
Fine-grained Access Control
for Internet of Things Smart

Spaces Driven by User Inputs

by

Mohammed Al-Shaboti

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2021

Abstract

The increasing use of Internet of Things (IoT) devices raises security and
privacy concerns. In smart spaces, multiple IoT devices are simultane-
ously used to fulfil user activity functions. However, these devices exhibit
several security vulnerabilities that can compromise smart space security
and privacy. The ability of fine-grained control network access in IoT de-
vices and application messages can significantly reduce the risk resulting
from the exploitation of IoT vulnerabilities due to unauthorised access,
thereby improving smart space security. A well-recognised approach in
the literature for IoT access control is to use pre-defined access policies to
allow the necessary connections for a device to function correctly. How-
ever, these policies allow access to all device functions (i.e. coarse-grained
access) including those functions that are not used by any user activity.

The overall goal of this thesis is to develop an access control frame-
work and techniques to achieve fine-grained access policies by using user
inputs. The user inputs will be utilised to select devices to fulfil user activ-
ities aiming to build an access policy from the minimum access required
for each device function. In this thesis, the use of user inputs to meet user
security and privacy requirements in single- and multi-user smart spaces
is studied.

The main contributions are as follows: first, an access control frame-
work that enables users to tailor IoT device policies to meet their security
and privacy requirements is proposed. Validation results of the frame-
work show the effectiveness of integrating user access rules into the ex-
isting security countermeasures (i.e. pre-defined policies and intrusion
detection systems – IDS) to enforce user security and privacy.

Second, the problem of selecting preferable devices to fulfil user ac-
tivity functions is formulated as an optimisation problem. The optimi-
sation problem is then solved by local and global optimisation search-
ing algorithms that are guided by a developed user preference quanti-
fied model. The results show that global optimisation search algorithms
such as Genetic Algorithm (GA) find the solution more effectively and
efficiently than local search algorithms such as simulated annealing and
hill-climbing.

Third, sharing access control for multi-user smart spaces is proposed.
Traditional access control that considers a single user is not suitable for
multi-user smart spaces, where users share their IoT devices. The shar-
ing between multiple users poses challenges different than in single-user
access control. For example, users may abuse using shared devices and
use vulnerable ones. This thesis addresses these two challenges through
two contributions. First, it proposes a novel sharing policy language that
enables users to precisely define their sharing policy. Second, this thesis
formulates the sharing policies as constraints in the context of an optimisa-
tion problem with the objective function that maximises the use of secure
devices. Results show that the IoT sharing issue can naturally be trans-
lated into an integer linear programming (ILP) problem and effectively
solved using off-the-shelf ILP solvers.

Fourth, this thesis explores the feasibility and practicality of the fine-
grained access policy enforcement through a smart home case study. A
case study is built using a hub-based architecture that uses Web of Things
(WoT) technology. WoT provides a device semantic description that in-
cludes device functions with the corresponding Uniform Resource Identi-
fier (URI) which is used to build access control policies. The case study re-
sults show that policy enforcement can be effectively achieved by directing
network traffic through a device proxy for each IoT device to enforce appli-
cation access control without introducing statistically significant overhead
on the user activity running time.

In summary, this thesis studies the use of user inputs to derive fine-
grained access control in smart spaces. For a single-user access control
system, this thesis considers using manual rules and user preferences in
small and dense smart spaces, respectively. For a multi-user access control
system, this thesis proposes a secure sharing system supported by a shar-
ing policy language to share and use IoT devices securely. For each sce-
nario analysed, user input is utilised to derive fine-grained access policies.
Enforcement of these policies has been explored by implementing a smart
space case study using WoT technology. The overall results show that user
preferences and sharing policies can be used to derive fine-grained access
policies that are transparent to users and meet their security and privacy
requirements.

iv

Dedication

To my parents, sisters and brothers, and my beloved wife and daughter.

v

vi

Acknowledgements

Praise be to Almighty ALLAH alone, Who created us empty of any knowl-
edge bestowed upon us hearing, vision, and intellect so that we must be
thankful to Him. Praise be to Him alone, Who let wonderful, encouraging
and supporting people come into life without whom this journey would
have been impossible.

First and foremost, I would like to express my deep sense of gratitude
to my supervisors Dr Ian Welch and Dr Aaron Chen. I am indebted to
them for their outstanding supervision, support, encourage, and mentor-
ing. I feel lucky to have had the opportunity to work with Ian and Aaron,
who put my feet on the door of research. I extend my gratitude to all my
teachers from primary school up to my current supervisors.

I am deeply grateful to my family, in particular, my parents (Mahmood
and Raqiba), who always strive to help me become better and better. My
thanks to my beloved wife Nawal and daughter Khadijah, and all my
brothers and sisters for supporting me during my PhD journey.

I cannot be thankful enough to Almighty, Who gave me friends like
family. My friends, my brothers Baligh, Mohamed Arif, Aditya, Harith,
Masood, Harisu, Mahdi, Junaid, Abbasi, and all other friends and col-
leagues at Victoria University of Wellington.

This acknowledgement would be incomplete without thanking all staff
members of the School of Engineering and Computer Science.

vii

viii

List of Publications

1. Al-Shaboti, M., Chen, A., & Welch, I. Achieving Optimal and Secure
Sharing of IoT Devices in Multi-User Smart Spaces. LCN 2020 45th
IEEE Conference on Local Computer Networks. (Accepted)

2. Al-Shaboti, M., Welch, I., & Chen, A. (2019, July). IoT Application-
Centric Access Control (ACAC). In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security (pp.
685-687).

3. Al-Shaboti, M., Chen, A., & Welch, I. (2019, August). Automatic De-
vice Selection and Access Policy Generation based on User Prefer-
ence for IoT Activity Workflow. In 2019 18th IEEE International Con-
ference On Trust, Security And Privacy In Computing And Commu-
nications/13th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE) (pp. 769-774). IEEE.

4. Al-Shaboti, M., Welch, I., Chen, A., & Mahmood, M. A. (2018, May).
Towards secure smart home iot: Manufacturer and user network ac-
cess control framework. In 2018 IEEE 32nd International Conference
on Advanced Information Networking and Applications (AINA) (pp.
892-899). IEEE.

ix

x

Contents

1 Introduction 1
1.1 Motivation . 8
1.2 Problem Statement . 11
1.3 Research Questions . 13
1.4 Research Objectives . 17
1.5 Major Contributions . 20
1.6 Organisation of the Thesis . 22

2 Background and Literature Review 25
2.1 Background . 26

2.1.1 IoT Ecosystem . 26
2.1.2 Smart Space IoT Architecture 26
2.1.3 Software-defined Networking 35
2.1.4 IoT Vulnerabilities . 37
2.1.5 IoT Access Control . 39
2.1.6 Bayesian Networks . 47
2.1.7 Optimisation . 50
2.1.8 Summary . 55

2.2 Literature Review . 55
2.2.1 User Role in IoT Access Control 55
2.2.2 IoT Access Control and User Preference 57
2.2.3 Multi-User IoT Sharing 60
2.2.4 Summary . 62

xi

xii CONTENTS

3 User-Centric IoT Access Control Framework 63

3.1 Introduction . 63

3.1.1 Chapter Goals . 64

3.1.2 Chapter Organisation 66

3.2 Access Control Framework 66

3.2.1 The Framework Requirements 66

3.2.2 Framework Design . 67

3.2.3 Framework Design Decisions 68

3.3 Network Security Services . 70

3.3.1 IPv4 ARP Server . 70

3.3.2 Intrusion Detection System (IDS) 71

3.4 Evaluation . 73

3.4.1 Experimental Setup . 73

3.4.2 Network Access Control Validation 75

3.4.3 Security Services . 79

3.4.4 OpenFlow-enabled Switch Performance 83

3.4.5 Evaluation Summary 85

3.5 Conclusion . 86

4 Automatic Activity Fulfilment 87

4.1 Introduction . 87

4.1.1 Chapter Goals . 89

4.1.2 Chapter Organisation 90

4.2 Automatic Activity Fulfilment 90

4.2.1 User Activity Representation 90

4.2.2 Smart Space Modelling 92

4.2.3 Problem Formulation 95

4.2.4 Activity Fulfilment Searching Methods 96

4.2.5 Evaluation . 98

4.3 Automatic Policy Generation 102

4.4 Conclusion . 104

CONTENTS xiii

5 Multi-User IoT Sharing Policy 107

5.1 Introduction . 107

5.1.1 Chapter Goals . 108

5.1.2 Chapter Organisation 109

5.2 Threat Model . 109

5.3 IoT Sharing Scenario . 110

5.4 IoT Sharing Problem . 114

5.5 IoT Secure Sharing Architecture 117

5.5.1 Practicality . 119

5.6 Sharing Policy Language . 120

5.7 IoT Secure Sharing Engine . 122

5.7.1 ILP Problem Formulator 124

5.7.2 ILP Problem Formulator Algorithm 128

5.7.3 ILP Solvers . 130

5.7.4 Translation Analysis 130

5.7.5 IoT Sharing Scenario as ILP Problem 131

5.8 IoT Secure Sharing Engine Evaluation 135

5.8.1 Experimental Setup . 135

5.8.2 Results and Discussion 137

5.9 Conclusion . 142

6 Policy Enforcement Case Study 143

6.1 Introduction . 143

6.1.1 Chapter Goals . 143

6.1.2 Chapter Organisation 144

6.2 Case Study Overview . 144

6.2.1 Assumptions . 144

6.2.2 Threats . 144

6.2.3 IoT Communication Patterns 145

6.3 Smart Home Case Study . 146

6.3.1 Device Capabilities and Access Requirements 147

xiv CONTENTS

6.4 Experimental Setup . 151
6.5 Results and Discussion . 155
6.6 Conclusion . 157

7 Conclusions and Future Work 159
7.1 Achieved Objectives . 160
7.2 Main Conclusions . 161

7.2.1 User-Centric Access Control Framework 162
7.2.2 Optimising User Preference for Fine-grained Access

Control . 162
7.2.3 Optimisation for Secure Sharing and Secure Using . . 163
7.2.4 Fine-grained Policy Enforcement 164
7.2.5 Function-based Access Control Policy 164

7.3 Future Work . 165
7.3.1 Access Control Quality of Experience aware 165
7.3.2 User Activities with Web Services 165
7.3.3 Cross Smart Spaces Device Sharing 166
7.3.4 Statefull IoT Sharing 166
7.3.5 Multi-Objective Device Selection Using User Prefer-

ences and Device Security 167

List of Figures

1.1 Smart space in (a) coarse-grained and (b) fine-grained ac-
cess control. 3

1.2 Smart space system architecture with fine-grained access
control based on user inputs. The Policy Decision Point
(PDP) makes the authorisation access decision and the Pol-
icy Enforcement Point (PEP) enforces it. 7

2.1 Smart space IoT architectures: (1) A single device is used
through the cloud; (2) Hub-based automation for multiple
devices control. 27

2.2 Counting number of lines in a file using flow-based pro-
gramming (reproduces from [19]) 29

2.3 WoT Servient for smart TV that are controlled via a web
browser. 31

2.4 MQTT architecture . 32

2.5 OAuth abstract protocol flow (reproduced from [76]). 33

2.6 Authorisation Code Flow. Steps (A),(B), and (C) pass through
the user-agent. (reproduced from [76]). 34

2.7 SDN architecture . 36

2.8 Main component of OpenFlow switch (reproduced from [140]). 37

2.9 Proxy flow; (a) Forward proxy, (b) Reverse Proxy 47

2.10 Bayesian network DAG for 10 binary random variables. . . . 49

xv

xvi LIST OF FIGURES

3.1 The proposed framework . 69

3.2 ARP operation with/without ARP server 72

3.3 IDS integration into the framework for automatic access con-
trol. 73

3.4 The smart home setup . 75

3.5 Main user control panel: Joined devices 76

3.6 Visualised access policy. 76

3.7 User control panel: DAC enforcement 79

3.8 ARP server operation. 80

3.9 ARP response time (DPDK ARP server vs conv. ARP oper-
ation) . 81

3.10 ARP response time (Scapy ARP server) 82

3.11 Scapy ARP server performance with the increase of number
of hosts . 83

3.12 Malicious malware event trigger. 84

3.13 Zeek IDS and Faucet SDN controller integration for auto-
matic access control. 85

4.1 Functional workflow abstraction 89

4.2 User preference representation using Bayesian networks for
the example in Figure 4.1. Based on the conditional proba-
bilities, in green, the Bayesian network can infer that a user
prefers to use Brand X alarm device and Brand Y 95

4.3 Automatic activity fulfilment using user preference. 96

4.4 Time efficiency comparison 101

4.5 User preference optimisation comparison 102

5.1 Mutli-user IoT sharing threat model. The green box con-
tains the trusted components of the shared smart space. . . . 111

LIST OF FIGURES xvii

5.2 IoT sharing in a smart home scenario. Jack owns devices 1
and 2, Alex owns devices 3 and 4, and both as family mem-
bers own the rest of the devices. Devices’ functions and se-
curity score are presented in Table 5.1 112

5.3 IoTSS System Architecture . 118
5.4 Sharing Policy Language syntax as a BNF 121
5.5 Jack and Alex sharing policy example 123
5.6 Time to find the solution with a different number of con-

straints. 138
5.7 Solution score difference ratio to CBC MIP solution score

with a different number of constraints for ten activities. . . . 139
5.8 Time to find the solution with a different number of decision

variables. 140
5.9 Solution score difference ratio to CBC MIP solution score

with different decision variables. 141
5.10 SA sharing policy violations. 141

6.1 Mozilla Gateway for implementing user activity “If the door
is unlocked, then turn light on”. 148

6.2 Mozilla Gateway messages for activity “If door opens turn
light on” . 149

6.3 Light bulb capabilities declaration. 150
6.4 Access control implementation in the switch and IoT proxy. 151
6.5 PEP as IoT web proxy to enforce application layer access

control policies. 152
6.6 Trigger to action time with a different number of bound de-

vices. 155
6.7 Trigger to action time with a different number of actions at

a time. 155
6.8 Trigger to action time with a different number of devices. . . 156

xviii LIST OF FIGURES

List of Tables

3.1 TCP port LAN scan results . 77
3.2 TCP port WAN scan results 78
3.3 TCP port LAN scan after DAC 79
3.4 Bandwidth With/without NAC 85

4.1 Genetic algorithm hyper-parameters 99
4.2 Simulated annealing hyper-parameters 99
4.3 Experimental Settings . 100

5.1 Smart home devices functions, security score and owners . . 113
5.2 Users activity automation as set of functions 113
5.3 User policies when the default policy is share and do not share. 114
5.4 The primitive rules using SPL and the corresponding ILP

constraints. 127
5.5 User activities relevant decision variables. 132
5.6 Network settings for generating the IoT sharing correspond-

ing ILP problems. 136
5.7 Simulated Annealing settings 136

6.1 Experimental settings . 153
6.2 IoT devices types and capabilities 154
6.3 Examples of user activities and the corresponding allowed

access capabilities. 154

xix

xx LIST OF TABLES

Chapter 1

Introduction

The Internet of Things (IoT) paradigm is a technological revolution in the
era of computing [112, 53]. The Institute of Electrical and Electronics Engi-
neers (IEEE) [118] defines the IoT as a network that connects things to the
Internet, wherein the thing has a unique identity, sensing/actuating ca-
pabilities, and potentially programmability. In the IoT context, things are
seamlessly connected and provide contextual services [85]. The number of
deployed IoT devices is growing fast. Gartner forecasts the number of IoT
endpoints to reach 5.8 billion in 2020, a 21% increase compared to 2019
[59]. It also forecasts that consumer devices will account for the highest
number of IoT endpoints.

IoT devices are the building blocks of smart spaces. Hundreds of IoT
devices are expected to be located in a single residential house in the near
future [60]. A smart space is formed by utilising IoT device sensing, com-
munication, and computation capabilities to provide new services [109].
Smart space in this thesis refers to an environment where users and IoT de-
vices coexist, such as smart homes, offices, and buildings. Although many
proposed ideas can be applied in Industrial IoT (IIoT), this thesis mainly
focuses on consumer smart space to demonstrate the proposed methods.

One of the key features of a smart space is the ability to use multiple
devices to support user activity [6]. Individual IoT devices have limited

1

2 CHAPTER 1. INTRODUCTION

functions and provide simple services. Users want to build services that
enhance their smart space experience [189, 194]. For example, as illus-
trated in Figure 1.1, instead of accessing the IP camera from their mobile,
users can build an activity where the camera automatically streams the
video content to a display device of their choice. We will refer to such ser-
vice as user activity. Implementing such activities can be realised by using
existing IoT frameworks.

Figure 1.1 shows a common smart space architecture that is used to im-
plement user activities. This architecture includes three main components:
IoT devices, a hub, and IoT clouds, saves the IoT status at the cloud. IoT
devices are the physical devices that reside within the smart space and
have sensing and actuating capabilities. They connect to their IoT cloud
services to synchronise their status and receive control commands. The
IoT hub is a centralised controller that integrates all IoT devices. Users add
their IoT devices to the hub and authorise it to control them, often using
OAuth protocol [76]. Thereafter, they can use the hub to build activities
that make their life easier, more distinctive, and pleasant. For example,
streaming a video from a camera to a smart TV, as shown in 1.1. Examples
of hubs include Mozilla WebThings Gateway [124], Amazon echo [10], and
SmartThings [84].

In order for IoT devices to execute user activities they require network
access. An IoT device network access can be (a) coarse-grained in which
the device may have network access more than what is necessary to do
its function; (b) fine-grained in which the device has only the necessary
network access to do its function. For example, Figure 1.1 shows a user
activity that stream IP camera video to the TV1. However, in Figure 1.1
(a) the IP camera has access not only to the TV1 but also to other devices
that are not required to fulfil its function in the user activity, this is called
coarse-grained access. In contrast, in Figure 1.1 (b) the IP camera has ac-
cess only to the TV1 and the Hub, which is required to fulfil its function in
the user activity, this is called fine-grained access.

3

IoT Hub

Camera
TV1

user's
activity fulfilment IoT Hub

Camera
TV1

user's
activity fulfilment

GetVideoStream

HLS streaming

(a) A malicious IP camera with network based access to
 the Internet and to other devices in the smart space.

(b) A malicious IP camera with an application access to the
 Internet and to other devices in the smart space.

TV2

TV1 TV1

TV2

Figure 1.1: Smart space in (a) coarse-grained and (b) fine-grained access
control.

Although IoT devices enhance the user experience, they exhibit many
security vulnerabilities. The top ten most important IoT vulnerabilities
that are listed in the Web Application Security Project (OWASP) [139] in-
cludes weak passwords and insecure network services vulnerabilities on
legacy devices. A security report [46] indicated that 70% of IoT devices
used unencrypted network protocols, and 60% of IoT user interfaces were
vulnerable. Security researchers [86, 105] assessed several IoT devices and
concluded that all devices have some type of vulnerability.

This research focuses on two issues in the current smart space archi-
tecture [152, 187]. The first relates to coarse-grained access control, where
a device has access based on what it can be used for, regardless of user
activity. For example, the camera depicted in Figure 1.1 (a) can stream
its video content to a display device (TV1, TV2), and it can also open the
door. However, the user activity only uses the camera for streaming video
to TV1 only; hence, the camera has network access more than what is re-
quired by user activity (i.e. it has coarse-grained access). In contrast, by
applying fine-grained access control, the camera has access to the devices
(i.e. TV1 and the Hub) that are required for video streaming, as in Figure
1.1 (b). Moreover, the issue of coarse-grained access is even more severe

4 CHAPTER 1. INTRODUCTION

in a shared smart space, as devices not only have coarse-grained network
access but also are shared with other users with full access.

The second issue is that users have to explicitly specify the devices
to fulfil user activities. It has been forecasted that smart spaces, such as
smart homes, will be occupied by hundreds of IoT devices in the future
[63, 60]. This thesis will refer to a smart space that includes hundreds of
IoT devices as a dense smart space. In a dense smart space [180, 56], users
have to search through a large number of IoT devices to manually specify
the devices to fulfil their activities. Moreover, when activities are built
using a specific set of devices, they are not transferable, which implies
that they cannot be used in another environment. For example, for the
activity of preparing coffee, a user has to build it for home using a specific
coffee machine and build it again for other spaces using their respective
coffee machines. If user activities were transferable, users would be able
to run their activities in different places, and they would be automatically
fulfilled using existing devices that support their required functions.

The coarse-grained access control in smart spaces may allow the ex-
ploitation of IoT vulnerabilities [181, 200]. Therefore, recent studies on IoT
security focus on mitigating the security risk of compromising IoT devices
through access control [78]. Coarse-grained access control often works in
the network layer, using the IP address, IP transport protocol, and port to
define the legitimate local and remote connections for a device. For exam-
ple, in Figure 1.1, the malicious IP camera can connect to its cloud server
using a specific protocol, and also to all other devices in the local network.
This is an example of coarse-grained control as the camera has access to
local devices (i.e. TV2, smart lock) that are not currently linked with to
them in any user activities.

Current IoT platforms often support coarse-grained access control, wherein
applications are granted access to more resources than the minimum re-
quired to perform their functions [181, 48, 91]. In [48], the authors show
that the SmartThing platform grants the SmartApp full access to devices,

5

although its function requires limited access. Zhou et al. [200] analysed a
commonly used smart space platform and found several design flaws that
allow device hijacking and Denali of Service (DoS) attacks. IETF proposed
Manufacturer Usage Description (MUD) to define a network-wide access
policy for the legitimate connections possible for an IoT device [101]. For
example, in Figure 1.1, the MUD policy can define the external network
access for the IP camera for external connections to a cloud domain using
a specific transport protocol and port. However, it cannot define the local
devices to which the IP camera can connect. Therefore, if compromised,
the camera can spy on the network activities and/or infect other devices.

In order to securely fulfil user activity, fine-grained access control is
required. The goal is to apply the least privilege access by granting de-
vices the minimum access permission necessary to fulfil user activities.
Figure 1.1 illustrates the fine-grained access control, wherein devices are
only granted access if they are currently used in user activities. For ex-
ample, the IP camera does not have network access to the door lock, as
no user activity requires to use the door lock. However, it has network
access to the smart TV. Moreover, as the user uses the IP camera to stream
videos to the TV, the IP camera access to the TV is limited to the streaming
function.

Research indicates that the main concerns of users are security and pri-
vacy as they share the same space with the IoT devices [75, 198, 197]. A
study reports that 90% of smart home devices collect personal information
[46]. From the Internet community perspective, adversaries may utilise
vulnerable IoT devices to form a botnet and then use it to launch mali-
cious activities on the Internet (e.g. Distributed denial of service DDoS
attack). Another study [111] showed that only eight IoT devices were able
to amplify an attack to inflict 1.2 Mbps of data on the victim in a DOS
scenario. Hundreds of thousands of compromised IoT devices can inflict
hundreds of Gbps; for example, the Mirai botnet, which infected 600000
IoT devices [33], exceeded 660 Gbps in volume [96].

6 CHAPTER 1. INTRODUCTION

IoT vulnerabilities will continue to be an issue in the foreseen future;
they are inherited from the complex IoT ecosystem combined with its sup-
ply chain. The ecosystem includes the perception, network, and applica-
tion layers, each of which has its own vulnerabilities [88]. IoT manufactur-
ers use commodity hardware and third-party software, not produced by
them. Hence, vulnerabilities in these components could allow attackers to
compromise millions of devices from different vendors [115].

Fine-grained access control is an effective countermeasure to mitigate
risks arising from IoT vulnerabilities. IoT devices have been frequently ex-
ploited by attackers, who compromise user data and threaten the Internet
infrastructure. Fine-grained access control is necessary to limit the damage
that can be inflicted if IoT devices are compromised. The lack of this type
of control is one of the main reasons that enables adversaries to exploit
IoT vulnerabilities [41, 1, 133, 136, 94, 135]. An adversary can compromise
user privacy [154, 175], use the IoT devices as an entry point to compro-
mise the entire network [169, 36], cause a physical breach [196, 193], or
compromise user privacy [154]. By enforcing fine-grained access control,
IoT devices will have minimum access to other devices that is necessary
to support user activities. Hence, when compromised, their impact on the
network will be minimised as well.

To support fine-grained access control and automatic user activity ful-
filment requirements, we have considered four user inputs: manual net-
work access rules, user activity as a functional workflow, user preference,
and user sharing policy. These user inputs are manual network access
rules, user activity, user preference, and sharing policy, as shown in Figure
1.2. The network access rules input provides a flexible option to achieve
fine-grained access control in a small smart space. However, manual rules
do not scale and can be a burden to users in larger and more complex
smart spaces. In this case, it is necessary to support fine-grained access
control and user activity automation requirements in a transparent man-
ner, [50] without explicit user input. Therefore, devices will be automat-

7

IoT Hub

IoT Clouds

Internet

LAN

Access rules

Sharing policy

User preference

Activity fulfilment
selection

Camera
TV

Activity fulfilment

1

2

3

4

User input

PEPPDP

Func1
Func2

User activity

Figure 1.2: Smart space system architecture with fine-grained access con-
trol based on user inputs. The Policy Decision Point (PDP) makes the
authorisation access decision and the Policy Enforcement Point (PEP) en-
forces it.

ically selected based on their ability to fulfil a user activity, which is rep-
resented as a workflow of user activity function requirements. The func-
tional representation of user activity can be represented as Unified Mod-
elling Language (UML) or Entity Relationship (ER) Diagram. However,
the workflow representation is more natural for describing the problem
and the way that user activities are represented in existing frameworks
like NodeRed [142].

The user activity will be fulfilled considering user preferences and shar-
ing policies. Figure 1.2 presents a functional representation of user activity
(no. 2) and how it is used along with user preferences and sharing pol-
icy to guide the selection of the camera and TV devices. Subsequently, a
fine-grained network and application access policy will be generated to
support the selected devices to execute the user activity.

8 CHAPTER 1. INTRODUCTION

1.1 Motivation

There are three main driving questions for this research: (1) Why is it es-
sential to consider user input? (2) What type of user inputs should be used
to enable automatic user activity fulfilment and derive fine-grained access
control? (3) How to use user input to automatically fulfil user activities
and derive fine-grained access control?

User input must be considered when developing a fine-grained access
system for smart spaces [44, 51, 201, 38]. As stated by [44], there are several
factors that limit the usefulness of an automated security system that does
not involve the user in the security decision. In smart homes, these reasons
are summarised as follows:

1. Without user input, automated systems cannot make a security de-
cision based on social relationships such as family, friendship, and
guest relations. Instead, a set of pre-defined access policies (e.g.
roles) is generated for each group of users, which cannot cover all
social relationships. Such roles also treat every member in the group
equally without considering the trust between users. For example,
based on the trust between users (socially dependent), some users
may allow specific guests to access their IoT devices [80, 58].

2. Automated access control systems that do not consider user input
can disrupt user activities and result in a poor user experience. Defin-
ing an IoT access policy without considering its function in user ac-
tivity may result in blocking vital connections, thus; disturbing user
activities. For example, anomaly-based IDS is prone to false pos-
itive, which means it may detect benign connections as malicious,
which results in dropping a connection that disturbs user activities
[9, 17]. In contrast, to mitigate disturbances in user activities, an au-
tomated system may apply coarse-grained policies that allow un-
necessary communications. For example, deriving an access control

1.1. MOTIVATION 9

policy based on the analysis of IoT metadata or network traffic may
not cover all legitimate device behaviours [181, 73].

3. The owners of the smart space network are often the users them-
selves; hence, they are usually motivated to be involved in securing
their network.

Most of the existing research mainly focuses on defining policies for
IoT devices without involving user inputs. This includes MUD and similar
policies that are derived based on benign traffic of IoT devices [73, 17, 172].
Other works focus on anomaly detection or outsourcing access control
to a third party. Access control is often enforced in the network layer,
as it can be applied to heterogeneous IoT devices. Network access con-
trol enforcement can be categorised into perimeter-based and network-
wide access control. The perimeter-based access control is enforced at the
boundary of the smart space network [192, 169], at the edge of the local
network using Network Address Translation (NAT) firewall or at the ISP
edge switch [169]. Perimeter access control does not provide control over
internal threats. In contrast, the network-wide access control is enforced
within the devices (i.e. inside the network) [15, 77]. Hence, it provides
control over the connections between IoT devices as well as at the perime-
ter of the network. Using user input to derive a fine-grained access policy
has not been thoroughly investigated. Fine-grained access control can be
derived from user activities such that devices can be granted access based
on their roles in fulfilling user activities. The question is: what type of user
inputs are required to derive fine-grain access control for IoT devices?

Manual rules as user input provide advanced users with an explicit
and flexible means of specifying their security requirements for a small
smart space. Using access rules, users can directly restrict access to devices
that they want to protect (e.g. for privacy reasons) such as an IP camera.
Although it is not suitable for novice users, manual rules input is the most
accurate method of obtaining user input. The connections between de-

10 CHAPTER 1. INTRODUCTION

vices depend on the user activities [40]. Hence, in a simple environment,
advanced users [75] can customise the pre-defined policies [172, 73], such
as MUD [101], to meet their security and privacy requirements. Smart
spaces also include other security services such as IDS [161, 134, 40, 116].
Thus, there are three main security components for smart spaces: user in-
put, pre-defined IoT policies, and network security middleboxes, which
need to be incorporated when designing smart space security system.

In a dense smart space, user preferences can be used to provide auto-
matic activity fulfilment and transparent access control. It is challenging
for novice and even advanced users to manually maintain fine-grained ac-
cess control for such a large number of IoT devices. In this scenario, user
preference can be used to automatically select the devices that fulfil user
activities [113]. User preference can captures which devices a user prefers
to use for different functions. Moreover, users trust IoT device manufac-
turers [199] to protect their privacy; hence, their preference capture their
privacy and security decisions. Consequently, access policies can be gener-
ated for each user activity transparently, without explicit input from users,
at the expense of requiring a user preference.

User preferences can be used to automatically derive a fine-grained ac-
cess policy and fulfil user activity. Therefore, user activity can be defined
as a functional workflow that can be fulfilled using the devices that max-
imise user preferences. Automatic device selection to fulfil user activity
can be formulated as an optimisation problem to maximise user prefer-
ences on the selected devices. Thus, given the selected devices to fulfil
user activity, a fine-grained access policy can be automatically generated
for these devices.

In a shared smart space, users’ sharing policies can be used to express
users’ sharing decisions. The user preference input does not capture the
relationship among users and what devices a user wants to share with oth-
ers. In a multi-user shared smart space, users share devices based on the
trust among them [58, 198]. In addition, they share their IoT devices, such

1.2. PROBLEM STATEMENT 11

as smart TVs and smart speakers, for altruistic or economic reasons. Al-
though a single user can link to and use multiple devices, a single device
cannot be linked to multiple user accounts (the IoT cloud revokes an exist-
ing binding when it receives a new binding request) [29, 200]. In existing
IoT frameworks, IoT devices are either shared with everyone (e.g. using
the primary account) [171] or are only used by a single user [26, 90].

Sharing devices with full access violates the principle of least privilege
and is a high-security risk [26]. Instead, it is more sensible to share under
certain restrictions to limit the risk of abuse [198, 160]. However, existing
IoT architectures are designed for a single user and do not support secure
sharing [90, 165]. In particular, there are two issues we want to study: from
the perspective of the owners, devices can only be shared with coarse-
grained access, i.e. they cannot share a device for a particular function.
Secondly, from the a user’ perspective who is using shared devices, there
is a risk of using a shared device that is vulnerable. For example, if there
are two shared IP cameras, one with out dated vulnerable firmware, while
the other with up to date firmware, a user’s activity may utilise any of
them rather than preferring the latter one.

User sharing language is required to enable users to express their shar-
ing decisions on the device function level. In shared smart spaces, users
share their devices under trust-based policies [58], which are not guaran-
teed to be followed. Policy languages are often used to express user poli-
cies, such as expectation [193] and safety policies [104] in smart spaces.
Given user activities, with a dataset of the devices’ functions and owners,
an optimisation problem can be formulated to fulfil user activities using
the most secure devices subject to users’ sharing policies.

1.2 Problem Statement

The main problem addressed by this thesis is how to develop a frame-
work and techniques to use user inputs to achieve automatic user activity

12 CHAPTER 1. INTRODUCTION

fulfilment and fine-grained access control in smart spaces. This problem
can be divided into three main scenarios based on the complexity and the
number of users of the smart space:

1. The first scenario is a small smart space where a single user uses
a few devices to fulfil infrequently changed user activities. In this
scenario, users will require a way to specify what devices should
connect to what. The assumption here is that users are familiar with
access control rules that are usually use in a home router firewall
[182]. For example, a user may want to limit access to an IP camera
only to his/her own device. Specifying the rules that overwrite ex-
isting IoT device policies and present them to a user in a simple way
is the problem in this scenario.

2. The second scenario is a dynamic and dense smart space where a sin-
gle user uses hundreds of devices to fulfil frequently changed user
activities. The smart space is growing in size (i.e. number of de-
vices) and becoming more complex in terms of IoT device capabili-
ties. This poses a challenge for users when automating their activi-
ties. Users are not always interested in manually specifying the un-
derlying devices to fulfil their activities. Nevertheless, they have to
search through a large number of IoT devices to identify the suitable
devices that can fulfil their activity and meet their preferences. The
challenge is how to select the devices that fulfil user activity func-
tional requirements while considering user preferences.

3. The third scenario is a shared smart space where multiple users share
their devices under certain conditions. In this scenario, a sharing
policy language is required to capture users’ sharing policies. There
are two challenges in this scenario: how to develop a sharing policy
language that captures user sharing conditions and use it to derive
fine-grained access control; and how to mitigate the risk of using vul-
nerable shared devices when fulfilling user activities. For example, a

1.3. RESEARCH QUESTIONS 13

user wants to share the thermostat on/off function, but not the tem-
perature setting function. Alternatively, a user may want to make
a video conference call using the most secure camera device among
the available shared devices.

1.3 Research Questions

The present research will address the following research questions:

1. How can users define access control rules to customise pre-defined coarse-
grained policies in smart spaces?

As access control depends on how user activities use devices, the
pre-defined policies cannot be fine-grained. For example, a MUD for
an IP camera may allow its access to its remote manufacturer cloud
server and all local devices that belong to the same manufacturer.
The local access can be customised by a user only to the devices that
he/she is actually using with the IP camera. Users can provide in-
put to customise these policies to meet their security and privacy re-
quirements. However, using user input to customise pre-defined IoT
policies is challenging in terms of how to allow users to specify the
rules and how to represent the rules. More importantly, users may
mistakenly add rules that disrupt user activities (i.e. block necessary
connections) or add too coarse-grained rules.

The following sub-questions help address this research question:

(a) How can user access rules be specified and be presented in a
simple manner??

Advanced users are familiar with the user interface of their NAT
firewall, which they use to allow or deny traffic passing through
their router. Therefore, a similar user interface will be used to

14 CHAPTER 1. INTRODUCTION

obtain user rules for local access between devices (i.e. network-
wide access rules). Usability is not the main focus of this re-
search, but common user interface techniques will be used for
any user interface components. For example, to present exist-
ing rules in the network; a table that lists all rules similar to the
router firewall and a visualised view that shows the network
topology with the rules on each link.

(b) How can user-specified rules be used to customise pre-defined
device policies?

The pre-defined policies can provide the base policy for access
control that users can overwrite. However, as users may mistak-
enly/unknowingly input rules that may disrupt user activities,
the pre-defined policies serve as the base access control backup
that can be used to reset the access control to the correct state.

2. How to automatically fulfil user activity and generate a fine-grained access
policy in a dense and complex smart space using user preferences?

Achieving fine-grained access control is a challenging task in a dense
and complex smart space. A dense smart space includes hundreds
of devices and offers multiple alternatives to support user activity.
Therefore, user preference can be used as user input to determine
which candidate device should be used to fulfil user activity and
subsequently generate fine-grained access control.

The goal is to automatically select devices that fulfil user activities
while considering user preferences. To automatically select devices,
a new user activity representation is required to decouple the user
activity functional requirements from the underlying devices. This
representation will enable automatic searching for the devices that
fulfil the user activity while optimising user preference.

To solve this task, we need to answer the following sub-questions:

1.3. RESEARCH QUESTIONS 15

(a) How can user activity be presented to enable flexible device ful-
filment?

The existing user activity representations [124, 52] does not al-
low flexible device fulfilment. Users define their activities by
specifying the devices that should be used to execute them. This
representation hinders the dynamic changing of devices to meet
user preferences without rebuilding the user activity. Therefore,
a new user activity representation is required to decouple the
user activity functional requirements from the underlying de-
vices that can be used to fulfil them.

(b) How to select the devices that fulfil user activities while con-
sidering user preference? And how can user activity be used to
generate fine-grained access control?

The problem of searching for a set of devices to fulfil user ac-
tivity functions while satisfying user preference is formed as an
optimisation problem. The user activity will be represented by
a functional workflow, which can be fulfilled by many candi-
date devices. The selection criteria are based on a user prefer-
ence model that quantifies which devices the user prefers and
for which functions. Therefore, search algorithms will be used
to find the set of devices that fulfil user activities and maximise
user preferences.

The selected devices need to be supported by a fine-grained ac-
cess policy. The policy allows each device to make the minimum
connections necessary to fulfil the user activity. For the policy
to be generated, we assume that each device function has an as-
sociated set of network requirements. Hence, the fine-grained
access policy is built based on the network requirements of each
device function of the selected devices.

3. How to design a system that enables users to share their devices under cer-

16 CHAPTER 1. INTRODUCTION

tain conditions and use the most secure available devices to fulfil their ac-
tivities?

This question addresses the scenario in which IoT devices are shared
between multiple users. In particular, it studies two aspects of this
scenario. The first aspect is how devices can be shared for a specific
function with a specific user. Users need to be able to specify which
functions they want to share and with which user. Moreover, access
control needs to be established to only allow authorised user activi-
ties to access the shared functions. The second aspect is how to au-
tomatically fulfil users activities using the most secure set of shared
devices. Searching techniques are required to find the most secure
shared devices that can fulfil user activities. These two aspects are
addressed in the following sub-questions:

(a) How can users share their devices in a secure manner?

To enable secure sharing, a policy language is required to en-
able users to express their sharing policies. Existing policy lan-
guages mainly consider the environmental context (e.g. loca-
tion) for access control [160, 198, 193]. These policy languages
do not support controlled device sharing at the level of individ-
ual device functionality. Therefore, we developed a new policy
language to allow device owners to precisely specify the condi-
tions under which they are willing to share their device func-
tionalities. For example, users can specify who can use their
devices, which functions can be used, and which devices can
interact with their devices.

(b) How can user activity requirements be fulfilled securely with-
out violating user sharing policies?

There is a need for a mechanism to avoid using vulnerable de-
vices to fulfil user activities when more secure alternative de-
vices exist. This problem has been treated as an optimisation

1.4. RESEARCH OBJECTIVES 17

problem where the objective function is defined to select the
most secure devices that fulfil user activities. We assume that
a mechanism exists to quantify an individual IoT device secu-
rity score (the larger, the better) [105]. For example, a device
security score can be derived by inverting the inverse value of
the Common Vulnerability Scoring System (CVSS) of a device
software [117]. The objective function will be solved subject to
a set of constraints that are generated based on the sharing poli-
cies.

4. How feasible and practical is the fine-grained access policy enforcement?

This research question relates to the investigation of the feasibility
and practicality of enforcing the network and application access con-
trol policies that are generated using the proposed methods. In par-
ticular, the existing technologies that can be used to implement fine-
grained access. A smart space case study will be implemented to en-
force network and application policies in various scenarios. The case
study will demonstrate the available technologies to enforce network
and application access policies and the enforcement overhead.

1.4 Research Objectives

The following research objectives have been defined to fulfil the overall
goal of the research questions:

1. Develop a new security framework to allow users to customise IoT devices
and pre-defined policies and integrate this policy with network security
middleboxes.

The proposed framework aims to achieve collaborative network ac-
cess control between users, IoT manufacturer policies, and network
security boxes to achieve fine-grained access control that mitigates a

18 CHAPTER 1. INTRODUCTION

malicious IoT device threat. The proposed framework has three fea-
tures: (a) it allows pre-defined policies to be enforced for IoT devices
to provide the minimum security. For example, applying a MUD
policy to define the manufacturer cloud to which an IoT device can
connect; thus, reducing the risk associated with the exposure of IoT
devices to the Internet; (b) it enables users to customise and over-
write these policies to meet user security and privacy requirements;
(c) it enforces an access policy based on feedback from security mid-
dleboxes.

To further mitigate malicious devices threat; two security services
will be developed. These services will also show the flexibility of
integrating security serviced into the proposed SDN-based frame-
work. In particular, ARP server mitigating the common Address
Resolution Protocol (ARP) spoofing attack and another security ser-
vice to mitigate ongoing attacks dynamically by integrating IDS with
the framework.

2. Develop a new user activity representation and automatically search for IoT
devices to fulfil user activities while optimising user preferences.

We use a functional workflow to represent user activity functions.
This representation initiates the user activity recognition process by
defining its functional requirements, which can then be fulfilled by a
selected set of devices to meet user preferences. Optimisation algo-
rithms will be used to automatically select the set of devices to fulfil
user activities and maximise their preferences, systematically gener-
ating access control policies to ensure the principle of least privilege.

3. Develop a new system to allow users to securely share their IoT devices
under precise sharing policies and optimise the usage of the most secure
devices to fulfil their activities.

To share IoT devices with others, users need a sharing policy lan-
guage to allow device owners to precisely specify the conditions un-

1.4. RESEARCH OBJECTIVES 19

der which they are willing to share their devices. Users may want to
specify who can use their devices, which functions can be used, and
which devices can interact with their devices in a sharing environ-
ment. A novel IoT architecture is proposed with a newly designed
IoT device sharing policy language. By using the sharing language,
devices owners can clearly define the circumstances under which
their devices can be shared with specific users. To address the op-
timality aspect, we focus on minimising the risk of using vulnerable
shared devices by using the most secure set of devices to fulfil user
activities.

Considering secure sharing and secure using aspects, the IoT device
sharing problem is mathematically formulated and further transformed
into an equivalent Integer Linear Programming (ILP) problem. An
integer programming problem is a mathematical optimisation pro-
gram where some or all of the variables are restricted to be integers.
ILP is introduced in 2.1.7 and Section 5.7 explains how it is used to
address IoT sharing problem. The aim is to optimise the set of de-
vices that fulfil user activities to the most secure available ones sub-
ject to a set of constraints that represent users’ sharing policies.

4. Implement a case study testbed to explore the available techniques to achieve
fine-grained access policy enforcement.

A smart home space case study is implemented to demonstrate how
fine-grained access control can be enforced using existing technolo-
gies. A Policy Enforcement Point (PEP) is implemented to enforce ac-
cess policies in the network and application layers. To demonstrate
the feasibility and performance of the PEP, we use a hub-based ap-
proach. User activities are deployed in the hub, which controls all
other devices. The hub commands pass through a PEP proxy. The
PEP is implemented in the network and application layers. In the
network layer, the PEP blocks device-to-device communications and

20 CHAPTER 1. INTRODUCTION

only allows the hub and device to communicate. Then, it redirects
the hub-to-device connections through the PEP web proxy. In the
application layer, the PEP web proxy is implemented to intercept
hub-to-device control messages and allow or deny them based on
the application-level access policies. A set of experiments are con-
ducted to report the performance of the system, measuring the over-
head introduced by the PEP.

Although the thesis did not focus on usability, it does consider it by
applying usability principles. For example, manual rules are implemented
in the first objective similar to existing home router NAT firewalls. Also,
the second and third objectives avoid adding any burden on end-users by
deriving access policy automatically without user intervention.

1.5 Major Contributions

A summary of the major contributions of this thesis is presented in this
section, and the following chapters (3, 4, 5, and 6) are dedicated to dis-
cussing each contribution presented below.

1. This thesis proposes a new access control framework that enforces
IoT manufacturer, security provider, and user policies. This architec-
ture enhances the smart space security by utilising SDN to enforce
the least privilege access control using MUD and user policies. A
smart space IoT testbed evaluation demonstrates that the proposed
framework reduces the attack surface.

This contribution has been published in:

Al-Shaboti, M., Welch, I., Chen, A., & Mahmood, M. A. (2018, May).
Towards secure smart home IoT: Manufacturer and user network ac-
cess control framework. In 2018 IEEE 32nd International Conference
on Advanced Information Networking and Applications (AINA) (pp.
892-899). IEEE.

1.5. MAJOR CONTRIBUTIONS 21

2. This thesis proposes a novel IoT application-centric access control
approach utilising user activity automation to define the underly-
ing IoT device interactions and enforce least privilege access control.
Hence, the proposed approach does not require user intervention to
define the devices to use or the access control to enforce. Device se-
lection is achieved using the user preference model, whereas access
control is determined using the IoT device capability description.

This contribution have been published in:

Al-Shaboti, M., Chen, A., & Welch, I. (2019, August). Automatic De-
vice Selection and Access Policy Generation based on User Prefer-
ence for IoT Activity Workflow. In 2019 18th IEEE International Con-
ference on Trust, Security and Privacy in Computing and Communi-
cations/13th IEEE International Conference on Big Data Science and
Engineering (TrustCom/BigDataSE) (pp. 769-774). IEEE.

Al-Shaboti, M., Welch, I., & Chen, A. (2019, July). IoT Application-
Centric Access Control (ACAC). In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security (pp.
685-687).

3. This thesis proposes a secure sharing policy architecture for a multi-
user smart space with a newly designed IoT device sharing policy
language. By using our language, device owners can clearly de-
fine the circumstances under which their devices can be shared with
specific users. We focus on minimising the risk of using vulnerable
shared devices by maximising the overall security score of devices
selected to fulfil user activities considering user sharing policies. We
show that any device sharing policies can be precisely represented
as hard ILP constraints to completely prevent policy violation. The
experimental results demonstrate that the IoT sharing issue can be
successfully solved using popular and widely available ILP solvers

22 CHAPTER 1. INTRODUCTION

such as the CBC MIP and CP-SAT.

This contribution has been accepted at:

Al-Shaboti, M., Chen, A., & Welch, I. Achieving Optimal and Secure
Sharing of IoT Devices in Multi-User Smart Spaces. LCN 2020 45th
IEEE Conference on Local Computer Networks. (Accepted)

4. This thesis explores the practicality of enforcing access control poli-
cies using existing smart space technologies. It presents a case study
that demonstrates the available technologies to implement a fine-
grained access control smart space framework. In addition, it in-
vestigates how the IoT semantic model in the WoT technology can
be used to retrieve IoT device capabilities and Application Program-
ming Interface (API) to define automatic fine-grained policies at the
application level for each device usage in each user activity.

1.6 Organisation of the Thesis

The remainder of this thesis is organised as follows. The necessary back-
ground and related works are reviewed in Chapter 2. Each of the five
subsequent chapters, i.e. Chapters 3 to 6, addresses one of the research
goals. Chapter 7 concludes this thesis.

Chapter 2 includes two sections. The first one presents the background
of the IoT concept, user activity automation, and the relevant IoT vulner-
abilities in smart spaces. It also introduces some searching algorithms
and optimisation methods that are used in this thesis. The second sec-
tion presents related research that addresses IoT vulnerabilities in smart
spaces for single and multiple users.

Chapter 3 proposes a new smart space IoT security framework that
utilises SDN to allow the coexistence of IoT manufacturers, network secu-
rity services, and user access control to enhance the smart space IoT secu-
rity. This chapter also presents a approach to mitigate IPv4 ARP spoofing

1.6. ORGANISATION OF THE THESIS 23

through an NFV ARP server (example of security service), such that all
ARP requests are generated by a trusted entity (i.e. ARP server).

Chapter 4 presents a new user activity representation that decouples
functional user activity requirements from the underlying devices that ful-
fils them. This representation allows users to describe their activities in
terms of required functions and provides for a dynamic device selection
using a newly proposed method. This chapter also presents an automatic
network access control policy to enforce least privilege access control on
the IoT devices.

Chapter 6 presents a case study that demonstrates the available tech-
nologies to implement a fine-grained access control smart space frame-
work. In addition, it shows the overhead of enforcing access control at the
network and application levels on user activities. More importantly, it in-
vestigates how WoT technology can be used to extract device capabilities
and API, which can be used to define automatic fine-grained policies at
the application level for each device usage in each user activity.

Chapter 5 proposes a new IoT system for IoT device secure sharing in
multi-user smart spaces. The proposed system is supported by a newly
designed sharing policy language. The system treats the secure sharing
and using as an optimisation problem, in which the goal is to fulfil user
activities using the least vulnerable devices subject to sharing policies.

Chapter 7 concludes this thesis and summarises the key findings. The
research contributions and key points of this thesis are highlighted and
discussed. This chapter also suggests and discusses different opportuni-
ties for future works.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Literature
Review

This chapter serves as a foundation for this thesis. It covers essential back-
ground (Section 2.1) and provides definitions of the basic concepts and ter-
minologies in smart space IoT, including its architecture, automation, and
protocols. The chapter also provides a summary of IoT network vulnera-
bilities, threats, and existing related network access control technologies.
This chapter also introduces a brief introduction to different IoT access
control systems. Details about fine-grained access control, Manufacturer
Usage Description (MUD), Software-defined Networking (SDN), and op-
timisation problems and methods that are related to this thesis are also
presented in this chapter.

This chapter then reviews related work and summarises the research
for the following three contribution chapters 3-5). In particular, Section 2.2
presents the related works in IoT access control systems, automatic activity
fulfilment, and multi-user IoT sharing.

25

26 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.1 Background

2.1.1 IoT Ecosystem

The IoT ecosystem includes all components that enable end-users to use
IoT. These components can be categorised based on the layers they belong
to as follows [88, 162]:

1. The perception layer, also called the physical layer, is the bottom
layer of the ecosystem. Functions in this layer include identifica-
tion, sensing, actuating, and communication. It passes data to the
network layer.

2. The network layer is the glue between the perception layer and the
application layer. It also includes device management and fog com-
puting for local processing.

3. The application layer is the top layer of the IoT ecosystem, where the
data is analysed to provide the desired IoT services.

2.1.2 Smart Space IoT Architecture

The IoT smart space architecture consists of four main components. A typ-
ical smart space architecture is illustrated in Figure 2.1 and its components
are explained as follows:

• The thing; which is the smart device that is associated with some
sensors and/or actuators capabilities. The thing should be bound to
a user account in the cloud before it can be used.

• User agent software that enables users to control the thing. This can
be a mobile app or web browser that gives the user access to his/her
IoT cloud account.

2.1. BACKGROUND 27

Hub

Hub Cloud

Camera
TV

stream

IoT application in the Hub

IoT Cloud

Internet

LAN

1

2

OAuth

Figure 2.1: Smart space IoT architectures: (1) A single device is used
through the cloud; (2) Hub-based automation for multiple devices control.

• IoT cloud services and API that host management, control, and data
processing tasks that enable users (through their mobile application
agent) to use their IoT things.

• Communication technologies (e.g. Ethernet, WiFi) that connect IoT
things.

There are two models to control smart space IoT devices, as shown in
Figure 2.1; IoT cloud and IoT hub.

1. Cloud-based where physical IoT device status is saved and synchro-
nised with digital twines. The IoT cloud provides APIs for a third
party or a mobile app to read and changed the IoT twin status, which
works as a proxy for the physical IoT device. Users control their IoT
devices individually through the cloud. For example, in this model,
users can manage their camera and TV individually, using their own
app or web interface. However, this model doesn’t fulfil users re-
quirements when it comes to automating activities that require more
than a single device.

28 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2. Hub-based where all IoT devices are bound to a local central con-
troller, which then controls these devices via local connections or
through their cloud APIs. The Hub can be a device such as Alexa
and Google Home or software such as OpenHAB and Mozilla-WoT
gateway that is usually installed in a Raspberry PI [124, 141]. Hub
architecture enables IoT automation using multiple devices. For ex-
ample, users can stream IP camera video to the smart TV.

Activity Automation

Automation is defined as the “execution by a machine agent (usually a
computer) of a function that was previously carried out by human” [143].
IoT automation facilitates various user activities in home, office, building
or shared spaces such as a) Home automation such as lighting system,
thermostats, door openers; b) Security system such as security cameras,
motion sensors, and baby camera; c) Smart appliances like fridge, washing
machine, vacuum cleaner etc.; d) Smart entertainment systems such as
audio system, smart TV, and PSx stations.

To ease automation process for users, automation platforms utilise flow-
based programming [119] paradigm, see Section 2.1.2, such as Mozilla
WebThings Gateway [124], NodeRed [142], and Microsoft flow [52]. Other
platforms use an integrated intelligent personal assistant that allows users
to control their smart home using their voice, such as Alexa [10]. Hub also
can be a software platform such as IFTTT (If This Then That) [83] which
uses IoT cloud API to send commands and query device status. Hub plat-
forms require authorisation to access by users to their devices IoT cloud
services which are often granted using OAuth protocol [76].

Flow-based programming

Flow-based Programming (FBP) is a component-oriented programming
paradigm, invented by J. Paul Rodker Morrison, that uses a ”data process-

2.1. BACKGROUND 29

ReadFile

SplitLines Counter

Output
error

out

out
outin

in

in

Figure 2.2: Counting number of lines in a file using flow-based program-
ming (reproduces from [19])

ing factory” metaphor for designing and building applications [119]. In
flow-based programming, an application is defined as a network of prede-
fined processes as black boxes that have predefined external connections
(e.g. in and out interfaces) to communicate data via information pack-
ets. These black-box processes can reorganise to form different programs
without having to be changed internally. Figure 2.2 shows an example for
a flow-based programming; the program counts the number of lines in a
file through connecting predefined processes ReadFile, SplitLines, Counter
and Output.

IoT binding process

Before users can use an IoT device, they need to create cloud accounts and
associate them with the physical IoT device, this process is called binding.
Through the binding process, the IoT cloud binds the IoT device to the
user account. Therefore, the user can send commands to the device and
check its status through the cloud. The IoT device and user binding are
explained in [29] as follows.

1. Authentication: the user and IoT device authenticate themselves to
the cloud, using username, password and DeviceID, respectively.

2. Local binding: the user uses an app to exchange DeviceID and User-
Token with the IoT device. This step is necessary to verify that the
user physically possesses the device.

30 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

3. Remote binding: either the device or the user app send the (Devi-
ceID, UserToken) to the cloud for remote binding. After this step,
the user can control the IoT device.

4. Binding revocation: when the user resets the device or deletes the
device from the app, a revocation message is sent to the cloud to
remove the binding between the user and the device.

Web of Things (WoT) The Web of Things (WoT) is a W3C standard to
improve the inseparability and usability of the IoT. It works at the applica-
tion layer of the IoT and utilises semantic models for thing’s descriptions,
data, and interactions. Hence, it allows exposing virtual or physical IoT
devices as a resource with a description of its capabilities that other web
services can consume.

Each thing in WoT is called servient which is a term to indicate that a
thing works as a server and a client at the same time. Figure 2.3 illustrates
the main components of WoT servient which are: a) script that knows how
to control the thing as a response to request from consumer (e.g. browser);
b) Resource model which provides Uniform Resource Identifiers (URIs)
for the thing properties and capabilities; c) Thing Description (TD) which
is a semantic description of the thing and its capabilities. TD is consumed
by the WoT client to understand what is the Thing and how to interact with
it. d) Protocol binding defines the concrete messages that are exchanged
during communication.

IoT Protocols

Message Queue Telemetry Transport (MQTT) MQTT is a lightweight
publish/subscribe application layer message protocol for IoT [137]. It is
designed to enable machine-to-machine connections where a small code
footprint and network bandwidth are required. As it uses the publish/subscribe
message pattern, it supports one-to-many, one-to-one, and many-to-many

2.1. BACKGROUND 31

Script

Runtime Environment

Resource Model

Protocol Binding

Server Connector Client Connector

Thing
Description

Script

Runtime Environment

Resource Model

Protocol Binding

Client Connector

WoT Device Servient Browser

Figure 2.3: WoT Servient for smart TV that are controlled via a web
browser.

message distribution and decoupling of applications.

MQTT decouples clients and servers applications such that a client can
send messages to a server regardless if the server is running or not. The
broker facilitates this feature, who maintains queues for topics and the
corresponding publishers and subscribers to each queue. Figure 2.4 shows
the MQTT architecture where a motion sensor publisher motion data to
motion topic in the broker. The motion topic is then consumed by the light
application (the subscriber) so it may turn on the light when the motion
sensor detects someone.

MQTT provides the following three qualities of service for message
delivery :

• At most once, in which messages are delivered, where messages are
delivered or not depends on the environment. Therefore, messages
can be lost in this level. It is useful where many messages are pub-
lished within a short inter-arrival time, so if one is missed, another
one will be published soon later.

• At least once, this level assures that at least one message arrives. How-

32 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Application
(e.g. motion

sensor)

MQTT Client
Publisher

TCP/IP TCP/IP TCP/IP

Topic (e.g. motion)

publishers subscribers

Application
(e.g. light)

MQTT Client
Subscriber

MQTT Broker

Figure 2.4: MQTT architecture

ever, more than one copy of messages may be received.

• Exactly once, where messages are assured to arrive exactly once. It is
a firm level where duplication or loss are not allowed.

OAuth 2.0 The OAuth is the main authentication and authorisation pro-
tocol that enables IoT automation. It facilitates limited access authorisa-
tion to protected resources through an access token rather than the owner
credentials, see Figure 2.5. The token is issued to the client by the au-
thentication server after it takes authorisation grant by the resource owner.
Communication takes place over HTTP on the top of Transport Layer Se-
curity (TLS). Access token is a string (credential) used to access protected
resources, it includes scope of access, duration, and it may also require
authorisation information to be valid.

Initially, the client developer should register its application with the
authorisation server, which includes:

1. Client type, confidential such as web application where token is stored
securely in the server side, public such as browser scripts, or native

2.1. BACKGROUND 33

Client

Resource Owner
(e.g. user)

Authorisation
Server

Resource
Server

Authorisation	Request

Authorisation	Grant

Authorisation	Grant

Access	Token

Access	Token

Protected	Resources

1

2

3

4

5

6

Figure 2.5: OAuth abstract protocol flow (reproduced from [76]).

application/desktop application/android apps that are running on
clients devices.

2. Redirect URI, defines where to redirect the resource owners after the
authorisation server either grants or denies the client’s request.

3. Other descriptive information such as website name, logo, terms and
conditions. The authentication server grants the client an identifier
that will be used later to identify the client when user grants it access.

OAuth supports four types of authentication grants based on the client
request method: Authentication code grant Used for server-side applica-
tion, where the code is securely stored. It includes the following steps, see
Figure 2.6:

• A- When users use the client application and grant it an access to the
resources, client redirects the users to the authorisation server along
with the client registration information.

• B- Authentication server authenticates the users and checks their
grant (allow or deny).

34 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

• C- If users grant the access to the application, then they will be redi-
rected to the client redirection URI along with the authentication
code.

• D- The client requests an access token by providing authentication
code and the redirection URI for verification.

• E- The authentication server checks the request and grants the token
or denies it.

Client

Resource
Owner

Authorisation
ServerAuthorisation	Code

User-Agent

E

A

A

B

B

C

D

C

Client	Identifier	

&	Redirection	URI

Access	token

User	authorisation

Authorisation	Code	

&	Redirection	URI

Figure 2.6: Authorisation Code Flow. Steps (A),(B), and (C) pass through
the user-agent. (reproduced from [76]).

Implicit grant Used for clients that are implemented in browser script
(e.g. javascript. No authentication code is issued; instead, an access to-
ken is granted directly to the client. User-agent plays the role of a proxy
between the authentication server and the client.

Resource owner password credentials grant User credentials will be
used as an intermediate stage to get access token. However, it is only used
once, and the client gets a long-lived access token and maybe a refreshed

2.1. BACKGROUND 35

token such that the client does not need to store user credentials. This type
of authentication grant must be used only with highly trusted clients.

Client credentials grant It allows client (that represents user owner) to
get access to protected resources by the client control.

2.1.3 Software-defined Networking

Software-defined Networking (SDN) is a promising technology to tackle
dynamic access control enforcement. Network management used to be a
complex task in which high-level policies had to be compiled into various
low-level configurations based on network device vendor. Network re-
searchers realised that the problem lies in the architecture of the network
itself, more specifically due to the coupling between the control plane and
the data plane. They experienced difficulties in proposing new network
function/protocol and increased complexity with every newly added net-
work feature.

There were many attempts to separate control plane from data plane
such as SANE [25] and Ethan [24]. Moreover, OpenFlow was developed to
unified the communication between the control plane and the data plane.
Lately, these two features (decoupling control plane from the data plane
and unified control and management protocol for all network devices)
formed what we call software-defined networking (SDN) [47]. SDN de-
couples the control plane from the data plane and allows the programma-
bility of the data plane. Such that a data plane becomes a forwarder and
is controlled by a control plane through a southbound API such as Open-
Flow. Moreover, a control plane is programmable through northbound
API. This fundamental change in the network architecture empowers SDN
with a set of desirable features: dynamic flow control, network-wide visi-
bility, network programmability, and a simplified data plane.

SDN proliferates in industry as well as in academia as it reduces the
production time of network devices and also allows researchers to test

36 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Network ServicesNetwork ServicesNetwork Services

Network
ApplicationNetwork

ApplicationNetwork
Application

Application Layer

Control Layer
(Control Plane)

Infrastructure Layer
(Data Plane)

Northbound Interface

Southbound Interface
(e.g. OpenFlow)

Figure 2.7: SDN architecture

new proposed solutions either in an emulated environment (e.g. Mininet)
or even in parallel with an operation network (e.g. via FlowVisor[163]).

OpenFlow

The main idea of OpenFlow was to enable researchers to run experimen-
tal protocols in the same production network [114]. It comes with a new
paradigm of networking (i.e. SDN), in which control decision is made in a
separate entity (the controller) left switches without any control decisions.
OpenFlow specifies the protocol of communication between the controller
and the switch and the switch components and functions to enable Open-
Flow.

Typically, controller manipulates OpenFlow switch’s flow-tables (built
from TCAMs) through secure channel using OpenFlow protocol see Fig-
ure 2.8. Each flow entry consists of match, auction, and statistical parts; a

2.1. BACKGROUND 37

switch matches each packet header with the flow header part. If a match
exists, then the switch executes the auction parts and updates the statistics
for that particular flow (i.e. meter table). OpenFlow switch can match ten
packet’s headers (In port, Ethernet (source, destination, type), IP (source,
destination, protocol), TCP (source, destination)). It also supports drop,
encapsulate, and forward actions.

Controller Controller

OpenFlow
Channel

OpenFlow
Channel

Group
Table

Meter
Table

Flow
Table

in
Port

in
Port

out
Port

out
Port

Flow
Table

Flow
Table

Flow Pipeline

Control Channel

Datapath

OpenFlow Switch
OpenFlow protocol

Figure 2.8: Main component of OpenFlow switch (reproduced from [140]).

2.1.4 IoT Vulnerabilities

The Open Web Application Security Project (OWASP) lists the top 10 at-
tack surface areas in the IoT ecosystem [138] which include insecure web
interfaces, insufficient authentication/authorisation, insecure network ser-
vices, and lack of transport encryption. An HP report shows 70% of IoT
devices used unencrypted network protocols, and 60% of IoT user inter-
faces are vulnerable [46]. Consequently, hackers can launch different types
of attacks ranging from eavesdropping to completely taking control of the
IoT device. Jacobsson et al. [86] applied Information Security Risk Analy-

38 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

sis (ISRA)[145] on Smart Home Automation System (SHAS) with respect
to security and privacy. Analysis conducted by security experts, domain
experts, and system developers show that out of 32 examined risks, nine
were low, four were high, and 19 were moderate risks. In 2017, an Arbor
report estimated the current vulnerable IoT devices to be 10 billion [132].
A systematic evaluation of privacy and security for consumer IoT devices,
presented in [105], shows that the majority of threats are due to vulnera-
bilities in access control.

Some of the key reasons behind IoT vulnerabilities are summarised as
follows [95, 106, 173]:

• Some vendors are new to cyber security and are not aware of what
can go wrong, since their main expertise is in lighting, electronics,
air conditioning, etc., but not security [95, 106]. Moreover, the capa-
bilities of the IoT are limited, especially when it comes to encryption,
as it requires additional computational power.

• IoT is an emerging technology with no regulations that enforce secu-
rity as a requirement for manufacturing IoT devices [159].

• Many of the IoT devices are cheap and vendors cannot afford deep
vulnerability analysis for their products.

• Users often do not update their IoT firmware in a timely manner, and
vendors do not provide an automatic security update [175]. Also, the
short lifetime of the IoT makes updates mechanisms harder. More-
over, some IoT vendors go out of the market, which left their devices
without support.

• Fragmented IoT supply chain makes it difficult to form a partner-
ship between different IoT market players (e.g. components, tools,
developers, supporting services suppliers) [95, 175].

• Diverse standards and technology make designing a secure product
more challenging.

2.1. BACKGROUND 39

• IoT is built with a specific purpose and powered by embedded sys-
tems with relatively limited resources that make it impossible to ap-
ply the conventional security solutions [61, 167].

2.1.5 IoT Access Control

Previous research in securing IoT can be classified into network perimeter-
based and network-wide based. Each of which can be classified into fully
automated or considering user input as follows.

The network perimeter-based solution in which network policy is en-
forced at the boundary of the network [40, 192]. Xu et al. [192] proposed
a bloom-filter based framework to analyse home network inbound traf-
fic to detect persistent threats. On the other hand, DeMarinis et al. [40]
predict the benign IoT traffic with the aim to filter unwanted traffic using
an access policy. Others delegate security to the ISP to be enforced in the
edge switch [169]. However, network perimeter-based solutions cannot
provide protection from an internal malicious device. For example, any
compromised device can scan the network internally and open ports for
an external attack as in [168].

Network-wide access control can enforce fine-grained access control
and can be enforced across various types of IoT devices. It can protect
against a malicious connection that comes from outside the network or
between devices within the network. For example, a compromised device
can scan the network internally and open ports for an external attack as in
[168]. The current trend is to treat internal and external hosts as untrusted.
Examples of such solutions are Software-defined Perimeter (SDP) [57], and
Google BeyondCorp security framework [188].

The automation-based solutions automate security detection and pre-
vention mechanisms often without considering user input. Yu et al. pro-
pose a security policy based on IoT signature and anomaly behaviour and
use a micro Virtual Machine (VM) that acts as a proxy for each vulner-

40 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

able IoT [196]. However, deploying and configuring a VM gateway for
each IoT device is going to introduce an extra overhead. Similar work also
proposed by [108], in which an agent is integrated with IoT devices and
controlled by the SDN controller. There is ongoing work by IETF to form
a Manufacturer Usage Description (MUD) standard [101]. MUD would
allow manufacturers to specify the least access privilege necessary for the
IoT, which will be enforced by the network management system. Conse-
quently, it prevents unintended/malicious connections.

The user-defined policy solutions can be classified into four subcate-
gories: a) QoS control which allows the user to manage and prioritise their
application Quality of Service (QoS) [97, 64]. For example, the user may
give high priority for an ongoing Skype conference over other connections;
b) Internet data cap management [30] such that users can set cap settings
for each device and monitor their data cap usage; c) Host-based firewall
which controls network access to/from individual devices through a per-
sonal firewall (e.g. iptable in Linux) [150]; d) Home gateway firewall to
control network access between trusted (internal) and untrusted (Inter-
net) networks. For example, users can set firewall rules to restrict a de-
vice’s internet access to port 80/443 using a router firewall [183]. This
approach becomes less effective with the increasing number of IoT and
mobile devices inside the trusted network. Such devices, if compromised,
can become entry points to compromise the rest of the network without
going through the firewall. This category shows that in the home network
context, there are already management and security solutions that enable
users to enforce their security decision on the device level, and to some
extent at the network level (e.g. home gateway firewall). However, it pri-
marily addresses the external connections and does not provide users with
any control over their own network. For example, users may want to al-
low their guests to access the Internet and the lighting system but not the
CCTV system.

Discretionary Access Control (DAC) at the network level has not been

2.1. BACKGROUND 41

fully explored in the existing smart-home IoT research. Studies mainly
concentrate on two approaches either fully automated security decisions
as in the second category or delegate it to a third party as in the first cat-
egory. The existing network DAC is mainly based on network perimeter
(e.g. home router firewall), which is not efficient in the smart home envi-
ronment where there are many mobile devices and vulnerable IoT inside
the network.

Principle of Least Privilege

The principle of least privilege is one of the main security principles, also
known as the principle of minimum privilege. It is introduced in 1975 by
Jerome Saltzer and Michael Schroeder’s and it specifies that every process
should not be given any more privileges than absolutely necessary to do
its job [158]. By reducing the number of privileges given to a process, the
principle of least privilege minimises the number of ways a process may
abuse its privileges.

For enforcing the principle of least privilege, a fine-grained access con-
trol mechanism is required. If a system doesn’t have fine-grained access
control, then a process will get privileges more than what it requires to do
the job.

Another concept related to and complements the least privilege is the
minimisation principle. It states that the software must be developed to
do the intended job and no more.

Manufacturer Usage Description (MUD)

In contrast with general-purpose computers, IoT devices are usually de-
signed with a purpose and intended limited function. Therefore, MUD
comes to avoid using these devices in unintended activities by adversaries.
Basically, MUD is a file that introduces a device to the network and tells
what and what, not this device is intended to do on the network [101].

42 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The MUD will help to reduce the attack surface by limiting the access
from/to the device. It also provides a sort of protection for vulnerable
devices.

MUD defines three requirements:

1. A device classifier which is used to locate the device description.

2. A device description and how it is interpreted. This component is
represented by Yang-based XML or JSON file.

3. A means to retrieve the description.

A smart light bulb can be controlled remotely by smartphone apps to
light a room. However, it does not need to access a printer or Facebook
and so many other internal and external services. Therefore, the MUD
will provide a level of protection to the light bulb as well as to the rest of
the network by allowing it only to access what is required for its function
only.

The MUD URL A device emits a URL that classifies the device and pro-
vides a means to locate the device file description (policy file). There are
three proposed ways for a device to emit the URL; DHCP option, X.509
extension, and LLDP extension.

• The MUD URL DHCP option consists of code, length, and MUD
URL. Code option is assigned by IANA for IPv4 and IPv6. Len is
in octets and must not exceed 255. The DHCP client has only one
MUD URL at most, and if the DHCP server processes the MUD op-
tion, it responses with a MUD option with len=0. If the DHCP server
does not process the MUD URL but forwards it to the network man-
agement entity, then it has to notify it of any changes in the DHCP
state of the client (e.g. lease expires).

2.1. BACKGROUND 43

• The MUD URL X.509 extension contains a single URI for an on-
line MUD. This extension can be used in the manufacturer certificate
802.1AR (IDevID) or deployment certificate (LDevID).

• The MUD URL Link Layer Discovery Protocol (LLDP) extension is a
one-hop local area network protocol used by end devices to adver-
tise their identities, capabilities, and neighbours. LLDP is a Type-
Length-Value (TLV) protocol that uses an Organisationally Unique
Identifier (OUI) with the vendor-specific TLV (type=127) to be used
for advertising MUD URL.

Techniques for Enforcing Access Control

Access Control List (ACL) approach is a common way for access control in
the IoT network [18]. The capability-based model assigns rights to subjects
prior to its current context [18]. However, in ACL model, access is granted
based on attributes/context that might be static or changed dynamically.
Moreover, an ACL model can be enforced at the network level. This has
the benefit that there is no need to install special libraries on clients such
as IoT devices [5]. Common ways of enforcing access control are as the
following:

Software-defined Networking
SDN mainly opens two security research directions: 1) Securing SDN

itself, 2) Enhance network security due to its desirable features such as
dynamic flow control, network-wide visibility, network programmability,
and simplified data plane [164]. However, most of the work has focused
on the second direction, where they utilised SDN to provide security so-
lutions [7] such as security configuration, threat detection, threat remedi-
ation, and network verification.

The following SDN properties motivate employing SDN for dynamic
IoT access control in a smart space.

• Dynamic flow control. With the help of SDN, we can dynamically con-

44 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

trol network flows. For example, by employing SDN, we can eas-
ily implement a network-wide firewall that not only controls traf-
fic between two network segments but also between the individual
devices in each segment. These powerful and rich SDN functions
enable dynamic flow control [15].

• Network programmability. A programmable SDN controller can con-
trol multiple data planes (e.g. router, switches). This programma-
bility allows us to create dynamic access control as an application,
reducing the efforts required to develop, maintain, and update an
access control application.

• Separation of concerns. Separating the control plane from the data
plane allows for a more modular network where switches can be
updated with a minimum update in the control plane.

• Network-wide visibility. The controller communicates with the data
plane using compliant protocols which enhance network visibility.
All data planes are connected to a logically centralised control plane
that collects network status information. Therefore, a network ap-
plication running on the control plane naturally has a view of all
connected data planes, and it can control them in a centralised way.

• Scalability. SDN paradigm is scalable enough for smart spaces. Google
has deployed SDN for datacenter backbone traffic and reports net-
work utilisation of 95% [89].

Attracted by its features, researchers used SDN to enhance network se-
curity [164], and developed security solutions under SDN, [108, 103, 169].
SDN has a set of desired properties that makes it attractive for security
researchers, including dynamic flow control, network programmability,
separation of concerns, and network-wide visibility. The security research
community have developed security solutions under SDN such as Reso-
nance, OF-RHM [87], and NetFuse. Moreover, security frameworks are

2.1. BACKGROUND 45

proposed, such as FRESCO, Procera, FortNox. However, the majority of
previous works focus on securing campus/enterprise networks and some
are general solutions [42]. Other researchers have utilised SDN for devel-
oping IoT network security solutions [72].

Few of the network security solutions are dedicated to home networks,
which left home networks far behind other networks in terms of security
and management. Among the attempts to understand the behaviour of
home networks was the BISmark project [177] which monitors and collects
continuous measurements that can help to understand the characteristics
of broadband access networks through deploying dedicated home gate-
ways. From the early works, Yiakoumis et al. [195] proposed a solution
that allows home users to prioritise their network applications. Users use a
user agent that forwards user choices to the ISP to enforce it at the last-mail
link and manage traffic inside the ISP network. More recently, Gharakheili
et al.[64] proposed a framework to use SDN for dynamic resource reserva-
tion, whereby ISP exposes API to a content provider to enable fast/slow
lanes to enhance QoS for delivered content.

Recently Xu et al.[192] proposed a bloom-filter based analytic frame-
work to identify persistent attacks towards home networks. Authors de-
ployed programmable routers to collect data over 18 months. By analysing
the data, they found that bloom-filter was able to detect long-term dis-
tributed attacks. They consider any incoming flow initiated from the Inter-
net as unwanted traffic (e.g. Scanning, backscatter, self-propagated worms
activities).

Proxy A proxy is a server between the client and the server. There are
two main types of proxies forward proxy (also known as the proxy) and
reverse proxy [34].

Forward Proxy. A forward proxy is a server that sits in front of client
machines. It intercepts all clients’ requests to the Internet and commu-
nicates with the origin web server on behalf of the clients. Figure 2.9(a)
shows a forward proxy in front of two clients.

46 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

A forward proxy is used for several reasons, including the following:

• To implement institutional browsing policies. For example, schools
and universities may use proxy to filter web sites students and staff
should not browse from within the institution’s network.

• To bypass state and institutional browsing restrictions. A proxy can
also be used to bypass browsing restrictions as the client request al-
ways goes to the proxy and not to the forbidden site directly.

• For privacy reasons. Users may not want their ISPs or the govern-
ments to know what they are browsing and they want to keep their
activities anonymous.

Reverse Proxy. A Reverse proxy is a server that sits in front of one or
more servers. It intercepts clients’ requests to these servers and creates re-
quests to the server on behalf of the clients. It is noteworthy that while the
forward proxy sits at the clients’ edge of the network, the reverse proxy
sits at the server edge of the network, see Figure 2.9. Internet and com-
municate with the origin web server on behalf of the clients. Figure 2.9(a)
shows a forward proxy sets in front of two clients.

A Reverse proxy is used to provide several benefits, including the fol-
lowing:

• Load balancing- A reverse proxy can be used to distribute a load of
millions of requests to a website to different servers at the server-
side. Hence, it prevents any single server from overloading.

• Attack mitigation- A reverse proxy can be used to hide the origin
server IP address; Hence, some attacks such as DDoS will hit the
reverse proxy instead of the intended server.

• SSL encryption- In case the origin server has limited resources and
cannot afford encryption, the reverse proxy can be configured to en-
crypt all connections to the clients while using unencrypted commu-
nications with the origin server.

2.1. BACKGROUND 47

Client-1

Client-2
Forward proxy Internet Server

Client-1

Client-2
Reverse proxyInternet Server

(a)

(b)

Figure 2.9: Proxy flow; (a) Forward proxy, (b) Reverse Proxy

2.1.6 Bayesian Networks

Bayesian Network (BN) is a probabilistic graphical model that compactly
represents the joint probability distributions via conditional independence.
It is compacted because the complete number of joint probabilities that
need to be computed is exponential to the number of variables (e.g. 2n− 1

for n binary random variables) [39] as in the equation below.

P (X1, X2, ..., Xn) = P (X1|X2, ..., X3)P (X2, ..., Xn)

The second term, P (X2, ..., Xn), needs to be expanded again the same way.
However, if X1 is independent of the rest of the variables X2, .., Xn given
X2 (conditionally independent of the rest of the variables), then this will
simplify the first term to be.

P (X1, X2, ..., Xn) = P (X1|X2)P (X2, ..., Xn)

We still need to expand the second term, but if we can find conditional
independency among the rest of the variables, then this will simplify un-

48 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

til we get a product of a set of conditional probability terms. Then, if we
need to construct the joint probability, we only need to specify the number
of conditional probability distributions that compactly represents the re-
quired joint probability. The less dependency, the more compact form we
get to represent the joint probability.

BN consists of a directed acyclic graphical model and a set of probabil-
ity distributions. A graph G is represented as a pair (V,E), where V is a
set of vectors and E is the set of edges between these vectors. If the set of
edges E is directed, we then call G a directed graph. If a directed graph
has no cycles, we call it a Directed Acyclic Graph (DAG).

BN is parameterised using Conditional Probability Distributions (CPD).
Each random variable in a BN has a CPD associated with it. The edges en-
code dependency statements between the variables, where the lack of an
edge between any pair of variables indicates conditional independence.
Each node encodes a probability distribution, where root nodes encode
univariate probability distributions and inner/leaf nodes encode condi-
tional probability distributions. Therefore, a Bayesian network is defined
as (G, P) such that.

1. A Directed Acyclic Graph (DAG) G whose nodes are random vari-
ables.

2. A joint probability distribution P of the variables in G.

3. Each node is conditionally independent of its nondescendents given
its parents (i.e. Markov condition).

Meaning if G = ((V,E), P) is given and each node is conditionally inde-
pendent of its non-descendants, given its parents. It is then said that G
satisfies the Markov condition with P , and that (G, P) is a Bayesian net-
work. Then instead of writing the joint probability as

P (v1, v2, ..., vn) = P (v1|v2, ..., vn)P (v2|v3..., vn)P (v3|v4..., vn)P (v4..., vn)

2.1. BACKGROUND 49

X8X7

X6X5

X4X3

X2X1

X10X9

Figure 2.10: Bayesian network DAG for 10 binary random variables.

It can be written as following:

P (v1, v2, ..., vn) = P (v1|Pa(v1))P (v2|Pa(v2))..P (vn|Pa(vn)) =
n∏

i=1

P (vi|Pa(vi))

Where Pa(vi) is the probability of vi parents. More importantly the
reverse is true.

Theorem If (G,P) is a Bayesian network, then P (joint probability dis-
tribution) is the product of its conditional distributions in G (i.e. P can be
represented by those conditional distributions). Therefore, BN can com-
pactly represent a joint probability distribution of many variables. For exam-
ple, if we have binary random variables n = 10, then in order to compute
its joint probability, we need to compute 210. However, using BN (which
exploits the conditional distributions), only 36 values (4*8+2*2) need to be
computed, as illustrated in Figure 2.10.

In other words, BN is a probabilistic graphical model < DAG,P >

whereDAG is a directed acyclic graph of nodes representing random vari-

50 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

ables (X1, X2, ..., Xn) and the edges represents the dependencies between
them with probability distribution P . Bayesian network simplify the joint
probability of a set of variables to be based on their parents, as following:

P (X1, X2, ..., Xk) =
k∏

i=1

P (Xi|pa(Xi))

where pa(Xi) is the set set of Xi parents.
This means that if we specify a DAG — known as the structure—and

conditional probability distributions for each node given its parents—known
as the parameters— we have a Bayesian network, which is a representation
of a joint probability distribution [39].

2.1.7 Optimisation

Optimisation means the best of something, and when optimising some-
thing, it means making it the best. Based on the problem nature, the best
could be to find the minimum value (minimisation) or the maximum value
(maximisation). Mathematical optimisation is a branch of applied mathe-
matics to solve optimisation problems.

There are three basic terms for optimisation problems:

• The objective function, f(x), which represents the output that is be-
ing optimised (i.e. to minimise or to maximise).

• Variables, X = {x1, x2, .., xn}, represent the inputs that you can con-
trol (give different values). Variables can be discrete (only have inte-
ger values) or continuous.

• Constraints, which are the conditions that limits the values that can
be assigned to the variables X . Constraints can be equality con-
straints or inequality constraints.

There are different types of the optimisation problem:

2.1. BACKGROUND 51

• Based on the variables: it is classified into continuous and discrete;
if a problem variables only make sense if they have discrete values
(e.g. subset of integers), then this problem is discrete optimisation.
On the other hand, if the variables can take any values, then this is a
continuous optimisation problem.

• Based on the constraints: it is classified into constrained and uncon-
strained optimisation problems; if there are constraints on the vari-
ables. For example the sum of variable x1 and variable x2 must be
less than 10, x1 + x2 <= 10, then this is a constrained optimisation
problem. Based on the nature of the constraints, the optimisation
problem can be linear or non-linear.

• Based on the objectives: it can be one objective or multi-objective
optimisation problem.

• Based on the data: it can be deterministic if the data are known accu-
rately or stochastic if it is not due to measurements error or predic-
tion data.

A general optimisation problem can be defined using the following
notations [11]:

x ∈ Rn : vector of decision variables xj, j = 1, 2, .., n

f : Rn −→ R{±∞} : objective function
X ⊆ Rn : ground set, such that x ∈ X
gi : Rn −→ R : constraint function defining restriction on x :

gi(x) ≥ bi, i ∈ I (inequality constraints)
gi(x) = di, i ∈ E (equality constraints)

Where the set E denotes the indexes of equality constraints and I is for
the indexes of the inequality ones.

52 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Let bi∈I ∈ R and di∈E ∈ R represent the right sides of constraints. The
optimisation problem can be formulated as follows:

minimize
x∈S

f(x)

subject to
gi(x) ≥ bi i ∈ I
gi(x) = di i ∈ E
x ∈ X

Note that if the problem is maximisation, then the sign of f needs to be
changed.

The definition above can be used to define some of the optimisation
problem as follows:

Linear Programming (LP) where the objective function is linear as fol-
lows:

f(x) = cTx =
n∑

j=1

cjxj, c ∈ Rn

and the constraints functions are :

gi(x) = aT
i x− bi, ai ∈ Rn, i ∈ I ∪ E

and the ground set is X = {x ∈ Rn|xj ≥ 0, j = 1, 2, .., n}

Non-linear Programming (NLP) where some functions f, gi are non-linear.

Integer Linear Programming (ILP) where all variables must have inte-
ger values. X ⊆ Zn or it can be binary if X ⊆ {0, 1}.

Optimisation Techniques

This section presents four optimisation techniques used in this thesis: hill-
climbing, simulated annealing, genetic algorithm, and integer linear pro-
gramming.

2.1. BACKGROUND 53

Hill Climbing

The hill-climbing search algorithm works through a loop over all move-
ments in the direction of growing value (i.e. uphill). It terminates when
it reaches the highest value, where no neighbour has a better value. Hill
climbing, also called greedy local search, does not look ahead beyond its
current direct neighbours. It progresses fast towards a better solution.
However, it suffers from being trapped at local maximum and flat max-
imum [156].

Simulated Annealing

The simulated annealing algorithm avoids sucking in the local maximum,
which the hill-climbing algorithm suffers from, allowing for moves to-
ward states with a lower value. It does not move uphill and downhill
purely in a random way, which is going to be inefficient. Simulated an-
nealing combines a random walk and hill-climbing to be efficient and to
be complete (to find a solution if there is one).

Simulated annealing takes its name from the annealing process in met-
allurgy that is used to harden a metal by heating it to a high temperature
then slowly cooling it. This process allows metal atoms to reach a desired
crystalline state. Similarly, simulated annealing mimics this process by re-
placing a current solution S with a new solution R based on a probability
P . The probability is given by a sigmoid function P (R, S, T) driven by the
difference between S and R (i.e. ∆E = (Quality(R)−Quality(S)) and also
a temperate parameter T as in the following equation.

P (T,R, S) =
1

1 + e
−∆E

T

(2.1)

The ∆E, at first, tends to accept to move to a new solution, with high
probability (random walk). Then, as time passes, it tends to move to the
new solution if it is better than the current solution with high probability
and a worse solution with low probability.

54 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Genetic Algorithm

A genetic algorithm works by generating a new state using two parent
states rather than by modifying a single state as in simulated annealing or
hill-climbing search. Genetic algorithms belong to the Evolutionary Algo-
rithms (EA) class. They use the term individual to refer to a single state
and a population to refer to a set of states. An array of bits represents each
individual.

GA starts with a random population that may contain hundreds or
thousands of individuals (solutions). The initial random individuals’ gen-
eration aims to allow different types of solutions to be represented in the
first population. Each individual is evaluated using the fitness function,
which returns a large value relative to the goodness of the individual. The
next generation is then produced using a set of the best pairs with high
probability and some random pairs with low probability. These pairs then
go through a crossover process and mutation process such that each pair
generates one new individual in the new generation. Crossover works by
randomly swapping a set of bits between parents individuals. In compar-
ison, mutation changes bits in the new individual in a random way.

Integer Linear Programming

Integer Linear Programming (ILP) conveys optimisation of a linear objec-
tive function subject to a set of linear constraints over integer variables
[35]. It is named integer to differentiate it from the continuous linear pro-
gramming where the decision variables can have continuous values. The
integer programming problem has three variances: pure integer program
when all decision variables are integers, a mixed integer program when
some but not all, decision variables are integers, and a binary integer pro-
gram when all decision variables are binary variables.

2.2. LITERATURE REVIEW 55

Integer programming problem can be formalised as in equation (2.2).

Maximise cTx

subject to :

Ax + s = b

s ≥ 0

x ≥ 0

x ∈ Zn

(2.2)

where c, b, and x are vectors and A is a matrix, and all variables are inte-
ger.

2.1.8 Summary

The basic concepts and terminologies of IoT and smart space have been
reviewed in this chapter. The IoT vulnerabilities, threats, and access con-
trol were presented in this chapter. This chapter also presented a brief
overview of reverse and forward proxy concepts, Bayesian networks, and
the least privilege principle. Moreover, optimisation problems and tech-
niques were also introduced.

2.2 Literature Review

This section reviews the literature for the three following contribution
chapters (i.e. Chapter 3-5) as follows:

2.2.1 User Role in IoT Access Control

Based on user role in access control, there are two main categories of re-
search in IoT access control. The first research direction focuses on the
technical side of automatic access control and ignoring users input. Moti-
vated by uplifting any security input from users, previous works focus on
proposing new solutions that tackle the security without involving users.

56 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

For example, IETF proposed Manufacturer Usage Description (MUD) to
define network requirements policy that defines explicitly what legitimate
connections an IoT device can make [101], see Section 2.1.5. Previous re-
search has investigated generating IoT policy (i.e. similar to MUD pol-
icy) automatically without relying on the manufacturers [73, 17, 172]. The
proposed approaches generate an access control profile for IoT devices by
monitoring their benign traffic during the learning phase and then enforc-
ing it in the deployment phase. Others combined MUD with an Intrusion
Detection System (IDS) to mitigate threats against IoT [72] while some only
rely on IDS to detect and mitigate threats using SDN [196, 98, 20]. Other
research attempted to simplify the interactions between IoT devices in or-
der to reduce the complexity of IoT networks and simplify access control.
Following this approach, S. Goutam et al. [70] proposed an approach that
categorises IoT devices into controllers (e.g. Hubs) and non-controllers. It
allows local cross-device connections only between controllers and non-
controller and prevent it between non-controllers devices.

The second category of research used some form of user input to de-
rive IoT access control [131, 144, 92, 104, 193, 185]. For example, in [92],
authors integrated RBAC with social network services and allowed end-
users to define personalised access policy to govern device sharing. Others
proposed methods that allow users to specify their safety policy [104] and
physical security policy [193]. Neto et al. [131] proposed user data in an
attribute-based authentication system for IoT device life-cycle. Trimanada
et al. [185] proposed Vigilia, a device-based network access control sys-
tem that uses IoT app (e.g. SmartThing App) code to derive access control
policy. It then asks the user to configure the concrete device instances that
they are using to enable appropriate policy enforcement. Moyano et al.
[120], proposes a user-centric SDN management architecture that includes
giving users manual access control on the network access for devices in
their network.

The predefined policy can not be fine-grained enough to capture all

2.2. LITERATURE REVIEW 57

types of interactions between IoT devices. This is because the connections
between the devices depend on the user activities they are running, which
can not be defined beforehand. Moreover, locally monitoring and learning
IoT devices interaction [73, 196, 17, 172] may not exhaust all devices func-
tionality set during the observation period, or the behaviour may change
following a change in the automated activities, which requires re-training.

Recent studies show that users are interested in contributing to their
smart space security. Haney et al. [75] interviewed 40 smart home users,
out of which 10 wanted more control over their devices. In this research,
one user said “I’d like to have the ability to potentially allow or disallow
the functionality of all these devices, maybe at given times. I’d like to be
able to define what are allowable communications or protocols”.

Motivated by [72, 102] Al-Shaboti et al. [5] have proposed a new IoT
framework that integrates existing security services such as IDS and en-
ables users to customise pre-defined policies through manual access con-
trol rules. They tested the validity and the feasibility of their framework
using a smart home IoT testbed which shows its usefulness in reducing the
attack surface through enforcing user-defined fine-grained access rules.

2.2.2 IoT Access Control and User Preference

Users prefer to use a different brand of IoT devices based on various fac-
tors that include security [75], privacy [199], and quality of the devices.
Therefore, user preference implicitly includes user security and privacy
requirements. With the increase in the amount of data collected by IoT
devices, users are concerned regarding their privacy and data security.
They express their concerns about their preferences to use these IoT de-
vices in a different context. A recent study [125] shows that users have
different preferences on various IoT when used in various scenarios, and
this preference can be modelled and predicted. Bayesian networks [39]
is reported to be an effective approach to build user preference model

58 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

[153]. Context-aware access control has been investigated by many re-
search [147, 18, 91, 8]. For example, in [147, 8] authors proposed a proac-
tive rule engine that activates access control rules based on context con-
ditions. However, there is a lack of research on IoT access control that
considers user preference.

User Activity Representation

User activity is often represented using a flow-based programming [19]
which defines the activity as a workflow of wired processes representing
IoT devices and communicate through passing messages between them.
This representation is common and supported by many IoT frameworks
such as NodeRed [142], Mozilla Gateway [121], and Microsoft flow [52] to
realise network activity automation. The concept of activity automation
and flow-based programming is introduced in sections 2.1.2 and 2.1.2.

Researchers used activity workflow to optimise network performance
[178, 65] and to check unintended actions [187, 193, 196, 104, 126, 27, 28].
Users activities are used to optimise latency and reduce bandwidth and
utilise fog computing to enable distributed processing of activity work-
flow [178, 65]. Other research used automated activities to check unin-
tended vulnerabilities due to the complexity of having many activities
[187, 193, 196]. Wang et al. [187] analysed user activities to identify their
security risks due to inter-activity vulnerability. Others [193, 196, 104] used
policies to prevent such vulnerabilities when users create their activities
proactively. Liang et al. utilised IoT workflow to ensure safety by verify-
ing that any flow must never violate the safety policy [104]. Authors in
[126, 27, 28, 43] proposed analysis systems that check workflows to vali-
date safety and security properties.

Researchers have studied the possibility of automatically predicting
users activity [151, 191]. Rashidi et al. [151] proposed Apriori algorithm to
detect activity patterns in a smart home environment to automate users ac-
tivities. Similarly, [191] used Bayesian networks to learn and predict users

2.2. LITERATURE REVIEW 59

activities which can be used to generate personalised activities. These
works focused on predicting and automating users activities which can
be represented as workflows to be used as an input in our work (Chapter
4 and 5).

User activities are represented as workflows that are tied to a set of
concrete underlying devices [65, 178, 142, 121]. This representation im-
plies that an activity can only be fulfilled by exactly the same collection of
devices specified in the workflow [142, 121].

Policy Generation

Existing works using offline/pre-defined policies such as MUD [101] are
not sufficient for dynamic IoT environments [72]. The MUDs are defined
offline by IoT vendors to specify what network access is required for a par-
ticular IoT device to work properly [101]. However, pre-defined policies
are generally not fine-grained enough, especially for local connections, as
they depend on how users are using their IoT devices to fulfil their activ-
ities. The best that a MUD can do is to restrict access between IoT devices
by a specific manufacturer, which is coarse-grained access.

One approach to automatic policy generation is to capture all types of
benign traffic in relation to any targeted offline IoT devices and then parse
the captured traffic to generate a policy to be enforced in the deployment
[73, 172]. Although this approach can generate fine-grained policies, it re-
quires the training process to cover all possible communications a device
can do to determine precisely all allowed local endpoints. This is infea-
sible for many IoT devices, as it depends on how they are used at the
application level.

Some research has been done to automatically generate more fine-grained
IoT policies according to devices that are being used to support users’ new
and ongoing activities. An example of such a method is proposed by Tian
et al. [181] where access control is driven from the semantic of IoT apps
source code, code annotation, and capability request. This work focuses

60 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

on an app that controls an individual IoT device intending to prevent it
from a behaviour different than it should. However, similar to the MUD,
it mainly focuses on individual device behaviour and does not consider
when multiple devices are used together to fulfil user activities.

In view of this problem, Al-Shaboti et al. [4] developed a new tech-
nique for fulfilling user activities using a user preference model to auto-
matically generate IoT policy for these activities.

2.2.3 Multi-User IoT Sharing

The related work on IoT sharing and sharing policy language are pre-
sented below.

IoT sharing

Recent research has explored how users share their IoT devices [198, 58,
62] and suggests that sharing is influenced by trust between users, con-
tent accessed on the shared device, and accountability [58]. For example,
guests may not be allowed to change the device configuration or use a
Smart Speaker for purchasing goods, however, they may use it to play
music.

Grag et al. [58] conducted a dairy study to show the preferences and
constraints of sharing IoT devices. Users tend to share IoT devices with
their family members as well as friends, co-workers, and guest. There are
some policies reported in this work on how users coordinate their use of
shared devices. Owners define how they want to share their devices, and
they agree with the other users on these based on trust. They define with
whom they want to share their devices (e.g. family members, guest users),
and how they should use the shared devices. For example, owners may
allow Alexa to be shared with their kids for homework tasks but not to be
used for purchasing function. For privacy issues, users do not share their
IoT devices for any functions that require access to personal data such as

2.2. LITERATURE REVIEW 61

calendar and email if they are sharing the same account [58]. Others create
separated accounts for each user if it is supported by the device to protect
their personal data [62].

Jang et al. [90] have studied the problems that arise when multi-users
use the same IoT devices. This research suggests that users expect devices
to be accessed based on the functions they need to fulfil. Also, it suggests
that the primary user (e.g. owner) needs to be able to control the privileges
of other users. Authors in [62] studied the interactions between users and
devices in a smart home. They observed that the person who installs IoT
devices has an outsized role over other users.

These works help us understand users sharing mental models and guide
our design for the sharing policy language.

Policy language

Most of the existing policy languages are technical and designed for net-
work administrators and not for smart space users [99, 128]. Lara et al. [99]
proposed a human-readable network policy that allows users to define
alerts with network service and determine what security reaction should
be taken. These policies require an expert to write a policy (what flow,
what service, what reaction) and do not meet the requirements of ordi-
nary smart space users.

There are a few special-purpose policies that are developed for smart
space users. Yahyazadeh et al. [193] proposed EXPAT a system that allows
users to use a policy language to express their expectations on how their
IoT should work. Authors develop a policy language to enable users to
express their expectations to avoid any physical breach. Users expecta-
tions focus on the outcome of the ongoing user activities automaton and
not on expressing their sharing condition. Motivated by this work, we de-
velop our sharing policy language for the purpose of expressing sharing
decisions (presented in Chapter 5).

Authors in [198, 160] implemented a flexible access control mechanism

62 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

that enables users to enforce role-based and location-based access control.
Similarly, Jang et al. [90] proposed to use a user profile mechanism to deal
with multi-user IoT. They used a role-based access model where they de-
fined three roles that are associated with three privilege levels. Although it
uses roles to give different access levels (e.g. admin users only can config-
ure the device), users who have access can use any device’s functionality.
It also does not consider cross-device communication.

Another traditional model is the Chinese Wall model [22] which pre-
vents resources that belong to the same Conflict of Interest (CoI) class to be
used together. Similarly, if a user sharing policy is to prevent a user from
using his device another user’s device, then both users’ devices will be in
the same CoI class. However, a multi-user shared environment is more
dynamic, and with hundreds of devices, the Chinese wall is not efficient
and flexible enough to manage it.

2.2.4 Summary

This section introduces the related work on the three contribution chap-
ters. First, it looks to the related work on using user input to derive fine-
grained access control decisions. Second, it reviews relevant research on
user activity representation as workflow, user preference, and its relation
to the IoT access control. Third, this section reviews the related research
on multi-user IoT sharing and relevant policy languages.

Chapter 3

User-Centric Smart Space Access
Control Framework

3.1 Introduction

Smart space IoT devices often have coarse-grained access to the network,
which makes the network vulnerable to various threats that can exploit
IoT vulnerabilities. The malicious/compromised IoT devices are a threat
that can exploit their network access to infect/compromise other IoT de-
vices. This threat can be mitigated by applying fine-grained network ac-
cess control to only enable an IoT device to communicate with the required
devices based on user usage. This problem can be tackled from a technical
point through enforcing the principle of least privilege (see Section 2.1.5),
explained in 2.1.5. Many system have been proposed to control devices
access to the network [101, 73, 17, 172, 70]. Access control is often applied
in the network layer as it can be enforced across all types of IoT devices.

The majority of these methods ignored user input and are not efficient
in capturing inter-device interaction. In other words, those methods de-
signed to limit each individual device access to what it is manufactured to
do using policies such as MUD policy [100, 101] (see Section 2.1.5). It is
not easy to enforce access control based on how these devices are actually

63

64CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

used without considering user input. This chapter focuses on enabling
fine-grained access control in smart pace by supporting user access con-
trol input to customise IoT policies. Furthermore, a malicious device can
still be a threat to the devices it has access to, after applying user policy.
It can launch different attacks against other IoT devices such as a MITM
attack using ARP spoofing or login brute force attack. This chapter intro-
duces two security services that can be integrated with the framework to
mitigate these attacks. In particular, ARP server to mitigate ARP spoof-
ing attack and IDS to detect active attacks such as login brute force. It is
worth noting that rule conflict problem can occur; however, this problem
is well investigated in the literature. Methods such as the one in [186] can
be used to detect potential rule conflict before committing a new rule. A
smart home scenario will be used in this chapter as a typical smart space
to present the framework and its components.

3.1.1 Chapter Goals

Motivated by a) the limited user control to enforce access control on the
smart space and b) the SDN features such as centralisation, programma-
bility, and the fine-grained network access control ability, a new frame-
work is developed to allow users to customise IoT pre-defined policies
and integrating these policies with common network security services.

This chapter aims at addressing the following objectives:

1. Developing a framework that enables fine-grained access control by
allowing users to customise IoT pre-defined policy in smart space
using SDN. The framework supports the users to control what de-
vices can join their network, and they can see a visual representation
of the network topology and the access rules on each link between
their devices. Moreover, the framework also incorporates existing
security services such as IDS.

2. Developing ARP spoofing mitigation technique and integrating IDS

3.1. INTRODUCTION 65

with SDN to mitigate ongoing attacks. A novel SDN-based approach
to mitigate malicious IPv4 ARP spoofing will be presented using an
ARP server as a security service. ARP spoofing results in numerous
attacks, of which the most noteworthy one is the Man-in-the-Middle
(MITM) attack, host impersonation and DoS attacks. A trusted ARP
server to all ARP requests using a pre-configured dataset of IP and
MAC entries. Previous works proposed ARP mitigation as a control
plane application which leverages port ACLs to permit hosts to send
ARP packets with its IP/MAC combination [130, 37]. However, it
cannot be applied to situations where more than one IP/MAC are
associated with the same port (e.g. WiFi, virtual machines environ-
ment). Moreover, results in [130] show that ARP requests arrival
time to the controller goes up to 14 seconds when ARP flooding at-
tack is in progress which may cause DoS against the controller. The
advantages of the ARP server are: (1) Secure ARP operations; (2)
Eliminate the ARP broadcast messages; (3) Ease the legitimate ARP
spoofing (e.g. ARP proxy) by configuring the ARP server. We show
how the packet processing delay problem can be mitigated using
high-speed packet processing technology. Moreover, automatic at-
tack mitigation service is developed using IDS and SDN where the
IDS is used to inspect network traffic and sends security alert to the
framework which uses SDN to apply access control on the suspicious
connections.

3. Demonstrating the feasibility of the proposed framework and its flex-
ibility of supporting security services such as the ARP server and IDS
through smart home IoT scenarios. Validating and evaluating the
performance of the ARP server using Python Scapy library and Data
Plane Development Kit (DPDK) implementations. Also, validating
the IDS integration with the framework using a testbed scenario.

66CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

3.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 3.2 presents
the IoT fine-grained access control framework, pre-defined IoT policies,
and user policy use cases. Two security services (i.e. IDS and ARP server)
are described in Section 3.3. The framework prototype implementation
and validation is presented in Section 3.4. The same section also presents
security services evaluation and validation. Section 3.5 concludes this
chapter.

3.2 Access Control Framework

3.2.1 The Framework Requirements

The framework imposes some requirements in order to achieve its goals
as follows:

• Pre-defined access policy. Apply pre-defined IoT device policies,
such as MUD, as base-line policies that can be overwritten later by
users access rules.

• User-defined access control. Provide users with the ability to de-
fine and enforce network access rules that facilitate internally (within
the network) and external (to/from the Internet). User rules should
overwrite the pre-defined policies. To enable users to effectively
exercise their control the framework should provide the following
functions: (a) Lists the joined devices and the associated internal and
external access policy (display the current network state); (b) Allows
users to add/remove existing access rules for any device in the net-
work; (c) Provide a visual map for the network topology and the
network policy on each link in the network to convey the network
policies to users in a simple way.

3.2. ACCESS CONTROL FRAMEWORK 67

• Security services integration. The framework has to be able to inte-
grate with local and remote security services. Such that it can exam-
ine the relevant network traffic and provide the corresponding secu-
rity decision. This requirement will allow the user to delegate differ-
ent security functions to different security providers, unlike previous
solutions where all security functions are delegated to one provider
(e.g. ISP).

In order to support these requirements, SDN technology has been cho-
sen as a key technology to implement the framework due to its programma-
bility feature. SDN controller can easily enforce Network Access Control
(NAC) by pushing OpenFlow rules into the data plane in a dynamic way.
Also, Network Function Virtualisation (NFV) for security services.

3.2.2 Framework Design

The framework is shown in Figure 3.1 which includes both local and re-
mote components as follows:

1. Data plane is the actual hardware switch that all IoT devices are
communicating through it.

2. SDN controller is the main component responsible for enforcing net-
work access control on the data plane through OpenFlow protocol,
see Section 2.1.3 for more details about SDN architecture. The SDN
controller is utilised by the framework security agent to enforce ac-
cess control.

3. Security agent is an interface between the SDN controller at one side
and the other security services from the other side (i.e. user control
panel, IoT policy manager, and local/remote security services). It
plays an important role to fulfil the security integration requirement.
Security agent receives the access control rules from the user control

68CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

panel, IoT policy manager, and the security services, then it config-
ures the SDN controller to enforce these rules in the data plane. It
also controls packet forwarding/mirroring to local and remote secu-
rity services.

4. User control panel is used to get user access rules and pass them to
the security agent. It shows the current status of the network policy,
the devices in the network and allows users to customise these poli-
cies. The user manually enters rules similar to one that are used in a
home router firewall.

5. Remote dispatcher is a local component that is used to process all
mirrored packets and forward them to the corresponding remote se-
curity service based on the security agent instructions (i.e. dispatcher
control messages).

6. Security services are local and remote systems that provide security
functions. A security service examines network traffic and generates
security alerts back to the security agent. It can be a local security
service such as IDS, or it can be a remote security service such as
secure DNS and Secure Web Gateway (SWG).

3.2.3 Framework Design Decisions

The rationale behind the framework components design is as follows.
The security agent and dispatcher have a different responsibility, and

single responsibility design principle is applied to separate them. The se-
curity agent function is to enforce the network policy through the north-
bound controller API as a response to the received alerts, and the input
from users access rules and IoT policy manager. A low-cost controller can
handle up to 10,000 new flow per second, as stated in Ethan experiment
[24]. However, for applications that require processing per packet, a good
option is to forward such packets to a specialised node (i.e. NFV) and not

3.2. ACCESS CONTROL FRAMEWORK 69

Security Agent SDN Controller

Data plan
(Switch/WiFi AP)

Remote dispatcher

Local
NFV Security service

Remote
NFV Security service

Policy ManagerControl Panel
pre-defined

 policies

dispatcher
control

security alerts

mirror

mirror

ctrl channel

Northbound
API

security alerts

LAN
User

Figure 3.1: The proposed framework

overload the controller. Therefore, NFV dispatcher works by forwarding
the traffic based on the security agent dispatch control to security services.
The dispatcher node forwards selected traffic for further inspection. For
example, the security agent mirrors the traffic to the dispatcher to be for-
ward to a DNS inspection security service. If a malicious DNS traffic is
detected, the security service sends alert to the security agent, which then
installs appropriate rules to block or quarantine the suspicious hosts.

Separating the security agent from the controller has several advan-
tages: (a) it keeps the controller simple to perform its primary task (con-
trols the data plane) and not interfere with direct interaction with inputs
from users, IoT manager, and security services; (b) Security agent becomes
independent from the controller; hence, any SDN controller can be used;
(c) The security agent and the controller can be updated or upgrade inde-
pendently without interfering each other.

Due to the scalability problem in the SDN control plane, the dispatcher
is designed as NFV. The dispatcher needs to parse mirrored network traf-
fic and forward them to the security services. Developing such application
in the control plane may exhaust the control plane resources (i.e. control

70CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

channel bandwidth, controller CPU and memory) since all requested net-
work traffic have to be passed to the controller through the control channel
(PACKET IN), [79].

3.3 Network Security Services

To mitigate threats that are not captured by the security policies, two se-
curity services have been developed, namely, ARP server and IDS.

3.3.1 IPv4 ARP Server

IPv4 ARP server has been proposed as a security service to mitigate ARP
spoofing attack. It also shows how security services can be integrated into
the proposed framework. ARP spoofing is a common way to launch a
MITM attack. This motivates researchers to propose different solutions.
A recent study shows that two of the major OSs (i.e. Windows and Ap-
ple MAC) are vulnerable to the ARP poisoning [184]. That means IoT that
runs an embedded version of these operating systems are even more vul-
nerable.

There are at least two options to mitigate IPv4 ARP spoofing using
SDN. One option is to build an application on the control plane to enforce
flow rules at the switch ports to drop spoofed ARP reply. However, more
than one host may be connected to the same port (e.g. WiFi). Moreover,
the control plane is not an ideal place to implement data plane processing
functions [79]. Alternatively, the ARP server can be designed as an NFV
security service node. The advantages of using this method are that a
trusted ARP server can provide three main functions:

1. Secure the ARP operations by providing ARP replies through a trusted
entity. For example, in case where there are malicious hosts on the
network, if a forged ARP reply is sent, it will be dropped by the

3.3. NETWORK SECURITY SERVICES 71

switch. This is because all ARP replies are only allowed to come
from the ARP server which mitigates malicious ARP spoofing.

2. Eliminate the ARP broadcast messages, as all ARP requests will be
forwarded to the ARP server only. For example, in a network with
tens or hundreds of hosts, ARP requests will be forwarded to the
ARP server only, rather than being broadcasted to all hosts; hence,
save the bandwidth and mitigate against passive discovery where a
malicious host can discover existing devices through their ARP re-
quests.

3. Ease the legitimate ARP spoofing (e.g. ARP proxy) as it can be im-
plemented in the ARP server. For example, in some cases gratuitous
ARP requests are required for setting a backup server to take over
for a defective server and transparently offer redundancy. This can
be done in a controlled and simple manner using the trusted ARP
server.

The ARP server can utilise the DHCP leases file to build the ARP table.
We assume if any static IPs are required, then they are reserved through
the DHCP server as such they are included in the leases file.

3.3.2 Intrusion Detection System (IDS)

IDS is used as a use case of a dynamic local security service that inspects
network traffic and sends security alert to the security agent on any sus-
picious connection. The goal is to mirror IoT network traffic to an IDS,
which inspect the traffic (e.g. looking for password guessing attack) then
alert the security agent. The security agent receives the security alert and
uses the SDN controller to block the connection or/and quarantine the
compromised host.

Figure 3.3 shows how the framework can incorporate IDS as an NFV.
For example, if a malicious host sends a malicious traffic to another host

72CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

(a) ARP operation with ARP server

(b) Conventional ARP operation

Figure 3.2: ARP operation with/without ARP server

in the network, the switch will mirror this packets to the IDS. Although
the first few packets will reach the destination host, the IDS will notify
the Security Agent which then installs deny rules in the SDN controller.
Finally the SDN controller will install OpenFlow rules in the switch to
block the malicious traffic.

3.4. EVALUATION 73

: host : Security
Agent :SDN CTL :Switch :NFV (IDS): Malicious host

Drop
malicious
traffic

Malicious traffic
Mirror

Security alert

Block Rule

OF block rule

Malicious traffic

Malicious traffic

Figure 3.3: IDS integration into the framework for automatic access con-
trol.

3.4 Evaluation

In this section, a smart home scenario is built as a typical smart space to
validate and demonstrate a prototype of the proposed framework. Three
common attack activities have been used to validate the framework: net-
work scanning, ARP spoofing, and malware file transferring.

We start by presenting the experimental setup. Then three experiments
are conducted to (1) validate the network fine-grained access control using
three scenarios; without any access control, with IoT device policies, and
finally with user access rules; (2) validate the security services integration
with the framework; (3) Evaluate the performance of a typical smart space
OpenFlow-enabled switch.

3.4.1 Experimental Setup

Figure 3.4 illustrates the experimental setup of a smart home which in-
cludes the following:

• An OpenFlow-enabled switch (TP-link) runs Open vSwitch (OVS).

74CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

The switch supports WiFi and Ethernet connection and connects the
smart home network to the Internet.

• A gateway and DHCP server runs in a raspberry Pi3.

• An Android smartphone that is used by the user to access the net-
work control panel.

• A laptop runs Windows 10 operating system represents a general-
purpose device.

• Ubuntu server runs the security agent and the web server that hosts
the user control panel.

• A Kali-Linux Virtual Machine (VM) that imitates a malicious IoT de-
vice (it will be considered as a malicious IP-camera). The IoT ma-
licious activities do not rely on any VM capabilities and were only
implemented using virtual machines due to limited availability of
resources.

• An open-source SDN controller (Faucet) is running in a raspberry
Pi3 and control the OpenFlow switch via an Ethernet link.

The hosts are shown with the associated services running on each to
illustrate later what services are accessible by the malicious IP Camera
under in each experiment.

The framework is implemented using Python and hosted locally in the
Ubuntu machine including the security agent, a simple version of IoT us-
age policy manager, user control panel, and the ARP server. The IoT usage
policy manager retrieves MUD files from a local directory, compile it into
Faucet ACL and sends it the security agent to be applied. The user control
panel is implemented as a web application that is accessible through user
Android mobile and it offers four functions:

1. Display the joined devices attributes (i.e. name, IP, MAC).

3.4. EVALUATION 75

Figure 3.4: The smart home setup

2. Lists the blocked devices: those devices that are trying to connect but
not permitted by the user to join the network. Figure 3.5 shows the
main page users presented to after they log into the system.

3. Lists the current network access policy here the user can add access
control policy for any joined device.

4. Visualise the topology of the current network connection along with
the policy applied for each link. For example, Figure 3.6 shows the
devices connected in the network, the links between them, and for
each link it shows the protocols allowed between the corresponding
pair of devices.

The ARP server is hosted on a virtual machine inside the Ubuntu ma-
chine and has a dedicated network connection to the switch.

3.4.2 Network Access Control Validation

The risk associated with no access control, IoT policy only, and IoT policy
with user access rules are all demonstrated as follows:

76CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

Figure 3.5: Main user control panel: Joined devices

Figure 3.6: Visualised access policy.

Without Access control

In this test, the switch has been running without any access control be-
tween the devices inside the LAN, which means IoT devices joined the
network with full access to any other device in the network and vice versa.
To demonstrate the risk associated with such settings LAN and WAN scan
have been performed using a malicious IoT device (i.e. Kali VM) to dis-
cover the available services. The Kali Linux imitates a malicious IP camera
and uses nmap command (nmap -sS -Pn 192.168.10.14,58,64,254) to scan the
top 1000 TCP ports on the LAN network [110]. Nmap options are -sS for
SYN scan and -Pn to scan without pinging. Scanning results are sum-

3.4. EVALUATION 77

marised in Table 3.1, not surprisingly all TCP services on the networks
were accessible, see Figure 3.4 to find the available network services in
each host. The same scanning experiment is repeated on an Internet host
(i.e. hackthissite.org is a public host deliberately vulnerable and used for
educational purposes). Table 3.2 shows the scanning results where the IoT
can access the host through all the available network services. From the
two tests (i.e. LAN and WAN scan) it is clear that a compromised IoT de-
vice can be used for malicious activities, if compromised, either against
the local network or the Internet hosts.

Table 3.1: TCP port LAN scan results

Target Services
(Optiplex 9020) 22/ssh, 139, 445, 5000/(HTTP)
Net-PC 135, 139,445, 6000
Android None
piDHCPServer 22/ssh, 53/domain

With Pre-defined IoT Policy

In this experiment, the IP camera MUD policy is generated by online util-
ity [100] to validate enforcement and discuss security improvement.

The MUD access policy allows local connection to and from the cam-
era and restricts its external connections to only www.hackthissite.org (im-
itates the Camera cloud service) using TCP port 443. The MUD file is
imported through the IoT usage policy manager, which then gets com-
piled into OpenFlow rules and installed by the security agent in the switch
through the Faucet controller.

To validate the functionality of the IoT policy, we repeated the scan
in the previous experiment again (i.e. nmap scanning). When ip-cam.json
MUD file is applied, nmap reports that ports 22 and 80 are filtered which
means they are blocked by an intermediate entity (i.e. the switch), and

78CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

only port 443 is accessible, as shown in Table 3.2. Therefore, MUD reduces
the potential threat of the IoT to the Internet by limiting its Internet access
to the least required access. With respect to the LAN connections, MUD
allows full access to the IP-camera from any device (e.g. laptops, tablets,
smart-phones), since this depends on which devices users are using with
the camera.

Table 3.2: TCP port WAN scan results

Target Services MUD
hackthissite.org 22/ssh, 443/HTTPS, 80/HTTP None
hackthissite.org (22, 80) filtered, 443/HTTPS open ip-cam.json

With User Access Rules Input

As we discuss above, the IP-camera MUD allows any available device
in the network to access it. As the manufacturer cannot specify if a mo-
bile/pc/laptop is allowed to connect or not, user access rules will be ap-
plied here to show how it reduced LAN attack surface. Users may want to
restrict access to their IP camera to only a specific host.

In the proposed framework, users can leverage the control panel and
check the current access policy for the IP-camera and modify the access
permissions as required. For example, in Figure 3.7a users allow TCP con-
nection on port 5000 from their desktop (Optiplex 9020) to the IP-camera
(i.e Kali), and block any other connections as shown in Figure 3.7b. A final
access policy is displayed in Figure 3.7c. The scan is repeated on the net-
work to verify that the system enforces user’s rules, and how they reduce
the attack surface. Scan results in Table 3.3 show that only port 5000 is
accessible and all other network services are blocked.

Video footage for the prototype demo that shows the topology and ac-
cess control visualisation is available here [2].

3.4. EVALUATION 79

(a) User allows access to the IP-camera TCP port 5000

(b) User blocks any access to the IP-camera

(c) Access list view for IP-camera

Figure 3.7: User control panel: DAC enforcement

3.4.3 Security Services

The two security services are tested; the proposed ARP server perfor-
mance is evaluated against the conventional ARP broadcasting operation,
and the Zeek IDS integration with the framework is validated.

Table 3.3: TCP port LAN scan after DAC

Target Status Services
(Optiplex 9020) Up 5000/(HTTP)
Net-PC Up None
Android Up None
piDHCPServer Up None

80CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

ARP Server Evaluation

This test measures the performance of the proposed ARP server 3.3.1 un-
der different load compare to the normal ARP operation. The ARP server
initially implemented using Python3 Scapy library. However, it doesn’t
scale as its performance declines as the number of hosts increases. Then
ARP server is implemented using the Data Plane Development Kit (DPDK)
[149]. DPDK is a network acceleration technology that contains a set of
data plane libraries and network drivers. It allows an application to pro-
cess packets directly and bypass the kernel; hence, it reduces the packet
processing time.

SDN controller (i.e. Faucet) installs OpenFlow rules into the switch to
forward all ARP packets coming from any host to the ARP server port.
These OpenFlow rules are installed only once during the setup and will
forward all ARP requests to the ARP server physical port. For example,
as shown in Figure 3.8, if host H1 sends ARP request asking for host H2’s
MAC, its request will be forwarded to the ARP server instead of being
broadcast to all hosts. Then ARP server works by consulting its ARP Table
and form an ARP reply packet with its own MAC address in the Ethernet
frame sender field and with the corresponding MAC and IP in the ARP
sender header.

: Host2 :Switch :ARP Server: Host1

Broadcast ARP request
ARP Request

Malicious traffic

Figure 3.8: ARP server operation.

The experiment was conducted using Mininet, with two setups similar

3.4. EVALUATION 81

to Figure 3.2; one without ARP server (i.e. conventional ARP operation)
and the other with ARP server. For each setup, the number of hosts starts
with ten hosts and increases to 50 hosts. Linux Arping utility is used to
generate parallel ARP requests to measure if ARP server can scale. Arp
request is created such that each host is arping the subsequent host (i.e. h1
is arping h2, h2 is arping h3, and so on).

Figure 3.9: ARP response time (DPDK ARP server vs conv. ARP operation)

Results in Figure 3.9 show that the ARP response time using DPDK
ARP server is slightly higher compared to the conventional ARP by 50µs.
For both settings (e.g. conventional ARP and ARP server) there is no sig-
nificant impact of an ARP load up to 50 parallel ARP requests, as all ARP
responses are between 0.5ms and 0.6ms. However, results were different
from the Python ARP server implementation. Figure 3.10 shows that the
ARP response time of the Scapy ARP server is significantly higher (70ms
and more) than compared to the conventional ARP and DPDK ARP server
(less than 0.6ms when runs on a single core @3.60GHz). DPDK ARP server
outperforms the centralised ARP server in [31] in which the ARP server

82CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

was implemented as an application in the control layer and gave response
time of 80ms for 25 hosts.

Scapy ARP server is also highly affected by the number of parallel ARP
requests, as it starts to drop ARP packets when there are 30 parallel ARP
or more (see Figure 3.11). ARP server also tested against ARP spoofing
attack and experiment shows that all fake ARP packets sent by attacker’s
host have been dropped the switch as only ARP response accepted from
the ARP server physical port.

Figure 3.10: ARP response time (Scapy ARP server)

IDS Integration Validation

Unlike the ARP server, IDS is a security service that is integrated with
the proposed framework to enforce access control rules dynamically. The
testbed implemented using Docker containers to run Zeek IDS, Faucet
SDN controller, and Python script (represents the security agent of the
framework) as shown in Figure 3.13. Two more containers are used to
represent two IoT devices where one is compromised and trying to spread
malware using HTTP protocol in the network. Faucet is configured to mir-

3.4. EVALUATION 83

Figure 3.11: Scapy ARP server performance with the increase of number
of hosts

ror all traffic to Zeek IDS. Zeek is configured to check for any malicious file
with a specific hash value using the Zeek script in Figure 3.12.

For sake of illustration, an HTTP request is sent from host2 to fetch the
malicious file from host1. The HTTP response carrying the malicious file is
captured by Zeek and triggers its hash file event that forward a malicious
file alarm to the security agent script, see Figure 3.12. The security agent
successfully processed the alert and updated the Faucet ACLs by adding
a new rule that drops any new connections from the compromised host.
The source code of this testbed is available in the GitHub repository [3].

3.4.4 OpenFlow-enabled Switch Performance

The goal of this test is to quantify the bandwidth of the peer-to-peer Eth-
ernet/WiFi connections in the LAN network and to study the effect of the
NAC on the network performance. A commonly used utility (i.e. iperf)
is utilised to measure the TCP and UDP performance between two Rasp-
berry Pi3 (model B v1) that represent two IoT devices (e.g. Camera stream-

84CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

event file_sniff(f: fa_file, meta: fa_metadata)

{

if (! meta?$mime_type) return;

if (meta$mime_type == "application/x-executable")

Files::add_analyzer(f, Files::ANALYZER_MD5);

}

event file_hash(f: fa_file,

kind: string, hash: string)

{

if (kind== "md5"

&& hash == "8e5b325156981e0bcba714dc32f718c5"){

print "Bash binary file md5!";

for (cid in f$conns)

{

drop_connection(cid, 3600 secs);

}

}

}

Figure 3.12: Malicious malware event trigger.

ing to a smart TV).

Two setups are used; one for WiFi link and one for Ethernet link. The
two Pis are connected to the switch through WiFi and in another setup via
Ethernet ports. In each case, the bandwidth of the link is measured under
no access control rules enforced, and when the access is restricted to the
TCP/UDP iperf port. As Table 3.4 shows network access rules have no
significant effects on the switch neither in the Ethernet connection nor in
the WiFi links.

3.4. EVALUATION 85

Security Agent
(python script)

Faucet
SDN Controller

Data plan
(Switch/WiFi AP)Zeek IDS

mirror

ctrl channel

Northbound
API

security alerts

host2host1

Malware

http response

Figure 3.13: Zeek IDS and Faucet SDN controller integration for automatic
access control.

3.4.5 Evaluation Summary

Deploying IoT without access control policy in place poses high-security
threats to the internal and external network. Enforcing MUD policy can
reduce the external and internal attack surface. However, it has coarse-
grained internal access which can be customised using user access control.
IPv4 ARP server validation shows that it protects against ARP spoofing
and its DPDK implementation performance was sufficient for the smart

Table 3.4: Bandwidth With/without NAC

NAC No NAC Restricted NAC
Conn.
type

TCP UDP TCP UDP

Eth to Eth 94.1
MB

1.05
MB

94.1
MB

1.05
MB

WiFi to
WiFi

21
MB

1.05
MB

20.8
MB

1.05
MB

86CHAPTER 3. USER-CENTRIC IOT ACCESS CONTROL FRAMEWORK

home network. A packet processing services such as ARP server need a
special processing driver to reach the packet faster such as DPDK. Net-
work access rules have no performance effect on a typical OpenFlow-
enabled switch.

3.5 Conclusion

In smart spaces, users play an important role in protecting their devices.
This chapter presents a new framework that incorporates users’ access
rules to customise pre-defined IoT policies (e.g. MUD policies) to enable
fine-grained access control. Furthermore, the framework also integrates
network security services. Two network security services have been pre-
sented as examples of network security services. An IPv4 ARP server is
presented as a security service that works within the framework to miti-
gate ARP spoofing attacks. In addition, IDS service is used to show the fea-
sibility of integrating existing security solutions into the proposed frame-
work.

The proposed framework is evaluated using a smart home scenario
and results show its usefulness in reducing the attack surface. Further-
more, the results indicate that the DPDK ARP server was able to manage
up to 50 parallel ARP requests with an overhead of 50 µs compared to
the conventional ARP response time. It outperforms other ARP server im-
plementation in the literature. The IDS integration was validated and the
framework was able to dynamically respond to IDS alerts by quarantining
the malicious host in the network.

Chapter 4

Automatic Activity Fulfilment and
Fine-grained Policy Generation

4.1 Introduction

The emerging Internet of Things (IoT) has led to a dramatic increase in
type, quantity, and the number of functions that can be offered in a smart
environment. Future smart environments will be even richer in terms of
number of devices and functionality provided by them. With the increas-
ing number of consumer IoT devices, managing access control of these
devices becomes very challenging. This poses two major challenges: (1)
Users have to search through a vast number of IoT devices to identify
the suitable devices that satisfy their preferences; (2) It is extremely diffi-
cult for users to manually define fine-grained security policies to support
workflows involving multiple functions.

User preference can capture their choices related to security, privacy or
even perceptions of quality. For example, users may prefer to use brand
X devices for a sensitive function such as audio recording due to the man-
ufacturer security reputation and data privacy policy [23, 75]. Therefore,
user preference must be considered when selecting which devices should
be used to fulfil their activities. Various information about a device can be

87

88 CHAPTER 4. AUTOMATIC ACTIVITY FULFILMENT

used to build a user preference model such as device brand and location.

Users are not always interested in manually specifying the devices to
be used to fulfil their activities. In a dense smart space, there could be
many alternative devices that can be used to accomplish a specific activ-
ity function. This makes the task of creating a new activity a challenge
for users, as they have to select which device to use for which function.
Users may not be interested in that; rather, they are interested in the actual
activity function.

The proposed techniques in this chapter use the concept of workflow,
which is an abstract representation of user activities as a set of required
functions to be fulfilled without specifying what devices should be used.
The concept of workflow abstraction based on devices’ functions is de-
picted in Figure 4.1. For example, instead of a user building a concrete
activity by selecting the devices, Brand X alarm triggers Brand Y coffee
maker, a workflow can be defined in an abstract way as alarm function
triggers coffee maker function, see 4.1. At the deployment, our proposed
system can automatically select the suitable underlying devices (e.g. Brand X
alarm and Brand Y coffee maker) using user preference. Hence, users can
focus on the functions of the activity rather than devices selection which
can be a tedious task in a large IoT network and doesn’t support dynamic
environment.

Supported by a user preference model, our proposed approach auto-
matically selects the suitable collection of devices to fulfil users activities.
There are many technologies in the literature to accurately learn prefer-
ence models [148, 54]. From which, there are two main approaches to
modelling preference: the value function approach in which an abstract
utility value is assigned to each alternative under consideration; and the
preference relations which captures the relation between alternatives op-
tions and present them as ranking, partial order relation [148]. The later
technologies are considered to build a preference model that can capture
the relation between devices when they are selected to fulfil users activi-

4.1. INTRODUCTION 89

Figure 4.1: Functional workflow abstraction

ties.

4.1.1 Chapter Goals

This chapter aims at addressing the following objectives:

• Designing an appropriate activity representation that can be used to
enable activity and access control automation.

• Modelling the smart space and user preference to enable activity ful-
filment and access control automation.

• Formulating smart space automation as a mathematical optimisation
problem.

• Studying the performance of search algorithms to automatically se-
lect devices to fulfil the activities while maximising user preference.

• Developing a simple method to systematically generate fine-grained
network access policies to support user activities in a secure manner.

Note that the users only need to define their activities as functional
workflows. Then the proposed methods in this chapter do the following

90 CHAPTER 4. AUTOMATIC ACTIVITY FULFILMENT

a) automatically select the suitable devices to fulfil the workflows func-
tion requirements and then systematically generate fine-grained network
access policies to support user activities.

4.1.2 Chapter Organisation

This chapter includes two sections. Section 4.2 studies how to automati-
cally fulfil user activities given a user preference model as an input. Sec-
tion 4.3 studies how to automatically generate network and application ac-
cess policy to support users activities considering the least privilege prin-
ciple.

4.2 Automatic Activity Fulfilment

Existing research has considered the problem of how to automatically pre-
dict users activities using a set of sensors [151, 191]. For example, in previ-
ous research, the key idea is to analyse user activities, such as user move-
ment in the house, to predict what activities user may need next. This
work aims to propose a complementary approach that uses a functional
workflow to represent user activity as user input. A functional work-
flow can also be obtained intelligently by using the methods developed in
[151, 191]. Then, the functional workflows will be used to find the prefer-
able set of devices to satisfy workflow functions while considering user
preference.

4.2.1 User Activity Representation

The proposed technique uses a functional workflow to represent user ac-
tivity such that it captures the activity function requirements without spec-
ifying which devices should be used to fulfil them. Users are not always
interested in manually specifying all the devices to be used for any activity.

4.2. AUTOMATIC ACTIVITY FULFILMENT 91

They are more interested in abstractly describing the required functional-
ities, for example, in the form of a flow of functions. However, currently,
a workflow is often tied to the underlying devices [65, 21, 178, 142, 179],
such that a user cannot use any pre-defined workflows unless he/she has
exactly the same collection of devices specified in the flow [142, 179]. How-
ever, there could be alternative devices that can be used to accomplish the
same activity.

Decoupling workflow’s functions from underlying devices enable users
to share and re-use many existing flows. Decouple architecture success-
fully eases the management and control in many existing problems [55]
such as network management (i.e. SDN [47]) and web service composi-
tion [74]. Previous research focus on the cost, execution time, manage-
ment and our focus here is security. Existing work represents user activity
using a flow-based programming [19]. A user activity is represented as
a workflow of wired processes that is hardcoded to represent specific IoT
devices. Hence, such activities cannot be re-used or shared as it is tied to
specific devices. This representation is common and supported by many
IoT frameworks such as NodeRed [142], Mozilla Gateway [121], and Mi-
crosoft flow [52]. On the other hand, the proposed workflow ties the ac-
tivity to the functions required, rather than to the underlying devices that
can do these functions, this concept is depicted in Figure 4.1. For example,
instead of building a flow by selecting the devices, Brand X alarm triggers
Brand Y coffee maker, flow can be defined in an abstract way as alarm trig-
gers coffee maker, see 4.1. At the deployment, our proposed system can
automatically select the suitable underlying devices (e.g. Brand X alarm
and Brand Y coffee maker) based on the flow requirements and user pref-
erences. Hence, users can focus on what the activity function rather than
the device selection, which can be a tidies task in large IoT network.

92 CHAPTER 4. AUTOMATIC ACTIVITY FULFILMENT

4.2.2 Smart Space Modelling

The smart space is abstracted into two models: (1) network model that
captures the IoT devices and their capabilities, and the corresponding net-
work access requirements to fulfil each device function; (2) the user pref-
erence model which represents user preference of using a set of devices
for a set of functions.

Network Model

The smart space network is modelled as a collection of devices represented
by N = {di : i = 1, 2, 3, ..., n}. Each device d in the network is represented
by a tuple of (1) a set of attributes Att(d), (2) a set capabilities Cap(d),
and (3) a set of network requirements for a particular function f , given by
Netreq(d, f). The network model is presented in Equation (4.1).

∀d ∈ N, d =< Att(d), Cap(d), Netreq(d, f) > (4.1)

Each attribute a ∈ Att(d) corresponds to a device-specific property that
may derive user preference of using a specific device over the others. For
example, a coffee maker can have several attributes such as type, brand,
quality of coffee produced, time of preparation. On the other hand, the set of
capabilities Cap(d) of device d refers to the set of functions that can be
executed by the device. A device can have multiple attributes and can
support multiple capabilities. For example, in Figure 4.1 the first coffee
maker has attributes of Brand A and can quickly prepare coffee (i.e. speed),
while it has only one capability which is making coffee. The network re-
quirements R for a device d to execute a function f ∈ Cap(d) is given by
Netreq(d, f) as shown in Equation (4.2). Such that r ∈ R is a tuple of re-
quired access to the network for a device d to execute a function f ∈ F ,
where F is the set of workflow functions. Network requirements Netreq
function will be utilised for automatic policy generation, to be introduced

4.2. AUTOMATIC ACTIVITY FULFILMENT 93

in Section 4.3. The proposed system architecture is depicted in Figure 4.3.

R = Netreq(f, d) ∀d ∈ Ds, f ∈ F (4.2)

Network requirements can be extracted based on several existing tech-
niques such as capturing and analysing IoT traffic [73, 172]. The aim of
the network requirements to identify what protocol a device use for what
function. Then when a device is used to fulfil activity function, the cor-
responding protocol should be allowed. Network requirements can also
be extracted from MUD, which clearly defines the type of protocols used
by specific devices. However, MUD cannot specify precisely the end-
points that devices should have access to prior to deployment. In our
approach, the endpoint defined when the devices selected to fulfil the ac-
tivity. Hence; fine-grained access can be derived.

A user drives the operations in a network by creating one or more ac-
tivities as functional workflows for the network to fulfil. A functional
workflow W is represented as a Directed Acyclic Graph (DAG) W =<

F,E >, where F is a set of functions, and E is the dependencies among
them. For a workflow W to be feasible, each function f ∈ F must be satis-
fied by at least one device in the network N as shown in Equation (4.3).

∀f ∈ F, ∃ d , f ∈ Cap(d) (4.3)

Meanwhile, every edge e ∈ E represents the dependencies between
a pair of functions. For example, if an activity includes an IP camera that
streams to a TV, then TV and camera should be able to communicate using
the protocol of streaming. To support this dependency, the access policy
should include a rule that allows the TV to connect to the camera to fulfil
the workflow.

94 CHAPTER 4. AUTOMATIC ACTIVITY FULFILMENT

User Preference Model

In order to determine the suitable devices for an activity, a flexible user pref-
erence model M(F,D) is adopted to quantify user preferences of using any
devices for various functions. User preference model can answer questions
such as how likely a user will prefer to use any subset of devices D ⊆ N

for given workflow functions F . Any preference models that can quantify
user preference can be used in the proposed system. Such a user prefer-
ence model can also be obtained by using a variety of machine learning
techniques such as preference logic, fuzzy logic, neural networks [148].

In our experiments, Bayesian networks technique is used to represent
a user preference model. Bayesian networks [39] is a common technique
for modelling user preferences and predict users activities [191, 153, 155].
For example, the user preference model in Figure 4.2 can tell our system
that a user prefers to use Brand X alarm device and Brand Y coffee maker,
their joint probability is the highest among any other combination. Us-
ing the graphical structure of the Bayesian networks it is easy to calculate
the probability for a user to prefer using any group of devices together.
Certainly, the higher the probability (i.e. the joint probability), the more
preferable the corresponding group of devices would be to support any
specific activities.

Bayesian networks can be constructed based on historical data regard-
ing devices used in various workflows functions. In fact, previously de-
veloped learning algorithms can learn the network structure (i.e. graph
representation DAG) as well as the parameters (i.e. probability distribu-
tion P) from complete or incomplete data [153]. One approach is to find
the network that maximises the likelihood of the data using searching al-
gorithms [71]. In [191], Wu et al. successfully construct Bayesian Network
using activity dataset [129] to accurately predict user activity. Similarly,
Bayesian networks can be constructed from a dataset of historical work-
flows. Moreover, user historical workflows include the dependencies be-
tween the functions, which can be used to guide the structure learning of

4.2. AUTOMATIC ACTIVITY FULFILMENT 95

Figure 4.2: User preference representation using Bayesian networks for
the example in Figure 4.1. Based on the conditional probabilities, in green,
the Bayesian network can infer that a user prefers to use Brand X alarm
device and Brand Y

the Bayesian network. User preference modelling is not the central focus
of this paper. We rely on existing machine learning techniques and will
not investigate this issue further.

4.2.3 Problem Formulation

Given a network model N , user preference model M(F,D), and a work-
flow W =< F,E >, how to determining the set of devices Ds ⊆ N . Such
that Ds fulfils all functions F in the workflow W and maximises user pref-
erences.

We formulate this problem as following:

INPUT: (N,W (F,E),M(F,D)).

OUTPUT: d ∈ Ds ⊆ N

OBJECTIVE:
argmaxDi⊆N M(F,Di)

subject to:
∀f ∈ F ∃ d ∈ Di, f ∈ Cap(d)

(4.4)

96 CHAPTER 4. AUTOMATIC ACTIVITY FULFILMENT

User

Preference
Model IoT Devices Functions Activitiescapable of Used in

Activity Fulfilment Search Engine

Policy Generation

Figure 4.3: Automatic activity fulfilment using user preference.

The input is the network model N that represents all IoT devices in the
smart space, workflow W (F,E) that represents a given user activity, and
user preference modelM(F,Di) that returns a utility value to indicate how
user prefer to use devices Di for functions F . The goal is to find the set of
devices Di that satisfies all activity functions F and have the maximum
preference value returned by M(F,Di)

This optimisation problem will be solved using searching algorithms.
Searching algorithms will be used to search the set of devices that max-
imise user preferences the subset of devices in the network N that satisfy
the flow requirements F . Such that for any set of devices Di a query will
be sent to the preference model M(Di, F) to get the associated preference
probability score. Then the devices with the highest score will be selected
to implement the workflow functions.

4.2.4 Activity Fulfilment Searching Methods

Three common optimisation algorithms have been used to tackle the search
problem in Equation (4.4). Hill Climbing (HC) and Simulated Anneal-
ing (SA) [107] are selected to represent local optimisation algorithms, and

4.2. AUTOMATIC ACTIVITY FULFILMENT 97

Genetic Algorithm (GA) is selected to represent global optimisation al-
gorithms [14]. The Brut-Force search also used as a baseline and also to
investigate what extend it can scale. The aim is to test which algorithm is
more suitable to solve this problem in terms of scalability, efficiency and
solution quality.

As a simple search technique, hill climbing starts with an arbitrary se-
lection of devices and gradually improve user preferences by changing
some of the devices with alternative ones. Although hill climbing is highly
efficient, it can be easily trapped in local optima and may not scale well
to large problems. In case this problem includes local optima, simulated
annealing is also used, which can escape the local optima by allowing less
optimal movement based on a probability function. On the other hand, the
genetic algorithm is a well-known evolutionary computing algorithm and
has been widely demonstrated to perform well on many difficult combina-
torial optimisation problems. Finally, the brute-force algorithm is system-
atically enumerating all possible candidates for the solution and selecting
the best candidate. It is guaranteed to find the optimal solution. However,
it cannot scale to a large problem.

The device selection Algorithm 1 takes a network N , a user preference
modelM , and a workflowW as inputs and outputs a set of devicesDs and
their user preference score Scores. The output devices Ds must satisfy the
workflowW functional requirements, such that the higher user preference
score scores they have the better (this depends on the searching algorithm,
e.g. GA, HC, or SA).

The selection Algorithm 1 works as follows:

1. Selects all network devicesDcands that satisfy workflow requirements
(i.e. F) as shown in Equation (4.5). This eliminates devices that are
not required to satisfy workflow functions F .

2. The selected devices Ds is initialised with random device candidates
and its preference score is calculated.

98 CHAPTER 4. AUTOMATIC ACTIVITY FULFILMENT

3. Each of the searching algorithms then performs the following three
steps until its termination condition is met. The termination condi-
tion of each searching algorithm will be discussed later.

4. Selects a new candidate solution Di = alg(Dcands, F)

5. Calculates the new candidate solution Di score using the preference
model (i.e. M(Di, F))

6. Based on the preference score, the existing candidate Ds is either re-
placed by the new one Di or not.

∀d ∈ Dcands ⊆ N, f ∈ F : f ∈ Cap(d) (4.5)

Algorithm 1: Device selection searching algorithm
Input: N,W,M
Output: scores, Ds ⊆ N

1 Dcands = candidate selection(N,F) ;
2 Ds = getRandomCand(Dcands, F) ;
3 scores = M(Ds, F) ;
4 while not termination condition do
5 Di = searchalg(Dcands, F) ;
6 scorei = M(Di, F) ;
7 scores, Ds = searchalg(Di, Ds) ;

8 end

4.2.5 Evaluation

Empirical evaluation has been carried out to determine which of the four
searching algorithms best suits our device selection problem, presented
in Equation (4.4). The solution (i.e. the best devices to fulfil the activity)

4.2. AUTOMATIC ACTIVITY FULFILMENT 99

Table 4.1: Genetic algorithm hyper-parameters

Parameter Value
Generations 1000
Population size |F | * 200
Crossover rate 0.7
Mutation rate 0.2
Elitism rate 0.1
Selection Method Tournament
Tournament size 3

Table 4.2: Simulated annealing hyper-parameters

Parameter Value
Steps 200000
Max temperature 0.2
Min temperature 0.0001

quality is determined using two evaluation metrics; the user preference
model utility value for the selected devices.

Experimental setup

The hyper-parameters for genetic algorithm and simulated annealing have
been empirically fine-tuned. It has been found that the parameter settings
summarised in Table 4.1 and 4.2 enable the two algorithms to perform
reasonably well.

The searching algorithms are compared in terms of scalability and time
efficiency by using multiple workflows composed of four to seven func-
tions (i.e. |F | = 4, 5, 6, 7), where each function has seven alternative de-
vices in the network N , see Table 4.3. Note the search space is |F |7.

A user preference model is constructed as Bayesian networks where
each node represents a function and its values are the alternative devices.

100 CHAPTER 4. AUTOMATIC ACTIVITY FULFILMENT

Table 4.3: Experimental Settings

No Workflow functions |F | 4, 5, 6, 7
Optimal user preference P (Ds) 0.34, 0.42, 0.3, 0.24
No Network Devices |N | rand(|F |, 4 ∗ |F |)
No Device capabilities rand(2, 7)

No alternative devices 7
Experiment runs 30

To verify the effectiveness of the searching algorithms, we mimic user pref-
erences by tuning the Bayesian networks probability distribution. We do
that by randomly selecting a set of devices to be preferred by the user and
assign high joint probability value p for them. This is achieved simply
by setting all conditional probabilities related to the desired collection of
devices to be p1/|F | so that the joint probability will be p. For example,
in Figure 4.2, to mimic that a user prefers to use Brand X alarm device
and make coffee using Brand Y, the joint probability should be greater
than any other alternatives (e.g. 0.6). For that to be the result, alarm
Brand X and coffee maker Brand Y conditional probabilities have to be
0.61/2; hence, their joint probability P (CM = Brand Y,A = Brand X) =

0.6. Table 4.3 shows the generated optimal user preference probability
P (Ds) to (0.34, 0.42, 0.3, 0.24) for each composed workflow of 4, 5, 6and7

functions respectively. These values represent the optimal solution and
used to evaluate the searching algorithms.

Results and Discussion

The results show that the hill-climbing algorithm, as expected, is often
trapped in local optima solutions. It does not select devices for the work-
flow function that are most preferred according to the preference model.
The effectiveness of the hill-climbing algorithm deteriorates sharply with
the increasing number of workflow functions, as shown in Figure 4.5. Sim-

4.2. AUTOMATIC ACTIVITY FULFILMENT 101

Figure 4.4: Time efficiency comparison

ulated annealing and genetic algorithm both can always find the optimal
solution, see Figure 4.5. We verify the optimality of the solution using the
known user optimal preference probability shown in Table 4.3.

The searching algorithms vary in terms of the time they take to reach
the solution, as shown in Figure 4.4. Hill climbing algorithm is the most
efficient algorithm in terms of elapsed time. However, its effectiveness is
not satisfactory as it is not finding the optimal set of devices that maximise
user preference probability, see Figure 4.5. Simulated annealing outper-
forms Hill climbing in terms of effectiveness, but at a high cost of compu-
tation efficiency, since it clearly requires significantly longer computation
time. However, simulated annealing still better than Brute-Force search,
which shows an exponential increase in the time it takes with the increase
of a number of functions in a workflow.

The best balance between effectiveness and efficiency can be achieved
in our experiments by using a genetic algorithm. The genetic algorithm
produces an optimal solution like simulated annealing and Brute-Force,
and it scales better, as shown in Figure 4.4. Although Brute-Force is ef-

102 CHAPTER 4. AUTOMATIC ACTIVITY FULFILMENT

Figure 4.5: User preference optimisation comparison

ficient in small problems, it fails to scale as the genetic algorithm. For
example, in Figure 4.5 Brute-Force is more efficient than the genetic algo-
rithm for problems with a workflow of 4 or fewer functions, however, for
a workflow of five or more functions the time it takes increases exponen-
tially.

4.3 Automatic Policy Generation

In the previous section, we discussed the algorithms that can automati-
cally select devices to fulfil user activities while considering their prefer-
ence. In association with the automatic activity fulfilment, network access
policy need to be generated to support the activity devices and enforce the
least privilege principle. We focus on network access control and assume
authentication, such as key-based authentication [49], is supported in the

4.3. AUTOMATIC POLICY GENERATION 103

network. Automatically generated policies can be subsequently enforced
by any existing enforcing mechanisms developed for IoT such as Software
Defined Networking [15].

The idea is to derive network ACLs policy for the workflow selected
devices Ds to fulfil the network requirements R, in Equation (4.2), for each
device to execute the assigned function. Note that the generated policy is
correct by design as it is generated to satisfy the activity workflow.

Network requirements can include destination IP addresses, transport
protocol, and port numbers, bandwidth, duration. We consider the source
and destination IP addresses, destination port, and transport protocols.
These requirements can be easily mapped to ACL policy P , as shown in
Algorithm 2. The generated policy guarantees that the selected devices Ds

can perform the activity and obey the least privilege principle. The ACL
policy can be easily enforced within and on the border of the network
using the framework, we proposed in Chapter 3.

The policy generation in Algorithm 2 tasks a workflow W , the selected
devices Ds, and the network requirements Netreq as an input and returns
a policy P as a set of rules. The algorithm creates a rule for each edge in
the workflow DAG graph. For example, for a directed edge from f1 to f2
the algorithm will create a rule that allows the device that executes f2 to
connect to the device that executes f1. It gets the pair of devices that fulfil
every function fi in the workflow and the functions fj that has an edge to
it, parents, (lines 2-5). Then it retrieves their IP addresses (line 6, 7) and
the network requirements (the ports and transport protocol) for the child
function (line 8). Finally, it creates a rule to allow the devices that fulfil the
child and parent to communicate using the required port and transport
protocol (lines 9-11).

104 CHAPTER 4. AUTOMATIC ACTIVITY FULFILMENT

Algorithm 2: Policy Generation Algorithm
Input : W < F,E >, Ds, Netreq
Output: Policy P

1 Set policy ← [] ;
2 foreach f ∈ F do
3 foreach fj ∈ Parents(fi) do
4 dj ← get device(Ds, fj) ;
5 di ← get device(Ds, fi) ;
6 dstIP ← get IP (dj) ;
7 srcIP ← get IP (di) ;
8 dstPortsprotos← get net req(Netreq, fi, di) ;
9 foreach (dstPort, proto) ∈ dstPortsprotos do

10 rule← {src ip = srcIP, dst ip = dstIP, dst port =

dstPort, tp proto = proto} ;
11 policy+ = rule ;

12 end

13 end

14 end

4.4 Conclusion

Activity workflows are a common technique for specifying automation ac-
tivities in smart environments. In existing systems, users have to specify
the underlying devices to execute activities. We extended this by allowing
users to specify abstract workflows that are instantiated for the particular
environment. Previous research has not explored the automatic genera-
tion of concrete workflows and enforcement of least privilege based on
user requirements and preferences. We present an approach that decou-
ples workflow requirements from the specific devices, enabling devices to
be selected on deployment to meet user preferences. We also show how
an automatic policy can be generated given the network requirements for

4.4. CONCLUSION 105

executing a particular workflow function.
We formulated user activity automation as a constraint optimisation

task and solved it using heuristic searching algorithms. Our experiments
indicate that for a small IoT device network, brute-force search is a rea-
sonably good choice for optimising device selection. However, for larger
networks, the genetic algorithm provides the best results among the algo-
rithms tested, as it yields a good balance between efficiency and effective-
ness.

106 CHAPTER 4. AUTOMATIC ACTIVITY FULFILMENT

Chapter 5

Multi-User IoT Sharing Policy in
Smart Spaces

5.1 Introduction

The previous chapters (3 and 4) presented approaches to use user input to
derive access control for a single user system. However, it does not study
the multi-user scenario, where multiple IoT devices owned and shared
by different users co-exist in the same smart space. The current single-
user system requires users to either share their devices with full access or
none [29, 200]. Sharing devices with full access violates the principle of
least privilege and is a high security risk [26]. Instead, it is more sensible
to share under certain restrictions [198], depending on the level of trust
among the users involved; hence, limiting the risk of abuse.

This chapter focuses on the problem where multiple devices are owned
by different users who want to share their devices under certain condi-
tions. For secure sharing, a policy language is required to enable users to
express their sharing policies. Existing policy languages mainly take into
account environment context (e.g. location) for access control [160, 198]. A
more relevant policy EXPAT [193] focuses on capturing users expectation
on how their devices should work, for example, if a user is not at home,

107

108 CHAPTER 5. MULTI-USER IOT SHARING POLICY

the front door should be locked. These policy languages don’t support
controlled device sharing at the level of individual device functionality.
Therefore, we develop a new Policy Language, called Sharing Policy Lan-
guage (SPL) described in Section 5.6, to allow devices owners to specify
precisely the conditions in which they are willing to sharing their device
functionality. For example, users can specify who can use their devices,
what functions their devices can be used for, and what devices can inter-
act with their devices.

This chapter address the IoT devices sharing from two perspectives the
device owner perspective and another from the device user prospective.
The first aspect is how to enable fine-grain IoT sharing such that users
can share a device for a specific function with a specific user. The second
aspect is how to automatically fulfil users activities using the most secure
set of devices from the available shared ones. This chapter addresses this
problem by designing a secure sharing system, Section 5.5, supported by
a sharing policy language, Section 4, and formulating the sharing problem
as an optimisation problem, Section 5.4.

5.1.1 Chapter Goals

Motivated by the absence of a multi-user sharing system for smart space,
a novel IoT architecture and a newly designed sharing policy language are
developed. Moreover, motivated by the success of optimisation methods
on finding the optimal solution subject to a set of constraints, the IoT shar-
ing problem is formulated as Integer Linear Programming (ILP) problem.
The aim is to optimise the set of devices that fulfil users activities to the
most secure available ones subjected to a set of constraints that represents
users’ sharing policies. In particular, this chapter aims at addressing the
following objectives:

• Designing a novel multi-user IoT Secure Sharing (IoTSS) system that
enables smart space users to share and use IoT devices in a secure

5.2. THREAT MODEL 109

manner.

• Designing a new IoT sharing language that allows users to specify
fine-grained sharing conditions and demonstrate that they are al-
ways be obeyed while sharing devices.

• Mathematically formulate IoT sharing to enable translating it from
network domain to optimisation domain.

• Develop a translating method to translate IoT sharing from network
domain into an ILP problem.

• Investigating the scalability and performance of ILP solvers on vari-
ous IoT sharing problem instances.

5.1.2 Chapter Organisation

The remainder of this chapter is organised as follows: The next discusses
the threat model in IoT sharing environment. Section 5.3 illustrate the
IoT sharing problem using a smart home scenario. Section 5.5 presents an
overview of a novel IoT secure sharing system. Section 5.4 describes the
multi-user IoT sharing as optimisation problem. Section 5.6 presents the
sharing policy language. Section 5.7 introduces IoTSS engine and how it
formulates the IoT sharing as an ILP problem. Section 5.8.1 illustrate the
the experiment setup, and Section 5.8.2 discuss the results. Finally, Section
5.9 concludes this chapter and its findings.

5.2 Threat Model

The smart space threat model is illustrated in Figure 5.1. The trust worthy
components are the owner of the IoT devices, the IoT hub and the switch.
The rest of smart space components (i.e. other users and other IoT devices)

110 CHAPTER 5. MULTI-USER IOT SHARING POLICY

are considered to be untrustworthy as per previous research [73, 17, 172,
101] and [198, 58, 62] as explained in Section 2.2.1 and 2.2.3.

This work focuses on mitigating two threats when IoT devices are shared
in smart spaces: (a) unauthorised access to an IoT device without permis-
sion of the device owner; and (b) the risk of using devices with known
vulnerabilities. In (a) IoT devices’ owners share their devices with other
users based under certain conditions, but without any access control in
place, usually, users share IoT devices based on trust between them[58].
For example, a user may share his/her Speaker to be used for any func-
tion except for the purchasing function. However, without an enforcement
mechanism to control how shared devices should be used, users can abuse
the shared devices, resulting in a loss of security such as confidentiality or
availability. To mitigate this, we develop a sharing policy language to en-
force owners sharing policies. In (b), our aim is to reduce the use of vulner-
able shared devices where a more secure alternative exists. We tackle (b)
by formulating device sharing in the form of an optimisation problem to
use the most secure devices to automate users’ activities without violating
any security policies.

5.3 IoT Sharing Scenario

This section illustrates the IoT sharing problem using a smart home as a
typical smart space and motivates the need for developing a new sharing
policy language.

Figure 5.2 shows smart home devices owners Jack and Alex, and the
user Others that refers to their friends/guests. Table 5.1 shows the avail-
able devices with the corresponding functions each device supports, de-
vice security score, and the owner. Additionally, each device’s function
limit identifies the number of activities that can use a device function con-
currently. For example, Jack’s TV security score is 0.7 and its display func-
tion can only be used by a single activity at a time, whereas its find function

5.3. IOT SHARING SCENARIO 111

Figure 5.1: Mutli-user IoT sharing threat model. The green box contains
the trusted components of the shared smart space.

can be used by multiple activities at the same time. For the sake of illus-
tration, we assume that the number of maximum activities that a device
function can support concurrently is either 1 or 10. Devices belong to Jack
or Alex or both of them, as shown in Table 5.1. Therefore, Alex and Jack de-
fine device their sharing policies, as shown in Table 5.3, for sharing their
devices with users Others.

Given the scenario above, Alex and Jack want to share their devices
with each others and with other users (i.e. guest and friends). They want
to define a) with whom they are sharing, b) what device, and c) what func-
tion the device should be used for. Moreover, they may also want to not
allow their shared devices to be used with other devices in the same ac-
tivity. Therefor, they defined their sharing policies as shown in Table 5.3
as follows:Jack would like to share his devices under the following policy
“do not share my speaker with coffee machine, do not share my TV with anyone

112 CHAPTER 5. MULTI-USER IOT SHARING POLICY

Figure 5.2: IoT sharing in a smart home scenario. Jack owns devices 1 and
2, Alex owns devices 3 and 4, and both as family members own the rest of
the devices. Devices’ functions and security score are presented in Table
5.1

except Alex, and don’t share my speaker if the fridge is used.”. Alex, on the
other hand, would like to share her devices with the following policy “do
not share my speaker find function with anyone except Jack, do not share door
or garage lock with anyone except Jack”. Table 5.3 shows these policies with
default to share policy and also with default not to share.

Given the smart space scenario in Figure 5.2 and users’ sharing poli-
cies in Table 5.3, users (Alex, Jack and a guest, Other) define the following
activities: Jack would like to automate a movie time activity as follows:
“find for a movie, display it and turn off Light”. Likewise, Alex would like to
automate her back home activity which opens the door, prepare a coffee,
find selected music and play it, as follows: “unlock the main door, prepare
a coffee and find and play music”. Lastly, a guest wants to define activity
to run music as follows: “find and play music”. The required functions for

5.3. IOT SHARING SCENARIO 113

Table 5.1: Smart home devices functions, security score and owners

Device Functions Limit Sec. Score Owner

d1- TV
f1-Find 10

0.7 Jackf2-Display 1
f3-Play 1

d2- Speaker
f1-Find 10

0.75 Jackf7-Buy 1
f3-Play 1

d3- Speaker f1-Find 10 0.8 Alex

d4- Coffee Machine
f6-Coffee 1

0.5 Alex
f3-Play 1

d5- Door Lock f5-lock/unlock 1 0.7 Both

d6- TV
f1-Find 10

0.6 Bothf2-Display 1
f3-Play 1

d7- Light f4-Light On/Off 1 0.65 Both

each activity is summarised in Table 5.2. The question now is which of
the available shared devices should perform these functions to maximise
the total security score and without violating any user sharing policies.
Section 5.4 formally defines this problem as a sharing problem.

Table 5.2: Users activity automation as set of functions

ID Activity functions User
A1 (Find, Display, Light) Jack
A2 (D-lock, Coffee, Find, Play) Alex
A3 (Find, Play) Guest

114 CHAPTER 5. MULTI-USER IOT SHARING POLICY

Table 5.3: User policies when the default policy is share and do not share.

Default Share

Jack
- Don’t share Speaker Buy function with anyone.
- Don’t share TV except with Alex.

Alex
- Don’t share Speaker with Coffee machine.
- Don’t share Doorlock except with Jack.

Default Do not share

Jack
- Share Speaker’s find and play functions with anyone.
- Share TV with Alex.

Alex
- Share Speaker except with Coffee machine.
- Share Doorlock with Jack.
- Share Light, Coffee Machine and TV with everyone.

5.4 IoT Sharing Problem

In a smart space, multiple users intend to share their IoT devices, such that
they can use these shared devices to fulfil their activities without violating
any device sharing policies. We call this IoT sharing problem. We assume
users are willing to share their devices under some predefined sharing
policies [45].

In this problem, we consider a set of users U who share a set of IoT
devices D under a predefined set of sharing policies P . These devices are
capable of supporting a set of functions F . Users define their activities A
abstractly as a set of required functions. These activities have to be fulfilled
by a set of IoT devices without violating user sharing policies. We define
key terms related to this problem in more details as follows.

Users U : We classify users into devices’ owners and ordinary users.
The devices’ owners can define sharing policies on the devices they want to
share with other users. Ordinary users compose their activities, abstractly,
as a set of functions to be fulfilled by available shared devices.

IoT devicesD: We consider the smart space as a collection of IoT devices

5.4. IOT SHARING PROBLEM 115

D where each device d ∈ D has the following attributes: (a) it supports a
set of functions given by Cap(d) where each function f ∈ Cap(d) can be
used by a limited number of concurrent activities given by Limit(f, d); (b)
each device has a security score Sec(d) which is a numerical value indicat-
ing the security score of device d (the larger, the better); (c) it resides in a
location in the smart space which can be retrieved by Loc(d) function.

Available IoT functions F : All available functions in the network are
jointly determined by all functions supported by all available IoT devices
as F = ∪d∈DCap(d).

User activities A: A user automation activity A represents a routine
or daily activity that the user want to automate using IoT devices. Each
activity A ∈ A is defined as a pair A = (FA, uA) of the set of required
functions FA and uA represents the user this activity is running on behalf
of him/her.

Sharing Policies P : A sharing policy P ∈ P is a set of rules that defines
the situations in which the owner’s of the devices want to share or not to
share their devices. Each owner user can define a sharing policy P ∈ P on
his/her devices.

To help formulate our IoT sharing problem mathematically, we intro-
duce the following definitions.

Definition 1. An activity fulfilment IA of an activity A = (FA, uA) is defined as
a set of function and device pairs (f, d) where f ∈ FA, and d ∈ D, subject to:

∀f ∈ FA∃f ∈ Cap(d), (f, d) ∈ IA
∀(f, d), (f ′, d′) ∈ IA, if (f = f ′) −→ (d = d′)

Which means that each function f ∈ FA is fulfilled by exactly a single device
(f, d) ∈ IA.

It is common in a smart space to have more than one possible activity fulfil-
ment for a given activity as multiple devices can support a given function. We
denote all possible fulfilment of activity A as IA. Hence, the overall fulfilment for
all activitiesA is given by IA = {IA|A ∈ A}. Note that IA represents the search

116 CHAPTER 5. MULTI-USER IOT SHARING POLICY

space of all possible fulfilment of activities A including those that violate sharing
policies or using less secure devices.

Definition 2. A single activity fulfilment of a user activity A ∈ A is IA, which
belongs to a set of available candidates IA. Hence, a solution candidate for our IoT
sharing problem is a set of all activities A fulfilment IA = {IA : A ∈ A} where
there is an activity fulfilment IA for each activity A ∈ A.

Definition 3. The security score of a solution candidate IA is the sum of the
security scores of all devices which have been selected, which is calculated as below.

S(IA) =
∑

(f,d)∈IA,IA∈IA

Sec(d)

Definition 4. The function C(IA, d, f) counts the number of times function f of
device d has been used in IA.

Definition 5. A sharing policy P is a pair (up, Rp) where up refers to the policy
owner and Rp stands for the policy rules. Each rule r ∈ Rp is a function of a
potential solution IA such that r(IA) verifies that IA does not violate the rule r.

A sharing problem that consists of a set of user activities A that need
to be fulfilled by a subset of a set of devices D, where D is shared under a
set of policies P , this problem can be formulated as following.

INPUT :(IA,P ,D)

OBJECTIVE :I∗A = argmaxIA S(IA)

s.t.
∀P ∈ P ,∀r ∈ P, r(IA, P) = True

∀d ∈ D, f ∈ Cap(d), C(IA, d, f) ≤ Limit(d, f)

(5.1)

The goal of this formulation is to maximise the overall security score
of the devices (i.e. the objective function S(IA)) that fulfil the activities A
subject to two constraints. The first constraint is that no activity fulfilment
in a potential solution IA ∈ IA violates any of the sharing policies P . The
second constraint ensures that no device’s function is used in activities
fulfilment more than its concurrent support limit.

5.5. IOT SECURE SHARING ARCHITECTURE 117

5.5 IoT Secure Sharing Architecture

In this section, we discuss the high-level of the IoT Secure Sharing (IoTSS)
architecture and how we model smart space components to enable IoT
secure sharing. Figure 5.3 depicts the main components of IoTSS architec-
ture.

Smart space is equipped with IoT devices that support different func-
tions that are utilised by users. Users express their activities as a set of
connected functions that fulfilled the desired task. These functions will
be fulfilled by a set of shared IoT devices. The use of smart space de-
vices is governed by sharing policies specified by devices’ owners. At any
time, device usage in any user activity must not violate any sharing policy.
Moreover, The IoT devices varied in their security. For example, the less
number of vulnerabilities a device has, the more secure it is. Besides en-
forcing IoT sharing policies, it is required that user activities are fulfilled
by the most secure set of devices to increase the overall smart space secu-
rity.

IoTSS works as follows: users build their activities as a set of func-
tions that eventually fulfilled by available shared devices. These devices
are owned by a subset of users (i.e. owners) who share them under shar-
ing policies. The owners specify their sharing policies based on: (a) who
are the authorised users they want to share their devices with; (b) which
device functions they want to share; (c) which devices are allowed to inter-
act with their devices (i.e. be used in the same activity with their devices).
The goal is to fulfil activity functions requirements using the most secure
set of devices without violating sharing policy. This problem is formu-
lated as an ILP problem to be solved using ILP solver. Once the ILP solver
select which device should execute which activity function, it passes this
concrete activity to the hub and the PEP. The hub will operate the activity
while the PEP will enforce the sharing policies to ensure that what users
see in the application layer is actually enforced by access control.

118 CHAPTER 5. MULTI-USER IOT SHARING POLICY

Sharing
Policies

Devices Owners General users

Devices

deploy functional activitiesowndeploy

capable of
Activitiesfunctions

ILP Problem Formulator

ILP Solver

HUBPEP

Device 1 Device 2 Device 3 Device N...

IoTSS Engine

Runtime
enforcement

activities fulfilment

ILP problem

device control

device
control

status update

Figure 5.3: IoTSS System Architecture

IoTSS Engine. It converts IoT sharing from network domain into ILP
domain and use ILP solver to solve it. IoTSS engine consists of (1) ILP
Problem Formulator which translates available devices, user activities and
sharing policies into decision variables, and then it uses these decision
variables to generate ILP constraints and objective function for the cor-
responding ILP problem; (2) ILP Solver. The ILP solver uses off-the-shelf
ILP solvers to solve the ILP problem generated by the ILP problem for-
mulator. Particularly, it finds the most secure set of devices to fulfil user
activities while satisfying users’ sharing policies. The output specifies for
each activity which device should be used to fulfil each of its functions.
Then activities are deployed using the selected devices and installed in
the Hub, see Figure 5.3.

Policy Enforcement Point (PEP). The PEP [174] is the system compo-
nent that guards access to the resources (IoT devices) based on access poli-
cies. The PEP can enforce the users’ sharing policies in two levels: (a) in
the network level, by allowing or denying network access between IoT

5.5. IOT SECURE SHARING ARCHITECTURE 119

devices and the hub or between the devices themselves; (b) in the appli-
cation layer, by allowing or denying access to certain function (through,
e.g. API calls). The network-level access control enforcement can take
place in a switch (e.g. OpenFlow-enabled switch). For example, in a hub-
based smart space, the hub orchestrating inter-device interactions can be
supported by only allow devices to talk to the hub and block all device-
to-device communications. (Note that enforcing devices communications
through the hub will not affect devices functionalities as it has been found
in [70]). The application-level access control can be enforced by imple-
menting the PEP as a proxy that set between the hub and the rest of the
devices such that it intercepts hub to IoT control messages and only allows
the hub to control devices that are selected by the ILP solver.

Note that although the Hub and PEP receive activities fulfilment de-
vices set, they do different roles. The Hub is responsible for the operation
of the activities, while PEP is enforcing users’ sharing policy at runtime.
This design keeps operation and policy enforcement independent and can
be updated or changed without affecting each other.

5.5.1 Practicality

The proposed IoTSS system can be integrated into any smart space con-
troller (e.g. Mozilla WebThings Gateway[121], Google home [66], Sam-
sung SmartThings [84]). The devices, as well as their capabilities, can be
retrieved from the hub. For example, Mozilla Gateway implements Web
of Things that uses a semantic language to describe the things and their
capabilities. Hence, it can be retrieved either directly from the devices in
the network or from the Mozilla Gateway. Google home [66] defines the
devices’ capabilities using what is called traits. The IoT devices security
score can be calculated using the device vulnerabilities’ score, which can
be retrieved from a vulnerability dataset like Common Vulnerability Scor-
ing System (CVSS) [117]. For example, a speaker IoT device with larger

120 CHAPTER 5. MULTI-USER IOT SHARING POLICY

total number of CVSS score is considered to be less secure than another
speaker with less total number of CVSS score. Hence, the main inputs to
the IoTSS can be retrieved from existing smart space technologies.

The PEP can be implemented in a switch to enforce network layer ac-
cess control and as proxies for each IoT devices to enforce application/operation
(function-based) access control. Policies can be enforced locally for local
connection between IoT devices or at the edge of the network for exter-
nal connections. The external connection includes services that the hub
(where user activities are running) may need to connect as part of user
activities. It also includes IoT devices connections to their manufacturer
cloud.

5.6 Sharing Policy Language

Motivated by the scenario in Section 5.3, this section presents a novel shar-
ing policy language to enable users to define their sharing policy using a
high-level language. Figure 5.4 presents the concrete syntax of the Sharing
Policy Language (SPL) as a Backus Normal Form (BNF) grammar [157].
SPL allows devices’ owners to define what they want to share (i.e. what
devices and functions to share) and in which context (i.e. with which users
and peer devices or functions). This language inspired by user expectation
language [193] and users sharing behaviour papers [58].

An SPL policy consists of one or more policy statements (line no. 1),
each of which has a string label Policy Statement as an identifier P ∈ P . A
policy statement (line no. 2) composes of a sequence of unordered rules
that define the situations where a user wants to make a sharing decision
(i.e. to share or not to share). Note that unlike firewalls rules where first
match block wins, an activity fulfilment IA must satisfy all sharing policy
rules.

A rule (line no. 3 and 4), labelled by a string identifier, captures a spe-
cific situation, via Situation Block, where a user wants to specify a shar-

5.6. SHARING POLICY LANGUAGE 121

Figure 5.4: Sharing Policy Language syntax as a BNF

ing decision (share, do not share) on his/her devices that are defined in
Share Block. In other words, each rule can be read as following “when sit-
uation holds, apply my sharing decision on my sharing block devices”. For ex-
ample, a user can define the following rule “in a situation where the activity
user is Jack do not share my device speaker for a function buy”, as the speaker
rule in Figure 5.5.

The Situation Block (line no. 5) contains the conditions that describe the
situation that will trigger the rule. If the situation conditions are met, then
the sharing decision in Share Block will be enforced. The situation condi-
tion can represented by the built-in “any” keyword which matches any
situation. Also, satiation conditions can be represented by the Conditions
expression.

122 CHAPTER 5. MULTI-USER IOT SHARING POLICY

The Conditions (line no. 6) are boolean expressions with the logical op-
erators (i.e. and, or, not) to define a condition based on Users Block and/or
Devices Block. Users Block (line no. 7) starts with “Users:” label and de-
fines a situation based on users. It can be either “any”, which match any
user, or a specific set of users using User block (line no. 8) which contains
one or more atomic predicates (i.e. username) with “not” or “or” boolean
operation (line no. 14). The Devices Block (line no. 10) defines situations
based on peer devices or functions that will be used with the device. For
instance, a situation can be defined as “in a situation where an activity uses
device Y, do not share Speaker”. Devices Block (line no. 10) uses Devices (line
no. 11) expression that can define any combination of devices using Device
(line no. 12) expression connected with three logical operators (i.e. not,
and, or). It can also define devices based on their location. For example,
“in any situation do not share Devices in the bedroom”. A Device expression
consists of Device name atomic predicate and functions (line no. 13)ex-
pression separated by a colon ’:’. The later allows users to build a complex
function constraint. For instance, a user can define a device expression “ if
device d is used for function a or function b”.

Figure 5.5 shows how SPL is used to express Alex and Jack sharing poli-
cies in Table 5.3. Each of Jack and Alex has his/her own policy named after
his/her name (i.e. Jack policy and Alex policy) which includes sharing rules
for his/her own devices. For example, Jack’s first rule defines that for any
user, Jack doesn’t want to share his Speaker to be used for buy function.

5.7 IoT Secure Sharing Engine

IoT Secure Sharing (IoTSS) engine converts IoT sharing task into an ILP
problem then uses an ILP solver to optimise the security score of the se-
lected devices that fulfil user activities such that the sharing policies are
realised. We achieve this by representing the IoT sharing as an ILP prob-
lem. The binary integer decision variable XA,d,f takes a value of 0 or 1 to

5.7. IOT SECURE SHARING ENGINE 123

Policy Jack’s policy:

 Rule Speaker-rule:

 Situation: Users: not (Jack)

 Decision: Do not Share

 My Devices: (Device: Speaker For Function: (buy))

 Rule TV-rule:

 Situation: Users: not (Jack, Alex)

 Decision: Do not Share

 My Devices: (Device: TV For Function: (any))

Policy Alex’s policy:

 Rule Speaker-rule:

 Situation: Users: (any) and (Device: Coffee machine For Function: (any))

 Decision: Do not Share

 My Devices: (Device: Speaker For Function: (any))

 Rule Doors-rule:

 Situation: Users: not (Alex, Jack)

 Decision: Do not Share

 My Devices: ((Device: Door lock For Function: (any))

Figure 5.5: Jack and Alex sharing policy example

indicate that function f of device d is going to be used in activity A. The
ILP objective function, described in equation (5.2), maximises the summa-
tion of devices security score Sec(d) overall devices used in IA according
to the problem formulation in (5.1).

max
∑

IA∈IA

∑
(f,d)∈IA Sec(d) XA,d,f

s .t .

∀P ∈ P ,∀r ∈ P, r(IA, P) = True

∀d ∈ D, f ∈ Cap(d),
∑

A∈AXi,d,f ≤ Limit(d, f)

(5.2)

The mapping between the constraints in (5.1) and the ILP constraints
are explained as follows:

• The first constraint enforces users’ sharing policies P . For every user
policy P ∈ P it checks if a given activities fulfilment IA doesn’t vi-
olate any rule r ∈ P . Each rule can be represented as a set of con-

124 CHAPTER 5. MULTI-USER IOT SHARING POLICY

straints that specify what set of decision variables cannot be used
together. For example, X(A1,d1,f1) + X(A1,d2,f2) ≤ 1 represents a rule
that specifies that in an activity A1 (which runs on behalf of a user
u1) cannot use a device d1 for a function f1 with a device d2 for a
function f2.

• Each function f offered by device d must not be used by a number
of activities higher than its limit Limit(d, f). This is enforced by the
first constraint that sums all decision variables using device d for
function f in all activities fulfilment IA ∈ IA and set this sum less
than the device function limit Limit(d, f).

Therefore, by translating all user activity and policies into ILP domain,
we can maximise the use of secure devices without violating users policies.

5.7.1 ILP Problem Formulator

ILP Problem Formulator (ILPPF) converts our IoT sharing problem, mod-
elled in Section 5.4 from network domain into the ILP domain.

Decision variables X . The set of decision variables X includes all pos-
sible decision variables of alternative devices that can support activities
function. A binary decision variable XA,d,f ∈ X takes a value 1 to indicate
that a device d will be used to fulfil function f of activity A or 0 if not (i.e.
XA,d,f ∈ {0, 1}). The set X is defined in (5.3).

X = {XA,d,f : A ∈ A, f ∈ FA, d ∈ D, f ∈ Cap(d)} (5.3)

Mapping all decision variables X to {0, 1} defines a given activities
fulfilment IA which only consider as a valid solution if it doesn’t violate
any constraints.

Activity fulfilment constraints CA. Each activity’s function should be
fulfilled exactly by one device from the set of available devices that sup-
port it. These constraints are enforced using the set defined in equation

5.7. IOT SECURE SHARING ENGINE 125

(5.4), which ensures that the sum of all decision variables that include
function f of activity A should have exactly one decision variable its value
is 1 (i.e. one device is selected to fulfil this function among all available
devices D).

CA = {
∑
∀d∈D

XA,f,d = 1 : A ∈ A, f ∈ FA} (5.4)

Sharing policy constraints CS . A rule r ∈ P, P ∈ P is defined over an
activities fulfilment IA. A rule checks if IA respects the rule constraints or
not. Our ILP formulation supports several primitive rules such that each
of which is converted into a set of ILP constraints as shown below.

Given XA,d,f , XÂ,d̂,f̂ ∈ X , the set of primitive rules and the correspond-
ing ILP constraints are presented below:

1. “Don’t share my device <d′>with user <u′>”. This rule is enforced
by constraints that set all decision variables that use device <d′>in a
user <u′>activities (i.e. uA = u′) to zero (means should not be used).

{XA,d,f = 0 : d = d′, uA = u′}

2. Don’t share my device <d′>for function <f ′>with user <u′>. This
rule is enforced by constraints that set all decision variables that use
device <d′>for function <f ′>in a user <u′>activities (i.e. uA = u′)
to zero.

{XA,d,f = 0 : d = d′, f = f ′, uA = u′}

3. Don’t share my device <d′>for function <f ′>with any user. This
rule is enforced by constraints that set all decision variables that use
device <d′>for function <f ′>, regardless of the user, to zero.

{XA,d,f = 0 : d = d′, f = f ′}

4. Don’t share my device <d′>with device <d′′>. This rule is enforced
by constraints that set the sum of all decision variables that use de-
vice <d′>and <d′′>to be less than one. Which means only one of

126 CHAPTER 5. MULTI-USER IOT SHARING POLICY

these decision variables value can be set to one (i.e. used) but not
both of them.

{XA,d,f +XÂ,d̂,f̂ ≤ 1 : d = d′, d̂ = d′′}

5. Don’t share my devices in location <z>with any user. This rule is
enforced by constraints that set all decision variables that use device
<d>where it is located in <z>to zero.

{XA,d,f = 0 : Loc(d) = z}

Table 5.4 shows the SPL language description of all the primitive rules
discussed above. Through combining these primitive rules, we can al-
low users to express different sharing policies they have for smart space.
Overall all sharing policies P are enforced by the corresponding CS set of
constraints which is given by equation below. For example, SPL rule no. 1
in Table 5.4 states that in a situation where user u′ do not share device d′.
The corresponding ILP constraint for this rule is XA,d,f = 0 where d = d′

and uA = u′, meaning do not use device d′ for any activity of user u′.

CS = {∪IA∈IAr(IA) : r ∈ Rp, p ∈ P} (5.5)

Device functions constraints CF . A device should not be used to fulfil
any specific function in a number of activities that is more than what it can
support.

CF = {
∑
∀A∈A

XA,f,d ≤ Limit(d, f), f ∈ Cap(d)} (5.6)

Objective function O. The objective function in (5.7) maximises the
sum of the product of the binary decision variable XA,d,f ∈ X and the
associated device’s security score Sec(d), as a coefficient.

O = argmaxd∈D
∑

X∈X Sec(d) ·XA,d,f (5.7)

5.7. IOT SECURE SHARING ENGINE 127

Table 5.4: The primitive rules using SPL and the corresponding ILP con-
straints.

Rule Corresponding Constraints
1.
Situation: Users: <u’>
Decision: Do not share
My Devices: Device: <d’>

{XA,d,f = 0|d = d′, uA = u′}

2.
Situation: Users: <u’>
Decision: Do not share
My Devices: Device: d’ for
function: <f’>

{XA,d,f = 0|uA = u′, d = d′, f = f ′}

3.
Situation: Users: any
Decision: Do not share
My Devices: Device: d’
for function: <f’>

{XA,d,f = 0|d = d′, f = f ′}

4.
Situation: Users: any
and Device: <d”>
Decision: Do not share
My Devices: Device: <d’>

{XA,d,f +XÂ,d̂,f̂ ≤ 1|d = d′, d̂ = d′′}

5.
Situation: Users: any
Decision: Do not share
My Devices: Devices: in <z>

{XA,d,f = 0|Loc(d) = z}

The IoT sharing corresponding ILP problem is presented in (5.8). It
uses the objective function O, in (5.7), subject to activity fulfilment con-
straints CA in (5.4), activity fulfilment constraints CF in (5.6), and sharing

128 CHAPTER 5. MULTI-USER IOT SHARING POLICY

policy constraints CS in (5.5).

O = argmaxd∈D
∑

X∈X Sec(d) ·XA,d,f

s.t.
CA ∪ CF ∪ CS

(5.8)

5.7.2 ILP Problem Formulator Algorithm

ILP Problem Formulator is depicted in Algorithm 3. The inputs to the
Algorithm are the set of activities A, the set of user policies P , and the set
of IoT devices D. The output is an ILP problem (i.e. objective function O

and a set of ILP constraints CA ∪ CS ∪ CF).
The Algorithm starts by initialising the decision variable set as in Equa-

tion (5.3) and the three sets of constraints (lines 1,2). Each activity A ∈
A. To generate activity fulfilment and sharing policy constraints, it goes
through each activity A in the activity set A (line 3). For every function f

in an activity function FA all decision variables that includes the activity
A it generates a constraints to ensure that at exactly one device is fulfill-
ing the function f (lines 4-6). Sharing policy constraints are generated by
passing every activity fulfilment to every rule in every policy (lines 8-15).
The device functions constraints generated for all functions used by the
given activities A (lines 16-18). The objective function generated (line 19)
to maximise the sum of the security score of every device associated with a
decision variable. Finally, the objective function and the set of constraints
that forms the corresponding ILP problem are returned (line 20).

The Algorithm works under the assumption that the default policy is to
share all devices unless specified otherwise in the sharing policies. How-
ever, if the default sharing policy is not to share and the sharing rules define
what to share, then the solutions that do not match sharing rules situation
and shared devices should be denied. For that, to work the rule function at
line 11 need to be inverted to reject activity fulfilment that does not match
it. The rest of the Algorithm should work as-is.

5.7. IOT SECURE SHARING ENGINE 129

Algorithm 3: Formulate ILP problem from devices sharing set-
tings.

Input: A, P , D
Output: ILP optimisation problem

1 Initialise ILP constraints CA ← φ, CS ← φ, CF ← φ ;
2 Initialise the decision variable set X using the relevant devices in
D to the given activities A ;

3 foreach A in A do
// Activity fulfilment constraints.

4 foreach f in FA do
5 CA ∪ (

∑
∀d∈DXA,f,d = 1) ;

6 end
// Sharing policy constraints.

7 Initialise activity A fulfilment set IA ;
8 foreach P in P do
9 foreach r in RP do

10 foreach IA in IA do
11 CS ∪ r(IA) ;
12 end

13 end

14 end

15 end
// Device functions constraints

16 foreach f ∈ ∪A∈AFA do
17 CF ∪ (

∑
∀A∈AXA,f,d ≤ Limit(d, f), f ∈ Cap(d)) ;

18 end
// ILP objective function

19 O = argmaxd∈D
∑

X∈X Sec(d) ·XA,d,f ;
20 Return the objective function O and the set of constraints
CA ∪ CS ∪ CF

130 CHAPTER 5. MULTI-USER IOT SHARING POLICY

We assume the default sharing policy is to share, as users have trust be-
tween them to share their IoT devices [45]. Therefore, it is easier for users
to express a few cases where they don’t want to share. Another alternative
is to set the default policy to not to share and any sharing decision should
be expressed via sharing policy. This default policy may not be suitable for
sharing environment where users share by default as it requires to specify
all cases of sharing that instead of the few cases of no sharing. However,
it suites the scenarios where users are willing to share in a few situations.
In both cases, the final ILP problem solution will tell us which devices to
use for which activity function.

5.7.3 ILP Solvers

In the IoTSS system, any ILP problems produced by the ILPPF module will
be solved by an off-the-shelf ILP solver such as CP-SAT and CBC solvers
[176, 93]. These solvers are expected to identify optimal or near-optimal
values for all decision variables X , which defines which device should be
used to fulfil each function of user activities. In Section 5.8, we study the
efficacy of using these common solvers for a range of IoT device sharing
problem instances.

5.7.4 Translation Analysis

After we have defined how to translate the IoT sharing into an ILP prob-
lem, we need to analyse the size and complexity of the translated IoT
sharing instance. In particular, the number of decision variables and con-
straints in the corresponding ILP problem. The number of decision vari-
ables |X | is the sum of all possible alternative decisions of fulfilling ac-
tivities functions which are defined in equation (5.3). The number of ILP
constraints is the sum of (a) the total number of functions in all activi-
ties

∑
A∈A |FA|, as the fulfilment of each activity function is enforced by

a constraint; (b) the total number of device function pairs that are se-

5.7. IOT SECURE SHARING ENGINE 131

lected to fulfil user activities |IA|, as each device function requires a con-
straint to bound its usage below the predefined limit; and (c) the number
of user activities multiplied by the total number of rules for all policies,
|A| ·

∑
p∈P |Rp|. Assuming the most extreme case of rule where each rule

constraints the use of a device function to be used in any activity. For ex-
ample, a rule: don’t share device d function f in any activity. This rule
needs to be enforced for every activity; hence, it requires a number of con-
straints equal to the number of activities. In this case, the total number of
constraints in the ILP is bounded by Equation (5.9).

Nc ≤
∑

A∈A |FA|+ |IA|+ |A| ·
∑

p∈P |Rp| (5.9)

In the other hand, each possible case of fulfilling an activity function
is a decision variable. Therefore, the sum of all possible cases of fulfilling
all activities is the number of decision variables Nv and this number is
calculated by the Equation (5.10).∑

A∈A,d∈D

|{(d, f) : f ∈ FA, f ∈ Cap(d)}| (5.10)

5.7.5 IoT Sharing Scenario as ILP Problem

To illustrate how IoT sharing can be translated into an ILP problem, we
will use the scenario in Section 5.3. For every user activity, we define all
decision variables of fulfilling every function using the available devices.
For example, to fulfil activity A’s find function f1, there are four available
devices, denoted by d1, d2, d3, and d6. Hence, we define four decision vari-
ablesXA,d1,f1 , XA,d2,f1 , XA,d3,f1 , andXA,d6,f1 to decide which device to use to
fulfil function f1 of activity A. Only one of these decision variables should
have a value of 1. We define the relevant decision variables in Table 5.5
based on decision variables definition in equation (5.3) using the devices
information in Table 5.1 and user activities in Table 5.2. These decision
variables are used for translating user activity in Table 5.2 by specifying

132 CHAPTER 5. MULTI-USER IOT SHARING POLICY

the ILP constraints in this order (a) the constraints that ensure each activ-
ity function satisfied by exactly a single device (i.e. CA constraints); (b) the
constraints that represent the relevant sharing policies to the user activi-
ties (i.e. CS); (c) the constraints that ensure that any device’s function is
not used by a number of activities more than what it can support (i.e. (i.e.
CF)).

Table 5.5: User activities relevant decision variables.

f1-Find f2-Display f3-Play f4-Light f5-Unlock f6-Coffee
XA,d1,f1

XA,d2,f1

XA,d3,f1

XA,d6,f1

XA,d1,f2

XA,d6,f2

XA,d1,f3

XA,d2,f3

XA,d4,f3

XA,d7,f4 XA,d5,f5 XA,d4,f6

Table 5.2 shows that Jack’s activity A1 requires (f1, f2, f4) functions,
Alex activityA2 requires (f5, f6, f1, f3), and user Guest’s activityA3 requires
(f1, f3). The first set of constraints are defined in (5.11),(5.12), and (5.13),
represents the activity fulfilment constraints CA that ensures every activ-
ity’s function is fulfilled exactly by a single device.

XA1,d1,f1 +XA1,d2,f1 +XA1,d3,f1 +XA1,d6,f1 = 1

XA1,d1,f2 +XA1,d6,f2 = 1

XA1,d7,f4 = 1

(5.11)

XA2,d5,f5 = 1

XA2,d4,f6 = 1

XA2,d1,f1 +XA2,d2,f1 +XA2,d3,f1 +XA2,d6,f1 = 1

XA2,d1,f3 +XA2,d2,f3 +XA2,d4,f3 = 1

(5.12)

XA2,d5,f5 = 1

XA2,d4,f6 = 1

XA2,d1,f1 +XA2,d2,f1 +XA2,d3,f1 +XA2,d6,f1 = 1

XA2,d1,f3 +XA2,d2,f3 +XA2,d4,f3 = 1

(5.13)

5.7. IOT SECURE SHARING ENGINE 133

The second set of constraints represents the user sharing policies (i.e
the CS constraints), in Table 5.3. Since we assume that the default policy
is to share, activity’s function can be fulfilled by any device as long as no
rule denies it from doing so. Hence, Jack’s activity A1 is not restricted by
any policy rule; hence, no constraints for policy enforcement for A1. In
the case of Alex activity A2, Alex’s Speaker-rule denies the coffee machine
device d4 to be used with her Speaker d3. Hence, d3, d4 should not be used
together for any functions in activity A2. Note that relevant functions to
activityA4 are f1, f3 and f6, which are reflected by ILP constraints in (5.14).
The Guest’s activity A3 is restricted by Jack’s TV-rule that denies any user
except Alex from using his TV. Hence, the TV d1’s find function f1 and play
function f3 should not be used in A3. Also, Guest’s activity restricted by
Alex’s policy Speaker-rule. Hence, the Speaker d3’s find function f1 cannot
be used the coffee machine d4’s play function f3 in activity A3, these two
constraints are presented in (5.15).

XA2,d3,f1 +XA2,d4,f3 ≤ 1

XA2,d3,f1 +XA2,d4,f6 ≤ 1
(5.14)

XA3,d1,f1 = 0

XA3,d1,f3 = 0

XA3,d3,f1 +XA3,d4,f3 ≤ 1

(5.15)

Finally, across all activities, any device’s function should not be used
by a number of activities more than its limit, which is enforced by the
device functions constraints CF in (5.16). Note that if a device’s function
only required by a single activity, as for functions f5 and f6, there is no

134 CHAPTER 5. MULTI-USER IOT SHARING POLICY

need to enforce its limit constraints.

XA1,d1,f1 +XA2,d1,f1 +XA3,d1,f1 ≤ 10

XA1,d2,f1 +XA2,d2,f1 +XA3,d2,f1 ≤ 10

XA1,d3,f1 +XA2,d3,f1 +XA3,d3,f1 ≤ 10

XA1,d6,f1 +XA2,d6,f1 +XA3,d6,f1 ≤ 10

XA2,d2,f3 +XA3,d2,f3 ≤ 1

XA2,d4,f3 +XA3,d4,f3 ≤ 1

(5.16)

The objective function is formulated similar to our formulation in (5.7)
where X is the set of all decision variables in Table 5.5, the constraints
CA are represented by the set of constraints in (5.11),(5.12), (5.13), the con-
straints CS are represented by (5.14) and (5.15), and the constraints CF are
represented by (5.16).

Activities Fulfilment Solution: Jack’s activity is not restricted by any
sharing rules. Hence, devices with the highest security score will be used
for fulfilling his activity, as follows: (1)Alex’s Speaker has the highest secu-
rity score (0.8) from all devices that support find function; (2) Similarly,
Jack’s TV has the highest score (0.7) from all devices that support dis-
play function; (3) Lighting function will be fulfilled by the only device
d7 that support light function. The corresponding decision variables are
(XA1,d3,f1 , XA1,d1,f2 , XA1,d7,f4), with total score of 0.8 + 0.7 + 0.65 = 2.15.
Similarly, Alex activity will be fulfilled by the available devices that are
not violating policy and have the maximum security score, which are:
(XA2,d5,f5 , XA2,d4,f6 , XA2,d2,f1 , XA2,d2,f3). Note although her Speaker d3 has
the highest security score from the devices that support find function f1,
she cannot use it because her rule doesn’t allow it to be used with Coffee
machine d4, which inevitably has to be used for making coffee, see equa-
tion (5.14). Finally, the activity for the Guest user cannot use Jack’s TV d1

and it cannot use Alex’s Speaker d3 for find function f1 with Coffee ma-
chine d4 for play function f3, see equation (5.15). Therefore, the devices
with the highest security score are Alex’s Speaker for find XA3,d3,f1 and

5.8. IOT SECURE SHARING ENGINE EVALUATION 135

Jack’s Speaker for play XA3,d2,f3 .

5.8 IoT Secure Sharing Engine Evaluation

We evaluated our sharing policy solving approach by generating artifi-
cial IoT sharing network settings and ILP constraints that represent user
sharing rules. We evaluated the scalability and the effectiveness of CBC
MIP, CP-SAT (both from Google ortools [68]) and the Simulated Anneal-
ing (Github project [146]) ILP solvers.

5.8.1 Experimental Setup

To show the feasibility and scalability of solving IoT sharing as an ILP
problem, we generated ILP problems that represent IoT sharing instances
with varying sizes and complexities. Then we evaluated the performance
of multiple commonly used solvers: CBC MIP, CP-SAT, and the Simulated
Annealing.

We generate ILP problems as a series of randomly sampled IoT shar-
ing instances with varying sizes and rules based on the network settings
shown in Table 5.6. We evaluate the solution score and scalability of solv-
ing IoT sharing as optimisation problems using CP-SAT, CBC MIP using
Google ortools version 7.3.7 [68] both solvers run with the default param-
eters, and Simulated Annealing (SA) solver using simanneal module [146].
SA hyper-parameters has been fine-tuned as in Table 5.7.

We found that these parameters enable SA to perform reasonably well
in terms of time and solution score. CP-SAT and CBC MIP default param-
eters aim to obtain the optimal solution; otherwise, they return “feasible”
or “not feasible”. In our experiment, we found that all solutions returned
by these solvers are optimal solutions. The results reported in the next
section are averaged over 30 runs with 95% confidence interval.

ILP problems are generated based on the network setting in Table 5.6

136 CHAPTER 5. MULTI-USER IOT SHARING POLICY

Table 5.6: Network settings for generating the IoT sharing corresponding
ILP problems.

Parameter Value
Functions (nF) 50

Device function limit (Limit(d, f)) random choice {1,10}
Devices (nD) 100

Device’s security score (Sec(d)) random(10,95)
Device capabilities (nCap(d)) 5 functions

Activities (nA) 10 to 50 activities
Size of activity (nA) 7-9 functions

Total number of sharing policy rules (nR) 100 to 1000

Table 5.7: Simulated Annealing settings

Parameter Value
Steps 100*nA ∗ nA, 10*nR

Min and Max temperature 0.5, 10,000
Share constraint violation penalty -500

Requirement constraint violation penalty -1,500

5.8. IOT SECURE SHARING ENGINE EVALUATION 137

that guides the size and complexity of the generated problems, in partic-
ular, the search space, decision variables, and constraints. As Table 5.6, the
number of available functions in the network is 50, supported by 100 de-
vices, each of which is capable of performing five random functions. This
means on average each function is supported by ndf = nD ∗ nCap(d)/nF =

100 ∗ 5/50 = 10 devices. Each decision to use device d for function f to
support activity A is a binary decision variable. For 10 number of user ac-
tivities, where each activity requires seven functions; the number of binary
decision variables is dv = nA ∗nA ∗ndf = 10 ∗ 7 ∗ 10 = 700. Consequently, the
search space of a possible set of devices that support all the ten activities is
2dv = 2700.

The total number of constraints nR in Table 5.6, as described in (5.9), is
the sum of the number of (a) sharing rules constraints nrs which ranges
from 100 to 1,000; (b) activity functions satisfaction constraints which de-
pend on the number of activities and their size. For ten activities each of
seven functions nA = 10 ∗ 7 = 70; (c) function limit constraints which de-
pends on the number of devices that support activity functions, the worst
case for ten activities nfl = nA∗nz ∗ndf = 10∗7∗10 = 700. However, practi-
cally, the number of function limit constraints is reduced as we don’t need
to create a rule if the number of activities is less than the function limit.
This reduces the number of constraints for ten activities to only nfl = 165

constraints.

5.8.2 Results and Discussion

To evaluate the scalability and the effectiveness of the proposed system,
we test it under varying numbers of constraints and decision variables. We
measure the computation time and the solution security score as well as
the number of violated rules if it occurs. We run the experiments in a vir-
tual machine running GNU/Linux Ubuntu 16.04 with five CPUs 3.2GHz
and 8GB memory.

138 CHAPTER 5. MULTI-USER IOT SHARING POLICY

Figure 5.6: Time to find the solution with a different number of constraints.

Number of Constraints

To explore the effect of a number of user policy rules, we vary the number
of constraints that represents the sharing rules from 100 to 1,000. These
constraints are generated by a uniform random number generator that se-
lects a set of devices and denies them from being used for some functions
in user activity. Each constraint represents sharing rule of the form “don’t
share device d’s function f with user u”. The total number of constraints is
calculated by the Equation (5.9) and the corresponding results are reported
in Figures 5.6 and 5.7.

In terms of performance Figure 5.6 shows that the time required by SA
to return a solution is exponentially proportional to the number of con-
straints. This doesn’t provide scalability; however, the CBC MIP and CP-
SAT solvers both require less than a second regardless of the number of
rules. This is because CBC MIP and CP-SAT use the constraints to guide
the search. On the other hand, in the case of SA, the time required to val-
idate a given solution is increasing proportionally to the number of con-
straints.

5.8. IOT SECURE SHARING ENGINE EVALUATION 139

Figure 5.7: Solution score difference ratio to CBC MIP solution score with
a different number of constraints for ten activities.

Figure 5.7 shows the solution score as a different ratio to CBC MIP
solution score (the maximum score across all solvers). CBC MIP and CP-
SAT are guided by an inference propagation that avoids searching on a
space that is rejected by the constraints, whereas SA does not support this
mechanism. As shown in Figure 5.7, CP-SAT and CBC MIP return same
solution score. SA starts with solution 92% of CBC MIP solution score.
However, SA solution improves as the number of constraint increase to
get the same solution score as CBC MIP when the number of constraints
greater than 1,200, but at the expense of time, see Figure 5.6.

In terms of violating constraints, we validate the solutions against the
constraints and we found that all solutions satisfied all the constraints.
In other words, CBC MIP, CP-SAT and SA return solutions that obey the
sharing policy rules, satisfy all activities’ requirements, and do not violate
any function limit.

Number of Decision Variables

We evaluate CBC MIP, CP-SAT solvers and SA under a different number
of decision variables. To control the number of decision variables, we vary

140 CHAPTER 5. MULTI-USER IOT SHARING POLICY

Figure 5.8: Time to find the solution with a different number of decision
variables.

the number of activities from 10 to 50 and the number of functions in each
activity from 7 to 9. We fixed the number of shared rules constraints to be
500 shared constraints.

Figure 5.8 shows that CP-SAT and CBC MIP solvers outperform SA.
The time required by CBC MIP and CP-SAT solvers is less than 0.5 sec-
onds for all problems with 750 up to 4,850 decision variables. Whereas,
the time required by SA is increasing exponentially with the number of
decision variables. It is noteworthy to mention that 0.5 seconds is a short
time compared to the tolerable user waiting time (two seconds [127]).

In terms of the solution score, CBC MIP and CP-SAT return solutions
with the same score. Hence, the score difference is zero between CP-SAT
and CBC MIP, as shown in Figure 5.9. SA solution score is 88% of CBC
MIP and CP-SAT solution score for any all problems with the number of
decision variables less than 3,000. However, for problem more than 3,000
constraints, SA solution score significantly decreases to 50% with the in-
crease in the number of decision variables to 4,800.

In summary, SA is inefficient compared to CBC MIP and CP-SAT solvers,
especially when the number of decision variables is more than 3,000. More-

5.8. IOT SECURE SHARING ENGINE EVALUATION 141

Figure 5.9: Solution score difference ratio to CBC MIP solution score with
different decision variables.

over, Figure 5.10 shows that SA starts to violate rule constraints when the
number of decision variables increases, even with increasing the constraint
violation penalties, see Table 5.7.

Figure 5.10: SA sharing policy violations.

142 CHAPTER 5. MULTI-USER IOT SHARING POLICY

5.9 Conclusion

This chapter presented a novel approach to solve the smart space IoT shar-
ing problem. We addressed this problem from two aspects: secure device
sharing and using secure devices to fulfil user activities. To address the
secure sharing aspect, we proposed a newly designed IoT device sharing
policy language that enables device owners to clearly define the circum-
stances under which their devices can be shared. To enable users to use
the most secure devices, we proposed to translate IoT device sharing into
an ILP problem aiming to minimise the risk of using vulnerable shared
devices by maximising the total overall security score of devices selected
to fulfil user activities. We mathematically formulated IoT sharing and
further transformed it into an equivalent ILP problem. In the ILP formula-
tion, the objective function aims to find the most secure devices to imple-
ment user activities, whereas the constraints capture the security aspect.
Our experiment results showed that such ILP problems can be solved by
the CBC MIP and CP-SAT solvers within 0.5 s for problems with 100 de-
vices, 50 activities, and 1000 policy constraints (note that the tolerable user
waiting time is 2 s [127]). In contrast, the simulated annealing solver does
not scale well to large problem instances.

Chapter 6

Policy Enforcement Case Study

6.1 Introduction

The previous Chapters (4 and 5) showed how to fulfil user activities and
automatically generate access policies automatically. This chapter explores
how to implement user activities and enforce their access policies. The
main focus is will be on showing the implementation aspect to highlight
the practicality of the previous two chapters, particularly especially the
PEP component.

We use the WoT technology (see 2.1.2) to implement a smart space case
study. WoT enables interoperability in IoT to provide smart services and
applications using web protocols. Mozilla Gateway stores and processes
user data locally [122] and provides a unified REST API to control the con-
nected devices.

6.1.1 Chapter Goals

This chapter aims to address the following objectives:

• Explore the implementation-related decision for the systems proposed
in Chapters 4 and 5.

143

144 CHAPTER 6. POLICY ENFORCEMENT CASE STUDY

• Evaluate the PEP (running in the network and application layers)
time overhead.

6.1.2 Chapter Organisation

This section uses a smart home, as an example of a typical smart space, to
illustrate how user policies, generated in Chapters 4 and 5, can be enforced
in the network and the application layers.

6.2 Case Study Overview

6.2.1 Assumptions

This case study is built considering the following assumptions:

1. There is a centralised control point (i.e. hub) that controls all IoT
devices using local connections, such as Mozilla Gateway [124].

2. The IoT devices that fulfil user activities and the associated access
policies are already selected by the approaches proposed in Chapters
4 and 5.

3. The activities access policies are also provided as an input, and the
main focus is on enforcing these policies at the network and applica-
tion levels.

4. The application-level access control policy assumes that the IoT de-
vices use unencrypted communication, which commonly exists in
IoT devices [82].

6.2.2 Threats

Three threats are considered in this experiment to demonstrate the policy
enforcement:

6.2. CASE STUDY OVERVIEW 145

• The hub (i.e. device controller) is a valuable target for an adversary,
as it can control all devices linked to it. Ideally, the hub should con-
trol devices based on direct or automated user activities. However,
compromised, vulnerable hubs lead to a direct control of the devices
regardless of user activity automation.

• Malicious devices can scan the network and launch local attacks against
the IoT devices or the Internet infrastructure.

• Unauthorised use of devices in a shared smart space. For example,
the device owner shares the TV for the video watching function, but
users with whom the TV is shared can use it for internet browsing.

This case study uses the hub-based architecture, in particular, Mozilla
gateway.

6.2.3 IoT Communication Patterns

There are three main communication patterns in IoT framework as fol-
lows:

• Device to cloud: An IoT device connects to its manufacturer service
to update its status and to receive commands. For example, a smart
plug connects to and updates its cloud regarding connectivity, status
On/Off, and power consumption. It also receives control commands
from the cloud to turn On/Off.

• Hub to device: Also known as controller to device, communication
where a hub locally controls devices that are linked to it without go-
ing through their cloud API. Google Home, SmartThings, and AWS
IoT Greengrass supports directly control of IoT devices using a LAN
connection [67, 170, 12]. This maintains the privacy of users activities
private and reduces the unnecessary delay of going through devices’
cloud. For example, Google home connects to the security camera

146 CHAPTER 6. POLICY ENFORCEMENT CASE STUDY

and fetches the supported protocols and an authentication token.
Then, it forwards this data to the target (e.g. smart TV), and the
TV can directly start video streaming without going through Google
Home [69].

• Device to device: IoT devices can directly connect to a LAN via WiFi
or Ethernet. For example, a Raspberry pi can tun on/off a smart plug
through WiFi without using the Smart Plug cloud API.

In this case study, we focus on enforcing access control in the network
layer at the switch and in the application layer at the IoT proxy such that
all IoT device traffic passes through its proxy. This ensures that access
control can be enforced in devices’ local or external connections.

6.3 Smart Home Case Study

The smart home case study utilises Mozilla Gateway as the centralised
hub that controls smart home IoT devices. Mozilla Gateway is a software
distribution that implements WoT; hence, it enables users to directly add,
link, and control their smart home IoT devices over the web. All devices
that are going to be used need to be linked to the Mozilla Gateway before
any activity can be built.

In the Mozilla Gateway, a user activity is called a “Rule”, which is an
“If-then” statement and consists of a condition and an action. The con-
dition is a boolean expression of one or more device’s property and the
action is a set of one or more device’s properties to be changed when the
condition is true. For example, “If the door is unlocked, then turn lights
on” (see Figure 6.1a). Users activities can be created using API call with
the corresponding JSON representation of the activity as shown in Figure
6.1b. In this case study, we build user activities manually using Mozilla
Gateway web interface.

6.3. SMART HOME CASE STUDY 147

Mozilla Gateway evaluates all activities’ conditions when the device’s
properties are changed and keeps device’s properties updated using two
mechanisms: 1) it pulls all device’s property values by default every 5
s; 2) devices send property change messages, as shown in 6.2, when the
device’s property is changed.

User Activity in Mozilla Gateway

Figure 6.2 illustrates the observed messages that are exchanged in the
Mozilla Gateway when an activity, represented as Mozilla Gateway Rule,
is triggered. The trigger is used to open the door to trigger the activity. The
user interface is a web browser in which a user monitors Mozilla Gateway
while the activity is running. In total, there are 15 messages exchanged
in the network from the time a door lock open message request is sent to
the time the light turns on and users see light on the indicator of the web
browser.

In case of door and light activity in Figure 6.1a, Thing1 represents the
door-lock and Thing2 represents inside-light. When the door-lock property
changes, it sends a property change notification to Mozilla Gateway. Then,
Mozilla Gateway checks the activities and verifies that the activity in Fig-
ure 6.1a is triggered by door-lock property. Mozilla Gateway then sends a
change property to turn the light on to inside-light.

6.3.1 Device Capabilities and Access Requirements

Device capabilities that are used to automatically fulfil user activities in
Chapters 4 and 5 can be extracted from device WoT semantic description.
The device WoT semantic description includes the device capabilities and
the corresponding URL that needs to be called to call each device capabil-
ity. For example, Figure 6.3 shows a light bulb semantic as JSON file. The
light bulb sends this semantic description to define itself to Mozilla Gate-
way; hence, it allows it to know which URI to call to use each function.

148 CHAPTER 6. POLICY ENFORCEMENT CASE STUDY

(a) Mozilla Gateway visual user activity.

(b) Mozilla Gateway POST request body.

Figure 6.1: Mozilla Gateway for implementing user activity “If the door is
unlocked, then turn light on”.

6.3. SMART HOME CASE STUDY 149

Figure 6.2: Mozilla Gateway messages for activity “If door opens turn light
on”

This is the feature that we will use to enforce function level access control
in this case study.

The capability associated URL is used to build the corresponding ac-
cess control policy for each activity, as explained in Chapter 5. Mozilla
WoT supports a set of IoT device capabilities which includes light, On/Off
switch, door sensor capabilities, the list of all supported WoT capability
schemas can be found in [123]. Access control in the network layer only
allows HTTP and Websocket for this particular case study which use WoT
technology.

We assume that the user activities and the corresponding access control
are provided as input for this case-study, as shown in Figure 6.4. User
activities fulfilment (i.e. concrete activities) can be created by submitting
it as a JSON file to Mozilla Gateway via REST API. Access policies are
implemented in the switch and in transparent reverse proxies. Each IoT
device has its own reverse web proxy that enforces what function can be
accessed based on the access control policies (see Figure 6.5). A recent

150 CHAPTER 6. POLICY ENFORCEMENT CASE STUDY

Figure 6.3: Light bulb capabilities declaration.

6.4. EXPERIMENTAL SETUP 151

study showed that smart space still uses unencrypted communication [82,
190] and that around 50% of IoT the traffic is unencrypted [166].

......

Access control policies User activity fulfilment

IoT
device-1

IoT
device-2

IoT
device-n

IoT
proxy-1

IoT
proxy-2 IoT

proxy-n

Mozilla
WebThings
Gateway

Network policy

Application policy

Figure 6.4: Access control implementation in the switch and IoT proxy.

6.4 Experimental Setup

The prototype is an implementation of the diagram shown in Figure 6.4.
We use a centralised approach, in which the hub is the central device to
control all other devices through a PEP transparent web proxy. The hub
unit is the Mozilla Gateway [121], running in a Docker container. IoT de-
vices are created as WoT devices using Python scripts running in a sepa-
rate Docker container. The experiment runs in a virtual machine running
GNU/Linux Ubuntu 16.04 with eight CPUs 3.2GHz and 8GB of memory.

The PEP is implemented in two levels: (a) in the network layer by
blocking device-to-device communications, only allowing hub-to-device

152 CHAPTER 6. POLICY ENFORCEMENT CASE STUDY

: Thing1 : Mozilla Gateway :Thing1 Proxy :Thing2

property changed

property change request

Change property request

property changed

Check the
application policy

Figure 6.5: PEP as IoT web proxy to enforce application layer access con-
trol policies.

communications, as discussed in Section 5.5, and redirecting hub-to-device
connections through PEP web proxy; and (b) in the application level in ev-
ery device proxy (see Figure 6.5), which is implemented as HTTP proxy
using node.js HTTP proxy [81]. In this setup, all interactions between IoT
devices were local; however, if any external connection is required, then it
can be enforced by a proxy that is used for external connections.

PEP proxy intercepts Mozilla Gateway messages to IoT devices to check
if the IoT device and the function called is permitted or not using the access
policies (see Figure 6.5). For example, given the devices and capabilities in
Table 6.2, and the user activities and access policies in Table 6.3, PEP proxy
will deny any access to the Garage unlock function, as it is not allowed by
any policy in 6.3.

Three experiments are conducted to measure the time required to run
user activities in different settings with and without PEP. The activity run-
ning time is measured to evaluate the effect of PEP on the overall running
time. We define the activity running time as the time between the prop-
erty changed message (message no. 5 in Figure 6.2) that activates the user

6.4. EXPERIMENTAL SETUP 153

Exp. Bound IoT devices Activities Parallel Sequential
1 [5, 10, 15, 20, 25] 2 1 0
2 15 [2, 4, 6, 8, 10] [1, 2, 3, 4, 5] 0
3 15 [2, 4, 6, 8] 0 [1, 2, 3, 4]

Table 6.1: Experimental settings

activity and the time of completing the action and displaying it to the user
(message no. 15 in Figure 6.2). We chose this time because this time is
what would be noticeable to a user if there is any delay introduced by the
PEP.

Table 6.1 shows the experimental settings of three scenarios based on
the following factors:

1. The number of bound devices, which is the number of devices avail-
able in the network. This factor is used to control the background
traffic to synchronise the IoT devices properties with the Mozilla
gateway.

2. The number of parallel activities triggered at a time, in which a sin-
gle event triggers number of activities at the same time. Hence, this
factor controls the number of actions the gateway must execute at
once.

3. The sequential number of activities triggered at a time, in which a
single event triggers a chain of activities. Hence, this factor controls
the number of sequential actions the gateway needs to execute.

A related point to consider is that the number of policy rules is reflected
on the number of activities. For example, the activity in Figure 6.1 needs to
access the light On/Off function; hence, a single rule is required to allow
access to this function (the default policy is to deny).

154 CHAPTER 6. POLICY ENFORCEMENT CASE STUDY

No Device Capabilities
1 Garage lock lock, unlock
2 Light on, off
3 Door lock lock, unlock
4 Camera outside stream, take photo
5 Smart TV on, off, cast, watch
6 Coffee machine start, stop
7 Motion sensor detect
8 Thermostat off, cooling, heating, auto

Table 6.2: IoT devices types and capabilities

User Activities Access Policy
If Light is off do Garage lock Garage: lock
If Garage is unlocked do Light on Light: on
If Door is unlocked do Camera takephoto Camera: takephoto
If Door is locked do Camera takephoto Camera: takephoto
If Smart TV is in watch do Coffee machine start Coffee machine: start
If Garage is unlocked do Coffee machine start Coffee machine: start
If Motion sensor is detected do Thermostat auto Thermostat: auto
If Smart TV is off do Thermostat auto Thermostat: auto

Table 6.3: Examples of user activities and the corresponding allowed ac-
cess capabilities.

6.5. RESULTS AND DISCUSSION 155

Figure 6.6: Trigger to action time with a different number of bound de-
vices.

6.5 Results and Discussion

The experimental results of PEP performance show that the average run-
ning time of five concurrent activities is 0.255± 0.024 s, from which 0.008 s
is the time overhead introduced by PEP. We performed three experiments,
as described in Table 6.1. Each experiment was executed 36 times.

Figure 6.7: Trigger to action time with a different number of actions at a
time.

156 CHAPTER 6. POLICY ENFORCEMENT CASE STUDY

The results from the first experiment, in Figure 6.6, show the impact of
the number of devices linked to the gateway on the required time to exe-
cute user activity. As depicted in Figure 6.6, when the number of linked
IoT devices is up to 25, the background device’s property values synchro-
nisation has no significant effect on the activity running time. The average
running time of an activity is around 82 ms. It also shows that the PEP
time overhead is as small as the margin error of 95% confidence interval.

Figure 6.8: Trigger to action time with a different number of devices.

The results of the second experiment show that the activity running
time increases proportionally to the number of concurrent activated ac-
tions (see Figure 6.7). However, as in the previous results, the time over-
head introduced by PEP is not statistically significant.

The results from the third experiment, in Figure 6.8, show the impact
of running sequential activities. The time to execute all activities increases
proportionally to the number of sequential activities. This is because the
gateway has to execute all functions in the activities in sequential order.
The running time for sequential activities is significantly higher than con-
current activities, as shown in Figures 6.8 and 6.7. However, as in the
previous results, the time overhead introduced by PEP is negligible.

6.6. CONCLUSION 157

6.6 Conclusion

The case study results indicated that runtime policy enforcement can be
achieved by adopting a transparent proxy service to be jointly used with
the Mozilla Gateway. Evaluation experiments showed that enforcing fine-
grained policies in the network and application layers do not introduce a
statistically significant overhead on the running activities.

158 CHAPTER 6. POLICY ENFORCEMENT CASE STUDY

Chapter 7

Conclusions and Future Work

This chapter concludes the discussion of this thesis, highlights the main
findings, and outlines directions for future works.

The overall goal of this thesis was to develop a new method to use user
input to derive fine-grained access policies. This goal was successfully
achieved by developing a security framework, and the innovative formu-
lation of user activity fulfilment as optimisation problems that use user
preference and sharing policies to automatically fulfil user activities. We
developed algorithms to derive network and application fine-grained ac-
cess control policies for the devices that are selected to fulfil user activities.
The validation test of the newly proposed security framework showed its
usefulness and practicality in mitigating unauthorised network access to
vulnerable IoT devices in the smart space. The results of formulating ac-
tivity fulfilment as an optimisation problem using user preferences show
that GA efficiently finds the solution. In addition, results indicate that
by formulating IoT sharing as an ILP problem, off-the-shelf ILP solvers
can efficiently find the most secure set of devices that fulfil user activities
without violating any sharing policy.

The remainder of this chapter is organised as follows: Section 7.1 pro-
vides the individual objectives that were achieved in this thesis. Section
7.2highlights the main thesis conclusions and findings. Discussions and

159

160 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

suggestions for several potential research directions are presented in Sec-
tion 7.3.

7.1 Achieved Objectives

This thesis has successfully fulfilled the following research objectives:

• This thesis developed a security framework (Chapter 3) which en-
ables users to customise pre-defined IoT policies to fulfil their re-
quirements. The framework also integrates network security mid-
dleboxes to mitigate security attacks. Two security services have
been developed in the framework: IPv4 ARP spoofing server to mit-
igate IPv4 ARP spoofing attacks and IDS integration to mitigate on-
going attacks and automatically block malicious traffic. The frame-
work validation test shows that user input reduces the attack sur-
face on IoT devices while blocking connections that are not used by
any user activity. Moreover, the study of IPv4 ARP spoofing server
shows that it can effectively prevent ARP spoofing attacks. By by-
passing the kernel, the ARP server outperforms existing SDN cen-
tralised ARP servers.

• This thesis proposed a new intelligent approach (Chapter 4) that rep-
resents user activities as functional workflows to be used to auto-
matically fulfil user activities using the preferred set of devices. The
problem was formulated as a constraint optimisation task, which
was solved using heuristic searching algorithms to automatically se-
lect the set of devices that satisfy the functional workflow require-
ments and maximise user preferences. A policy generation algo-
rithm was proposed to systematically generate network access poli-
cies using the network requirements for each device function to en-
force the principle of least privilege on the selected devices. The ex-

7.2. MAIN CONCLUSIONS 161

periment results showed that the GA outperforms the other search-
ing algorithms in terms of time and quality of the solution.

• This thesis proposed a novel method (Chapter 5) to automatically
fulfil user activity functions using the most secure set of devices
without violating user sharing policies in a shared smart space. To
the best of our knowledge, we are the first to formulate this as an
ILP problem. The formulation relies on translating sharing policies
into ILP constraints and quantifying device security to be maximised
using the objective function. An algorithm was developed to auto-
matically transform an IoT sharing problem into an ILP problem.
The experimental results showed that the proposed method is effec-
tive at finding the most secure devices to fulfil user activities without
violating user sharing policies.

• This thesis presented an access control case study (Chapter 6) to
evaluate the feasibility and practicality of using the proposed fine-
grained access policies framework using existing technologies. User
activities and the corresponding network and application policies,
presented in Chapters 4 and 5, were provided as inputs to the case
study to demonstrate how it can be enforced using existing hub-
based smart spaces, such as Mozilla Gateway. The results of ex-
periments conducted in the case study showed that network and
application policy enforcement can be integrated into existing IoT
hub-based access control systems without incurring a time overhead
noticeable to users.

7.2 Main Conclusions

Overall, this thesis explored the possibility of building fine-grained access
control through utilising (a) user manual input to customise pre-defined
IoT policies to meet their security and privacy requirements and (b) user

162 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

preferences and sharing policies to automatically derive activity fulfilment
and the corresponding access control policies automatic.

Chapters 3, 4, and 5 propose methods to use different types of user
inputs to customise and derive access control policies. Results from Chap-
ters 3 and 4 show that fine-grained access control requires some user in-
puts that can define which devices are used by user activities and how to
derive fine-grained access control assuming. Chapter 6 results shows that
the proposed access control system can be implemented using commonly
used IoT hub such as Mozilla Gateway.

The main conclusions drawn from each of the four contribution chap-
ters (Chapters 3 to 6) are presented and discussed in this section.

7.2.1 User-Centric Access Control Framework

Chapter 3 proposes an access control framework that enables users to tai-
lor IoT device policies to meet their security and privacy requirements.
The IoT device policies are considered as the minimum security policy
that can be restored to cover any user mistakes. Moreover, the framework
integrates IDS to mitigate malicious activities within the allowed connec-
tions and block them using SDN. In addition, a centralised ARP server
has been implemented as security services in the framework. Validation
results demonstrate the effectiveness of integrating user access rules into
existing security countermeasures (i.e. pre-defined policies and IDS) to
enforce user security and privacy. The results also indicate that imple-
menting security applications such as ARP server in the data plane can
easily support smart home network traffic.

7.2.2 Optimising User Preference for Fine-grained Access

Control

This thesis presents a new important problem, which is how to use user
preferences to derive fine-grained access control. Solving this problem can

7.2. MAIN CONCLUSIONS 163

help to consider user access control decisions in a transparent manner. To
solve this problem, we had to initially identify which devices should be
used to fulfil user activities, and then derive access policies for the selected
devices. We formulated the problem of device selection as an optimisa-
tion problem to find the set of devices that fulfil user activity while opti-
mising user preference (Chapter 4). Based on this formulation, local and
global optimisation search algorithms were used. Searching algorithms
were guided by a user preference quantified model that returns a scalar
value for each given set of devices. An algorithm has been proposed to
generate an access control policy for each set of devices to support user ac-
tivities. The results indicated that global optimisation search algorithms,
such as GA, are the most efficient and effective compared to local search
algorithms, like such as simulated annealing and hill-climbing.

The results help us to understand the performance of optimisation search
algorithms in terms of efficiency and scalability in automatically fulfilling
user activities. Moreover, the problem formulation identified a new man-
ner of using user input to derive access control that reflects user prefer-
ences.

7.2.3 Optimisation for Secure Sharing and Secure Using

Chapter 5 identifies a new problem in a multi-user smart space, called IoT
sharing problem. The IoT sharing problem is how to enable users to share
and use their IoT devices securely. This problem has been addressed by
proposing a new sharing language to enable users to specify their sharing
conditions. A novel formulation has been proposed to translate the IoT
sharing problem into an ILP problem to fulfil user activities using the most
secure set of devices without violating user sharing policies. The formula-
tion converts user sharing policies into a set of constraints and maximises
quantified device security in the objective function. Results showed that
the IoT sharing problem can naturally be translated into an ILP problem

164 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

and effectively use off-the-shelf ILP solvers.
This thesis introduces a new approach of using optimisation techniques

for addressing security problems in a multi-user smart space. It also helps
us to understand the efficiency and scalability of ILP solvers when they
are used to solve the IoT sharing problem.

7.2.4 Fine-grained Policy Enforcement

This thesis proposes network and application policies that mitigate the
threat of exploiting vulnerable IoT devices by restricting network and ap-
plication communications to the minimum necessary to support user ac-
tivities. Moreover, device function abuse can be effectively mitigated by
application policies that limit connected devices to using only the func-
tions that are part of user activities. From the case study in Chapter 6, it
has been found that policy enforcement can be achieved by adopting a de-
vice proxy service for each IoT device. In addition, access control based
on device functions is suitable to be used with WoT technology. The WoT
provides a semantic description that includes what functions/capabilities
a device (i.e. Thing) supports with the associated URIs to invoke them.
Therefore, access control policies can be constructed using the semantic
descriptions of the IoT devices. Evaluation experiments show that net-
work and application policies can be enforced without incurring any sig-
nificant overhead on the user activity running time.

7.2.5 Function-based Access Control Policy

Chapter 4 and 5 use functional workflows to represents user activity func-
tional requirements to derive fine-grained access policies based on what
functions are required by user activities and the device function access re-
quirements. It has been found that abstracting user activities using their
functions is useful to systematically derive fine-grained access control poli-
cies. Consequently, these policies enforce the least privilege access control.

7.3. FUTURE WORK 165

Furthermore, decoupling user activities from the underlying devices can
enable users to reuse pre-defined user activities, which can be shared in a
repository.

7.3 Future Work

Finally, this section provides possible research directions for future work.

7.3.1 Access Control Quality of Experience aware

This thesis proposes the first approach to automatically generate access
control policies for static user activities (Chapter 4) by leveraging func-
tional workflow representation for user activities. It has been found that
decoupling user activities from the underlying devices open opportuni-
ties to derive access control policies and meet user requirements (e.g. user
preferences). However, user activities can dynamically change due to
many factors such as user mobility and QoE [13, 16, 32]. For example,
video content streaming function, in a user activity, needs to be fulfilled
by the closest device to a user to improve user QoE. However, enforcing
access policy on user activities may affect their QoE, particularly with dy-
namically changed activities. The challenge is how to support dynamic
fulfilment and access control without affecting user QoE.

User experience also includes resolving the conflict when more than
one user activity requires access to a device function. Such conflict can
be solved as a scheduling problem with priority based on the users (own-
ers first) or the activity task (studying activities have higher priority than
entertainment ones).

7.3.2 User Activities with Web Services

This thesis addressed mainly the use of user input to derive access control
for IoT devices; however, the proposed methods can also support external

166 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

web services. User activities, represented as functional workflows, may
have some functions that IoT devices can fulfil, whereas others need ex-
ternal services. Similarly to the local network requirements of IoT devices,
access control rules to external services are required to support activities
that need to access web services. The user preference model needs to in-
clude the devices and functions preferred by users and also which services
for each function. In a sharing scenario, web services do not affect how
users share their devices, except if they do not want to share them. Thus,
the sharing policy language can be extended to consider web services.

7.3.3 Cross Smart Spaces Device Sharing

IoT sharing often refers to users sharing IoT devices in the same smart
space. However, IoT sharing can happen across smart spaces when user
activities need to be fulfilled by devices located in different spaces. For ex-
ample, user A may build an activity to turn the light red when the smoke
sensor goes off in user B home. Although this can be considered as ex-
ternal services, managing users from different smart spaces to provide a
wider sharing environment needs further investigation.

7.3.4 Statefull IoT Sharing

This thesis considered IoT devices as stateless in IoT sharing problem and
focused on the sharing policies and access control. However, when de-
vices are shared between multiple users, an operational conflict may hap-
pen. The conflict in the operation can be solved, for example, by priori-
tising user activities. However, further research that consider IoT devices
state into network access control is required.

7.3. FUTURE WORK 167

7.3.5 Multi-Objective Device Selection Using User Prefer-

ences and Device Security

This thesis found that the optimisation approach efficiently solves smart
space problems with a single objective (i.e. user preference, device secu-
rity). However, if the goal is to fulfil user activities using the user preferred
device and the most secure device, then these two objectives might be con-
flicting. For example, a user may prefer to use a device that is less secure
than another. Future work could investigate the multi-objective optimi-
sation technique to meet user preferences and increase the security of the
smart space by using secure devices when available. Simultaneously, op-
timising several objectives is a challenging task, requiring further studies
on existing multi-objective optimisation techniques that suit this scenario.

168 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] ACAR, G., HUANG, D. Y., LI, F., NARAYANAN, A., AND FEAM-
STER, N. Web-based attacks to discover and control local iot devices.
In Proceedings of the 2018 Workshop on IoT Security and Privacy (2018),
pp. 29–35.

[2] AL-SHABOTI, M. Smart home access control system.
https://www.youtube.com/watch?v=T9a0UI85cYA (Accessed
on 15/12/2019).

[3] AL-SHABOTI, M. Dam, 2020. Last accessed 5/1/2020.

[4] AL-SHABOTI, M., AARON, C., AND IAN, W. Automatic Device Se-
lection and Access Policy Generation based on User Preference for
IoT Activity Workflow. In eprint arXiv:1904.06495 (Apr. 2019).

[5] AL-SHABOTI, M., WELCH, I., CHEN, A., AND MAHMOOD, M. A.
Towards secure smart home iot: Manufacturer and user network
access control framework. In 2018 IEEE 32nd International Conference
on Advanced Information Networking and Applications (AINA) (2018),
IEEE, pp. 892–899.

[6] ALAA, M., ZAIDAN, A., ZAIDAN, B., TALAL, M., AND KIAH, M.
A review of smart home applications based on internet of things.
Journal of Network and Computer Applications 97 (2017), 48–65.

169

170 BIBLIOGRAPHY

[7] ALI, S. T., SIVARAMAN, V., RADFORD, A., AND JHA, S. A survey of
securing networks using software defined networking. IEEE trans-
actions on reliability 64, 3 (2015), 1086–1097.

[8] ALKHRESHEH, A., ELGAZZAR, K., AND HASSANEIN, H. S.
Context-aware automatic access policy specification for iot environ-
ments. In 2018 14th International Wireless Communications & Mobile
Computing Conference (IWCMC) (2018), IEEE, pp. 793–799.

[9] AMAN, W., AND SNEKKENES, E. Event driven adaptive security in
internet of things. In Proceedings of the Eighth International Confer-
ence on Mobile Ubiquitous Computing, Systems, Services and Technolo-
gies (UBICOMM 2014), Rome, Italy (2014), vol. 2428, p. 715.

[10] AMAZON. Echo (3rd gen) - smart speaker with alexa, 2020. Last
accessed 15/2/2020.

[11] ANDREASSON, N., PATRIKSSON, M., AND EVGRAFOV, A. An intro-
duction to continuous optimization: foundations and fundamental algo-
rithms. Courier Dover Publications, 2020.

[12] AWS. Aws iot greengrass. https://aws.amazon.com/greengrass/
(Accessed on 27/5/2020).

[13] BAEK, K.-D., AND KO, I.-Y. Spatially cohesive service discovery
and dynamic service handover for distributed iot environments. In
International Conference on Web Engineering (2017), Springer, pp. 60–
78.

[14] BAJPAI, P., AND KUMAR, M. Genetic algorithm–an approach to
solve global optimization problems. Indian Journal of computer sci-
ence and engineering 1, 3 (2010), 199–206.

[15] BAKKER, J. N., WELCH, I., AND SEAH, W. K. Network-wide vir-
tual firewall using sdn/openflow. In Network Function Virtualization

BIBLIOGRAPHY 171

and Software Defined Networks (NFV-SDN), IEEE Conference on (2016),
IEEE, pp. 62–68.

[16] BAO, W., YUAN, D., YANG, Z., WANG, S., LI, W., ZHOU, B. B.,
AND ZOMAYA, A. Y. Follow me fog: toward seamless handover
timing schemes in a fog computing environment. IEEE Communica-
tions Magazine 55, 11 (2017), 72–78.

[17] BARRERA, D., MOLLOY, I., AND HUANG, H. Standardizing iot net-
work security policy enforcement. In Workshop on Decentralized IoT
Security and Standards (DISS) (2018), vol. 2018, p. 6.

[18] BELLAVISTA, P., AND MONTANARI, A. Context awareness for adap-
tive access control management in iot environments. Secur. Priv.
Cyber-Phys. Syst.: Found. Princ. Appl 2, 5 (2017), 157–178.

[19] BERGIUS, H. Desktop summit, and some thoughts on flow-based
programming, 2010. Last accessed 10/7/2020.

[20] BHUNIA, S. S., AND GURUSAMY, M. Dynamic attack detection and
mitigation in iot using sdn. In 2017 27th International Telecommu-
nication Networks and Applications Conference (ITNAC) (2017), IEEE,
pp. 1–6.

[21] BLACKSTOCK, M., AND LEA, R. Fred: a hosted data flow platform
for the iot built using node-red. Proceedings of MoTA (2016).

[22] BREWER, D. F., AND NASH, M. J. The chinese wall security policy.
In null (1989), IEEE, p. 206.

[23] BUNTZ, B. Sound data privacy policy can drive market differentia-
tion, 2020. Last accessed 7/5/2020.

[24] CASADO, M., FREEDMAN, M. J., PETTIT, J., LUO, J., MCKEOWN,
N., AND SHENKER, S. Ethane: Taking control of the enterprise.

172 BIBLIOGRAPHY

In ACM SIGCOMM Computer Communication Review (2007), vol. 37,
ACM, pp. 1–12.

[25] CASADO, M., GARFINKEL, T., AKELLA, A., FREEDMAN, M. J.,
BONEH, D., MCKEOWN, N., AND SHENKER, S. Sane: A protection
architecture for enterprise networks. In Usenix Security (2006).

[26] CECCHINATO, M., AND HARRISON, D. Degrees of agency in own-
ers and users of home iot devices. In CHI’17 workshop: Making Home:
Asserting Agency in the Age of IoT (2017), Association for Computing
Machinery (ACM).

[27] CELIK, Z. B., MCDANIEL, P., AND TAN, G. Soteria: Automated
iot safety and security analysis. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18) (2018), pp. 147–158.

[28] CELIK, Z. B., TAN, G., AND MCDANIEL, P. D. Iotguard: Dy-
namic enforcement of security and safety policy in commodity iot.
In NDSS (2019).

[29] CHEN, J., ZUO, C., DIAO, W., DONG, S., ZHAO, Q., SUN, M., LIN,
Z., ZHANG, Y., AND ZHANG, K. Your iots are (not) mine: On the
remote binding between iot devices and users. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN) (2019), IEEE, pp. 222–233.

[30] CHETTY, M., KIM, H., SUNDARESAN, S., BURNETT, S., FEAMSTER,
N., AND EDWARDS, W. K. ucap: An internet data management tool
for the home. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (2015), ACM, pp. 3093–3102.

[31] CHO, H., KANG, S., AND LEE, Y. Centralized arp proxy server over
sdn controller to cut down arp broadcast in large-scale data center
networks. In 2015 International Conference on Information Networking
(ICOIN) (2015), IEEE, pp. 301–306.

BIBLIOGRAPHY 173

[32] CHO, J.-H., KO, H.-G., AND KO, I.-Y. Adaptive service selection
according to the service density in multiple qos aspects. IEEE Trans-
actions on Services Computing 9, 6 (2016), 883–894.

[33] CLOUDFLARE. Inside the infamous mirai iot botnet: A retrospective
analysis, Dec. 2017.

[34] CLOUDFLARE. Reverse proxy, 2020. Last accessed 25/7/2020.

[35] CONFORTI, M., CORNUÉJOLS, G., ZAMBELLI, G., ET AL. Integer
programming, vol. 271. Springer, 2014.

[36] CONSTANTIN, L. Hackers found 47 new vulnerabilities in 23 iot
devices at def con, Sept. 2016.

[37] COX, J. H., CLARK, R. J., AND OWEN, H. L. Leveraging sdn for arp
security. In SoutheastCon, 2016 (2016), IEEE, pp. 1–8.

[38] CRANOR, L. F. A framework for reasoning about the human in the
loop. UPSEC 8, 2008 (2008), 1–15.

[39] DALY, R., SHEN, Q., AND AITKEN, S. Learning bayesian networks:
approaches and issues. The knowledge engineering review 26, 2 (2011),
99–157.

[40] DEMARINIS, N., AND FONSECA, R. Toward usable network traf-
fic policies for iot devices in consumer networks. In Proceedings of
the 2017 Workshop on Internet of Things Security and Privacy (2017),
pp. 43–48.

[41] DICKSON, B. More smart home devices vulnerable, mcafee re-
searchers find, 2020. Last accessed 15/7/2020.

[42] DING, A. Y., CROWCROFT, J., TARKOMA, S., AND FLINCK, H. Soft-
ware defined networking for security enhancement in wireless mo-
bile networks. Computer Networks 66 (2014), 94–101.

174 BIBLIOGRAPHY

[43] DING, W., AND HU, H. On the safety of iot device physical inter-
action control. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (2018), ACM, pp. 832–846.

[44] EDWARDS, W. K., POOLE, E. S., AND STOLL, J. Security automation
considered harmful? In Proceedings of the 2007 Workshop on New
Security Paradigms (2008), ACM, pp. 33–42.

[45] ENCK, W., ONGTANG, M., AND MCDANIEL, P. Understanding an-
droid security. IEEE security & privacy 7, 1 (2009), 50–57.

[46] ENTERPRISE, H. Internet of things research study. Tech. rep., HP,
2015.

[47] FEAMSTER, N., REXFORD, J., AND ZEGURA, E. The road to sdn.
Queue 11, 12 (2013), 20.

[48] FERNANDES, E., JUNG, J., AND PRAKASH, A. Security analysis of
emerging smart home applications. In 2016 IEEE Symposium on Se-
curity and Privacy (SP) (2016), IEEE, pp. 636–654.

[49] FERRAG, M. A., MAGLARAS, L. A., JANICKE, H., JIANG, J., AND

SHU, L. Authentication protocols for internet of things: a compre-
hensive survey. Security and Communication Networks 2017 (2017).

[50] FETH, D., MAIER, A., AND POLST, S. A user-centered model for
usable security and privacy. In International Conference on Human
Aspects of Information Security, Privacy, and Trust (2017), Springer,
pp. 74–89.

[51] FLECHAIS, I., RIEGELSBERGER, J., AND SASSE, M. A. Divide and
conquer: the role of trust and assurance in the design of secure socio-
technical systems. In Proceedings of the 2005 workshop on New security
paradigms (2005), ACM, pp. 33–41.

BIBLIOGRAPHY 175

[52] FLOW TEAM, M. Microsoft flow. https://flow.microsoft.

com/en-us/ (visited on 18/10/2018).

[53] FURINI, M., MANDREOLI, F., MARTOGLIA, R., AND MON-
TANGERO, M. Iot: Science fiction or real revolution? In Inter-
national Conference on Smart Objects and Technologies for Social Good
(2016), Springer, pp. 96–105.

[54] FÜRNKRANZ, J., AND HÜLLERMEIER, E. Preference learning and
ranking by pairwise comparison. In Preference learning. Springer,
2010, pp. 65–82.

[55] GAGLIARDI, V. Introduction to the decoupled world. In Decoupled
Django. Springer, 2021, pp. 1–15.

[56] GANJI, A., PAGE, G., AND SHAHZAD, M. Characterizing the per-
formance of wifi in dense iot deployments. In 2019 28th International
Conference on Computer Communication and Networks (ICCCN) (2019),
IEEE, pp. 1–9.

[57] GARBIS, J. The software defined perimeter, 2017. [Online; accessed
15-April-2017].

[58] GARG, R., AND MORENO, C. Understanding motivators, con-
straints, and practices of sharing internet of things. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3,
2 (2019), 44.

[59] GARTNER. Gartner says 5.8 billion enterprise and
automotive iot endpoints will be in use in 2020.
https://www.gartner.com/en/newsroom/press-releases/2019-08-
29-gartner-says-5-8-billion-enterprise-and-automotive-io (Accessed
on 15/1/2020).

https://flow.microsoft.com/en-us/
https://flow.microsoft.com/en-us/

176 BIBLIOGRAPHY

[60] GARTNER. Gartner says a typical family home could
contain more than 500 smart devices by 2022, 2014.
https://www.gartner.com/en/newsroom/press-releases/2014-
09-08-gartner-says-a-typical-family-home-could-contain-more-
than-500-smart-devices-by-2022 (visited on 8/4/2019).

[61] GE, M., HONG, J. B., GUTTMANN, W., AND KIM, D. S. A frame-
work for automating security analysis of the internet of things. Jour-
nal of Network and Computer Applications 83 (2017), 12–27.

[62] GEENG, C., AND ROESNER, F. Who’s in control?: Interactions in
multi-user smart homes. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (2019), ACM, p. 268.

[63] GHADYANI, K. Networking 215+ smart home devices, 2020. Last
accessed 24/6/2020.

[64] GHARAKHEILI, H. H., SIVARAMAN, V., MOORS, T., VISHWANATH,
A., MATTHEWS, J., AND RUSSELL, C. Enabling fast and slow
lanes for content providers using software defined networking.
IEEE/ACM Transactions on Networking (2016).

[65] GIANG, N. K., BLACKSTOCK, M., LEA, R., AND LEUNG, V. C.
Developing iot applications in the fog: a distributed dataflow ap-
proach. In Internet of Things (IOT), 2015 5th International Conference
on the (2015), IEEE, pp. 155–162.

[66] GOOGLE. Local fulfillment. https://developers.google.com/assistant/smarthome/concepts/devices-
traits (Accessed on 15/4/2020).

[67] GOOGLE. Local fulfillment. https://developers.google.com/assistant/smarthome/concepts/local
(Accessed on 15/4/2020).

[68] GOOGLE. Or-tools. https://developers.google.com/optimization
(Accessed on 15/1/2020).

BIBLIOGRAPHY 177

[69] GOOGLE. Smart home camerastream trait schema.
https://developers.google.com/assistant/smarthome/traits/camerastream
(Accessed on 15/4/2020).

[70] GOUTAM, S., ENCK, W., AND REAVES, B. Hestia: simple least privi-
lege network policies for smart homes. In Proceedings of the 12th Con-
ference on Security and Privacy in Wireless and Mobile Networks (2019),
pp. 215–220.

[71] GROSSMAN, D., AND DOMINGOS, P. Learning bayesian network
classifiers by maximizing conditional likelihood. In Proceedings of the
twenty-first international conference on Machine learning (2004), ACM,
p. 46.

[72] HAMZA, A., GHARAKHEILI, H. H., AND SIVARAMAN, V. Combin-
ing mud policies with sdn for iot intrusion detection. In Proceedings
of the 2018 Workshop on IoT Security and Privacy (2018), ACM, pp. 1–7.

[73] HAMZA, A., RANATHUNGA, D., GHARAKHEILI, H. H., ROUGHAN,
M., AND SIVARAMAN, V. Clear as mud: Generating, validating and
applying iot behavioral profiles. In Proceedings of the 2018 Workshop
on IoT Security and Privacy (2018), ACM, pp. 8–14.

[74] HAMZEI, M., AND NAVIMIPOUR, N. J. Toward efficient service
composition techniques in the internet of things. IEEE Internet of
Things Journal 5, 5 (2018), 3774–3787.

[75] HANEY, J. M., FURMAN, S. M., AND ACAR, Y. Smart home secu-
rity and privacy mitigations: Consumer perceptions, practices, and
challenges. In International Conference on Human-Computer Interaction
(2020), Springer, pp. 393–411.

[76] HARDT, D. The oauth 2.0 authorization framework. RFC 6749,
RFC Editor, October 2012. http://www.rfc-editor.org/rfc/
rfc6749.txt.

http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt

178 BIBLIOGRAPHY

[77] HARRISON, R., CAI, Q., GUPTA, A., AND REXFORD, J. Network-
wide heavy hitter detection with commodity switches. In Proceed-
ings of the Symposium on SDN Research (2018), pp. 1–7.

[78] HASSAN, W. H., ET AL. Current research on internet of things (iot)
security: A survey. Computer networks 148 (2019), 283–294.

[79] HAYES, M., NG, B., PEKAR, A., AND SEAH, W. K. Scalable archi-
tecture for sdn traffic classification. IEEE Systems Journal (2017).

[80] HE, W., GOLLA, M., PADHI, R., OFEK, J., DÜRMUTH, M., FERNAN-
DES, E., AND UR, B. Rethinking access control and authentication
for the home internet of things (iot). In 27th {USENIX} Security Sym-
posium ({USENIX} Security 18) (2018), pp. 255–272.

[81] HTTP PARTY. Nodejs http proxy, 2020. https://github.com/

http-party/node-http-proxy (accessed on 2/5/2020).

[82] HUANG, D. Y., APTHORPE, N., LI, F., ACAR, G., AND FEAMSTER,
N. Iot inspector: Crowdsourcing labeled network traffic from smart
home devices at scale. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 4, 2 (2020), 1–21.

[83] IFTTT. Ifttt, 2020. Last accessed 5/7/2020.

[84] INC., S. Smartthings. https://www.smartthings.com/ (Accessed
on 5/2/2020).

[85] INITIATIVE, I. I., ET AL. Towards a definition of the in-
ternet of things (iot). Revision-1, on-line: http://iot. ieee.
org/images/files/pdf/IEEE IoT Towards Definition Internet of Things
Revision1 27MAY15. pdf. Accessed 27, 2017 (2015), 479–501.

[86] JACOBSSON, A., BOLDT, M., AND CARLSSON, B. A risk analysis of a
smart home automation system. Future Generation Computer Systems
56 (2016), 719–733.

https://github.com/http-party/node-http-proxy
https://github.com/http-party/node-http-proxy

BIBLIOGRAPHY 179

[87] JAFARIAN, J. H., AL-SHAER, E., AND DUAN, Q. Openflow random
host mutation: transparent moving target defense using software
defined networking. In Proceedings of the first workshop on Hot topics
in software defined networks (2012), ACM, pp. 127–132.

[88] JAIN, A., SINGH, T., AND SHARMA, S. K. Threats paradigmin iot
ecosystem. In 2018 7th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions)(ICRITO)
(2018), IEEE, pp. 1–7.

[89] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI, L.,
SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU, M.,
ET AL. B4: Experience with a globally-deployed software defined
wan. ACM SIGCOMM Computer Communication Review 43, 4 (2013),
3–14.

[90] JANG, W., CHHABRA, A., AND PRASAD, A. Enabling multi-user
controls in smart home devices. In Proceedings of the 2017 Workshop
on Internet of Things Security and Privacy (2017), ACM, pp. 49–54.

[91] JIA, Y. J., CHEN, Q. A., WANG, S., RAHMATI, A., FERNANDES,
E., MAO, Z. M., PRAKASH, A., AND UNVIERSITY, S. Contexlot:
Towards providing contextual integrity to appified iot platforms. In
NDSS (2017).

[92] JINDOU, J., XIAOFENG, Q., AND CHENG, C. Access control method
for web of things based on role and sns. In Computer and Information
Technology (CIT), 2012 IEEE 12th International Conference on (2012),
IEEE, pp. 316–321.

[93] JOHNJFORREST, STEFAN VIGERSKE, H. G. S. E. A. coin-or cbc.
https://zenodo.org/record/3700700 (Accessed on 15/5/2020).

[94] KAMMÜLLER, F., NURSE, J. R., AND PROBST, C. W. Attack tree
analysis for insider threats on the iot using isabelle. In International

180 BIBLIOGRAPHY

Conference on Human Aspects of Information Security, Privacy, and Trust
(2016), Springer, pp. 234–246.

[95] KLINEDINST, D. J. Coordinating vulnerabilities in iot devices,
January 2016. https://insights.sei.cmu.edu/cert/2016/
01/coordinating-vulnerabilities-in-iot-devices.

html (visited on 28/10/2017).

[96] KREBSONSECURITY. Source code for iot botnet ‘mirai’ released, Oct.
2016.

[97] KUMAR, H., GHARAKHEILI, H. H., AND SIVARAMAN, V. User con-
trol of quality of experience in home networks using sdn. In Ad-
vanced Networks and Telecommuncations Systems (ANTS), 2013 IEEE
International Conference on (2013), IEEE, pp. 1–6.

[98] LAB41. Poseidon: Machine learning, 2017. https://github.

com/Lab41/PoseidonML (visited on 15/12/2017).

[99] LARA, A., AND RAMAMURTHY, B. Opensec: Policy-based security
using software-defined networking. IEEE Transactions on Network
and Service Management 13, 1 (2016), 30–42.

[100] LEAR. Mud file maker, 10 2017. https://mudmaker.org/ (visited
on 1/11/2017).

[101] LEAR, E., DROMS, R., AND ROMASCANU, D. Manufacturer usage
description specification. Tech. rep., IETF Network Working Group,
Internet-Draft, 2019.

[102] LEARNING, M. Tom mitchell. ISBN: 0-07-042807-7, Publisher: Mc-
Graw Hill (1997).

[103] LI, H., WEI, F., AND HU, H. Enabling dynamic network access
control with anomaly-based ids and sdn. In Proceedings of the ACM

https://insights.sei.cmu.edu/cert/2016/01/coordinating-vulnerabilities-in-iot-devices.html
https://insights.sei.cmu.edu/cert/2016/01/coordinating-vulnerabilities-in-iot-devices.html
https://insights.sei.cmu.edu/cert/2016/01/coordinating-vulnerabilities-in-iot-devices.html
https://github.com/Lab41/PoseidonML
https://github.com/Lab41/PoseidonML
https://mudmaker.org/

BIBLIOGRAPHY 181

International Workshop on Security in Software Defined Networks & Net-
work Function Virtualization (2019), ACM, pp. 13–16.

[104] LIANG, C.-J. M., KARLSSON, B. F., LANE, N. D., ZHAO, F.,
ZHANG, J., PAN, Z., LI, Z., AND YU, Y. Sift: building an inter-
net of safe things. In Proceedings of the 14th International Conference on
Information Processing in Sensor Networks (2015), ACM, pp. 298–309.

[105] LOI, F., SIVANATHAN, A., GHARAKHEILI, H. H., RADFORD, A.,
AND SIVARAMAN, V. Systematically evaluating security and pri-
vacy for consumer iot devices. In Proceedings of the 2017 Workshop on
Internet of Things Security and Privacy (2017), pp. 1–6.

[106] LUCERO, S. Iot platforms: enabling the internet of things, Mar. 2016.

[107] LUKE, S. Essentials of Metaheuristics, second ed. Lulu, 2013. Available
for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[108] LUO, S., WU, J., LI, J., AND GUO, L. A multi-stage attack mitigation
mechanism for software-defined home networks. IEEE Transactions
on Consumer Electronics 62, 2 (2016), 200–207.

[109] LUPIANA, D., O’DRISCOLL, C., AND MTENZI, F. Defining smart
space in the context of ubiquitous computing. Ubiquitous Computing
and Communication Journal 4, 3 (2009), 516–524.

[110] LYON, G. F. Nmap network scanning: The official Nmap project guide
to network discovery and security scanning. Insecure. Com LLC (US),
2008.

[111] LYU, M., SHERRATT, D., SIVANATHAN, A., GHARAKHEILI, H. H.,
RADFORD, A., AND SIVARAMAN, V. Quantifying the reflective ddos
attack capability of household iot devices. In Proceedings of the 10th
ACM Conference on Security and Privacy in Wireless and Mobile Net-
works (2017), ACM, pp. 46–51.

182 BIBLIOGRAPHY

[112] MADAKAM, S., RAMASWAMY, R., AND TRIPATHI, S. Internet of
things (iot): A literature review. Journal of Computer and Communica-
tions 3, 05 (2015), 164.

[113] MASSIMO, D., ELAHI, M., AND RICCI, F. Learning user preferences
by observing user-items interactions in an iot augmented space. In
Adjunct Publication of the 25th Conference on User Modeling, Adaptation
and Personalization (2017), pp. 35–40.

[114] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR,
G., PETERSON, L., REXFORD, J., SHENKER, S., AND TURNER, J.
Openflow: enabling innovation in campus networks. ACM SIG-
COMM Computer Communication Review 38, 2 (2008), 69–74.

[115] MCNUTT, R. Supply chain vulnerabilities
show weakness in current iot security paradigm.
https://www.forbes.com/sites/forbestechcouncil/2020/07/31/supply-
chain-vulnerabilities-show-weakness-in-current-iot-security-
paradigm (Accessed on 1/8/2020).

[116] MEIDAN, Y., BOHADANA, M., SHABTAI, A., OCHOA, M., TIPPEN-
HAUER, N. O., GUARNIZO, J. D., AND ELOVICI, Y. Detection of
unauthorized iot devices using machine learning techniques. arXiv
preprint arXiv:1709.04647 (2017).

[117] MELL, P., SCARFONE, K., AND ROMANOSKY, S. A complete guide
to the common vulnerability scoring system version 2.0. In Published
by FIRST-forum of incident response and security teams (2007), vol. 1,
p. 23.

[118] MINERVA, R., BIRU, A., AND ROTONDI, D. Towards a definition of
the internet of things (iot). IEEE Internet Initiative 1, 1 (2015), 1–86.

[119] MORRISON, J. P. Flow-based programming, 2020. Last accessed
5/7/2020.

BIBLIOGRAPHY 183

[120] MOYANO, R. F., CAMBRONERO, D. F., AND TRIANA, L. B. A user-
centric sdn management architecture for nfv-based residential net-
works. Computer Standards & Interfaces 54 (2017), 279–292.

[121] MOZILLA. Mozilla webthings gateway.
https://iot.mozilla.org/gateway/ (Accessed on 25/4/2020).

[122] MOZILLA. Webthings gateway for raspberry pi user guide. Last
accessed 18/7/2020.

[123] MOZILLA. Wot capability schemas. Last accessed 18/8/2020.

[124] MOZILLA IOT. Webthings gateway for raspberry
pi, 2020. https://iot.mozilla.org/docs/

gateway-getting-started-guide.html (accessed on
28/4/2020).

[125] NAEINI, P. E., BHAGAVATULA, S., HABIB, H., DEGELING, M.,
BAUER, L., CRANOR, L. F., AND SADEH, N. Privacy expectations
and preferences in an iot world. In Thirteenth Symposium on Usable
Privacy and Security ({SOUPS} 2017) (2017), pp. 399–412.

[126] NAGENDRA, V., BHATTACHARYA, A., YEGNESWARAN, V., RAH-
MATI, A., AND DAS, S. An intent-based automation framework for
securing dynamic consumer iot infrastructures. In Proceedings of The
Web Conference 2020 (2020), pp. 1625–1636.

[127] NAH, F. F.-H. A study on tolerable waiting time: how long are web
users willing to wait? Behaviour & Information Technology 23, 3 (2004),
153–163.

[128] NAYAK, A. K., REIMERS, A., FEAMSTER, N., AND CLARK, R. Res-
onance: dynamic access control for enterprise networks. In Pro-
ceedings of the 1st ACM workshop on Research on enterprise networking
(2009), ACM, pp. 11–18.

https://iot.mozilla.org/docs/gateway-getting-started-guide.html
https://iot.mozilla.org/docs/gateway-getting-started-guide.html

184 BIBLIOGRAPHY

[129] NAZERFARD, E., AND COOK, D. J. Using bayesian networks for
daily activity prediction. In Workshops at the Twenty-Seventh AAAI
Conference on Artificial Intelligence (2013).

[130] NEHRA, A., TRIPATHI, M., AND GAUR, M. Ficur: Employing sdn
programmability to secure arp. In Computing and Communication
Workshop and Conference (CCWC), 2017 IEEE 7th Annual (2017), IEEE,
pp. 1–8.

[131] NETO, A. L. M., SOUZA, A. L., CUNHA, I., NOGUEIRA, M.,
NUNES, I. O., COTTA, L., GENTILLE, N., LOUREIRO, A. A.,
ARANHA, D. F., PATIL, H. K., ET AL. Aot: Authentication and ac-
cess control for the entire iot device life-cycle. In Proceedings of the
14th ACM Conference on Embedded Network Sensor Systems CD-ROM
(2016), ACM, pp. 1–15.

[132] NETWORKS, A. No end in sight for ddos attack size growth, 2017.

[133] NEWMAN, L. H. An elaborate hack shows how much damage iot
bugs can do. Last accessed 18 June 2020.

[134] NOBAKHT, M., SIVARAMAN, V., AND BORELI, R. A host-based in-
trusion detection and mitigation framework for smart home iot us-
ing openflow. In 2016 11th International conference on availability, reli-
ability and security (ARES) (2016), IEEE, pp. 147–156.

[135] NURSE, J. R., CREESE, S., AND DE ROURE, D. Security risk assess-
ment in internet of things systems. IT professional 19, 5 (2017), 20–26.

[136] NURSE, J. R., EROLA, A., AGRAFIOTIS, I., GOLDSMITH, M., AND

CREESE, S. Smart insiders: exploring the threat from insiders us-
ing the internet-of-things. In 2015 International Workshop on Secure
Internet of Things (SIoT) (2015), IEEE, pp. 5–14.

[137] OASIS. Mqtt version 5.0, 2019. Last accessed 5/7/2020.

BIBLIOGRAPHY 185

[138] OF THINGS TOP TEN PROJECT, I. Top 10 iot vulnerabilities
(2018), 2018. https://wiki.owasp.org/index.php/OWASP_

Internet_of_Things_Project#tab=IoT_Top_10 (visited on
28/11/2019).

[139] OF THINGS TOP TEN PROJECT, I. Top 10 iot vul-
nerabilities (2019), 2019. https://owasp.org/

www-project-internet-of-things/ (visited on 28/1/2020).

[140] ONF. Openflow switch specification version (1.5.1), 2015.

[141] OPENHAB. Raspberry pi, 2020. https://www.openhab.org/

docs/installation/rasppi.html (accessed on 28/4/2020).

[142] O’LEARY, N., AND CONWAY-JONES, D. Node red, 2013. https:

//nodered.org (visited on 18/10/2018).

[143] PARASURAMAN, R., AND RILEY, V. Humans and automation: Use,
misuse, disuse, abuse. Human factors 39, 2 (1997), 230–253.

[144] PEDIADITAKIS, D., GOPALAN, A., DULAY, N., SLOMAN, M., AND

LODGE, T. Home network management policies: Putting the user
in the loop. In Policies for Distributed Systems and Networks (POLICY),
2012 IEEE International Symposium on (2012), IEEE, pp. 9–16.

[145] PELTIER, T. R. Information security risk analysis. CRC press, 2005.

[146] PERRY, M. Python module for simulated annealing opti-
mization. https://github.com/perrygeo/simanneal (Accessed on
15/1/2020).

[147] PICARD, N., COLIN, J.-N., AND ZAMPUNIERIS, D. Context-aware
and attribute-based access control applying proactive computing to
iot system. In Proceedings of the 3rd International Conference on Internet
of Things, Big Data and Security (IoTBDS 2018) (2018), SCITEPRESS,
pp. 333–339.

https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://owasp.org/www-project-internet-of-things/
https://owasp.org/www-project-internet-of-things/
https://www.openhab.org/docs/installation/rasppi.html
https://www.openhab.org/docs/installation/rasppi.html
https://nodered.org
https://nodered.org

186 BIBLIOGRAPHY

[148] PIGOZZI, G., TSOUKIAS, A., AND VIAPPIANI, P. Preferences in arti-
ficial intelligence. Annals of Mathematics and Artificial Intelligence 77,
3-4 (2016), 361–401.

[149] PROJECT, D. Data plane development kit, 2020. Last accessed
15/7/2020.

[150] RASH, M. Linux Firewalls: Attack Detection and Response with iptables,
psad, and fwsnort. No Starch Press, 2007.

[151] RASHIDI, P., AND COOK, D. J. Keeping the resident in the loop:
Adapting the smart home to the user. IEEE Transactions on systems,
man, and cybernetics-part A: systems and humans 39, 5 (2009), 949–959.

[152] RAVIDAS, S., LEKIDIS, A., PACI, F., AND ZANNONE, N. Access con-
trol in internet-of-things: A survey. Journal of Network and Computer
Applications 144 (2019), 79–101.

[153] RIM, R., AMIN, M. M., AND ADEL, M. Bayesian networks for
user modeling: Predicting the user’s preferences. In 13th Interna-
tional Conference on Hybrid Intelligent Systems (HIS 2013) (2013), IEEE,
pp. 144–148.

[154] RONEN, E., AND SHAMIR, A. Extended functionality attacks on iot
devices: The case of smart lights. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P) (2016), IEEE, pp. 3–12.

[155] ROSENFELD, A., SINA, S., SARNE, D., AVIDOV, O., AND KRAUS, S.
A study of whatsapp usage patterns and prediction models without
message content. arXiv preprint arXiv:1802.03393 (2018).

[156] RUSSELL, S., AND NORVIG, P. Ai a modern approach. Learning 2, 3
(2005), 4.

[157] RUSSELL, S. J., AND NORVIG, P. Artificial intelligence: a modern ap-
proach. Malaysia; Pearson Education Limited,, 2016.

BIBLIOGRAPHY 187

[158] SCHNEIDER, F. B. Least privilege and more [computer security].
IEEE Security & Privacy 1, 5 (2003), 55–59.

[159] SCHNEIER, B. Your wifi-connected thermostat can take down the
whole internet. we need new regulations, 2016. https://www.

washingtonpost.com/posteverything/wp/2016/11/03/

(visited on 8/1/2018).

[160] SCHUSTER, R., SHMATIKOV, V., AND TROMER, E. Situational ac-
cess control in the internet of things. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (2018),
pp. 1056–1073.

[161] SERROR, M., HENZE, M., HACK, S., SCHUBA, M., AND WEHRLE,
K. Towards in-network security for smart homes. In Proceedings of
the 13th International Conference on Availability, Reliability and Security
(2018), pp. 1–8.

[162] SETHI, P., AND SARANGI, S. R. Internet of things: architectures,
protocols, and applications. Journal of Electrical and Computer Engi-
neering 2017 (2017).

[163] SHERWOOD, R., CHAN, M., COVINGTON, A., GIBB, G., FLAJSLIK,
M., HANDIGOL, N., HUANG, T.-Y., KAZEMIAN, P., KOBAYASHI,
M., NAOUS, J., ET AL. Carving research slices out of your produc-
tion networks with openflow. ACM SIGCOMM Computer Communi-
cation Review 40, 1 (2010), 129–130.

[164] SHIN, S., XU, L., HONG, S., AND GU, G. Enhancing network secu-
rity through software defined networking (sdn). In Computer Com-
munication and Networks (ICCCN), 2016 25th International Conference
on (2016), IEEE, pp. 1–9.

[165] SIKDER, A. K., BABUN, L., CELIK, Z. B., ACAR, A., AKSU, H.,
MCDANIEL, P., KIRDA, E., AND ULUAGAC, A. S. Multi-user multi-

https://www.washingtonpost.com/posteverything/wp/2016/11/03/
https://www.washingtonpost.com/posteverything/wp/2016/11/03/

188 BIBLIOGRAPHY

device-aware access control system for smart home. arXiv preprint
arXiv:1911.10186 (2019).

[166] SIVANATHAN, A., SHERRATT, D., GHARAKHEILI, H. H., RAD-
FORD, A., WIJENAYAKE, C., VISHWANATH, A., AND SIVARAMAN,
V. Characterizing and classifying iot traffic in smart cities and
campuses. dvanced Networks and Telecommunications Systems (ANTS)
(2017).

[167] SIVANATHAN, A., SHERRATT, D., GHARAKHEILI, H. H., SIVARA-
MAN, V., AND VISHWANATH, A. Low-cost flow-based security solu-
tions for smart-home iot devices. In Advanced Networks and Telecom-
munications Systems (ANTS), 2016 IEEE International Conference on
(2016), IEEE, pp. 1–6.

[168] SIVARAMAN, V., CHAN, D., EARL, D., AND BORELI, R. Smart-
phones attacking smart-homes. In Proceedings of the 9th ACM Con-
ference on Security & Privacy in Wireless and Mobile Networks (2016),
ACM, pp. 195–200.

[169] SIVARAMAN, V., GHARAKHEILI, H. H., VISHWANATH, A., BORELI,
R., AND MEHANI, O. Network-level security and privacy control
for smart-home iot devices. In Wireless and Mobile Computing, Net-
working and Communications (WiMob), 2015 IEEE 11th International
Conference on (2015), IEEE, pp. 163–167.

[170] SMARTTHING. Local processing.
https://support.smartthings.com/hc/en-us/articles/209979766-
Local-processing (Accessed on 15/4/2020).

[171] SMARTTHINGS. How can i invite members in the smart-
things app? https://support.smartthings.com/hc/en-
us/articles/115002085066-How-can-I-invite-members-in-the-
SmartThings-app- (Accessed on 15/1/2020).

BIBLIOGRAPHY 189

[172] SØRENSEN, D. A., VANGGAARD, N., AND PEDERSEN, J. M. Auto-
matic profile-based firewall for iot devices. Master’s thesis, Aalborg
University, Denmark, 2017.

[173] SPRING, T. Iot insecurity: Pinpointing the prob-
lems, July 2016. https://threatpost.com/

iot-insecurity-pinpointing-the-problems/119389/2/

(visited on 2/12/2017).

[174] STANDARD, O. extensible access control markup language (xacml)
version 3.0, 2005.

[175] STANISLAV, M., AND BEARDSLEY, T. Hacking iot a case study on
baby monitor exposures and vulnerabilities. Tech. rep., RAPID7,
2015.

[176] STUCKEY, P. J. Lazy clause generation: Combining the power of sat
and cp (and mip?) solving. In International Conference on Integration
of Artificial Intelligence (AI) and Operations Research (OR) Techniques in
Constraint Programming (2010), Springer, pp. 5–9.

[177] SUNDARESAN, S., BURNETT, S., FEAMSTER, N., AND DE DONATO,
W. Bismark: A testbed for deploying measurements and applica-
tions in broadband access networks. In USENIX Annual Technical
Conference (2014), pp. 383–394.

[178] SZYDLO, T., BRZOZA-WOCH, R., SENDOREK, J., WINDAK, M., AND

GNIADY, C. Flow-based programming for iot leveraging fog com-
puting. In Enabling Technologies: Infrastructure for Collaborative En-
terprises (WETICE), 2017 IEEE 26th International Conference on (2017),
IEEE, pp. 74–79.

[179] TEAM, S. Stringify, 2014. https://www.stringify.com/ (vis-
ited on 8/10/2018).

https://threatpost.com/iot-insecurity-pinpointing-the-problems/119389/2/
https://threatpost.com/iot-insecurity-pinpointing-the-problems/119389/2/
https://www.stringify.com/

190 BIBLIOGRAPHY

[180] TIAN, L., FAMAEY, J., AND LATRÉ, S. Evaluation of the ieee 802.11
ah restricted access window mechanism for dense iot networks. In
2016 IEEE 17th international symposium on a world of wireless, mobile
and multimedia networks (WoWMoM) (2016), IEEE, pp. 1–9.

[181] TIAN, Y., ZHANG, N., LIN, Y.-H., WANG, X., UR, B., GUO, X., AND

TAGUE, P. Smartauth: User-centered authorization for the internet
of things. In 26th {USENIX} Security Symposium ({USENIX} Security
17) (2017), USENIX Association, pp. 361–378.

[182] TP-LINK. How to set up firewall to restrict internet activity on td-
w9970 (new logo)? Last accessed 18 June 2020.

[183] TP LINK. How to set access control of the internet with firewall
on modem router (self-developed ui)?, May 2016. http://www.

tp-link.com/us/faq-467.html (visited on 6/10/2017).

[184] TRABELSI, Z. Microsoft windows vs. apple mac os x: Resilience
against arp cache poisoning attack in a local area network. Informa-
tion Security Journal: A Global Perspective 25, 1-3 (2016), 68–82.

[185] TRIMANANDA, R., YOUNIS, A., WANG, B., XU, B., DEMSKY, B.,
AND XU, G. Vigilia: Securing smart home edge computing. In 2018
IEEE/ACM Symposium on Edge Computing (SEC) (2018), IEEE, pp. 74–
89.

[186] VORONKOV, A., IWAYA, L. H., MARTUCCI, L. A., AND LINDSKOG,
S. Systematic literature review on usability of firewall configuration.
ACM Computing Surveys (CSUR) 50, 6 (2017), 1–35.

[187] WANG, Q., DATTA, P., YANG, W., LIU, S., BATES, A., AND

GUNTER, C. A. Charting the attack surface of trigger-action iot plat-
forms. In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security (2019), pp. 1439–1453.

http://www.tp-link.com/us/faq-467.html
http://www.tp-link.com/us/faq-467.html

BIBLIOGRAPHY 191

[188] WARD, R., AND BEYER, B. Beyondcorp: A new approach to enter-
prise security. login 39 (2014), 5–11.

[189] WILSON, H. J., SHAH, B., AND WHIPPLE, B. How people are ac-
tually using the internet of things. Harvard Business Review (2015),
1–6.

[190] WOOD, D., APTHORPE, N., AND FEAMSTER, N. Cleartext data
transmissions in consumer iot medical devices. In Proceedings of the
2017 Workshop on Internet of Things Security and Privacy (2017), pp. 7–
12.

[191] WU, Z.-H., LIU, A., ZHOU, P.-C., AND SU, Y. F. A bayesian net-
work based method for activity prediction in a smart home system.
In Systems, Man, and Cybernetics (SMC), 2016 IEEE International Con-
ference on (2016), IEEE, pp. 001496–001501.

[192] XU, K., WANG, F., AND JIA, X. Secure the internet, one home at a
time. Security and Communication Networks 9, 16 (2016), 3821–3832.

[193] YAHYAZADEH, M., PODDER, P., HOQUE, E., AND CHOWDHURY,
O. Expat: Expectation-based policy analysis and enforcement for
appified smart-home platforms. In Proceedings of the 24th ACM Sym-
posium on Access Control Models and Technologies (2019), pp. 61–72.

[194] YANG, H., LEE, W., AND LEE, H. Iot smart home adoption: the im-
portance of proper level automation. Journal of Sensors 2018 (2018).

[195] YIAKOUMIS, Y., KATTI, S., HUANG, T.-Y., MCKEOWN, N., YAP, K.-
K., AND JOHARI, R. Putting home users in charge of their network.
In Proceedings of the 2012 ACM Conference on Ubiquitous Computing
(2012), ACM, pp. 1114–1119.

[196] YU, T., SEKAR, V., SESHAN, S., AGARWAL, Y., AND XU, C. Han-
dling a trillion (unfixable) flaws on a billion devices: Rethinking net-

192 BIBLIOGRAPHY

work security for the internet-of-things. In Proceedings of the 14th
ACM Workshop on Hot Topics in Networks (2015), ACM, p. 5.

[197] ZENG, E., MARE, S., AND ROESNER, F. End user security and pri-
vacy concerns with smart homes. In Thirteenth Symposium on Usable
Privacy and Security ({SOUPS} 2017) (2017), pp. 65–80.

[198] ZENG, E., AND ROESNER, F. Understanding and improving secu-
rity and privacy in multi-user smart homes: A design exploration
and in-home user study. In 28th {USENIX} Security Symposium
({USENIX} Security 19) (2019), pp. 159–176.

[199] ZHENG, S., APTHORPE, N., CHETTY, M., AND FEAMSTER, N. User
perceptions of smart home iot privacy. Proceedings of the ACM on
Human-Computer Interaction 2, CSCW (2018), 1–20.

[200] ZHOU, W., JIA, Y., YAO, Y., ZHU, L., GUAN, L., MAO, Y., LIU,
P., AND ZHANG, Y. Discovering and understanding the security
hazards in the interactions between iot devices, mobile apps, and
clouds on smart home platforms. In 28th {USENIX} Security Sympo-
sium ({USENIX} Security 19) (2019), pp. 1133–1150.

[201] ZURKO, M. E. User-centered security: Stepping up to the grand
challenge. In 21st Annual Computer Security Applications Conference
(ACSAC’05) (2005), IEEE, pp. 14–pp.

	Introduction
	Motivation
	Problem Statement
	Research Questions
	Research Objectives
	Major Contributions
	Organisation of the Thesis

	Background and Literature Review
	Background
	IoT Ecosystem
	Smart Space IoT Architecture
	Software-defined Networking
	IoT Vulnerabilities
	IoT Access Control
	Bayesian Networks
	Optimisation
	Summary

	Literature Review
	User Role in IoT Access Control
	IoT Access Control and User Preference
	Multi-User IoT Sharing
	Summary

	User-Centric IoT Access Control Framework
	Introduction
	Chapter Goals
	Chapter Organisation

	Access Control Framework
	The Framework Requirements
	Framework Design
	Framework Design Decisions

	Network Security Services
	IPv4 ARP Server
	Intrusion Detection System (IDS)

	Evaluation
	Experimental Setup
	Network Access Control Validation
	Security Services
	OpenFlow-enabled Switch Performance
	Evaluation Summary

	Conclusion

	Automatic Activity Fulfilment
	Introduction
	Chapter Goals
	Chapter Organisation

	Automatic Activity Fulfilment
	User Activity Representation
	Smart Space Modelling
	Problem Formulation
	Activity Fulfilment Searching Methods
	Evaluation

	Automatic Policy Generation
	Conclusion

	Multi-User IoT Sharing Policy
	Introduction
	Chapter Goals
	Chapter Organisation

	Threat Model
	IoT Sharing Scenario
	IoT Sharing Problem
	IoT Secure Sharing Architecture
	Practicality

	Sharing Policy Language
	 IoT Secure Sharing Engine
	ILP Problem Formulator
	ILP Problem Formulator Algorithm
	 ILP Solvers
	Translation Analysis
	IoT Sharing Scenario as ILP Problem

	IoT Secure Sharing Engine Evaluation
	Experimental Setup
	Results and Discussion

	Conclusion

	Policy Enforcement Case Study
	Introduction
	Chapter Goals
	Chapter Organisation

	Case Study Overview
	Assumptions
	Threats
	IoT Communication Patterns

	Smart Home Case Study
	Device Capabilities and Access Requirements

	Experimental Setup
	Results and Discussion
	Conclusion

	Conclusions and Future Work
	Achieved Objectives
	Main Conclusions
	User-Centric Access Control Framework
	Optimising User Preference for Fine-grained Access Control
	Optimisation for Secure Sharing and Secure Using
	Fine-grained Policy Enforcement
	Function-based Access Control Policy

	Future Work
	Access Control Quality of Experience aware
	User Activities with Web Services
	Cross Smart Spaces Device Sharing
	Statefull IoT Sharing
	Multi-Objective Device Selection Using User Preferences and Device Security

