
tic block can be (re)used as a constituent block at a higher level of
abstraction.

(iii) Identify and reuse the relevant BBKs to efficiently resolve complex
problems, i.e. those consisting of patterns of patterns.

5.1.2 Chapter Organisation

The remainder of this chapter is organized as follows. Section 5.2 describes
the critical components, architecture, and learning methodology of the
novel lateralized system based on the developed lateralized framework.
An illustrative walk-through of the developed algorithm is presented in
Section 5.3. The experimental setup, problem domains, and learning or-
der are explained in Section 5.4. Section 5.5 presents the work done to
evaluate the effectiveness of the developed system. The computational
overhead of the irrelevant problems and interpretation of decisions are
presented in Section 5.6. Section 5.7 provides a further analysis of the de-
veloped lateralized system. Finally, the chapter summary is presented in
Section 5.8.



112 CHAPTER 5. LATERALIZATION FOR BOOLEAN PROBLEMS

5.2 Lateralized System

The knowledge associated with a learned problem needs to be stored for
future use. Firstly, Code fragments (CFs) link represented environmental
features through functional nodes. A disjunctive normal form of CFs con-
stitute a rule, which encapsulates how well CFs link together to classify
the problem. These rules are combined in a population, which enables
specific niches of the problem to be combined together to solve the prob-
lem domain.

This knowledge associated with a problem is stored as a block of knowl-
edge in the knowledge pool. This block of knowledge, termed concept, in-
cludes the set of rules, CFs, and attributes, i.e. the length of an instance,
e.g. 3-bit Parity has length 3, and unique ID, regarding a learned prob-
lem domain. At a constituent level, the conditions in the classifiers are
the encoded features of the input problem instance. As concepts have
unique IDs and may appear in the terminals of a CF, they can be used
in the conditions of the holistic level decision-making process. Conven-
tional LCSs have a set of rules (population) for each learned problem. The
lateralized system stores knowledge for all the learned problems, so may
have more than one population. Therefore, the lateralized system stores
learned knowledge in the form of a set of concepts in the knowledge pool.
A concept has sufficient knowledge to solve any instance of its associated
problem. A schematic illustration of concepts is shown in Fig. 5.1, with
length, number of rules, and number of CFs (both in condition and action
of the ‘if <conditions> then <action>’ rules) attributes.

The lateralized system needs to first determine if any knowledge has
already been learned about the patterns in the input signal. This phase
of learning is called the knowledge identification phase, which is critical as
the system uses different learning methods determined on the quality (e.g
accuracy of prediction) of the existing knowledge to solve the problem.
The novel system passes the input signal to the left-half (to consider con-
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Figure 5.1: An illustration of the contents of the 3-bit Parity (C-1) and 6-bit
Mux (C-6) concepts.

stituent patterns) and to the right-half (to consider higher-level holistic
patterns) at the same time, see Fig. 5.2. The methods that determine the
quality of the knowledge regarding the input signal are termed left hemi-
spheric stratagem module (LHSM) and right hemispheric stratagem mod-
ule (RHSM), respectively.

The subsequent resolve problem phase considers the quality of the iden-
tified knowledge, i.e. independently solve the problem (e.g accuracy of
prediction is 100% or above a threshold), cooperate to solve the problem,
or irrelevant to solve the problem. Consequently, it proceeds the action of
the system through three methods, i.e. no learning needed, new learning
from existing knowledge, or new learning from scratch. Despite this dif-
ference in methods to determine the action, the overall state-action-reward
scheme of the novel lateralized system is similar to standard RL [194].

5.2.1 Knowledge Identification

Each environmental instance of the given problem is presented to both the
LHSM and RHSM simultaneously in an on-line fashion. At the start of the
learning process, the knowledge pool is empty. In such a scenario, both
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Figure 5.2: A schematic illustration of the strategies developed to achieve
cognitive inspired functionality in the lateralized system. RHSM and
LHSM represent right hemispheric stratagem module and left hemi-
spheric stratagem module, respectively. (color key: constituent, holistic,
and mix knowledge proceedings are represented by purple-white, pink-
white, and light purple-pink gradients, respectively)
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the LHSM and RHSM do not perform any computation and the system
starts learning from a tabula rasa. The system is said to have learned a
problem when its accuracy reaches 100% (or a given threshold). Hence,
the associated concept is transferred to the knowledge pool.

The LHSM needs to identify those learned blocks of knowledge (con-
cepts) that could be combined together to form the input instance. Con-
cepts store their length, i.e. the number of stored features. The LHSM it-
eratively searches through the knowledge pool to identify those concepts
that have a length that is a factor of the length of the current instance. That
is, repeating those concepts could form the complete instance. The iden-
tified concepts (termed constituent-concepts) could form the lower layer
of a solution to a hierarchical problem. For each constituent-concept, the
LHSM splits the given problem instance into parts such that the length of
each part is equal to the length stored in the concept. Subsequently, each
part is resolved by utilizing the constituent-concept in exploit mode (i.e.
by selecting the best action). The resulting action bits are concatenated to-
gether to form an abstract layer, to be treated as a separate learning prob-
lem to be solved by the LHSM only.

Now the LHSM again searches through the knowledge pool to identify
those concepts that have a length equal to the length of the abstracted layer
problem instance. The identified concepts are termed holistic-concepts.
The LHSM generates the candidate groups of concepts by pairing the con-
stituent concept with each holistic-concept. For example, the system is
tasked to solve a problem instance of length 18 bits (features). Suppose
that the lower layer constituent-concept C1 has a length 3 (the number of
stored features). The resultant upper layer generated by utilizing the C1

has a length 6 (because C1 is be repeated for 6 parts). Suppose that there
are two learned concepts (C5 and C6) that have length 6. These concepts
are selected as holistic-concepts. The resultant candidate groups of knowl-
edge are: (i) lower layer constituent-concept C1 and upper layer holistic-
concept C5, and (ii) lower layer constituent-concept C1 and upper layer
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holistic-concept C6. This process is repeated for each constituent-concept.

The LHSM evaluates each candidate group by performing a prelimi-
nary test, for example by utilizing 1000 environmental instances. During
this evaluation process, the LHSM addresses a given problem instance by
utilizing constituent-concept and holistic-concept in exploit mode at the
lower layer and higher layer of the problem instance, respectively. Subse-
quently, if the prediction accuracy is equal to (or above) a given threshold,
the candidate group is marked (a flag is set) as relevant knowledge, oth-
erwise, it will be discarded. Finally, the LHSM passes the relevant knowl-
edge groups to the resolve problem method. The pseudo-code of the strat-
egy adopted by the LHSM for the identification of the relevant knowledge
is given in Algorithm 4 and an illustrative walk-through is presented in
the Section 5.3.

The RHSM needs to identify those learned blocks of knowledge that
have sufficient knowledge to solve the problem independently (prediction
accuracy is 100% or above a threshold). The concepts in the knowledge
pool that have a length equal to the length of the given instance are termed
as candidate-concepts.

The RHSM computes confidence for each candidate concept. Confi-
dence is the prediction accuracy of the RHSM in exploit mode. The RHSM
computes confidence in two steps. Initially, the RHSM performs a pre-
liminary test for each candidate concept. During the preliminary test, the
RHSM solves 1000 problem instances by utilizing the candidate concept
in exploit mode and computes the confidence. If the confidence is below
a specific threshold, e.g. 90%, the candidate concept is removed from the
candidate list. This process is repeated for each candidate concept.

In the next stage, the RHSM performs an intermediate level test for
each candidate concept remaining in the list. During this stage, the RHSM
is tasked to solve more problem instances, i.e. 5000×length of the given
problem instance. The RHSM solves these problem instances by utilizing
the candidate concept in exploit mode and computes the confidence again.
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Algorithm 4: Strategy adopted by the LHSM to identify the candi-
date groups of concepts that have the potential to efficiently learn
the given problem (cf. Fig.5.2).

Data: The environment and problem configurations
Result: Relevant Groups of Concepts

1 Initialize the parameter settings and global variables;
2 Identify Constituent-Concepts(); % Generate a list of concepts

that have a length (pre-determined value) which is a factor of the length
of the current problem instance.

3 for Each Identified Constituent-Concept do
4 Split Problem(); % Split the problem instance into parts

(sub-problems) such that each part has length equal to the length of
the constituent-concept.

5 Solve Sub-Problems(); % Solve each part by utilizing the
constituent-concept in exploit mode.

6 Get Higher Layer(); % The actions are concatenated to form a
higher layer instance.

7 Identify Holistic-Concepts(); % Identify concepts that have a
length equal to the length of the higher layer instance.

8 Generate Candidate Groups (); % Group pairs of the
constituent-concept with each holistic-concept.

9 end
10 Preliminary Test(); % Perform preliminary test for each candidate

group by utilizing 1000 problem instances.
11 Mark Relevant Knowledge(); % Mark candidate groups of concepts

that have a prediction accuracy equal to (or above) a given threshold.
12 Return Relevant Knowledge;
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If a confidence score above a defined threshold is produced, the RHSM
identifies that it has seen this problem before. Otherwise, the RHSM re-
moves this candidate concept from the candidate list. This process is re-
peated for each candidate concept. Finally, the RHSM shares the list of
candidate concepts, along with their confidence values, with the resolve
problem module, see Algorithm 5.

5.2.2 Resolve Problem

The resolve problem module receives feedback about the candidate con-
cepts and candidate knowledge groups from RHSM and LHSM, respec-
tively. During the analysis of the feedback from RHSM, the resolve prob-
lem module iteratively searches through the list of candidate concepts to
find a concept that has confidence value 100% (or above a given thresh-
old). If such a concept is found, the resolve problem module marks the
given problem as an already learned problem. Consequently, the system
runs in exploit mode and utilizes that concept to solve any future prob-
lem instances given by the environment. Moreover, the mode is set as no
learning is needed. The resolve problem module generates an inhibit signal
so that LHSM cease and further analysis on the feedback from LHSM is
stopped. Else, the resolve problem module generates an excite signal to
LHSM to identify the relevant knowledge.

During the analysis of the feedback from LHSM, if the relevant knowl-
edge groups exist in the list. The resolve problem module iteratively searc-
hes through all the relevant knowledge groups and forms a list of all the
concepts that are present in those groups. Subsequently, the resolve prob-
lem module marks all those concepts and their associated CFs (stored with
those concepts) as relevant knowledge. The mode is set as learning from
existing knowledge. Consequently, the system learns the given problem by
utilizing all the relevant knowledge, i.e. automatically uses CFs and con-
cepts in the classifiers. However, if the resolve problem module could
not find any relevant knowledge group in the feedback from LHSM. The
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Algorithm 5: Strategy adopted by the RHSM system to identify
the candidate concepts that can confidently solve a problem (cf.
Fig.5.2).

Data: The environment and problem configurations
Result: The candidate concepts that can confidently solve the

given problem
1 Identify candidate concepts(); % Generate a list of concepts that

have a length equal to the length of the current problem instance.
2 for Each Identified Concept do
3 Preliminary Test(); % Perform preliminary test for each

candidate concept by utilizing 1000 problem instances.
4 Compute Confidence(); % Confidence (prediction accuracy) of

each concept to solve the problem.
5 if Concept Confidence < Threshold then
6 % The confidence is below 90%.
7 Remove Candidate Concept(); % Remove the candidate

concept from the candidate list.
8 end

9 end
10 for Each Candidate Concept do
11 Intermediate Test(); % Perform intermediate level test for each

candidate concept by utilizing (5000×length of the given problem
instance) problem instances.

12 Compute Confidence(); % Confidence of each concept to solve
the problem.

13 if Concept Confidence > Threshold then
14 % The confidence is above 90%.
15 Save Confidence Value(); % Save the confidence value for

the candidate concept.
16 else
17 Remove Candidate Concept(); % Remove the candidate

concept from the candidate list.
18 end

19 end
20 Return Candidate Concepts And Confidence Values();
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mode is set as new learning from scratch. In such a scenario, the system be-
haves as an ordinary LCS and learns the given problem from a tabula rasa.
The overall pseudo-code of the novel strategy adopted by the lateralized
system to solve a problem is given in Algorithm 6.

It is important to note that as each subsequent problem is learned the
concept, length (number of unique features addressed), and associated
CFs are stored in the knowledge pool. The related CFs can be used sep-
arately from the concepts to seed feature learning. A CF stores the rela-
tionship between features and targets. The individual CFs are used to-
gether in the condition and action of rules. Consequently, it enables niches
to form and heterogeneity to occur. These rules are encapsulated in con-
cepts, which store the solution for a part of the problem or whole problem.
Moreover, a concept may be a higher-level of knowledge w.r.t. one prob-
lem, while being also a lower level of knowledge w.r.t. another problem.

5.2.3 Learning Methodology

The idea of lateralization could be implemented by utilizing any EML
based system, where Learning Classifier Systems (LCSs) are selected due
to their niche-based algorithm and built-in support for heterogeneity (i.e.
different rules co-exist in the same population). These two important fea-
tures make LCSs an ideal candidate to support lateralization, which ex-
tends the concepts of niches and heterogeneity to the different levels of
a problem’s composition. The learning methodology of the lateralized
system is developed by utilizing the framework of accuracy-based LCSs,
i.e. Wilson’s XCS [251]. The property of XCS to generate a complete and
accurate solution enables the lateralized system to capture all the BBKs
required for a concept. The learned concepts and associated CFs can be
used at different levels of abstraction. Moreover, the use of CFs provides
improved expressivity and scalability as compared to the ternary alphabet
[15]. These characteristics of CFs assist the lateralized system to efficiently
handle diverse knowledge. The lateralized system enhances the state-of-
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Algorithm 6: Overall strategy adopted by the lateralized system
to solve a problem (cf. Fig.5.2).

Data: The environment and problem configurations.
Result: The given problem is identified as no learning needed,

new learning from existing knowledge, or new learning
from scratch.

1 Initialize the parameter settings and global variables;
2 Knowledge Identification
3 RHSM(); %Algorithm 1.
4 LHSM(); %Algorithm 2.
5 Resolve Problem
6 Analyze RHSM Output(); %Iteratively search through the list

of candidate concepts and check their confidence values.
7 if Concept Confidence = 100% then
8 %Confidence value 100 (or above a given threshhold).
9 Run in Exploit Mode Only();

10 Generate Inhibit Signal(); %Generates an inhibit signal so
that LHSM cease and further analysis on the feedback from
LHSM is stopped.

11 Set No learning is Needed();

12 else
13 Generate Excite Signal();
14 end
15 Analyze LHSM Output();
16 if Relevant Knowledge Groups Exist then
17 %Iteratively search through all the relevant knowledge

groups.
18 Form List of Concepts(); %Forms a list of all the concepts

that are present in the relevant knowledge groups.
19 Mark Relevant Knowledge(); %Marks all those concepts

and their associated CFs (stored with those concepts) as a
relevant knowledge.

20 Set Learning From Existing Knowledge();

21 else
22 Set Learning From Scratch();
23 end
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the-art CF-based XCS [236] in the following modules:

Condition and Action of Classifier

State-of-the-art CF-based systems have CFs either in the condition or in
the action of the classifier [51, 15, 236]. The novel lateralized system has
CFs in both the condition and the action of the classifier. To the best of
our knowledge, this is the first time that CFs are included in both. The
inclusion of concepts in the CFs and then CFs in both condition and action
of the classifier enables the lateralized system to have a complex and het-
erogeneous representation of knowledge, reduce search space, generate
compact rules, and have a lateralized population of rules.

Code Fragment Enhancement

The lateralized system enhances the CFs such that the leaf nodes have the
ability to randomly select concepts or other CFs or environment variables
(see Fig. 5.3). This inclusion of concepts (blocks of knowledge) in the CF
enables the classifier to independently resolve a large part of the problem.

Lateralized Population

Two contributions are inherent in the population of rules evolved by the
lateralized system, i.e. (i) CFs include concepts from different levels and
domains in the knowledge pool. Thus, (ii) the set of rules that are evolved
to solve a problem have diverse CFs from the learned BBKs. Consequently,
the system incorporates diverse knowledge that enables the inclusion of a
population of rules at different levels of abstraction. Thus the population
of rules is termed as a lateralized population.
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Figure 5.3: A schematic illustration of different CFs. D1, D2, – Dn are the
input condition values. AND, OR, NAND, NOR, are the functions. C1, C2,
–, C6 are concepts. Note the double negative in c. which is a small amount
of bloat.

5.3 Walk-Through of the Algorithms

This section presents a walk-through the algorithms of the lateralized sys-
tem with illustrative examples. Let us suppose that the system has already
learned seven concepts, i.e. C1 (3-bit Parity), C2 (3-bit Majority-on), C3 (4-
bit Parity), C4 (5-bit Parity), C5 (6-bit Parity), C6 (6-bit Mux), and C7 (7-bit
Parity). The learned knowledge (CFs and concepts) is stored in the knowl-
edge pool. The examples of learned concepts, CFs, and rules are shown in
Fig. 5.1, Fig. 5.3, and Fig. 5.4, respectively.
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(i) If Not(D6)          →  C-5 

(ii) If Not(Not D6)  →  Not(C-5) 

Figure 5.4: A schematic illustration of simple rules.

The system is tasked to learn 18-bit HMux problem such that the lower
layer consists of 3-bit Parity problem and upper layer consists of 6-bit Mux
problem, see Fig. 5.5.

The LHSM checks the length of each learned concept stored in the
knowledge pool, e.g. the lengths of C1, C2, C3, C4, C5, C6, and C7, are
3, 3, 4, 5, 6, 6, and 7, respectively. If the length of a concept is a factor of
the length of the given problem (18), it can be selected as a constituent-
concept, e.g. the lengths of concepts C1, C2, C5, C6 are factor of 18, they
are selected as a constituent-concepts; whereas, the lengths of concepts C3,
C4, C7 are not the factor of 18, they are ignored. Suppose that initially the
LHSM selects C1 as a lower layer candidate knowledge. Subsequently, the
LHSM figured out that the selected C1 concept has length 3 and it could be
repeated 6 times to completely cover any given instance of 18-bit HMux
problem. The LHSM splits the given problem instance into 6 chunks such
that each chunk has length 3. The LHSM iteratively solve each chunk by
utilizing C1 in exploit mode. The results are concatenated and they form a
6-bit upper layer problem instance.

Now the LHSM again checks the length of each learned concept stored
in the knowledge pool. If the length of a concept is equal to the length of
the upper layer problem instance, it can be selected as a holistic-concept
w.r.t. the lower layer constituent-concept, e.g. the lengths of concepts C5

and C6 are 6, they are selected as holistic-concepts w.r.t. C1, whereas,
all others are ignored. The LHSM generates two candidate knowledge
groups (CKGs) by pairing C1 with each holistic-concept (C5 and C6), i.e.
(CKG-i) lower layer constituent-conceptC1 and upper layer holistic-concept
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C5, and (CKG-ii) lower layer constituent-conceptC1 and upper layer holistic-
conceptC6. This process is repeated for the remaining constituent-concepts,
i.e. for C2, C5, and C6.

In this initial lateralized system, only one concept may be repeated as
a constituent for a large problem. In subsequent versions of the system,
it would be possible to allow the combinations of different concepts to be
utilized as constituents for a large problem. This may result in a combi-
natorial explosion, which could slow-down the system. Moreover, it is
hard, even for a human, to handle such a heterogeneous split-up of a large
problem.

The LHSM performs a preliminary test on all the CKGs to identify the
relevant knowledge and discard the irrelevant knowledge. For this pur-
pose, the LHSM evaluates each CKG for 1000 problem instances of the
18-bit HMux problem. During the evaluation process of a CKG, if the fi-
nal output of an environmental instance generated by the CKG is different
from the ground truth value. The LHSM stops the evaluation process for
that CKG and discards it. Otherwise, the LHSM considers that CKG as
relevant knowledge.

Preliminary test for CKG-i: Let us suppose that the LHSM receives the
18-bit HMux problem instance 101100101110010100 with ground truth 0.
The LHSM splits the given problem instance into the chunks of length 3,
equal to the length of lower layer C1, i.e. 101, 100, 101, 110, 010, and 100.
Subsequently, the LHSM utilizes constituent-concept C1 (3-bit Parity con-
cept), in exploit mode, on each chunk as a separate problem instance. The
results of C1 for the chunks are 0, 1, 0, 0, 1, and 1 respectively. These results
are concatenated to form an upper layer problem instance, i.e. 010011. The
LHSM utilizes the upper layer holistic-concept C5 (6-bit Parity concept)
on 010011 in exploit mode and generates a result 1. This result is differ-
ent from the ground-truth. Consequently, the LHSM stops the evaluation
process for CKG(i) and discards it.

Preliminary test for CKG-ii: Let us suppose that the LHSM gets the 18-
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bit HMux problem instance 101100101110010100 with ground truth 0. The
LHSM splits the given problem instance into the chunks of length 3, equal
to the length of lower layer C1, i.e. 101, 100, 101, 110, 010, and 100. Subse-
quently, the LHSM utilizes constituent-conceptC1 (3-bit Parity concept), in
exploit mode, on each chunk as a separate problem instance. The results of
C1 for the chunks are 0, 1, 0, 0, 1, and 1 respectively. These results are con-
catenated to form an upper layer problem instance, i.e. 010011. The LHSM
utilizes the upper layer holistic-concept C6 (6-bit Mux concept) on 010011

and receives a result 0. This result is the same as that of the ground-truth.
The LHSM gets another instance of an 18-bit HMux problem and repeats
the above-mentioned procedure. If the result generated by CKG(ii) and
the ground-truth are the same for 1000 random instances of 18-bit HMux
problem, the CKG(ii) is considered as relevant knowledge. Otherwise, it
will be discarded. In noisy problems, an error threshold (CF ε0 [x]) could
be included.

The above mentioned preliminary test is applied to all the CKGs. The
CKGs that successfully completed the preliminary test are marked (a flag
is set) as relevant knowledge and they are passed to the resolve problem
technique. The walk-through of the remaining components is very simple
and straight-forward, hence is not presented.

5.4 Experimental Design

5.4.1 Problem Domains

This chapter seeks to show the effectiveness of the lateralization approach
for classification problems to obtain a proof-of-concept. This can be achiev-
ed by conducting a range of experiments on well-known complex Boolean
problems. Boolean problems can exhibit heterogeneity and epistasis which
are characteristics known to cause problems in classification techniques
as these can not make the assumption linear separable. They also pos-
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sess identifiable components of a solution, rather than the problem of the
solution, that are transferable to other problems which helps to evaluate
transfer learning abilities, i.e. the ability to identify and transfer impor-
tant parts of knowledge. Boolean problems have exactly known solutions
so that the exactness of the produced solution can be interrogated, e.g.
Mux problems, Parity problems, Majority-on problems, and Carry prob-
lems. The scalability of the lateralized approach was investigated by uti-
lizing more complex derived versions of these problems such as hierarchi-
cal multiplexer problems and high scale Parity problems (i.e. beyond the
common 7-bit problem). Hierarchical problems have an additional layer
of complexity, so they are hard to resolve as they have low sparsity and
hierarchical distribution of knowledge [51, 244].

Boolean problems have measurable search space, dependency struc-
ture, and distributed niches (subsolutions) [244]. Although Boolean prob-
lems can be considered as ‘toy’ benchmark problems, the heterogeneity
and epistasis characteristics make them analogous to real-world problems,
such as finance, bioinformatics, and behavior modeling. Hence, many
state-of-the-art systems have been evaluated by using Boolean problems
[316, 317, 15, 278, 51].

The Mux problems are multi-modal and have epistasis characteristics,
i.e. address bits are critical as they determine the importance of data bits
[244, 259]. It is hard to make any useful generalization for Parity problem
domains in the standard ternary alphabet of XCS [244]. To the best of our
knowledge, 2-bit to 7-bit Parity problems have been used in the literature
as the interaction between all bits is important, i.e. no redundant features,
which can be discarded/removed. Recently, 8-bit Parity problems were
used to test the effectiveness of the evolutionary multi-task learning sys-
tem [317]. Whereas, the lateralized system is to address much higher scale
problems, e.g. 16-bit Parity problem. The solutions of the Majority-on
problems have strongly overlapping rules, which make it difficult to learn
complete solutions. The Carry problems are considered as niche imbal-
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Figure 5.5: An instance of 18-bit hierarchical Mux problem. The lower
layer consists of 3-bit Parity problems, whereas the upper layer is a 6-bit
Mux problem.

ance problems and the solutions to these problems have strongly overlap-
ping rules [244].

Hierarchical problems have an additional layer of complexity, so they
are hard to resolve as they have low sparsity and hierarchical distribu-
tion of knowledge [51, 244]. Therefore, these problems are the best can-
didates with which to evaluate the effectiveness of the lateralized system.
The hierarchical Boolean problems, presented here, consist of two layers.
The lower layer is composed of multiple instances of a specific Boolean
problem. The evaluation and integration of the lower layer generate an
instance of the upper layer. The upper layer is another Boolean problem.
For example, an 18-bit hierarchical problem may be composed of the fol-
lowing layers (i) lower layer based on a 3-bit Parity problem; and (ii) upper
layer based on the 6-bit Mux problem. An example instance of an 18-bit
HMux is shown in Fig. 5.5.
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5.4.2 Learning Order

The order with which sub-problems are presented to an EML system plays
an important role in learning [51, 15, 236]. Initially, the lateralized system
could be trained with a diverse set of sub-problems. The learned knowl-
edge is stored in the knowledge pool. The lateralized system can automat-
ically (without human involvement) identify the relevant required build-
ing blocks of knowledge from the knowledge pool (if they exist). Instead
of trying each block of learned knowledge, the lateralized system adopts
an efficient strategy to identify the relevant BBKs from the knowledge
pool. To identify higher-level relevant knowledge, the RHSM only eval-
uates the learned concepts that have the same length as that of the given
problem instance. If this higher knowledge is not present, the LHSM anal-
yses only those concepts that could be repeated to form a complete prob-
lem instance. Moreover, if the required knowledge is completely absent,
the system considers it a novel problem and learns from a tabula rasa. In
this case, the lateralized system behaves similarly to a conventional LCS.

For all the experiments, the lateralized system and CF-based LCS [15]
(conventional LCS does not utilize sub-problems) are trained with the
same set of relevant sub-problems in the same order. Moreover, a sepa-
rate set of experiments for the lateralized system is conducted to calculate
the computational overhead due to extraneous sub-problems (see Section
5.6.1).

5.4.3 Experimental Setup

The lateralized system uses the LCS parameter values that have been com-
monly used in the literature [244, 318]. These values are: learning rate
β = 0.2; prediction error threshold ε0 = 10; fitness fall-off rate α = 0.1;
fitness exponent ν = 5; GA threshold θGA = 25; crossover probability
χ = 0.8; mutation probability µ = 0.04; deletion threshold θdel = 20; dele-
tion fraction δ = 0.1; subsumption threshold θsub = 20; don’t care prob-
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Table 5.1: Population Size

Problem Population Size
2-bit Parity 200
3-bit Parity 300
4-bit Parity 400
5-bit Parity 500
6-bit Parity 1000
7-bit Parity 2000
8-bit Parity 2500
9-bit Parity 3000

10-bit Parity 3500
11-bit Parity 4000
12-bit Parity 4500
13-bit Parity 5000
14-bit Parity 5500
15-bit Parity 6000
16-bit Parity 6500

6-bit Mux 500
11-bit Mux 1000
20-bit Mux 2000
37-bit Mux 5000

18-bit Hierarchical Mux 20000

ability = 0.33; fitness reduction = 0.1; prediction error reduction = 0.25;
prediction reward = 1000. Additional parameter settings for XCS with
Bayesian optimization algorithm (XCS/BOA) [314] are: error BOA 400;
θBOA = 20; maximum parents 4; minimum population 0; local population
10; MCMC updates 18. Moreover, all the experiments have been repeated
30 times and the values presented here are obtained by averaging the re-
sults of those experiments. Furthermore, the population size used for each



5.5. EXPERIMENTS 131

experiment is presented in the Table 5.1.

5.5 Experiments

The lateralized system is bootstrapped with five hard-coded Boolean func-
tions i.e., AND, OR, NAND, NOT, NOR. The system does not learn these
basic functions. These functions are given to the lateralized system as they
are commonly supplied to the EML systems in the literature [15, 236]. Ini-
tially, the lateralized system learns simple problems such as the 3-bit Par-
ity problem, 3-bit Carry problem, and 6-bit Mux problem. Subsequently,
the system is trained with higher-level problems such as 6-bit Carry, 11-bit
Mux, and 18-bit HMux problems. During the learning of these problems,
the system is tasked to identify and utilize the relevant BBKs from previ-
ously learned knowledge. Consequently, the system efficiently learns new
problems and acquires the ability to resolve higher-level complex prob-
lems. The experimental results generated by the lateralized system (Later-
alXCS) are compared with the results generated by the conventional LCS
(XCS), CF-based LCS (XCSCFC) [236], XCS/BOA [314], conventional GP,
LLGP [276], and CGP [279] techniques.

5.5.1 Multiplexer Problems

The first set of experiments was conducted by using Mux problems to ob-
tain a proof-of-concept of the lateralized system. All the LCS systems
(XCS, XCSCFC, XCS/BOA, and LateralXCS) managed to learn 6-bit, 11-
bit, and 20-bit Mux problems. For these problems, the learning pace of
XCS/BOA is better than all other systems. The first problem presented
to the systems was a 6-bit Mux problem. Both XCSCFC and LateralXCS
learned this problem from scratch. Consequently, the learning pace of
XCS/BOA is higher than XCSCFC and LateralXCS. Moreover, the over-
head of XCSCFC is more than LateralXCS, see Fig-5.6a. Subsequently,
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(d) 37-bit Mux problem

Figure 5.6: Experimental results of Mux problems using conventional LCS
(XCS), CF-based XCS (XCSCFC), XCS/BOA, and Lateralized XCS (Later-
alXCS)
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the systems were trained to learn an 11-bit Mux problem. During this
learning, both XCSCFC and LaterXCS utilized learned knowledge from
the 6-bit Mux problem. The learning pace of XCSCFC and LaterXCS is
almost similar but lagging behind XCS and XCS/BOA, see Fig-5.6b. The
next problem presented to the systems was a 20-bit Mux problem. The
learning pace of XCS/BOA is better than all other systems. Both XCSCFC
and LateralXCS utilized the learned knowledge from 6-bit and 11-bit Mux
problems. Consequently, their learning pace is higher than XCS, see Fig-
5.6c.

The experimental results show that both XCS and XCS/BOA were un-
able to learn 37-bit Mux problems, whereas, XCSCFC and LateralXCS suc-
cessfully learned the problem by utilizing 200, 000 problem instances, see
Fig. 5.6d. The learning pace of the LateralXCS is slower than XCSCFC
from 30, 000 to 120, 000 problem instances. This occurs because the Later-
alXCS has to identify the suitable building blocks from the pool of learned
knowledge. The XCSCFC swiftly achieved 99.8% accuracy but struggled
to learn the problem completely. However, the LateralXCS achieved 100%

accuracy by utilizing 300, 000 problem instances. The average accuracy
and standard deviation, for the last hundred runs, of LateralXCS and XC-
SCFC are 100± 0.00 and 99.99± 9.52985e−05, respectively.

5.5.2 Parity problems

All the LCS systems (XCS, XCSCFC, XCS/BOA, and LateralXCS) man-
aged to learn 2-bit, 3-bit, and 4-bit Parity problems. For these problems,
the learning pace of XCS/BOA is better than all other systems. However,
for 5-bit, 6-bit, and 7-bit Parity problems, XCS and XCS/BOA are not able
to learn the problems completely, whereas, XCSCFC lags behind the Later-
alXCS. The first problem presented to the systems was a 2-bit Parity prob-
lem. Both XCSCFC and LateralXCS learned this problem from scratch.
The utilization for CFs in the condition as well as in the action of a classi-
fier empowers the LateralXCS to efficiently form accurate and maximum
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general rules. Consequently, LateralXCS outperform XCS and XCSCFC,
see Fig-5.7a. Subsequently, the systems were trained to learn 3-bit, 4-bit,
5-bit, and 6-bit parity problems, respectively. During the learning process,
both XCSCFC and LaterXCS utilized learned knowledge from previous
sub-problems and managed to obtain 100% accuracy for all parity prob-
lems. Moreover, LateralXCS outperformed XCS and XCSCFC in all parity
problems, see Fig. 5.7.

The experimental results of the 7-bit Parity problem are shown in Fig.
5.8b. The LateralXCS successfully identified and reused the relevant build-
ing blocks of learned knowledge. Consequently, the system is able to effi-
ciently learn the 7-bit Parity problem by utilizing only 15, 000 problem in-
stances. In contrast, XCS, XCS/BOA, and XCSCFC learned 70%, 83% and
100% 7-bit Parity problem by utilizing 250, 000 problem instances, respec-
tively. The interpretation of rules generated by LateralXCS shows that the
Lateralized system automatically considers a higher-level Parity problem
as a two-bit Parity problem. Three features of LateralXCS play a critical
role in this regard, i.e., (i) ability to identify and utilize relevant learned
concepts, (ii) ability to address a problem at different levels of abstraction,
and (iii) ability to apply CFs at the condition as well as the action of clas-
sifiers.

The Wilcoxon signed-rank test was applied to statistically compare Lat-
eralXCS with XCSCFC (see Table 5.2). The test was conducted on the re-
sults of the 100 problem instances after the lateralized system achieved
a performance accuracy of 100%. The second and third columns contain
the average performance along with standard deviation. All P-values are
less than 0.00001, which is evidence that the performance improvement of
LateralXCS is statistically significant.

The XCS and GP systems are based on different evolutionary tech-
niques and apply different strategies to address a problem. The main ob-
jective of the work presented here is not to develop a system that outper-
forms the GP-based system. However, their performance is compared to
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(a) 2-bit Parity problem
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(b) 3-bit Parity problem
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(c) 4-bit Parity problem
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(d) 5-bit Parity problem

Figure 5.7: Experimental results of Parity problems using XCS, XCSCFC,
XCS/BOA, and LateralXCS.
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(a) 6-bit Parity problem
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(b) 7-bit Parity problem

Figure 5.8: Experimental results of Parity problems using XCS, XCSCFC,
XCS/BOA, and LateralXCS.

Table 5.2: Wilcoxon signed-rank test

Problem Domain XCSCFC LateralXCS Z-Value P-Value
7-bit Parity 65.71± 1.38 100.00± 0.00 −8.6818 <0.00001

18-bit hierarchical Mux 96.30± 3.40 100.00± 0.00 −8.6818 <0.00001

Table 5.3: Performance comparison with different GP systems

Problem Domain GP LLGP CGP Lateralized XCS
7-bit Parity 60.09 76.31 52.47 100.00

18-bit hierarchical Mux 89.09 88.89 54.28 100.00

show the effectiveness of the lateralized approach. The same set of Parity
problem experiments was conducted by using GP, LLGP, and CGP sys-
tems. Each experiment was repeated for 30 times with 50 generations and
1024 population. The experimental results of the 7-bit Parity problem are
shown in Table 5.3. None of the GP-based systems were able to completely
learn the 7-bit Parity problem, whereas the LateralXCS achieved 100% ac-
curacy by utilizing the equivalent number of problem instances.
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Figure 5.9: Experimental results of 2-bit to 16-bit Parity problems using
LateralXCS.

The effectiveness of the LateralXCS also tested by utilizing higher-level
Parity problems. The experimental results of 2-bit to 16-bit Parity prob-
lems using LateralXCS are shown in Fig.5.9. The LateralXCS efficiently
achieved a performance accuracy of 100% by utilizing less than 20000 prob-
lem instances per problem. The performance scalability of the LateralXCS
is explained in Section 5.6.2.

The accuracy achieved by XCS, XCSCFC, and LateralXCS after utiliz-
ing 50000 problem instances during the learning of 2-bit to 16-bit Parity
problems is shown Fig.5.10. XCS could not usefully learn beyond the 7-bit
Parity problem due to the lack of generalization in the ternary alphabet.
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Figure 5.10: Accuracy of XCS, XCSCFC, and LateralXCS after utilizing
50000 problem instances of 2-bit to 16-bit Parity problems.

The accuracy of XCSCFC gradually decrease from 100% to 34% for 2-bit
Parity problems to 10-bit Parity problems, due to such a lower accuracy,
XCSCFC stopped generating fit rules to match the test instances. Conse-
quently, XCSCFC could not be applied to the remaining higher-level Par-
ity problems due to its dependency on previously learned fitter rules. In
contrast, the LateralXCS achieved 100% accuracy for all the given 2-bit to
16-bit Parity problems.
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5.5.3 Hierarchical Problems

Two sets of experiments for hierarchical problems were conducted, i.e., hi-
erarchical Mux problems and hierarchical Carry problems. In 18-bit HMux
problems, the lower layer consists of the 3-bit Parity problems and the up-
per layer consists of the 6-bit Mux problem. Initially, both XCSCFC and
LateralXCS were trained with 3-bit parity and 6-bit Mux problems. Sub-
sequently, all the systems were tasked to learn the 18-bit HMux problem.
The experimental results of the 18-bit HMux problem are shown in Fig.
5.12. Both the XCS and state-of-the-art XCSCFC were unable to efficiently
learn the hidden patterns of the given problem, whereas XCS/BOA could
not usefully learn the hierarchical problem. It is observed that XCS/BOA
can learn these problems by using a large population size. In contrast,
the LateralXCS learned the hidden patterns and was able to organize the
relevant BBKs in a useful way. Consequently, the LateralXCS learned the
required rules to solve the problem, achieving the performance accuracy
of 100%. The number of instances (≈ 600, 000) utilized by the LateralXCS
to learn the 18-bit HMux problem is low with respect to the complexity of
the problem, i.e., low sparsity and hierarchical distribution of knowledge.

Two sets of experiments for hierarchical problems are conducted, i.e.
hierarchical Mux problems and hierarchical Carry problems. In 18-bit hi-
erarchical Carry problems, the lower layer consists of the 3-bit Majority-on
problem and the upper layer consists of the 3-bit Carry problem. Initially,
both XCSCFC and LateralXCS were trained with 3-bit Majority-on and 3-
bit Carry problems. Subsequently, all the systems were tasked to learn an
18-bit hierarchical Carry problem. All the systems learned the problem
in a similar way with almost the same learning pace. The experimental
results of the 18-bit hierarchical Carry problem are shown in Fig. 5.11.

In 18-bit HMux problems, the lower layer consists of the 3-bit Parity
problems and the upper layer consists of the 6-bit Mux problem. Initially,
both XCSCFC and LateralXCS were trained with 3-bit parity and 6-bit Mux
problems. Subsequently, all the systems were tasked to learn the 18-bit
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Figure 5.11: Experimental results of 18-bit hierarchical Carry problem us-
ing XCS, XCSCFC, and LateralXCS.

HMux problem. The experimental results of the 18-bit HMux problem are
shown in Fig. 5.12. Both the XCS and state-of-the-art XCSCFC were un-
able to efficiently learn the hidden patterns of the given problem, whereas
XCS/BOA could not usefully learn the hierarchical problem. It is observed
that XCS/BOA can learn these problems by using a large population size.
In contrast, the LateralXCS learned the hidden patterns and was able to
organize the relevant BBKs in a useful way. Consequently, the LateralXCS
learned the required rules to solve the problem, achieving performance
accuracy of 100%. The number of instances (≈ 600000) utilized by the
LateralXCS to learn the 18-bit HMux problem is low with respect to the
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Figure 5.12: Experimental results of 18-bit hierarchical Mux problem using
XCS, XCSCFC, XCS/BOA, and LateralXCS.

complexity of the problem, i.e. low sparsity and hierarchical distribution
of knowledge.

The Wilcoxon signed-rank test was applied in a similar way as ex-
plained for Parity problem experiments (see Table 5.2). The P-values are
less than 0.00001. The experimental results of the 18-bit HMux problem
for GP-based systems are shown in Table 5.3. It shows that none of the
GP-based systems achieved performance accuracy of 100%, whereas the
LateralXCS achieved 100% performance accuracy by utilizing an equiva-
lent number of problem instances.
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Random Problem Most Relevant First Least Relevant First 
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Figure 5.13: Sequence of learned knowledge steps. Blue: required sub-
problems. Purple: most relevant sub-problems. Yellow: least relevant
sub-problems.

5.6 Experimental Analysis

This section provides an analysis of the experiments which were conducted
to evaluate the performance of the novel lateralized system. It was achieved
by computing the overhead of irrelevant problems and interpreting the
decisions made by the novel system.

5.6.1 Overhead of Irrelevant Sub-problems to LateralXCS

The lateralized system can automatically (without human-in-the-loop) iden-
tify the relevant required building blocks of knowledge from the learned
knowledge pool. Three sets of experiments were conducted to fairly com-
pute the overhead (extra) problem instances utilized by the LateralXCS to
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identify these relevant BBKs, i.e. (i) random order of presenting problems,
(ii) most relevant problems first, and (iii) least relevant problems first. In
all these experiments, the LateralXCS was tasked to identify the relevant
BBKs that are required for learning the 18-bit HMux problem. The nec-
essary sub-problems were learnt in order the most relevant of their sub-
problems, e.g. 3-bit Parity needs the 2-bit Parity.
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Figure 5.14: Overhead problem instances utilized by LateralXCS during
the learning of 18-bit hierarchical Mux problems.

First, the LateralXCS was trained with a diverse set of problems in a
random sequence of knowledge steps, i.e. the system may or may not
consider the newly learned problem a relevant sub-problem for the learn-
ing of 18-bit HMux problem. Second, the LateralXCS was trained with a
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problem set in which the most relevant problems were presented before
irrelevant problems. Third, the LateralXCS was trained with a problem
set in which the irrelevant problems were presented before the relevant
problems at each scale. The learning sequence of problems is presented in
Fig.5.13.

The overhead (extra) problem instances utilized by the LateralXCS to
identify the relevant BBKs during the learning of 18-bit HMux problems
are presented in Fig.5.14. The overhead cost depends on the relevancy
of the learned problem concerning the given problem, e.g. both 6-bit Mux
and 6-bit Parity problems are considered as potentially relevant sub-probl-
ems for learning the 18-bit HMux problem. After utilizing preliminary
problem instances, the system identified 6-bit Mux as relevant and 6-bit
Parity as irrelevant sub-problems, whereas, LateralXCS considers 5-bit Ma-
jorityOn and 5-bit Parity as irrelevant sub-problems without utilizing any
problem instances during the learning of the 18-bit HMux problem. The
number of combinations tried by the LateralXCS with the addition of a
new problem along with the overhead cost is presented in the Table 5.4.
At worst 128000 problem instances are needed to find the relevant BBKs
for 18-bit HMux when the system has learned 14 diverse knowledge steps
that form 16 candidate combinations.

5.6.2 Interpretation of Decisions

The decision-making process of the LateralXCS is interpretable. Close ob-
servation of the rules generated by the LateralXCS reveals that the system
successfully identified and efficiently utilized the relevant BBKs from the
pool of learned knowledge.

The LateralXCS efficiently learned the 7-bit Parity problem by utilizing
a small number of problem instances as compared to other EML systems,
see Fig. 5.8b. The learned concept of 7-bit Parity problem consists of 203
rules, 69 condition-CFs, and 116 action-CFs. An example rule from the
learned concept of the 7-bit Parity problem is shown in Fig. 5.15. This is
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Figure 5.15: An example rule (R1) from 7-bit Parity problem (d6 represents
condition bit #6 and 6P represents 6-bit Parity concept). Numerosity 25,
Experience: 121465, Accuracy 1, Prediction Error: 0, Prediction: 1000, Fit-
ness: 0.095, Specificness 1
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Figure 5.16: An example rule (R2) from 7-bit Parity problem (d6 represents
condition bit #6 and 6P represents 6-bit Parity concept). Numerosity 6, Ex-
perience: 111038, Accuracy 1, Prediction Error: 0, Prediction: 1000, Fitness:
0.023, Specificness 1
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Table 5.4: Combinations and Overhead of learned knowledge steps

Knowledge Steps Random Problems Combinations Overhead
1 2-bit Parity 0 0
2 3-bit Parity 0 0
3 6-bit Mux 2 16000
4 3-bit MajOn 4 32000
5 4-bit Parity 4 32000
6 5-bit Parity 4 32000
7 6-bit Parity 8 64000
8 5-bit MajOn 8 64000
9 6-bit Carry 12 96000

10 7-bit MajOn 12 96000
11 7-bit Parity 12 96000
12 8-bit Parity 12 96000
13 9-bit Parity 14 112000
14 9-bit MajOn 16 128000

the most experienced (iterations 121465) and accurate rule with high nu-
merosity (25) and low specificity (1). The only CF in the condition has
three elements, i.e. condition bit #6, operator NOT, operator NOT. The
condition CF is “not of not of condition bit #6”, i.e. NOT (NOT (D6)). The
CF in the action part has two elements, i.e. 6-bit Parity concept and op-
erator NOT. The action CF is “NOT of 6-bit Parity”. A rule matches the
given problem instance if all of the CFs in its condition generate value
‘1’. According to this principle, the above-mentioned rule matches all the
problem instances that have value ‘1’ at the 7th bit (i.e. D6). The resultant
response of the system is the opposite of the 6-bit Parity concept.

Another important rule from the 7-bit Parity problem is shown in Fig.
5.16. This is also an experienced (iteration 111038) and accurate rule with
numerosity 6, and specificity 1. The only CF in the condition part has two
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D0 D1 D2 D3 D4 D5 D6 P6 P7 Rule1  
if ~(~D6) -> P7=~P6 

Rule2  
If ~D6 -> P7 = P6 

Applicable Output Applicable Output 

0 0 0 0 0 0 0 0 0  - ✓ 0 

0 0 0 0 0 0 1 0 1 ✓ 1  - 

0 0 0 0 0 1 0 1 1  - ✓ 1 

0 0 0 0 0 1 1 1 0 ✓ 0  - 

0 0 0 0 1 0 0 1 1  - ✓ 1 

- - - - - - - - - - - - - 

- - - - - - - - - - - - - 

1 1 1 1 1 1 0 0 0  - ✓ 0 

1 1 1 1 1 1 1 0 1 ✓ 1  - 
 

Figure 5.17: Logical interpretation of two experienced and accurate 7-bit
Parity problem rules (see rule R1 Fig.5.15 and rule R2 Fig.5.16). Here D
represents the condition bits and P represents Parity concepts.

elements, i.e. condition bit #6 and NOT operator. This CF is “not of condi-
tion bit #6”, i.e. NOT (D6). The CF in the action part has only one element
that is “6-bit Parity”. This rule matches all the problem instances that have
value ‘0’ at the 7th bit. The resultant response of the system is the same
as that of the 6-bit Parity concept. These two rules cover all the instances
of the 7-bit Parity problem. By evolving these compact rules, the Lateral-
ized system effectively converted the 7-bit Parity problem into a two-bit
Parity problem, as shown in Fig. 5.17. Consequently, the LateralXCS effi-
ciently learned the 7-bit Parity problem by utilizing a very small number
of problem instances. Therefore, it is plausible that LateralXCS can solve
any scale n-bit Parity problem given successively scaled problems.

Hierarchical Boolean problems are challenging due to an additional
layer of complexity, low sparsity, and hierarchical distribution of knowl-
edge. It is necessary to apply heterogeneous BBKs to resolve a hierarchical
Mux problem. The learned concept of 18-bit HMux problem consists of
3202 rules, 2347 condition-CFs, and 679 action-CFs. An example rule from
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Rule 

Condition D3, D4, D5, D10, D17, CF1218D 

Action CF08D36 

Features 
Numerosity 12, Accuracy 1, Fitness: 0.181, Prediction Error: 0, 
Prediction: 1000, Experience: 7700, Specificness 6 
 

Figure 5.18: An example rule from 18-bit hierarchical Mux problem.
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Figure 5.20: Tree representation for action CF Id: 08D36. 3P, and d5, d9, d15

represent 3-bit Parity concept, and condition bits #5, #9, #15, respectively

18-bit HMux is shown in the Fig. 5.18. This is an experienced (iterations
7700) and accurate rule with numerosity 12, and specificity 6. There are
6 CFs in the condition of the rule. The tree representations for condition
CF (Id:1218D) and action CF (Id:08D36) are shown in Fig. 5.19 and Fig.
5.20, respectively. A close observation of this rule reveals that, along with
other BBKs, it has 6-bit Mux and 3-bit Parity concepts in its condition and
3-bit Parity in action. These concepts act at the constituent level when they
are inside the CFs to resolve hidden problem instances. In contrast, they
act at the holistic level when tasked to independently resolve any respec-
tive problem instance of 6-bit Mux problem or 3-bit Parity problem. This
shows that the system has the ability to identify and utilize the critical
BBKs, from the learned knowledge pool, to resolve the hidden layers of
the problem.

5.7 Discussion

This work is designed to solve problems where a presented instance of a
problem can be constructed from instances of sub-problems. It can solve
base problems, which then act as future BBKs, albeit this entails additional
computational overhead. The system considers (addresses) the problem
at two different viewpoints (constituent-level and holistic-level) simulta-
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neously. As the problem scales and the knowledge pool grows, there will
be more and more candidate constituent sub-problems, which does slow
down the behavior. However, the system has the ability to identify (with-
out human-in-the-loop) the relevant sub-problems for a large problem that
has constituents parts. Consequently, it scales much more quickly than
systems that do not consider sub-problems, as demonstrated by resolving
hierarchical Mux problems.

Boolean problems can exhibit heterogeneity and epistasis with identi-
fiable components of a problem that are transferable to other problems.
These qualities make Boolean problems an ideal test set to obtain a proof-
of-concept and show the effectiveness of the lateralized approach. The
novel system was not much better than existing algorithms for solving
simple problems. The lateralized system with modular learning was an-
ticipated to be suited to hierarchical problems, where it performed very
well. But it is not over-fitted or only suited to such engineered prob-
lems as demonstrated by the Parity results where the problem is not ob-
servably (or constructed to be) hierarchical and yet the lateralised system
still outperformed state-of-the-art existing systems. The majority of the
Boolean problems are single-step and may be considered as supervised
learning. However, the experiments test the novel system using reinforce-
ment learning to support the plausibility of applying the lateralized ap-
proach to multi-step problems, e.g. path planning.

5.8 Chapter Summary

The main objective in this chapter was to develop a novel system to ob-
tain the proof-of-concept of the lateralized approach. The novel system
successfully applied lateralization and modular learning at different lev-
els of abstraction to resolve complex Boolean problems. Considering the
same problem at different levels of abstraction (i.e. constituent level and
holistic level) enables the novel system to reframe a complex problem as
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a simple problem and efficiently resolve it. For example, the novel sys-
tem addressed the n-bit Parity problem as a two-bit problem by utilizing
the learned concept of the (n-1)-bit Parity problem and the one additional
condition bit #n. Moreover, the experimental results demonstrated that the
lateralized system has the ability to identify and utilize the relevant BBKs
to efficiently learn the distribution of knowledge in hierarchical Boolean
problems.

The developed lateralized system successfully provided the proof-of-
concept but it does not show the effectiveness of the lateralized approach
in resolving real-world problems. Hence, the next chapter aims at devel-
oping lateralized system for computer vision problems.
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6
Lateralized Learning for
Robustness Against
Adversarial Attacks in a
Visual Classification System

Deep learning is an important field of machine learning. It is
playing a critical role in a variety of applications ranging from
self-driving cars to security and surveillance. However, deep
networks have deep flaws. For example, they are highly vulner-
able to adversarial attacks. One reason may be the homogeneous
nature of their knowledge representation, which allows a sin-
gle disruptive pattern to cause miss-classification. The biolog-
ical lateral framework allows heterogeneous, modular learning
at different levels of abstraction, enabling different representa-
tions of the same object.

A lateralized framework for artificial intelligence systems has
been created, which has been verified on ‘toy’, albeit complex,

153



154 CHAPTER 6. LATERALIZATION FOR CV PROBLEMS

Boolean problems. This chapter verifies the effectiveness of the
lateralized approach on real-world computer vision tasks that
alternative state-of-the-art techniques have struggled to address
fully. Two novel lateralized systems are developed to show that
the lateralized approach can be scaled and not limited to learn-
ing classifier systems. The first lateralized system is developed
to address binary-class image classification tasks, whereas, the
second lateralized system is an improved version of the first im-
plementation to address multi-class (200 classes) image classifi-
cation tasks.

The results of image classification tasks show that the lateralized
systems efficiently learn hierarchical distributions of knowledge,
demonstrating performance that is similar to (or better than)
other state-of-the-art deep systems as it reasons using multiple
representations. Crucially, the first system outperformed all the
state-of-the-art deep models for the classification of normal and
adversarial images by 0.43% − 2.56% and 2.15% − 25.84%,
respectively; whereas, the second system outperformed all the
state-of-the-art deep models for the classification of normal and
adversarial images by 19.05%− 41.02% and 1.36%− 49.22%,
respectively. Lateralisation enabled the novel systems to exhibit
robustness beyond previous work, this advocates for the creation
of data sets that facilitate lateralization, i.e. have components of
objects and the objects themselves to be learned specifically or in
an end-to-end manner.

6.1 Introduction

A lateralized framework for artificial intelligence systems has been cre-
ated. The proof-of-concept was successfully obtained by adapting this
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framework to create lateralized AI system for complex Boolean problems.
The next step is to show that the underlying lateralized framework can be
adapted to create lateralized AI systems for real-world computer vision
problems that include uncertainty, noise, and irrelevant and redundant
data. Such a real-world problem could show the advantages of the novel
lateralized approach against state-of-the-art approaches.

Deep learning (DL) is a methodology of progressively extracting higher-
level features from the raw input by applying multiple layers of artifi-
cial neural networks [287]. A broad range of DL-based systems has been
developed. These systems are playing critical roles in a variety of appli-
cations ranging from self-driving cars to security and surveillance [2, 3].
However, deep networks are highly vulnerable to adversarial attacks [48,
52]1. Even a small (imperceptible to a human) perturbation to an image
can fool many deep networks resulting in the wrong prediction made with
high confidence [53, 54].

One reason for poor robustness against adversarial attacks is the re-
liance on homogeneous knowledge representation. Thus, a single, tar-
geted pattern can disrupt classification performance. Homogeneous sys-
tems work well when the relationship between features and action (target)
is linearly separable. Moreover, deep networks encourage linear behavior
for efficient learning. However, most adversarial attacks exploit this hall-
mark to fool deep networks [52, 55, 56].

Existing approaches provide only a partial solution to this problem.
Adversarial training techniques reduce over-fitting by regularizing the deep
networks, which improves robustness against adversarial attacks. How-
ever, these techniques are considered non-adaptive due to their depen-
dency on already existing adversarial data. Moreover, the need for ad-
versarial training results in an increase in the training data size and ex-
pensive network architecture [55, 290]. Furthermore, it has been reported

1An adversarial attack is a technique that attempts to fool AI models by generating
deceptive input images [53, 54] (see Chapter 2).
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that adversarial-trained networks can again be fooled by creating novel
adversarial patterns [291].

Compression-based techniques are another approach that has been in-
vestigated as a defense against adversarial attacks. The results suggest
that compression alone is inadequate to provide an effective defense [292,
293, 294]. Moreover, it is hard to find appropriate compression for a data
set. Smaller compressions are unable to handle adversarial perturbations,
whereas, larger compressions decrease the classification accuracy of clean
images. Modification of the deep networks is yet another area where ef-
forts have been made to improve adversarial robustness. However, it has
been reported that the majority of these methods are either unable to pro-
vide an effective defense or too complex so require a very large number of
training instances [295, 296, 297].

6.1.1 Chapter Objectives

The main objective reported in this chapter is to create two novel later-
alized systems for computer vision problems, by adapting the developed
lateralized framework. These novel systems will have the ability to pro-
vide robust solutions against adversarial attacks by applying lateralization
and modular learning at different levels of abstraction. To achieve this ob-
jective, the following sub-objectives are set:

(i) Create a lateralized system that can simultaneously process a single
visual input at different levels of abstraction, i.e. at the constituent
level and the holistic level.

(ii) Represent knowledge in a heterogeneous manner. Different knowl-
edge components are utilized or re-utilized at different levels of ab-
straction, i.e. a holistic knowledge component at one level can be
re-utilized as a constituent knowledge component at a higher level
of abstraction. Different system components coordinate to reuse the
learned knowledge at different levels of abstraction.
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(iii) Enable communication between different system components through
inhibition and excitation signals to efficiently resolve the problem
and avoid extraneous computations.

6.1.2 Chapter Organisation

The remainder of this chapter is organized as follows. Section 6.2 presents
a lateralized system for binary-class image classification tasks. It shows
how a homogeneous system can be split into a lateralized system for vi-
sual classification tasks. It presents the critical components and architec-
ture of the novel system based on the lateralized framework created in
Chapter 4.2. An example task of classifying cats vs dogs, in photographic
images, is used to show the potential of the lateralized approach. The ex-
perimental setup, data sets, and data preparation are explained in Section
6.2.2. Section 6.2.3 presents the work done to evaluate the effectiveness
of the developed system. The robustness of the developed system against
adversarial attacks and interpretation of decisions are presented in Sec-
tion 6.2.4. Section 6.3 presents a lateralized system for multi-class image
classification tasks. It shows how the developed lateralized system can
be improved to handle multi-class image classification tasks. An example
task of classifying birds (200 classes), in photographic images, is used to
show the scalability of the lateralized approach. Section 6.3.2 describes
the experimental setup, data set, and data preparation. The work done
to evaluate the effectiveness of the developed system is presented in Sec-
tion 6.3.3. Section 6.4 highlights the strengths, limitations, and drawbacks
of the lateralized approach for CV tasks. Finally, the chapter summary is
presented in Section 6.5.
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6.2 Lateralized System for Binary-Class Image Clas-

sification

6.2.1 Lateralized System

The overall classification process of the lateralized system can be divided
into two main phases, i.e. the context phase and the attention phase. The
context phase handles simple images, whereas, the attention phase ad-
dress noisy and corrupt images. The novel lateralized system is created by
adapting the lateralized framework such that both phases (context phase
and attention phase) implement left-half (constituent level) and right-half
(holistic level) functionality. The implementation of this functionality for
both phases enables lateralization at multiple levels of abstraction. More-
over, excite and inhibit signals are generated by the context phase that
assists the novel system to efficiently solve the given problem. Finally,
the feedback from both phases is analyzed to resolve the problem. A
schematic depiction of the strategies developed for the novel system is
shown in Fig. 6.1.

Context Phase

The context phase consists of multiple deep networks. Some of these deep
networks are used to generate constituent level predictions, i.e. about indi-
vidual parts of the objects to be identified. The remaining deep networks
are used to generate a holistic level prediction, i.e. the big picture. This
strategy not only allows the novel system to consider the given task at the
constituent level and holistic level simultaneously but also enables it to
move away from end-to-end learning so as to generate important feature
groups. Here cat vs dog classification is used as an illustrative example.
The prediction consists of the probability that the image (or prat) belongs
to each candidate class. Subsequently, these prediction values are used to
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Figure 6.1: A schematic depiction of the strategies developed to achieve
cognitive inspired functionality in the binary-class lateralized system.
(color key: constituent, holistic, and mix knowledge proceedings are rep-
resented by purple-white, pink-white, and light purple-pink gradients, re-
spectively)
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generate two types of perceptions, i.e constituent level perception (CLP)
and holistic level perception (HLP). The context phase consists of deep
networks, i.e. five in this case. Three of these deep networks are used to
generate predictions about the constituent eyes, nose, and mouth, whereas
two deep networks are used to generate configural predictions about the
face and overall image. Here, the prediction contains two values, i.e. the
likelihood the image belongs to class ‘one’, and the likelihood it belongs to
class ‘two’.

Initially, the absolute difference between the probabilities of class ‘one’
and class ‘two’ is computed for a part (or whole image). If the probabil-
ity of class ‘one’ is greater than the probability of class ‘two’, the resultant
difference value is multiplied by ‘−1’ (to change the sign), otherwise, it is
left as is. Subsequently, the resultant value is divided by 100 to normalize
it between −1 and 1. Finally, this final value is considered as a predic-
tion vote for the part (or the whole). This process is repeated to compute
the prediction vote for each part (eyes, nose, mouth), and big picture (face,
whole image). The overall CLP vote is computed by adding the prediction
votes for eyes, nose, mouth, and face. In contrast, the HLP vote consists
of the whole image prediction vote only. It is important to note here that
if a deep network is unable to predict any part (due to noise or adversar-
ial attack), the default prediction value of 0 is used. The CLP and HLP
information are shared with the system.

The system analyzes the feedback from CLP and HLP. If CLP and HLP
support each other, i.e. both the CLP vote and HLP vote have the same
sign, the system is confident to classify the given image correctly. Subse-
quently, the system adds both votes and generates an inhibit signal to the
attention phase so that it can cease working. Finally, the system makes
a final prediction as class ‘one’ or class ‘two’ if the final votes are positive
or negative, respectively. However, if CLP and HLP do not support each
other (i.e. CLP vote and HLP vote have different signs) or CLP is confused
(i.e. CLP vote is 0), the system cannot confidently classify the given im-
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age correctly. Subsequently, the system generates an excite signal to the
attention phase and waits for the reply. The pseudo-code of the strategy
adopted by the context phase to generate a prediction is given in Algo-
rithm 7.

Attention Phase

The Attention phase consists of multiple learning classifier systems (LCSs).
Some of these LCSs are used to generate constituent level predictions, i.e.
about individual parts, whereas the remaining LCSs are used to generate a
holistic level prediction, i.e. big picture. For this work, a total of five LCSs
are used to generate predictions for the attention phase. Three of these
systems are used to generate CLPs about eyes, nose, and mouth, whereas
one LCS is used to generate an HLP (big picture) about the face. Moreover,
another LCS is used to generate an HLP (big picture) based on the angles
of a triangle consisting of two eyes and nose vertices. It is postulated that
the eyes of a cat are usually close to the nose, whereas the eyes of a dog are
relatively far from the nose. Thus, the imaginary triangle consisting of the
eyes and nose is a feature that may distinguish cats from dogs. This feature
is to be used in the LCSs to generate a holistic level prediction about the
given problem instance. The attention phase starts processing in parallel
with the context phase. However, it stops immediately if it receives an in-
hibit signal from the context phase. The attention phase utilizes the deep
models of the context phase to generate predictions about the bounding
box (bbox) of eyes, nose, mouth, and face. Subsequently, it segments each
part according to the bbox values.

Different types of features are computed for the segmented images.
These features are selected based on the nature of the classification prob-
lem, effectiveness of the classification, and robustness against noisy data.
For this work, the system computes three variants of scale-invariant fea-
ture transform (SIFT) features and three variants of histogram of oriented
gradients (HOG) features for the segmented images (see Chapter 2). These
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Algorithm 7: Strategy adopted by the context phase to generate a
prediction (cf. Fig. 6.1).

Data: The data set and problem configurations
Result: Generate a prediction, inhibit or excite signal for attention

phase
1 Initialize the global variable and parameter settings;
2 Compute Prediction Vote(); % Compute prediction vote for a part

(eyes, nose, mouth, face) or whole image.
3 Generate Prediction From Deep Model(); % Generate

prediction from the relevant deep model. The prediction returns two
values, i.e. the probability to be a class ‘one’, and the probability to
be a class ‘two’.

4 Compute Absolute Difference(); % Absolute difference
between the probabilities of class ‘one’ and class ‘two’.

5 if Probability class ‘one’ > Probability class ‘two’ then
6 Multiply Absolute Difference by ’−1’;
7 else
8 Multiply Absolute Difference by ’+1’;
9 end

10 Normalize Difference(); % Divide by 100 to normalize
between −1 and 1.

11 Compute CLP Vote (); % Add prediction votes of eyes, nose,
mouth, and face to compute constituent level perception (CLP). It is
important to note here that the vote for the missed (e.g. deep network is
unable to identify due to noise or adversarial attack) part is 0 by-default.

12 Compute HLP Vote (); % Assign the whole image prediction votes
as a holistic level perception (HLP).

13 Analyse Feedback (); %Analyze the feedback from CLP and HLP.
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14 if CLP vote sign equal to HLP vote sign then
15 % System is confident to classify the given image correctly.
16 Generate Inhibit Signal(); % generates an inhibit signal to

the attention phase so that it stops working.
17 Final Votes = CLP vote + HLP vote;
18 if Final Votes < 0 then
19 prediction class ‘one’;
20 else
21 prediction class ‘two’;

22 else
23 Generate Excite Signal(); % generates an excite signal to

the attention phase and wait for the reply.

variants are selected to add diversity. Note that the system is flexible
enough to adopt any practical number. These features form the input in-
stances (environment) for the LCS. Three LCSs models are used to gen-
erate constituent level predictions for eyes, nose, and mouth. The fourth
LCS model is used to generate a prediction for the face (big picture). More-
over, an imaginary triangle is created by considering the center-points of
bound boxes of two eyes and nose as vertices. The three angles of this tri-
angle (big picture) are used as input instances (environment) for another
LCS to generate a holistic level prediction. Instead of generating absolute
prediction from the LCSs, i.e. class ‘one’ or class ‘two’, the votes for each
class based on the prediction array is returned as a prediction probability.
These returned votes are the prediction probability for class ‘one’ or class
‘two’ for each problem instance. Moreover, these prediction probabilities
for class ‘one’ are multiplied by −1, whereas the predictions for class ‘two’
are left as is. Subsequently, the final CLP votes for LCSs are computed
by adding the prediction probabilities of each part (eyes, nose, mouth),
face, and angles. This final LCSs based CLP vote is returned to the system.
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Algorithm 8: Strategy adopted by the attention phase to generate
a prediction (cf. Fig. 6.1).

Data: The data set and problem configurations
Result: Generate final prediction

1 Initialize the global variable and parameter settings;
2 Check Inhibit Signal(); % Check inhibit signal form context phase

and stop immediately.
3 Get BBox From Deep Models(); % Get bbox prediction for eyes,

nose, mouth, and face.
4 Crop Img(); % Segment each part based on the bbox values.
5 Compute SIFT(); % Compute three variants of SIFT features for

each segmented image.
6 Compute HOG(); % Compute three variants of HOG features for

each segmented image.
7 Compute Angle(); % Compute angles of an imaginary triangle

consisting of two eyes and nose. The center of bbox for eyes and nose are
taken as vertices.

8 Get LCSs Prediction(); % Get LCSs predictions for eyes, nose,
mouth, face, and angle

9 Compute LCS-CLP Vote (); % Add LCSs prediction votes of eyes,
nose, mouth, face, and to compute LCSs based CLP. It is important to
note here that the vote for any missed part is 0 by-default.

10 Share LCSs-CLP();
11 Analyse Feedback (); %Analyze the feedback from LCSs-CLP,

Context-CLP and Context-HLP.
12 if Final Votes < 0 then
13 prediction class ‘one’;
14 else
15 prediction class ‘two’;
16 end
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Subsequently, the system computes the prediction votes for the image by
adding votes from LCS-based CLP, context CLP, and context HLP. The lat-
eralized system finally decides the problem instance as class ‘one’ if the
image prediction votes are greater than 0, otherwise, as class ‘two’. The
pseudo-code of the strategy adopted by the attention phase to generate a
prediction is given in Algorithm 8.

6.2.2 Experimental Design

This work seeks to show the robustness of a lateralized system against
adversarial attacks. It can be achieved by conducting classification exper-
iments on images data sets. The data sets need to have constituents level
as well as holistic level ground truth information as it is required for the
training of the constituent level prediction models and holistic level pre-
diction models of the novel system. For this work, the experiments are
conducted for cat vs dog classification.

Data Sets

This work uses publicly available cat and dog data sets that have been
used by the research community. These data sets have constituents and
holistic levels labeled data. The cat data set is taken from Kaggle competi-
tion [264]. It includes more than 9000 cat images along with ground truth
files (9 points annotation of the head). The dog data set is taken from dlib
(C++ library for ML) [265], which is a modified copy (modified missed an-
notations and loose bboxs) of the data used by Liu et al. [266]. It includes
more than 8000 dog images along with the ground truth information (8
points annotation of the head).

Data Preparation: The lateralized system needs the information (bbox)
about the eyes, nose, mouth, and face of an image to train deep models
and LCSs. The ground truth files of the chosen data sets have annotations
related to these parts but not the bboxs. The system utilizes these annota-
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tions to generate the required information. For this purpose, two separate
routines (one for cat and one for dog images) are developed that take the
annotation file as input and generate corresponding bboxs for eyes, nose,
mouth, and face. Moreover, these routines have the ability to handle ro-
tated images and generate bboxs accordingly. Further explanation (logical
description and algorithm) of these routines is not presented as indepen-
dent of the lateralization.

Experimental Setup

The learning strategy for the context phase is developed by utilizing multi-
ple deep models depending on the nature and complexity of the problem,
e.g. five deep models are used here. These models can be based on any
state-of-the-art pre-trained deep network. The models used here are based
on pre-trained 50 layers residual networks (ResNet50 model), which are
well-recognized and widely used deep networks [319]. The loss function,
mean absolute error (MAE), is used to train the deep networks, whereas,
the state-of-the-art Adam optimization algorithm (stochastic gradient de-
scent optimizer) is used to update the network weights [320]. Moreover,
the deep models are trained for 300 epochs such that the length of each
epoch is 1000. It is important to note that ResNet50 model is also used to
generate adversarial images to ensure that the adversarial attacks have the
same underlying model. The learning strategy for the attention phase is
developed by utilizing multiple (e.g. five here) accuracy based supervised
LCSs, i.e. sUpervised Classifier Systems (UCSs) [246]. The configuration
settings for LCSs are the same as used by the majority of the research com-
munity [252]. For this work I use following LCSs parameter values: Type
of crossover =“two point”; Crossover probability χ = 0.8; Genetic algo-
rithm’s threshold θga = 25; Subsumption threshold θsub = 20; Minimum
accuracy threshold ε0 = 0.99; Deletion threshold θdel = 20; Experience
threshold θexp = 10; Probability of mutating a linguistic term µ = 0.04;
Exponent of the fitness function υ = 10; Tournament selection parame-
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ter τ = 0.4; Learning rate β = 0.2; Fraction of population mean fitness
δ = 0.1; Fall of rate in fitness function α = 0.1; Real representation param-
eter r0 = 0.7; Nominal representation parameter = 0.4; Fitness reduction
= 0.1; Mutation parameter m0 = 0.5; Population size = 8000; Number of
iterations = 500000.

6.2.3 Experiments

For all the experiments, the combined data sets are randomly divided into
80% training and 20% testing images. The lateralized system is trained
once using the training images. The adversarial attacks are applied to the
testing images only. The effectiveness of the novel system is evaluated
by utilizing the original testing images and then the adversarial images.
During the evaluation process, an image is presented to the lateralized
system. Initially, both the context and attention phases start processing si-
multaneously. The context phase computes CLP and HLP votes based on
the predictions from deep models, whereas, the attention phase segments
the images by utilizing the bbox information received from the deep mod-
els. Subsequently, it computes three variants of SIFT features by utilizing
the following parameter values: patchSize: 64, 128, and 256; maxBinValue:
0.2, numOrientationBins: 8, and numSpatialBins: 2. Similarly, it computes
three variants of HOG features by utilizing the following parameter val-
ues: image size: 64, 126, and 256; pixels per cell: 32, 64, and 128. All these
features form the input environment instance for the LCSs. The atten-
tion phase computes CLP votes by utilizing the prediction probabilities of
LCSs. Finally, the lateralized system receives all the CLPs and HLP votes
and makes the final prediction accordingly.

Two variants of fast gradient sign method (FGSM) attacks are applied
on the testing images to generate adversarial images, i.e. medium-level
attack FGSM-M (epsilon (max norm) value 50) and strong attack FGSM-S
(epsilon 150) [321]. Moreover, two variant of Iterative attacks are applied
on the testing images to generate adversarial images, i.e. medium-level
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Table 6.1: Classification Accuracy
Highest Accuracy is in bold.

VGG SqueezeNet AlexNet ResNet LateralSys
OrigImgs 99.37 98.35 97.24 98.64 99.80
FGSM-M 94.68 85.91 90.25 89.30 98.34
FGSM-S 70.38 55.22 63.00 77.61 81.06

Itr-M 97.44 95.81 94.72 88.24 99.59
Itr-S 96.10 93.91 93.66 83.41 99.30

attack Itr-M (epsilon 18, alpha 1, and iterations 10), and strong attack Itr-S
(epsilon 50, alpha 1, and iterations 10) [321]. The experimental results of
the novel system are compared with the results generated from four state-
of-the-art deep models, i.e. ResNet [319], AlexNet [212], VGG [322], and
SqueezeNet [323].

The experimental results show that the lateralized system successfully
exhibits robustness against all (four) adversarial attacks, see Table 6.1. Un-
expectedly, the classification accuracy of the novel system is better than all
other state-of-the-art deep models for the original test images (see Section
6.2.4). Moreover, it is evident from the experimental results that the later-
alized system exhibits strong robustness against three types of adversarial
attacks (FGSM-M, Itr-M, and Itr-S). Against all these attacks the classifi-
cation accuracy of the novel system decreases by less than 1%, whereas,
the accuracy of all other systems decreases between 5% to 26%. The novel
system could not completely resist the FGSM-S attack and shows a classi-
fication accuracy of 81.06%. But all other deep models also perform worse.
It is quite understandable because FGSM-S is a very strong adversarial at-
tack that destroys the image contents badly. Despite this disruption, the
classification accuracy of the novel system is better than all other models
against FGSM-S adversarial images.
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6.2.4 Experimental Analysis

The decision-making process of the novel system is interpretable. The role
played by different system components during the decision-making pro-
cess is explained by utilizing eight examples, four from cat images and
four from dog images. Those examples are selected where the lateralized
system’s components are at odds with each other. However, the final de-
cision of the lateralized system is correct. The decision-making process for
these examples is explained in the following three cases.

Original Images 

                   

Perturbations 

               

Adversarial Images 

                                                               

Cat-3 Cat-2 Cat-1 Cat-4 

+ +  + 

=   =  = 

Figure 6.2: Example cat images. Original images are in the first row. The
relevant perturbations are in the second row. The resultant adversarial
images are in the third row.

Case-1: In this scenario, the deep model makes a correct HLP for the
whole image with low confidence, whereas, the component deep mod-
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els make a confused CLP due to opposite component predictions made
with equal confidence. However, the LCSs model makes a correct predic-
tion with high confidence which aligns with the holistic level prediction.
Consequently, the lateralized system makes the correct decision with high
confidence. For example, during the classification process of Cat-1, the
holistic level deep model predicts that it has a 33.05% resemblance to a
cat, whereas, the constituent level deep models predict that it is 99.00% cat
mouth, and 99.00% dog mouth. Consequently, the CLP does not provide
any useful input. However, the LCSs model predicts that it is 87.61% cat
mouth, and 12.39% dog mouth. This prediction aligns with the holistic
level prediction and empowers the novel system to make a correct cat pre-
diction with high confidence, see Fig. 6.2 and Fig. 6.4. Similarly, for Cat-3
classification, the holistic level deep model predicts that it is a 46.29% cat.
Whereas, the constituent level deep models predict that it is 100.00% cat
nose, 100.00% dog nose, 99.00% cat mouth, and 99.00% dog mouth. Con-
sequently, the CLP does not make any useful input. However, the LCSs
model predicts that it is 78.67% cat nose, and 21.33% dog nose, 99.69%
cat mouth, and 0.31% dog mouth. This prediction aligns with the holis-
tic level prediction and empowers the novel system to make a correct cat
prediction with high confidence, see Fig. 6.2 and Fig. 6.4.

Case-2: In this scenario, the deep model makes the wrong HLP for the
whole image, whereas, the component deep models, as well as the LCSs
model, make correct predictions for different components. Consequently,
the lateralized system makes a correct final prediction. For example, dur-
ing the classification process of Cat-4, the holistic level deep model pre-
dicts that it has a 1.06% resemblance to a dog, whereas, the constituent
level deep models predict that it is 100.00% cat nose, and 99.00% cat mouth.
Moreover, the LCSs model predicts that it is 96.02% cat nose, and 3.98%

dog nose, 94.35% cat mouth, and 5.65% dog mouth. This prediction aligns
with the component models predictions and empowers the novel system
to make a correct cat prediction with high confidence, see Fig. 6.2 and
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Original Images 

                   

Perturbations 

                      

Adversarial Images 

                                                               

Dog-3 Dog-2 Dog-1 Dog-4 

+ +  + 

=   = = 

Figure 6.3: Example dog images. Original images are in the first row. The
relevant perturbations are in the second row. The resultant adversarial
images are in the third row.

Fig. 6.4. Similarly, for Dog-3 classification, the holistic level deep model
predicts that it has a 13.93% resemblance to a cat, whereas, the constituent
level deep models predict that it is 99.00% dog mouth. Moreover, the LCSs
model predicts that it is 20.65% cat mouth, and 79.35% dog mouth. This
prediction aligns with the component models prediction and empowers
the novel system to make a correct dog prediction with high confidence,
see Fig. 6.3 and Fig. 6.4.

Case-3: In this scenario, the deep model makes the wrong HLP for the
whole image, the component deep models make correct predictions for
different components, whereas, the LCSs model makes a partially con-
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Image Name Whole Image Prediction 
(DL Model) 

Constituents Predictions 
(DL-Models) 

Constituent Predictions 
(LCSs-Models) 

Cat-1 33.05 % Cat 99% CM, 99% DM 87.61% CM, 12.39% DM 

Cat-2 22.83% Dog 83% CE, 99% CN 
99%CM 

60.82% CE, 39.18% DE 
90% CN, 10% DN, 
30.39% CM, 69.61%DM 

Cat-3 46.29% Cat 100% CN, 100% DN 
99% CM, 99% DM 

78.67% CN, 21.33% DN 
99.69% CM, 0.31% DM 

Cat-4 1.06% Dog 100% CN, 99% CM 96.02% CN, 3.98% DN 
94.35% CM, 5.65% DM 

Dog-1 64.79% Cat 99% DN 16.46% CN, 83.54% DN 

Dog-2 21.04% Cat 99% DN, 94% DF 25.09% CN, 74.9% DN 
73.99% CF, 26.01% DF 

Dog-3 13.93% Cat 99% DM 20.65% CM, 79.35% DM 

Dog-4 31.3% Cat 99% DE, 99% DN 
100% DF 

58.31% CE, 41.69% DE 
30.13% CN, 69.87% DN 
8.96% CF, 91.04% DF 

Text Color: Correct Prediction      Wrong Prediction      Confused Prediction 

Background Color: Case-1      Case-2        Case-3 

Abbreviations: CE: Cat Eyes, CN: Cat Nose, CF: Cat Face, CM: Cat Mouth DE: Dog Eyes, DN: Dog Nose, DF: 
Dog Face, DM: Dog Mouth 
 

Figure 6.4: Interpretation of decision-making process adopted by the lat-
eralized system to classify adversarial images.

fused prediction, i.e. the majority of the predictions are correct but some
are wrong. The correct predictions from the LCSs model along with the
correct predictions from component deep models enable the lateralized
system to make the correct final decision. For example, during the classifi-
cation process of Cat-2, the holistic level deep model predicts that it has a
22.83% resemblance to a dog, whereas, the constituent level deep models
predict that it is 83.00% cat eyes, 99.00% cat nose, and +99.00% cat mouth.
Moreover, the LCSs model predicts that it is 60.82% cat eyes, 39.18% dog
eyes, 90% cat nose, 10% dog nose, 30.39% cat mouth, and 69.61% dog
mouth. Although the last prediction of the LCSs model is wrong, the other
correct predictions from the LCSs model plus the correct predictions from
component deep models outweigh the wrong predictions. Consequently,
the novel system makes a correct cat prediction with high confidence. Sim-
ilar behavior can be observed for the Dog-4 classification process, see Fig.
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6.2, Fig. 6.3, and Fig. 6.4.
The current implementation of the lateralized system can handle only

binary-class image classification tasks. However, the majority of the real-
world problems are multi-class. Moreover, both the lateralized systems
(i.e. for Boolean problems and binary-class image classification problems)
have been developed by using LCSs. The lateralized approach is not lim-
ited to LCSs. An enhanced implementation of the lateralized system is
presented in the next section that can handle multi-class image classifica-
tion tasks and does not utilize the LCSs as underlying systems.

LCSs do not make any assumption about the linearity between the in-
dependent and dependent variables, which enables them to address epista-
tic/heterogeneous domains. However, as the number of classes grows in
different problem domains, so does the number of possible variable in-
teractions; eventually this makes evolutionary search impractical. How-
ever, the linearity assumptions reduces the search space, renders learning
practical again (for a while) and works well for domains without epistic
or heterogeneous patterns. Random forest (RF) is a state-of-the-art deci-
sion tree based ensemble learning technique that can directly handle high-
dimensional data sets. RFs have been commonly used for regression and
classification (binary/multi-class) problems [324, 325, 326].

6.3 Lateralized System for Multi-Class Image Clas-

sification

6.3.1 Lateralized System

The overall lateralized approach of the novel system is similar to the binary-
class lateralized approach, see Section 6.2, except that the prediction can
be generated by utilizing more constituent and holistic features and the
underlying LCSs are replaced by random forest classifiers (see Fig. 6.5).
The enhanced techniques of both phases are explained below.
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Figure 6.5: A schematic depiction of the strategies developed to achieve
cognitive inspired functionality in the multi-class lateralized system.
(color key: constituent, holistic, and mix knowledge proceedings are rep-
resented by purple-white, pink-white, and light purple-pink gradients, re-
spectively)
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Context Phase

The strategy developed for the context phase is improved by utilizing
more deep networks to generate constituent and holistic features. Here
birds classification is used as an illustrative example (see Chapter 3). The
context phase consists of thirteen deep networks. Eleven of these deep net-
works are used to generate predictions about the constituent back, beak,
belly, breast, crown, eye, forehead, nape, tail, throat, and wing, whereas
two deep networks are used to generate configural predictions about the
face and overall image. Here, the prediction is a probability that a part
belongs to a candidate species (class).

Let CMc is a constituent class matrix that contains the probability of an
image belongs to a class. It has 200 entries (one entry for each class) and is
initialized to 0. Each constituent deep model generates a prediction value
for the given image, as shown in equation 6.1.

M(img) =

C, class

P, probability
(6.1)

whereM is a model that predict class C with probability P for a given
image img. These prediction values are added in the constituent class ma-
trix, as shown in equation 6.2.

CMc =
n∑

i=1

∑
∀m

I × P (6.2)

where n is the number of classes (200), m is the number of constituent
models, and I is given below.

I =

1, C = i

0, Otherwise
(6.3)

All the entries in the CMc are normalized between 0 and 100. Finally,
the probability of each class in the CMc is compared and the class with
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the highest probability is considered as a constituent level perception, as
shown in equation 6.4.

CLP = max
i∈[1,...,n]

CMc(i) (6.4)

In contrast, a deep model is used to obtain the holistic level prediction
probabilities by utilizing the whole image. The resultant highest predic-
tion probability is considered as a holistic level perception, as shown in
equation 6.5.

HLP = max
i∈[1,...,n]

P (i) (6.5)

where P is the prediction probability for class i, and n is the number
of classes (200 in this case). It is important to note here that if a deep
network is unable to predict any part (due to noise or adversarial attack),
the default prediction value of 0 is used. The CLP and HLP information
are shared with the system.

The system analyzes the feedback from CLP and HLP. If CLP and HLP
support each other, i.e. both predict the same class, the system is con-
fident to classify the given image correctly. Subsequently, generates an
inhibit signal to the attention phase so that it can cease working. How-
ever, if CLP and HLP do not support each other (i.e. CLP and HLP predict
different classes) or CLP is confused (i.e. more than one class has the max-
imum prediction value), the system cannot confidently classify the given
image correctly. Subsequently, the system generates an excite signal to the
attention phase and waits for the reply. The pseudo-code of the strategy
adopted by the context phase to generate a prediction is given in Algo-
rithm 9.

Attention Phase

The attention phase consists of thirteen random forest classifiers. Eleven of
these RF are used to generate predictions about the constituent back, beak,
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Algorithm 9: Strategy adopted by the context phase to generate a
prediction (cf. Fig. 6.5).

Data: The data set and problem configurations
Result: Generate a prediction, inhibit or excite signal for attention

phase
1 Initialize the global variable and parameter settings;
2 Compute CCM(); % Compute Constituent Class Matrix (CCM).
3 Initialize CCM(); % Initialize all the classes with 0 probability.
4 Generate Prediction From Deep Model(); % Generate

prediction probability for each part (back, beak, belly, breast, crown,
eye, forehead, nape, tail, throat, wing,, face) or whole image.

5 Update CCM for each Deep Model(); % Add all the
prediction probabilities in the CCM.

6 Normalize CCM(); % Normalize all the prediction values in
the CCM between 0 and 100.

7 Compute CLP(); % Compare the prediction probabilities of all the
classes in the CCM. The class with highest prediction probability is
considered as a constituent level perception (CLP). It is important to
note here that the prediction probability for the missed (e.g. deep
network is unable to identify due to noise or adversarial attack) part is 0
by-default.

8 Compute HLP(); % The highest whole image prediction probability
is considered as a holistic level perception (HLP).

9 Analyse Feedback (); %Analyze the feedback from CLP and HLP.
10 if CLP and HLP Predict the Same Class then
11 % System is confident to classify the given image correctly.
12 Generate Inhibit Signal(); % generates an inhibit signal to

the attention phase so that it stops working.
13 Generate Final Prediction();

14 else
15 Generate Excite Signal(); % generates an excite signal to

the attention phase and wait for the reply.
16 end
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belly, breast, crown, eye, forehead, nape, tail, throat, and wing, whereas
one RF is used to generate configural predictions about the face. Here,
the prediction is a probability that a part belongs to a candidate species
(class). The attention phase starts processing in parallel with the context
phase. However, it stops immediately if it receives an inhibit signal from
the context phase. The attention phase utilizes the deep models of the
context phase to generate predictions about the bounding box (bbox) of the
back, beak, belly, breast, crown, eye, forehead, nape, tail, throat, wing, and
face. Subsequently, it segments each part according to the bbox values.

Similar to the attention phase of the binary-lateralized system, three
variants of SIFT features and three variants of HOG features are computed
from the segmented images (see Chapter 2). Note that the system is flexi-
ble enough to adopt any practical number. These features form the input
instances (environment) for the RF classifiers. The RF classifiers generate
prediction probabilities for each class. Another class matrix CMa for atten-
tion phase is computed based on these probabilities by using equations 6.1
and 6.2. All the entries in the CMa are normalized between 0 and 100. Fi-
nally, the CLP for the attention phase is computed by using equation 6.4.
This final RF-based CLP value is returned to the system.

The system analyzes the deep model based CLP, RF-based CLP, and
HLP. If two of these perceptions support the same class, the system favors
that class and makes a prediction. Otherwise, the system computes an-
other class matrix CMf by adding the respective prediction probabilities
of CMc, CMa, and holistic level prediction probabilities. Finally, the sys-
tem compares the prediction probabilities of all the classes in CMf and the
resultant highest prediction probability is considered as the final predic-
tion, as shown in equation 6.6. The pseudo-code of the strategy adopted
by the attention phase to generate a prediction is given in Algorithm 10.

FP = max
i∈[1,...,n]

CMf (i) (6.6)
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Algorithm 10: Strategy adopted by the attention phase to generate
a prediction (cf. Fig. 6.1).

Data: The data set and problem configurations
Result: Generate final prediction

1 Initialize the global variable and parameter settings;
2 Check Inhibit Signal(); % Check inhibit signal form context phase

and stop immediately.
3 Get BBox From Deep Models(); % Get bbox prediction for each

part (back, beak, belly, breast, crown, eye, forehead, nape, tail, throat,
wing,, face).

4 Crop Img(); % Segment each part based on the bbox values.
5 Compute SIFT(); % Compute three variants of SIFT features for

each segmented image.
6 Compute HOG(); % Compute three variants of HOG features for

each segmented image.
7 Get RF Prediction(); % Get RF predictions for each part
8 Compute RF-CCM(); % Compute RF based Constituent Class

Matrix (CCM).
9 Compute RF-CLP();

10 Share RF-CLP();
11 Analyse Feedback (); %Analyze the feedback from RF-CLP,

Context-CLP and Context-HLP.
12 if Majority Favor Same Class then
13 Generate Prediction();
14 else
15 Compute FCM();
16 %Compute final prediction class matrix by adding the

respective entries from CCM, RF-CCM, and holistic
probabilities.

17 Compute FP(); % The highest prediction probability in the
FCM is considered as a final prediction.

18 end
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6.3.2 Experimental Design

This work seeks to show the scalability of lateralized approach. It can be
achieved by conducting classification experiments on a multi-class images
data set. The data set needs to have constituents level as well as holis-
tic level ground truth information as it is required for the training of the
constituent level prediction models and holistic level prediction models of
the novel system. Note that such publicly available data sets are currently
rare. For this work, the experiments are conducted for birds’ species clas-
sification. The selected data set is publicly available and it has constituents
and holistic levels labeled data.

Data Sets

This work uses publicly available birds data set (Caltech-UCSD Birds-200-
2011) that has been used by the research community [267]. This dataset
contains 11788 photographic images of 200 bird species. The ground-truth
information about the parts and overall image is available. Each image
contains 15 points annotation of the bird, i.e. (1) back, (2) beak, (3) belly,
(4) breast, (5) crown, (6) forehead, (7) left eye, (8) left leg, (9) left wing, (10)
nape, (11) right eye, (12) right leg, (13) right wing, (14) tail, (15) throat (see
Chapter 3).

Data Preparation: The lateralized system needs the information (bbox)
about the back, beak, belly, breast, crown, eye, forehead, nape, tail, throat,
wing, and face of a bird in an image to train deep models and RF clas-
sifiers. The ground truth files of the chosen data sets have annotations
related to these parts but not the bboxs. The system utilizes these anno-
tations to generate the required information. For this purpose, separate
routines are developed that take the annotation file as input and gener-
ate corresponding bboxs for each part and face. Moreover, these routines
have the ability to handle rotated images and generate bboxs accordingly.
Further explanation (logical description and algorithm) of these routines
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is not presented as independent of the lateralization approach.

Experimental Setup

The learning strategy for the context phase is developed by utilizing multi-
ple deep models depending on the nature and complexity of the problem,
e.g. twelve deep models are used here. These models can be based on any
state-of-the-art pre-trained deep network. The models used here are based
on pre-trained 50 layers residual networks (ResNet50 model), which are
well-recognized and widely used deep networks [319]. The loss function,
mean absolute error (MAE), is used to train the deep networks, whereas,
the state-of-the-art Adam optimization algorithm (stochastic gradient de-
scent optimizer) is used to update the network weights [320]. Moreover,
the deep models are trained for 300 epochs such the length of each epoch
is 1000. It is important to note that ResNet50 model is also used to gen-
erate adversarial images to ensure that the adversarial attacks have the
same underlying model. The learning strategy for the attention phase is
developed by utilizing multiple (e.g. twelve here) RF classifiers. The RF
classifiers are used with their default settings, i.e, no parameter tuning
is performed. Moreover, the system is implemented using Scikit-learn li-
braries version 0.21.3 for Python version 3.7 [327].

6.3.3 Experiments

For all the experiments, the 10-fold cross-validation technique is applied2.
The lateralized system is trained once using the training images. The ad-
versarial attacks are applied to the testing images only. The effectiveness
of the novel system is evaluated by utilizing the original testing images
and then the adversarial images. During the evaluation process, an im-
age is presented to the lateralized system. Initially, both the context and

2The experimental results presented here are not the average of all the experiments.
Some of the experiments are in progress and results will be updated later.
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(a) FGSM-M based adverasarial images.
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(b) FGSM-S based adversarial images

Figure 6.6: Example bird images of four different species. Original im-
ages are in the first row. The relevant adversarial perturbations are in the
second row. The resultant adversarial images are in the third row.
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(a) Itr-M based adverasarial images.
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(b) Itr-S based adversarial images

Figure 6.7: Example bird images of four different species. Original im-
ages are in the first row. The relevant adversarial perturbations are in the
second row. The resultant adversarial images are in the third row.
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attention phases start processing simultaneously. The context phase com-
putes CLP and HLP based on the predictions from deep models, whereas,
the attention phase segments the images by utilizing the bbox information
received from the deep models.

Three variants of SIFT features are computed by utilizing the following
parameter values: patchSize: 64, 128, and 256; maxBinValue: 0.2, numOri-
entationBins: 8, and numSpatialBins: 2. Similarly, three variants of HOG
features are computed by utilizing the following parameter values: image
size: 64, 126, and 256; pixels per cell: 32, 64, and 128. All these features
form the input environment instance for the RF classifiers. The attention
phase computes CLP by utilizing the prediction probabilities of RF clas-
sifiers. Finally, the lateralized system receives all the CLPs and HLP and
makes the final prediction accordingly.

Two variants of FGSM attacks are applied on the testing images to gen-
erate adversarial images, i.e. medium-level attack FGSM-M (epsilon (max
norm) value 50) and strong attack FGSM-S (epsilon 150) [321]. Moreover,
two variant of Iterative attacks are applied on the testing images to gen-
erate adversarial images, i.e. medium-level attack Itr-M (epsilon 18, alpha
1, and iterations 10), and strong attack Itr-S (epsilon 50, alpha 1, and iter-
ations 10) [321]. Sample intact and adversarial images generated by ap-
plying FGSM-M, FGSM-S, Itr-S, and Itr-M are shown in Figs. 6.6a, and
6.6b, 6.7a, and 6.7b respectively. The experimental results of the novel
system are compared with the results generated from four state-of-the-art
deep models, i.e. ResNet [319], AlexNet [212], VGG [322], and SqueezeNet
[323].

The experimental results demonstrate that the lateralized approach is
scalable, see Table 6.2. The novel lateralized system outperformed all the
state-of-the-art deep models for the classification of original test images
by 19.05% − 41.02%. Moreover, the novel system successfully exhibited
robustness against three types of adversarial attacks (FGSM-M, Itr-M, and
Itr-S). For all these attacks, the classification accuracy of the novel later-
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Table 6.2: Classification Accuracy
Highest Accuracy is in bold.

VGG SqueezeNet AlexNet ResNet LateralSys
OrigImgs 50.18 54.78 35.38 57.35 76.40
FGSM-M 15.83 19.40 15.85 15.08 41.28
FGSM-S 00.99 03.07 01.60 02.61 04.43

Itr-M 42.03 37.05 28.99 13.06 61.17
Itr-S 31.08 28.58 24.65 05.03 54.25

alized system is between 19.05% − 41.02% and 61.17%, whereas, the clas-
sification accuracy of all other systems is between 05.03% − 41.02% and
42.03%. The novel system could not completely resist the FGSM-S attack
because it is a very strong adversarial attack that destroys the image con-
tents badly. But all other deep models also perform worse. The novel
lateralized system outperformed all the state-of-the-art deep models for
the classification of adversarial images by 1.36%− 49.22%.

6.4 Discussion

This work is designed to provide robust solutions for image classification
problems against adversarial attacks. It is noted that the aim of this work
is to create a system that exhibits natural robustness against adversarial
attacks and not to devise another adversarial avoidance technique for a
specific model or specific adversarial attack.

Although the novel architecture is not designed to model human (or
other animal) vision, vertebrate brains do have complementary lateralised
modules that represent objects at local (left) and global (right) levels. A
detailed discussion about AI lateralization and vertebrate lateralization is
presented in Chapter 8.

The novel lateralized system simultaneously considers (addresses) the
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given problem instance at constituent and holistic levels. Moreover, a
holistic level sub-problem in one representation may become a constituent
level sub-problem in a higher-level representation. For example, during
the context phase, processing the eyes, nose, and mouth are constituent
level sub-problems, whereas the face is a holistic level sub-problem. How-
ever, during the final feedback analysis, the face becomes a constituent
level sub-problem, whereas the whole image prediction is a holistic level
sub-problem (see Section 6.2). This ability to address the problem at dif-
ferent scales empowers the novel system to successfully exhibit robustness
against adversarial attacks. This is because an adversarial attack needs to
successfully challenge both the constituents and holistic components of an
image to fool the novel system.

The binary-class lateralized system applies an LCS-based strategy to
resolve complex and ambiguous problems during the attention phase. The
LCSs empowers the novel system to correctly classify images that are badly
affected by the adversarial attacks. In the majority of the cases, the LCS
models either predict the right class or collectively favor the right class
decision, see Section 6.2.4. The built-in support for heterogeneity and
niche-based algorithm of LCSs play a critical role in this regard. These
two features of LCSs support lateralization which considers sub-problems
(niches) at different levels of abstraction (heterogeneous). However, the
improved version of the lateralized system shows that the lateralized ap-
proach is scalable and not limited to the LCSs. Instead of LCSs, it is the lat-
eralized architecture that provide robustness against adversarial attacks.
Note: not end-to-end learning, needs fine-grained labelled data (or sub-
data sets), and RF make linearity assumptions to handle large number of
classes practically.

The decision-making process of the novel system is interpretable, e.g.
although the Dog-3 image has some resemblance to a cat (13.93%) it is
classified as a dog because it has 99.00% dog mouth, see Section 6.2.4. The
system, therefore, makes a step toward explainable artificial intelligence.
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The novel system is an ensemble-like system, in that it resolves different
components of a problem to make a final decision. However, the ability
to consider the same sub-problem at different levels of abstraction and
the use of excite/inhibit signals to activate/deactivate system components
make it a lateralized system rather than an ensemble system.

6.5 Chapter Summary

The main objective in this chapter was to create a novel lateralized sys-
tem for visual classification tasks. Lateralization was successfully applied
to create a classification system that is robust against adversarial attacks.
The ability to consider the same problem instance at different levels of ab-
straction (i.e. constituent level and holistic level) empowers the lateralized
system to correctly classify the adversarial images. The novel system can
handle simple problem instances at the context phase, whereas, more at-
tention is automatically given to the noisy and corrupt problem instances
based the feedback from the context phase. This strategy empowers the
novel lateralized system to make correct decisions for badly corrupted im-
ages where either the constituent predictions are confused or the holistic
prediction favor the wrong class. The experimental results demonstrate
that the lateralized system successfully exhibits robustness against adver-
sarial attacks. The novel binary-class system outperformed all the state-of-
the-art deep models for the classification of normal and adversarial images
by 0.43% − 2.56% and 2.15% − 25.84%, respectively, whereas, the novel
multi-class system outperformed all the state-of-the-art deep models for
the classification of normal and adversarial images by 19.05% − 41.02%

and 1.36%− 49.22%, respectively.

Not only is much greater computer power needed to address more
classes, but data sets with constituents features need to be created. In the
next chapter, the idea of lateralization will be applied to resolve aliasing
states in maze problems. These are multi-step problems that approximate



188 CHAPTER 6. LATERALIZATION FOR CV PROBLEMS

those in real life. The lateralized approach will enable the artificial agent
to consider the maze problem at different levels of abstraction (constituent
level or local viewpoint and holistic level or global viewpoint). The lo-
cal viewpoint assists the artificial agent to make local decisions, whereas,
the world (holistic) viewpoint assists the agent to resolve aliasing states at
different locations of the maze. The experimental test will verify whether
or not the lateralized system can resolve aliasing states in complex maze
problems.



7
Frame-of-Reference based
Learning: Overcoming
Perceptual Aliasing in
Multi-Step Decision
Making Tasks

Perceptual aliasing challenges reinforcement learning agents.
They struggle to learn stable policies through failing to identify
and disambiguate perceptually identical states in the environ-
ment that require different actions to reach a goal. As the agent
often has only a local frame-of-reference it cannot represent the
global environment. Frame-of-reference based learning is a fea-
ture of vertebrate intelligence that allows multiple simultaneous
representations of an environment at different levels of abstrac-
tion. This enables the resolution of patterns that are madeup of
patterns that are madeup of features.

189
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The developed lateralized framework can be adapted to resolve
perceptual aliasing in multi-step decision making tasks. The
evolutionary computation technique of learning classifier sys-
tems has now shown promise in learning nested patterns in
single-step domains. Thus this work aims to develop a novel lat-
eralized learning classifier system inspired by frame-of-reference
in vertebrate brains for learning stable policies in non-Markov
multi-step domains.

Considering aliased states at a constituent level enables the novel
system to place them appropriately in holistic level policies. Ex-
perimental results show that the novel system effectively solves
complex aliasing patterns in non-Markov environments that
have been challenging to artificial agents. For example, the
novel system utilizes only 6.5, 3.71, and 3.22 steps to resolve
Maze10, Littman57, and Woods102, respectively. Handling in-
put at different levels of abstraction, i.e. frame-of-reference, si-
multaneously within a learning classifier system counters the
problems of perceptual aliasing.

7.1 Introduction

Navigation can be considered as a multi-step path planning problem. As a
biological agent navigates its way through an environment toward a goal,
it must use cues from the local environment to dictate the next step, while
maintaining an updated spatial map of where that environment lies within
the navigatable world. Perceptual aliasing occurs when identical local en-
vironments (e.g., a T-junction) are repeated at multiple locations within
the world, meaning that the agent must know both the local cues and the
location within the world map in order to know how to proceed.

Perceptual aliasing is a long-standing problem for artificial agents in
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applying reinforcement learning (RL) to many multi-step tasks [10, 16,
57, 58, 59, 14, 60]. Here the agent is assumed to perceive its local envi-
ronment without access to the global world view, which it needs to con-
struct through interaction with the environment. Aliasing occurs when
the agent’s internal representation confounds the external world states,
i.e. the agent’s current perception is unable to distinguish environmental
states which appear identical but require different actions [57]. In such
a scenario, the reinforcement for the environment instructs the agent to
take a specific action in a given state. Unfortunately, when the agent en-
counters an aliased state, it persists in taking the same action, which will
now be reinforced differently. This inconsistency prevents the learning of
stable policies, especially for multi-step tasks [328]. Perceptual aliasing,
therefore, diminishes the effectiveness of reinforcement learning [58] and
hinders its application to real-world problems [16].

RL agents can handle simple environments that do not have aliased
states, e.g. Markov environments; however, they struggle in environ-
ments that have aliased states, e.g. non-Markov environments. Percep-
tual aliasing occurs only in non-Markov environments. A large number
of approaches have been investigated to handle these perceptual aliasing
problems [10, 57, 59, 14, 60, 11, 272, 273, 298, 299, 300, 302, 303, 306, 307,
308, 311]. These techniques can solve simple non-Markov environments
but can not optimally resolve the majority of complex non-Markov envi-
ronments. The limitations of these alternative techniques are presented in
Chapter 3.

One factor that may have hampered progress in learning in non-Markov
environments is the reliance on a local frame-of-reference (FoR) only, i.e.
local viewpoint of the environment based on an agent’s immediate per-
ception. Hence the agent does not consider the environment at a higher
level of abstraction (big-picture), which would allow it to uniquely iden-
tify aliased states. Consequently, aliased steps in a policy1 are stored with

1A policy, like a route, can be considered as a large pattern prescribing state transitions
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the same weight as non-aliased steps. It is asserted that an aliased state
is a small pattern that gets repeated in an environment, which makes it
difficult to identify where any specific instance occurs in the global envi-
ronment.

These patterns can be combined with other patterns (aliased or not) to
form higher level patterns and so forth. Eventually, each pattern, either
in itself or part of a higher level pattern, is unique. Thus, non-Markov
environments entail patterns that form hierarchical patterns, such as mul-
tiple aliased states at different positions in the environment. These aliased
states can be identified uniquely (i.e. turned to non-aliased states) by con-
sidering an environment at different levels of abstraction simultaneously.
Conventional RL systems struggle to capture such complex structures.

A hypothesized solution is to develop a learning system inspired by
biological FoRs. In biological intelligence, an FoR is used to represent an
environment from a viewpoint, e.g. a local viewpoint (from the agent’s
perspective) or world viewpoint (the complete map) [27, 28], see Chapter
2. FoRs enable vertebrate (and many invertebrate) brains to process the
same information at multiple levels of abstraction [24, 26]. Moreover, FoRs
are utilized to generate a grid map of the environment [148]. This grid map
is utilized by the brain’s coordinate mechanism for spatial navigation. The
concept is that an artificial agent localizes itself by utilizing a local FoR. If
it fails to uniquely identify its state (i.e. it is in an aliased state), it will
utilize a higher level FoR. The agent will keep adding to its FoRs until
it disambiguates the aliased states, which is then considered the world
viewpoint.

Thus, a system is needed that can store representations of a state at
different levels of abstraction and learn how these can be formed into a
hierarchy to describe the patterns in a problem. The representation of a
state at multiple levels of abstraction produces heterogeneous knowledge.
Lateralization is a type of heterogeneity. The developed lateralized frame-

from a starting to the goal state, (see Section 7.2.2).
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work can be adapted to develop a heterogeneous features based system
that can consider an environmental instance at different levels of abstrac-
tion. An evolutionary machine learning (EML) system is capable of de-
tailed learning of individual features, and abstract learning of the patterns
of features (see Chapter 5). It is hypothesized that incorporating FoRs
into an evolutionary machine learning system could allow it to overcome
current limitations and learn to solve problems in non-Markov environ-
ments. In contrast to conventional systems that do not differentiate be-
tween detailed and abstract learning, the novel EML system is anticipated
to solve problems in non-Markov environments by representing knowl-
edge in both constituent and holistic frames of reference. The learning
agent automatically identifies the level of abstraction that is required to
successfully turn an aliased state into a non-aliased state. Finally, inspired
by the brains’ grid map, an adjacent states map (ASM) can be created for
an environment. This ASM is utilized by the agent to differentiate aliased
states based on the neighboring states. The EML technique to be used is
Learning Classifier Systems (LCSs)2 as they store learned knowledge in
if<state>then<action> rules. The states need to be stored in a format
that links them through actions, which are termed code-paths (CPs) here.
CPs form building blocks of knowledge3 which are useful in themselves,
but crucially can be constructed together to form higher level (more ab-
stract) BBKs. This enables the system to function at appropriate levels
of abstractions. The rules can provide elementary knowledge (or local
viewpoint), which is needed to form the constituent level blocks of knowl-
edge (CPs). Simultaneously, abstract knowledge (or the world viewpoint)
can be formed by combining these CPs into holistic blocks of knowledge
((sub)policies of differing length, similar to routes). A CP will have the
ability to accurately handle a non-aliased state as in an ordinary rule. Mul-

2LCSs have been used as a preferred research tool to evolve solutions for a wide range
of maze problems for the last 30 years [309, 272, 241, 59, 329, 60].

3As previously, a building block of knowledge is a unit of knowledge that is transfer-
able and can be used or reused to solve a part of a problem or the whole problem.
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tiple CPs, policies, and the ASM will have the ability to provide a world
viewpoint at higher levels of abstraction, which can be used to handle an
aliased state. This process will essentially turn an aliased state at the con-
stituent level into a non-aliased state at the holistic level. The agent can
then create the optimal policy to reach the goal.

A schematic illustration of a conventional approach and novel (FoRs
based) approach is shown in Fig. 7.1. Each state is represented by a col-
ored circle. The multiple instances of the same color represent aliased ver-
sions of a state. The policies are represented by ellipses. A conventional
EML approach (left side) relies only on local FoRs (local viewpoint) and
considers individual features and niches in a homogeneous manner, i.e.
all the states are treated the same, hence it does not generate unique pat-
terns. The novel approach (right side) utilizes multiple FoRs and splits a
complex problem into constituent and holistic knowledge. The local view-
point (LV) identifies states at the constituent level; the world viewpoint
(WV) places them appropriately in policies at a holistic level to generate
unique patterns.
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Figure 7.1: A schematic illustration of a conventional approach and novel
(FoRs based) approach.
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7.1.1 Chapter Objectives

The main objective reported in this chapter is to create a novel FoRs based
system, inspired by the principles of animals’ navigation, for decision
making in state-transition learning. The system is to provide optimal solu-
tions for non-Markov environments by utilizing FoRs that enable hetero-
geneous knowledge representations at different levels of abstraction. To
achieve this objective, the following sub-objectives are set:

(i) Create a novel FoRs based system that has the ability to process a
single input at different levels of abstractions to provide multiple
environmental views, i.e. a local viewpoint (constituent knowledge)
and a world viewpoint (holistic knowledge, complete map) of the
same state.

(ii) Create a heterogeneous representation of knowledge, i.e. CPs and
policies. This knowledge will be utilized or re-utilized at differ-
ent levels of abstraction to generate constituent representations and
holistic representations, that will allow interpretation of learned poli-
cies (see Section 7.5).

(iii) Integrate different blocks of knowledge (CPs) at different levels of
abstraction to generate an unambiguous representation of knowl-
edge. The resultant knowledge will be used to disambiguate com-
plex patterns of aliased states, which will enable the learning of sta-
ble policies.

(iv) Create a strategy to activate/deactivate (sub)policies such that the
agent can reach the goal state by using the minimum number of
steps.
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7.1.2 Chapter Organisation

The remainder of this chapter is organized as follows. Section 7.2 describes
how a FoRs-based system can be created. It explains the critical compo-
nents and architecture of the novel system. Markov and non-Markov en-
vironments are used to evaluate the developed system. The experimental
setup is presented in Section 7.3. The effectiveness of the novel approach
to optimally solve non-Markov environments is examined in Section 7.4.
The interpretation of learned policies is presented in Section 7.5. Section
7.6 highlights the strength, drawbacks, and limitations of the novel ap-
proach. Finally, the chapter summary is presented in Section 7.7.

7.2 Frame-of-Reference based System

This work develops a FoRs based system for decision making to resolve
non-Markov environments. We first introduce two novel components that
are used to achieve heterogeneous knowledge representation at different
levels of abstraction, i.e. the code-path (constituent knowledge), and the
policy of code-paths (holistic knowledge). These techniques are assisted
by a novel adjacent states map strategy that provides a snapshot of the
environment. Subsequently, the utilization of code-paths and their poli-
cies for the identification and disambiguation of aliased states is described.
Finally, the overall strategy adopted by the novel system to resolve non-
Markov environments is presented.

7.2.1 Code-paths

A code-path is a GP-like tree (similar to a code fragment [15]) that encodes
state-action-state sequences. Its format is a binary tree with depth up to
two. Consequently, a CP can have a maximum of seven nodes, i.e. four
states linked by three actions, see Fig. 7.2. This limit is set to keep tree
size bounded to avoid intractable learning problems. A CP acts as a con-



7.2. FRAME-OF-REFERENCE BASED SYSTEM 197

stituent level BBK such that a single-step CP provides an egocentric (local)
viewpoint, whereas, a multi-step CP or multiple CPs provide an allocen-
tric viewpoint of the environment.
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Figure 7.2: A sample maze (right) and the corresponding code path (left)
when an agent moves from the start state (10000000 encoded – convention-
ally clockwise in a grid from the top; with 1 open, 0 blocked) to the goal
state (00001000). With LCS perceived states S2,V1 (10001000, 1) and S2,V2

(10001000, 2) are non-aliased versions of the aliased state S2,V0 (10001000).

A state is an environmental input instance and a version is its unique
identity. All states have a default version of 0. The agent disambiguates
aliased states (S) by assigning them different versions (V). For example,
the states S1 and S2 are two different egocentric states (i.e. different obser-
vations on the local scale). S1,V0 , S2,V1 , and S2,V2 are three different allocen-
tric states (i.e. different from a world viewpoint); V0 indicates a state with
no known aliasing; V1, V2, . . . , Vn indicate aliased versions of the state Si.

Let S be a set of Ns states, S = {Si}Ns
i=1, then we use “Si,Vj

” to refer to
the jth version (Vj) of the ith state (i.e. Si). Thus, the pool of states with
their versions is represented as SV = {Si,Vj

}∀i,j . Now, let A be a set of NA

actions, A = {Ak}NA
k=1, then a CP can be defined as a state-action function
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that walks through states using actions:

CP : SV ×A −→ SV . (7.1)

In practice, a CP is an alternate sequence of states and actions start-
ing from a start state (say Sl,Vm) and ends at an end state (say Sp,Vq ). For
example, the CP in Fig. 7.2 can be represented by the sequence:

CP =< S1,V0 , A1, S2,V1 , A2, S2,V2 , A3, S3,V0 >

Whenever an artificial agent moves from one state to another state dur-
ing training, three nodes of the corresponding CP are created/updated.
For example, when an agent currently in the state S1,V0 executes an ac-
tion A1 and moves to another state S2,V1 , the corresponding CP will in-
sert/update these three entries in its nodes, respectively. A sample maze
and the corresponding CP representing an agent that moves upwards from
the start state to the goal state is shown in Fig. 7.2.

7.2.2 Policies

A policy, similar to a route in animals’ navigation, is a pattern that pre-
scribes state transitions from a start state to the goal state. Here, a policy is
comprised of multiple CPs that are used by the agent while moving from a
start position to the goal. Moreover, a policy has two associated attributes
− the number of steps used to reach the goal state (or steps), and the num-
ber of times the policy successfully guided the agent to the goal state (or
experience). Fig. 7.3 illustrates two policies (red and yellow dotted lines),
and corresponding CPs. The first policy, Pr, (red) consists of CP-1 and CP-
3 which can lead the agent to the goal state by using 4 steps. The second
policy,Py, (yellow) consists of CP-2 and CP-3 which can lead the agent to
the goal state by using 5 steps.

Let CP be a set of Ncp code paths, CP = {CPk}Ncp

k=1, then the policy,
P , can be defined as a subset of CP . For example, in Fig. 7.3, there are
three code paths, CP = {CP1, CP2, CP3}. The policy, Pr, consists of two
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Figure 7.3: a) A sample maze and two policies. The first policy (red dotted
line) consists of CP-1 and CP-3. The second policy (yellow dotted line)
consists of CP-2 and CP-3. b) A three-step CP (CP-3) from S3,V0 to S5,V0 . c)
A two-step CP (CP-2) from S1,V0 to S3,V0 . d) A single-step CP (CP-1) from
S1,V0 to S3,V0 . Ai can take any action value between 0 and 8.
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CPs and it is represented as Pr = {CP1, CP2}. Similarly, the policy, Py,
is represented as Py = {CP2, CP3}. In general, the set of all Np possible
polices is represented as P = {Pl}Np

l=1, where the goal is to find the optimal
policy, Pl̂, which has the lowest cost, i.e. cost(Pl̂) ≤ Pl,∀l = 1, . . . Np. Such
a cost is computed based on two associated attributes, i.e. the number of
steps and experience.

The policy is a holistic level knowledge representation, which provides
an allocentric viewpoint (world viewpoint) of an environment. It is cre-
ated during the explore mode in two situations: (i) when an agent success-
fully reaches the goal, or (ii) when an evolutionary process is triggered. In
the first scenario, the agent logs the path that is used to reach the goal.
Loops are removed from the path before creating a policy. In order to re-
move a loop, the whole path is traversed such that if the current state (and
version) already exists in the path, the horizontal and vertical distances
are computed to determine whether it is the same state or a new aliased
state (distance computation is presented in Section 7.2.4 Case-5). If the re-
sultant horizontal and vertical distances are zero then it is the same state,
that is, the agent has completed a loop, and so the states visited by the
agent during this loop are removed from the path.

In the second scenario (ii), an evolutionary process is triggered when
the average number of time-steps since the last crossover is greater than
θGA. Two new policies are created by applying a crossover technique on
two existing policies such that both policies have a common state (with the
same version) in their paths. The first policy is randomly selected from the
pool of existing policies. A second policy is randomly selected until one
with a common state with the first policy is found. If compatible policies
are found, the common state between these policies acts as a crossover
point such that the new child policies are created by combining the oppo-
site halves from the parent policies, otherwise no new policies are created.
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A0 A1 A2 A3 A4 A5 A6 A7 ID 

  0          0   S2        V2   0          0   0          0   0          0   0          0   0          0   0          0   S1        V1 

  0          0   0          0   0          0   0          0   0          0   S1        V1   0          0   0          0   S2        V2 

         
 

Figure 7.4: An example section of an adjacent states map.

7.2.3 Adjacent States Map

The ASM contains information about the neighboring states within the en-
vironment. It is a sparse, dynamic map that is developed/updated at run-
time while the agent explores the environment. The number of rows of the
ASM is equal to the number of states visited by the agent. The columns
of the ASM are equal to the number of possible actions that can be taken
by the agent, plus the last column (ID) that is reserved for naming each
state. Each non-heading cell contains a state-version tuple. For this work,
as is common in maze navigation tasks, an agent can execute eight actions
(separated by 45◦) to move to a neighboring state where the action is with-
out noise. Whenever an agent moves from one state to another, all the
corresponding entries (adjacent states) in the ASM are created/updated.
For example, an agent moves from a state S1,V1 to another state S2,V2 by
executing an action A1. Two entries in the ASM are created representing
(i) state S2,V2 at column A1 in a row against state-id S1,V1 , and (ii) state
S1,V1 at column A5 in a row against state-id S2,V2 . It is important to note
that the agent can move back to the original state by executing a flipped
(opposite) action, e.g. A5 is a flipped action of A1. A section of the ASM,
corresponding to this movement, is shown in Fig. 7.4.

7.2.4 Aliasing Identification and Disambiguation

The most challenging step in learning a non-Markov environment is iden-
tifying and disambiguating the aliased states, as local knowledge provides
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conflicting information. Learning is achieved by comparing and integrat-
ing different levels of CPs. The single-step CPs represent the egocentric
viewpoint, whereas multi-step CPs represent the allocentric viewpoint.
Multi-step CPs and policies are used, along with the ASM, to generate
the world viewpoint (complete map) of the environment. During this pro-
cess, new CPs are created and incompatible CPs are updated or deleted.
There are five distinct cases that can lead to the identification of an aliased
state.

Case-1

In a specific state the agent effects a previous action but transitions to an
unexpected state. For example, the agent moves from state S1,V0 to state
S3,V0 by executing an action A1, but another CP already exists, moving
from state S1,V0 to state S2,V0 by executing the same action A1. Thus, state
S1,V0 is marked in the ASM as an aliased state and is disambiguated into
two states, here termed state S1,V1 and state S1,V2 . Consequently, the agent
is only confident about its transitions due to the actions A1 and flipped-A1

(i.e. A5). The transitions due to all other actions now become ambiguous
because the agent cannot discern the correct non-aliased version (S1,V1 or
S1,V2).

The agent updates the unambiguous knowledge and deletes the am-
biguous knowledge. For this purpose, all the CPs with entries “S1,V0

A1−→
S2,V0” are updated with “S1,V1

A1−→ S2,V0”. Similarly, the CPs with flipped
action (A5) entries “S2,V0

A5−→ S1,V0” are updated with “S2,V0

A5−→ S1,V1”. The
corresponding entries in the ASM and multi-step CPs are also updated.
Moreover, all the entries in CPs from S1,V0 that transition to another state
by executing an action other than A1 are deleted as they are no longer reli-
able. Similarly, the flipped entries from another state to S1,V0 with an action
other than A5 are deleted. The corresponding information is also deleted
from the ASM and multi-step CPs. Consequently, the agent updates learn-
ing and, most importantly, learns to forget. Finally, two new CPs for the
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move “S1,V2

A1−→ S3,V0” and “S3,V0

A5−→ S1,V2” are created. For this newly
disambiguated aliased state S1,V2 , a new row in the ASM is created and
corresponding information is added to that row.

Case-2

The agent ends in the same state from the same action, but transitioned from
an unexpected starting state. For example, the agent moves from a state S3,V0

to another state S2,V0 by executing an action A2 but another CP already ex-
ists that transitions from state S1,V0 to state S2,V0 by executing the same ac-
tion A2. The state S2,V0 is marked as an aliased state and is disambiguated
into two states, here termed state S2,V1 and state S2,V2 . Subsequently, all
the CPs with entries “S1,V0

A2−→ S2,V0” are updated with “S1,V0

A2−→ S2,V1”.
Similarly, the CPs with flipped action “S2,V0

A6−→ S1,V0” are updated with
“S2,V1

A6−→ S1,V0”. The corresponding entries in the ASM and multi-step
CPs are also updated. Moreover, all the entries in CPs from any state to
S2,V0 by executing an action other than A2 are deleted as unreliable. Sim-
ilarly, the flipped entries from S2,V0 to another state with an action other
than A6 are deleted. The corresponding information is also deleted from
the ASM and multi-step CPs. Consequently, the agent updates learning
and learns to forget. Finally, two new CPs for the move “S3,V0

A2−→ S2,V2”
and “S2,V2

A6−→ S3,V0” are created. For this newly disambiguated aliased
state S2,V2 , a new row in the ASM is created and corresponding informa-
tion is added to that row.

Case-3

The agent does not effect the previous action, but a new action that tran-
sitions to the same state. For example, the agent moves from state S2,V0

to another state S1,V0 by executing an action A3 but another CP already
exists from state S2,V0 to state S1,V0 by executing a different action 6=A3.
The state S1,V0 is marked as an aliased state and is disambiguated into
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two states, here termed state S1,V1 and state S1,V2 . Subsequently, all the
CPs with entries “S2,V0

6=A3−−→ S1,V0” are updated with “S2,V0

6=A3−−→ S1,V1”.
Similarly, the CPs with flipped action “S1,V0

6=A7−−→ S2,V0” are updated with
“S1,V1

6=A7−−→ S2,V0”. The corresponding entries in the ASM and multi-step
CPs are also updated. Moreover, all the entries in CPs from S1,V0 to an-
other state by executing an action other than 6=A7 are deleted. Similarly,
the flipped entries from another state to S1,V0 with an action other than
6=A3 are deleted. The corresponding information is also deleted from the
ASM and multi-step CPs. Consequently, the agent updates learning and
learns to forget. Finally, two new CPs for the move “S2,V0

A3−→ S1,V2” and
“S1,V2

A7−→ S2,V0” are created. For this newly disambiguated aliased state
S1,V2 , a new row in the ASM is created and corresponding information is
added to that row.

Case-4

The agent effects an action and transitions to a new state; however, a CP
already exists that effects a flipped action from the new state that transitions to
a different state. For example, the agent moves from state S1,V0 to another
state S2,V0 by executing an action A4 such that no other CP already exists
from state S1,V0 to any other state by executing the same action A4. Sub-
sequently, two CPs for this move need to be created, i.e. “S1,V0

A4−→ S2,V0”
and “S2,V0

A0−→ S1,V0”. During the creation of CP with flipped action, i.e.
“S2,V0

A0−→ S1,V0”, it is found that a CP already exists from state S2,V0 to an-
other state S3,V0 by executing the same action A0. The state S2,V0 is marked
as an aliased state and is disambiguated into two states, here termed state
S2,V1 and state S2,V2 . Subsequently, all the CPs with entries “S2,V0

A0−→ S3,V0”
are updated with “S2,V2

A0−→ S3,V0”. Similarly, the CPs with flipped action
“S3,V0

A4−→ S2,V0” are updated with “S3,V0

A4−→ S2,V1”. The corresponding
entries in the ASM and multi-step CPs are also updated. Moreover, all
the entries in CPs from S2,V0 to another state by executing an action other
than A0 are deleted. Similarly, the flipped entries from other states to S2,V0
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 A0 A1 A2 A3 A4 A5 A6 A7 

Angle 0 45 90 135 180 225 270 315 

X-Axis 0 1 1 1 0 -1 -1 -1 

Y-Axis 1 1 0 -1 -1 -1 0 1 
 

Figure 7.5: The horizontal and vertical distances against actions. The ac-
tion A0 is at 0◦ and each subsequent action is separated by 45◦.

with an action other than A4 are deleted. The corresponding information
is also deleted from the ASM and multi-step CPs. Consequently, the agent
updates learning and learns to forget. Finally, two new CPs for the move
“S1,V0

A4−→ S2,V2” and “S2,V2

A0−→ S1,V0” are created. For this newly disam-
biguated aliased state S2,V2 , a new row in the ASM is created and corre-
sponding information is added to that row.

Case-5

An aliased state already exists in a path. This case is executed only if the agent
cannot identify an aliased state by utilizing any of the above-mentioned
cases. The agent logs its path during the navigation. If the current state
(and version) already exists in the path, the agent computes the horizon-
tal and vertical distance to determine whether it is in the same state (i.e.
identifies a loop) or a new aliased state. For this work, the action A0 is
at 0◦ and each subsequent action is separated by 45◦. The distance values
against all the actions are presented in Fig. 7.5. To compute the distance,
the following procedure is applied. For each action executed by the agent,
it moves to a new state, a value (+1,−1 or 0) is added to the horizontal
and vertical distances. For example, against action A0 the values 0 and 1

are added to the x-axis and y-axis, respectively. These values are added
for all the states between the current state and the already visited state by
traversing through the path. Finally, if the agent determines that it has
traveled a non-zero horizontal or vertical distance, it marks its state as a
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new aliased state and disambiguates it by assigning a new version.

7.2.5 Predict Aliased Version

The prediction of the correct aliased version (V ) of a state(S) is an im-
portant step in resolving non-Markov environments. The agent disam-
biguates aliased states by assigning them unique versions, as an aliased
state with a unique version behaves as a non-aliased state. The agent is
confident about its position in the environment if it is in a non-aliased
state or an aliased state with the correct version. Consequently, the agent
moves to the next state by executing the appropriate action that leads to
the optimal path to the goal. The techniques adopted by the agent to pre-
dict the aliased version are explained below.

Case-1

The agent is confident about its position in the environment, i.e. either it is
in a non-aliased state or an aliased state with the correct version. When
the agent moves from a confirmed state to an aliased state, it extracts the
correct version of the aliased state from the CPs. For this purpose, if a
CP exists that has the same initial state − version action−−−→ state entries, the
version of the current aliased state is set from that CP.

Case-2

The agent is not confident about its position in the environment, i.e. either a
random starting point is an aliased state or there exist multiple CPs with
this same state but different versions. Consequently, the agent is in an
aliased state with a default version 0. When the agent moves from such a
state to another aliased state, it applies one of the following techniques to
predict the aliased version.

First, if the current path of the agent has more than two states, it finds
matching multi-step CPs by comparing only the states (not versions) and
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actions with the last three moves (because a CP can support at most three
moves; this number could be extended at the cost of additional compu-
tations). If such a CP exists, the agent considers the aliased state version
of that CP as a candidate version. To verify that candidate version, the
agent searches for the flipped CP, i.e. from the current state to the previ-
ous state. Subsequently, the agent counts all the CPs that have the same
flipped action but result in different states. If this number is equal to the
total number of aliased versions for that state, the agent flags the predic-
tion as correct. Otherwise, the candidate version is discarded.

If the first technique does not find the aliased version, the agent iden-
tifies the flipped CPs from the current state to the previous state without
comparing the versions. If the candidate CPs have multiple versions for
the current aliased state they are discarded. Otherwise, the agent finds all
the CPs that have the same flipped action but different states. If the num-
ber of CPs found is equal to the total number of aliased versions for that
state, the agent marks the prediction as correct. Otherwise, it is discarded.
If the agent fails to make a correct prediction, the default version 0 is used,
which means that the agent is not yet confident about its position in the
environment.

Case-3

This case is executed if the agent cannot predict an aliased state version by
utilizing the above-mentioned cases. The agent attempts to predict the
aliased version by utilizing the information from the ASM. The agent makes
a list of the current states (without comparing the versions) that have the
previous state in their neighbors at the flipped action. These are consid-
ered candidate states. Subsequently, the agent compares the shared neigh-
borhood of each candidate state with the previous state. If a state has the
same neighboring states as the shared neighborhood, that state is flagged
as a final candidate state. At the end of this process, if there is only one fi-
nal candidate state, the version of that state is considered a correct aliased
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version. Otherwise, the agent is not confident about its position in the
environment, and the default version 0 is used.

7.2.6 Overall Strategy

EC generates the constituent rules using CFs to encode the conditions of
the state and actions. Many encodable rules are not valuable, e.g. rules
where actions collide with walls, so EC search improves efficiency and re-
duces storage. Moreover, EC is used to utilize these constituent rules to
evolve CP-based policies in the form of state-action-state tuples. Again
this removes redundancy/irrelevant conditions that would be kept by ex-
haustive search. A schematic depiction of the overall strategy developed
to achieve the cognitive inspired functionality in the FoRs-based system
is shown in Fig. 7.6. The general state-action-reward scheme of the novel
system is similar to the standard multi-step reinforcement learning scheme
in LCSs [303, 14]. The learning methodology of the novel FoRs system is
developed by utilizing the framework of accuracy-based LCSs, i.e. Wil-
son’s XCS [251]. Code fragments assist the novel system to link the envi-
ronmental features through functional nodes. A disjunctive normal form
of CFs constitute a rule, which encapsulates how well CFs link together to
provide an egocentric viewpoint of the environment. As in the standard
LCSs, here the rules are created by three methods, i.e. covering, crossover,
and mutation. These rules are combined in a population, which enables
specific niches of the problem to be combined together to solve different
parts of the problem domain. The FoRs system departs from a conven-
tional LCS in the novel use of state versions within the conditions of the
classifier rules are enhanced with a state-version encoding. In order to ap-
pear in the match set, the rules need to match the condition, including the
version, of the state.

At the start of the learning process, all the states (aliased and non-
aliased) have version 0. The agent is randomly placed in a state in the
environment. The agent obtains the version of the current state by ap-
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Figure 7.6: A schematic depiction of the overall strategy developed to
achieve cognitively inspired functionality. (color key: constituent, holistic,
and mix knowledge proceedings are represented by purple-white, pink-
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plying methods presented in Section 7.2.5. Subsequently, the agent deter-
mines whether it is an aliased state or not. If it is an aliased state, the agent
disambiguates the aliased states by assigning them unique versions. The
methods adopted by the agent for the identification and disambiguation
of aliased states are presented in Section 7.2.4.

The learning process of the agent is divided into explore and exploit
modes, similar to the standard LCS process. The agent logs the path while
navigating through the environment. During the explore mode, the sys-
tem attempts to create a new policy if one does not exist for the current
path. A new policy can be created in two situations: (i) when an agent
successfully reaches the goal, or (ii) when an evolutionary process is trig-
gered. The method to create a new policy in the first situation is presented
below, whereas, the conditions to trigger the evolutionary process to sub-
sequently create new policies is presented in Section 7.2.2. A new policy
is created if the agent successfully reaches the goal state before utilizing
the maximum allowed steps, which is set with domain knowledge. For
this purpose, the loops are removed from the path. Subsequently, the path
is virtually traversed in reverse order, i.e. from the goal state to the start
state. For each step, the ambiguous aliased versions (i.e. 0) are updated
with the correct versions. New CPs are created if they do not exist, by
applying the strategies explained in Sections 7.2.4 and 7.2.5. New aliased
versions may be created to disambiguate the aliased states from the path.
During this process, if no new aliased versions are created and no am-
biguous version is left in the path, the new policy is created if it does not
already exist. Moreover, the experience attribute of the new policy is ini-
tialized to zero and incremented by one each time the policy assists the
agent to successfully reach the goal state.

The reverse traversing of the path enables the novel system to con-
nect the isolated blocks of aliased states. If the agent cannot establish a
connection (by finding or creating CPs) between the states of the path by
utilizing the above-mentioned methods, the agent attempts to find blocks
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of aliased states that match the path at the point of missing connection (i.e.
when no CP exists). Utilizing the ASM, such blocks are identified through
analysing the multi-step CPs. If a block is found that matches the current
path and is isolated from other neighboring states, then it is connected
with the broken state by creating a new CP. An example of such a scenario
is presented in Section 7.5.

During exploit mode, the system activates a policy that assists the agent
to take the best action. In order to select the most appropriate policy, the
system must identify the correct version of the state. Therefore, for aliased
states, the agent predicts the most likely aliased version by utilizing the
strategies explained in Section 7.2.5. However, if the agent is unable to
predict the version, the system randomly selects one. Subsequently, the
agent tries to identify the best policy for the selected state-version. Each
state may have more than one policy. The novel system selects a valid
policy that has the smallest value for the step attribute. That policy can
lead the agent to the goal state by utilizing the minimum number of steps.
Finally, the agent activates the selected policy (cf. roll-out).

The agent determines the best action using two different strategies: the
action set, and the active policy. If two actions are the same, the policy is
marked as true by setting a flag (termed “cognate”), which can take value
[true, false]. The agent is confident about its decision and executes the
action. However, if the actions are different, then the agent prefers the
action provided by the policy and marks the cognate flag for the policy as
false. Consequently, if the agent moves to a different state predicted by
the policy or is unable to move, the policy is marked as malign by setting
a flag (termed “malign”), which can take value [true, false], and the agent
picks another best policy with respect to the current state. The malign
policies will not be selected again for the current multi-step run. At the
end of the multi-step run, all the cognate and malign flags are cleared. A
walk-through of this novel approach is presented in Section 7.5.
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7.3 Experimental Design

This work seeks to demonstrate the effectiveness of the FoRs-based ap-
proach to address the perceptual aliasing problem in RL agents while solv-
ing multi-step tasks in non-Markov environments. Maze problems are
used as a test paradigm to investigate how agents learn state-action tran-
sitions in multi-step environments. Mazes have been used in a wide vari-
ety of navigation based research from cognitive neuroscience to artificial
intelligence [27, 268, 269, 270, 123, 14, 244, 271, 272, 273], as they approxi-
mately simulate real-world navigation problems. Mazes have a structure
that allows experimenters to easily control and trace the behavior of an
agent during the learning process. They offer a wide range of complex en-
vironments that artificial agents struggle to solve. This includes complex
non-Markov mazes that are characterized by heterogeneity in action prob-
ability in a given state and clusters of such aliased states. As these char-
acteristics make maze problems effective to evaluate the novel approach,
a wide range of mazes are used as the test domain. These mazes include
both deterministic and non-Markov environments, all aliasing types (I, II,
and III), and a broad range of complexity (1 − 251) [309, 272]. The major-
ity of these mazes and the related woods environments have been used
in state-of-the-art studies [309, 303, 14, 272, 330]. A brief introduction of a
maze environment and the mazes that are used in this work, for readers
unfamiliar with these environments, are presented in Chapter 3.

7.3.1 Experimental Setup

The novel system uses the XCS configuration settings that have been com-
monly used in XCS studies [303, 14]. The parameter values are: crossover
probability χ = 0.8; GA threshold θGA = 25; mutation probability µ = 0.04;
learning rate β = 0.2; deletion fraction δ = 0.1; deletion threshold θdel = 20;
prediction error threshold ε0 = 10; fitness exponent ν = 5; fitness fall-off
rate α = 0.1; fitness reduction = 0.1; don’t care probability = 0.33; sub-
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sumption threshold θsub = 20; prediction reward = 1000; prediction er-
ror reduction = 0.25. The agent is randomly placed at an empty position
within an environment at the start of a trial. The agent is allowed to reach
the goal by utilizing a maximum of 50 steps. All the results presented here
are taken from the average of 30 runs.

The experimental results of the novel system (FoRsXCS) are compared
with the experimental results of seven well-known benchmark systems,
i.e. BACS2[309], BACS3 [309], XCSLib [331], ACS2 [241], XCSM [303],
AgentP [272], and deep recurrent Q-network (DRQN) [332, 333]. DRQN
is a well-known deep learning-based system that applies a connectionist
strategy to solve POMDPs environments. We were able to reproduce the
experimental performance for XCSLib, ACS2, and DRQN. The results for
BACS2 and BACS3 have been kindly shared by the authors. However, for
the other systems (XCSM and AgentP), I have used the results reported in
the respective studies.

7.4 Experiments

The first set of experiments was conducted for deterministic mazes (Maze5
and Maze6) to provide proof-of-concept for the developed FoRsXCS sys-
tem. For the Maze5, ACS2 and DRQN outperformed FoRsXCS by 0.18 and
0.13 steps, respectively. But for Maze6, ACS2 outperformed FoRsXCS by
0.25 steps but the performance of FoRsXCS is better than all other systems
including DRQN. It is noted that the learning rate of the novel system is
slower than ACS2 (see Fig. 7.7). This is understandable because the novel
system has to create heterogeneous BBKs to create the local and world
viewpoints of the environment. Thus the FoRXCS may be computation-
ally inefficient for solving simple deterministic mazes.

The second set of experiments was conducted for non-Markov mazes
to evaluate the effectiveness of the novel approach. A comparison of ex-
perimental results with different state-of-the-art studies is presented in Ta-
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Figure 7.7: Experimental results of Maze5 and Maze6 using ACS2, XCSLib,
and FoRs-based XCS (FoRsXCS)

ble 7.1. The experimental results show that the novel FoRsXCS system ei-
ther outperformed all other systems or showed similar behavior in solving
all the non-Markov mazes except Maze7. For Maze7, AgentP and BACS3
outperformed the novel system by 0.03 and 0.01 steps, respectively.

The experimental results show that the novel FoRsXCS system effec-
tively solves complex aliasing patterns in mazes that have been most chal-
lenging to artificial agents. For example, the novel system utilizes 6.51,
3.71, and 3.22 steps to resolve Maze10, Littman57, and Woods102, respec-
tively. In contrast, none of the existing systems behave effectively in all
these mazes. The minimum steps required by the best existing systems are
7.87 (AgentP), 4.52 (BACS2), and 3.30 (AgentP) to solve Maze10, Littman57,
and Woods102, respectively. It is important to note that the well-known
DRQN successfully solves deterministic and non-Markov mazes but the
novel FoRsXCS outperformed DRQN in all the mazes. The reasons for
the performance efficiency of the novel FoRsXCS are explained in Section
7.5. The varied learning pace of the novel system for different mazes is
presented in the supplementary material (see Section S-IV).
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The Wilcoxon signed-rank test was applied to statistically compare
FoRsXCS with DRQN (see Table 7.2). The test was conducted on the re-
sults of the last 100 trials. The second and third columns contain the av-
erage performance along with standard deviation. FoRXCS statistically
out-performed DRQN on all mazes, all p′s < 0.00001, which is evidence
that the performance advantage of FoRsXCS is statistically significant.

The novel FoRsXCS can utilize multiple viewpoints at different levels
of abstraction, depending on the complexity of aliased patterns in the en-
vironment. This functionality adds extra computational cost. Although it
is not straightforward to compare the computational cost for different sys-
tems due to operating system constraints, these systems can be compared
based on the average processing time required for an agent to take a step
in an environment. The average single-step processing times, computed
by using Maze7, for FoRsXCS and XCSLib are 326.37µSec and 74.56µSec,
respectively. The processing time for the novel FoRsXCS is 4.4 times longer
than the XCSLib. However, this cost is justified because the FoRsXCS
needs on average 4.3 steps to successfully reach the goal in Maze7, whereas
the XCSLib needs 31 steps. Thus, XCSLib utilizes 7.2 times more steps as
compared to FoRsXCS. This shows that the overall computational cost of
the XCSLib is greater than that of the FoRsXCS. Furthermore, the FoRsXCS
based agent successfully reached the goal in all trials, whereas the XCSLib
based agent did not always reach the goal.

7.5 Experimental Analysis

The learning process of the FoRs based system is interpretable. Close ob-
servation of CPs and the ASM reveals that the novel system successfully
identified and disambiguated complex patterns of aliased states by utiliz-
ing the relevant BBKs at different levels of abstraction. Consequently, the
novel system translated a non-Markov environment into a Markov envi-
ronment.
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Table 7.2: Wilcoxon signed-rank test

Problem Domain DRQN FoRsXCS Z-Value P-Value
Littman57 5.60± 0.34 3.71± 0.08 −5.5109 <0.00001

Maze10 9.75± 0.75 6.51± 0.21 −5.5109 <0.00001

Woods102 3.49± 0.11 3.22± 0.03 −5.5109 <0.00001

Littman57 provides a non-Markov environment with moderate alias-
ing complexity. The maze and its aliased states (each state has a unique
color) are shown in Fig. 7.8. The learning sequence of the novel sys-
tem to resolve Littman57 is shown in Fig. 7.9. At the start of the learn-
ing process, all the states have default version 0. Initially, the agent was
randomly placed in state S8. It executed action A7 to transit to state S3.
Consequently, the the agent created CPs which provide connections be-
tween “S8,V0 & S3,V0”, i.e. S8,V0

A7−→ S3,V0 , S3,V0

A3−→ S8,V0 . Subsequently,
the agent executed action A6 to transit to state S2. Consequently, the
agent created CPs which provide connections between “S3,V0 & S2,V0”, i.e.
S3,V0

A6−→ S2,V0 , S2,V0

A2−→ S3,V0 . These CPs form constituent BBKs and pro-
vide the egocentric view. Subsequently, the agent created two holistic
level CPs, which provide connections among “S8,V0 , S3,V0 and S2,V0”, i.e.
S8,V0

A7−→ S3,V0

A6−→ S2,V0 and S2,V0

A2−→ S3,V0

A3−→ S8,V0 . These CPs form
holistic BBKs and provide an abstract view. However, there are two such
blocks in the maze, represented by purple and red dotted lines. The agent
could not differentiate between these blocks. The relevant information is
updated in the ASM, see Fig. 7.9-a.

The agent moved from S2,V0 to S3,V0 by executing an action A2. There
is no change/update in BBKs because a CP already exists for this move,
i.e. S2,V0

A2−→ S3,V0 . In the next step, the agent moved from S3,V0 to S2,V0 by
executing an action A2. The agent successfully identified that the current
state S2,V0 is an aliased state because of the existing CP S3,V0

A6−→ S2,V0 (i.e.
holistic view). Consequently, the agent disambiguated the aliased state
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S2,V0 into two unique states, i.e. S2,V1 , and S2,V2 . The corresponding BBKs,
with same or flipped actions, are updated with S2,V1 , e.g. S3,V0

A6−→ S2,V1 .
Two new constituent level CPs are created, i.e. S3,V0

A2−→ S2,V2 , and S2,V2

A6−→
S3,V0 . The holistic level CPs after this move are, S2,V1

A2−→ S3,V0

A2−→ S2,V2 ,
and S2,V2

A6−→ S3,V0

A6−→ S2,V1 . It is important to note that the agent may
consider the central state S2 as V1 or V2 depending on the associated block.
Moreover, the state S8,V0 is in the common neighborhood of states S3,V0 &
S2,V2 and a CP exists from S3,V0 to S8,V0 , i.e. S3,V0

A3−→ S8,V0 . Consequently, a
connection is created from state S2,V2 to S8,V0 in the ASM, see Fig. 7.9-b.
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Figure 7.8: Maze Littman57, 1 empty, 0 blocked, F food/goal.

The agent moved from S2,V2 to S3,V0 by executing an action A2. The
agent successfully identified that the current state S3,V0 is an aliased state
because of the existing CPs S2,V2

A6−→ S3,V0 and S3,V0

A6−→ S2,V1 (i.e. holis-
tic view). Consequently, the agent disambiguated the aliased state S3,V0
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Figure 7.9: Learning sequence for maze Littman57, here Si,Vj
are coloured

differently.
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into two unique states, i.e. S3,V1 , and S3,V2 . The corresponding BBKs are
update with S3,V1 , i.e. S3,V0

A6−→ S2,V1 , and S2,V1

A2−→ S3,V1 . All other BBKs
are removed or cleared (disconnected). Two new constituent level CPs are
created, i.e. S2,V2

A2−→ S3,V2 , and S3,V2

A6−→ S2,V2 , see Fig. 7.9-c.

The agent moved from S7,V0 to S6,V0 to S5,V0 and created the correspond-
ing constituent and holistic CPs. Subsequently, the agent moved from
S5,V0 to S8,V0 by executing an action A4. The agent successfully identi-
fied that the current state S8,V0 is an aliased state because of the existing
CPs S2,V2

A4−→ S8,V0 and S8,V0

A0−→ S2,V2 (i.e. holistic view). Consequently,
the agent disambiguated the aliased state S8,V0 into two unique states,
i.e. S8,V1 , and S8,V2 . The corresponding BBKs are update with S8,V1 , i.e.
S2,V2

A4−→ S8,V1 , and S8,V1

A0−→ S2,V2 . Two new constituent level CPs are
created, i.e. S5,V0

A4−→ S8,V2 , and S8,V2

A0−→ S5,V0 . Moreover, the common
neighborhood connections are created or updated, see Fig. 7.9-d.

The agent moved from S5,V0 to S4,V0 by executing an action A6. The
corresponding CP is created. Subsequently, the agent moved from S4,V0 to
S8,V0 by executing an action A5. The agent successfully identified that the
current state S8,V0 is an aliased state because of the existing CPs S3,V2

A5−→
S8,V1 and S6,V0

A5−→ S8,V2 (i.e. holistic view). The maximum aliased versions
for state S8 are two and two constituent level CPs exist with the same
action A5. The agent considered it another version of state S8 and disam-
biguated it by assigning a new version, i.e. V3. Two new constituent level
CPs are created, i.e. S4,V0

A5−→ S8,V3 , and S8,V3

A1−→ S4,V0 , see Fig. 7.9-e.

The agent moved from S4,V0 to S2,V0 by executing an action A6. The
agent successfully identified that the current state S2,V0 is an aliased state
because of the existing CPs S3,V1

A6−→ S2,V1 and S3,V2

A6−→ S2,V2 (i.e. holistic
view). The maximum aliased versions for state S2 are two and two con-
stituent level CPs exist with the same action A6. The agent considered it
another version of state S2 and disambiguated it by assigning a new ver-
sion, i.e. V3. Two new constituent level CPs are created, i.e. S4,V0

A6−→ S2,V3 ,
and S2,V3

A2−→ S4,V0 . Subsequently, the agent explores so other correspond-
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ing CPs are created, see Fig. 7.9-f.

The agent was again randomly placed in state S8. It successfully reached
the goal state by executing a series of actions, i.e. A0, A2, A2, A2, A3. The
agent virtually traversed the path from the goal state to the start state,
i.e. in reverse order by utilizing flipped actions. The agent confidently
identified the CPs from the goal state to two next states because of the
non-aliased state S4,V0 . Whereas the agent was not confident about the re-
maining three states. The remaining reverse path is “S3,V∗ − A6 − S2,V∗ −
A4− S8,V∗” or the original path is “S8,V∗ −A0− S2,V∗ −A2− S3,V∗”, here V∗
indicates that the agent did not need to consider the versions. The agent
searched the isolated clusters of states, by utilizing multi-states CPs and
ASM, that matched these states but are totally disconnected from other
neighboring states. The agent successfully found such a block of states
and linked it with the next confirmed state. Consequently, two new con-
stituent level CPs are created, i.e. S3,V2

A2−→ S2,V3 , and S2,V3

A6−→ S3,V2 , see
Fig. 7.9-g.

The agent moved from S2,V2 to S3,V∗ by executing an action A6. The
agent identified that the current state is S3,V1 because a CP with the same
action existed for S3 (i.e. S2,V3

A6−→ S3,V2) and maximum number of aliased
states are two. Consequently, two new constituent level CPs are created,
i.e. S2,V2

A6−→ S3,V1 , and S3,V1

A2−→ S2,V2 . Subsequently, the agent moved
from S3,V1 to S8,V∗ by executing actionA5. The agent successfully identified
that the current state S8,V∗ is an aliased state because of the existing CPs
S3,V2

A5−→ S8,V1 , S4,V0

A5−→ S8,V3 and S6,V0

A5−→ S8,V2 (i.e. holistic view). The
maximum aliased versions for state S8 are three and three constituent level
CPs exist with the same actionA5. The agent considered it another version
of state S8 and disambiguated it by assigning a new version, i.e. V4. Two
new constituent level CPs are created, i.e. S3,V1

A5−→ S8,V4 , and S8,V4

A1−→
S3,V1 . Subsequently, the agent continues to traverse the maze such that
any outstanding CPs are created. Ultimately, the agent has successfully
transformed the non-Markov environment into a Markov environment. A
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map of the final environment (without any ambiguous aliased states, i.e.
Markov environment) is shown in Fig. 7.9-h.

7.6 Discussion

The ability to consider an input signal at a constituent level and holistic
level simultaneously is a critical feature of the lateralized architecture. But
this consideration not necessarily to be left/right, for navigation problems
it tended to be FoRs based consideration of the same environmental signal
from the local viewpoint (constituent level) and world viewpoint (holistic
level). An in-depth analysis of the FoRs based lateralized system is pre-
sented in Chapter 8.

The FoRs-based system is designed to address the perceptual aliasing
problem in non-Markov environments. The novel system simultaneously
considers the environmental instance from a local viewpoint (single-step
CPs, egocentric FoR) and world viewpoint (multi-step CPs, policies; al-
locentric and route-centric FoRs). Consequently, the learning speed of
the novel system is slower than that of other state-of-the-art systems for
large scale deterministic mazes. However, the ability to consider the same
problem instance at multiple viewpoints empowers the novel system to
efficiently learn the complex patterns of aliased states that characterise
non-Markov environments. As the problem scales in size and complex-
ity, there will be more and more constituent-level and holistic-level BBKs,
which will slow down learning. Nevertheless, the novel system has the
ability to identify and disambiguate the clusters of aliased states by uti-
lizing the BBKs at different levels of abstraction. Consequently, the novel
system efficiently solves complex non-Markov mazes that homogeneous
systems struggle to solve.

The per-step computational cost of the novel system is 4.4 times higher
than the conventional AI system. However, the average number of steps
required by the lateralized agent to successfully reach the goal state is 7.2
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times less than the conventional AI agent. Therefore, the overall compu-
tational cost of the lateralized system is less than the conventional AI sys-
tem. Moreover, the lateralized agent successfully reached the goal state in
all trials but this is not true for conventional AI agents.

For this work, it is assumed that the actions always correctly affect the
environment. If not, LCSs do have an error threshold that can be used
to handle noise. This problem is beyond the scope of this work, but is
the subject of future work. Moreover, the assumption that the agent has
the freedom to explore, (e.g. flipped actions), may not be reasonable in
practical situations, e.g. driving on one-way roads. The FoRs-based ap-
proach may not work well for problems, such as numerical optimization,
in which constituent knowledge cannot be used or reused to solve higher-
level problem components.

Although it is expensive to learn constituent-level BBKs, once learned,
they can be used or reused to form holistic level BBKs. The novel sys-
tem applies these learned BBKs at different levels of abstraction to solve
heterogeneous patterns in complex problems.

7.7 Chapter Summary

The novel system successfully applied FoRs to learn stable policies for
multi-step tasks in non-Markov environments. The ability to represent the
same environmental instance from different viewpoints, i.e. local view-
point (single-step CPs, egocentric FoR) and world viewpoint (multi-step
CPs, policies; allocentric and route-centric FoRs), empowers the novel sys-
tem to successfully address perceptual aliasing problems by identifying
and disambiguating aliasing patterns. Consequently, the novel system
transforms a non-Markov environment into a deterministic environment.
EC played a critical role by enabling the novel system to evolve fitter rules
at a constituent level and optimal policies at a holistic level. Otherwise, it
was not practical to enumerate the huge search space of a complex non-
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Markov environment. The experiments demonstrate that the novel system
has the ability to utilize or re-utilize relevant learned BBKs at different lev-
els of abstraction to learn aliasing patterns that are made up of patterns
that are made up of features. The novel system effectively solves complex
aliasing patterns in the environments that have previously been challeng-
ing to artificial agents. For example, the novel system utilizes only 6.5,
3.71, and 3.22 steps to resolve Maze10, Littman57, and Woods102, respec-
tively.

The novel system is robust against aliasing states because of its focus on
the appropriate parts of the reward signal to achieve a necessary level of
abstraction. Aliasing challenges existing evolutionary computing systems
across a wide range of problem domains. How this approach functions
with dynamic states, especially in domains with little information to start
forming code paths, can now be investigated. Although, the lateralized
framework has been adapted to develop lateralized systems for a wide
range of problem domains and a number of aspects of the novel lateralized
approach have been investigated, more deep and thorough investigation
is needed. The initial results are promising and show the potential of the
lateralized approach to tackle different problems from different domains.



8
Discussions

In this thesis, lateralization has been successfully applied in ar-
tificial intelligence systems to solve complex problems in three
different domains. A wide range of experiments have been con-
ducted to evaluate the robustness and effectiveness of the later-
alized approach. The experimental results demonstrate that the
lateralized systems outperform state-of-the-art non-lateralized
systems in resolving complex problems. It is considered that the
advantages arise from the ability of lateralized systems to, (i)
represent an input signal at both the constituent level and holis-
tic level simultaneously, such that the most appropriate view-
point controls the system; and (ii) avoid extraneous computa-
tions by generating excitatory and inhibitory signals between
modules. The lateralized approach may resemble some other
artificial intelligence approaches. However, a critical analysis
reveals that the novel lateralized approach is substantially dif-
ferent from other approaches.

In cognitive neuroscience, lateralization has been associated with

225
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both poor and good performance, making the relationship be-
tween lateralization and performance ambiguous. It is antici-
pated that investigating lateralization in artificial intelligence
can provide insight into the benefits and costs of lateralization
for agents addressing complex tasks.

The goals of this chapter are three-fold: first, to discuss the lateral-
ized framework, its adaptation/customization for different artificial in-
telligence systems that can solve various tasks; second, to provide critical
analysis of the state-of-the-art artificial intelligence approaches that resem-
ble the novel lateralized approach; and third, to highlight lateralization in
an agent’s decision making to obtain evidence of benefits/costs from arti-
ficial intelligence in order to inform cognitive neuroscience.

8.1 Lateralized Systems

A lateralized framework has been created that encompasses all the key
aspects of lateralized artificial intelligence (AI) systems. As with standard
models of mind [171], the novel lateralized framework has been utilized as
a coherent basis for creating three different lateralized systems (see Chap-
ters 5, 6, and 7). Instead of creating each lateralized system from scratch,
the components of the lateralized framework have been adapted, at differ-
ent levels of abstraction/scales of problems, depending on the nature and
complexity of the problem at hand. Consequently, each lateralized system
has its own approach for solving a given problem, whereas, the lateralized
framework serves as a shared ontology. A schematic illustration of the lat-
eralized framework and its adaptation for different AI systems is shown
in Fig. 8.1.

It is not the intention of this thesis to create a novel lateralized frame-
work, or even a lateralized system, in which all of the details of the verte-
brate intelligence are modelled. Rather this thesis takes inspiration from
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basic principles of lateralization that are fundamental to vertebrate intel-
ligence. The first and most important principle of a lateralized AI sys-
tem is the ability to simultaneously consider the given input signal at a
constituent level and holistic level. The lateralized framework contains
the left-half system module that considers the given signal at a constituent
level and the right-half system module that simultaneously considers that
signal at a holistic level. These terms are used because in right-handed
people the left hemisphere processes information at a constituent level
while the right hemisphere processes the same information at a holistic
level, although individual differences can be observed in both the direc-
tion and degree of lateralization. It is critical for a lateralized AI system to
have the ability to simultaneously process the input signal at a constituent
level and holistic level. The left-half and right-half are just terminologies
to represent the system modules, where the terms could be swapped or
altered.

The processing of the same input signal at different levels of abstrac-
tion can be done once or multiple times, depending on the nature and
complexity of the problem domain. For example, the lateralized AI sys-
tem developed for the Boolean problems considers a given problem at a
constituent level (LHSM module) and holistic level (RHSM module) only
once (see Chapter 5). Whereas, it is necessary for the lateralized AI sys-
tem, developed for computer vision (CV) problems, to consider the given
input signal at a constituent level and holistic level, initially at the context
phase, and then again at the attention phase (see Chapter 6).

The ability to consider the same problem at different levels of abstrac-
tion is one of the main features of lateralization. The left/right (or right/left)
representation is not the only way to consider an input signal at a con-
stituent level and a holistic level. A heterogeneous representation of knowl-
edge could also be used to consider an input signal at different levels of
abstraction. It is important to note that lateralization is a special type of
heterogeneity. The lateralized AI systems were successfully developed, for
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Boolean and CV problems, by using the left/right representation of an in-
put signal. However, during the development of the lateralized AI system
for navigation problems, it was observed that the left/right terminology
was not quite appropriate for this task. In navigation tasks, lateraliza-
tion does not tend to be left/right separated but it tended to be frame-of-
reference (FoR) based constituent level (local viewpoint) and holistic level
(world map) representation. However, it does not prevent the underlying
notion of lateralization from being a reasonable way of describing the AI
systems. For this thesis, lateralization is used as an inspiration that does
not replicate biological hemispheres, in the similar way that an artificial
neural network is a neural network although it does not exactly replicate
biological neural networks.

The left-half and right-half modules do not depend on each other. They
neither assist each other during the processing nor directly share the out-
come of the processing. However, these modules can indirectly affect each
other’s processing, e.g. based on the feedback from the right-half, the re-
solve problem module can generate an inhibit signal for the left-half to
stop further processing. Moreover, the left-half and right-half modules
can communicate with the same system components (e.g. Resolution com-
ponent, knowledge pool) and can utilize the shared resources (e.g. input
signal, BBKs).

The first step to create a lateralized AI system is to consider a given
problem at different levels of abstraction but this is not sufficient to create
a lateralized system. A lateralized AI system needs to have excite/inhibit
signals that can be used to achieve goal-driven processing. These signals
assist the lateralized system to automatically identify and utilize the most
suitable system module that can efficiently solve the given problem. These
signals are implemented as a Boolean yes/no that can excite/inhibit the
whole system module. There is no partially inhibit/excite signal that can
allow a partial utilization of a particular system module.

The excite/inhibit signals can be implemented to automatically (with-
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out human-in-the-loop) permit/prohibit the use of different system mod-
ules. For example, the lateralized AI system for Boolean problems uses ex-
cite/inhibit signals to continue/stop the processing of the RHSM module;
the lateralized AI system for CV problems uses excite/inhibit signals to
continue/stop the processing of the attention phase. These excite/inhibit
signals can also be used to activate/deactivate system components that
can control the decision making of the system. For example, the lateral-
ized AI system for navigation problems uses excite/inhibit signals to ac-
tivate/deactivate policies that can guide the agent to optimally reach the
goal state.

The Resolution component is another important part of a lateralized
system. This component analyses the feedback received from the left-half
and right-half modules. The analysis can be performed once or multiple
times, depending on the nature and complexity of the problem domain.
Subsequently, the Resolution component assists the lateralized system to
decide whether the current knowledge is sufficient, or further learning is
required, to solve the given problem. The Resolution component is an es-
sential part of all the lateralized systems; in some cases, it is very obvious
in schematic figures ( see Chapter 5); in other cases, it is part of the solution
(see Chapters 6 and 7). For example, the lateralized system for Boolean
problems has an explicit component named Resolution. This component
analyses the feedback from both the LHSM and RHSM modules and de-
cides new learning is needed or not for the given problem. The lateralized
system for CV problem does not have a component named Resolution, but
the system analyses the feedback from the constituent and holistic mod-
ules and decides whether the current knowledge is sufficient or further
analysis is required to confidently resolve the given problem.
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8.2 Relevant Approaches

This section provides a critical analysis of existing state-of-the-art approac-
hes that resemble the novel lateralized approach.

8.2.1 Ensemble Systems

The novel lateralized systems may be confused with ensemble systems. A
rigorous analysis reveals that the lateralization approach is essentially dif-
ferent from the ensemble approach. The majority of the ensemble systems
are computationally expensive. These systems obtain an accurate predic-
tion, by using multiple constituent learning algorithms, which could be
obtained by using the single best constituent algorithm [334, 335, 336].
This approach requires many computations that do not contribute to the
solution. The novel lateralized approach avoids extraneous computations
by utilizing inhibit/excite signals to stop the processing of the system com-
ponents that are irrelevant to the given problem domain.

The number of constituent algorithms has a great impact on the over-
all prediction accuracy of an ensemble system. Different techniques have
been developed to determine the appropriate ensemble size but still, it is
a debatable topic [337, 338]. Whereas, a lateralized system has the ability
to automatically identify those BBKs (from the heterogeneous knowledge
pool) that are relevant and appropriate to solve a given problem. In the
novel lateralized approach, the coordination to determine the best BBKs
at any abstraction level to address a problem instance is different from an
ensemble approach that seeks to aggregate BBKs. This is the fundamen-
tal difference from an ensemble or cooperative coevolution system where
all sub-problems act simultaneously and often inefficiently as they are ig-
nored, redundant, or irrelevant.

It is important to note that there is no guarantee that the performance
accuracy of an ensemble system is always better than the performance
accuracy of the best constituent algorithm [339]. On the other hand, if
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a lateralized system finds a holistic level BBK that has the ability to in-
dependently resolve the given problem, it generates an inhibit signal to
stop further processing of other system components and utilizes only that
holistic BBK to solve the future problem instances. Consequently, the per-
formance accuracy of a lateralized system is always better than or equal to
the performance accuracy of an individual BBK.

An ensemble system is more effective if its constituent algorithms ex-
hibit diversity among themselves. Consequently, heterogeneous features
are required to train such an ensemble system. Moreover, a constituent al-
gorithm needs to be trained by using a separate (relevant) subset of these
heterogeneous features [340]. Whereas, in a lateralized system, diversity
depends on the nature and complexity of the problem at hand. For ex-
ample, the lateralized learning of a 4−bit Parity problem can utilize the
learned concepts of 2−bit and 3−bit Parity problems (homogeneous prob-
lem domain); whereas, the lateralized learning of an 18−bit hierarchical
multiplexer problem can utilize the learned concepts of 3−bit Parity and
6−bit multiplexer problem (heterogeneous problem domain).

The splitting and processing of the input signal into a constituent level
and holistic level in a lateralized system may make it an ensemble-like sys-
tem. However, the ability to automatically (without human-in-the-loop)
consider the same input signal at different levels of abstraction makes it
a lateralized system rather than an ensemble system. For example, a lat-
eralized Boolean system considers an input signal of a 6−bit multiplexer
problem at a single level, whereas, it considers an input signal of a 18−bit
hierarchical multiplexer problem at two levels of abstraction.

8.2.2 Deep Learning

Deep learning (DL) is a state-of-the-art approach that has been used to
solve many real-world problems. The majority of DL-based systems store
knowledge in multiple layers such that all features are treated equally in
each layer. These systems generate a homogeneous knowledge represen-
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tation that cannot be reused elsewhere in the system [9]. Consequently,
these systems generate a huge/deep network of homogeneous knowledge
to learn complex (hierarchical) problems and do not take advantage of the
potential to transfer knowledge between levels in the hierarchy. It is im-
portant to note that transfer learning takes whole sections from one sys-
tem and applies it to another system. But that is not (re)using informa-
tion multiple times in the same system. In contrast, a lateralized system
generates a heterogeneous knowledge representation at different levels of
abstraction. It has the ability to automatically identify relevant BBKs from
the heterogeneous knowledge pool and (re)utilize them at the constituent
level or holistic level. A holistic level BBK learned for a lower level prob-
lem, could be used/reused as a constituent level BBK for a higher-level
problem within the same system or across different systems.

The majority of DL-based systems exhibit poor robustness against noisy,
irrelevant, and redundant data [52, 55, 56]. This is due to their reliance
on homogeneous knowledge representation. Even a single targeted pat-
tern can disrupt performance accuracy. Whereas, the novel lateralized
systems can exhibit strong robustness against noisy, irrelevant, and re-
dundant data. This is due to their ability to consider the same problem
at different levels of abstraction (i.e. constituent level and holistic level).
Not only the holistic level but also the constituent level components of a
problem must be successfully challenged to fool a lateralized system.

Recently, capsule networks have been introduced to address the defi-
ciencies of deep networks and to better model hierarchical relationships
[18]. But the routing algorithm of capsule networks cannot differentiate
vectors from their negative counterparts. Thus capsule networks can only
learn if both the negative input and the original input represent the same
class. Consequently, capsule networks are not suitable for learning some
concrete but simple problems [341]. The majority of the capsule networks
based systems have been applied to solve image recognition problems.
Moreover, these systems fail to exhibit robustness against adversarial at-
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tacks [342].

8.2.3 Granular Computing

Granular computing is an emerging methodology that has been applied
to recognize regularities, present at different levels of abstraction, in the
data [343]. This approach makes effective use of granular structure to
represent the same problem at different levels of abstraction and differ-
ent viewpoints [344]. A granular structure has three key elements, i.e.
granules, levels, and hierarchies [343, 345, 346, 347].

Granules are an important part of the granular structure. They facili-
tate knowledge representation and processing. They can be considered as
elements, units, concepts, and notions that are required for interpreting,
representing, and processing a problem. For example, words, sentences,
paragraphs, and articles are granules in a text processing problem. Gran-
ules can also exist in the form of groups, clusters, or sets of ideas [348].

The degree of abstraction (known as granularity, or size of granules) is
an important feature of granules. A level of abstraction consists of gran-
ules that have similar nature or granularity. However, the novel lateral-
ized approach allows integration of heterogeneous BBKs to solve a specific
level of abstraction (see Chapters 6 and 7).

In order to solve a complex hierarchical problem, granules form a hi-
erarchy of levels that are ordered based on their granularity [348]. The
granularity level plays a critical role in creating a strategy to solve such a
problem. However, it does not have a universal value; it is user-dependent
and problem-oriented [344]. In granular computing, it is essential to iden-
tify an effective level of granularity concerning the given problem. At-
tribute reduction and feature selection studies have been used to find an
appropriate level of granularity [348, 349]. Moreover, it is also important
to identify the appropriate number of granules that can be used to provide
a solution. Several studies have been conducted to address these problems
but still, they are debatable topics [346, 348, 350].
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In contrast, the novel lateralized approach has the ability to consider
a given problem at multiple levels of abstraction, without human-in-the-
loop. For each level, the relevant constituent and holistic level BBKs are
identified. Subsequently, these BBKs are utilized to solve a part of the
problem or the whole problem (see Chapters 5 and 7).

A hierarchical granular structure may consist of multiple levels. A hi-
erarchy represents a problem from a particular viewpoint. It consists of
granules that focus only on one aspect of perception, hence, can provide
a solution only for a specific problem [344]. In the majority of the cases,
a hierarchical representation can only be used for the intended problem
and cannot be used for other problems [348]. To overcome this limita-
tion, many hierarchies are created to serve multiple purposes. This makes
granular computing a multilevel and multiview, but computationally ex-
pensive approach.

The novel lateralized approach has the ability to consider a given prob-
lem from multiple perspectives. This functionality is facilitated by uti-
lizing the heterogeneous BBKs from the knowledge pool. For example,
the novel lateralized system for the Boolean problem considered the given
18−bit hierarchical multiplexer problem from four different perspectives
(see Chapter 5). Moreover, the lateralized approach has the ability to avoid
extraneous computations by generating inhibit and excite signals.

The process of decomposing or constructing granules is called granu-
lation. The decomposition and construction processes are correlated and
they play an important role in providing solutions. Moreover, it has been
observed that the relationships among granules and their relationship with
granulation form complex solution patterns [344, 351]. In contrast, the lat-
eralized approach does not require such a decomposition or construction.
During the learning process, constituent level and holistic level BBKs are
created, utilized, and re-utilized at multiple levels of abstraction, depend-
ing on the nature and complexity of the problem (see Chapters 5 and 7).
Moreover, the relationships between different BBKs (constituent and holis-
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tic level) are automatically established (see 5). Furthermore, the decision-
making process of the novel lateralized systems is interpretable. This as-
sists in understanding the relationships between different level BBKs (see
Chapters 5 and 6).

Granular computing originated from fuzzy set theory and later on was
highly influenced by rough set theory [347, 349, 352]. Granular computing
creates relationships between objects based on similarity measures. This
similarity measure has been computed by using techniques such as rough
sets and fuzzy logic [353]. It has been reported that the granular comput-
ing community has major interaction with fuzzy sets and rough sets but
much less interaction with other communities [344, 354]. Conversely, the
novel lateralized approach is not limited to a specific problem domain.
For example, the novel lateralized approach has been implemented for
Boolean, computer vision, and navigation domains (see Chapters 5, 6, and
7).

8.3 Evidence of Benefits/Costs from Artificial In-

telligence

Biological intelligence has been used as a major source of inspiration for
creating AI systems [242, 355, 356]. Given that lateralization is ubiqui-
tous (at least amongst vertebrates, but also in many invertebrates), it likely
has advantages that can benefit artificial intelligence. In turn, AI systems
can be used as tools to advance understanding of biological intelligence.
These advances can be created in three main ways [357, 358]. First, AI sys-
tems can be employed as data mining tools to extract patterns from neuro-
science data that are too complex for conventional statistical approaches to
handle well. Second, AI can model the brain in an attempt to replicate it.
Third, AI systems can be used to probe fundamental aspects of cognitive
architecture. This third approach is the focus here.

The influence of hemispheric asymmetry on task performance in bio-
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logical species has been the subject of much debate [160, 161, 359], and
there are many inconsistencies in the empirical literature. For example,
in the cognitive domain, greater lateralization has been associated with
poorer performance on verbal dichotic listening tasks [360], but also better
performance on mental rotation and verbal memory, fluency, and intelli-
gence [361, 362, 363]; the personality trait schizotypy has been associated
with reduced lateralization, increased lateralization, and null effects [170].
It has been hypothesized that lateralization has benefits that may counter-
balance its costs [82, 158, 159], but this is difficult to test in vivo.

Individual differences in lateralization are also associated with per-
formance in animals, but again, lateralization has both costs and bene-
fits [82, 83]. For example, strongly lateralized fish exhibit lower spatial
learning and perform poorly in tasks that require simultaneously match-
ing information from both hemispheres [364, 365]. However, lateralized
fish exhibit stronger responses to a predator as compared to the responses
from non-lateralized fish. But lateralized fish are poor competitors as com-
pared to non-lateralized fish when interacting over a shelter resource, e.g.
they show few displays, less attack, and exhibit avoidance [82]. Again the
relationship between lateralization and cognitive enhancement is ambigu-
ous.

These inconsistent findings may reflect poor methodology (small sam-
ple sizes, noisy data). But they may also indicate that lateralization has
both costs and benefits, and so the association between lateralization and
performance will depend heavily on whether specific task parameters are
biased towards benefits or costs. Lateralised AI models could therefore be
very useful in testing the trade-offs between costs and benefits that affect
performance.

Empirical evidence regarding the relationship between performance
and lateralization could be obtained from AI systems. It is anticipated that
the integration of lateralization into AI systems is beneficial/advantageous
in certain situations. However, it is not clear what those situations are,
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what are the benefits/advantages, and what are the costs involved. This
work provides such insight in the next section.

8.3.1 Lateralization in AI

The novel lateralized framework has been successfully adapted to develop
lateralized AI systems for Boolean, CV, and navigation problem domains.
Boolean problems are complex engineering problems which are not rele-
vant to neuroscience community. These problems are neither real-world
nor have uncertainty, therefore are not further discussed here.

One of the important areas where the effectiveness of the lateralized
approach could be evaluated is a real-world domain with uncertainty,
noise, irrelevant, and redundant data. The majority of AI systems do not
exhibit robustness against noisy and irrelevant data. For example, deep
artificial neural networks are highly vulnerable to adversarial attacks in
visual classification tasks [48, 52]. A lateralized approach that considers
the input image at different levels of abstractions has shown performance
benefits such that the contribution of lateralization can be interrogated (see
Chapter 6).

The CV problems are used to investigate the robustness of the later-
alized approach against adversarial attacks, where the additional bene-
fits are evaluated to include exciting or inhibiting the appropriate BBKs
to gain computation efficiency. The adversarial images have redundant,
noisy, and irrelevant data. These images proved to be challenging for
state-of-the-art (non-lateralized) deep networks. In contrast, the lateral-
ized approach enables the novel system to correctly classify such images
including those that are badly affected by the strong adversarial attacks.
The computational cost of a lateralized AI system is double as compared
with the conventional AI system. However, this cost is justified based on
the robustness exhibited by the lateralized system against adversarial at-
tacks. It is hard to fool the novel lateralized system because it requires an
adversarial attack to successfully challenge the constituents as well as the
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holistic components of an image. The costs of lateralization may dominate
in simple CV problems where inputs are clean and unambiguous. How-
ever, when inputs include noise and irrelevant data (as is common in the
real world), the benefits of a lateralised system outweigh the computations
costs.

Visual classification tasks are single-step problems in spatial domains.
However, the majority of the biological tasks where heterogeneity 1 is ap-
plied, are temporal in nature. Thus another area where lateralized/hetero-
geneous feature-based AI systems could be evaluated is in multi-step com-
plex problems. The majority of the AI systems struggle to capture complex
structures in an environment. For example, perceptual aliasing is one of
the major hindrances in applying reinforcement learning techniques in ar-
tificial agents to handle multi-steps tasks [10, 16, 57, 58, 59, 14, 60]. The
perceptual aliasing problem arises when the agent’s immediate percep-
tion cannot differentiate environmental states that look similar but require
different actions, which lateralization seeks to handle (see Chapter 7).

The navigation problems are multi-step path planning problems that
provide a virtual environment that simulates real-world navigational prob-
lems. These problems are used to investigate the effectiveness of the het-
erogeneous approach in resolving complex non-Markov mazes. These
mazes entail hierarchical aliasing patterns that pose additional challenges
for the homogeneous systems due to their reliance on local viewpoint only.
Whereas, the novel approach enables the lateralized AI agent to simulta-
neously consider the multiple viewpoints of the given environment, the
local viewpoint, and the world viewpoint. Consequently, the novel sys-
tem optimally resolves the complex hierarchical patterns of aliased states
that similar homogeneous systems struggle to resolve. The per-step com-
putational cost of the novel system is 4.4 times higher than the conven-
tional AI system. However, the average number of steps required by the
lateralized agent to successfully reach the goal state is 7.2 times less than

1Lateralization can be considered as a special type of heterogeneity.



240 CHAPTER 8. DISCUSSIONS

the conventional AI agent. Therefore, the overall computational cost of the
lateralized system is less than the conventional AI system. Moreover, the
lateralized agent successfully reached the goal state in all trials but this is
not true for conventional AI agents.

The lateralized AI system may not work better than a conventional AI
system for the optimization (or other such) problems where a given prob-
lem instance cannot be considered at different levels of abstraction. More-
over, the lateralized approach may not be advantageous if the constituent
level BBKs are either unavailable or cannot be (re)utilized to resolve higher
(holistic) level problems. The learning pace of a lateralized system may be
slow at the start due to extra computations required to learn constituent
BBKs, however, once these BBKs are learned, the lateralized system scale
quickly to solve complex problems. It is considered that the lateraliza-
tion is beneficial/advantageous for AI systems in certain situations but
there are associated costs as well. This work may open a new door for
developing AI systems that can provide insight into contentious topics in
neuroscience.

8.4 Chapter Summary

The novel lateralized framework may capture community consensus and
become a cumulative reference point for creating lateralized AI systems.
Different elements of the lateralized framework can be adapted, not only
in different ways but also at different levels of abstraction, depending on
the nature and complexity of the problem domain. In biological intelli-
gence, lateralization is a special type of heterogeneity. In artificial intelli-
gence, the underlying lateralized framework is equally beneficial for het-
erogeneous problems.

The novel lateralized approach is essentially different from other re-
sembling AI approaches. A critical comparison is presented with three
state-of-the-art approaches, i.e. ensemble systems, deep learning, and gran-
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ular computing. These AI methodologies may incorporate some features
of the novel lateralized approach but none of them include all the features.
It is important to note that a lateralized AI system needs to implement all
the features of the lateralized framework, otherwise, it will not be consid-
ered as a lateralized AI system (see Chapter 4).

The benefits and costs of lateralization in cognitive inspired AI sys-
tems are successfully highlighted. Creating AI systems with lateraliza-
tion/heterogeneity represents an interesting way to explore the trade-offs
and costs of these approaches. The ability to consider the same input sig-
nal (problem instance) at different levels of abstraction enables the later-
alized AI systems to address constituent (local) features and high-level
abstract patterns (features made-up of features) simultaneously. Conse-
quently, the lateralized systems efficiently resolve complex hierarchical
patterns by identifying and utilizing the relevant constituent and holis-
tic BBKs. The overall computational costs of the lateralized AI systems
are either less than that of conventional AI systems or compensated by the
associated benefits such as robustness.
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9
Conclusions and Future
Work

The novel lateralized approach has the ability to apply lateral-
ization and modular learning at different levels of abstraction to
solve complex problems, in different domains, that similar ho-
mogeneous system struggle to solve. Considering the same en-
vironmental signal at different levels of abstraction (constituent
level and holistic level) empowers the novel lateralized system to
reframe a complex problem as a simple problem and efficiently
resolve it.

Single or multiple step, supervised or reinforcement learning,
Boolean or real-valued features, and Markov or partially observ-
able Markov decision processes have all been shown to benefit
from the lateralized learning approach. The ability to inhibit or
excite the most appropriate learning structure offers efficiencies
and effectiveness beyond ensemble, co-evolutionary, or granular
computing approaches. This chapter concludes the discussion of
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this thesis, presents the achieved objectives, highlights the main
findings, and outlines directions for future work.

The comprehensive goal of this thesis was to accomplish lateralized
learning, inspired by the principles of biological intelligence, in artificially
intelligent (AI) systems. This goal was successfully achieved by creating
a novel lateralized framework for AI systems and adapting this frame-
work for developing lateralized AI systems to solve complex problems
in Boolean, computer vision (CV), and navigation domains. The devel-
oped methods were evaluated on a range of problem benchmarks and
compared with state-of-the-art techniques. The experimental results show
that the novel lateralized methods, proposed in this thesis, have achieved
either competitive performance or outperformed similar non-lateralized
(homogeneous) methods.

The remainder of this chapter presents the achieved objectives, high-
lights the main findings from each contribution chapter, and finally sug-
gests research directions for future work.

9.1 Achieved Objectives

This following research objectives have been accomplished to achieve the
overall research goal.

1. A general lateralized framework, based on the essential principles of
lateralization from cognitive neuroscience, was proposed for the first
time. This framework highlights the key aspects of knowledge per-
ception, knowledge representation and utilization, and connectivity
patterns. It presents the essential functionality, critical methods, and
associated parameters that are required to be incorporated into a lat-
eralized AI system. The novel framework can be adapted to create
lateralized AI systems for a wide range of problem domains. For
this thesis, the lateralized framework has been successfully adapted
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to create lateralized AI systems for Boolean, CV, and navigation do-
mains.

2. A novel lateralized AI system was created, by adapting the lateral-
ized framework, for complex Boolean problems to obtain a proof-
of-concept of the lateralized approach. The novel system applies re-
inforcement learning techniques to solve interogatable, single-step,
scalable, and complex Boolean problems. Two modules (termed LH-
SM and RHSM) were developed to consider the same input signal at
different levels of abstraction. The LHSM considers the input signal
at a constituent level and generates sub-groups of features to knowl-
edge mapping, whereas, the RHSM considers the same input signal
at a holistic level and generates all features to knowledge mapping.
A heterogeneous knowledge pool stores the learned building blocks
of knowledge (BBKs) that are (re)used at different levels of abstrac-
tion. Finally, the Resolution component was created to analyze the
feedback received from LHSM and RHSM. This component consid-
ers whether the quality of the identified knowledge is sufficient to
independently solve the problem, to contribute to solution in cooper-
ation with the other knowledge, or is irrelevant to solving the prob-
lem. Moreover, it generates excite and inhibit signals to efficiently
resolve the given problem and avoid extraneous computations. The
resultant system has the ability to apply lateralization and modular
learning to solve complex problems. The experimental results show
that the novel lateralized system outperformed state-of-the-art sys-
tems in solving complex Boolean problems.

3. A novel lateralized AI system was created, by adapting the lateral-
ized framework, for CV problems to evaluate the robustness of the
lateralized approach. The novel system applies a supervised learn-
ing technique to solve single-step visual classification tasks that in-
clude uncertainty, noise, and irrelevant and redundant data. Two



246 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

phases (Context Phase and Attention Phase) were developed to ad-
dress the same visual problem at different levels of abstraction. Both
the phases consider the given problem instance at a constituent level
and holistic level. These phases utilize heterogeneous knowledge
representation such that holistic knowledge at one level can be used
as a constituent knowledge at a higher level. Finally, the context
phase communicates with the attention phase through excite/inhibit
signals to efficiently solve the problem and avoid extraneous com-
putations. Another novel lateralized system (an improved version
of the developed system) was created for CV problems to show that
the lateralized approach can be scaled and does not rely on the use
of learning classifier systems (LCSs). The experimental results show
that both novel lateralized systems successfully exhibited robustness
against adversarial attacks and outperformed state-of-the-art deep
models.

4. A novel frame-of-reference (FoR) based AI system was created, by
adapting the lateralized framework, for navigation problems to eval-
uate the effectiveness of the lateralized approach. The novel sys-
tem applies a reinforcement learning technique to address percep-
tual aliasing in multi-step decision making tasks. The novel system
processes a single environmental signal at different levels of abstrac-
tion to provide multiple environmental views, i.e. a local viewpoint
(constituent knowledge) and a world viewpoint (holistic knowledge,
complete map) of the same state. Code paths (CPs) and policies were
created to provide heterogeneous knowledge representation. The
learned CPs are integrated at different levels of abstraction to gen-
erate an unambiguous representation of knowledge in policies. The
learned policies are activated and deactivated such that the agent
can reach the goal state by using the minimum number of steps. The
experimental results show that the novel FoR based system success-
fully resolves complex patterns of aliased states and outperformed
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state-of-the-art techniques.

In addition to achieving the above-established research objectives, this
thesis highlights three important aspects of artificial lateralization: first,
a thorough analysis of the lateralized framework is provided. It includes
how different components of the lateralized framework can be adapted (in
different ways, at different levels) for different problem domains; second,
a critical analysis and comparison between the novel lateralized approach
and other similar AI approaches is provided; third, the use of lateralized
artificial intelligence to analyse the relationship between lateralization and
performance in order to inform cognitive neuroscience is explored.

9.2 Main Conclusions

Overall, this thesis finds that lateralization is effective to solve complex
problems in different domains. The novel lateralized methods outper-
formed state-of-the-art methods in solving complex problems in Boolean,
CV, and navigation domains. The main conclusions drawn from the four
contribution chapters (Chapter 4 through Chapter 7) are presented and
discussed below.

9.2.1 Lateralized Framework

The general lateralized framework was inspired by the principles of bi-
ological intelligence, derived from the current understanding of cogni-
tive mechanisms in vertebrate brains. This framework provides general
guidance for creating a lateralized system for a wide range of problem do-
mains. It highlights the essential features/functionality that are required
to be incorporated into an AI system to behave as a lateralized AI system.

It is concluded that a lateralized AI system needs to incorporate all
the essential functionality of the lateralized framework. Lateralized AI
systems can not be created by developing some functions of the lateralized
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framework. If any of the important features/functions of the lateralized
framework is missed, the system will not be a lateralized AI system.

The lateralized framework has been adapted to create lateralized sys-
tems for Boolean, CV, and navigation domains. This framework can be
revised and extended to accommodate new findings. It is hoped that the
novel lateralized framework may capture community consensus and be-
come a cumulative reference point for creating lateralized AI systems.

The novel lateralized framework identifies the following necessary fea-
tures of a lateralized AI system:

Representation and Processing

The representation and processing of the same environmental signal at
different levels of abstraction (i.e. constituent level and holistic level) is
a critical function of a lateralized AI system. The lateralized framework
proposes a left half system component to process the input signal at a con-
stituent level and a right half to process the same signal at a holistic level.
Consequently, the left half generates elementary knowledge representa-
tion, whereas, the right half generates a more abstract knowledge repre-
sentation. This feature enables the lateralized systems to simultaneously
address the details of the problem and the higher level big-picture. It is
essential for a lateralized AI system to have these components to simulta-
neously address the details of the problem and the higher level big-picture.
The left half and right half are just terminologies to represent the system
components. The choice of terms “left” and “right” was inspired by a
large of body of research in cognitive neuroscience linking the left hemi-
sphere with local/analytical/constituent information processing, and the
right with global/synthetic/holistic information processing, although the
terms are used here metaphorically, and not with the intention to model a
specific lateralized process in a specific vertebrate brain.
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Coordination

The coordination between different system components is an important
attribute of a lateralized AI system. Different system components solve
the given problem at a constituent level and holistic level. These partial
solutions need to be integrated to provide a complete solution. It is con-
cluded that the coordination between system components is necessary for
the transfer of critical information and knowledge integration.

Goal-driven Processing

Goal-driven processing is another important feature of a lateralized AI
system. It enables a lateralized AI system to identify and utilize those sys-
tem components that are more appropriate to solve the problem at hand.
For this purpose, a lateralized system uses excite/inhibit signals to acti-
vate/deactivate system components, as the goal dictates. It is concluded
that goal-driven processing is essential to avoid extraneous computations
and efficiently solve the given problem.

Knowledge Identification and Utilization

The lateralized framework proposes a heterogeneous knowledge pool to
store the learned BBKs. A lateralized system needs to create strategies to
automatically identify and utilize the relevant knowledge from the knowl-
edge pool. The learned knowledge can be (re)used at different levels of
abstraction depending on the nature and complexity of the problem. That
is, a given BBK can be used by either hemispheric module, scaled to the
appropriate level of abstraction. Although biological brains do not have a
central storage unit, but shared heterogeneous knowledge pool is an im-
portant component of the novel lateralized approach.
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9.2.2 Proof-of-Concept of the Lateralized Approach

A novel lateralized system was created, by adapting the lateralized frame-
work, to obtain a proof-of-concept of the lateralized approach. Two mod-
ules, LHSM and RHSM, were developed to process the same input sig-
nal at a constituent level and holistic level. This ability to consider the
given problem at different levels of abstraction (i.e. constituent level and
holistic level) enables the novel system to reframe a complex problem as
a simple problem and efficiently resolve it. For example, the novel sys-
tem addressed the n-bit Parity problem as a two-bit problem by utilizing
the learned concept of the (n-1)-bit Parity problem and the one additional
condition bit #n.

A heterogeneous knowledge pool was created to store the learned BBKs
of knowledge. The novel system has to simultaneously consider the given
problem at different levels of abstraction. There will be more and more
candidate constituent BBKs as the problem scales and the knowledge pool
grows. This adds extra computations and does slow down the behav-
ior. However, the utilization of excite or inhibit signals assists the novel
system to reduce extra computations. Moreover, the LHSM and RHSM
modules have the ability to automatically (without human-in-the-loop in-
tervention) identify the relevant BBKs that can solve the given problem.
Consequently, the novel lateralized system scales much more quickly than
systems that do not consider sub-problems.

A wide range of experiments were conducted to investigate the over-
head created by irrelevant sub-problems to the novel system. The exper-
imental results reveal that this overhead linearly increases as the knowl-
edge pool grows. Moreover, this overhead is very small as compared to
the total number of problem instances required for the training. For ex-
ample, at worst 128000 problem instances are needed to find the relevant
BBKs for 18-bit HMux when the system has learned 14 diverse knowledge
steps that form 16 candidate combinations (see Chapter 5).

Lateralization and modular learning enable the novel system to encap-



9.2. MAIN CONCLUSIONS 251

sulate underlying knowledge patterns in the form of building blocks of
knowledge. Problems with a natural hierarchy of patterns are solved to a
scale beyond previous work, and reusing learned general patterns as con-
stituents for future problems advances transfer learning. The novel lat-
eralized system was anticipated to be suited to hierarchical Boolean prob-
lems. The experimental results show that it is not over-fitted or only-suited
to such engineered problems as demonstrated by the Parity results where
the problem is not observably (or constructed to be) hierarchical.

9.2.3 Robustness of the Lateralized Approach

A novel lateralized system was created, by adapting the lateralized frame-
work, to evaluate the robustness of the lateralized approach. Lateraliza-
tion enables the novel system to process the same visual environmental
input at constituent and holistic levels of abstraction. Consequently, the
novel lateralized system exhibits robustness against adversarial attacks.
This is because an adversarial attack needs to successfully challenge the
constituents as well as the holistic components of an image to fool the lat-
eralized system. It is important to note that the aim of this work was to
create a system that can exhibit natural robustness against noisy, irrele-
vant, and redundant data and not create another adversarial avoidance
technique for a specific model or specific adversarial attack.

The novel lateralized system has two main phases, i.e. context phase
and attention phase. The simple problem instances are handled at the con-
text phase, whereas, more attention is automatically (without human-in-
the-loop intervention) given to the noisy and corrupt problem instances
based on the feedback from the context phase. This strategy empowers
the novel lateralized system to make correct decisions for badly corrupted
images where either the constituent predictions are confused or the holis-
tic prediction favors the wrong class.

Lateralization enables the novel system to use or reuse BBKs at dif-
ferent levels of abstraction. That is, a holistic level BBK created for one
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representation can be used as a constituent level BBK in another represen-
tation. For example, during the context phase, processing the eyes, nose,
and mouth are constituent level sub-problems, whereas the face is a holis-
tic level sub-problem. However, during the final feedback analysis, the
face becomes a constituent level sub-problem, whereas the whole image
prediction is a holistic level sub-problem (see Chapter 6). This ability to
address the problem at different scales empowers the novel system to suc-
cessfully exhibit robustness against adversarial attacks. The experimental
results demonstrate that the lateralized system outperformed all the state-
of-the-art deep models for the classification of normal and adversarial im-
ages by 0.43%− 2.56% and 2.15%− 25.84%, respectively.

The decision-making process of the novel system is interpretable (see
Chapter 6). It is possible to know what features and at what confidence
level led to a decision. This system, therefore, makes a step toward ex-
plainable artificial intelligence.

The novel system is an ensemble-like system, in that it resolves dif-
ferent components of a problem to make a final decision. However, the
ability to consider the same sub-problem at different levels of abstraction
and the use of excite/inhibit signals to activate/deactivate system compo-
nents make it a lateralized system rather than an ensemble system.

Another novel lateralized systems was created for CV problems to show
that the lateralized approach can be scaled and not reliant on LCSs. The
first lateralized system was developed to address binary-class image clas-
sification tasks, whereas, the second lateralized system was an improved
version of the first implementation to address multi-class (200 classes)
image classification tasks. The experimental results show that the novel
multi-class system outperformed all the state-of-the-art deep models for
the classification of normal and adversarial images by 19.05% − 41.02%

and 1.36%− 49.22%, respectively.
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9.2.4 Effectiveness of the Lateralized Approach

The simultaneous processing of an input signal at a constituent level and
holistic level is an essential part of a lateralized framework. The lateralized
AI systems were successfully developed, for Boolean and CV problems,
by using the left/right representation of an input signal. But it is not the
only way to consider a problem at different levels of abstraction. For ex-
ample, in navigation tasks, the two levels of abstraction are described by
their FoR: either a constituent/local (local viewpoint or egocentric FoR)
or a holistic/global (world map or route-centric FoR) representation. Al-
though these levels of representation are not strongly lateralised to left
and right hemispheres, they retain the basic principle of simultaneous and
coordinated processing that is characteristic of lateralization. However,
it does not stop the underlying notion of lateralization being an effective
way of describing the AI systems.

A novel FoRs based system was created, by adapting the lateralized
framework, to evaluate the effectiveness of the lateralized approach. FoR
based strategy enables the novel system to consider the same environmen-
tal signal at different levels of abstraction, which provides multiple envi-
ronmental views, i.e. local viewpoint (constituent knowledge, egocentric
FoR) and world viewpoint (holistic knowledge, allocentric and routecen-
tric FoRs). This strategy empowers the novel system to successfully over-
come perceptual aliasing problems in multi-step decision-making tasks.

CPs and policies assist the novel system to generate heterogeneous
BBKs. Single-step CPs are used to provide constituent representation,
whereas, multi-step CPs, policies, and the adjacent states map are used
to provide holistic representation. The learned BBKs are integrated at dif-
ferent levels of abstraction to generate an unambiguous representation of
knowledge. The resultant knowledge assists the novel system to disam-
biguate complex patterns of aliased states. Consequently, the novel sys-
tem transforms a non-Markov environment into a Markov environment,
in which it can learn stable policies.
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The learning pace of the novel system is slow at the start. It is expen-
sive to learn constituent level BBKs, i.e. single-step CPs. Once learned,
these BBKs are (re)used to learn holistic level BBKs, i.e. multi-step CPs
and policies. As the problem scales in size and complexity, there are in-
creasing number of constituent-level and holistic-level BBKs, which may
slow down learning. However, the novel system has the ability to au-
tomatically (without human-in-the-loop intervention) activate/deactivate
the most suitable policy. This enables the AI agent to reach the goal state
utilizing the minimum number of steps and avoid extraneous computa-
tions. The experimental results show that the overall computation cost
to reach the goal state for the novel lateralized system is less than that of
conventional system (see Chapter 7).

The novel system is robust against aliasing states because of its focus on
the appropriate parts of the reward signal to achieve a necessary level of
abstraction. Aliasing challenges existing evolutionary computing systems
across a wide range of problem domains. The experiments demonstrate
that the novel system uses ( or re-uses) relevant learned BBKs at different
levels of abstraction to learn aliasing patterns that consist of patterns of
features. A step-change in performance is achieved, e.g. the state-of-the-
art in the heavily aliased maze10 was reduced from an average to 35 to 6.5

steps.

9.3 Future Work

This section presents research directions enabled by this work.

9.3.1 Lateralized AI Systems for Neuroscience

In cognitive neuroscience, the relationship between lateralization and per-
formance is ambiguous. Lateralized AI systems could be developed to
provide insight into contentious topics in neuroscience. For example, in
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vision (human or other animals), vertebrate brains do have complemen-
tary lateralized modules that represent objects at constituent (left) and
holistic (right) levels. A lateralized AI system for visual tasks could be
used to explain the costs and benefits associated with lateralization. For
this purposes, different experiments could be designed to analyze the (i)
simultaneous processing of an input signal at constituent and holistic lev-
els, (ii) processing of an input signal at a constituent level only, (iii) using
excite/inhibit signals for performance efficiency, (iv) always processing
an input signal at multiple levels of abstraction. Such an analysis could
provide an insight into the intact and brain-damaged humans. Moreover,
such systems could also be created for other contentious topics in neuro-
science.

9.3.2 Lateralized Ensemble Systems

Ensemble learning is a state-of-the-art methodology of generating a solu-
tion by utilizing multiple learning algorithms. It combines multiple hy-
potheses with an intention to generate a better hypothesis and reduce the
risk of selecting a poor hypothesis [334, 335, 336]. The majority of ensem-
ble systems are computationally expensive. Ensemble systems encourage
diversity for better performance, but there is no guarantee that the perfor-
mance of an ensemble system is always equal to the performance of the
best constituent algorithm [366, 367, 368]. Moreover, the performance of
an ensemble system depends on ensemble size, however, it is hard to find
an appropriate ensemble size (see Chapter 8).

Lateralized ensemble systems could be developed by adapting the lat-
eralized framework to overcome the limitations of ensemble systems. The
use of excite/inhibit signals would enable the lateralized ensemble sys-
tems to use only the relevant and appropriate constituent algorithms as
goal dictate. Consequently, it would eliminate the risk of poor selection
and reduce the computational costs. The ability to consider the same prob-
lem at different levels of abstraction would enable the lateralized ensemble
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systems to automatically identify the constituent algorithms that can effi-
ciently solve the given problem. This functionality would assist the system
to automatically find the appropriate ensemble size. Moreover, the ability
to (re)use learned BBKs at different levels of abstraction could empower
lateralized ensemble systems to solve problems beyond the existing work.

9.3.3 Lateralized Deep Learning

Deep learning (DL) is a state-of-the-art approach for extracting useful pat-
terns and higher-level features by using multiple layers in artificial neural
networks [287]. It has been used to solve many real-world problems. The
majority of DL-based systems generate a homogeneous knowledge rep-
resentation such that all features within a layer are treated equally. This
knowledge can not be reused at different levels of abstraction [9]. DL-
based systems can not identify and transfer relevant knowledge between
levels in the hierarchy. Consequently, these systems generate a huge/deep
network of homogeneous knowledge to solve complex problems.

Early attempts to address these deficiencies have been made in Cap-
sule networks that can be used to better model hierarchical relationships
[18]. Capsule networks add entity-oriented vectorial structures, named
capsules, to a convolutional neural network. A capsule is a set of neurons
whose activity vector represents the instantiation parameters of an entity
of a particular form, such as an individual, or a part, of an object. Active
capsules at one level make predictions for the instantiation parameters
of higher-level capsules, through transformation matrices. A higher-level
capsule becomes active when several low-level predictions agree [18]. In
capsule networks, the lower layers outputs are routed to upper layers by
using routing algorithms. The majority of these routing procedures can
not differentiate positive vectors from their negative counterparts. Thus a
capsule network can only learn if both the negative input and the original
input represent the same class. Consequently, capsule networks are not
suitable for learning some concrete but simple problems [341].
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Lateralized DL systems could be developed, by adapting the lateral-
ized framework, to overcome the limitations of DL-based systems. Instead
of treating all features equally, a lateralized system would have the ability
to simultaneously consider the features at a constituent level and holis-
tic level. These features could then be (re)used at different levels of ab-
stractions between the layers. Consequently, a heterogeneous knowledge
representation could be generated.

A capsule (from the capsule networks) could be considered as a BBK in
a lateralized DL system. These BBKs could resolve a part of a problem or
the whole problem. Such learned BBKs could be stored in the shared het-
erogeneous knowledge pool. The left half and right half modules could
use these BBKs at different levels of abstraction to solve complex prob-
lems. Novel strategies could be created to activate/deactivate capsules
(BBKs) by using excite/inhibit signals as the goal dictates.

9.3.4 Lateralized Granular Computing

Granular computing is an emerging technique used to identify regulari-
ties in the data, that are present at different levels of abstraction [343]. The
approach makes efficient use of granular structure to represent the same
problem at different levels and different viewpoints [344]. Granular com-
puting has the following limitations. First, a level of abstraction is homo-
geneous, i.e. it consists only of granules that have a similar nature or gran-
ularity. Second, it is hard to find the best granularity level and the number
of granules that are appropriate to solve a complex problem. Third, a hier-
archical representation provides only a particular viewpoint and can not
be used for other purposes. Fourth, relationships among granules and
their relationship with granulation form complex solution patterns. Fifth,
their use is limited to fuzzy sets and rough sets only (see Chapter 8).

Lateralized granular computing-based systems could be developed by
adapting the lateralized framework to overcome the limitations of gran-
ular computing. A lateralized system would consider the same level of
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abstraction from a constituent viewpoint and holistic viewpoint. Conse-
quently, constituent as well as holistic granules could be utilized to gener-
ate heterogeneous knowledge representation for the level of abstraction.
The lateralized system would have the ability to automatically consider
the given problem at multiple levels of abstraction. For each level, the
relevant constituent and holistic level BBKs would be identified. Sub-
sequently, these BBKs would be used to solve a part of the problem or
the whole problem. The heterogeneous knowledge pool would allow the
novel lateralized system to consider the given problem from multiple per-
spectives. Different BBKs could be used/reused at different levels of ab-
straction to generate different perspectives.

Instead of generating a complex granulation structure, the lateralized
system could automatically consider the given problem at multiple levels
of abstraction, and resolve each level by utilizing learned constituent level
and holistic level BBKs, depending on the nature and complexity of the
problem. Moreover, the relationships between different BBKs (constituent
and holistic level) could be automatically established. Finally, the novel
lateralized systems would not be limited to fuzzy sets and rough sets.

This thesis devises a novel lateralized framework that has been suc-
cessfully adapted to create lateralized AI systems for three different prob-
lem domains. The experimental results demonstrate that the novel later-
alized AI systems outperformed state-of-the-art (non-lateralized) systems
in resolving complex problems. It shows that lateralization is beneficial
for AI systems. It is hoped that this thesis may open a door for creating
lateralized AI systems for a wide range of problem domains.
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[89] T. Zaehle, K. Jordan, T. Wüstenberg, J. Baudewig, P. Dechent, and
F. W. Mast, “The neural basis of the egocentric and allocentric spatial
frame of reference,” Brain research, vol. 1137, pp. 92–103, 2007.
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