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Abstract 

Three manuscripts form the basis of this dissertation exploring the effect of extreme 

precipitation and climate change on residential property in New Zealand. The first manuscript 

investigates the public insurer’s expected future liabilities, given future climate projections. 

Specifically, it examines the effect of extreme precipitation on direct property damage associated 

with rainfall-induced landslides, storms and floods. This study applies a fixed-effects panel 

regression model using claim data linked to extreme precipitation data over 2000-2017 and future 

climate change scenarios until 2100. The results show that liabilities will increase more if future 

greenhouse gasses emissions are higher. At the aggregate level, the percent change between past 

and future liabilities ranges between an increase of 7 to 8% higher in the next 20 years, and an 

increase between 9 to 25% increase by the end of the century, depending on the greenhouse gases 

emissions scenario. 

The second manuscript examines the risk of property damage from landslides associated 

with extreme precipitation. The focus is on the Nelson region as it displays the highest number of 

claims and pay-outs relative to its population and residential stock asset, and two thirds of the pay-

outs come from a single event. The focus is on this event. This research combines past insurance 

claim data with geographic and sociodemographic data to estimate probability of damage, which 

is then combined with property replacement values and damage-ratio information to calculate the 

expected loses and map the spatial distribution of risk. The study integrates into the risk estimates 

the impact of climate change on precipitation based on an ‘attribution’ study. The analysis shows 

that slope and social deprivation play a significant role in the probability of damage. Furthermore, 

higher expected losses are associated with higher property values.  

The third manuscript studies the current and future risk of property damage from floods 

associated with extreme precipitation and climate change. The focus is on the most expensive event 

on record. This study applies a logistic cross-sectional regression model that exploits spatial 

variation of rainfall intensity-duration-frequency (with and without the effect of climate change), 

while controlling for other factors that might make a property more or less likely to experience 

damage. The expected monetary losses are calculated by factoring in the likelihood of flood 

damage derived from the regression model, property replacement values, and property vulnerability 

(based on flood-depth fragility functions). The results show that highest losses are associated with 

lowest annual exceedance probabilities (AEPs), still, sizeable losses are associated with higher 

AEPs. In this case, the effect of climate change for different emissions scenarios is too small to 

cause an economically meaningful increase in risk levels in the next 80 years (2100). 
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Introduction 

The standard framework to assess the risk from weather-related hazards and climate change 

involves analysing the interaction of three components: hazard data (with and without the effect of 

climate change), the elements exposed to the hazard, and measures of these elements’ vulnerability 

-understood as the susceptibility to harm or damage- to a hazard of a given intensity, spatial scope, 

and temporal frequency (IPCC, 2012; UNDRR, 2016; Bouwer, 2013). In Aotearoa New Zealand 

(NZ), risk assessment of such hazards remains largely unquantified due to the absence of 

comprehensive, accessible, homogeneous, or accurate hazard maps. 

In NZ, the public insurer (the Earthquake Commission – henceforth the EQC) provides 

cover against residential property damage that arises from some weather-related hazards, including 

floods, storms, and rainfall-induced landslides. Yet, even though the public sector is therefore 

bearing much of this risk, it is still unquantified. 

In this dissertation, I develop a methodology that aims to fill this knowledge gap by using 

detailed data of past EQC insurance claims to assess the current and future risk for residential 

properties in NZ from various hazards associated with extreme precipitation. In particular, we focus 

on flooding and landslides. Unlike the conventional 'catastrophe modelling' framework that relies 

on hazard maps to calculate risk, I use extreme precipitation data as a surrogate for hazard 

information and link it to georeferenced claim-level data and other geospatial datasets to produce 

spatially explicit estimates of the current and future risk associated with extreme precipitation and 

climate change. The proposed methodology provides a statistically-based assessment of current 

and future risk as an alternative and complement to the physical-based conventional assessment, 

and as a substitute for hazard maps when these are not available. Furthermore, this dissertation is 

the first collection of studies that estimate the risk from extreme precipitation associated with 

climate change in New Zealand.  

In this research, I aim to inform where, when, and how much monetary liability can be 

expected to be generated from various weather-related hazards associated with extreme 

precipitation and climatic change. Overall, this dissertation aims to answer three questions: What 

is the risk to residential property from extreme precipitation? What will be the effect of climate 

change, through changes in extreme precipitation, on residential property risk? What is the spatial 

and temporal distribution of risk from extreme precipitation and climate change? 

The public insurer of New Zealand can use the outcomes of these studies to assess its future 

potential financial liabilities. The detailed spatial and temporal representation of risk can inform 
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tailored disaster risk reduction efforts, future risk pricing, and potential areas where managed 

retreat may occur. Private insurers can use this collection of studies to identify clusters or hotspots 

of weather-related risk and to design and target risk-based insurance schemes at various spatial 

scales (property and grid level) and future time periods (2020-2100). Local Councils could use 

these studies to inform their land use planning and zoning of areas prone to damage. Other exposed 

locations, currently not subject to weather-related hazards, could also employ this methodology to 

estimate potential liabilities. Furthermore, these studies could inform regulators and policymakers 

who are assessing the future performance of both the public and private insurers that cover weather-

related risks in the face of climatic change.  

In the first chapter of this dissertation, I look at the whole country to investigate the effects 

of extreme precipitation events and their increased frequency because of climate change on direct 

property damage. The region-specific studies for the second and third paper are motivated by the 

large observed EQC pay-outs from property damage in two specific events/hazards/locations. In 

the second paper I assess the current risk from landslides in Nelson, and the third paper examines 

the current and future risk from floods in the Bay of Plenty. 

In chapter one, I investigate the effect of extreme precipitation (defined as daily rainfall 

events above the 95th, 98th and 99th percentiles) on the amount (in NZ$) of property damage from 

the impact of storms, floods, and rainfall-induced landslides. I implement a fixed-effects panel 

regression framework using EQC claim data (for the years 2000 to 2017) linked to grid-level 

observed rainfall data. I exploit variation over space and time while controlling for spatial and 

temporal unobserved heterogeneity with fixed-effects panel regressions. Then, I use the estimated 

relationship, together with climate projections based on future greenhouse gases concentration 

scenarios from six different dynamically downscaled Regional Climate Models, to predict the 

impact of future extreme precipitation events on EQC liabilities for different time horizons up to 

the year 2100. The analysis shows predicted adverse impacts that vary over time and space. The 

change between projected and past damages—the climate change signal—ranges between an 

increase of 7% to 8% in liabilities for the period 2020 to 2040, to between 9% and 25% higher for 

the period 2080 to 2100, based on one day of accumulated precipitation for the 99th percentile. I 

find that exposure plays an important role in the level of observed property damages. Locations 

(grids) with damages are closer to the shoreline and waterways (rivers); are within flood prone 

areas and lower elevations; and have higher number and value of residential assets than locations 

without damages.  
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The second chapter quantifies the risk of property damage from extreme rainfall-induced 

landslides. When comparing NZ’s regions, Nelson has the highest number of EQC claims and pay-

outs relative to the size of its population and stock of residential assets. Two thirds of the pay-outs 

in the Nelson region came from a single event, the 2011 Golden Bay Storm. I focus on this event. 

First, I find the functional relationship between the distribution of past geo-referenced insurance 

claim-level data and landslide conditioning factors. I estimate a logistic regression model at 

property level where I identify the drivers of residential property damage and their relative effect 

on landslide susceptibility, and I estimate the probability of residential property damage from 

landslides as result of extreme rainfall. Then, I combine the predicted probabilities from the logistic 

regression model with property replacement values and damage-ratio information to calculate the 

spatial distribution of risk. The results show that risk levels are driven by moderate and high slopes, 

lower social deprivation levels, and high property values. It is households living in high-value 

properties and with lower levels of social deprivation that can afford the geotechnical and 

engineering works that allow them to settle on coastal hills with steep slopes, areas that are prone 

to failure. Thus, visual amenities play a role in determining the risk of rainfall-induced landslides 

in Nelson. The contribution here is the quantification of risk with a less-resource intensive 

methodology, as it does not depend on landslide inventories that are typically derived from satellite 

or aerial imagery. Instead, it only uses historical georeferenced claim-level data. Furthermore, the 

contribution relates to the use of social and not only physical vulnerability factors as predictors of 

landslide susceptibility.  

The third and last chapter quantifies the current and future risk of direct property damage 

from floods associated with extreme precipitation. The motivation for this work relates again to the 

data on EQC claim payments, which show numerous low-impact events and few high-impact 

events. I calculate that the costliest 20% of events account for 85% of the damages. This figure 

highlights the importance of understanding the effect of low-probability high-impact events. I study 

the most expensive event for the EQC, the Bay of Plenty event in 2005. I calculate the current and 

future risk from floods for a range of return periods and climate change and flood depth scenarios. 

First, I run a logistic cross-sectional regression model where I exploit spatial variation of rainfall 

intensity-duration-frequency, while controlling for other factors that might make a property more 

or less likely to experience damage. Second, I apply the historical relationship between extreme 

precipitation and flood-related damage calculated in the first step to extreme precipitation data that 

incorporates the effect of climate change. Here, precipitation data projections are based on future 

greenhouse gases concentration scenarios from six different dynamically downscaled Regional 

Climate Models. Third, I combine the predicted probabilities from the logistic regression model, 
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with and without the effect of climate change, with property replacement values and damage-ratio 

information to calculate the spatial distribution of risk for a range of flood depth scenarios, return 

periods and climate change scenarios.  I find that the largest losses are associated with lowest return 

periods. The mean, minimum and maximum percentage difference between the predicted 

probabilities of the benchmark model 'without climate change' and the models that incorporate the 

response of precipitation to climate change, increase as the greenhouse gases emissions increase. 

However, the change in the probability of damage as a result of climate change is too small to cause 

economically meaningful changes in the expected losses from flood-related damage in the Bay of 

Plenty. 
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Chapter One 

Projecting the effect of climate change on residential property 

damages caused by extreme weather events 

 

 

Abstract 

 

New Zealand’s public insurer for natural hazards, the Earthquake Commission (EQC), 

provides residential insurance for some weather-related damage. Climate change and the expected 

increase in intensity and frequency of extreme weather-related events are likely to translate into 

higher damages and thus an additional financial liability for the EQC. We project future insured 

damages from extreme precipitation events associated with future projected climatic change. We first 

estimate the empirical relationship between extreme precipitation events and the EQC’s weather-

related insurance claims based on a complete dataset of all claims from 2000 to 2017. We then use 

this estimated relationship, together with climate projections based on future greenhouse gases 

concentration scenarios from six different dynamically downscaled Regional Climate Models, to 

predict the impact of future extreme precipitation events on EQC liabilities for different time horizons 

up to the year 2100. Our results show predicted adverse impacts that vary over time and space. The 

per cent change between projected and past damages—the climate change signal—ranges between 

an increase of 7% to 8% in liabilities for the period 2020 to 2040, and between 9% and 25% higher 

for the period 2080 to 2100. We also provide detailed caveats as to why these quantities might be 

misestimated. The projected increase in the public insurer’s liabilities could be used to inform private 

insurers, regulators, and policymakers who are assessing the future performance of both the public 

and private insurers that cover weather-related risks in the face of climatic change. 
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1.1 Introduction 

Anthropogenic warming, as a result of greenhouse gas (GHG) emissions, is expected to 

produce changes in the frequency and intensity of weather extremes (IPCC, 2012). Extreme weather 

will cause damage and create additional liabilities for public insurance systems that cover everyone, 

and cannot withdraw from areas that are becoming riskier. Great efforts have been made to produce 

climate projection data that improve our understanding of potential implications of climate change 

on the environment, economy and society (Mullan et al., 2018). However, no study had used such 

projection data together with past detailed insurance claims data to project future monetary losses 

from damages caused by weather-related extreme precipitation events. 

New Zealand offers a convenient case study, as the national public insurer (the Earthquake 

Commission - henceforth EQC) provides residential insurance for weather risk. Specifically, it covers 

land damage resulting from floods and storms, and buildings, contents, and land damage that occur 

due to rainfall-induced landslides. These weather-related hazards have already cost the EQC NZ$450 

million (using 2017 values) since the year 2000. The expectation that the frequency and intensity of 

extreme weather will be amplified by climate change ultimately implies additional liability for the 

EQC, and it is these future additional liabilities that we attempt to quantify.  

A body of literature addresses projections of future losses from weather-related events. These 

studies differ in their approach, type of hazard, spatial scope, changes in hazard, and climate 

scenarios, as well as in how they consider future changes in exposure and vulnerability (Bouwer, 

2013). In contrast with this previous literature, we use a risk modelling approach based on an 

econometric analysis of past insurance claims data to model the empirical relationship between 

weather-related damages to residential property and extreme precipitation events (the hazard), while 

controlling for exposure and vulnerability risk factors. Previous papers (e.g. Pinto et al., 2007; 

Leckebusch et al., 2007, Klawa and Ulbrich, 2003) have generally used simple damage functions 

obtained from first principles and laboratory and field testing, but their models incorporate limited 

information on exposure and vulnerability.  

Unlike other papers, the individual damage records we use also allow us to exploit the time 

dimension in our data, as every claim can be linked with a time-specific weather event. The time/grid-

cell structure of the data also permits us to isolate contemporaneous variation while controlling for 

exposure and vulnerability through the use of grid-cell fixed effects. We can thus isolate the impact 

of anthropogenic climate change.We use outputs from six Regional Climate Model (RCM) 
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simulations to assess the changes in hazard under the four main greenhouse gas (GHG) concentrations 

scenarios (Representative Concentration Pathways (RCP): 2.6, 4.5, 6.0, and 8.5). The main advantage 

of using downscaled RCM output is that it allows us to identify the climate change signal with spatial 

detail, since climate change impact on precipitation is heterogeneous across space in a country the 

size of New Zealand.  

We ultimately aim to answer two questions: What are the EQC’s expected future liabilities, 

given future climate projections? And, how much more will the EQC have to pay in the future as a 

consequence of anthropogenic induced climate change?  

To address these questions, we start by identifying the empirical relationship between 

insurance claim payouts and the number of extreme precipitation events using a longitudinal geo-

coded dataset of all insurance claims for the period 2000-2017. The historical extreme precipitation 

events are identified based on grid-cell threshold values of the 95th, 98th and 99th percentiles of the 

distribution of daily rainfall taken from observation-based gridded dataset. We calculate the number 

of extreme rainfall events based on the same percentile values for durations of up to five days of 

accumulated precipitation to consider the antecedent moisture conditions of the soil, and the persistent 

rainfall that might lead to an insurance claim. 

The empirical historical relationship identified between insurance claims and extreme rainfall, 

identified in the damage regressions, is then applied to past and future climate projections data to 

identify the predicted change in EQC liabilities – i.e., the climate change signal. Our results reveal a 

moderate climate change signal, where the per cent change in the expected annual losses relative to 

the baseline past ranges from 7.1% to 25.5% between 2020 and 2100, for the mean model ensemble, 

with considerable variability between the individual regional climate models. The impact of climate 

change on the levels of losses is heterogeneous across time and space. Some locations are predicted 

to experience increases in extreme precipitation events and thus in damages, while others are 

predicted to experience decreases in extreme events and consequently damages from them. 

The paper is organized as follows. Section 1.2 provides a short literature review to benchmark 

our methodology. Section 1.3 describes the unique data we use, while Section 1.4 describes the results 

obtained from the regression models we estimate. Section 1.5 applies the estimated regression 

coefficients to future climate projections and thus quantifies the climate change signal. The last 

section provides some caveats and concluding remarks. 
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1.2 Literature Review 

Projecting damages from future weather extreme events implies considering the changes in 

the frequency and intensity of weather-related hazards, but also changes in exposure and vulnerability 

of populations and assets. Bouwer (2013) summarizes some of the basic features of the studies that 

estimate future projected losses as a consequence of human-driven climatic change. These features 

include estimation method, hazard type, hazard (probability) change and climate scenarios, region (or 

spatial coverage), exposure (or socioeconomic scenario) and vulnerability (damage function 

estimations). 

Estimation methods commonly used in the research of projected damages include Integrated 

Assessment Models (e.g., Narita et al., 2009; Narita et al., 2010), Computable General Equilibrium 

Models (e.g., OECD, 2015), and risk models (e.g., Klawa and Ulbrich, 2003; Leckebusch et al., 2007; 

Pinto et al., 2007). Integrated Assessment Models (IAM) describe the interactions between the 

economy and the biophysical system under analysis. Similarly, Computable General Equilibrium 

(CGE) models describe the “relations between different economic actors and contain a full description 

of the economic system using multiple economic sectors” (OECD, 2015). They focus mostly on 

modelling the overall economy of a region or a country but are less detailed about the links to the bio-

physical systems. In contrast, Integrated Assessment Models contain only a more simplified 

description of the economy but more detail about the links to the bio-physical systems. IAMs and 

CGEs are used to estimate the economy-wide effects whereas we implement a risk model that 

evaluates the direct damage (in NZ$) in a framework where damage is determined by hazard, 

exposure, and vulnerability. 

The studies using these approaches mainly make projections of damages from tropical 

cyclones, extra-tropical cyclones, or river flooding. However, no study projects the damages from 

extreme precipitation. The changes in these hazards are measured using Global and Regional Climate 

Models for different scenarios. Regarding the spatial scale, some of the studies cover single countries 

or regions (e.g., Schwierz et al., 2010), while others are global (e.g., Pielke, 2007). 

Projections of changes in exposure are rarely incorporated, but the studies that do include these 

consider mainly changes in the value of assets and/or changes in population (e.g., Strader et al., 2017; 

Bouwer et al., 2010). Finally, vulnerability estimations “…involve a simple relationship described by 

a damage curve... or a loss model that specifies different damage categories” (Bouwer, 2013). 

In New Zealand, the Ministry of Environment, in collaboration with Crown Research 

Institutes, has produced guidance documents for local government to address climate change impacts 

and their assessments (Mullan, 2008; NIWA et al., 2012). However, these guidance documents are 
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prescriptive about what local governments can or should do and typically only reference local case 

studies as examples. Bell et al. (2015) provide an exposure analysis of low-lying areas at the national 

level and the impact that rising seas – as a result of a warming climate might have on coastal risk 

levels. Rosier et al. (2015) estimate the anthropogenic climate change influence on the probability of 

occurrence of a single flooding event. They do this using a large ensemble of simulations of a regional 

climate model to recreate different realizations of possible weather with and without human influence. 

Frame et al. (2020) use these estimates to attribute past damage from flood events to human influence 

on the climate. 

Fleming et al. (2018), a precursor to this paper, describes the EQC’s weather-related claims 

between 2000-2017 and the geophysical and socioeconomic context of individual residential 

buildings. More recently, Paulik et al. (2019a) undertake a comprehensive exposure analysis of 

population and assets regarding pluvial and fluvial inundation hazards. In another study, Paulik et al. 

(2019b) quantify exposure to extreme sea-level elevation for 1% annual exceedance probability for 

present-day and future higher sea levels.  

However, none of these studies investigate the current and future risk associated with climate 

change. In this research, we project future damages by implementing a risk model for damages caused 

by extreme precipitation events (the hazard). The most important and unique component of our 

analysis is the reliance on spatially and temporally detailed records of all residential damage insurance 

claims in New Zealand for the years 2000-2017. We use several past and future climate models to 

quantify the change in hazard for four greenhouse gas concentration scenarios: a mitigation scenario 

(RCP 2.6), two stabilization scenarios (RCP 4.5 and RCP 6.0), and one scenario with a high 

greenhouse gas concentration (RCP8.5). Our analyses are performed for all the inhabited areas of 

New Zealand, and the projections assume no future changes in exposure or vulnerability in order to 

isolate the impact of anthropogenic climate change. 

1.3 Data and summary statistics 

We conduct our investigation using a longitudinal dataset of all individual weather-related 

insurance claims in New Zealand (2000-2017) and extreme rainfall events aggregated at grid-cell 

level. There are two possible physical processes underlying each insurance claim: a flood or storm, 

or a rainfall-induced landslip. Although we cannot differentiate between the two in the claim dataset, 

the set of covariates that we include in the chapter three and four are intended to capture the generating 

processes for both. In the second paper I assess the current risk from landslides in Nelson, and the 

third paper examines the current and future risk from floods in the Bay of Plenty. The region-specific 
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studies for the second and third paper are motivated by the large observed EQC pay-outs from 

property damage in two specific events/hazards/locations. 

1.3.1 The EQC insurance scheme 

In New Zealand, public natural hazard insurance is provided to residential property 

homeowners by the Earthquake Commission (EQC). In spite of its name, the EQC also insures some 

weather risk and currently provides insurance cover for buildings and for land (until July 2019, it also 

covered contents). Specifically, it covers residential land damage caused by a storm or a flood, and 

both residential building and land damage caused by rainfall-induced landslips. The land cover policy 

includes damages that occurred to the land underneath the building, the land underneath appurtenant 

structures, an 8 meters buffer around these buildings and structures, and the land underneath the main 

access point to the house. Other covers related to the land include damage to retaining walls, bridges, 

and culverts (EQCover Guide, 2016). 

In order to have this insurance, homeowners need to purchase private fire insurance and pay a 

flat yearly premium to the EQC as a compulsory supplement to the private insurance premium. 

During the time we cover in this research (2000-2017), the EQC’s cover for residential buildings 

provided the first NZ$ 100,000 of the replacement values for each insured dwelling. Damages above 

this amount were covered by the private insurers. In contrast, the EQC land cover cap is set at the 

land’s assessed market value and is thus different across insured households. No premium is charged 

on land cover (Owen and Noy, 2019). 

The insurance data contain a total of 15,196 weather-related settled (completed) claims 

between 2000-2017. We remove claims whose status is reported as: Open, Re-open, Declined, Not 

accepted, Withdrawn, Invalid, Field Work in Progress, Field Work Complete and Accepted. The 

remaining claims amount to NZ$ 449,730,984 (in 2017 NZ$) where about 67% of the payouts are 

because of land damage, 32% for building damage, and 1% for contents damage.  

The evolution over time of the EQC payouts in absolute values, shown in Figure 1. 1, 

demonstrates no increasing trend; rather, the series is dominated by specific extreme events, such as 

the Bay of Plenty and Waikato heavy flooding in 2005, the North Island’ weather bomb’ in 2008; and 

the Tasman-Nelson heavy rain and flooding event in 2011. The shares of payouts per cover over time, 

we see that the land damage share has been trending upwards, which could be driven by increasing 

land prices, or changes in hazard, exposure, or vulnerability. The seasonality of damages i.e., 

distribution of total losses per month is shown in Figure 1. 2. Larger losses tend to occur during 

autumn and winter (April to August). However, significant damages also occur even in peak summer 
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(December-January). The distribution of total damages follows a negative exponential distribution: 

small compensation values are quite frequent, and high or extreme compensation values are very rare. 

 

Figure 1. 1 Total value of claims paid out by the EQC for weather-related claims 2000-2017, per cover 

 

 

Figure 1. 2 Total value of claims paid out by the EQC for weather-related claims 2000-2017, by month 

 

For our regressions, we drop from the sample any claim without a geospatial reference, which 

leaves us with 11,339 records. We also drop 2,945 claims for which the precipitation information is 

not available. For the regressions described in the next section, we are thus left with 8,394 claims 
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lodged to the EQC between 2000 and 2017, totaling NZ$180,404,945, representing about 40% of the 

total payouts ever made by the EQC for weather-related risk. We do not have information about any 

over-cap private insurance claims that were paid in these instances. However, these are not required 

to estimate the relationship between extreme precipitation events and EQC liabilities. 

We aggregate claims data to the grid cell by year level to match the geographic level at which 

precipitation data are available. Grid-cell/year is thus our unit of observation. A gridded dataset is a 

regular data structure at which precipitation data is produced. We aggregate property-level claims to 

the grid cell-year-level in three ways such that we can capture the likelihood, frequency, and intensity 

of insurance claims that result from extreme precipitation (the hazard).  

Likelihood of a claim is measured using a binary variable for whether a claim was lodged 

because of land, building and/or contents damage in the grid-cell/year. Frequency is measured by the 

total number of claims in the grid-cell/year. Finally, intensity is measured by the total value of paid 

claims in real NZ$ from land, building and/or contents damage in the grid-cell/year. These three 

spatially explicit measurements form our dependent variables. 

1.3.2 Extreme precipitation (the hazard) 

The precipitation data we use are an 18-year historic time-series (2000-2017) of observed daily 

precipitation, available for 5km-by-5km grid-cells (Tait et al., 2006). These data were produced by 

the National Institute of Water and Atmospheric Research (NIWA) as the Virtual Climate Station 

Network data. 

As defined by the Intergovernmental Panel on Climate Change, extreme weather is defined as 

“the occurrence of a value of a weather or climate variable above (or below) a threshold value near 

the upper (or lower) ends of the range of observed values of the variable” (IPCC, 2012). We thus 

define extreme events based on the 95th, 98th, and 99th percentiles of the historical precipitation 

distribution for one day of accumulated precipitation. As in Griffiths (2007), the percentile thresholds 

are defined separately for each grid cell. To account also for the antecedent conditions that may lead 

to weather-related claims (for instance, saturated soil or waterways), we also calculate the same 

thresholds for percentiles for up to five days of accumulated precipitation. Only wet days are 

considered in the percentile calculations, as in Carey-Smith et al. (2010). We use these thresholds to 

construct, at the grid-cell/year level, the number of extreme events defined by three alternative 
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percentile values (95th, 98th, and 99th percentiles) and five alternative durations (from one day up to 

five days). 1 

We perform these calculations for inhabited grids only, which represent 56% of the entire 

gridded precipitation dataset. Extreme precipitation events occurring in uninhabited grids could affect 

adjacent grids with inhabited properties and vice versa (and similarly extreme precipitation events in 

inhabited grid cells could affect adjacent inhabited grid cells). However, accounting for such effects 

is beyond the scope of this paper. The consequences of this simplification are discussed in the last 

section. 

In Figure 1.3 we examine the evolution of the per cent changes of the number and value of 

insurance claims and the number of extreme events. We can see that at a national level, the three 

time-series are correlated.  

 

 Figure 1. 3 Percent change in the number of extreme events and number and value of claims 

 

1.3.3 Exposure and vulnerability variables 

We use many variables to capture the extent of exposure and vulnerability to extreme 

precipitation (the hazard) for each grid-cell/year observation (these variables are reported in 

Appendix Table 1.8.1). The vulnerability and exposure measures come from cross-sectional data, and 

 
1 Because we define extreme events for each individual grid-cell, different grids are likely to display different percentile 

values. This is not problematic as properties and infrastructure in each location are constructed to cope/withstand with 

local climatic conditions.   
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although the underlying features are inherently dynamic in nature, they are not measured regularly 

for operational, financial, or practical reasons. Bouwer (2006, 2013) highlights the issue of ignoring 

changes in exposure and vulnerability, which may be driven by changes in adaptation and mitigation 

policies, as one of the main limitations of this research literature. 

We aggregate all our continuous control variables (e.g., slope, elevation) from the property 

level to the grid cell level by taking averages and convert indicator variables to percentages (e.g. 

percentage of properties located in areas with poor soil drainage). Building exposure is captured by: 

the number of residential properties, the total value of assets in each grid-cell (building, land, contents, 

appurtenant, structures), the share of buildings in urban areas, and the total land area exposed. We 

approximate the land exposure (in km2) by using building outlines that are “a representation of the 

roof outline of a building, classified from aerial imagery” (Land Information New Zealand, 2020). 

We spatially overlay the building outlines on the residential property dataset, and calculate an 8-metre 

buffer, because the EQC covers not only the land underneath the building but the surrounding land 

up to 8 meters. Because not all properties can be linked to an outline (presumably due to the 70-metre 

anonymization offset applied in the geolocation of the residential buildings), we calculate the average 

land exposed and multiply it by the number of properties within each grid. Due to the complexity of 

the cover offered by the EQC, it is not feasible to capture other related land exposures (retaining 

walls, access paths, etc.). We source the data from EQC (2017), CoreLogic (2017) and LINZ (2009). 

Furthermore, to capture building exposure, we consider the characteristics of the soil where 

properties are located. Specifically, we consider the soil flood return period, drainage, readily 

available water, and permeability. We consider each characteristic and the categories that are likely 

to be associated with damages (or amplify them) under extreme precipitation events. Thus, we 

calculate the share of residential buildings per grid cell that are located: on soils with flood return 

periods ranging from ‘slight’ to ‘very severe’; on soils with ‘very poor’, ‘poor’ and ‘imperfect’ 

drainage; on soils with ‘very high’, ‘high’ and ‘moderately high’ profiles of readily available water; 

and on soils with a ‘slow’ rate of water movement through saturated soil. The source for the soil 

datasets is Landcare Research (Newsome et al., 2008). 

We calculate inundation-related exposure variables such as the share of residential buildings 

that are located in pluvial and fluvial flood-prone areas and the share of properties located in storm 

surge areas with a 1% annual exceedance probability. The flood zones were collated by NIWA with 

data from Local Councils (Paulik et al., 2019a), while the storm surge maps were constructed by 

NIWA directly (Paulik et al., 2019b). All the soil data were obtained from Newsome et al. (2008). 

We also measure the average distance of residential buildings from large rivers, small rivers, lakes, 
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and the coastline. The distances were calculated by the authors from data obtained directly from the 

topographic map series (LINZ, 2009) 

We develop a landslip susceptibility-exposure measure based on the slope of the terrain and 

the type of soil on which the property is located. Specifically, we create an indicator variable for any 

property located on terrain with a slope greater than five degrees, and located on any of the following 

types of soil: “very poor”, “poor” or “imperfect” soil drainage; soil with a “slow” rate of water 

movement through saturated soil; soil with “very high”, “high” or “moderately high” profile of readily 

available water; fluvial soil; and, soil with flood return periods ranging from slight (less than 1 in 60-

year event) to very severe (greater than 1 in 5-year event). We define the slope threshold as five 

degrees based on Dellow (2011), who reports probabilities of landslip hazard for slopes greater than 

five degrees and a rainfall index between 0 and 25 millimeters. We aggregate this property-level 

measure to the grid-cell level by taking the percentage of properties located on land with these 

characteristics and a slope greater than five degrees. Results for a second alternative approach to 

measure landslip susceptibility, which we also examined, are not reported here. Specifically, we used 

a landslip database (Geological and Nuclear Sciences, 2019) to approximate landslip exposure hazard 

maps. We created buffers of varying diameters around all the landslides - represented as points that 

were triggered by intense precipitation. However, after consultation with the institute’s experts, we 

concluded that the buffers were not large enough to overcome the uncertainties associated with the 

geolocation of the rainfall-induced landslips. 

To capture additional vulnerability, we use: the share of residential buildings of “deficient 

condition”; the buildings’ average floor height from the ground, and the average elevation (above sea 

level); average slope on which houses are situated; the share of residential buildings that are 

constructed with materials that are vulnerable to water damage. Specifically, we include brick 

masonry buildings since “houses in New Zealand normally have a timber frame and plasterboard wall 

linings in the inside, which makes them highly vulnerable to flooding” (Reese and Ramsay, 2010). 

We also calculate the percentage of timber and brick and masonry buildings with a deficient quality. 

Data on the building floor height, condition and construction materials come from the RiskScape 

asset inventory (NIWA and GNS, 2017). Topographic data are sourced from LINZ (2009). Finally, 

we calculate the share of residential buildings located in areas with no agricultural land use capability 

as a proxy for economic activity, sourced from Newsome et al. (2008).  
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1.3.4 Summary Statistics 

Table 1.1 presents summary statistics at grid-cell/year level for the subsamples of observations 

with and without insurance claims during the study period (2000-2017). The mean number of extreme 

events in grids with claims is always statistically significantly higher than the mean number in grids 

without claims. However, since extreme events are constructed from percentile thresholds that are 

calculated separately for each grid, a relevant question is whether grids with claims have different 

rainfall thresholds to grids without claims. Thus, we examine the percentile threshold values for grid-

year cells with and without claims. We find that grid cells with claims have significantly higher mean 

threshold values than do grid-cells without claims for all percentile values and durations. That is, 

despite the fact an event in a grid-cell with claims must have higher rainfall to be classified as extreme, 

such grid-cells still have higher numbers of extreme weather events. 

The differences between the two samples are also observable in exposure and vulnerability 

measures at grid-cell level, as shown in Appendix Table 1.8.1. For instance, the average number of 

properties exposed is about 22 times higher for grids with claims than grids without claims. Similarly, 

the mean amount of land exposed and the mean value of assets (building, land, appurtenant structures, 

and contents) are approximately 10 and 27 times higher, respectively, in grids with claims than in 

grids without claims. Similarly, the share of buildings located in urban areas is eight times higher in 

grids with claims than in grids without claims. This is in line with the findings of prior studies where 

it is shown that damages from extreme weather events are strongly associated with exposure (Bouwer, 

2018; Miller et al., 2009; Pielke et al., 2008). 

Regarding the inundation-vulnerability and landslip-vulnerability measures, the differences in 

means between grids with claims and grids without claims are statistically significant for all variables 

except for the average distance of residential buildings from lakes. For instance, the average 

percentage of properties in fluvial and pluvial flood-prone areas in grids with claims is 3.3 percentage 

points higher than the average percentage of properties in grids without claims. All these differences 

are statistically significant. Finally, we find statistically significant differences in means for four 

additional vulnerability-related measures: average elevation, average floor height, the share of 

buildings in a deficient condition, and the share of buildings located in areas with agricultural land.  
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 Grid-cells with claims (N=2,370) Grid-cells without claims (N=109,788) 
 Mean SD Min Max Mean SD Min Max 
Total paid, in 1,000 $NZ 
(adjusted for 2017) 

76.1 264.6 0.00 9,147.9     

Total number of claims 3.54 9.99 1.00 238.00 - - - - 
Ratio of total paid to total 
value exposed 

0.00 0.03 0.00 0.90 - - - - 

Ratio of total paid to total 
value exposed in 100k 
terms, in 2017 $NZ 

305.79 3,252.18 0.00 90,028.
88 

- - - - 

Break down of total paid, per cover 
Total paid for land damage, 
in 1,000 $NZ (adjusted for 
2017) 

49.1 170.9 -7.3 5,847.6 - - - - 

Total paid for building 
damage, in 1,000 $NZ 
(adjusted for 2017) 

26,518.0 140,966.00 -0.3 3,148.7 - - - - 

Total paid for contents 
damage, in 1,000 $NZ 
(adjusted for 2017) 

474.18 4,582.56 -0.9 151.6 - - - - 

Percentile threshold values, for precipitation durations (1 to 5 days), in mm. 

 95th percentile one day 36.39 9.46 17.10 65.70 33.15 12.31 16.30 191.40 
 98th percentile one day 52.67 14.46 23.00 92.90 47.10 17.70 22.20 268.60 
 99th percentile one day 66.46 18.93 29.50 122.20 58.91 22.22 27.30 318.90 
 95th percentile two days 49.44 13.14 23.25 92.10 45.40 18.24 19.30 282.00 
 98th percentile two days 71.35 20.05 30.80 133.70 63.91 25.64 28.30 372.20 
 99th percentile two days 89.22 26.00 39.70 170.30 79.59 31.77 36.40 460.50 
 95th percentile three days 59.48 15.96 27.80 114.80 54.77 22.95 21.70 346.20 
 98th percentile three days 84.08 23.73 38.65 161.80 76.02 31.31 31.70 450.60 
 99th percentile three days 103.35 29.76 46.30 201.60 93.41 38.32 41.00 578.20 
 95th percentile four days 68.13 18.30 32.10 133.50 62.87 26.98 23.60 402.60 
 98th percentile four days 94.68 26.57 44.10 179.20 86.17 36.33 35.70 533.90 
 99th percentile four days 115.07 32.94 50.80 218.60 104.69 43.62 42.70 674.90 
 95th percentile five days 76.15 20.65 36.30 151.40 70.36 30.82 25.40 453.70 
 98th percentile five days 103.70 28.87 48.60 197.90 95.04 40.59 36.70 606.20 
 99th percentile five days 125.22 35.40 55.30 235.70 114.88 48.46 45.00 721.10 

Number of extreme precipitation events based on percentiles values and durations (1 to 5 days) 
 95th percentile one day 39.24 133.99 0 3,570 6.17 3.05 0 23 
 98th percentile one day 11.84 40.62 0 1,190 2.47 1.82 0 12 
 99th percentile one day 6.86 27.10 0 952 1.24 1.23 0 8 
 95th percentile two days 39.24 133.99 0 3,570 8.85 4.36 0 30 
 98th percentile two days 18.13 66.36 0 1,904 3.50 2.65 0 18 
 99th percentile two days 10.58 39.71 0 1,044 1.75 1.80 0 12 
 95th percentile three days 48.69 162.81 0 4,522 10.81 5.58 0 37 
 98th percentile three days 23.18 85.06 0 2,380 4.26 3.37 0 23 
 99th percentile three days 13.33 51.23 0 1,392 2.12 2.31 0 16 
 95th percentile four days 56.79 187.74 0 4,998 12.32 6.60 0 40 
 98th percentile four days 26.84 99.29 0 2,610 4.86 4.05 0 26 
 99th percentile four days 15.99 62.48 0 1,666 2.43 2.78 0 19 
 95th percentile five days 63.24 214.18 0 5,950 13.48 7.50 0 45 
 98th percentile five days 30.48 119.18 0 3,306 5.33 4.62 0 31 
 99th percentile five days 18.47 76.36 0 2,088 2.67 3.21 0 22 

Table 1.1 Descriptive statistics for insurance claims and extreme precipitation – per grid-cell/year. We distinguish 

between grids that have made weather-related claims and grids without any claim. We observe statistically significant 

differences for all hazard measures between the two sub-groups.  
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1.4 Regression models 

To estimate the historical relationship between extreme weather events and claims, we use the 

equations: 

 𝐿𝑖𝑡  =  
𝑒𝛽1𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑖𝑡+ ∅𝑖  + 𝛾𝑡  +𝜖𝑖𝑡

1+ 𝑒𝛽1𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑖𝑡+ ∅𝑖  + 𝛾𝑡  +𝜖𝑖𝑡
 (1) 

 𝐹𝑖𝑡 =  𝑒𝛽1𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑖𝑡+ ∅𝑖  + 𝛾𝑡  +𝜖𝑖𝑡  (2) 

               𝐼𝑖𝑡 = 𝛽1𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑖𝑡 + ∅𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡             (3) 

 

where i denotes a grid-cell, t denotes year, and the dependent variable 𝐿𝑖𝑡 is the likelihood, Fit 

is the frequency and Iit is the intensity of claims as described in the previous section (measured at the 

grid-cell/year). The term 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖𝑡, is a vector measuring the number of extreme 

precipitation events (at the grid-cell/year), Φi is the fixed-effects term (at the grid-cell) and γt is the 

time fixed-effects term (at the grid-cell). We use a logistic regression when looking at likelihood [1], 

a Poisson regression for frequency [2], and an OLS regression for intensity [3]. Depending on the 

model, the coefficients are expressed as incidence rate ratios (IRR), odds ratios (OR) or conventional 

coefficients, respectively. The regressions also include time fixed-effects to capture the climate 

variability; as we see in the precipitation data, some years have more extreme rainfall than others.  

Exposure and vulnerability variables (reported in Appendix Table 1.8.1) are time-invariant and 

therefore are not introduced into the fixed effect models. 

We estimate fixed-effects models rather than random-effects models because we are interested 

in analysing the effect of variables that vary over time (given our interest in projecting climate change 

impacts). By using fixed-effects models, we remove the effect of observed and unobserved time-

invariant characteristics. “Then, any change in one of the three dependent variables must be due to 

influences other than these fixed characteristics.” (Torres-Reyna, 2007). We use Huber and White 

robust standard errors to allow for heteroskedasticity. We ran a series of Hausman tests for all 

percentiles and days of accumulated precipitation to confirm whether fixed-effects are preferable to 

random-effects. The results show a fixed-effects model is more appropriate for the logistic regression 

models, whereas for the Poisson regression and OLS regression the Hausman tests are inconclusive. 

Specifically, the models fitted do not meet the asymptotic assumptions of the test. All the estimations 

were produced using Stata/MP 13 and are presented in Table 1. 2. 
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1.4.1 Likelihood model for the probability of a claim 

Column (1) of Table 1.2 presents the results of a series of logistic regressions in which the 

dependent variable is an indicator for whether a claim occurred in a grid-cell/year (𝐿𝑖𝑡 ) and the main 

control variable of interest is the number of extreme weather events for the various percentile 

thresholds and durations. Each presented coefficient comes from a separate regression, run separately 

for each percentile thresholds and duration, and is expressed as an odds ratio. Exposure and 

vulnerability are controlled for with grid-cell fixed effects. 

The first coefficient presented in this column shows that a one-unit increase in the number of 

extreme events (as defined at the 95th percentile for one day of accumulated precipitation) is 

associated with a 21.3% increase in the odds ratio of an insurance claim. Across the different 

definitions of extreme events, the estimated increase in the odds of an insurance claim from an 

additional extreme precipitation event range from 9.3% to 46.3%. In each case, the coefficient is 

statistically significant at the 0.01 level. 

1.4.2 Frequency model for the number of claims 

Column (2) of Table 1.1 presents results from a series of Poisson regressions in which the 

dependent variable is the number of claims in the grid cell year (𝐹𝑖𝑡 ). We opt for a Poisson model 

rather than a negative binomial one because the negative binomial fixed effect estimator is not a true 

fixed effects estimator (Wooldridge, 1999). The coefficients of the estimated model are expressed as 

incidence rate ratios (IRR). Our exposure variable, required for count models, is the number of 

properties per grid-cell. The first-row coefficient shows that if the number of extreme events increases 

by one unit (as defined at the 95th percentile for one day of accumulated precipitation), its incidence 

rate ratio is expected to increase by a factor of 1.24 (a 24% increase in the incidence rate). For the 

different definitions of extreme weather event, the IRR range from 1.09 to 1.41, and are all statistically 

significant at the 0.01 level. 

1.4.3 Intensity model for the total value of claims 

Column (3) of Table 1.2 presents results from a series of OLS regressions of the value of total 

payouts, adjusted for inflation to 2017 NZ$ values. Using our first definition of an extreme event, 

rainfall above the 95th percentile for one day of accumulated precipitation, we estimate that one 

additional extreme event in a grid cell and year is associated with a NZ$ 319 increase in payouts. As 

we vary our definition of an extreme event in the subsequent rows of the table, the estimated 

coefficients range from NZ$ 132.4 to NZ$ 887.9; all are statistically significant at the 0.01 level. An 

alternative model is to use as the dependent variable the ratio of the total payouts (for each grid-
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cell/year) to the total value of residential assets exposed (building, land, contents, and appurtenant 

structures). As column (4) of Table 1.2 shows, with this ratio as the dependent variable, we find non-

significant results for most models, except for the model with 95th percentile one day of accumulated 

precipitation (0.303), and the model 95th percentile two days accumulated precipitation (0.366). We 

argue that the normalized figures of damage (value of claims over total value exposed) are 

significantly associated with one and two days of accumulated precipitation for two reasons. In the 

first case, we argue that one day of accumulated precipitation is related with flooding events, which 

are generally triggered by sub-daily durations. In the second case, we see that about 12% of the pay-

outs ever made by the EQC were triggered by 2-day rainfall durations. We address these two events 

in Chapter two and Chapter three.  For the loss projection undertaken in the next section, we use the 

models where the dependent variable is the total payouts (column 3). 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 We note that intensity model can be considered as a censored variable, since in most of the grid cells, there may not be 

any claims, so the intensity is zero, while in some grid cells, the intensity would be positive due to claims. To correct for 

the bias, a Tobit model can be used to estimate the relationship when there is censoring in the dependent variable. 

Alternatively, it is possible to estimate a two-stage model where the probability of making a claim is first estimated, and 

then, the value of claim is estimated, conditional on having made a claim. However, we leave this issue for future research. 
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 (1)  (2)  (3) (4) 

Model type 
Logit 

(Probability)  
Poisson 

(Frequency) 
OLS 

(Intensity) 
OLS 

(Intensity) 

Dependent variable 

 
Indicator for at 

least one claim in 
grid/cell  

 
Number of claims 

in grid/cell 

 
Value of claims in 

grid/cell 

Value of claims 
relative to 

exposed assets in 
grid/cell 

Coefficient type 
Odds Ratio (OR)  Incidence Rate 

Ratio (IRR) 
OLS  OLS 

     

95th percentile one day 
1.213*** 
(0.0141) 

1.241*** 
(0.0237) 

319.0*** 
(72.46) 

0.303*** 
(0.0600) 

98th percentile one day 
1.404*** 
(0.0238) 

1.411*** 
(0.0492) 

538.1*** 
(89.42) 

1.314 
(0.716) 

99th percentile one day 
1.597*** 
(0.0364) 

1.569*** 
(0.0805) 

887.9*** 
(163.0) 

2.502 
(1.825) 

95th percentile two days 
1.157*** 
(0.00915) 

1.170*** 
(0.0138) 

250.5*** 
(45.32) 

0.366** 
(0.132) 

98th percentile two days 
1.295*** 
(0.0145) 

1.275*** 
(0.0368) 

441.4*** 
(70.27) 

1.253 
(0.800) 

99th percentile two days 
1.463*** 
(0.0235) 

1.376*** 
(0.0500) 

634.1*** 
(90.74) 

1.803 
(1.150) 

95th percentile three days 
1.128*** 
(0.00690) 

1.127*** 
(0.0126) 

187.6*** 
(32.72) 

0.484 
(0.290) 

98th percentile three days 
1.238*** 
(0.0109) 

1.221*** 
(0.0248) 

355.4*** 
(52.28) 

1.000 
(0.630) 

99th percentile three days 
1.359*** 
(0.0166) 

1.260*** 
(0.0322) 

486.9*** 
(69.25) 

1.454 
(0.890) 

95th percentile four days 
1.107*** 
(0.00551) 

1.105*** 
(0.0104) 

153.7*** 
(24.15) 

0.359 
(0.197) 

98th percentile four days 
1.192*** 
(0.00867) 

1.172*** 
(0.0198) 

261.7*** 
(39.57) 

0.836 
(0.545) 

99th percentile four days 
1.298*** 
(0.0132) 

1.255*** 
(0.0231) 

432.0*** 
(63.26) 

1.266 
(0.738) 

95th percentile five days 
1.093*** 
(0.00467) 

1.090*** 
(0.00988) 

132.4*** 
(21.54) 

0.284 
(0.147) 

98th percentile five days 
1.175*** 
(0.00741) 

1.152*** 
(0.0144) 

237.4*** 
(37.76) 

0.651 
(0.379) 

99th percentile five days 
1.250*** 
(0.0108) 

1.239*** 
(0.0167) 

383.2*** 
(57.04) 

1.134 
(0.679)  

Year fixed-effects Yes Yes Yes Yes 

Grid-cell fixed-effects Yes Yes Yes Yes 

N 14,238 14,238 112,158 112,158 

Table 1.2 Functional relationship between EQC insurance claims and extreme precipitation. This table presents the 

coefficients on extreme weather events from a series of regressions of claims on extreme events. Each coefficient comes 

from a separate regression. The dependent variable and regression type vary by column, and the definition of extreme 

event differs by row. For the intensity models, the dependent variable is the total amount of payouts from damage for all 

the insurance covers (column 3), and the total amount of payouts from damage to all the insurance covers divided by the 

total value of assets exposed, divided by a hundred thousand (column 4). The stars *** denote statistical significance at 

the 1% level. 

 

1.5 Applying the damage function to future climate projections  

Our next step is to use the damage functions we estimated in the previous section to project 

the value of insurance claims in the future, using the available predictions about the future impact of 

climate change on the occurrence of extreme precipitation events.  We use output from simulations 
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of NIWA’s dynamical downscaling setup driven by ocean temperatures from the Coupled Model 

Intercomparison Project (CMIP-5) climate models. 

The six CMIP-5 models used in this study are: HadGEM2-ES from the UK; NorESM1-M 

from Norway; CESM1-CAM5, GFDL-CM3, and GISS-E2-R from the US; and BCC-CSM1.1 from 

China. The six different representations of the climate have been built-up to reflect the past climate 

(1971-2005) and project future climate under the different greenhouse-gas emissions scenarios 

known as Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0, 8.5) and periods (2006-2100). 

RPCs are scenarios that include time series of emissions and concentrations of the full suite of 

greenhouse gases and aerosols and chemically active gases, as well as land use/land cover (Moss et 

al., 2008). Each model thus yields a different realization of possible future precipitation conditional 

on an emissions scenario. Some of these models predict the climate to 2120, but we restrict our 

predictions to 2100. Further details related to the climate models are provided in Mullan et al. (2018) 

and Sood (2014). 

1.5.1 Projecting losses 

We project losses for up to the year 2100 by applying the historical relationship between 

extreme precipitation and weather-related claims that we estimated in Section 1.4, to the modelled 

past and future weather data. The projection is done for all RCP scenarios in 20-year time slices for 

all percentiles and days of accumulated precipitation, and for all climate models; altogether, this 

implies 360 projections for each 20-year time slice. We avoid making predictions for short time-spans 

(e.g. 5 years) because these will be too volatile and may be affected by cyclical phenomena such as 

the timing of the tropical Pacific Ocean oscillations (El Niño and La Niña).  

We count the future number of extreme precipitations as the number of times modelled future 

rainfall exceeds the percentile thresholds calculated from the modelled past data from the same 

simulation. This allows us to establish the appropriate benchmark against which we can calculate 

future climate change impact.  

The model simulations of the past rainfall produce 95th, 98th, and 99th percentiles thresholds 

of past extreme events that are considerably lower than the corresponding percentiles of the past 

observed rainfall. We therefore cannot use the thresholds calculated from past observed rainfall, but 

calculate new thresholds from the modelled data of the past. It is those thresholds that are then used 

to identify and count the number of projected future extreme events (given the percentile and duration 

thresholds we obtained from the modelled data). 
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We project future losses assuming no changes in exposure (e.g. number and value of 

residential property) or vulnerability (e.g. construction materials). The main constraint preventing us 

from considering different scenarios for changes in exposure and vulnerability is the detailed spatial 

resolution at which we operate. The 5km x 5km grid-cells we use are much smaller than 

administrative units or regions at which socioeconomic pathway scenarios are generally developed 

for. However, the study provides a detailed baseline of potential future losses that the EQC could face 

given no further growth of residential areas. As the country continues to economically grow and 

develop, the projected losses here are of course likely to be higher.  

Given the 360 projections we produced per each 20-year, we present only a subset of these. In 

Table 1.3 we present the results of the projections for one of the climate models (GFDL-CM3) and 

for only two durations (one and five days). In Appendix Table 1.8.2 we present results for all 6 climate 

models, but only for one duration (one day) and one percentile threshold (99%). All other results are 

available upon request.  

Several observations about the results presented in Table 1.3 and Appendix Table 1.8.2 are 

noteworthy. In Table 1.3, we observe that predicted liabilities are largest when we use the 95% 

percentile 1-day model and decrease as we increase the duration or the percentile threshold we use. 

Essentially, this is because there are more events for these lower thresholds (e.g., 95 percentile) than 

there are, in the modelled data, for the higher thresholds (e.g., 99 percentile, in terms of either duration 

or percentile threshold). When we compare across the climate models, we see that the differences 

across models are not very large, though some models do have a flatter profile across time than others 

(e.g., the Norwegian model). We also observe, as can be expected, the differences between the RCP 

scenarios are more pronounced later in the century than they are in the near future (2020-2040). We 

next use these results to estimate by how much anthropogenic climate change will likely change future 

EQC liabilities from extreme weather events. 
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One day of accumulated 

precipitation 
Five days of accumulated precipitation 

    
95th 

percentile 
98th 

percentile 
99th 

percentile 
95th 

percentile 
98th 

percentile 
99th 

percentile 

2020-2040 

RCP 2.6 1,620 1,284 1,182 628 616 623 

RCP 4.5 1,600 1,289 1,199 621 606 611 

RCP 6.0 1,640 1,316 1,217 646 633 641 

RCP 8.5 1,523 1,199 1,099 563 556 558 

2040-2060 

RCP 2.6 1,583 1,271 1,169 598 583 583 

RCP 4.5 1,605 1,296 1,224 626 628 651 

RCP 6.0 1,605 1,296 1,212 621 623 646 

RCP 8.5 1,635 1,326 1,246 641 648 676 

2060-2080 

RCP 2.6 1,685 1,374 1,286 673 678 705 

RCP 4.5 1,583 1,299 1,222 601 593 601 

RCP 6.0 1,633 1,316 1,241 631 616 631 

RCP 8.5 1,720 1,426 1,359 698 701 725 

2080-2100 

RCP 2.6 1,660 1,326 1,224 641 623 626 

RCP 4.5 1,643 1,354 1,279 631 631 648 

RCP 6.0 1,625 1,336 1,269 641 651 678 

RCP 8.5 1,643 1,396 1,359 671 710 760 

Table 1. 3 Projected Future Liabilities with the GDFL-CM3 for the changing hazard (in NZ$ Millions). Projected 

losses for 20-year aggregates for the percentiles 95th, 98th and 99th percentile values and one and five days of 

accumulated precipitation, and all Representative Concentration Pathways, using the GDFL-CM3 (NOAA-USA) climate 

model. These results assume no future changes in exposure or vulnerability. The projected liability figures were inflated 

by a correction factor of 2.50. The need for an adjustment rises as a result of the claims omitted from the regression 

analysis. The factor is calculated such that we add the value of the claims included and the value of the claims omitted 

and divide that over the value of the claims omitted.  

 

1.5.2 Quantifying the climate change signal 

To quantify the expected impact of climate change on damages, we compare the predicted 

damages using the past model of the climate for the years 1986 to 2005 with the losses based on 

future climate change projections, for each of the periods 2020-2040, 2040-2060, 2060-2080, and 

2080-2100. We repeat this for all percentile thresholds (95% to 99%), days of accumulated 

precipitation (1 to 5 days), RCPs (4.5 - 8.5), and six climate models. The climate change signal is 

calculated with the following: 

𝐶𝐶_𝑆𝑖𝑔𝑛𝑎𝑙𝑝𝑑 = 100 ∗ ∑ (𝐶𝐹𝑢𝑡𝑢𝑟𝑒𝑖𝑝𝑑 − 𝐶𝑃𝑎𝑠𝑡𝑖𝑝𝑑)/ ∑ (𝐶𝑃𝑎𝑠𝑡𝑖𝑝𝑑)6,231
𝑖=1

6,231
𝑖=1         (4) 

It is the percentage change of the sum, aggregated across 6,231 inhabited grid-cells of the 

future liabilities of the EQC, based on the modelled data, minus the past modelled liabilities, based 

on the same climate model. In Figures 1.4 we present the estimated increase in liabilities attributed 

to the impact of climate change in each 20-year future period, relative to the 20-year period 1986-

2005, for the 99th percentile of one-day rainfall duration. These estimates are averages across the six 

climate models and presented for the four RPCs. We chose this 1-day duration because the time of 

concentration (TC) for most catchments in New Zealand is less than a day. This means that intensity 

rainfall duration (IRD) and the time for a drop of water to reach the coast occurs over sub-daily 
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periods. Thus, in the New Zealand hydro-geographical context, one day of accumulated precipitation 

is more appropriate to use over any longer durations.3 

These projections reveal a modest climate change-driven increase in the value of EQC 

insurance claims that are projected in the future. Even towards the end of the century (2080-2100), 

we see that difference in losses that range spatially, depending on the climate model, from: -0.53% to 

18.73% for RCP 2.6; -0.58% to 21.43% for RCP 4.5; 4.02% to 25.38% for RCP 6.0; and -4.43% to 

27.17% for RCP 8.5. This range reflects the ‘consensus’ prediction that some parts of New Zealand 

will become dryer and thus experience fewer claims related to extreme precipitation. 

These results can best be summarized by averaging across the different climate models for the 

same RPCs and time horizons; as shown in Figure 1. 4. The results from averaging climate change 

signal across the six different climate models appear consistent with our intuition. Overall, liabilities 

will increase more if future GHG emissions are higher (higher RCPs). The climate signal for the low 

emissions scenario (RCP 2.6) is lower and progressively increases with more emissions (higher RCP). 

For the low emission scenarios (RCP 2.6 and 4.5) the liabilities actually decrease toward the end of 

the century, when GHG concentrations in the atmosphere are assumed to decrease. In contrast, the 

time profile of the highest-emissions RCP 8.5 is much steeper, with the climate signal (the insurance 

liabilities) more than doubling between 2020-2040 and 2080-2100. Since model ensembles are used, 

we show variability in addition to the mean estimates in Appendix Table 1.8.3. 

While Figure 1. 4 averages the climate change signal across New Zealand, Figure 1. 5 maps 

this information for each inhabited grid-cell for RCP 6.0 (similar maps for RCP 4.5 and 8.5 are 

available in the Appendix Figure 1.8.4 and 1.8.5). Similarly, to Figure 1. 4, the information in Figure 

1. 5 is the average of the six climate models, for the 1-day 99% percentile thresholds. We find that a 

lot of the increase in liabilities for the EQC is concentrated in the Southern and Northern regions of 

the South Island, and along the South-West coast of the North Island from Wellington to Taranaki. 

The change we observe in the most densely populated region around Auckland is less pronounced.  

 

 
3  This reasoning if confirmed by the results shown in table 1.3, where the normalized figures of damage (value of 

claims over total value exposed) are statistically significant for one day of accumulated precipitation. However, two-day 

duration events are significantly related to levels of damage. In chapter two and three we observe that 12% of the pay-

outs ever made by the EQC and they both were triggered by 2-day rainfall durations. 
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Figure 1. 4 Increase in EQC liabilities due to climate change: average of all climate models (in %). These results are 

calculated for the average one day of accumulated precipitation and 99th across six climate models, for each RCP and 

time horizon. 

 

 

Figure 1. 5 Average Predicted Change in EQC liabilities for RCP 6.0 in every grid-cell (in %)  

 

1.6 Conclusions and Caveats  

Here, we combined residential insurance claim data, other geospatial records, and historical 

and projected precipitation data to project future liabilities of New Zealand’s public insurer from 

extreme precipitation events. We calculate these future liabilities for four different Representative 

Concentration Pathways, for the output from six climate models, and using a range of definitions of 
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‘extreme precipitation events. We show that the climate signal (i.e., the per cent difference between 

future and past liabilities for the EQC) will range - depending on the GHG emissions scenario- 

between 7% and 8% higher in the period 2020-2040 and between 9% and 25% higher in the period 

2080 to 2100 as a result of climate change-induced increases in extreme precipitation events.  

The estimated climate change signal follows, approximately, the GHG concentration 

trajectories according to each RCP so that higher GHG concentrations are generally associated with 

larger increase in liabilities. New Zealand’s population and the value of its residential building stock 

have grown steadily over the past few decades (RBNZ, 2019) and both are projected to continue to 

increase. This suggests that the future liabilities may be higher than our estimates, since we assume 

constant exposure.  

However, public policy can make a difference by either reducing exposure (e.g., through better 

land-use planning), or reducing vulnerability (e.g., through better construction standards). With the 

right policies and well-targeted investments, the public insurer’s liabilities can instead decrease. 

Another important policy consideration that should be explored is changes in what the public insurer 

covers, or whether our findings suggest a policy change, for example, in the amount of premiums the 

EQC collects annually. 

These potential policy focus areas raise many difficult questions around responsibility, risk 

sharing, distributional concerns, procedural fairness, and political viability. They are all issues that 

the economic analysis presented here cannot resolve without resorting to ethical, philosophical, and 

political considerations that are best left for future research. For example, even a seemingly innocuous 

policy, like reducing exposure through managed retreats from increasing-risk areas is contentious 

politically, and raises some difficult questions about who is responsible for this increased risk, and 

who should pay for it. Should this increased risk continue to be covered by the public insurer? Should 

the homeowners bear some of it (if not all)? Should the taxpayers assist the homeowners affected? Is 

insurance the best way of dealing with this problem? Or, should this be kicked down the road for 

future generations to resolve? For examples of some of these discussions in the New Zealand context, 

see Ellis (2018), James et al. (2020), Noy (2020), Owen et al. (2019), and Storey and Noy (2017).  

Given the obvious complicated policy space in which these results matter, some important 

caveats should be considered when using our results, or when implementing the methodology we 

proposed for estimating the future impacts of climate change. 

First, because of missing records, 60% of the total damages between 2000-2017 had to be 

omitted from the regression analyses and thus from our projections. About 35% correspond to losses 
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that could not be georeferenced. The remaining 25% correspond to claims without precipitation 

information, as the precipitations records are not spatially complete. To correct for this, the projected 

liability figures were inflated by a correction factor of 2.5. If, however, the omitted data is somehow 

different, and the sample we have is not representative of the missing data, that correction factor 

might not be accurate enough.  

Second, our data show that the EQC paid for some landslip/flood claims in grids that did not 

experience any measured precipitation. This is most likely because the intense precipitation happened 

upstream, but the damages (claims) occurred downstream, or because these were dry landslips 

(triggered by other factors). In order to be able to identify claims that have been caused by 

precipitation upstream, we require a complete hydrological modelling of all the watersheds in New 

Zealand. Such a modelling is not available and is unlikely to be available in the next few years. We 

did not remove these ‘zero precipitation’ claims from the regressions, but as long as the occurrence 

of these events is orthogonal to the wet landslide events, this should not bias our results. 

Third, because of the difference between past modelled precipitation and the past observed 

precipitation percentile threshold values, future damage assessment of extreme precipitation events 

may be inaccurately projected. The biases in the precipitation extremes in the climate model 

simulations, which mostly are due to internal variability of the climate system, may lead to potential 

overestimation or underestimation of future losses. In order to deal with randomness associated with 

occurrence of climate extremes, one should use the mean model ensemble rather than results from a 

single simulation, which is what we presented. Even though six simulations may not be sufficient to 

adequately assess the extremes with a probabilistic approach, the use of carefully selected multiple 

models allows us to determine the range of the ensemble as an estimate of variability. As long as 

improved higher-resolution validated datasets and more simulation data products are not available, 

we see no other way of overcoming this problem (see also Sood, 2014). 

Fourth, the predictions we make about future climate change costs assume constant exposure 

and vulnerability over time. Population projections are generally produced for large regions or 

administrative areas, but our estimations and calculations are produced at 5km-by-5km grid. We 

doubt any reliable modelling of the future distribution of population throughout New Zealand on a 

grid-cell basis is currently possible, so we do not attempt to account for that in our estimates. We also 

are not aware of any attempt to forecast future vulnerability for the housing stock. We therefore 

assume that vulnerability is constant over time. There are reasons to expect both increases and 

decreases in both exposure and vulnerability, so our ceteris paribus assumption appears plausible.  
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In a related matter, we expect the EQC cover policy change cover (whereby contents are not 

covered since 2019) to have a negligible impact on the projections as contents represent about 1% of 

the total value of claims.  

 

 

Fifth, although the EQC dataset does not explicitly classify insurance claims as being caused 

by a flood or a rainfall-induced landslip, we deduce that more than 70% of the weather-related 

insurance claims are most likely related to landslips. We differentiate between claims triggered by 

storm/floods from the claims triggered by landslips by examining the “claim status” variable the 

dataset, and, based on the EQC policy coverage. However, this algorithm does not identify the cause 

of the damage accurately. As discussed in Section 1.3.3, we approximate landslip susceptibility by 

combining slope and soil type and based on an adaptation of the algorithm developed by Dellow et 

al. (2011). This measure approximates landslip hazard, though not as accurately as would be possible 

using actual landslip hazard maps. If rainfall-induced landslip hazard maps were to become available, 

future research could improve our estimates of the potential future liabilities of the EQC. 

Sixth, our definition of extremes is based on a short time series (20 years) and only few 

simulations in a non-stationary system. The limited number of simulations imply that the climate 

signal of extremes is not statistically robust considering the levels of uncertainty. Conventionally, 

extreme events are defined as such when their return periods are low, and their threshold value is 

high. For instance, an event with a 100-year return period would qualify as an extreme event; in 

contrast, our definition of extremes for the lowest percentile and day of accumulated precipitation 

renders a total of 18 extreme precipitation events in a given year (assuming it rained every day). This 

issue can be addressed by using the modelled extreme precipitation with low return periods and 

examining the relationship with weather-related claim data. For such matter, we intend to use of the 

High Intensity Rainfall Design System (HIRDSv4) dataset, which provides a range of annual 

recurrence intervals for various durations (daily and sub-daily)4. An alternative set of extreme weather 

projections can also be obtained from more modest models which might be more suitable for 

identifying the distribution of the tails of the distribution, such as the weather@home project. We 

propose to take these challenges on in future research. 

 
4 Chapter three addresses the relationship between flood-related property damage and extreme precipitation from the 

HIRDSv4 dataset.  
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1.8 Appendices 

Appendix Table 1.8.1: Descriptive statistics for exposure – per grid-cell 

 Grid cells with claims (n=791) Grid cells without claims (n=5,440) 
Residential property exposure 
measures  

Mean SD Min Max Mean SD Min Max 

Total number of residential 
buildings exposed 

1,262 3,107 2 25,604 57 327 1 9,761 

Total area of res. land exposed 
(km2) 

17 34 0 203 2 5 0 77 

Total value of assets * 783 2,360 0 29,500 29 175 1 5,390 
Land value (modelled) * 278 1,200 0 18,600 5 54 0 2,180 
Building value (modelled) * 393 975 0 8,460 19 96 0 2,680 
Appurtenant structure value 
(modelled) * 

15 33 0 318 1 4 0 108 

Contents value (modelled) * 98 243 0 2,060 5 25 0 718 
Share of res. bldgs. located in 
urban areas 

30 37 0 99 4 15 0 99 

Inundation and landslip exposure measures 
Share of res. bldgs. in flood-prone 
areas 

9 17 0 100 6 17 0 100 

Share of res. bldgs. exposed to 
storm surge 

2 9 0 100 1 8 0 100 

Distance of res. bldgs. from big 
rivers (m) 

4,419 3,987 60 29,819 5,117 4,570 4 43,212 

Distance of res. bldgs. from small 
rivers (m) 

295 260 26 2,519 354 817 0 12,064 

Distance of res. bldgs. from lakes 
(m) 

1,652 1,809 120 17,652 1,699 1,731 0 18,736 

Distance of res. bldgs. from 
shoreline (m) 

13,495 19,336 34 105,482 32,149 25,754 8 114,088 

Share of res. bldgs. with landslip 
susceptibility 

21 25 0 100 16 26 0 100 

Share of res. bldgs. on soils with 
flood return periods from slight 
to very severe 

17 26 0 100 18 30 0 100 

Share of res. bldgs. on very poor 
to imperfect soil drainage 

32 35 0 100 29 37 0 100 

Share of res. bldgs. on soils with a 
'slow' rate of water movement in 
saturated soil 

6 16 0 100 6 18 0 100 

Share of res. bldgs. on soils with 
very high to moderately high 
available water 

33 37 0 100 28 39 0 100 

Vulnerability measures         
Share of res. bldgs. with 
vulnerable materials 

95 7 0 100 96 8 0 100 

Share of res. bldgs. in deficient 
condition 

22 12 0 100 21 17 0 100 

Average elevation (above mean 
sea level) 

99 111 2 741 214 185 1 2,336 

Average slope 5 4 0 27 5 5 0 52 
Average floor height (above 
ground) 

1 0 0 1 1 0 0 2 

Share of res. bldgs. located in 
areas with no agriculture 

81 33 0 100 98 11 0 100 

* Note: In Million 2017 NZ$. All the modelled values were constructed by the EQC.   
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Appendix Table 1.8.2: Projected Future Liabilities with all climate models for the 

changing hazard (in NZ$ Millions) 

  One day of accumulated precipitation, 99th percentile 

  Climate 
models 

GFFL GISS-E2 NorESM-
M(9) 

HadGEM 
2ES(2) 

CESM1 
BCCCSM1.1(17) 

CM3(10) R(14) CAM5(1) 

  NOAA-USA NASA-USA NCC-Norway MOHC-UK NSF-USA BCC-CHINA 

2020-
2040 

RCP 2.6 1181.9 1330.5 1342.4 1244.7 1191.6 1191.6 

RCP 4.5 1198.3 1334.4 1219 1193.6 1230.2 1230.2 

RCP 6.0 1215.5 1196.8 1353.9   1213 1213 

RCP 8.5 1099.9 1257.2 1347.2 1222.3 1234.2 1234.2 

2040-
2060 

RCP 2.6 1169.7 1182.6 1343.2 1235.2 1306.8 1306.8 

RCP 4.5 1223 1367.4 1397 1203.6 1213.5 1213.5 

RCP 6.0 1211.8 1304.5 1292.3   1292.1 1292.1 

RCP 8.5 1245.5 1379.8 1321.7 1276.6 1299.8 1299.8 

2060-
2080 

RCP 2.6 1285.3 1230.5 1365.9 1255.4 1361.1 1361.1 

RCP 4.5 1221 1252.7 1340.2 1308 1393 1393 

RCP 6.0 1240.5 1355.4 1432.7   1354.9 1354.9 

RCP 8.5 1359.1 1420.2 1485.8 1292.3 1467.6 1467.6 

2080-
2100 

RCP 2.6 1223.3 1219.5 1291.8 1144.7 1337.9 1337.9 

RCP 4.5 1279.1 1306 1397 1144.2 1345.7 1345.7 

RCP 6.0 1268.9 1342.2 1299.8   1443.1 1443.1 

RCP 8.5 1359.1 1454.1 1473.1 1451.4 1463.8 1463.8 

Note: Projected losses for 20-year aggregates for the 99th percentile value (p=99) and one day of accumulated 
precipitation (d=1), all Representative Concentration Pathways and all climate models. These results do not 
consider future changes in exposure or vulnerability. Results for the UK climate model and RCP 6.0 were dubious 
and thus not included in the table. The projected liability figures were inflated by a correction factor of 2.50. The 
need for an adjustment rises as a result of the claims omitted from the regression analysis. The factor is calculated 
such that we add the value of the claims included and the value of the claims omitted and divide that over the value 
of the claims omitted.  
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Appendix Table 1.8.3: Climate change signal mean and variability: Regional Climate 

Models’ Ensemble.  

 

 
  

 

 

 

 

 

 

 

Climate change signal. The first table displays the average climate models’ ensemble values while the second table 

shows the variability (standard deviation) around the mean.   

 

 
Average climate change signal:  99th percentile one day 

of accumulated precipitation  

 
2020-2040 2040-*2060 2060-2080 2080-2100 

RCP2.6 8.37% 9.26% 13.83% 9.42% 

RCP4.5 7.25% 10.33% 14.53% 13.22% 

RCP6.0 7.62% 11.10% 17.10% 18.13% 

RCP8.5 7.10% 13.30% 23.00% 25.49% 

 
Climate change signal variability (standard deviation):  

99th percentile one day of accumulated precipitation 
 

 
2020-2040 2040-*2060 2060-2080 2080-2100 

RCP2.6 6.34% 6.27% 5.25% 6.66% 

RCP4.5 4.48% 7.66% 6.21% 7.61% 

RCP6.0 5.66% 3.28% 5.99% 7.00% 

RCP8.5 6.90% 3.95% 6.60% 3.69% 
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Appendix Figure 1.8.4: Average Predicted Change in EQC liabilities for RCP 4.5 in 

every grid-cell (in %)  
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Appendix Figure 1.8.5: Average Predicted Change in EQC liabilities for RCP 8.5 in 

every grid-cell (in %)  
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Chapter Two 

 

Mapping rainfall-induced landslide risk using insurance claim 

data 

 

Abstract 

 

Predicting the risk properties face from landslide is important for several purposes, including 

risk-based insurance pricing, land-use planning and managed retreats. Yet, rainfall-induced landslide 

hazard and risk maps are not available for most areas in New Zealand and typically are based on the 

availability of landslide inventories of past events, conventionally derived from satellite/aerial images 

or fieldwork. We focus on the region of Nelson (New Zealand) and address the lack of hazard 

information by using widely available property characteristics, combined with claim data from a 

particular event, to predict the expected monetary losses from landslides. We first implement a 

multivariate logistic regression model to quantify the relative effect of drivers that account for 

exposure and social and physical vulnerability on residential property damage. Then, we calculate 

the expected monetary losses (landslide risk) by factoring the likelihood of landslide damage derived 

from the regression model, property replacement values, and property vulnerability expressed as 

damage ratios. We find that risk levels are driven by moderate and high slopes, lower social 

deprivation levels, and high property values. The estimated average expected loses represents 90% 

of the actual cost of the event for the public insurer and range between an interval of 60 to 120 percent. 

We provide an additional estimate of the expected losses for a scenario without the effect of 

anthropogenic-driven climate change using a ‘Fraction of attributable risk- FAR’ study. The 

methodology we develop to produce a 'rainfall-induced landslide risk map at the property level' is 

useful for public and private insurers to identify potential losses or target-risk reduction efforts. The 

statistical significance and predictive power of the statistical model suggest that past insurance claim 

data can help circumvent the absence of rainfall-induced landslide hazard maps. 
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2.1 Introduction  

The standard framework for undertaking a risk assessment of a natural hazard involves 

analyzing the interaction of three components: hazard data, the elements exposed to the hazard, and 

measures of these elements' vulnerability (understood as the susceptibility to harm or damage) to a 

hazard of a given intensity, spatial scope, and temporal frequency (Parise, 200l; Varnes, 1984, 

UNDRR, 2016). However, in many places, the risk assessment of rainfall-landslide hazard remains 

unquantified. In this paper, we develop a methodology that aims to fill this gap by using past insurance 

claims from the New Zealand public insurer to estimate rainfall-induced landslide susceptibility and 

risk from the impact of a 1-in-250-year precipitation event.  

In New Zealand, the public insurer (the Earthquake Commission, EQC) provides cover against 

residential property damage that arises from some weather-related hazards, including rainfall-induced 

landslides. A landslide is the movement of a mass of rock, debris or soil down a slope under gravity's 

influence (Crude and Varnes, 1996; Guzzetti et al., 1999). Landslide hazard is a function of 

susceptibility (the spatial propensity for landslide activity) and the return period (the frequency) of 

landslide activity caused by wet (extreme rainfall) or dry (seismic or volcanic) events (Dai et al., 

2002; Highland and Bobrowsky, 2008; UNDRR, 2016). Landslide susceptibility is a function of the 

topography, geology, hydrography, soil, land cover, geophysical processes, and human intervention 

in the landscapes (Soeters and van Westen, 1996). These variables are referred to as conditioning 

factors or predictors of landslide activity. Methods to assess the landslide susceptibility can be 

quantitative, qualitative, or a combination of  both methods (Guzzetti et al., 2012)  

We use a quantitative statistical approach to find the functional relationship between slope, 

conditioning factors, and the distribution of past insurance claims. We estimate a logistic regression 

model with two aims: 1) to identify the drivers of residential property damage; and 2) to estimate and 

map the expected monetary losses resulting from extreme rainfall-induced landslides.  

Previous research that implements multivariate statistical methods (e.g. discriminant analysis, 

OLS or MLE regressions, support vector machine, neural networks) uses landslide inventories that 

are constructed using aerial or satellite imagery (e.g. Carrara et al., 1983; Pradhan, 2010; Santoso et 

al., 2011; Park et al., 2013). Instead, in this research, we use georeferenced insurance claim data. 

Unlike conventional landslide inventories, insurance records already exist and provide detailed 

information on the landslide location, date, and impact. Because of the high insurance penetration in 

New Zealand (~ 98%) (Nguyen and Noy, 2020), insurance claim data is a good proxy of landslides' 

costs. To the best of our knowledge, no existing research uses detailed insurance claim data to 

estimate the risk from a rainfall-induced landslide on residential property quantitatively.  
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Unlike prior research that implements multivariate logistic regression models to estimate 

landslide susceptibility (Ohlmacher and Davis, 2003; Lee, 2004; Ayalew and Yamagishi, 2005; 

Pradhan, 2010), we address the non-independence of observations -due to the spatial nature of the 

data- by clustering the errors. We cluster the errors using two different sets of clustering areas. We 

group homogenous households/buildings using enumeration units from the census for the first set of 

clusters. The second set of clusters groups buildings that are located in topographically homogenous 

areas.  

Previous research papers that implement statistical methods to estimate landslide susceptibility 

incorporate combinations of continuous and discrete variables that include slope, geology, lithology, 

hydrology land cover, and soil, among others (e.g. Baeza and Corominas, 2001; Dong et al., 2009; 

Yao et al., 2008). In our research, in addition to the physical conditioning factors, we incorporate 

predictors that account for the sociodemographic characteristics of households by using a 

multidimensional indicator of well-being. Specifically, we use a social deprivation index that 

aggregates individual variables to reflect eight different social deprivation dimensions related to 

access to social services, employment status, qualifications, economic dependence and housing 

conditions (Salmond et al., 2007). 

We showcase a risk assessment methodology of rainfall-induced landslide hazard in Nelson, 

the region of New Zealand with the highest number of weather-related claims and payouts relative to 

the region's population and residential asset stock. In this region, about two-thirds of the total value 

claimed between 2000-2017 was caused by the 2011 Golden Bay Storm. We focus on this event.   

First, we identify a set of 29 predictors that capture the underlying and surrounding 

geophysical characteristics of residential properties and the sociodemographic traits of the households 

that inhabit them. Then, in a bivariate analysis, we test whether damaged and undamaged buildings 

are statistically different in each of their characteristics. 

Second, we estimate a multivariate logistic regression model, where the dependent variable is 

an indicator/dummy variable that takes the value of one for damaged buildings and zero otherwise. 

The model includes the variables whose underlying distributions are statistically different for 

properties with and without damage. We implement different model specifications to identify the 

regression model with the best fit and performance measured by the R2 and Area Under the Curve 

(AUC) statistics. 

Third, we estimate the expected monetary losses, i.e., risk, by factoring the likelihood of 

damage (derived from the logistic regression model), the property replacement value, and the 
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property's vulnerability. Here, we define vulnerability as the degree of damage expressed as the ratio 

between the cost of repair and the replacement value of the property. We construct two damage-ratio 

measures as "upper and lower bounds" for the damage ratio based on the available data.   

Finally, we map the expected monetary losses that the EQC could expect at the property level 

should an event of similar intensity impact Nelson's region. The expected losses are grouped using a 

classification method known as the Jenks Natural Breaks algorithm. The algorithm produces groups 

of data based on their similarity values such that the variance within groups is minimized, while the 

variance between groups is maximized. The map is a cartographic product that displays the risk levels 

in a sequential colour scheme so that lighter hues denote lower risk, and the darker hues indicate 

higher risk. 

We find that slope, social deprivation, and the condition of being outside denser residential 

areas have the highest relative effects on landslide susceptibility. As measured by the R2 (0.50) and 

AUC (0.98), the landslide susceptibility model's performance suggests that the model is capturing the 

physical and sociodemographic factors that make a property more likely to experience damage. 

However, when we integrate the likelihood of damage, along with property values and damage 

information, to calculate risk, we find that the highest risk is not only driven by higher likelihood 

values but is mainly driven by higher property values. We argue that households living in high-

property values can afford geotechnical and engineering works that allow them to settle on coastal 

hills to enjoy desirable views.  

This research's output is a detailed landslide risk map for the Nelson region at the property 

level. The map displays the spatial distribution of the expected monetary losses resulting from a 250-

year extreme precipitation event. We demonstrate that insurance claim data can be used as an 

alternative to landslide inventories, based on aerial imagery or field observations, to evaluate 

landslide susceptibility using a statistical method. We note that statistical methods do not explain and 

describe the failure mechanisms, the physical set up of landslides, or the engineering mechanisms of 

property damage, so they are better suited to assess the damage's potential value and to identify 

priority locations for disaster risk reduction endeavours. 

A spatial planner can use these results to introduce disaster risk reduction efforts in areas of 

high risk. Insurers can use them to inform risk-based insurance schemes and assess the potential 

financial liability brought about by extreme precipitation events. Local Councils could use this type 

of information to inform their land use planning and zoning of areas prone to damage. Other exposed 

locations currently not subject to landslips, or locations with similar geographies, could also employ 
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this methodology for predictions regarding their susceptibility to landslides triggered by low-

probability precipitation events.  

The paper remaining is organized as follows: Section 2.2 provides a literature review of the 

methods to estimate landslide susceptibility. Section 2.3 describes the New Zealand public insurance 

scheme concerning weather-related hazards and presents data on claims' spatial and temporal 

distribution. Section 2.4 describes the input datasets and variables derived and the results from the 

bivariate analysis. Section 2.5 presents the estimation method and the calculation of risk. Section 2.6 

presents the regression models' results, evaluations of their statistical performance, and a discussion. 

Section 2.7 concludes with remarks about the findings.   

2.2 Literature review 

Soeters and Van Westen (1996) propose a classification of methods to assess the probability 

of land sliding: landslide inventory maps, deterministic or physical-based (geotechnical) models, 

heuristic-based methods, and statistical-based models. Guzzetti et al. (1999) group these methods into 

qualitative and quantitative approaches.  

Landslide inventory maps are a collection of historical landslide occurrences. These maps 

display the spatial distribution of the number and size of historical events. Inventory maps are 

generally produced through photo interpretation using aerial and satellite imagery. Inventory maps 

are considered the most basic form of landslide mapping and form the basis for most landslide 

susceptibility maps (Wieczorek, 1984; Parise, 2001; Guzzetti et al., 2012).  

Deterministic methods describe and model the physical laws that lead to slope instability. In 

this methods, "the physical properties of a particular slope are obtained from field investigations and 

laboratory tests" (Park et al., 2013; Montgomery and Dietrich, 1994; Terlien et al., 1995). Heuristic 

methods are the only qualitative method as they rely on expert judgement and knowledge of the 

physical processes acting upon the terrain. Here, the factors contributing to slope failure are ranked 

and weighted but do not get incorporated into a probability metric (Soeters and van Westen, 1996; 

Guzzeti et al., 1999). Statistical methods evaluate the relationship between landslide occurrence and 

the underlying and surrounding geophysical, topographic, hydrologic and land use characteristics 

(Soeters and Van Westen, 1996; Dai et al., 2002). Statistical methods aim to find the functional 

relationship between slope instability factors and the distribution of past and present landslides to 

predict areas susceptible to landslides (Guzzeti et al., 1999; Mahalingam et al., 2016). 

Statistical methods for landslide hazard zoning can be implemented in a bivariate or 

multivariate modelling framework. Bivariate methods reported in the literature include weights of 
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evidence (WofE) and frequency ratio (FR) (Neuhauser, 2007; Yilmaz et al., 2012). Multivariate 

methods estimate models by linear and non-linear approaches via ordinary least squares (OLS) or 

maximum likelihood (ML) estimation. Logistic regression analysis, a non-linear ML method, has 

been used by Ohlmacher and Davis (2003), Lee (2004), Ayalew and Yamagishi (2005) and Pradhan 

(2010). Other multivariate methods include discriminant analysis (Carrara et al., 1983; Baeza and 

Corominas, 2001; Dong et al., 2009), Bayesian methods (Pham et al., 2016),  random forests 

classification algorithms (Stumpf and Kerle, 2011), neural networks (Choi et al., 2010; Pradhan and 

Lee, 2010) and support vector machine methods (Yao et al., 2008; Marjanovic et al., 2011). Other 

papers develop a combination of deterministic and statistical approaches, where predictors for 

landslide susceptibility are obtained from laboratory tests and are then evaluated using probability 

models (Baum et al., 2005; Park et al., 2013; Santoso et al., 2011).  

In New Zealand, Dellow (2011) proposes a probabilistic rainfall-induced landslide hazard 

model (PRILHM) framework based on previous works developed by Glade (1998) and Joyce et al. 

(2009). For a Wellington case study, Dellow (2011) calculates the probability of landslides based on 

the areal distribution of landslides in the landscape (i.e. frequency ratio method) using insurance claim 

data that has been temporally and spatially aggregated. The probability is derived by counting the 

number of landslide initiation sites per square kilometre for a given rainfall while controlling for slope 

bands, geology and vegetation (Dellow, 2011). 

In contrast, we estimate property damage probabilities using a multivariate statistical non-

linear model at the property level, where insurance claim data have not been spatially nor temporally 

aggregated. The detail of the insurance data allows us to identify the date when the damage occurred 

and thus enable us to link property damage to precipitation data. Furthermore, due to the great spatial 

detail of insurance claim data, we can exploit variation amongst properties across space using 

property-level information that account for the underlying and surrounding characteristics of 

residential property and their inhabitants.   

The Geological and Nuclear Sciences Institute developed a landslide inventory of New 

Zealand. It is an open database that provides information on the triggering event, date, approximate 

location, size and damage of significant landslides (Rosser et al., 2017). Nevertheless, to the best of 

our knowledge, rainfall-induced landslide risk maps as such are nonexistent. Our work can be viewed 

as a pilot study to develop methods that can be used to create such risk maps. 
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2.3 Insurance and extreme events 

2.3.1 Insurance 

In New Zealand, residential property owners purchase public insurance to cover for physical 

damage occurring to buildings, the land beneath or around them, and home contents as a direct result 

of earthquakes, landslips, volcanic eruption, hydrothermal activity or tsunami. In the case of flood or 

storm events, public insurance only includes a provision for land damage. The Earthquake 

Commission (EQC) provides public insurance coverage to which homeowners pay a flat yearly 

premium. The EQC coverage is conditional on homeowners having private fire insurance; these 

private insurers are then liable for any damage to the building for flood/storm or any above the EQC 

cap cover for other types of insured hazard events (EQC Insurer's Guide, 2016; Earthquake 

Commission Act, 1993).5 

Over the period 2000-2017, EQC's weather-related liabilities amount to a total of NZ$ 449.7 

million (in 2017 NZ$). From the total value of EQC payouts, the highest share comes from land 

damage remediation (67%), followed by building damage (32%) and contents (1%).  

The distribution of the EQC payouts over time is characterized by high peaks associated with 

extreme weather-events. The highest spikes of damages (see Figure 2. 1) occur in 2005 (Bay of Plenty 

and Waikato heavy flooding), in 2008 (North Island 'weather bomb'), and in 2011 (Tasman-Nelson 

heavy rain and flooding; Hawke's Bay flooding; and extra-tropical cyclone Wilma). See Fleming et 

al. (2018) for a list of the costliest weather events for the public and private insurance industry in 

New Zealand.  

 
5 This public cover is provided as a mandatory add-on to private insurance. Almost all owners purchase public/private 

home insurance policies (estimated take-up is 98% - see Nguyen and Noy, 2020). Changes in the coverage for the public 

component were introduced in July 2019 to elevate the building cover cap (from NZ$100,000 to NZ$150,000) and to 

remove the contents cover (previously capped at NZ$ 20,000). Land is covered up to its assessed market value. Land 

cover is capped as the EQC pays the lesser of either: the cost to repair the damaged land (or in some cases the diminution 

in value of the land); or the value of the damaged land; or the value of 4,000 square meters; or the value of the minimum-

sized site allowed in the area where the damaged land is situated.  Bridges, culverts, and retaining walls cover as specified 

above are covered for indemnity value (EQC Insurer’s Guide, 2016; Earthquake Commission Act, 1993) 
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Figure 2. 1 EQC's total weather-related claim payouts over time. The highest levels of damages, i.e. the highest 

liabilities for New Zealand's public insurer, result from rainfall-induced landslides, floods, and storms in 2005, 2008 and 

2011. The spike enclosed in the red rectangle corresponds to the Golden Bay Storm of 2011, which affected the Nelson 

and Tasman regions.  

                                              

The distribution of EQC payouts across the regions of New Zealand is heterogeneous. For 

comparability purposes, we normalize the data by considering each region's exposure in terms of its 

population and residential property units. We calculate the number of claims per 1,000 properties and 

per 1,000 people; and the average weather-related claim payout per property ($) and per person ($). 

The results of normalizing the data allow us to rank each region's historical liability profile in relation 

to the impact of weather-related events. From the seventeen regions of New Zealand (see Table 2. 1), 

Nelson ranks number one as the region with the highest weather-related risk relative to its population 

and residential housing stock.  

 



46 

 

 

 

 

 

 

 

 

 

 
Table 2. 1 Ranking of normalized weather-related property damages in New Zealand's regions between 200-2017. 

Nelson is the region with the highest number of claims and pay-outs relative to its population and residential asset stock. 

Taken from Fleming et al. (2019). See Appendix Figure 2.9.1 and Appendix Figure 2.9.2 for a graphical representation 

of this table. 

 

Property owners in Nelson have received in pay-outs a total of 15.7 million NZ$. In Figure 2. 

2, the time series of damages does not show an apparent trend. Instead, the time series is characterized 

by a large spike in 2011, where 97% of the damages in that year were caused by the Golden Bay 

storm in mid-December. We focus on this event. The descriptive statistics indicate that this event 

represents 62% of the total value of the claims paid by EQC to homeowners of the Nelson Region.6 , 

where the average payouts for land and building damage were 18,253 and 8,644 NZ$ (in 2011 NZ$), 

respectively. In total, 352 claims were made to the EQC for this event. 

 

 
6 The private insurance industry paid 16.8 million NZ$ (in 2011 NZ$) as a result of the same event (Insurance Council 

of New Zealand, 2017). 

Region 

No. of claims 

per 1,000 

properties 

No. of claims 

per 1,000 

people 

Avg. claim 

payout per 

property ($) 

Avg. claim 

payout per 

person ($) 

Nelson  48.97 18.13 661 245 

Wellington 27.52 9.30 188 63 

Tasman 22.62 8.55 230 87 

Bay of Plenty 20.95 7.55 191 69 

Northland 20.75 7.77 272 102 

Hawke's Bay 13.24 4.62 177 62 

Gisborne 12.18 4.00 222 73 

Marlborough 11.22 4.96 146 65 

Manawatu-W. 10.80 4.03 88 33 

Otago 10.14 3.99 83 33 

West Coast 9.10 4.00 66 29 

Waikato 8.46 3.06 85 31 

Taranaki 6.85 2.53 34 13 

Auckland 6.64 1.89 92 26 

Canterbury 5.07 1.83 33 12 

Southland 0.57 0.22 2 1 
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Figure 2. 2 Nelson's time series of yearly insurance total claim payouts and the total number of claims from 

weather-related damage between 2000 and 2017. The 2011 spike accounts for the damages paid by the EQC due to the 

2011 Golden Bay storm event. The damages of this event represent 62% of the total value of the claims ever paid by the 

EQC to homeowners of the Nelson Region. 

 

2.3.2 Extreme precipitation: The 2011 Golden Bay Storm  

A low-pressure weather system triggered the Golden Bay storm event. Nelson region's 

precipitation levels were the highest 48-hour rainfall recorded in urban New Zealand until 2013 (Dean 

et al., 2013). The observed precipitation return period was estimated as a 250-year event for Nelson 

and a 500-year event for the Tasman-Takaka region (Ashraf and Jones, 2013). Figure 2. 3 depicts the 

spatial distribution of precipitation intensity (in mm) in the northern tip of the South Island over the 

48-hour duration of the event. Unlike what happens in most of New Zealand's big storms, the air 

coming from the sub-tropics was unusually moist in the lower altitude, and as it rose over the hills, it 

cooled down near the coastline, rather than far inland, and the coastal foothills became saturated, and 

landslides occurred on waterlogged slopes (Dean et al., 2005; Terry, 2012)   

Precipitation translated into landslides and floods that impacted road networks, water and 

sewage systems, and residential buildings. Saturated hillsides "gave away", triggering debris slides 

and creating dams that later burst (Terry, 2012). The damage concentrated on hills and very few low-

lying areas, and most of the rain fell on coastal hills "such that none of the major rivers with 

headwaters in the mountains reached extreme flood levels" Dean et al. (2013).  
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Figure 2. 3 Isohyet 48-hour rainfall map of the 2011 Golden Bay Storm between 13 and 15 of December. The 

precipitation return period was estimated to be a 250-year event for Nelson and a 500-year event for the Tasman-Takaka 

regions. Taken from Asbah and Jones (2013) 

 

Although there were reports of swollen streams, "…the floodwaters were generally a result of 

streams becoming choked with debris from the slips, then spilling water as the debris dams released. 

On some occasions, very high surges occurred, with the water, mud, logs and silt travelling down at 

speed." (Terry, 2012). Asbah and Jones (2013) report 1,519 landslides with an average area of 170 

m2 due to the event. Furthermore, news reports pointed at slips as the major problem as a direct 

manifestation of extreme precipitation (Stuff, 2011a; Stuff, 2011b). Two days after the event, 139 

properties were issued yellow and red notifications, followed by building inspections geotechnical 

assessments carried by the EQC and the NT-CDEM (Terry, 2012; Stuff, 2011c). Houses on the slip-

prone hills were rapidly issued with red stickers. 

According to the Nelson Tasman Civil Defence Emergency Group (NT-CDEM), landslides 

are a significant threat in the area. Although hard rock types are dominant in the Golden Bay area, 

and high-intensity rainstorms do not lead to slope instability, "small scale superficial failures are 

common when the ground becomes water-saturated" (NT-CDEM, 2020). Figure 2. 4 shows the 

approximate spatial distribution of insurance claims lodged to the EQC and the residential housing 

stock distribution in the Nelson region and Nelson city.  
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Figure 2. 4  Spatial distribution of the residential housing stock and the approximate locations of weather-related 

property damage resulting from the 2011 Golden Bay storm in the Nelson region. The impacts predominantly occur 

in non-flat areas and locations located along foothills. Figure elaborated by the authors. 

 

2.4 Data and bivariate analysis       

2.4.1 Data 

We use a cross-sectional dataset of all individual weather-related insurance claims triggered 

by the 2011 Golden Bay Storm and a full set of residential building assets in the Nelson region. We 

create a profile for all buildings (with and without claims) in terms of their geophysical characteristics 

and their inhabitants' sociodemographic characteristics. The set of covariates we assess in the 

bivariate analysis are intended to capture conditioning factors for the observed damage. Furthermore, 

all the statistically significant variables at 0.05 level from the bi-variate analysis will be included in 

the regression model in section 2.5.1. Thus, the model will include the variables whose underlying 

distributions are statistically different for properties with and without damage. We group covariates 

into three categories for reporting purposes and based on the conceptualization of risk: hazard, 

exposure, and vulnerability (UNISDIR, 2016).  

 We can link information on each building to the surrounding and underlying environment, 

thanks to each residential property's geolocation information. We link geospatial data in two ways: 
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based on proximity and overlay.7 Then, in a bivariate analysis, we test whether there are statistically 

significant differences in each risk factor between buildings with damage and without damage. We 

run different statistical tests depending on the measure of the variable (interval, nominal). Table 2. 2   

reports the summary statistics of damaged and undamaged properties for each of the damage 

conditioning factors. In total, the number of properties with and without damage is 352 and 18,000, 

respectively.  

The data we use are sourced from the Earthquake Commission (insurance claims), CoreLogic 

(property values), National Institute of Water and Atmospheric Research (precipitation, storm tide 

flood maps, pluvial flood maps, building asset inventory), Land Information New Zealand 

(topography, hydrography, land cover), Landcare Research (soil data), and from Salmond et al. 

(2007) (New Zealand's Social Deprivation Index).  

2.4.2 Bivariate analysis 

2.4.2.1 Precipitation 

 In New Zealand, precipitation data come from an extensive network of meteorological 

stations. Each of these stations takes measurements at the station-point level and are then converted 

into a continuous gridded surface (of 5x5 km2) through interpolation (Tait et al., 2006). The nature of 

the precipitation data presents two limitations. First, interpolation smooths out extreme (high or low) 

observations. Second, because of the differences in spatial detail between the precipitation data (grid) 

and buildings data (point), about 82% of Nelson's residential property points fall within three grids. 

The remaining properties are scattered in a few other grids. 

The bivariate analysis presented in Table 2.2 shows that differences in average precipitation 

between properties with damage (226mm) and without damage (236mm) are 10mm, and statistically 

significant.  

2.4.2.2 Topography  

We calculate the slope and elevation of the locations where a property is located using a high-

resolution high-accuracy Lidar-based digital elevation model (DEM). The DEM's accuracy value is 

+/- 0.15 meters above mean sea level and a has grid resolution of 2x2m2. Following Dellow (2011), 

 
7 Proximity can be measured as the distance between two features i.e. distance from a residential building point to a 

specific feature such as a shoreline or a stream. Here, the distance algorithm measures the shortest distance in meters 

assuming a two-dimensional space (i.e. Euclidean plane). Overlay is a measure that indicates the relationship between 

features that occupy or intersect the same geographic space. In the context of our study, the outcome of an overlay 
operation indicates whether a residential building point is inside or outside of an area (e.g. flood plain, soil type, slope). 
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we classify the slope values into 5-degree slope bands. We also evaluate the relationship between 

damage and slope, but without classifying the data into slope bands.  

The results from the bivariate analysis in Table 2.2 show that, as the slope bands increase, the 

ratio between the proportion of properties with damage and the proportion of buildings without 

damage becomes larger, implying that households with steeper slope are more likely to experience 

damage. The differences in the proportion of properties with and without damage are statistically 

significant for all slope bands. These results support our intuition that the dummy variables represent 

a good classification of the slope values and the importance of slope itself in predicting landslide 

susceptibly.  Figure 2.5 shows the proportion of properties with and without damage located in 5-

degree slope bands 

 

 

Figure 2. 5 The proportion of properties with and without damage located in 5-degree slope bands. As the slope 

bands increase, the ratio between the proportion of properties with damage and the proportion of properties without 

damage becomes larger, implying that households with steeper slope are more likely to experience damage. The 

differences in the proportion of properties with and without damage are statistically significant for all slope bands. Slope 

data was calculated using a Lidar-derived digital elevation model with an accuracy of +/-0.15 meters above mean sea 

level and a grid spatial resolution of 2x2m2. 

 

2.4.2.3 Flood hazard  

Flood maps delimit areas that are prone to experience pluvial, fluvial, and coastal inundation. 

Because the insurance dataset does not identify the identify the hazard that causes the damage, we 

evaluate the effect that flood hazard might have had on observed damage. To evaluate the relationship 

between damage and flood hazard, we use two flood hazard maps. The first map results from 

hydrological and hydraulic modelling and reflects a 100-year flooding event (Paulik et al., 2019a). 
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The second hazard map depicts storm tide inundation areas, reflecting a 100-year event (Paulik et al., 

2019b). We also use a fluvial soil map of the region.  

We associate residential properties with flood areas using two conceptualizations of the 

relationships in space, overlay and proximity. For instance, we identify whether a property is inside 

or outside the inundation area (overlay), but we also measure the distance (proximity) between a 

property and the flood map perimeter. The rationale for relating information using distance as a metric 

of proximity stems from field observations, which suggest that flood damage might have occurred in 

the vicinity of the flood hazard footprint areas. Furthermore, we use proximity because of the known 

inaccuracy of flood hazard maps reported in other places (e.g. Bernet et al., 2017).8    

 The bivariate analysis results in Table 2. 2   indicate that properties with damage are less likely 

to be located in 100-year riverine flood plains and are located further away from the flood perimeter. 

The proportion of properties without damage in 100-year flood plains is twice as large as the 

proportion of properties with damage located in 100-year flood plains. If we consider the proximity 

to flood plains, we see that properties with damage are, on average, twice as far from the flood plain 

perimeters than properties without damage.  

 As for coastal inundation, results show the proportion of properties without damages located 

within 100-year storm tide areas is about seven times higher than the proportion of properties with 

damage within storm tide areas. Finally, properties closer to fluvial soils are more likely to experience 

damage. See Figure 2.6, where we show the spatial extent of flood hazards and approximate property 

damage locations.  

2.4.2.4 Exposure 

We capture physical exposure by measuring the distance between properties to waterways 

(small and big rivers) and the shoreline; distance to an exotic and native forest; elevation above sea 

level; and the condition of being in urban areas and outside denser residential areas. By exposure, we 

also refer to the monetary values that make up the property's value, i.e., building, land, contents, and 

appurtenant structures.  

Exposure metrics in relation to the elevation features show that properties with damage are 

located on higher ground (above mean sea level) than properties without damage. We find no 

difference in distance to the shoreline between properties with and without damage. However, 

properties with damage are closer to small and big rivers than properties without damage. In terms of 

 
8 In Chapter 3, I study a flooding event where I calculate that almost 92% of claims fall outside flood prone areas and 

only 0.08% of properties within flood-prone areas experienced damage as a result of flooding triggered by extreme 

precipitation.  
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land cover, properties closer to the native and exotic forest are more likely to experience damage. We 

see that damage is associated with being located outside denser residential areas and urban areas. 

As for the exposure measured by monetary values, the bivariate analysis shows that the 

average building replacement value is 22% higher for properties with damage than for properties 

without damage. Similarly, the average value of appurtenant structures is 28% higher for properties 

with damage than for properties without damage. We find no statistical difference in land and contents 

exposure values.9  

In Appendix Table 2.9.3, we provide further exposure summary statistics using soil 

classification data representing rural areas only. We associate property information with soil 

characteristics that include permeability profile, drainage capacity, water availability and soil flood 

return intervals. On average, properties without damage are located outside soils prone to inundation 

and further away from soils prone to inundation; in soils with 'moderate' drainage; in soils with 

'moderate', 'moderately high' and 'high' water availability; and, in soils with 'moderate drainage.' 

 

Figure 2. 6 Flood hazard and property damage. It shows the spatial extent of storm tide and fluvial flood hazard 

and approximate property damage locations due to the 250-year Golden Bay storm. From the bivariate analysis, 

property damage is likely to happen in properties that: fall outside and are further away from pluvial flood plains, are 

outside and further away from storm tide areas, and are closer to fluvial soils.  

 

 
9 The land and contents values are the result of modelling done by the EQC.  
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2.4.2.5 Vulnerability: physical and social  

 We develop a set of measures to proxy for the physical vulnerability of buildings. Physical 

vulnerability is captured by the buildings' characteristics, including construction materials, year of 

construction, the number of floors, floor height above ground, and condition (sound or deficient). 

We also consider social vulnerability as measured by a multidimensional indicator of well-

being. To account for social vulnerability, we use the New Zealand Deprivation Index (NZDI), which 

is constructed using data from the 2006 New Zealand Census. Salmond et al. (2007) describe the 

index as a multidimensional metric that aggregates individual variables to reflect eight different social 

deprivation dimensions. The index combines dimensions related to access to services, employment 

status, number of residents and space available, single-parent families' economic dependence, and 

qualifications. The index is provided as an ordinal scale with values that range from 1 to 10, where 

the former indicates "least deprivation" and the latter "most deprivation". The index is calculated for 

statistical areas of varying size called meshblocks, which contain multiple properties. We assign the 

meshblock-specific deprivation index to all the buildings in the same meshblock.  

The bivariate analysis shows that properties with lower levels of social deprivation are more 

likely to experience damage. For instance, the proportion of damaged properties with a Deprivation 

Index of 1 is 2.73 times higher than the proportion of undamaged properties with a Deprivation Index 

of 1. As social deprivation levels increase, the ratio between the proportion of properties with damage 

and the proportion of buildings without damage becomes smaller, implying that households with 

higher social deprivation levels are less likely to experience damage. The differences between 

properties with and without damage are statistically significant except for the deprivation index 5. 

See figure 2.7. 

The results for the physical vulnerability indicate no evidence of significant differences 

between properties with and without damage for the floor height (above ground), building condition 

(sound or deficient) or construction type (brick masonry, timber, concrete masonry, reinforced 

concrete shear wall, reinforced concrete moment resisting frame). Results show that, on average, 

taller and older buildings are more likely to experience damage.  
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Figure 2. 7 The proportion of properties with and without damage and social deprivation. As social deprivation 

levels increase, the ratio between the proportion of properties with damage and the proportion of buildings without 

damage becomes smaller, implying that households with higher social deprivation levels are less likely to experience 

damage. The differences between properties with and without damage are statistically significant except for the 

deprivation index 5. The dashed lines indicate the linear trends of the proportion of properties with and without damages 

across Deprivation Index categories.  

 

In summary, from the bivariate analysis, we find significant statistical evidence that property 

damage is likely to happen in properties that: are located in higher slope bands; fall outside and are 

further away from flood plains; are outside and further away from storm tide areas; are closer to 

fluvial soils and have lower rainfall. Damage is likely to happen in properties that are located in higher 

elevations (above mean sea level); are closer to small and big rivers/streams; are closer to the native 

and exotic forest. In terms of physical and social vulnerability, property damage is likely to happen 

in older properties (year of construction) and taller (number of stories) and properties whose 

occupants have among the lowest levels of social deprivation.  
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Residential properties WITH insurance claims Residential properties WITHOUT insurance claims 

Sig. 

(*)  

 
Obs. Mean Std. Dev. Min Max Obs. Mean Std. Dev. Min Max 

 
Insurance 

          

 
Land pay-out 352 18,253.36 32,462.24 0.00 298,000 

     

 
Building pay-out (includes 

appurtenant structures) 

352 8,644.08 22,180.31 0.00 114,000 
     

 
Contents pay-out 352 499.65 2,277.94 0.00 22,800 

     

 
Total pay-out 352 27,397.08 49,839.36 46.25 412,050 

     

 
Number of claims (previous events) 352 0.06 0.29 0.00 2 

     

            

 
Hazards 

          

 Precipitation           

* Rain (mm) 352 225.97 14.96 203.10 256.30 18,000 235.82 18.65 178.20 256.30 

 Fluvial and pluvial flooding           

 Properties in fluvial soils 352 0.05 0.23 0.00 1.00 18,000 0.04 0.20 0.00 1.00 

* Distance to fluvial soils 352 1,993.14 1,347.44 0.00 6,517.13 18,000 3,093.02 2,030.78 0.00 8,412.36 

* Properties in flood Plain (100-ARI) 352 0.07 0.26 0.00 1.00 18,000 0.13 0.33 0.00 1.00 

* Distance to flood plain (100 ARI) 352 452.14 416.38 0.00 2,408.51 18,000 262.96 307.47 0.00 4,544.09 

 Coastal flooding           

* Properties in storm surge (100-ARI) 352 0.00 0.05 0.00 1.00 18,000 0.02 0.14 0.00 1.00 

 Distance to storm surge (100-ARI)  352 919.51 1,155.67 0.00 6,821.18 18,000 696.00 630.64 0.00 8,280.71 

            

 Exposure           

 Property values (in 2011 NZ$)           

* Building replacement value 352 338,246.40 223,849.60 66,739.20 1,578,226.00 18,000 275,335.90 176,487.80 16,684.80 2,413,757 

* Building value 343 320,441.70 127,279.50 55,908.00 939,793.00 450 347,037.80 151,221.60 78,317.00 1,650,658 

* Appurtenant structures value 343 12,727.71 19,110.22 0.00 104,272.00 450 9,875.08 20,534.18 0.00 298,094.00 

 Land value 8-meter buffer 352 163,518.30 118,628.60 0.00 601,600.00 476 168,065.90 119,054.00 0.00 715,215.90 

 Contents value 352 71,044.79 60,896.65 0.00 304,656.80 476 76,561.53 67,916.00 0.00 379,027.80 

 Physical exposure            

 Topography           

* Slope (in degrees) 352 14.37 11.56 0.236514 47.70194 18,000 6.38 7.84 0 87.20712 

* Elevation (m) - above mean sea level 352 49.55 37.82 8.04 259.71 18,000 32.15 26.38 0.00 625.43 
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  Residential properties WITH insurance claims Residential properties WITHOUT insurance claims 

Sig. 

(*) 

 

 Obs. Mean Std. Dev. Min Max Obs. Mean Std. Dev. Min Max 

 Hydrography            

 Distance to the shoreline (m) 352 1,158.57 1,014.74 32.45 5,876.10 18,000 1,128.46 763.71 0.29 8,467.81 

* Distance to small rivers (m) 352 297.36 245.76 3.22 1,133.55 18,000 318.43 234.43 0.05 1,204.56 

* Distance to big rivers (m) 352 2,336.56 1,613.33 13.76 8,090.45 18,000 3,630.40 2,415.76 2.01 10,043.08 

 Land Cover           

* Distance to native forest 352 528.40 324.71 0.00 1,313.75 18,000 575.54 317.99 0.00 1,720.54 

* Distance to exotic forest 352 513.41 366.19 0.00 1,597.10 18,000 762.83 447.15 0.00 2,052.98 

* Urban areas 352 0.50 0.50 0.00 1.00 18,000 0.60 0.49 0.00 1.00 

* Outside denser residential areas 352 0.85 0.36 0.00 1.00 18,000 0.98 0.14 0 1 

            

 Vulnerability            

 Physical vulnerability           

* Number of floors 352 1.30 0.49 1.00 3.00 18,000 1.21 0.42 1.00 10.00 

* Year of construction (<=1960) 352 0.42 0.49 0.00 1.00 18,000 0.32 0.46 0.00 1.00 

* Year of construction      

(>1960 & year_1<1980) 

352 0.19 0.39 0.00 1.00 18,000 0.26 0.44 0.00 1.00 

 Floor height (m) – above ground 352 0.60 0.08 0.20 0.74 18,000 0.60 0.24 0.20 8.00 

 Building condition (sound) 352 0.74 0.44 0.00 1.00 18,000 0.72 0.45 0.00 1.00 

 Building type (Reinforced concrete 

sheer wall) 

352 0.04 0.20 0.00 1.00 18,000 0.04 0.21 0.00 1.00 

 Building type (Reinforced concrete 

moment resisting frame) 

352 0.00 0.00 0.00 0.00 18,000 0.00 0.01 0.00 1.00 

 Building type (Timber) 352 0.91 0.29 0.00 1.00 18,000 0.91 0.28 0.00 1.00 

 Building type (Brick masonry) 352 0.00 0.05 0.00 1.00 18,000 0.00 0.05 0.00 1.00 

 Building type (Concrete masonry) 352 0.05 0.21 0.00 1.00 18,000 0.04 0.20 0.00 1.00 

Table 2. 2  Bivariate analysis. The table compares residential properties in terms of their physical and sociodemographic characteristics for two subgroups properties: 

properties without damage and properties with damage resulting from a 250-year extreme precipitation event: the 2011 Golden Bay Storm. The information is grouped 

such it reflects the components of risk: hazard, exposure, and vulnerability. Significant variables are marked with an asterisk [*]. The statistical significance test (at 0.05) is 

calculated with different methods depending on the variable's measure (interval, nominal).
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2.5 Methods 

In Nelson, rainfall-induced landslip hazard mapping is currently nonexistent. To fill this gap, 

we first develop a rainfall-induced landslip susceptibility logistic regression model using insurance 

claim data. We aim to find the functional relationship between slope instability factors and past 

landslides' distribution to predict properties susceptible to damage. In a second step, we calculate the 

expected monetary losses (i.e. risk) by factoring the likelihoods produced from the regression model, 

property replacement values, and vulnerability of the buildings – expressed as damage ratios. Finally, 

we map at the property level the spatial distribution of risk.  

2.5.1 Regression analysis 

 We estimate a logistic model of residential property damage with two aims. First, to identify 

the risk factors associated with residential property damage; and second, to predict the probability, 

i.e. likelihood that a weather-related claim will be made to the New Zealand public insurer in the 

event of a 250-year precipitation event. We use the following model:   

𝐿𝐶𝑖  =  
𝑒𝛽1𝐻𝑎𝑧𝑖+ 𝛽2𝐸𝑥𝑝𝑖+𝛽3 𝑉𝑢𝑙𝑖 + 𝜖𝑖

1+ 𝑒𝛽1𝐻𝑎𝑧𝑖+ 𝛽2𝐸𝑥𝑝𝑖+𝛽3 𝑉𝑢𝑙𝑖+ 𝜖𝑖
              (1) 

where LCi is a binary variable that indicates whether an insurance claim has been made by 

property i. The terms Hazi, Expi and Vuli are vectors that account for hazard, exposure and 

vulnerability of property i. The model includes all the statistically significant variables at 0.05 level 

from the bi-variate analysis reported in Section 2.4.2. The components (variables) that make up each 

term in equation one are reported in Table 2.3. We refer to this regression as the 'full model'. We also 

implement a stepwise approach that gradually eliminates variables from the 'full model' based on the 

regression coefficients' statistical significance values (i.e. 0.10 and 0.05). In total, we implement three 

logistic regressions to identify the regression model that best explains the data in terms of the 

magnitude of the R2 and the Area Under the Curve (AUC) statistic. The regression coefficients are 

expressed as odds ratios.  

To address multicollinearity among the independent variables, the models exclude any 

variable with inflation factors (VIF) exceeding 4 (Hair et al., 1998). We cluster the errors by two 

different geographic areas to address the non-independence of observations due to the spatial nature 

of the data and autocorrelation in the errors. By clustering the errors, we allow for intragroup 

correlation, thus relaxing the usual requirement that the observations be independent. Thus the 

observations are independent across groups (clusters) but not necessarily within groups. We cluster 

the errors by meshblock, which are small geographical areas, and in general, households within a 
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meshblock will be relatively similar in terms of their sociodemographic characteristics (StatsNZ, 

2020). We cluster the error by areas topographically homogenous. We create the latter using building-

level slope information to create a continuous surface by interpolating the properties' location slope 

values over a regular gridded surface of 100x100m2 (QGIS 2.18.16, 2020a). The outcome is 

geographic units that group relatively similar buildings in terms of the steepness of the terrain. 

2.5.2 Expected damages (risk) 

 This section describes the calculation of expected monetary losses at the property level to 

ultimately map the spatial distribution of rainfall-induced landslide risk. To this end, we factor the 

likelihoods produced by the regression model, property replacement values, and damage ratios, such 

that:  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑚𝑎𝑔𝑒𝑖 =  𝐿𝐶𝑖̂ ∗ 𝑅𝑉𝑖 ∗ 𝐷𝑅𝑖              (2) 

where i is a residential property, 𝐿𝐶𝑖
̂

 is the estimated likelihood of damage, RVi is the building 

replacement value, and DRi is the damage ratio.  

The damage that a property experiences in the event of a slide depends on the landslide type 

and intensity (e.g. volume and velocity of sliding, Area affected, etc.) and the property characteristics 

(floor materials, wall materials, retaining walls, etc.). For a given landslide type and intensity, damage 

can be expressed as the cost to repair or the ratio between the cost of repair and the property's 

replacement value, i.e., damage ratio. A damage ratio is measured on a scale of 0 to 1, where 0 means 

no damage and one represents that the damages are at least equal to the building's replacement value 

(Meyer et al., 2013).  

We construct two versions of the damage-ratio term, and thus we produce two estimates of 

risk given the data availability for the second term of the equation (2). Specifically, for the 

replacement value (RVi), we can observe property values for only a small subset of records in the 

dataset. Here, the property values reflect the land, appurtenant structures and buildings. In contrast, 

we have data on the building replacement value for all the records, but these data do not reflect all 

the other components that make up the residential asset's value.  

 In the first version of the damage ratio, the denominator includes the entire residential 

property asset's value. In the second version, the denominator includes only the building replacement 

value. The numerator in both versions is the total cost of repair (i.e. total payouts). The first and 
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second versions of the damage-ratio have mean values of 0.057 and 0.114, respectively.10 We 

calculate the expected losses for all building assets within the Nelson region and not for only for the 

properties that lodged a claim. The rationale is that all properties experienced extreme precipitation, 

and will thus have a non-zero probability of damage.  

2.6 Results and Discussion 

2.6.1 Results 

The relationship between property damage and the set of predictors for all model specifications 

is not due to chance (as shown by the Log-likelihood significance Chi-2 figures). The R2 values, 

around 0.50, tell us how much of the variation in the outcome variable can be explained. The results 

are shown in Table 2.3. 

The main conditioning factors associated with landslide susceptibility resulting from a 250-

year precipitation event are slope, social vulnerability and the condition of being located outside 

denser residential areas. The odds of experiencing damage for properties located in the slope band 

10-15 degrees is twice as large as the odds of a building sitting on flatter terrain with a slope band 

between 0-10 degrees, the reference category.11 The magnitude of the odds ratio of damage increases 

from 2 to 5 as the slope band increases. For instance, the odds of damage for a property sitting in a 

slope band of 35 to 40 degrees is 5.29 times as large as the odds of a property sitting in the reference 

category. Overall, five out of the seven slope bands display statistically significant effects on the 

likelihood of experiencing property damage from landslide when compared to the reference category.  

The influence of social deprivation on the likelihood of damage is statistically significant for 

four out of eight social deprivation levels. For the lower levels of social deprivation, that is, properties 

with deprivation indexes of 3 and 4 (DI 3 and DI 4), the odds of property damage are 7.11 and 11.11 

times as large as the odds of property damage in a household in the properties with deprivation index 

9, respectively. Here, the reference category is DI 9, which reflects the most socially deprived 

households. The impact of social vulnerability on the likelihood of damage is also statistically 

significant such that the odds of property damage for households with DI 7 is 9.17 times as large as 

 
10 Buxton et al. (2013) simulate damage ratios from rainfall induced landslides for different building types for all of New 

Zealand using EQC claim data. For timber buildings, which make up 91% of Nelson’s building stock, they estimate an 

average damage ratio of 0.047. For concrete buildings, which make the remaining 9% of Nelson’s building stock, they 

estimate a damage ratio of 0.46. On average, the damage ratio estimates from Buxton et al. (2013) vary from the first 

version of our damage ratio by 0.009. 
11 The reference category (0-10 degrees) is chosen based on Dellow (2011) who finds that the average probability of 

landslip for the slopes bands 0-5 and 5-10 is zero regardless of the rain intensity. The estimates are computed for a case 

study in Wellington – New Zealand. 
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the odds of property damage of households with DI 9, and the odds of DI 8 are 4.92 times larger than 

the odds of DI9. We claim that this relationship is due to visual amenities. We argue that households 

living in high-property values can afford geotechnical and engineering works that allow them to settle 

on coastal hills with steep slopes prone to failure. 

In terms of exposure, we see that damage is more likely to occur to more expensive buildings. 

As for the relationship between damage and flood hazard, we find that the condition of being located 

within storm tide or pluvial flood-prone areas is unrelated to the odds of property damage. However, 

the distance to the perimeters of fluvial flood plains increases the odds of property damage by 1.07 

for every additional meter. The odds of property damage per meter of distance to small rivers increase 

by 0.89. In section 2.6.2, we discuss the role of flood hazard in detail and explain these results.  

 

Independent variable (full model)  
 

Binary: Claim = 1, No claim = 0 (1) (2)  
  

Dependent variables   

   

Slope band (0-10 degrees)    

omitted category   

Slope band 1 (10-15 degrees) 2.064*** 2.064***  
(0.467) (0.512) 

Slope band 2 (15-20 degrees) 2.174** 2.174***  
(0.709) (0.647) 

Slope band 3 (20-25 degrees) 1.431 1.431  
(0.619) (0.597) 

Slope band 4 (25-30 degrees) 3.068** 3.068***  
(1.372) (1.318) 

Slope band 5 (30 -35 degrees) 1.552 1.552  
(1.033) (1.009) 

Slope band 6 (35 -40 degrees) 5.291*** 5.291***  
(2.755) (2.679) 

Slope band 7 (>= 40 degrees) 4.703*** 4.703***  
(2.630) (2.434) 

Rain (mm) 0.980** 0.980**  
(0.009) (0.008) 

Properties in flood Plain (100-ARI) 0.643 0.643  
(0.344) (0.316) 

Distance to flood plain (100 ARI) (in hundreds 

of meters) 
1.076*** 1.076*** 

 
(0.030) (0.028) 

Properties in storm tide (100-ARI) 0.620 0.620  
(0.454) (0.563) 

Building value (in tens of thousands NZ$) 1.132*** 1.132*** 
 

(0.009) (0.008) 

Elevation (m) - above mean sea level 0.990** 0.990** 
 

(0.005) (0.004) 

Distance to small rivers (in hundreds of meters) 0.890** 0.890** 
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(0.047) (0.046) 

Distance to exotic forest (in hundreds of meters) 0.952 0.952 
 

(0.031) (0.029) 

Distance to native forest (in hundreds of meters) 0.951 0.951 
 

(0.053) (0.046) 

Properties in outside denser residential areas 2.693*** 2.693**  
(0.975) (1.157) 

Properties in urban areas 0.728 0.728  
(0.175) (0.176) 

Deprivation Index 1 1.600 1.600  
(1.521) (1.638) 

Deprivation Index 2 0.774 0.774  
(0.760) (0.743) 

Deprivation Index 3 7.112** 7.112**  
(5.476) (5.467) 

Deprivation Index 4 11.117*** 11.117***  
(8.914) (8.770) 

Deprivation Index 5 1.585 1.585 

 (1.332) (1.368) 

Deprivation Index 6 3.298 3.298 

 (2.637) (2.706) 

Deprivation Index 7 9.717** 9.717*** 

 (8.786) (8.523) 

Deprivation Index 8 4.920** 4.920** 
 (3.678) (3.660) 

Deprivation Index 9   

                            (omitted category)   

Number of floors 0.578** 0.578**  
(0.133) (0.137) 

Year of construction (<=1960) 1.006 1.006  
(0.215) (0.231) 

Year of construction (>1960 & year_1<1980)  0.756 0.756  
(0.205) (0.193) 

Constant 0.704 0.704 

  (1.426) (1.299) 

Observations 18,277 18,275 

Chi2-value 840.1 744 

Prob_chi2 0 0 

Number of clusters 363 2144 

Pseudo R-squared 0.501 0.501 

Table 2. 3 Logistic regression results: 'full model'. Only statistically significant variables (at 0.05) from the bivariate 

analysis are included in the model. The results in columns (1) and (2) differ in the make-up of the areas that the standard 

errors are clustered for. The first geographic unit (known as meshblock), which are small geographical areas, and in 

general, households within a meshblock will be relatively similar in terms of their sociodemographic characteristics. The 

second geographic unit delimits areas that are topographically homogenous in terms of the steepness of the terrain. The 

results are very similar for both clustering methods (i.e., the difference in the magnitude of the standard errors in column 

(1) and (2) is minimal). The coefficients are expressed as odds ratios, and the clustered standard errors are shown in 

parentheses for the significance levels *** p<0.01, ** p<0.05, * p<0.1 

 

As for extreme precipitation, the odds of property damage per unit-increase in rain intensity 

increase by 0.98. Despite the significant negative effect of rain on the likelihood of property damage, 

we argue that the effect is rather small and mainly explained by the data's resolution. In section 2.4.1, 
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we argued that the precipitation data's resolution was too coarse to exploit variation across records 

since 82% of the residential stock falls within three grids.  

The condition of being located outside denser residential areas also plays a significant role in 

the likelihood of property damage. For properties located outside residential areas, the odds of 

damage are 2.69 as large as the odds of buildings located inside denser residential areas. The odds of 

property damage per additional floor unit increase by 0.57. In terms of exposure, the odds of property 

damage are 1.12 per unit increase in the property's value. The results from the stepwise regression 

models are reported in Appendix Table 2.9.4 and Appendix Table 2.9.5.  

2.6.1.1 Evaluation of the models' performance  

We assess the models' statistical significance by evaluating the Log-likelihood value and its 

associated Chi-2 value. To assess the models' predictive power, we look at the size of the R2. Also, 

to compare the models' performance, we produce a Receiver Operating Characteristics (ROC) graph 

and its associated area Under the Curve (AUC) value, based on a series of confusion matrices. 

The results produced by the probabilistic modelling are statistically significant based on the 

Chi2 values at significance levels >99.9%. The R2 values outputted by the models (Table 2. 4) show 

figures between 0.49 and 0.51. The R2 is the proportion between the intercept-only model's log-

likelihood and the log-likelihood of a model with all the predictor variables. The R2 values range from 

0 to 1, where higher values indicate a better fit of the model.  

 A confusion matrix accounts for a classification model's performance and evaluates the 

observed and the model's predicted state, i.e., property damage. A confusion matrix classifies a 

property in the "damaged group" or the "undamaged group" depending on the logistic regression 

model's likelihoods. It is based on a conventionally set threshold at 0.5. Observations with likelihoods 

above the threshold are classified as 'damaged', and observations below the threshold are classified 

as undamaged. Two model performance metrics can be calculated from the confusion matrix: 

Sensitivity or true positive rate (TPR) and specificity or true negative rate (TNR).  

Sensitivity and specificity show the proportion of correctly classified records by the model 

based on the threshold value of 0.5. Sensitivity shows the percentage of properties that had damage 

and were correctly classified by the models. Similarly, sensitivity shows the percentage of properties 

that had no damage and were correctly classified by the models. We use a threshold value of 0.0192 

(~2%), which is the share of properties in the Nelson region that experienced damage (i.e., 352 

properties out 18,352). The results in Table 2. 4 shows that sensitivity and specificity values are 

around 95% for all models.  
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A Receiver Operating Characteristics (ROC) graph summarizes confusion matrices that result 

from setting different thresholds. Thus, a ROC graph avoids the arbitrariness of setting a classification 

cutoff to evaluate the models' performance. A ROC graph uses pair-wise combinations of sensitivity 

and the false positive rate (FPR = 1 – specificity) for a range of thresholds. We calculate the Area 

Under the Curve (AUC) to select the model with the best performance from the resulting graph. A 

model with no predictive power has an AUC value of 0.5, whereas a perfect model AUC of 1. The 

results from the models show AUC values that range from 0.9780 to 0.9808. Therefore, the three 

models perform uniformly well, but the highest variation explained by a model is achieved with the 

'full model'. Table 2.4 provides a summary of the models' performance. 

Table 2. 4 Performance metrics of three logistic regression models. All the models are statically significant at the 

0.001 level. The R2 values range from 0.491 to 0.508 the AUC values are nearly 1, suggesting a good model performance 

to predict the likelihood of rainfall-induced property damage.  

 

To compare our results with the actual monetary losses, we compare the actual payouts made 

by the EQC and our estimates of risk. Depending on the version of the damage ratio employed, the 

event's estimated cost represents 70% and 120% of the actual cost depending on the version of the 

damage ratio used. The average estimate of the cost using both damage ratios represent 97% of the 

event's actual cost. Appendix Table 2.9.6 reports these calculations. 

In Appendix 2.9.7 we provide a table with aggregated losses with and without the effect of 

climate change. According to Dean et al. (2013), 5% of the 2011 Golden Bay storm event's intensity 

can be attributed to the influence of anthropogenic climate change. Dean et al. (2013) estimate the 

effect of climate change by simulating the conditions of the world's weather and climate with and 

without anthropogenic greenhouse gasses so that inferences about the effect of human activity on 

climate can be discerned. Specifically, Dean et al. (2013) attribute the effect of climate change by 

‘using a methodology that is capable of identifying all occurrences of the synoptic situation 

matching the Golden Bay/Nelson event within large ensembles of climate-model simulations that 

alternatively exclude and include the impact of GHGs. If the observed precipitation distribution 

for these events is well simulated by the model for the past climate, then any change in the 

rainfall distribution due to GHGs can be considered.’ 

 Performance metrics of the logistic regression models 

 Log-

likelihood 

Degrees 

of 

freedom 

Chi-2 
Significa

nce 

R-

squared 

Area 

under 

curve 

(AUC) 

True 

positive 

rate 

(TPR) 

False 

positive 

rate 

(FPR) 

Full model -8045.65 29 920.69 >0.999 0.5013 0.9780 95.02 94.91 

Full model stepwise 

regression 0.10 
-812.60 13 670.8 >0.999 0.4970 0.9793 95.95 95.31 

Full model stepwise 

regression 0.05 
-825.08 12 656.56 >0.999 0.498 0.9808 95.95 95.61 
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2.6.2 Discussion  

This section discusses the results in light of the statistical analysis and their cartographic 

representation to provide context and explain the spatial distribution of risk from rainfall-induced 

landslides in the Nelson region and city. The discussion is further informed by knowledge of the areas 

impacted and accounts of the storm event.   

 Figure 2.8 displays the spatial distribution of the average expected damages at the property 

level across the Nelson region. The highest damages (coloured in black and purple points), as defined 

by the class values [4,975 - 12,411] and [12,411 - 27,299] (NZ$), occur in areas with high slopes, 

lower levels of social deprivation, high building replacement values, and outside denser residential 

locations.  

The first group of properties with the highest risk levels is an urban settlement located on steep 

hills overlooking Tasman Bay and the Southern Alps (enclosed in a blue ellipsoid in Figure 2.8). The 

group overlaps predominantly, although it is not restricted to the suburbs of Tasman and Britannia 

Heights. These properties display high levels of risk determined by the high building values, which 

we argue are mainly due to desirable views. We argue that households living in high-property values 

can afford geotechnical and engineering works that allow them to settle on coastal hills with steep 

slopes prone to failure. We thus claim that visual amenities play a role in the risk of rainfall-induced 

landslides in Nelson. It is worth noting that the households that self-select into landslide-prone areas 

represent a higher liability for the EQC, although their contribution to the insurance pool of collected 

yearly premiums is the same as households' contribution in lower property values. This finding 

implies that the EQC's exposure to weather-related risk is higher for better-off households (as 

measured by the property's value). Evidence of the EQC insurance scheme's regressive nature has 

been reported by Owen and Noy (2019). They show that mean household income and claim payouts 

from the Canterbury Earthquakes impact are positively related.  

In addition to high property values, we note that high-risk levels are also explained by higher 

probability predictions driven by large coefficients for lower social deprivation levels and higher 

slopes. Moreover, higher probability estimates are also explained by the condition of being located 

outside denser residential areas. Figure 2.8 shows groups of buildings with the highest risk levels 

(enclosed in black rectangles), which spread outside denser residential areas, lower social deprivation 

levels, and sit on moderate slopes on coastal hills or relatively flat grounds upon the foothills.   

The map's scale in figure 2.8 might give the impression that the highest risk levels might be 

related to coastal flooding due to their apparent proximity to the shoreline. We argue that coastal 
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flooding, as measured by proximity to storm tide areas (or by being inside a storm tide area), played 

no role in the impact of extreme precipitation on property damage. We discuss two possible 

mechanisms that explain the absence of the impact of coastal flooding on property damages. First, 

Nelson has the largest tidal range in New Zealand (LINZ, 2020). The tidal range is defined as the area 

between the highest and lowest tide marks. It follows that the smaller the tidal range, the more 

exposed buildings are to storm tide. This is because there is a bigger chance that the storm tide will 

be bigger than the tidal range. Second, the downpour during the Golden Bay storm was described to 

have occurred within 2 to 5 km of the shoreline (Dean et al., 2013), and thus we argue that damages 

from a swollen sea are unlikely to have caused damage. In addition to these two factors, no historical 

records of the event (Dean et al., 2013; Ashbah and Jones, 2013; Terry, 2012; Stuff, 2011a; Stuff, 

2011b, Stuff, 2011c; Stuff, 2013) report on the role of coastal flooding in the levels of damages 

experienced. Thus, we dismiss the hypothesis that the model incorporates records triggered by coastal 

flooding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 8 Spatial distribution of rainfall-induced landslide risk in the Nelson region. Risk is calculated as the 

product of the likelihood of damage derived from the logistic regression model, the property's replacement value, and the 

damage-ratio. The map shows the average value of the expected monetary losses from two damage-ratios. The map shows 

the clusters (enclosed in blue and black) with the highest levels of risk. The first cluster (enclosed in a blue ellipsoid) 

overlaps the areas with lower social deprivation levels and high property values (enclosed in a blue ellipsoid). The second 

set of clusters (enclosed in black rectangles) is located outside denser residential, with lower social deprivation levels, 

high property values, moderate slopes, or foothills along the coast. The classes we used to group expected losses are 
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obtained by applying the Jenks Natural Breaks classification algorithm. The algorithm produces groups of data based on 

their similarity values such that the variance within groups is minimized, while the variance between groups is maximized. 

We assign to each group a sequential colour scheme so that lighter hues denote lower risk, and the darker hues indicate 

higher risk.  

 

In terms of the role of fluvial flooding in the levels of risk, we now discuss the results by 

looking at the spatial extent of flood hazard in Nelson city in Figure 2.9. This area is of special focus 

as it contains the highest share of residential assets and damage in the entire Nelson region. Figure 

2.9 shows that buildings with the lowest risk (coloured in yellow and orange) are located inside areas 

demarked as flood plains and nearby low-lying areas. This aligns with the regression model's findings 

and bivariate analysis. We show that properties with damage are less likely to happen in the 100-year 

flood plain and are located further away from the flood hazard footprint perimeter. 

Nevertheless, during the field trip, we identified some claims that could have resulted from 

the Brook stream or the Matai river overtopping their banks. Since the insurance data do not provide 

information on a claim's triggering hazard, it wasn't entirely clear whether the damage to properties 

was because of their location in the waterways' vicinity or whether the damage was from landslides. 

We do not fully dismiss the possibility of both hazards impacting the properties along the Brook 

stream. However, Terry (2013) notes that any flooding that might have occurred resulted from dams 

created by landslips that eventually ruptured and brought with them debris and mud. We argue that 

the cause of damage during the 2011 Golden Bay storm were landslides and not riverine nor coastal 

flooding. We thus argue that our estimates capture landslide risk.  

In terms of our model's compliance with logistic regression models' assumptions, we claim 

that the true conditional probabilities are a logistic function of the independent variables. We base 

this claim on the model's statistical significance of the Chi-2-value and the performance metrics (R2 

=0.50, AUC=0.98). We claim that no important variables are omitted. The regression model 

incorporates predictors of landslide susceptibility (29 in total), which the literature report as 

fundamental for modelling slope instability processes (Soeters and Van Westen, 1996; Dai et al., 

2002).  

We claim that the independent variables are not linear combinations of each other as evaluated 

in the multicollinearity analysis. The non-independence of observations has been addressed by 

clustering the models' errors. We cannot fully claim, however, that the independent variables are 

measured without error. This is because properties' location, as defined by the x and y coordinates, 

has a 70-meter offset from their actual location. The data producer (the EQC) introduces this offset 

in the location to anonymize the information. We argue that a 70- meter offset is a short span of space 
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and does not bias our estimations. Still, we note that risk profiles can differ despite the proximity of 

properties, particularly in heterogeneous landscapes and urban set-ups.  

The methodology we develop is useful to forecast the spatial distribution of future risk in case 

of another triggering event with a similar magnitude. For the EQC, this is particularly important given 

that the highest exposure to weather-related events come from low-probability high-impact events. 

In the case of rainfall-induced landslides, the EQC's liability will be amplified by the complexities 

that entail land and building remediation and the effects of climate change on extreme precipitation 

increases.  

We note that the number of claims relative to the number of properties within the sample have 

implications in the probability estimates. We note that computing probabilities of rare events using 

logistic regression analysis can lead to underestimates of the probability. A strategy to deal with the 

imbalance in the number of properties with and without claims would entail a bootstrapping exercise 

where: (1) we randomly select a reasonable (e.g., 1,000 properties) subset from the 18,000 properties 

without a claim, (2) run the logistic regression with this smaller subset plus 352 claims, and (3) repeat 

the first two steps many times. Then, we can check if the coefficient estimates are stable across 

different sets of results. Firth (1993) and King and Zeng (1999) propose alternative methods to reduce 

the bias using what is known as ‘penalized maximum likelihood estimation’ (PMLE). We leave for 

future research the implementation of alternative methodologies to address the imbalance of 

properties with and without a claim.  
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Figure 2. 9 Spatial distribution of rainfall-induced landslide risk, and the spatial scope of flood inundation from 

flood hazards (coastal and riverine) in the Nelson city. Risk is calculated as the product of the likelihood of damage 

derived from the logistic regression model, the property's replacement value, and the damage-ratio. The map shows the 

average value of the expected monetary losses from two damage-ratios. The highest risk occurs in moderate to high slope 

bands, with lower social deprivation and high property values. Nevertheless, high risk also occurs in the relatively flat 

ground but surrounded by hills.  The classes we used to group expected losses are obtained by applying the Jenks Natural 

Breaks classification algorithm. The algorithm produces groups of data based on their similarity values such that the 

variance within groups is minimized, while the variance between groups is maximized. We assign to each group a 

sequential colour scheme so that lighter hues denote lower risk, and the darker hues indicate higher risk.  

  

7 Conclusion 

We estimate and map the risk of residential property damage due to extreme rainfall-induced 

landslides using insurance claim data and identify the drivers of property damage. We find that 

landslides susceptibility and risk levels are driven by moderate and high slopes, lower social 

deprivation levels, and high property values. The estimated average expected loses represents 90% 

of the actual cost of the event for the public insurer and range between an interval of 60 to 120 percent. 

 The methodology proposed is based on a less resource-intensive and cheaper alternative than 

conventional landslide susceptibility models that rely on historical landslides' inventories from aerial 

and satellite imagery. Other highly exposed locations could exploit disaster loss databases (e.g., 

Desinventar) and employ this methodology to predict future damages from an extreme rainfall event.  
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We showcase a landslide risk mapping methodology that circumvents the absence of rainfall-

induced landslide hazard maps. It leverages off georeferenced historical insurance claims and sets of 

geospatial data to estimate expected monetary losses. This study's outcome is a cartographic product 

that reflects the spatial distribution of risk from rainfall-induced landslide hazard associated with a 

250-year extreme storm event on property damage. The results produced by the probabilistic 

modelling are statistically significant and consistent with factual evidence of the nature of the event 

and on-site assessments.  

The proposed model fills a gap of knowledge and provides a statistical-based assessment of 

rainfall-induced landslide risk as an alternative to the physical-based conventional assessment and as 

a substitute for landslide risk maps when these are not available. The estimation of expected monetary 

losses for insurers is fundamental for insuring decisions, determining premiums and excess values, 

and informing insurance firms' potential financial liability. The public insurer can use these results to 

introduce disaster risk reductions efforts in areas of high risk. Local Councils could use this type of 

information to inform their land use planning and zoning of risk-prone areas.  
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2.9 Appendices  

Appendix Figure 2.9.1: Distribution of normalized weather-related EQC' per 

region between 2000-2017 

 
 
Distribution of the number of weather-related claims per region. It is measured by the number of claims made to the 

Public Insurer of New Zealand between 2000-2017 relative to the Housing stock (per 1,000 buildings) (blue bars) and 

measured by the number of claims relative to the population (per 1,000 people) (orange bars). 

Appendix Figure 2.9.2: Distribution of normalized weather-related EQC' per 

region between 2000-2017 

 

Distribution of weather-related payouts per region. It is measured by the average payouts (in NZ$) made by the Public 

Insurer of New Zealand between 2000-2017 relative to the Housing stock (per 1,000 buildings) (green bars), and 

measured by the average claim payouts (in NZ$) relative the population (per 1,000 people) (purple bars)
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Appendix Table 2.9.3: Bivariate analysis: Soil data summary statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bivariate analysis. The table compares residential properties in terms of their soil characteristics for two subgroups properties: properties without damage and properties with damage resulting 

from a 250-year extreme precipitation event: the 2011 Golden Bay Storm. The soil data statistics are only representative of the rural areas. The remaining areas are impervious surfaces such 
as roads, parking lots, driveways, etc. Significant variables are marked with an asterisk [*]. The statistical significance test (at 0.05) is calculated with different methods depending on the 
variable's measure (interval, nominal).

  
Residential properties WITH insurance claims Residential properties WITHOUT insurance claims 

Sig.   Obs. Mean Std. Dev. Min Max Obs. Mean Std.Dev. Min Max 

 Soil data           
 

Soil flood class 
          

* Properties in flood class (nill) 351 0.42 0.49 0.00 1.00 10,717 0.29 0.46 0.00 1.00 
 

Properties in flood class slight   

(<1 in 60) 

351 0.03 0.18 0.00 1.00 10,717 0.03 0.18 0.00 1.00 

* Properties in flood class – slight 

(1-20 to 1-60) 

351 0.04 0.20 0.00 1.00 10,717 0.07 0.26 0.00 1.00 

* Distance to flood class areas 

 (<1 in 60; 1-20 to 1-60) 

352 1,093.33 817.32 0.00 2,973.13 10,717 930.36 737.10 0.00 7,236.91 

 
Permeability profile 

     
10,717 

    

* Moderate (M ) 351 0.13 0.34 0.00 1.00 10,717 0.01 0.12 0.00 1.00 

* Moderate over Rapid (M/R)  351 0.02 0.14 0.00 1.00 10,717 0.11 0.31 0.00 1.00 

* Moderate over Slow (M/S) 351 0.34 0.48 0.00 1.00 10,717 0.26 0.44 0.00 1.00 

* Rapid (R) 351 0.00 0.00 0.00 0.00 10,717 0.01 0.11 0.00 1.00 
 

Drainage 
     

10,717 
    

* D – Poor 351 0.02 0.14 0.00 1.00 10,717 0.07 0.25 0.00 1.00 
 

D – Imperfect 351 0.03 0.18 0.00 1.00 10,717 0.03 0.18 0.00 1.00 

* D – Moderately 351 0.05 0.21 0.00 1.00 10,717 0.01 0.09 0.00 1.00 
 

Profile Water availability 
     

10,717 
    

 
PAW – Very high 351 0.00 0.00 0.00 0.00 10,717 0.00 0.01 0.00 1.00 

* PAW – High 351 0.07 0.26 0.00 1.00 10,717 0.11 0.31 0.00 1.00 

- PAW – Moderately high 351 0.26 0.44 0.00 1.00 10,717 0.23 0.42 0.00 1.00 

* PAW – Moderate 351 0.17 0.37 0.00 1.00 10,717 0.05 0.22 0.00 1.00 

* PAW – Low 351 0.00 0.00 0.00 0.00 10,717 0.01 0.11 0.00 1.00 
 

Water deficit 
     

10,717 
    

* Water deficit 347 77.13 23.18 22.00 162.00 10,717 82.93 21.92 0.00 167.00 
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Appendix Table 2.9.4: Full model: Stepwise regression model (sig* level = 0.05) 

Independent variable    

Binary: Claim = 1, No claim = 0 (1) (2)  
  

Dependent variables     
   

Slope band (0-10 degrees)    

omitted category   
Slope band 1 (10-15 degrees) 1.63** 1.63**  

(0.33) (0.37) 

Slope band 4 (25-30 degrees) 2.42** 2.42**  
(1.00) (1.04) 

Slope band 6 (35 -40 degrees) 3.35** 3.35**  
(1.59) (1.58) 

Slope band 7 (>= 40 degrees) 3.83*** 3.83*** 

 (1.92) (1.88) 

Rain (mm) 0.98*** 0.98*** 

 (0.01) (0.01) 

Building value (in tens of thousands NZ$) 1.13*** 1.13*** 

 (0.01) (0.01) 

Properties in outside denser residential areas 4.73*** 4.72*** 

 (1.81) (1.87) 

Deprivation Index 9   
omitted category   

Deprivation Index 3 5.33*** 5.33***  
(2.01) (1.95) 

Deprivation Index 4 7.49*** 7.49***  
(3.33) (3.04) 

Deprivation Index 6 2.53** 2.53** 

 (0.97) (1.11) 

Deprivation Index 7 4.26** 4.26** 

 (2.87) (2.62) 

Deprivation Index 8 3.43*** 3.43*** 
 (1.29) (1.24) 

Distance to exotic forest (in hundreds of meters) 0.93*** 0.93*** 

 (0.03) (0.03) 

Number of floors 1.76** 1.76** 

 (0.43) (0.44) 

Constant 0.33 0.33 

 (0.61) (0.56) 

Observations 18,277 18,275 

Chi2-value 555.8 596.3 

Prob_chi2 0 0 

Number of clusters 363 2144 

Pseudo R-squared 0.489 0.489 

 

Stepwise regression results with probability 0.05. Only statistically significant variables (at 0.05) from the bivariate 

analysis are included in the model. The results in columns (1) and (2) differ in the make-up of the areas that the standard 

errors are clustered for. The first geographic unit (known as meshblock), which are small geographical areas, and in 

general, households within a meshblock will be relatively similar in terms of their sociodemographic characteristics. The 

second geographic unit delimits areas that are topographically homogenous in terms of the steepness of the terrain. The 

results are very similar for both clustering methods (i.e., the difference in the magnitude of the standard errors in column 

(1) and (2) is minimal). The coefficients are expressed as odds ratios, and the clustered standard errors are shown in 

parentheses for the significance levels *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 2.9.5: Full model: Stepwise regression model (sig* level = 0.10) 

Independent    

Binary: Claim = 1, No claim = 0 (1) (2) 

      

Dependent variables     
   

Slope band (0-10 degrees)  . . 
omitted category (.) (.) 

Slope band 1 (10-15 degrees) 1.96*** 1.96***  
(0.41) (0.47) 

Slope band 2 (15-20 degrees) 2.06** 2.06**  
(0.63) (0.59) 

Slope band 4 (25-30 degrees) 2.91** 2.91** 

 (1.22) (1.23) 
Slope band 6 (35 -40 degrees) 4.90*** 4.90***  

(2.43) (2.47) 
Slope band 7 (>= 40 degrees) 4.41*** 4.41***  

(2.26) (2.25) 
Rain (mm) 0.98*** 0.98***  

(0.01) (0.01) 
Distance to flood plain (100 ARI) (in hundreds of meters) 1.08*** 1.08*** 

 (0.03) (0.03) 
Distance to small rivers (in hundreds of meters) 0.91* 0.91* 

 (0.05) (0.05) 
Distance to exotic forest (in hundreds of meters) 0.94* 0.94** 

 (0.03) (0.03) 
Building value (in tens of thousands NZ$) 1.13*** 1.13*** 

 (0.01) (0.01) 
Elevation (m) - above mean sea level 0.99* 0.99** 

 (0.00) (0.00) 
Properties in outside denser residential areas 4.18*** 4.18*** 

 (1.65) (1.70) 
Deprivation Index 9   

omitted category   
Deprivation Index 3 5.01*** 5.01***  

(2.05) (1.99) 
Deprivation Index 4 9.66*** 9.66***  

(4.36) (4.07) 
Deprivation Index 6 3.00*** 3.00** 

 (1.16) (1.32) 
Deprivation Index 7 6.33*** 6.32*** 

 (4.29) (3.85) 
Deprivation Index 8 4.18*** 4.18*** 

 (1.71) (1.67) 
Number of floors 1.76** 1.76** 

 (0.43) (0.45) 
Constant 0.26 0.26 
  (0.50) (0.45) 

Observations 18,277 18,275 
Chi2-value 602.7 650.1 
Prob_chi2 0 0 
Number of clusters 363 2144 
Pseudo R-squared 0.497 0.497 

 

Stepwise regression results with probability 0.10 Only statistically significant variables (at 0.05) from the bivariate 

analysis are included in the model. The results in columns (1) and (2) differ in the make-up of the areas that the standard 

errors are clustered for. The first geographic unit (known as meshblock), which are small geographical areas, and in 
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general, households within a meshblock will be relatively similar in terms of their sociodemographic characteristics. The 

second geographic unit delimits areas that are topographically homogenous in terms of the steepness of the terrain. The 

results are very similar for both clustering methods (i.e. the difference in the magnitude of the standard errors in column 

(1) and (2) is minimal). The coefficients are expressed as odds ratios, and the clustered standard errors are shown in 

parentheses for the significance levels *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 2.9.6: Expected losses versus actual damages  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expected losses versus actual damages from rainfall-induced landslides caused by a 250-year storm event (Golden Bay 

2011). The expected Losses (i.e. risk) are estimated by factoring the probability of damage from the logistic model, 

replacement values and damage ratios. Depending on the damage ratio, the expected losses range between an interval of 

60 to 121 per cent of the actual cost. The average expected losses using two damage ratios represent 90% of the public 

insurer's actual cost event. The likelihood term used in the calculation is derived from the 'full model' .  

 

 

Appendix Table 2.9.7: Expected losses with and without climate change  

 

 

Expected losses versus actual damages from rainfall-induced landslides caused by a 250-year storm event, with and 

without the effect of climate change. Dean et al. (2013) report that 5% of the 2011 Golden Bay storm event's intensity can 

be attributed to anthropogenic-driven climatic change. Thus, 5% of the total value of the estimated expected losses could 

be attributable to climate change. The likelihood term of the expected losses is derived from the 'full model'. However, 

we note that the 5% indicates the change in rainfall intensity and not the change in risk.  
 

 
 
 
 

 
(1) 

Expected losses  

(2) 

Percentage (%) 

expected vs actual losses 

Expected losses 

When damage ratio 1 = 0.05676 
6,115,409 60.02% 

Expected losses 

When damage ratio 2 = 0.11387 
12,267,451 120.66% 

Average expected losses 

(row 1 and row 2) 
9,191,431 90.41% 

Actual pay-outs 

Made by the public insurer -the EQC  

9,658,327 - 

 

(1) 

Losses with the effect of 

climate change 

(in 2011 nominal NZ$) 

(2) 

Losses without the effect of 

climate change 

(in 2011 nominal NZ$) 

(3) 

Percentage  

of the actual 

losses* 

Expected Losses 

When damage ratio 1 = 0.056 
6,115,409 5,809,639 60.02% 

Expected Losses 

When damage ratio 2 = 0.114 
12,267,451 11,654,079 120.66% 

Average expected Losses 

(row 1 and row 2) 
9,191,431 8,731,859 90.41% 

Actual pay-outs 

Made by the public insurer -the EQC  

9,658,327 9,175,411 - 
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Chapter Three 

 

Property risk from extreme precipitation, floods, and climate 

change 

 
 

Abstract 

 

Climate change is increasing the risk of floods, but few available flood maps incorporate this 

change in flood hazard probability, constraining the assessment of future risk. In this study, I use 

insurance claim data to quantify the risk of residential property flooding caused by extreme 

precipitation and climate change. Risk is defined as the likelihood of flood damage and the potential 

consequences (damage). Here the likelihood of property damage explicitly accounts for the intensity, 

duration, frequency, and spatial extent of extreme precipitation, with and without the effect of climate 

change, while controlling for other predictors of property damage. The potential consequences of 

flood hazard are measured by the properties’ physical vulnerability (per cent damage) to varying flood 

depths. I first implement a multivariate logistic regression model to estimate the likelihood of damage 

with and without the effect of climate change. Then, I calculate the expected monetary losses by 

factoring in the likelihoods derived from the regression models, property replacement values, and a 

property’s physical vulnerability to varying flood depth scenarios. I focus on a 2005 flood event in 

the region around New Zealand’s Bay of Plenty, which received the highest number of insurance 

payouts from New Zealand’s public insurer due to a weather-related event. I find that the highest 

monetary losses are associated with low-return periods, as expected. Nevertheless, high return periods 

(i.e., 2-year events) bring about sizeable losses. The likelihood of property damage resulting from 

climate-related changes in precipitation increases significantly, but the effect (climate change signal) 

is too small to cause an economically meaningful increase in risk levels. Public and private insurers 

can use this methodology to assess its current and future financial risk exposure to low-probability, 

high-impact weather-related events.  
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3.1 Introduction 

Greenhouse gas emissions emitted by human activity are warming the atmosphere, and this is 

expected to produce changes in the frequency and intensity of extreme weather events (IPPC, 2012). 

In New Zealand, climate change is projected to increase extreme precipitation events across the 

country, defined as events with a recurrence interval of two years or greater (Mullan et al., 2018). 

Flood risk will increase as a result (Woods et al., 2010). 

However, flood hazard maps are subject to multiple uncertainties, whether they include the 

impact of climate change or not. The uncertainties stem from the complexity of the hazard, the 

shortcomings of the methods, and inadequate data to model flood hazard (Meyer et al., 2013). Other 

sources of uncertainty in hazard data result from natural phenomena being highly variable and rare, 

and the changing probability of hazard extremes over time due to climate change (Bouwer, 2013; 

Kundzewicz et al., 2017). 

Such uncertainties can make it difficult to estimate direct impacts accurately. For instance, 

several research studies report on the mismatch between predicted flooding areas and the actual extent 

of flooding events. Bernet et al. (2017) report that 60% of flood claims were outside a flood 

inundation zone in a canton in Switzerland. Bihan et al. (2017) report that only 6% and 9% of claims 

occurred inside the floodplains of two flooding events in France. Hunn et al. (2018) reported on 

Houston’s flooding from Hurricane Harvey in 2017, where almost 75% of flooded properties were 

outside the 100-year flood zone. In New Zealand’s 2005 Bay of Plenty event, almost 92% of claims 

fell outside flood-prone areas. Only 0.08% of properties within flood-prone areas experienced flood 

damage caused by extreme precipitation. The mismatch between the predicted and observed impacts 

of flood events suggests that traditionally constructed flood hazard maps alone are insufficient to 

understand flood risk and project the future direct economic impacts of weather-related disasters.  

This paper proposes a new method based on an alternative to traditional flood hazard mapping 

that requires fewer intensive resources and information. I use insurance claim data and other 

geospatial datasets to quantify the current risk from extreme precipitation on residential property and 

future risk from changes in extreme precipitation caused by climate change. I focus on a region around 

New Zealand’s Bay of Plenty. This region received the highest number of insurance payouts for a 

weather-related event from New Zealand’s public insurer, the Earthquake Commission (EQC).  

I quantify the risk of flood-related property damage, where risk is defined as the product of 

the probability (likelihood) of flood damage and the potential consequences (damage). The 
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probability of property damage explicitly accounts for the intensity, duration, frequency, and spatial 

extent of extreme precipitation, with and without the effect of climate change, while controlling for 

other predictors of property damage. The potential consequences of flood hazard are measured by the 

properties’ physical vulnerability (per cent damage) to varying flood depths.  

Unlike previous studies, I simultaneously address the selection bias and the unexplained 

variation that result from insurance data aggregation. I use microlevel georeferenced claim data to 

solve the unexplained variation resulting from aggregated insurance data (Gradeci et al., 2019). And 

I address the selection bias problem by including both affected and non-affected buildings in the 

estimation sample.    

The proposed method addresses three questions: What is the risk to residential property from 

extreme precipitation? What will be the effect of climate change on residential property flood risk 

through changes in extreme precipitation? What is the spatial and temporal distribution of future flood 

risk due to climate change? To answer these questions, I do the following. 

First, I estimate a logistic regression model using past insurance claim data from EQC and 

several geospatial datasets.  This model estimates the empirical relationship between insurance claims 

and property characteristics. My two aims are to identify the relative effect of factors that might make 

a property more or less likely to experience flood-related damage, and to predict the probability of 

property damage. The datasets I use include information on physical characteristics (precipitation, 

topography, soil, inundation hazard) and socioeconomic characteristics (property value, and a 

multidimensional indicator of social deprivation) of the full set of residential properties within the 

footprint of the Bay of Plenty event. I identify the probability of damage by exploiting variation in 

precipitation across space while considering the influence of physical and socioeconomic factors. 

In the logistic regression model, daily observed precipitation data come from the Virtual 

Climate Station Network (VCSN) (Tait et al., 2006). To approximate the return periods (frequency), 

I compare observed precipitation (VCSN) data with estimates of extreme precipitation from the High 

Intensity Rainfall Design (HIRDSv4) dataset (Carey-Smith et al., 2018). These estimates are referred 

as to depth-duration-frequency (DDF) values.12 The premise is that the HIRDSv4 mapping from 

duration and return period to rainfall can be used to approximate the return period of observed 

(VCSN) rainfall at a given location. Thus, I compare VCSN rainfall values with HIRDSv4 DDF 

values and approximate the return period based on the smallest difference between the two datasets 

 
12 ‘Depth’ refers to rainfall amount (in mm) and ‘frequency’ refers to the return period. The return period gives the 

estimated time interval between events of a similar size or intensity. For example, the HIRDSv4 rainfall figure of given 

location for daily rainfall with a return period of 20 years is 284 mm of rain expected to fall within a 48-hour duration 

with a probability of 1/20 in any given year. This figure is referred as to depth-duration-frequency (DDF) value. 
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in each grid. The average absolute value between VCSN and the nearest HIRDSv4 rainfall data is 

9.5%. Based on the proximity between the two datasets, the return period of the observed precipitation 

can be defined. It follows that the predicted probabilities of flood-related property damage show the 

relative effect of observed precipitation intensity-duration-frequency.  

Second, I predict the impact of future extreme precipitation events on the distribution of the 

probability of property damage. To predict this impact, I use the empirical relationship estimated in 

the logistic regression model and climate projections based on future scenarios of greenhouse gas 

concentrations. Pastor-Paz et al. (2020) (Chapter one) and Cheng et al. (2013) also follow this 

approach to calculating the effect of climate change for extreme precipitation; and Pinto et al. (2007), 

Leckebusch et al. (2007) and Klawa and Ulbrich (2003) use this approach for severe windstorms. In 

this approach, the regression coefficient estimates obtained from the historical relationship between 

extreme precipitation and flood-related damage are applied to extreme precipitation data that 

incorporates response to climate change. 

To calculate the response of precipitation to climate change, I multiply precipitation data by 

percentage change factors (augmentation factors) to project rainfall intensity derived from the current 

climate to a future climate that is 1 degree warmer. Then, I convert to fixed percentage changes by 

multiplying the augmentation factors by the relevant temperature change for each Representative 

Concentration Pathway (RCP) (Carey-Smith et al., 2018). In total, I calculate the effect of climate 

change on precipitation considering four future emission scenarios (RCPs 2.6, 4.5, 6.0, 8.5) and time 

horizons (2031-2050, 2056-2075, 2081-2100). In total, the RCP-time period scenarios render 12 

distributions of precipitation that incorporate climate change response.  

Third, I compare the predicted probabilities of damage in the first-stage baseline model with 

the predicted probabilities of damage from each RCP-time scenario from the second stage. The 

comparison shows that any differences between the probability distributions of damage can be 

attributed to climate change.  

Fourth, I estimate the risk: expected losses expressed in monetary terms. Specifically, I 

calculate the risk by multiplying the probability of damage (derived from the algorithm described in 

the first two steps), property replacement values, and the physical vulnerability of a property. I use 

fragility functions (also known as damage curves) to calculate physical property vulnerability (the 

potential consequences of flood hazard). These functions relate the percentage damage (damage-

ratio) to variations in flood hazard intensity, measured by flood depth. I use the fragility functions to 

identify the damage-ratios for a series of plausible flood depth scenarios for 11 residential 

construction types. Here, ‘plausible’ refers to the flood depths observed during the 2005 Bay of Plenty 
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event. The damage functions were derived from empirical field observations in New Zealand, using 

surveys after flooding events, and expert opinion (Ramsey and Reese, 2010). While most damages 

were caused by pluvial flooding, the insurance claim dataset does not separate out the cause of 

damage. Therefore, I also quantify the expected losses for a small subset of records for an area 

affected by rainfall-induced landslides. In the latter case, I estimate the expected losses using damage-

ratios for four building construction types. These damage-ratios were derived by Buxton et al. (2013), 

using historical information on damages caused by rainfall-induced landslides in New Zealand.  

Finally, I present the results in the form of loss exceedance probability curves (EPLC). These 

curves relate the expected losses as a function of annual exceedance probabilities (AEP), where the 

AEPs are calculated as the inverse of the return period. The EP curve is the basis upon which insurers 

estimate their likelihood of experiencing various levels of loss. 

I find that the highest risk from floods is associated with rainfall with low-probability 

precipitation in any given year, as expected. Changes in extreme precipitation resulting from climate 

change will increase the probability of flood damage across all future emissions scenarios and periods. 

Despite finding statistically significant changes in the probability distribution of property damage due 

to climate change-induced extreme precipitation, the signal size is small, resulting in a negligible 

increase in expected monetary loss from flood-related property damage.  

I argue that the increases in projected rainfall aren’t large enough to reflect a substantial change 

in the probability of damage and increased risk levels. The small changes in probability are mainly 

due to the lack of information on climate change augmentation factors for the 250-year return period 

and the observed precipitation data’s temporal detail.  

The risk estimates are spatially explicit, which implies that the spatial distribution of property 

risk from flood hazard can be generated as a map that identifies ‘hotspots’ of risk from ‘coldspots’ 

by displaying expected monetary losses at property-point level. The detailed representation of risk 

can help to tailor disaster risk reduction efforts and risk-based pricing strategies.  

3.2 Literature review 

The existing body of literature that uses insurance data to explore the relationship between 

flood-related property damage and extreme precipitation is fairly new (Sampson et al., 2017; 

Spekkers et al., 2014; Grahn and Nyberg, 2017; Spekkers et al., 2015; Torgersen et al., 2015; 

Torgersen et al., 2017). These papers do not quantify the risk or the change in risk due to climate 

change, and only identify the factors associated with property damage.  
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 Pastor-Paz et al. (2020) and Cheng et al. (2012) evaluate the role of climate change on rainfall 

and their effect on property damages using insurance data. Cheng et al. (2012) estimate a simple 

relationship between a rainfall index and insurance data. They then use this relationship with future 

rainfall simulations to project changes in the number of claims and losses. However, Cheng et al. 

(2012) use only information on properties that were damaged, where the claim data have been 

temporally and spatially aggregated in a cross-sectional way. In contrast, Pastor-Paz et al. (2020) 

(Chapter one) exploit the time and space dimension using a longitudinal georeferenced micro-level 

dataset of insurance claim data. Their data’s longitudinal structure permits them to isolate 

contemporaneous variation of extreme precipitation, while controlling for exposure and vulnerability 

through the use of location (grid-cell) fixed-effects.13 

Unlike previous studies, I simultaneously address the selection bias and the unexplained 

variation that result from insurance data aggregation. I use microlevel georeferenced claim data to 

solve the unexplained variation resulting from aggregated insurance data (Gradeci et al., 2019). Data 

aggregation is a typical practice that anonymises the exact location of damaged properties, which the 

insurance industry rarely discloses (Grahn and Nyberg, 2017). The problem with aggregation is that 

the areas are typically defined for administrative purposes or to deliver services (e.g., postal service). 

Therefore, the areas are not necessarily statistically homogenous units in terms of socioeconomic 

status, topography, and building construction types (Spekkers et al., 2014). Data aggregation 

eliminates the heterogeneity between properties within areas and limits the models’ ability to capture 

the influence and the magnitude of the factors that make a property more or less prone to flood 

damage.  

I address the selection bias problem by including both affected and non-affected buildings in 

the estimation sample. The selection bias in other studies manifests in two forms. The first form 

relates to the absence of undamaged properties. In this case, the relationship between damage and 

explanatory variables is assessed using only data from affected properties. The second form of 

selection bias relates to insurance penetration. In New Zealand, public insurance cover is almost 

universal, with penetration of residential properties estimated at 98% (Nguyen and Noy, 2020). In 

contrast, other studies use data representing a fraction of the market share (e.g. 35% in Grahn and 

Nyberg, 2017) or a fraction of the building stock (e.g. 6% in Spekkers et al., 2015). The exception is 

Norway, with 90% insurance penetration (Torgersen et al., 2015; Torgensen et al., 2017).    

    

 
13 Chapter 2 also evaluates the role of climate change on precipitation. The attribution of the impact of climate change on 

losses is quantified based on the ‘Fraction of attributable risk -FAR. According to Dean et al. (2013), 5% of the intensity 

of the 2011 Golden Bay storm event can be attributed to the influence of anthropogenic climate change. 
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3.3 Data 

I use past weather-related georeferenced claim data from New Zealand’s public insurer (EQC) 

and a set of geospatial datasets produced by Land Information New Zealand (LINZ), Landcare 

Research (LCR) and the National Institute of Water and Atmospheric Research (NIWA). These 

datasets include information on the physical characteristics such as precipitation, topography, soil, 

and flood hazard maps. These datasets also include socioeconomic characteristics (property value and 

a multidimensional indicator of well-being) of a full set of buildings distributed across New Zealand, 

including the Bay of Plenty. Most of the data are publicly available. However, EQC insurance claim 

data, the residential building inventory dataset, and flood hazard maps have been provided under data-

sharing agreements with EQC, CoreLogic, and NIWA, respectively. 

3.3.1 Insurance sample construction 

The EQC dataset contains full details on all individual weather-related claims submitted. I use 

the variables on the claim’s geolocation, the compensation values per cover (building, land, and 

contents, in $NZ), the date of the claimed event, and the claim’s status.14 

I normalise the damage by inflation-adjusting the compensation figures paid out over 2000-

2017 (in 2017 $NZ). I aggregate the payouts at the event level because I need to match them to the 

duration dimension in the HIRDSv4 data. Therefore, I need to identify the duration of each extreme 

event separately. Figure 3.1 shows spatial distribution of weather-related insurance claims for 

different events. 

The normalised time series of damages per event shows numerous low-impact events and few 

high-impact events (Figure 3.2), implying a skewed distribution of damages. Because of this, I create 

a ranking of events (percentiles) and plot them against cumulative losses (Figure 3.3). The often-cited 

80/20% relationship (Jagger et al., 2008), whereby the top 20% strongest weather events account for 

80% of the damages, is also true for New Zealand’s public insurer. Specifically, the costliest 20% of 

weather-related events represent around 85% of the damages. In this study, I focus on the most 

expensive event for EQC, the 2005 Bay of Plenty (BOP 2005) event, which represents approximately 

8% of all the payouts made by EQC for weather-related claims. 

The BOP 2005 event triggered losses of NZ$35.9 million for public insurer EQC, and NZ$36.5 

million for private insurers (EQC claim dataset, 2017; Insurance Council of New Zealand dataset, 

2005). The event we study was catalogued as ‘phenomenal and unprecedented rainfall’ that affected 

 
14 I keep the claims that have been settled, i.e., those claims with ‘claim status’ defined as ‘completed payments’. Thus, I 

drop from the sample claims that have were declined or not accepted A total 182 claims were declined for reasons that 

could include: not insured, no coverage, damage unrelated to the event.  
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the Bay of Plenty, especially Tauranga and Matata where states of civil emergency were declared 

(Tauranga City Libraries, 2005; NIWA Weather Catalog, 2005) 

…a moist, subtropical northeasterly flow prevailed over the northeast of the North 

Island and embedded in this were a number of ‘convergence lines’ which moved slowly east 

across the western Bay of Plenty during the day. Bands of cumulonimbus cloud formed along 

these convergence lines producing torrential downpours, notably in Tauranga and Matata 

(MetService, 2005).   

Most damage in Tauranga was caused by pluvial flooding (Ministry of Environment, 2005). 

The stormwater system could not cope with the waters as they were built to cope with a precipitation 

intensity corresponding to a 5-year return period. In contrast, damage in Matata was predominantly 

caused by debris brought down from landslides triggered in the hills (McSaveney et al., 2005).  

 

 

 

 

 

 

Figure 3. 1 Spatial distribution of weather-related insurance claims for different events. Each event has an associated 

spatial footprint, duration and meteorological characteristics. The figure on the left shows the Golden Bay Storm that 

affected the Tasman-Nelson regions in 2011. The figure on the right shows the Bay of Plenty event that affected Tauranga 

and Matata predominantly, and marginally the Coromandel Peninsula in 2005. Figure elaborated by the author using 

approximate locations of EQC claim-level data. 

 

 

Figure 3. 2 Time series of normalised total property damages (i.e., adjusted by inflation values in 2017 NZ$) per 

date of the weather-related event (storm, flood, landslide). The ‘boxed’ event is the 2005 Bay of Plenty event. 
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Figure 3. 3 Cumulative percentage of total damage as a function of percentage ranking. The reference lines indicate 

the often-cited 80/20% relationship, where the top 20% strongest weather events account for 80% of the damage. In New 

Zealand, the costliest 20% of weather-related events represent around 85% of the damage.  

 

3.3.2 Precipitation 

Precipitation data come from two datasets: the High Intensity Rainfall Design System 

(HIRDSv4) (Carey-Smith et al., 2018) and the Virtual Climate Station Network (VCSN) (Tait et al., 

2006). VCSN data are provided as a regular gridded surface of 5x5 km2, where each grid reports on 

the amount of observed (actual) daily rainfall (in mm) at a given date. In contrast, HIRDSv4 estimates 

high-intensity rainfall across New Zealand for a range of return periods and event durations. That is, 

for each duration and return period, the HIRDSv4 data give the millimetres of rainfall each grid 

location might experience. HIRDSv4 data are provided as a regular gridded surface of 2x2 km2, where 

each grid reports multiple combinations of DDF rainfall values. Depth refers to the amount of rainfall 

in millimetres (mm); duration refers to daily (1-5 days), sub-daily (1-12 hours) or sub-hourly 

durations (10-30 minutes); and frequency refers to the return period (2-250 years). For example, the 

HIRDSv4 rainfall estimate for two-day rainfall with a return period of 20 years in a given grid is 284 

mm of rain expected to fall within a 48-hour duration, with a probability of 1/20 in any given year. 

I link insurance claim data corresponding to the 2005 BOP event to both HIRDS and VCSN 

gridded surfaces. Claims with an underlying HIRDS grid are assigned the precipitation value of the 

VCSN they fall in, or the closest precipitation value from a neighbouring VCSN grid for the date of 

the event.15 In other words, I pair/match observed precipitation from the VCSN data with estimated 

 
15 About 30 claims do not have an underlying HIRDSv4 grid as the properties are located around the coastline and fall 

outside the spatial extent of the gridded surface. The damaged and undamaged properties without an underlying 

HIRDSv4 grid are not considered in the sample.  
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depth-duration-frequency rainfall values from the HIRDSv4 dataset. I found the 48-hour HIRDS 

surface with the rainfall depth closest to the observed VCSN amount and from this determined the 

return period of the rainfall amount. 

I define the 2005 BOP event as a two-day duration event based on reports from New Zealand’s 

Historic Weather Events Catalog (2005) and the MetService Newsletter (2005). I define the 

precipitation return period for each grid based on the smallest difference between observed and 

estimated precipitation. Figure 3.4 shows the comparison between observed and estimated 

precipitation across all the grids with at least one property with damage. Figure 3.4 shows a close 

match for central precipitation values (in the 150-300 mm range), slight discrepancy at the lowest 

values, and more pronounced differences at the highest precipitation values. Figure 3.5 shows the 

same comparison as in Figure 3.4, but the differences in precipitation are shown as a function of each 

grid’s return period. The discrepancies for low and high return periods are due to observed rainfall 

amounts either being less than the HIRDS 2-year surface or higher than the 250-year surface. The 

average absolute value between VCSN and the nearest HIRDSv4 rainfall data is 9.5%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 4 Comparison between observed and DDF precipitation values across all grids for a two-day duration 

event.  
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Figure 3. 5 The percentage difference between observed and DDF precipitation values as a function of the return 

period (in years) for a two-day duration event. The discrepancies for low and high return periods are due to observed 

rainfall amounts either being less than the HIRDSv4 2-year surface or higher than the 250-year surface.  

 

The spatial footprint of the 2005 BOP event spreads over 40 HIRDSv4 grids (160 km2) and 

16 VCSN grids (400 km2). I drop from the analysis any HIRDSv4 grid whose closest VCSN grid is 

further than 10 km, and thus the properties within. I drop from the sample any HIRDSv4 grid with 

fewer than two claims. This ensures variation across records in the logistic regression model’s 

dependent variable: a binary variable that indicates whether a property has made an insurance claim. 

Thus, the event’s final sample spreads over 16 HIRDSv4 grids (64 km2 ) and 6 VCSN grids (150 

km2). The sample contains 22,027 properties, including 245 claims. Figure 3.6 shows the total number 

of grids per return period for the final sample. 

 

Figure 3. 6 Number of grids per return period (in years) for the final sample. The sample contains 22,203 properties, 

245 claims that spread over 16 HIRDSv4 grids (64 km2) and 6 VCSN grids (150 km2). 

 

3.3.3 Flooding hazard: Fluvial and coastal flooding 

I identify the number of properties with and without damage located in areas subject to fluvial 

and storm tide flooding. As well as examining whether properties fall within the flood zones, I 

measure the distance between properties and the flood maps’ perimeters (when they are located 
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outside the zone) as predictors of the probability of damage. I relate information using proximity 

because observations suggest that flood damage can occur in the vicinity of the flood hazard footprint 

and because of the known inaccuracies of flood maps reported in the literature. 

The fluvial flood hazard map reflects the inundation extents of a 100-year return period (as of 

2013). This map results from two-dimensional modelling (2D) of the catchment and incorporates the 

effect of land cover and storm water systems on flood hazard. As well as modelling for depth, the 

flood map also models floodwater speed and direction. The flood model was built using Lidar-derived 

topographic data. Details of the characteristics of the flood map can be found in Paulik et al. (2019a). 

The coastal storm tide inundation map represents the spatial extent of a 100-year return period 

(as of 2018). Neither of these maps incorporates the effect of climate change. NIWA provided the 

flood maps under data-sharing agreements. Details of storm surge maps’ characteristics can be found 

in Paulik et al. (2019b).  

3.3.4 Topography 

No rainfall-induced landslide hazard maps in the area of study are available. I calculate each 

property’s slope and elevation (relative to mean sea level) using a high-resolution, high-accuracy 

Lidar-based digital elevation model (DEM). The topographic data are sourced from LINZ. 

3.3.5 Soil characteristics 

I identify the soil characteristics of properties as predictors of the probability of damage, 

specifically: soil flood return period, drainage, readily available water, permeability, and land use 

capability. I assess how these characteristics might be associated with damage or amplify it under 

extreme precipitation. Thus, I identify whether a property is located: on soils with flood return periods 

ranging from ‘slight’ to ‘very severe’; on soils with ‘very poor’, ‘poor’ and ‘imperfect’ drainage; on 

soils with ‘very high’, ‘high’ and ‘moderately high’ profiles of readily available water; on soils with 

a ‘slow’ rate of water movement through saturated soil; on soils with poor land-use capability. 

Furthermore, I identify whether a property is located on fluvial soils and impervious surfaces (i.e., in 

urban areas). The soil data are sourced from Landcare Research (LCR) (Newsome et al., 2008).  

3.3.6 Social vulnerability 

To account for social vulnerability, I use the New Zealand Deprivation Index (NZDI), a 

multidimensional indicator of well-being constructed using data from the 2001 New Zealand Census. 

Salmond et al. (2007) describe the index as a multidimensional metric that aggregates individual 

variables to reflect eight different social deprivation dimensions. The index combines dimensions 
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related to access to services, employment status, number of residents and space available, single-

parent families’ economic dependence, and qualifications. The index is provided as an ordinal scale 

with values that range from 1 (‘least deprivation’) to 10 (‘most deprivation’) (Salmond et al., 2007). 

The index is calculated for statistical areas of varying size called meshblocks, which contain multiple 

properties. I assign the meshblock-specific deprivation index to all the buildings in the same 

meshblock. There are 493 meshblocks in the area of study.  

To proxy for the socioeconomic status, I also compute the total value (in NZ$) of property: 

land, building, contents and appurtenant structure values. These monetary values are inflation-

adjusted to 2017 NZ$ values.16 

3.3.7 Summary statistics: bivariate analysis 

Properties with damage and without damage are compared in a bivariate fashion to determine 

statistically significant differences (at 0.05 level) for each physical and socioeconomic conditioning 

predictor of damage. Depending on whether a variable is continuous or categorical, a ‘ranksum’ or a 

‘Chi-2’ test is applied.  

The bivariate results in Table 3.1 show, on average, a statistically significant difference 

between the underlying distributions of extreme precipitation for properties with and without damage. 

Damage is unrelated to the location of property inside flood plains and storm surge inundation 

areas. However, damage is related to the proximity to the shoreline, and the flood plain and the storm 

tide’s inundation perimeters. Damage is positively related to slope, with more damage where the 

average slope is higher than properties without damage. Damage is negatively related to altitude, i.e. 

damage occurs at lower altitudes.  

Surprisingly, damage is unrelated to location on soils prone to flood, soils with poor drainage, 

soils with a slow water movement through saturated soil, soils with poor use capability, and 

impervious surfaces. No damage at all occurred in fluvial soils. Damage is positively associated with 

locations on soils with high water availability. 

The bivariate analysis of social vulnerability and damage shows properties in the middle levels 

of social deprivation are more likely to experience damage. Finally, the bivariate analysis shows that 

damage is positively associated with higher property values. On average, the values of property with 

damage are 12% higher than properties without damage.

 
16 Land and contents values have been modelled by EQC.  
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Sig.  Variables Properties with damage Properties without damage 
  Obs.  Mean  S. Deviation  Min.   Max Obs.  Mean  S. Deviation  Min.   Max 

 Rain           

* Observed 48-hour rainfall (VCSN) 245 390.4 74.8 124.1 438.4 21,782 373.2 85.4 124.1 438.4 

* Estimated 48-hour rainfall (HIRDSv4) 245 321.4 32.7 163.9 356.3 21,782 310.2 38.9 163.9 356.3 
 Flood hazard           

- 
Properties located in storm surge areas 

(1%AEP) 
245 0.0 0.1 0.0 1.0 21,82 0.0 0.1 0.0 1.0 

- Properties in flood-prone areas 245 0.07 0.3 0.0 1.0 21,782 0.1 0.3 0.0 1.0 

* Distance to the perimeter of flood-prone area 245 5,270.5 15172.4 3.2 59660.7 21,782 1,247.0 7,115.3 0.1 59,876.7 

* Distance to the perimeter of storm tide  245 226.9 168.4 0.5 704.6 21,782 284.9 249.2 0.2 2,022.6 
 Hydrography            

* Distance to shoreline  245 449.6 348.4 27.2 1670.9 21,782 629.7 494.1 2.0 2,462.2 
 Topography            

* Slope 245 3.9 3.3 0.1 17.3 21,782 2.7 3.5 0.0 36.5 

* Elevation 245 21.4 10.3 1.5 58.9 21,782 24.3 14.3 0.0 156.5 
 Soil            

- 
Properties located on soils with Slight (<1 in 

60) to Very Severe Return Periods (>1 in 5)" 
62 0.1 0.3 0.0 1.0 5,461 0.2 0.4 0.0 1.0 

- 
Properties located on 'very poor', 'poor' and 

'imperfect' soil drainage 
245 0.0 0.1 0.0 1.0 21,644 0.0 0.2 0.0 1.0 

- 
Properties located on soils with a 'slow' rate 

of water movement through saturated soil 
245 0.0 0.1 0.0 1.0 21,644 0.0 0.1 0.0 1.0 

* 

Properties located on soils with 'moderate-

high' to 'very-high' profile total available 

water for the soil profile to a depth of 0.9 m 

62 0.7 0.5 0.0 1.0 5,461 1.0 0.2 0.0 1.0 

- 
Properties located on land with poor land use 

capability 
245 0.3 0.4 0.0 1.0 21,644 0.3 0.4 0.0 1.0 

- 
Properties located on impervious surfaces (in 

urban areas) 
245 0.9 0.3 0.0 1.0 21,782 0.9 0.3 0.0 1.0 

 Socioeconomic           

* Total property value 245 659,000 313,000 234,000 1,790,000 21,782 586,000 298,000 5,000 8,150,000  
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Sig.  

Variables Properties with damage Properties without damage 

  Obs.  Mean  S. Deviation  Min.   Max Obs.  Mean  S. Deviation  Min.   Max 

- Deprivation Index 1 245 0.024 0.155 0 1 21,728 0.037 0.189 0 1 

- Deprivation Index 2 245 0.061 0.24 0 1 21,728 0.05 0.218 0 1 

* Deprivation Index 3 245 0.061 0.24 0 1 21,728 0.103 0.304 0 1 

- Deprivation Index 4 245 0.159 0.367 0 1 21,728 0.12 0.325 0 1 

* Deprivation Index 5 245 0.184 0.388 0 1 21,728 0.138 0.345 0 1 

- Deprivation Index 6 245 0.127 0.333 0 1 21,728 0.114 0.317 0 1 

* Deprivation Index 7 245 0.216 0.413 0 1 21,728 0.147 0.354 0 1 

* Deprivation Index 8 245 0.037 0.188 0 1 21,728 0.113 0.316 0 1 

- Deprivation Index 9 245 0.127 0.333 0 1 21,728 0.123 0.328 0 1 

* Deprivation Index 10 245 0.004 0.064 0 1 21,728 0.055 0.227 0 1 

Table 3. 1 Bivariate analysis. The table compares residential properties in terms of their physical and socioeconomic characteristics for two subgroups properties: properties 

without damage and properties with damage as result a of the Bay of Plenty event. * Marks statistically significant variables. The statistical significance is calculated at 0.05.  

Depending on the type of variable i.e. continuous or categorical, we use a ranksum and Chi-2 test.
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3.4 Methods 

The risk of a natural hazard is calculated as the product of the probability (likelihood) of the 

hazard and the potential outcomes or consequence (damage). The probability is associated with the 

frequency (recurrence interval), intensity and spatial extent of the hazard. The consequence refers to 

the degree of damage. In this study, I quantify the risk from floods on property damage, and the effect 

of climate change on flood risk, through changes in extreme precipitation. Here the probability 

explicitly accounts for the frequency, intensity, duration and spatial extent of extreme precipitation, 

and the potential property damage is simulated for various flood depths.  

I first use a statistical approach to find the functional relationship between physical and 

socioeconomic predictors of property damage and the distribution of past flood-related damage to 

predict properties likely to experience damage from extreme precipitation. I implement a logistic 

regression model where identification comes from the spatial variation of precipitation values across 

grids while controlling for exposure and vulnerability measures.  

Second, I apply the historical relationship between extreme precipitation and flood-related 

damage of the first step (the regression coefficient estimates) to extreme precipitation data that 

incorporates the change in extreme precipitation because of climate change.  

Third, I calculate the climate change signal, i.e., changes in the likelihood of damage resulting 

from climate change under different emission scenarios and periods.  

Fourth, I calculate physical property vulnerability using fragility functions.  

Finally, I integrate the damage probability derived from the regression model, property 

replacement values, and property vulnerability to quantify the risk from flood hazard under a range 

of flood-depth scenarios. I present the results in the form of annual loss exceedance probability 

curves.  

While most residential property damage during the 2005 BOP event was caused by pluvial 

flooding, I cannot identify the triggering cause of damage from the insurance claim dataset. Therefore, 

I also quantify the expected losses for a subset of records of an area known to have been 

predominantly affected by rainfall-induced landslide debris (Matata). 
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3.4.1 Likelihood of experiencing damage: the benchmark model 

I estimate a logistic regression model of residential property damage to predict the likelihood 

of experiencing damage. I use the following model:   

𝐿𝐶𝑖 =
𝑒𝛽1 𝐻𝑎𝑧𝑖 + 𝛽2 𝐸𝑥𝑝𝑖+  𝑉𝑢𝑙𝑖+𝜖𝑖

1+𝑒𝛽1 𝐻𝑎𝑧𝑖 + 𝛽2 𝐸𝑥𝑝𝑖+  𝑉𝑢𝑙𝑖+𝜖𝑖
             (1) 

where LCi is a binary variable that indicates whether an insurance claim has been made by 

property i. The terms Hazi Expi and Vuli are vectors that account for the physical and socioeconomic 

characteristics of property i. Table 3.3 reports the variables included in the terms of the equation. All 

the model data are standardised by subtracting the mean value and dividing by the standard deviation 

for each value of each record. 

In the logistic regression model, I use the observed rainfall values from the VCSN dataset. 

These precipitation values are the benchmark against which we will evaluate climate change’s effect 

on the changes in the probability of damage. We cluster the standard errors by location based on the 

HIRDSv4 grid. 

3.4.2 Likelihood of experiencing damage: climate change 

We use three inputs to incorporate the response of extreme precipitation from climate change: 

rainfall values (VCSN), percentage change factors per degree of warming, and temperature increases 

for four emission scenarios (RCPs) and different periods. The second input is a percentage change 

factor (augmentation factor) that maps the relationship of an increase in temperature to an increase in 

rainfall for various return periods per degree of warming. The third input is the increase in temperature 

for each RCP. The percentage change factors per degree of warming are converted to fixed percentage 

changes for different future periods and climate change scenarios by multiplying the augmentation 

factors by the relevant temperature change. Appendix Figure 3.8.1 provides information on the 

second and third inputs, taken from Carey-Smith et al. (2018). In total, I calculate the effect of climate 

change on precipitation considering four future emission scenarios (RCPs 2.6, 4.5, 6.0, 8.5) and time 

horizons (2031-2050, 2056-2075, 2081-2100). In total, the RCP-time period scenarios render 12 

distributions of precipitation that incorporate climate change response. 

3.4.3 Climate change signal 

I calculate the climate change signal, i.e., changes in the likelihood of damage resulting from 

climate change. To do so, I calculate the predicted likelihoods of all the logistic regression models 

with and without climate change. Then, I compare the predicted probabilities of the benchmark model 

(without climate change) with the predicted probabilities of each RCP-time combination. Any 
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statistically significant difference in the probability distributions of damage can be thus attributed to 

climate change. To test whether differences are statistically significant, I use a non-parametric version 

of a paired sample t-test known as ‘Wilcoxon signed rank sum test’. This test assumes that the 

differences between the fitted probabilities of the model with and without climate change are not 

normally distributed but assumes that the difference is ordinal.  

3.4.4 Property vulnerability (Fragility functions) 

3.4.4.1 Floods 

The damage a flood causes to a building depends on the flood intensity (water depth, water 

velocity, duration of inundation, debris, etc.) and the building characteristics (floor materials, wall 

materials, number of storeys, etc.). Flood building damage can be expressed as the cost to repair, or 

as the ratio between the cost of repair and the building’s replacement value (percentage of damage). 

The relationship between damage-ratio and flood intensity is described by ‘fragility functions’: 

fragility curves or damage curves (Meyer et al., 2013). These functions are a method to calculate the 

potential direct damage, typically derived from empirical field observations (from surveys after 

flooding events), expert opinions, or experiments in laboratory settings. The functions associate 

different flood depths with different degrees of damage on a scale of 0 to 1, where 1 means the damage 

is equal to the building’s replacement value. 

EQC’s cover scheme provides for damage to the land around and under residential buildings 

and appurtenant structures that result from floods or storms. Therefore EQC’s dataset of claims does 

not include information on building damage. However, regardless of EQC’s policy coverage, 

residential buildings that experienced land damage were also likely to be damaged as well. On these 

grounds, I estimate the expected monetary losses resulting from building damage, since either the 

private insurers or homeowners will have to bear them. 

For these calculations, I use 11 flood-depth fragility functions with data provided by NIWA, 

reported in Reese and Ramsay (2010) (see Figure 3.7). Each fragility function considers a 

combination of the construction type (timber, concrete, masonry), the number of stories (1 or 2) and 

construction age (pre-1960, between 1960-1980, and post-1980). The distinction made in the 

construction year is based on the most commonly used materials in those periods. For instance, 

buildings constructed pre-1960s and post-1980s have mainly a slab concrete floor, whereas buildings 
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constructed between 1960-1980 have a chipboard floor type. This distinction matters because 

chipboard is much more susceptible to water damage (Reese and Ramsay, 2010).17 

The Historic Weather Events Catalog, published by NIWA, is an important source that reports 

observed  depth of the flooding events in the Bay of Plenty, and across New Zealand. The catalogue 

collects and compiles data from government institutions, newspapers, databases, councils, and 

various sources. Based on the reports, we use three flood depths as lower, middle and upper bound 

values: 0.25 metres, 0.5 metres and 1 metre. I compute the damage-ratios by fitting into the fragility 

functions the flood-depth scenarios for each combination of construction type, age and number of 

floors. I assume that all properties experience the same flood depth level. Differentiating flood depths 

for each property is beyond the scope of this paper.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 7 Flood fragility functions. Each fragility function considers a combination of the construction type (timber, 

concrete, masonry), the number of floors (1 or 2) and construction age (pre-1960, between 1960-1980, and post-1980). 

The inundation depth (above the floor level in metres) is shown along the horizontal axis, and the damage ratio is shown 

in the vertical axis. Based on these fragility functions, I simulate three flood depth scenarios as lower, middle and upper 

bounds of the observed flood depths during the 2005 Bay of Plenty event:  0.25 m, 0.5 m and 1 m. The figure is taken 

from Reese and Ramsay (pp. 7, 2010). 

 

 
17

 Applying flood-depth fragility functions is an internationally accepted standard approach for evaluating physical 

damage. However, damage is likely explained not only by flood depth, but by water velocity and flood duration (Thieken 

et al, 2008). In New Zealand, given the data availability, building vulnerability can be assessed only in terms of flood 

depth.  
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3.4.4.2 Landslides 

To quantify landslide damage, I source four different damage-ratios for four building types 

using the findings from Buxton et al. (2013). The building types are concrete, masonry, and two types 

for residential timber buildings with one and two storeys. Buxton et al. (2013) estimate the damage-

ratios by simulating historical damage-ratio information from rainfall-induced landslides for various 

building types for all of New Zealand.   

3.4.5 Quantification of risk 

I calculate the expected losses (risk) by factoring the likelihoods produced from the regression 

model, property replacement values, and vulnerability of the buildings, such that: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑎𝑚𝑎𝑔𝑒𝑖 = 𝐿𝐶𝑖̂ ∗ 𝑅𝑉𝑖 ∗ 𝐷𝑅𝑖 (2) 

where i is a residential property, 𝐿𝐶𝑖 
̂  is the estimated likelihood of damage, RVi is the building 

replacement value, and DRi is the calculated damage ratios.  

I present the results in the form of annual exceedance probability loss curves. These curves 

relate the expected monetary losses and annual exceedance probabilities (AEP). AEPs are calculated 

as the inverse of the return period (AEP = 1/ return period). To calculate and graph the annual 

exceedance probability loss curves, I aggregate the expected monetary losses per grid and per AEP 

value.  

3.5 Results and Discussion 

3.5.1 Regression model 

The relationship between flood-related property damage, extreme precipitation and the set of 

conditioning factors of damage is not due to chance (as shown by the significance of the Chi-2 test). 

Table 3.2 shows the results from the logistic regression model.  

The factors significantly associated with property damage are property value, slope, distance 

to flood plain perimeters, distance to the shoreline, and observed precipitation at the time of the event. 

A standard deviation unit increase in precipitation intensity (in mm) is associated with an increase in 

the odds of property damage of 1.863. This result confirms the expected relationship between extreme 

precipitation and property damage, where higher precipitation values are related to the likelihood of 

flood damage. 

We find that a standard deviation unit increase in slope (in degrees) is associated with an 

increase of 1.458 in the odds of property damage. The role of slope in the likelihood of property 
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damage has also been observed at the national level (Fleming et al., 2018; Pastor Paz et al., 2020) and 

at the regional level (as reported in Chapter 2). In the 2005 BOP event, rainfall-induced landslides 

were reported in Otumoetai and Matata (Roseer et al., 2017).  Debris flows triggered structural 

damage to buildings in Matata (McSaveney et al. 2005). In Otumoetai, it is impossible to differentiate 

flood from landslide damage. One could argue that all damage in Matata was caused by landslides, 

based on accounts of the event. Because this area is quite localised and disconnected from the majority 

of properties impacted by the 2005 BOP event, I excluded all Matata properties from the sample (with 

and without damage). I excluded the Matata records so that the estimation sample would include and 

thus predict flood-related damage. However, without the Matata records the regression model cannot 

be estimated because one grid is lost, and the number of clusters is equal to the number of variables. 

Therefore, I estimate the regression model (Table 3.3) with all the records.  

 

Claim  Coef.  St.Err.  t-value  p-value  [95% Conf  Interval]  Sig 

Precipitation 1.863 0.349 3.32 0.001 1.290 2.690 *** 

Slope 1.458 0.178 3.08 0.002 1.147 1.853 *** 

Distance to flood plain 

perimeter (fluvial) 

1.560 0.339 2.05 0.041 1.019 2.389 ** 

Distance to storm surge 

perimeter 

0.848 0.144 -0.97 0.331 0.607 1.183  

Distance to shoreline 0.646 0.099 -2.86 0.004 0.479 0.872 *** 

Property value 1.084 0.037 2.33 0.020 1.013 1.159 ** 

Deprivation Index 1 & 2  

(base category) 

       

Deprivation Index 3 0.624 0.133 -2.21 0.027 0.411 0.948 ** 

Deprivation Index 4 1.708 0.756 1.21 0.226 0.718 4.065  

Deprivation Index 5 2.129 0.457 3.52 0.000 1.398 3.241 *** 

Deprivation Index 6 0.795 0.613 -0.30 0.767 0.176 3.605  

Deprivation Index 7 2.382 0.581 3.56 0.000 1.477 3.843 *** 

Deprivation Index 8 0.727 0.377 -0.61 0.540 0.263 2.011  

Deprivation Index 9 2.264 1.026 1.80 0.071 0.932 5.504 * 

Deprivation Index 10 0.283 0.294 -1.22 0.224 0.037 2.163  

 Constant 0.006 0.001 -19.40 0.000 0.003 0.009 *** 

Pseudo r-squared  0.078 Number of obs   21973 

Chi-square   4188.590 Prob > chi2  0.000 

*** p<0.01, ** p<0.05, * p<0.1  

Table 3. 2  Regression results benchmark model.  This table contains results from a logistic regression of the benchmark 

model, where observed precipitation does not incorporate the effect of climate change. The left-hand side variables is an 

indicator variable that shows whether a property received insurance payouts from weather-related damage. Only 

statistically significant variables (at 0.05) from the bivariate analysis are included in the model. I combined the two lowest 

categories of social deprivation to be able to estimate the model. The model cannot be estimated if the number of variables 

and number of clusters in the model are the same. The standard errors are clustered using the HIRDSv4 grids. All variables 

have been mean-standardised. The coefficients are expressed as odds ratios. 

 

The regression coefficient estimate shows that a standard deviation unit increase in the 

distance to the shoreline decreases the odds of property damage by 0.646. The role of proximity to 

the shoreline and property damage has also been observed at the national level (Fleming et al., 2018; 

Pastor Paz et al., 2020). In these two studies, however, distance to the shoreline is positively related 
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to property damage: the closer the more likely properties will experience damage.  For damage and 

flood mapping, the model’s estimates show that the odds of property damage increase by 1.560 per 

standard deviation unit increase in the distance between properties and pluvial flood plain perimeter. 

This result seems to reinforce the lack of predictive power observed in the flood maps.  

The impact of social deprivation on the odds of property damage shows that households with 

deprivation index (DI) of   five, seven and nine have 2.129, 2.382 and 2.264 higher odds of property 

damage than the least socially deprived households, respectively.18 In contrast, the odds of property 

damage decrease by 0.624 for households with DI of three. 

Overall, the model performs well. The R2 value is 0.078, the true positive rate (TPR) is 

70.61%, the true negative (FPR) is 61.87% and precision 2.04%. TPR shows the percentage of 

properties that had damage and were correctly classified by the model as damaged. TNR shows the 

percentage of properties that had no damage and were correctly classified by the model as undamaged. 

Precision is the proportion of positive results that were correctly classified. Precision is a more useful 

metric than the TNR when the phenomenon under study is rare. Precision does not include the number 

of true negatives in its calculation and is not affected by the imbalance of events. In the context of 

this study, the imbalance is reflected in that many more properties had no damage (21,782) than those 

with damage (245). In Chapter 2, I observe a similar figure for the Nelson region where 1.92% (352 

claims out 18,000) of properties experienced damage due to extreme precipitation during the 2011 

Golden Bay Storm. These findings highlight the fact that the likelihood of property damage is small 

even for high-impact, low-probability weather-related events. 

To assess the model’s performance, we also produce a Receiver Operating Characteristics 

(ROC) graph and its associated Area Under the Curve (AUC) value, based on a series of confusion 

matrices. A model with no predictive power has an AUC value of 0.5, whereas a perfect model AUC 

value is 1. The AUC value of the model is 0.71. 

We note that the number of claims relative to the number of properties within the sample have 

implications in the probability estimates. We note that computing probabilities of rare events using 

logistic regression analysis can lead to underestimates of the probability. A strategy to deal with the 

imbalance in the number of properties with and without claims would entail a bootstrapping exercise 

where: (1) we randomly select a reasonable (e.g., 1,000 properties) subset from the 21,973 properties 

 
18 I combined the two lowest categories of social deprivation to be able to estimate the model. The model cannot be 

estimated if the number of variables and number of clusters in the model are equal. I also eliminated elevation as predictor 

and opted to preserve the social deprivation variables as they represent multiple sociodemographic dimensions of well-

being. 
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without a claim, (2) run the logistic regression with this smaller subset plus 245 claims, and (3) repeat 

the first two steps many times. Then, we can check if the coefficient estimates are stable across 

different sets of results. Firth (1993) and King and Zeng (1999) propose alternative methods to reduce 

the bias using what is known as ‘penalized maximum likelihood estimation’ (PMLE). We leave for 

future research the implementation of alternative methodologies to address the imbalance of 

properties with and without a claim.  

3.5.2 Regression models: climate change signal 

I find statistically significant differences between the benchmark model’s predicted 

probabilities and the predicted probabilities from each RCP-time model combination. Consequently, 

climate change increases the probability of property damage from floods caused by extreme 

precipitation. The mean, minimum and maximum percentage change in probability of damage 

increase as the RCP increases from 2.6 up to 8.5 for the periods 2031-2050, 2056-2075 and 2081-

2100 (see Table 3.3). 

Variable  Observations  Mean   Std.Dev.  Min  Max 

Period 2031 - 2050 

RCP 2.6  21973 0.028 0.044 0.005 0.292 

RCP 4.5  21973 0.035 0.055 0.007 0.362 

RCP 6.0  21973 0.032 0.051 0.006 0.334 

RCP 8.5  21973 0.040 0.063 0.007 0.413 

Period 2056 - 2075 

RCP 2.6  21973 0.032 0.050 0.006 0.330 

RCP 4.5  21973 0.048 0.076 0.009 0.502 

RCP 6.0  21973 0.053 0.083 0.010 0.550 

RCP 8.5  21973 0.073 0.115 0.014 0.755 

Period 2081 - 2100 

RCP 2.6  21973 0.028 0.044 0.005 0.292 

RCP 4.5  21973 0.055 0.087 0.010 0.572 

RCP 6.0  21973 0.072 0.113 0.013 0.747 

RCP 8.5  21973 0.107 0.168 0.020 1.107 

Table 3. 3 Summary statistics of the climate change signal: shows the percentage difference between the predicted 

probabilities between the benchmark model ‘without climate change’ and the models that incorporate the response of 

precipitation to climate change. The mean, minimum and maximum percentage change in probability of damage increase 

as the RCP increases for all RCPs and time horizons. The differences in probability distributions are statistically 

significant based on the ‘Wilcoxon signed rank sum test’. 

 

The size of the climate change signal (the change in the probability of damage) is too small to 

cause economically meaningful changes in the expected losses from flood-related damage, although 

I can quantify statistically significant changes in the probability of property damage as a result of 

changes in precipitation caused by climatic change. I address two reasons for this.  
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First, information is lacking on climate change augmentation factors for the 250-year return 

period. Carey-Smith et al. (2018) provide augmentation factors up to 100-year return periods, so I 

assigned the 100-year augmentation factor to the 250-year return period. But in the estimation sample, 

50% of the grids had a 250-year return period.19  

Second, flood-related damage in New Zealand is mostly explained by sub-daily and sub-

hourly precipitation durations. However, as observed data (VCSN) is available on daily time steps, I 

had to assume that damage results from daily precipitation. Carey-Smith et al. (2018) state that long-

duration events are expected to increase much less than short-duration events. For instance, for 48-

hour duration events the augmentation factors range between 6.7 to 7.5% change per degree of 

warming across all return periods. In contrast, for short-duration events (e.g. 1 hour), the increases 

range from 12.2 to 13.6% (Figure 3.8). Although observed sub-daily weather station data can be 

matched/paired with DDF rainfall value estimates, only two weather stations are available within the 

event’s footprint. By only using two weather stations, the rainfall variability across the data records 

would be limited, making it difficult/impossible/not feasible to estimate the regression models. Figure 

3.9 shows the observed precipitation in absolute values, as well as precipitation augmented by climate 

change per degree of warming, per RCP and per time horizon across grids. 

 

 

 

 

 

 

 

 

Figure 3. 8 Augmentation factors for extreme precipitation based on 1 degree of warming plotted as a function of 

the return period. Long-duration events are expected to increase much less than short-duration events as a result of 

climate change. The solid lines show the median over New Zealand for different event durations, and the 5th and 95th 

percentiles are displayed as shaded bars for the 1- and 120-hour event durations. Taken from Carey-Smith et al. (2018). 

Appendix Figure 3.8.1 provides a table representation of the graph. 

 

 
19 I fitted a linear and exponential function to the augmentation factors to come up with a factor for the 250-year return 

period. The best fit is from an exponential function. The function is concave and flattens for higher return periods. Thus, 

the 250-year factor we infer is not substantially different from the 100-year augmentation factor.  
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Figure 3. 9 Observed precipitation and precipitation augmented by climate change per degree of warming, per 

RCP, and per time horizon across grids.  

3.5.3 Risk and its spatial distribution 

Figure 3.10 shows the exceedance probability loss curves (EPLC) for the flood scenarios 

simulated. High monetary losses are associated with low AEP values, as expected EPLC are the result 

of aggregating losses per grid and AEP value. Appendix Table 3.8.2 provides the monetary figures 

of the estimated losses for 11 construction types. Even though I provide various scenarios instead of 

a single estimate of risk, a wider range of flood depth scenarios can be simulated to derive more loss 

probability curves.  
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Figure 3. 10 Annual exceedance probability loss curves for a range of flood-depth scenarios. The relationship between 

losses and annual exceedance probability (AEP) values is negative, as expected. To calculate and graph annual exceedance 

probability loss curves, I aggregate the expected monetary losses per grid. Each grid has an associated AEP value and is 

calculated as the inverse of the return period. Then I aggregate the losses of the grids with the same AEP. Both graphs 

show the same information in the form of bars(up) and lines(down).  

 

The risk estimates produced are calculated at the property level. The estimates are spatially 

explicit, which implies that the spatial distribution of property risk from flood hazard can be generated 

as a map that displays the expected monetary losses. The level of detail in the data allows providing 

estimates of the spatial distribution of risk such that ‘hotspots’ of losses can be differentiated from 

‘cold spots’. Figure 3.11 shows the spatial distribution of flood risk for a 1-metre flood depth scenario.  
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Figure 3. 11 Spatial distribution of flood risk. Risk is calculated as the product of the probability of damage as reported 

by the logistic model, the replacement value of the property and a damage ratio for a flood depth scenario of 1 metre. The 

classes used to group expected losses are obtained by applying the Jenks Natural Breaks classification algorithm. The 

algorithm produces groups of data based on their similarity values so that the variance within groups is minimised, while 

the variance between groups is maximised. I assign to each group a sequential colour scheme so that lighter hues denote 

lower risk and darker hues denote higher risk. 

 

 

3.6 Conclusions 

In this study, I use insurance claim data to estimate the empirical relationship between extreme 

precipitation and flood-related damage. Together, with projections of changes in extreme 

precipitation resulting from climate change, I predict the expected future costs of property damage 

from flooding. I use historical insurance claim data to quantify the risk of flood hazard unlike the 

conventional ‘catastrophe modelling’ framework that relies on hazard maps to calculate risk.  

I show a flood risk quantification methodology that circumvents the inaccuracy or absence of 

flood hazard maps. It uses georeferenced historical insurance claims and sets of geospatial data that 

account for residential property’s underlying and surrounding characteristics. The methodology uses 

variation in rainfall across space to identify the probability of damage and the effect of climate change 

on the damage probability distribution, while accounting for the influence of physical and 

socioeconomic factors.  
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 I find that the highest monetary losses are associated with low-return periods, as expected. 

For instance, 250-year return period events are associated with 24, 16, and 10 million NZ$ losses for 

scenarios with a flood depth of 1, 0.5 and 0.25-meters, respectively. Nevertheless, high return periods 

(i.e., 2-year events) bring about sizeable losses ranging between 2 and 1 million NZ$ for the same 

flood depth scenarios. The likelihood of property damage resulting from climate-related changes in 

precipitation increases significantly, but the effect (climate change signal) is too small to cause an 

economically meaningful increase in risk levels.  

The methodology proposed fills a gap in the literature by quantifying the risk of low-

probability, high-impact flooding events caused by extreme precipitation. The methodology proposed 

enables the impact of climate change on flood risk to be evaluated under various emissions pathways, 

helping the public insurer assess its financial exposure from climate change. The level of detail in the 

data allows estimates of the spatial distribution of risk so that ‘hot spots’ of losses can be differentiated 

from ‘cold spots’. Ultimately, a detailed representation of risk (in a map) can help tailor efforts in 

reducing disaster risk, future risk pricing, and potential areas where managed retreat may occur. Other 

highly exposed locations could exploit disaster loss databases (e.g., Desinventar) and employ this 

methodology to predict future damages from floods associated to extreme rainfall events. 

 

 

 

  



109 

 

3.7 References  

Bernet, D.B., Prasuhn, V. and Weingartner, R., 2017. Surface water floods in Switzerland: what insurance claim records 

tell us about the damage in space and time. Natural Hazards and Earth System Sciences, 17(9), pp.1659-1682. 

Bihan, G.L., Payrastre, O., Gaume, E., Moncoulon, D. and Pons, F., 2017. The challenge of forecasting impacts of flash 

floods: test of a simplified hydraulic approach and validation based on insurance claim data. Hydrology and Earth 

System Sciences, 21(11), pp.5911-5928. 

Bouwer, L.M., 2013. Projections of future extreme weather losses under changes in climate and exposure. Risk 

Analysis, 33(5), pp.915-930.  

Buxton, R., Dellow, G. D., Matcham, I. R., Smith, W. D., Rhoades, D. A. 2013. A New Zealand framework for 

predicting risk due to rainfall-induced landslides, GNS Science Report 2012/22. 12 p. 

Carey-Smith, T., Henderson, R. and Singh, S., 2018. High Intensity Rainfall Design System Version 4. National 

Institute of Water and Atmospheric Research Ltd, Report 2018022CH, Christchurch, 73p. 

Cheng, C.S., Li, Q., Li, G. and Auld, H., 2012. Climate change and heavy rainfall-related water damage insurance 

claims and losses in Ontario, Canada. Journal of Water Resource and Protection, 4(2), pp.49-62. 

[dataset] Core Logic, 2017. Quotable Value. Accessed under a data sharing agreement. 

[dataset] Earthquake Commission, 2018. Insurance claim dataset. Accessed under a data sharing agreement. 

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80(1), 27-38. 

Fleming, D.A., Noy, I., Pástor-Paz, J. and Owen, S., 2018. Public insurance and climate change (part one): Past trends 

in weather-related insurance in New Zealand (No. 1124-2019-2362). 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3477038 (accessed 19 January 2020) 

Gradeci, K., Labonnote, N., Sivertsen, E. and Time, B., 2019. The use of insurance data in the analysis of Surface Water 

Flood events–A systematic review. Journal of Hydrology, 568, pp.194-206. 

Grahn, T. and Nyberg, L., 2017. Assessment of pluvial flood exposure and vulnerability of residential areas. 

International Journal of Disaster Risk Reduction, 21, pp.367-375. 

Handmer, J., Honda, Y., Kundzewicz, Z.W., Arnell, N., Benito, G., Hatfield, J., Mohamed, I.F., Peduzzi, P., Wu, S., 

Sherstyukov, B. and Takahashi, K., 2012. Changes in impacts of climate extremes: human systems and ecosystems, 

in: Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.K. 

Plattner, S.K. Allen, M. Tignor,  P.M. Midgley (Eds.), Managing the risks of extreme events and disasters to 

advance climate change adaptation. A special report of working groups I and II of  the Intergovernmental Panel on 

Climate Change. Cambridge University Press, Cambridge and New York, pp. 231-290. 

Hunn, D., Dempsey, M. and Zaveri, M., 2018. Harvey's floods: Most homes damaged by Harvey were outside flood 

plain, data show. Houston Chronicle. Retrieved from https://www. houstonchronicle. com/news/article/In-Harvey-s-

deluge-most-damaged-homes-were-12794820. php. 

[dataset] Insurance Council of New Zealand (ICNZ). Cost of Natural Disasters. https://www.icnz.org.nz/natural-

disasters/cost-of-natural-disasters/ (accessed 1 March, 2018) 

 [dataset] Insurance Council of New Zealand (ICNZ). Cost of Natural Disasters. https://www.icnz.org.nz/natural-

disasters/cost-of-natural-disasters/ (accessed 1 March, 2018) 

Jagger, T.H., Elsner, J.B. and Saunders, M.A., 2008. Forecasting US insured hurricane losses. Climate extremes and 

society, 189, p.209. 

King, G., & Zeng, L. (1999). Logistic regression in rare events data. Department of Government, Harvard University. 

Online: http://GKing. Harvard. Edu. (Accessed 1 June, 2021) 

Klawa, M. and Ulbrich, U., 2003. A model for the estimation of storm losses and the identification of severe winter 

storms in Germany. Natural Hazards and Earth System Sciences, 3(6), pp.725-732. 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3477038
https://www.icnz.org.nz/natural-disasters/cost-of-natural-disasters/
https://www.icnz.org.nz/natural-disasters/cost-of-natural-disasters/
https://www.icnz.org.nz/natural-disasters/cost-of-natural-disasters/
https://www.icnz.org.nz/natural-disasters/cost-of-natural-disasters/


110 

 

[dataset] King, A. B., Bell, R., Heron, D., Matcham, I., Schmidt, J., Cousins, W. J., Reese, S., Wilson, T., Johnston, D., 

Henderson, R., Smart, G., Goff, J., Reid, S., Turner, R., Wright, K., & Smith, W. D. (2009). RiskScape Project: 

2004-2008. 

Kundzewicz, Z.W., Krysanova, V., Dankers, R., Hirabayashi, Y., Kanae, S., Hattermann, F.F., Huang, S., Milly, P.C., 

Stoffel, M., Driessen, P.P.J. and Matczak, P., 2017. Differences in flood hazard projections in Europe–their causes 

and consequences for decision making. Hydrological Sciences Journal, 62(1), pp.1-14. 

 [dataset] Land Information New Zealand (LINZ), LIDAR 

Leckebusch, G.C., Ulbrich, U., Fröhlich, L. and Pinto, J.G., 2007. Property loss potentials for European midlatitude 

storms in a changing climate. Geophysical Research Letters, 34(5). 

Mullan, A.B.; Sood, A.; Stuart, S.; Carey-Smith, T. 2018. Climate Change Projections for New Zealand: Atmosphere 

Projections based on Simulations from the IPCC Fifth Assessment, 2nd Edition. NIWA Client Report for Ministry 

for the Environment, updating the June 2016 report with a section of projections of extreme rainfall changes. 

WLG2015-31. June 2018.  https://www.mfe.govt.nz/sites/default/files/media/Climate%20Change/Climate-change-

projections-2nd-edition-final.pdf (accessed 12 May 2019) 

McSaveney, M.J., Beetham, R.D. and Leonard, G.S., 2005. The 18 May 2005 debris flow disaster at Matata: Causes and 

mitigation suggestions. Client Report, 71. 

MetService News Letter https://www.metsoc.org.nz/app/uploads/2019/07/101_200506.pdf 

Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J.C., Bouwer, L.M., Bubeck, P., Ciavola, P., 

Genovese, E., Green, C. and Hallegatte, S., 2013. Assessing the costs of natural hazards–state of the art and 

knowledge gaps. Natural Hazards and Earth System Sciences, 13(5), pp.1351-1373. 

Ministry of Environment of New Zealand, 2005.https://www.mfe.govt.nz/publications/climate-change/tauranga-city-

council-prepares-more-intense-rainfall/tauranga-city Accessed 20/04/2021) 

[dataset] Newsome, P.F.J., Wilde, R.H., Willoughby, E.J., 2008. Land Resource Information System Spatial data layers. 

https://lris.scinfo.org.nz/data/category/environment/ (accessed 09 September 2018)  

[dataset] National Institute of Water and Atmospheric Research (NIWA), 2005. New Zealand's Historic Events Weather 

Catalog https://hwe.niwa.co.nz/event/May_2005_Bay_of_Plenty_and_Waikato_Flooding (Accessed 20/04/2020) 

Nguyen, C.N. and Noy, I., 2020. Measuring the impact of insurance on urban earthquake recovery using nightlights. 

Journal of Economic Geography, 20(3), pp.857-877.  

Pastor-Paz, J., Noy, I., Sin, I., Sood, A., Fleming-Munoz, D. and Owen, S., 2020. Projecting the effect of climate change 

on residential property damages caused by extreme weather events. Journal of Environmental Management, 276, 

p.111012. 

[dataset] Paulik, R., Craig, H. and Collins, D., 2019a. New Zealand Fluvial and Pluvial Flood Exposure. Deep South 

National Science Challenge Report prepared by NIWA.  

https://www.deepsouthchallenge.co.nz/sites/default/files/2019-

08/2019118WN_DEPSI18301_Flood%20Exposure_Final%20%281%29.pdf (accessed 25 March 2020) 

[dataset] Paulik, R., Stephens, S.A., Wadhwa, S., Bell, R., Popovich, B. and Robinson, B., 2019b. Coastal flooding 

exposure under future sea-level rise for New Zealand. NIWA Client Report 2019119WN, prepared for The Deep 

South Science Challenge, 2019. https://www.deepsouthchallenge.co.nz/sites/default/files/2019-

08/2019119WN_DEPSI18301_Coast_Flood_Exp_under_Fut_Sealevel_rise_FINAL%20%281%29_0.pdf (accessed 

25 March 2020) 

Pinto, J.G., Fröhlich, E.L., Leckebusch, G.C. and Ulbrich, U., 2007. Changing European storm loss potentials under 

modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Natural Hazards 

and Earth System Sciences, 7(1), pp.165-175. 

[dataset] Reese, S. and Ramsay, D., 2010. RiskScape: flood fragility methodology. Wellington, New Zealand. National 

Institute of Water and Atmospheric Research, 42. 

https://www.mfe.govt.nz/sites/default/files/media/Climate%20Change/Climate-change-projections-2nd-edition-final.pdf
https://www.mfe.govt.nz/sites/default/files/media/Climate%20Change/Climate-change-projections-2nd-edition-final.pdf
https://www.metsoc.org.nz/app/uploads/2019/07/101_200506.pdf
https://www.mfe.govt.nz/publications/climate-change/tauranga-city-council-prepares-more-intense-rainfall/tauranga-city%20Accessed%2020/04/2021
https://www.mfe.govt.nz/publications/climate-change/tauranga-city-council-prepares-more-intense-rainfall/tauranga-city%20Accessed%2020/04/2021
https://lris.scinfo.org.nz/data/category/environment/
https://hwe.niwa.co.nz/event/May_2005_Bay_of_Plenty_and_Waikato_Flooding
https://www.deepsouthchallenge.co.nz/sites/default/files/2019-08/2019118WN_DEPSI18301_Flood%20Exposure_Final%20%281%29.pdf
https://www.deepsouthchallenge.co.nz/sites/default/files/2019-08/2019118WN_DEPSI18301_Flood%20Exposure_Final%20%281%29.pdf
https://www.deepsouthchallenge.co.nz/sites/default/files/2019-08/2019119WN_DEPSI18301_Coast_Flood_Exp_under_Fut_Sealevel_rise_FINAL%20%281%29_0.pdf
https://www.deepsouthchallenge.co.nz/sites/default/files/2019-08/2019119WN_DEPSI18301_Coast_Flood_Exp_under_Fut_Sealevel_rise_FINAL%20%281%29_0.pdf


111 

 

[dataset] Rosser, B., Dellow, S., Haubrock, S. and Glassey, P., 2017. New Zealand's national landslide database. 

Landslides, 14(6), pp.1949-1959. 

Sampson, C.C., Fewtrell, T.J., O'Loughlin, F., Pappenberger, F., Bates, P.B., Freer, J.E. and Cloke, H.L., 2014. The 

impact of uncertain precipitation data on insurance loss estimates using a flood catastrophe model. Hydrology and 

Earth System Sciences, 18(6), pp.2305-2324. 

Salmond, C.E., Crampton, P. and Atkinson, J., 2007. NZDep2006 index of deprivation (Vol. 5541, pp. 1-61). 

Wellington: Department of Public Health, University of Otago. https://koordinates.com/layer/1066-nz-deprivation-

index-2006/ (Accessed 26/05/2020) 

Spekkers, M.H., Kok, M., Clemens, F.H.L.R. and Ten Veldhuis, J.A.E., 2014. Decision-tree analysis of factors 

influencing rainfall-related building structure and content damage. Natural Hazards and Earth System Sciences, 

14(9), pp.2531-2547. 

Spekkers, M.H., Clemens, F.H.L.R. and Ten Veldhuis, J.A.E., 2015. On the occurrence of rainstorm damage based on 

home insurance and weather data. Natural Hazards and Earth System Sciences, 15(2), pp.261-272. 

[data set] Tait, A., Henderson, R., Turner, R. and Zheng, X., 2006. Thin plate smoothing spline interpolation of daily 

rainfall for New Zealand using a climatological rainfall surface. International Journal of Climatology: A Journal of 

the Royal Meteorological Society, 26(14), pp.2097-2115. 

Tauranga City Libraries, 2005  http://tauranga.kete.net.nz/en/tauranga_local_history/topics/show/2874-bay-of-plenty-

flooding-18-may-2005 (Accessed 20/04/2020) 

Torgersen, G., Bjerkholt, J.T., Kvaal, K. and Lindholm, O.G., 2015. Correlation between extreme rainfall and insurance 

claims due to urban flooding–case study Fredrikstad, Norway. Journal of Urban and Environmental Engineering, 

9(2), pp.127-138. 

Torgersen, G., Rød, J.K., Kvaal, K., Bjerkholt, J.T. and Lindholm, O.G., 2017. Evaluating flood exposure for properties 

in urban areas using a multivariate modelling technique. Water, 9(5), p.318. 

Woods, R., Mullan, A.B., Smart, G., Rouse, H., Hollis, M., McKerchar, A., Ibbitt, R., Dean, S. and Collins, D., 2010. 

Tools for estimating the effects of climate change on flood flow: A guidance manual for local government in New 

Zealand. Wellington, New Zealand: Ministry for the Environment. 

https://koordinates.com/layer/1066-nz-deprivation-index-2006/
https://koordinates.com/layer/1066-nz-deprivation-index-2006/
http://tauranga.kete.net.nz/en/tauranga_local_history/topics/show/2874-bay-of-plenty-flooding-18-may-2005
http://tauranga.kete.net.nz/en/tauranga_local_history/topics/show/2874-bay-of-plenty-flooding-18-may-2005


112 

 

3.8 Appendices  

Appendix Figure 3.8.1: Climate change augmentation factors 

 

Percentage change factors. Factors (%) to project rainfall depths derived from the current 

climate to a future climate that is 1 degree warmer. Taken from Carey-Smith et al. (2018) 

 

 

 

 

 

 

 

 

Temperature increase. New Zealand land-average temperature increase relative to 1986—

2005 for four future emissions scenarios. The three 21st century projections result from the average 

of six RCM model simulations (driven by different global climate models). The early 22nd century 

projections are based only on the subset of models that were available and so should be used with 

caution. Taken from Carey-Smith et al. (2018) 

 

 

 

 

 

 Example of the calculation of a climate change augmentation factor by combining 

percentage change factors and temperature increase  

If the estimated rainfall for a 1-hour duration event and 10-year return period is 35mm, then 

the projected precipitation value for the RCP 2.6 (0.59) for the period 2031-2050 would be calculated 

as follows: 35mm × [(0.131 x 0.59) + 1] = 37.7mm. 
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Appendix Table 3.8.2: Expected losses 

Expected losses are calculated as the probability of damage reported by the logistic model, the 

property's replacement value, and a damage ratio for a flood depth scenario of one meter for eleven 

construction types. The fragility functions to calculate the damage ratio have been sourced from Reese 

and Ramsay (2010).  

 
Flood risk: direct expected damages (in NZ$) 

 
Flood depth 1m Flood depth 0.5 Flood depth 0.25 

Construction type 
   

Timber 
   

Timber, one storey - pre 1960 & post 1980 16,700,000 11,300,000 7,100,421 

Timber, one storey between 1960 - 1980 10,100,000 6,721,215 4,335,146 

Timber, two storey - pre 1960 & post 1980 3,317,625 2,067,451 1,179,422 

Timber, two storeys between 1960 - 1980 1,215,919 792,082 494,296 

Concrete shear wall 
   

Concrete -reinforced- shear wall, one storey 

pre 1960 & post 1980 

19,390 7,301 3,070 

Concrete -reinforced- shear wall, one storey 

between 1960 - 1980 

58,168 39,856 34,970 

Concrete -reinforced- shear wall, two storey 

- pre 1960 & post 1980 

4,082 1,465 646 

Concrete -reinforced- shear wall, two storeys 

between 1960 - 1980 

41,473 23,367 17,879 

Masonry (concrete & brick) 
   

Masonry concrete or brick, one storey - pre 

1960 & post 1980 

147,743 99,487 60,387 

Masonry concrete or brick, one storey 

between 1960 - 1980 

280,530 192,486 130,822 

Masonry concrete or brick, two storeys 

between 1960 - 1980 

621,602 525,866 447,799 

 
32,506,532 21,770,575 13,804,857 

 

Expected losses are calculated as the probability of damage reported by the logistic model, the 

property's replacement value, and a damage ratio for four construction types. The damage ratio data 

have been sourced from Buxton et al. (2013). The expected losses represent a subset of records of an 

area (Matata) known to have been predominantly affected by rainfall-induced landslide debris. 

 

 

 
Damage ratio (Buxton et al., 2013) Rainfall-induced landslide risk: direct 

expected damages (in NZ$) 

Timber, one storey 0.054 34,990 

Timber, two storey 0.049 37,702 

Concrete 0.046 3,114 

Masonry 0.056 2,331 

Total 
 

78,137 
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Conclusions 

In this dissertation, I evaluated the effect of extreme precipitation events and climate change 

on residential property risk from floods, storms, and landslides in New Zealand. I applied econometric 

techniques that model insurance data in terms of extreme precipitation, geographic, and 

sociodemographic factors, along with climate data projections, to produce spatially explicit 

projections that reflect how much losses will increase in the future due to anthropogenic-induced 

climatic change. I demonstrate that insurance claim data is a good proxy for direct damage that can 

be exploited to evaluate and project the risk from weather-related hazards and climate change. I 

showcase a statistical methodology that circumvents the absence of hazard maps or their lack of 

accuracy to quantify risk. Overall, this dissertation answered three questions: What is the risk to 

residential property from extreme precipitation? What is the effect of climate change, through 

changes in extreme precipitation, on residential property risk? What is the spatial and temporal 

distribution of risk from extreme precipitation and climate change? 

The effect of climate change will increase the risk of residential property damage in New 

Zealand. The future impacts are heterogeneous in time and space, depending on the climate change 

scenarios. The projections do not consider future changes in exposure and vulnerability. Thus, the 

calculated changes in future liabilities are driven exclusively by predicted changes in the hazard, due 

to climate change. Current risk tends to cluster in coastal areas and hills, steep and moderately steep 

terrain, areas with lower levels of social vulnerability, and areas with high concentration of properties 

and property values.  

I believe that future risk assessments should rely on both statistical and deterministic methods, 

where deterministic approaches use hazard maps that account for the intensity, duration, frequency 

and spatial extent of extreme-precipitation-induced floods, landslides, and storms, with and without 

the effect of climate change. Risk assessments should incorporate future pathways of exposure or 

vulnerability as well. NZ’s population and the value of its residential building stock have grown 

steadily over the past few decades, and both are projected to continue to increase. This suggests that 

the future risk may be higher than our estimates.  

Public policy can make a difference by either reducing exposure (e.g., through better land-use 

planning), or reducing vulnerability (e.g., through better construction standards). With the right 

policies and well-targeted investments, the public insurer’s liabilities can instead decrease. Another 

important policy consideration that should be explored is changes in what the public insurer covers, 

or whether our findings suggest a need for a policy change. For example, is there a need to change 

the premiums the public insurer collects annually? These potential policy focus areas raise many 
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difficult questions around responsibility, risk sharing, distributional concerns, procedural fairness, 

and political viability. They are all issues that the economic analysis presented here cannot resolve 

without resorting to social and political considerations that are best left for future research. 

 

 

 

 


