
Genetic Programming
Hyper-heuristics for Dynamic
Flexible Job Shop Scheduling

by

Fangfang Zhang

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2021

Abstract

Dynamic flexible job shop scheduling (DFJSS) has received widespread
attention from academia and industry due to its reflection in real-world
scheduling applications such as order picking in the warehouse and the
manufacturing industry. It requires complex routing and sequencing de-
cisions under unpredicted dynamic events. Genetic programming, as a
hyper-heuristic approach (GPHH), has been successfully applied to evolve
scheduling heuristics for DFJSS automatically due to its flexible represen-
tation. Although GPHH has achieved certain success in solving the DFJSS
problems, there are still some limitations for applying GPHH to DFJSS,
particularly in terms of its training efficiency, large search space, search
mechanism, and multitask solving ability.

The overall goal of this thesis is to develop effective GPHH algorithms
to evolve scheduling heuristics for DFJSS efficiently. Different machine
learning techniques, i.e., surrogate, feature selection, specialised genetic
operator, and multitask learning, are incorporated in this thesis to tackle
the limitations.

First, this thesis develops a novel multi-fidelity based surrogate-assisted
GPHH for DFJSS to improve the training efficiency of GPHH. Specifically,
multi-fidelity based surrogate models are first designed by simplifying the
problem to be solved. Then, an effective collaboration mechanism with
knowledge transfer is proposed for utilising the advantages of the multi-
fidelity based surrogate models to solve the problem. The results show
that the proposed algorithm can dramatically reduce the computational
cost of GPHH without sacrificing the performance in all the test scenarios.
With the same training time, the proposed algorithm can achieve signifi-

cantly better performance than its counterparts in most scenarios while no
worse in others.

Second, this thesis designs a novel two-stage GPHH framework with
feature selection to evolve scheduling heuristics for DFJSS automatically.
Based on this framework, this thesis further proposes to evolve schedul-
ing heuristics with only the selected features by eliminating the unselected
features properly. Specifically, individual adaptation strategies are pro-
posed to generate individuals with only the selected features by utilising
the information of both the selected features and the investigated individ-
uals during the feature selection process. The results show that the pro-
posed algorithm can successfully achieve scheduling heuristics with fewer
unique features and smaller sizes, which tends to be more interpretable.
In addition, the proposed algorithm can evolve comparable scheduling
heuristic with that obtained by the traditional GPHH within a much shorter
training time.

Third, this thesis proposes a novel recombinative mechanism to pro-
vide guidance for GPHH based on the importance of subtrees to realise ef-
fective and adaptive recombination for parents to produce offspring. Two
measures are proposed to measure the importance of all the subtrees of
an individual. The first one is based on the frequency of features, and the
second is based on the correlation between the behaviour of subtrees and
the whole tree (i.e., an individual). The importance information is utilised
to decide the crossover points for the parents. The proposed recombina-
tive guidance mechanism attempts to improve the quality of offspring by
preserving the promising building-blocks of one parent and incorporating
good building-blocks from the other. The results show that the proposed
algorithm based on the correlation importance measure performs better
than the proposed algorithm based on the feature frequency importance
measure. In addition, the proposed algorithm based on the correlation
importance measure between the behaviour of subtrees significantly also
outperforms the state-of-the-art algorithms on most tested scenarios.

Last, this thesis proposes a multitask GPHH approach and a surrogate-
assisted multitask GPHH approach to solving multiple DFJSS tasks si-
multaneously. First, an effective hyper-heuristic multitask algorithm is
proposed by adapting the traditional evolutionary multitask algorithms
based on the characteristics of GPHH. Second, this thesis develops a novel
surrogate-assisted multitask GPHH approach to solving multiple DFJSS
tasks by sharing useful knowledge between different DFJSS scheduling
tasks. Specifically, the surrogate-assisted multitask GPHH algorithm em-
ploys the phenotypic characterisation technique to measure the behaviours
of scheduling rules to build a surrogate for each task accordingly. The built
surrogates are not only used to improve the efficiency of solving each sin-
gle DFJSS task but also utilised for knowledge sharing between multiple
DFJSS tasks in multitask learning. The results show that the proposed
algorithm can significantly improve the quality of scheduling heuristics
for all the test scenarios. The results also observe that the proposed al-
gorithms manage to solve multiple tasks collaboratively in terms of the
evolved scheduling heuristics for different tasks in a multitask scenario.

iv

List of Publications

[1] Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “Cor-
relation Coefficient based Recombinative Guidance for Genetic Pro-
gramming Hyper-heuristics in Dynamic Flexible Job Shop Schedul-
ing”. IEEE Transactions on Evolutionary Computation, vol. 25, no. 3,
pp. 552-566, 2021.

[2] Fangfang Zhang, Yi Mei, Su Nguyen, Mengjie Zhang, and Kay Chen
Tan. “Surrogate-Assisted Evolutionary Multitask Genetic Program-
ming for Dynamic Flexible Job Shop Scheduling”. IEEE Transactions
on Evolutionary Computation, vol. 25, no. 4, pp. 651-665, 2021.

[3] Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “Evolv-
ing Scheduling Heuristics via Genetic Programming with Feature Se-
lection in Dynamic Flexible Job Shop Scheduling”. IEEE Transactions
on Cybernetics, vol. 51, no. 4, pp. 1797-1811, 2021.

[4] Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “Collab-
orative Multifidelity-Based Surrogate Models for Genetic Program-
ming in Dynamic Flexible Job Shop Scheduling”. IEEE Transactions
on Cybernetics, 2021, pp. 1-15. (Doi: 10.1109/TCYB.2021.3050141)

[5] Fangfang Zhang, Yi Mei, Su Nguyen, Kay Chen Tan, and Mengjie
Zhang. “Multitask Genetic Programming Based Generative Hyper-
heuristics: A Case Study in Dynamic Scheduling”. Submitted to
IEEE Transactions on Cybernetics, Doi: 10.1109/TCYB.2021.3065340.

v

vi LIST OF PUBLICATIONS

[6] Fangfang Zhang, Yi Mei, and Mengjie Zhang. “A Two-stage Genetic
Programming Hyper-heuristic Approach with Feature Selection for
Dynamic Flexible Job Shop Scheduling”. in Proceedings of the Genetic
and Evolutionary Computation Conference, ACM, 2019, pp. 347-355.

[7] Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “A Pre-
liminary Approach to Evolutionary Multitasking for Dynamic Flexi-
ble Job Shop Scheduling via Genetic Programming”. in Proceedings of
the Genetic and Evolutionary Computation Conference, ACM, 2020, pp.
107-108.

[8] Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “Guided
Subtree Selection for Genetic Operators in Genetic Programming for
Dynamic Flexible Job Shop Scheduling”. in Proceedings of the Euro-
pean Conference on Genetic Programming, Springer, 2020, pp. 262-278.

[9] Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “Genetic
Programming with Adaptive Search Based on the Frequency of Fea-
tures for Dynamic Flexible Job Shop Scheduling”. in Proceedings of
the European Conference on Evolutionary Computation in Combinatorial
Optimisation, Springer, 2020, pp. 214-230.

[10] Fangfang Zhang, Yi Mei, and Mengjie Zhang. “Can Stochastic Dis-
patching Rules Evolved by Genetic Programming Hyperheuristics
Help in Dynamic Flexible Job Shop Scheduling?”. in Proceedings of
the Congress on Evolutionary Computation, IEEE, 2019, pp. 41-48.

[11] Fangfang Zhang, Yi Mei, and Mengjie Zhang. “Evolving Dispatch-
ing Rules for Multi-objective Dynamic Flexible Job Shop Schedul-
ing via Genetic Programming Hyper-heuristics”. in Proceedings of the
Congress on Evolutionary Computation, IEEE, 2019, pp. 1343-1350.

[12] Fangfang Zhang, Yi Mei, and Mengjie Zhang. “A New Representa-
tion in Genetic Programming for Evolving Dispatching Rules for Dy-

vii

namic Flexible Job Shop Scheduling”. in Proceedings of the European
Conference on Evolutionary Computation in Combinatorial Optimization,
IEEE, 2019, pp. 33-49.

[13] Fangfang Zhang, Yi Mei, and Mengjie Zhang. “Genetic Program-
ming with Multi-tree Representation for Dynamic Flexible Job Shop
Scheduling”. in Proceedings of the Australasian Joint Conference on Arti-
ficial Intelligence, Springer, 2018, pp. 472-484. (Best Paper Runner-Up
Award)

[14] Fangfang Zhang, Yi Mei, and Mengjie Zhang. “Surrogate-Assisted
Genetic Programming for Dynamic Flexible Job Shop Scheduling”.
in Proceedings of the Australasian Joint Conference on Artificial Intelli-
gence, Springer, 2018, pp. 766-772.

[15] Fangfang Zhang, Yi Mei, Su Nguyen, Kay Chen Tan and Mengjie
Zhang. “Adaptive Multitask Genetic Programming for Dynamic Job
Shop Scheduling”. Submitted to IEEE Transactions on Evolutionary
Computation (Under Review)

[16] Fangfang Zhang, Su Nguyen, Yi Mei and Mengjie Zhang. “Genetic
Programming for Production Scheduling: An Evolutionary Learning
Approach”. Book draft has been submitted, June 2021.

viii LIST OF PUBLICATIONS

Acknowledgments

I would like to express my very appreciation to my supervisors, Dr. Yi
Mei, Prof. Mengjie Zhang, Dr. Su Nguyen and Prof. Kay Chen Tan, for
their guidance and support during my PhD study. Dr. Mei has spent lots
of hours for my research and provided very useful feedback to improve
my research skills. Prof. Zhang is always positive, and has encouraged
me a lot to achieve my research goals. Dr. Nguyen is very nice to talk to,
and the discussions with him are quite useful and enjoyable. Prof. Tan
has given constructive comments for my studies, despite the time zone.
In addition, I would like to thank Prof. Bing Xue for guiding me to this
excellent research group.

I am grateful to the China Scholarship Council / Victoria University of
Wellington Scholarship for their financial support for my PhD study over
the past more than three years. Thanks also go to the Marsden Fund of
New Zealand Government under Contract VUW 1509 for support in part
of my PhD study, conference attendance, and other aspects.

I would like to thank my friends in the Evolutionary Computation Re-
search Group for the inspiring research environment. Many thanks to my
friend Ke Chen for sharing delicious food and supporting my research.
Thank you to Bach Hoai Nguyen and Qurrat Ul Ain for their kind help, es-
pecially the hard time when I just started my PhD. Thanks Mazhar Ansari
Ardeh, Yanan Sun, Andrew Lensen, Qi Chen, Binzi Xu, Jiabin Lin, Baolei
Li, Mahdi Abdollahi, Boxiong Tan, Trung Nguyen, Tao Shi, Yahui Jia, Ying
Bi, Shaolin Wang, Peng Wang, Joao Costa, Kosisochukwu Madukwe, Ba-

ix

x LIST OF PUBLICATIONS

ligh Al-Helali, Harisu Abdullahi Shehu and so many unlisted for their
jokes and discussions. Many thanks to Jing Li, Baobao Wang, Xiaohan Bai,
Pengfei Liu, Zhaojun Ding, Yuye Zhang and Kun Huang for your warm
friendship.

Last but not least, I wish to thank my parents, my younger brother, and
sister in law for great support and understanding. You have always been
the source of love that helps me complete this journey.

Contents

List of Publications v

1 Introduction 1
1.1 Job Shop Scheduling . 1

1.2 Existing Approaches . 4

1.3 Motivations . 7

1.4 Research Goals . 11

1.5 Major Contributions . 13

1.6 Terminology . 19

1.7 Organisation of Thesis . 19

2 Literature Review 23
2.1 Basic Concepts . 23

2.1.1 Scheduling . 23

2.1.2 Machine Learning Basics 25

2.1.3 Evolutionary Computation 26

2.1.4 Genetic Programming 28

2.1.5 Heuristics and Hyper-heuristics 31

2.2 Dynamic Flexible Job Shop Scheduling 33

2.3 GPHH for DFJSS . 37

2.3.1 Overall Process of GPHH for DFJSS 37

2.3.2 Representation . 40

2.3.3 Evaluation . 42

xi

xii CONTENTS

2.4 Job Shop Scheduling Approaches 44

2.4.1 Exact Optimisation Approaches 44

2.4.2 Heuristic Approaches 45

2.4.3 Hyper-heuristic Approaches 47

2.5 Related Work . 48

2.5.1 GPHH to Evolve Scheduling Heuristics for JSS 48

2.5.2 Surrogate Models in GP for JSS 53

2.5.3 Feature Selection in GP for JSS 55

2.5.4 Genetic Operators in GP 56

2.5.5 Multitask Learning . 57

2.6 Chapter Summary . 61

3 Efficiency Improvement with Multi-fidelity Surrogates 63

3.1 Introduction . 63

3.1.1 Chapter Goals . 65

3.1.2 Chapter Organisation 66

3.2 Proposed Algorithm . 66

3.2.1 Framework of the Proposed Algorithm 66

3.2.2 Knowledge Transfer 69

3.2.3 Algorithm Summary 73

3.3 Experiment Design . 74

3.3.1 Simulation Model . 74

3.3.2 Comparison Design 75

3.3.3 Parameter Setting . 76

3.4 Results and Discussions . 80

3.4.1 Training Time . 81

3.4.2 Quality of the Evolved Scheduling Heuristics 83

3.4.3 Effectiveness of Knowledge Transfer Mechanism . . . 87

3.5 Further Analyses . 90

3.5.1 Number Analysis of Multi-fidelity Surrogate Models 91

3.5.2 Sensitivity Analysis of Knowledge Transfer Ratio . . 93

CONTENTS xiii

3.6 Chapter Summary . 94

4 Search Space Reduction with Feature Selection 97
4.1 Introduction . 97

4.1.1 Chapter Goals . 98
4.1.2 Chapter Organisation 99

4.2 Proposed Algorithm . 100
4.2.1 Proposed Two-stage GPHH with Feature Selection . 100
4.2.2 Niching and Surrogate 101
4.2.3 Feature Selection . 102
4.2.4 GPHH Feature Selection with Proposed Individual

Adaptation Strategies 104
4.2.5 Algorithm Summary 109

4.3 Experiment Design . 110
4.3.1 Comparison Design 110
4.3.2 Specialised Parameter Settings of GPHH 111

4.4 Results and Discussions . 111
4.4.1 Quality of the Evolved Scheduling Heuristics 111
4.4.2 Sizes of Evolved Scheduling Heuristics 114
4.4.3 Unique Feature Analysis 117
4.4.4 Training Time . 120

4.5 Further Analyses . 122
4.5.1 Feature Analysis . 122
4.5.2 Rule Analysis . 126

4.6 Chapter Summary . 129

5 New Search Mechanism with Specialised Genetic Operators 131
5.1 Introduction . 131

5.1.1 Chapter Goals . 132
5.1.2 Chapter Organisation 133

5.2 Proposed Algorithm . 133
5.2.1 Framework of the Proposed Algorithm 133

xiv CONTENTS

5.2.2 Subtree Importance Measure Based on Feature Im-
portance . 135

5.2.3 Subtree Importance Measure Based on the Correla-
tion Between the Behaviour of Subtrees and the Whole
Tree . 137

5.2.4 Crossover with Recombinative Guidance 141

5.2.5 Algorithm Summary 144

5.3 Experiment Design . 145

5.3.1 Comparison Design 145

5.3.2 Specialised Parameter Settings of GPHH 145

5.4 Results and Discussions . 146

5.4.1 Quality of the Evolved Scheduling Heuristics 146

5.4.2 Depth Ratios of Selected Subtrees 149

5.4.3 Correlations of Selected Subtrees 154

5.4.4 Probability Difference 155

5.4.5 Training Time . 157

5.5 Further Analyses . 157

5.5.1 Occurrences of Potential Invalid Crossover 158

5.5.2 Sizes of Evolved Scheduling Heuristics 159

5.5.3 Insight on the Evolved Scheduling Heuristics 160

5.5.4 Occurrences of Features 163

5.6 Chapter Summary . 165

6 Multitask Genetic Programming Hyper-heuristic 167

6.1 Introduction . 167

6.1.1 Chapter Goals . 170

6.1.2 Chapter Organisation 171

6.2 Proposed Algorithm . 171

6.2.1 Framework of the Proposed Algorithm 171

6.2.2 Knowledge Sharing 172

6.2.3 Algorithm Summary 176

CONTENTS xv

6.3 Experiment Design . 177

6.3.1 Multitask DFJSS Task Definition 177

6.3.2 Comparison Design 178

6.3.3 Specialised Parameter Settings of GPHH 181

6.4 Results and Discussions . 181

6.4.1 Adaptation of MFEA to GPHH 181

6.4.2 Quality of the Evolved Scheduling Heuristics 182

6.4.3 Evolved High-level Scheduling Heuristics 186

6.5 Chapter Summary . 192

7 Surrogate-Assisted Multitask Genetic Programming 195

7.1 Introduction . 195

7.1.1 Chapter Goals . 196

7.1.2 Chapter Organisation 197

7.2 Proposed Algorithm . 197

7.2.1 Framework of the Proposed Algorithm 197

7.2.2 Surrogate Model . 198

7.2.3 Knowledge Sharing with Surrogate 200

7.2.4 Algorithm Summary 202

7.3 Experiment Design . 203

7.3.1 Comparison Design 203

7.3.2 Specialised Parameter Settings of GPHH 204

7.4 Results and Discussions . 204

7.4.1 Quality of the Evolved Scheduling Heuristics 204

7.4.2 Effectiveness of the Constructed Surrogate 207

7.4.3 Effectiveness of Diversity Preservation 208

7.4.4 Individual Allocation for Tasks 210

7.5 Further Analyses . 214

7.5.1 Sizes of Evolved Scheduling Heuristics 214

7.5.2 Insight of Evolved Scheduling Heuristics 218

7.6 Chapter Summary . 223

xvi CONTENTS

8 Conclusions 225
8.1 Achieved Objectives . 225
8.2 Main Conclusions . 228

8.2.1 Efficiency Improvement with Multi-fidelity Surrogates228
8.2.2 Search Space Reduction with Feature Selection 229
8.2.3 New Search Mechanism with Specialised Genetic Op-

erators . 231
8.2.4 Multitask Learning Ability in GPHH 232

8.3 Further Discussions . 233
8.3.1 Genotype vs Phenotype 233
8.3.2 Implicit vs Explicit Knowledge Transfer 234
8.3.3 Surrogate . 234

8.4 Future Work . 235
8.4.1 Interpretability of Scheduling Heuristics 235
8.4.2 Local Search . 236
8.4.3 Relatedness Between Tasks 236
8.4.4 Multi/many-objective Optimisation 237

List of Tables

1.1 The availability of job information and decision requirement
in different types of JSS. 4

3.1 The common parameter settings of GPHH. 77

3.2 The parameter settings of GPHH. 80

3.3 The mean (standard deviation) of the training time (in min-
utes) of MTGP and M3GP according to 30 independent runs
in six DFJSS scenarios. 81

3.4 The mean (standard deviation) of the objective values on
test instances of MTGP and M3GP2 with the same number
of generations over 30 independent runs in six DFJSS sce-
narios. 84

3.5 The mean (standard deviation) of the objective values on
test instances of MTGP, SGP−H, SGP−K, and M3GP2 with
the same training time of 80 minutes over 30 independent
runs in six DFJSS scenarios. 85

3.6 The mean (standard deviation) of the objective values of
M3GP1 and M3GP2 with and without knowledge transfer
with the same number of generations on test instances ac-
cording to 30 independent runs in six DFJSS scenarios. . . . 87

3.7 The mean (standard deviation) of the objective values on
test instances of MTGP and M3GP2(without) according to
30 independent runs in six DFJSS scenarios. 88

xvii

xviii LIST OF TABLES

3.8 The settings of the number of individuals/jobs of the pro-
posed algorithm with two, three, four, and five surrogates. . 91

3.9 The mean (standard deviation) of the training time (in min-
utes) of the involved algorithms with the same number of
generations based on 30 independent runs in six DFJSS sce-
narios. 92

3.10 The mean (standard deviation) of the objective values on
test instances of M3GP2, M3GP3, M3GP4, and M3GP5 with
the same number of generations according to 30 indepen-
dent runs in six DFJSS scenarios. 92

4.1 An example of calculating the phenotypic characterisation
of a routing rule with four decision situations and each with
three candidate machines. 107

4.2 The specialised parameter settings of GPHH. 111

4.3 The mean (standard deviation) of the objective values of the
five algorithms over 30 independent runs for six DFJSS sce-
narios. 112

4.4 The mean (standard deviation) of the rule sizes obtained
by CCGP, CCGP2 and CCGP2a(mimic) over 30 independent
runs in six DFJSS scenarios. 117

4.5 The mean (standard deviation) of the average number of
unique features of routing rules obtained by the five algo-
rithms over 30 independent runs in six DFJSS scenarios. . . . 117

4.6 The mean (standard deviation) of the average number of
unique features of sequencing rules obtained by the five
algorithms over 30 independent runs in six DFJSS scenarios. 118

4.7 The mean(standard deviation) of training time (in minutes)
by the five algorithms in six DFJSS scenarios. 121

5.1 An example of the calculation for decision vector of the
subtrees of an individual. 138

LIST OF TABLES xix

5.2 An example of the calculations for correlation of subtrees
of an individual in a decision situation. 139

5.3 The specialised parameter settings of GPHH. 146

5.4 The mean (standard deviation) of the objective values of
CCGP, CCGPf , CCGPc and CCGP!c on unseen instances over
50 independent runs in six DFJSS scenarios. 147

5.5 The mean (standard deviation) of training time (in minutes)
of CCGP, CCGPf , and CCGPc over 50 independent runs in
six DFJSS scenarios. 157

5.6 The mean (standard deviation) of the sizes of evolved the
best routing and sequencing rules of CCGP, CCGPf , and
CCGPc over 50 independent runs in six DFJSS scenarios. . . 160

6.1 The designed homogeneous multitask scenarios with tasks
represented by optimised objective and utilisation level. . . 179

6.2 The designed heterogeneous multitask scenarios with tasks
represented by optimised objective and utilisation level. . . 179

6.3 The availability of instance rotation and re-evaluation of MFGP,
MFGPr−, and MFGPr+. 180

6.4 The specialised parameter settings of GPHH. 180

6.5 The mean (standard deviation) of the objective values on
test instances of MFGPr−, MFGPr+ and MFGP over 30 in-
dependent runs in three homogeneous multitask scenarios. . 181

6.6 The mean (standard deviation) of the objective values on
test instances of GP, MFGP, M2GP, and M2GPf over 30 inde-
pendent runs in three homogeneous multitasking scenarios. 182

6.7 The mean (standard deviation) of the objective values on
test instances of GP, MFGP, M2GP, and M2GPf over 30 in-
dependent runs in three heterogeneous multitask scenarios. 184

7.1 The specialised parameter settings of GPHH. 204

xx LIST OF TABLES

7.2 The mean (standard deviation) of the objective values on
test instances of MTGP and SMTGP over 30 independent
runs in three multitask scenarios. 207

List of Figures

1.1 An example of the flowtime of a job (Job1). 2

1.2 The outline of this thesis, including the main goals and in-
volved techniques of each chapter, and the connection be-
tween the chapters in this thesis. 20

2.1 The flowchart of a typical evolutionary computation algo-
rithm. 27

2.2 An example of tree-based GP program. 28

2.3 An example of programs generated by full method and grow
method. 29

2.4 An example of generating high-level heuristic from simple
low-level heuristics with GP. 32

2.5 An example of decision making processes of DFJSS with
scheduling heuristics (i.e., routing rule and sequencing rule). 36

2.6 The overall process of GPHH for DFJSS. 38

2.7 An example of the representation with cooperative coevo-
lution for DFJSS. 40

2.8 An example of the multi-tree representation with a routing
rule and a sequencing rule for DFJSS. 41

3.1 The evolutionary framework of the proposed algorithm. . . 68

3.2 The selected promising individuals based on knee-point. . . 73

xxi

xxii LIST OF FIGURES

3.3 The curve of the training time (in seconds) of MTGP and
M3GP during the training process according to 30 indepen-
dent runs in six DFJSS scenarios. 82

3.4 The curve of average objective values according to 30 inde-
pendent runs on test instances of MTGP, SGP−H, SGP−K,
and M3GP2 with the same training time (in minutes) in six
DFJSS scenarios. 86

3.5 The curve of average objective values on test instances of
M3GP1(without) and M3GP1(with) according to 30 indepen-
dent runs in six DFJSS scenarios. 89

3.6 The curve of average objective values on test instances of
M3GP2(without) and M3GP2(with) according to 30 indepen-
dent runs in six DFJSS scenarios. 90

3.7 The curve of average objective values on test instances of
M3GP2 with different transfer ratios over 30 independent
runs in six DFJSS scenarios. 94

4.1 The flowchart of two-stage GPHH with feature selection for
DFJSS. 101

4.2 An example of how to examine the contribution (denoted
as Cx) of a feature x for an individual r. 103

4.3 The flowchart of two-stage GPHH feature selection algo-
rithm with individual adaptation strategies (i.e., the reddish
font parts are the main steps of the proposed algorithm). . . 104

4.4 An example of the phenotypic characterisation of an indi-
vidual in DFJSS (PC indicates phenotypic characterisation). . 108

4.5 The process of mimicking individuals by generating new
individuals only with selected features. 108

4.6 The curves of average objective values on test instances of
the five algorithms according to 30 independent runs in six
DFJSS scenarios. 113

LIST OF FIGURES xxiii

4.7 The curves of the best routing rule sizes of the population
of the five algorithms according to 30 independent runs in
six DFJSS scenarios. 115

4.8 The curves of the best sequencing rule sizes of the popula-
tion of the five algorithms according to 30 independent runs
in six DFJSS scenarios. 116

4.9 The violin plot of rule sizes (i.e., routing rule plus sequenc-
ing rule) obtained by CCGP, CCGP2, and CCGP2a(mimic)

after simplification over 30 independent runs in six DFJSS
scenarios. 119

4.10 The scatter plot of the sizes of routing rules and sequencing
rules before and after simplification obtained by CCGP2a(mimic)

over 30 independent runs in six DFJSS scenarios. 120

4.11 The average rule (routing rules plus sequencing rules) sizes
over population of the five algorithms in six DFJSS scenarios.122

4.12 Selected and unselected features of sequencing rules of 30
independent runs in six DFJSS scenarios. 123

4.13 Selected and unselected features of routing rules of 30 in-
dependent runs in six DFJSS scenarios. 124

4.14 The distributions of the test objective values of the 30 inde-
pendent runs of CCGP2a(mimic) in scenario <Fmax, 0.85>,
categorised by whether each feature is selected or not in se-
quencing rules. 126

5.1 The flowchart of the proposed algorithm. 134

5.2 The occurrences of features in the top three individuals. . . . 135

5.3 The importance (i.e., scores) of subtrees of an individual. . . 136

5.4 An example of a labelled tree-based GP individual. 137

5.5 An example of calculating the probabilities for subtrees. Fig-
ure 5.5 (a) tends to choose unimportant subtrees while Fig-
ure 5.5 (b) tends to choose important subtrees. 142

xxiv LIST OF FIGURES

5.6 An example of produced offspring from two parents with
the proposed recombinative guidance mechanism. 143

5.7 The violin plot of the average objective values of CCGP,
CCGPf , CCGPc and CCGP!c on unseen instances over 50
independent runs in six DFJSS scenarios. 148

5.8 The curves of the average objective values of CCGP, CCGPf ,
CCGPc and CCGP!c on unseen instances over 50 indepen-
dent runs in six DFJSS scenarios. 149

5.9 The curves of the average depth ratios for the selected im-
portant and unimportant subtrees of CCGPc over 50 inde-
pendent runs in six DFJSS scenarios. 150

5.10 The curves of the average depth ratios for the selected im-
portant and unimportant subtrees of CCGPf over 50 inde-
pendent runs in six DFJSS scenarios. 151

5.11 The curves of the average depth ratios of important sub-
trees obtained by CCGP, CCGPf and CCGPc over 50 inde-
pendent runs in six DFJSS scenarios. 152

5.12 The curves of the average depth ratios of unimportant sub-
trees of CCGP, CCGPf and CCGPc over 50 independent runs
in six DFJSS scenarios. 153

5.13 The histogram plot for the correlations of the selected sub-
trees of CCGPc at generation 1, 25, and 45 in the scenario
<WFmean, 0.95> over 50 independent runs. 154

5.14 The histogram plot of probability difference of the selected
subtrees of CCGPc at generation 1, 25, and 45 in the scenario
<WFmean, 0.95> over 50 independent runs. 156

5.15 The curve of average occurrences of potential invalid re-
placements of CCGPf and CCGPc over 50 independent runs
in six DFJSS scenarios. 159

5.16 One of the best evolved sequencing rules evolved by CCGPc

in scenario <Fmax, 0.95>. 161

LIST OF FIGURES xxv

5.17 One of the best evolved sequencing rules evolved by CCGPc

in the scenario <WFmean, 0.95>. 163

5.18 The curves of the occurrence of features in routing rules
during the evolutionary process of CCGPc. 164

5.19 The curves of the occurrence of features in sequencing rules
during the evolutionary process of CCGPc. 165

6.1 The flowchart of MFEA with k tasks, where P , Pnew, and
Pimd denote the evaluated, newly generated offspring, and
the concatenated population. 168

6.2 The framework of the proposed multitask GP based gener-
ative hyper-heuristic with a focus on the knowledge sharing. 174

6.3 An example of generating offspring for Subpop1 by sharing
knowledge from Subpop2. 175

6.4 The violin plot of the average objective values on test in-
stances of GP, MFGP, and M2GP based on 30 independent
runs in three homogeneous multitask scenarios (each row is a
multitask scenario). 183

6.5 The violin plot of the average objective values on test in-
stances of GP, MFGP, M2GP, and M2GPf based on 30 inde-
pendent runs in three heterogeneous multitask scenarios
(each column is a multitask scenario). 185

6.6 The violin plot of the average objective values on test in-
stances of MFGP and M2GPf in both homogeneous (denoted
as homo) and heterogeneous (denoted as hete) multitask
scenarios for their common tasks based on 30 independent
runs. 187

6.7 One of the best evolved routing rules for task 1 <Fmean,
0.95> in heterogeneous multitask scenario 2. 188

6.8 One of the best evolved routing rules for task 2 <Tmean,
0.95> in heterogeneous multitask scenario 2. 189

xxvi LIST OF FIGURES

6.9 One of the best evolved sequencing rules for task 1<Fmean,
0.95> in heterogeneous multitask scenario 2. 190

6.10 One of the best evolved sequencing rules for task 2<Tmean,
0.95> in heterogeneous multitask scenario 2. 191

7.1 An example of the proposed surrogate-assisted multitask
GPHH with three tasks in terms of the surrogate and knowl-
edge sharing mechanism. 200

7.2 The violin plot of average objective values on test instances
of MTGP, M2GPf , SMTGP, and SMT2GP over 30 indepen-
dent runs in three multitask DFJSS scenarios (each row is a
multitask scenario). 205

7.3 The curves of the average objective values on test instances
based on 30 independent runs of MTGP, M2GPf , SMTGP,
and SMT2GP in three multitask DFJSS scenarios (each row
is a multitask scenario). 206

7.4 The curves of the average objective values on test instances
based on 30 independent runs of MTGP and SMTGP in three
multitask scenarios (each row is a multitask scenario). 208

7.5 The curves of the average number of cleared individuals for
tasks of SMTGP and SMT2GP over 30 independent runs in
three multitask DFJSS scenarios (each row is a multitask sce-
nario). 209

7.6 The curves of the average number of assigned individuals
for a specific task from different tasks of SMT2GP over 30
independent runs in three multitask DFJSS scenarios (each
row is a multitask scenario). 211

7.7 The ranks of individuals samples of the surrogate for task 3. 212

7.8 The corresponding tasks of the mapped individuals in sur-
rogate of the newly generated individuals for tasks. 213

LIST OF FIGURES xxvii

7.9 The curves of the average rule sizes (routing plus sequenc-
ing rule) for tasks of MTGP, SMTGP, and SMT2GP over 30
independent runs in three multitask DFJSS scenarios (each
row is a multitask scenario). 215

7.10 The curves of the average routing rule sizes for tasks of
MTGP, SMTGP, and SMT2GP over 30 independent runs in
three multitask DFJSS scenarios (each row is a multitask sce-
nario). 216

7.11 The curves of the average sequencing rule sizes for tasks
of MTGP, SMTGP, and SMT2GP over 30 independent runs
in three multitask DFJSS scenarios (each row is a multitask
scenario). 217

7.12 One of the best evolved routing rules for task 1 <WTmean,
0.75> in multitask scenario 3. 218

7.13 One of the best evolved routing rules for task 2 <WTmean,
0.85> in multitask scenario 3. 219

7.14 One of the best evolved routing rules for task 3 <WTmean,
0.95> in multitask scenario 3. 220

xxviii LIST OF FIGURES

Chapter 1

Introduction

This chapter begins by introducing job shop scheduling with a focus on
dynamic flexible job shop scheduling. Then, the existing approaches for
solving the job shop scheduling problems, including exact approaches,
heuristic approaches, and hyper-heuristic approaches, especially genetic
programming hyper-heuristics are discussed. Details of the motivations
and research goals of this thesis are also presented. Last, the major contri-
butions are provided, followed by the organisation of this thesis.

1.1 Job Shop Scheduling

Job shop scheduling (JSS) [150] is an important combinatorial optimisa-
tion problem, which captures practical issues in real-world applications
such as grid/cloud computing [14], order picking in the warehouse [111],
and manufacturing industry [80, 219]. JSS has received widespread at-
tention in both academia and industry due to its practical applications
[137, 242, 251]. The job shop contains a number of jobs need to be pro-
cessed by a set of machines. The goal of JSS is to optimise the use of
machine resources to achieve production efficiency such as minimising
makespan [141] to reduce the total processing time and tardiness [200] to
reduce the production delays.

1

2 CHAPTER 1. INTRODUCTION

flowtime

t0 t1 t2 t3 t4 t5 t6

t

Job1 O11 O12 O13

O11 O12 O13

Figure 1.1: An example of the flowtime of a job (Job1).

Depending on whether the information of jobs is known in advance
or not, JSS can be classified as static (classical) JSS or dynamic JSS [175].
Depending on whether a job can be processed on more than one machine,
JSS can be categorised into flexible JSS and non-flexible JSS [242].

Static (Classical) Job Shop Scheduling: In the typical version of JSS
[150], a number of jobs need to be processed on a set of machines. Each
job has a sequence of operations. The operations of a job need to be exe-
cuted in a predefined order, and each operation can only be processed at a
specified machine. In addition, information about jobs is available when
making a schedule. The flowtime of a job is the duration from the job ar-
rives at the shop floor to its completion time. An example of the flowtime
of Job1 with three operations can be found in Figure 1.1. We can see that
Job1 arrives at time t0, and the starting processing time of its first operation
O11 is t1. The last operation O13 of Job1 is finished at time t6. Therefore, the
flowtime of Job1 is t6 − t0.

Dynamic Job Shop Scheduling: Static JSS implies that the informa-
tion of jobs is known when we make a schedule for the production in a job
shop. However, in practice, the environment of a job shop floor is usually
dynamic, e.g., new jobs can arrive dynamically [70, 239, 240], and the ma-
chine may break down unexpectedly [187, 229]. Dynamic JSS [159, 175] is
used for considering the scheduling situations with dynamic events. This
thesis considers the dynamic events that job can arrive over time, since
it is the most common dynamic factor in a job shop for real-world appli-
cations [102]. For example, it is quite common for a company to receive

1.1. JOB SHOP SCHEDULING 3

orders from customers dynamically. However, it is not easy for a company
to predict the information of orders before the orders arrive. This means
that in dynamic JSS, information about jobs is not known until they arrive
at the job shop floor.

Flexible Job Shop Scheduling: Flexible JSS [23, 74] is an extension of
the classical JSS in which each operation can be processed by a set of candi-
date machines rather than a specific machine. Each operation will be pro-
cessed on one of its candidate machines, and its processing time depends
on the machine that processes it. There are two decisions that need to be
made simultaneously in flexible JSS. One is machine assignment for allocat-
ing a ready operation to a machine, and the other is operation sequencing
for choosing an operation to be processed next when a machine is idle and
there are operations in its queue. Given a number of jobs and a set of ma-
chines, flexible JSS aims to determine which machine to process a partic-
ular job and which job will be chosen to be processed next by a particular
machine.

Dynamic Flexible Job Shop Scheduling: Dynamic flexible JSS (DFJSS)
[244] needs to do machine assignment and operation sequencing simulta-
neously under a dynamic environment with unpredicted events such as
new jobs arriving dynamically [230, 249] and machine breakdown unex-
pectedly [229]. DFJSS is more challenging than static (classical) JSS, dy-
namic JSS and flexible JSS, since DFJSS involves more than one decision
and dynamic environment compared with other variations of JSS.

In general, dynamic JSS and flexible JSS are variants of classical JSS.
Furthermore, DFJSS is a combination of dynamic JSS and flexible JSS. The
details about the availability of job information and the required decisions
of different types of JSS are shown in Table 1.1. Table 1.1 shows that DFJSS
is the most complex one among the four types of JSS with two decisions
and unknown job information in advance.

4 CHAPTER 1. INTRODUCTION

Table 1.1: The availability of job information and decision requirement in
different types of JSS.

Problem Classical JSS Dynamic JSS Flexible JSS DFJSS

Job Information
known ! !

unknown ! !

Decision
routing ! !

sequencing ! ! ! !

1.2 Existing Approaches

Over the years, a number of approaches, including exact approaches, heuris-
tic approaches, and hyper-heuristic approaches along with GPHH, have
been adapted for solving the JSS problems. Different types of these ap-
proaches are discussed as follows.

Exact Approaches: Many techniques search for optimal solutions, which
are known as exact approaches such as dynamic programming [37], branch-
and-bound [135] and integer linear programming [213], have been inves-
tigated for static JSS [32, 34, 37]. However, DFJSS is an NP-hard prob-
lem [216] and cannot be handled efficiently with exact optimisation ap-
proaches. Normally, exact approaches are only limited to solve small scale
static JSS problems. Exact approaches are too time-consuming when the
problems are getting large. It is also hard for exact approaches to han-
dle dynamic problems where a lot of real-time decisions are needed to be
made quickly.

Heuristic Approaches: A heuristic approach is designed for solving
a problem more quickly when the exact approaches are too slow, or for
finding an approximate solution when the exact approaches fail to find
the optimal solution [192]. A heuristic approach aims to produce a good
enough solution for the problem at hand in a reasonable time. There are
two different types of heuristics, i.e., improvement heuristic and construc-
tion heuristic, depending on how they build solutions. An improvement

1.2. EXISTING APPROACHES 5

heuristic starts with a complete initial solution, and improves the solution
iteratively until a stopping criterion is met [224]. A construction heuristic
starts with an empty solution and repeatedly updates the partial solutions
until a complete solution is obtained [127].

Improvement heuristics such as bee colony algorithm [48, 140], tabu
search [180], simulated annealing [225], and genetic algorithms [46, 196]
have been proposed to find “good enough” solutions for solving JSS prob-
lems [3, 83, 193, 221] in a reasonable time. However, they are often not
suitable for solving the dynamic JSS problems due to their lack of ability to
react in time (i.e., face with rescheduling issue, which is time-consuming).
Construction heuristics such as dispatching rules, have been popularly
used for dynamic JSS due to its efficiency to make real-time decisions
(i.e., dispatching rules are used as priority functions to prioritise jobs and
machines at the decision points). Comprehensive comparison among a
large number of dispatching rules can be found in [212]. It is noted that
a scheduling heuristic in DFJSS consists of a routing rule (i.e., for ma-
chine assignment) and a sequencing rule (i.e., for operation sequencing)
[242, 244]. Scheduling heuristics make decisions according to the priority
values of machines or operations only at the decision points. This leads to two
main reasons for the success of scheduling heuristics in DFJSS [233, 244].
One is its ability to handle large scale problems efficiently. The other
is its efficiency to make real-time decisions with dynamic events. How-
ever, the scheduling heuristics, such as SPT (i.e., shortest processing time)
and some composite rules [114], are often manually designed by experts
[47, 65, 114, 115, 226]. The designing process is time-consuming, and the
designed rules are typically too specific to be applied to different scenarios
[18, 82, 122].

Hyper-Heuristic Approaches: A hyper-heuristic [21, 25, 27] is an au-
tomated methodology for selecting or generating heuristics to solve hard
computational search problems. The unique characteristic is that hyper-
heuristic approaches work on the heuristic space instead of the solution

6 CHAPTER 1. INTRODUCTION

space. In other words, a hyper-heuristic approach outputs a heuristic
rather than a solution.

There are two types of hyper-heuristic approaches [26]. One is heuris-
tic selection which aims to choose existing heuristics for different prob-
lem scenarios. The goal of a heuristic selection approach is to find a se-
quence of heuristics. The other is heuristic generation which aims to gener-
ate new high-level heuristics using existing low-level heuristics. The goal
of a heuristic generation approach is to generate an informative high-level
heuristic rather than finding the solution directly [26]. For DFJSS, heuristic
generation is commonly used to generate high-level scheduling heuristics
with low-level heuristics. Hyper-heuristic approaches have two main ad-
vantages. First, the learned high-level heuristics have good reusability,
and can easily be applied to a range of problem scenarios. Second, gen-
erative hyper-heuristic approaches can handle the dynamic problems effi-
ciently, because the evolved heuristics are typically used as priority func-
tions and can make real-time decisions. A recent state-of-the-art survey of
existing studies on hyper-heuristics and its applications can be found in
[21].

Genetic Programming Hyper-heuristic: Genetic programming (GP)
[131] is a genetic-based machine learning [85, 119] algorithm with many
successful applications in regression [42], classification [39, 109], and com-
puter vision [161]. To solve a task, GP initializes and maintains a pop-
ulation of programs which compete for survival and reproduction based
on how well they solve the task, i.e., their fitness. Variable-length repre-
sentations such as trees or graphs are used to compose the programs, and
genetic operators are applied to produce child programs. By evolving its
population through many generations, GP can explore the program search
space to discover the program that performs best for a given task. The flex-
ible representations and search mechanisms make GP a suitable approach
to designing scheduling heuristics, since the structure and size of optimal
heuristics are not known in advance. A general GP based hyper-heuristic

1.3. MOTIVATIONS 7

(GPHH) framework was presented in [27], and it has been successfully
used in different problems such as packing [28, 107], timetabling [8, 198],
arc routing [5, 227] and JSS [106, 169, 170, 172, 241]. In the last decade,
GPHH works as heuristic generation approach, has been the dominating
technique to evolve scheduling heuristics for DFJSS automatically. The
heuristics obtained by GP can be interpreted due to its function character-
istic, which is a very important for real-world applications.

Summary: Exact optimisation approaches are usually not applicable to
dynamic and large scale problems. Improvement heuristic approaches can ob-
tain high-quality solutions in a reasonable time. However, most of them
can hardly handle dynamic environments efficiently because the sched-
ule re-optimisation process is too time-consuming to react in real-time.
Construction heuristic approaches such as scheduling heuristics are the most
popularly used heuristics for DFJSS. However, the scheduling heuristics
are usually designed by experts manually. The design highly relies on
domain knowledge, especially for complex scenarios, which is often un-
available to the end-users. In addition, the designed heuristics are usu-
ally too specific to be reused in other scenarios. GPHH is naturally a
good candidate to evolve scheduling heuristics automatically for DFJSS
[158, 173, 242, 249] due to its flexible representation.

1.3 Motivations

Although GPHH has shown its superiority for DFJSS, there are still lim-
itations of the existing GPHH approaches in terms of training efficiency,
search ability, search mechanism, and multitask solving ability.

First, the GP individual evaluation is time-consuming in DFJSS, since
a lot of priority calculations with the GP individual are involved for mak-
ing decisions during simulation runs. Simulation [57] is a promising tech-
nique to investigate the complex real-world problems such as health care
[133] and manufacturing [176]. DFJSS is implemented with a complex sim-

8 CHAPTER 1. INTRODUCTION

ulation environment to simulate the real-world production situations.

Surrogate-assisted evolutionary computation [116] has been widely used
for reducing computational time in evolutionary optimisation of expen-
sive problems such as drug design [30, 67] and surgical training optimi-
sation [19, 147], where complex computational simulations are involved.
Surrogate approaches are also used with pre-selection strategy [73] to im-
prove the effectiveness of the evolutionary algorithms. However, the stud-
ies related to surrogates for JSS is very limited. To the best of our knowl-
edge, the performance of the existing two surrogate approaches on JSS, ei-
ther based on K nearest neighbour [99, 174] or simplified model [176, 245],
are sensitive to the accuracies of the built surrogates, since there is only a
single surrogate model for the investigated problem.

Generally, high-fidelity surrogate models can provide more reliable
and accurate results but with higher computational cost than low-fidelity
surrogate models [116]. A promising way to achieve a trade-off between
prediction accuracy and computational cost in modelling is to integrate
the information from both high-fidelity and low-fidelity simulations by
constructing a multi-fidelity surrogate model [258]. Introducing multi-
ple models can reduce the dependence on one single surrogate model.
In addition, if the surrogate models can help each other effectively, they
may enhance each other, thus benefiting the overall algorithm. How-
ever, the multi-fidelity surrogate model approach has not to be studied
in DFJSS. This motivates this thesis to propose an effective multi-fidelity
based surrogate-assisted GPHH algorithm for DFJSS.

Second, GP has large search space due to its variable-length represen-
tation, which can limit its search effectiveness and efficiency. Reducing the
search space can not only enhance the effectiveness of GP but also improve
the interpretability of evolved scheduling heuristics with fewer features.
Feature selection [93] is an important task to select relevant and comple-
mentary features to reduce the search space. Feature selection has been
successfully used for different tasks such as classification [56, 223, 231],

1.3. MOTIVATIONS 9

clustering [136], and regression [42].

However, there are some challenges which make traditional feature se-
lection approaches not directly applicable in DFJSS. First, the task (i.e., pri-
oritising operations or machines) in DFJSS and the training instances are
different from the traditional machine learning tasks and instances. The
training data are generated with the simulation execution in DFJSS while
the training data already exist in the traditional machine learning tasks.
In this case, filter-based feature selection approaches for traditional ma-
chine tasks such as classification cannot be applied for DFJSS, since it is
impossible to measure the importance of each feature based on the filter
measures such as entropy [120] and Pearson’s correlation [210]. Second,
it is much more computationally expensive to apply the wrapper-based
feature selection approaches in DFJSS than in traditional machine tasks.
Specifically, running a GP process to obtain a reliable estimation of the
best objective value of a terminal set is much slower than training a clas-
sifier (e.g., decision tree) in traditional machine learning tasks. Besides,
in most embedded approaches, GP has been successfully used to handle
both the feature selection and the supervised machine learning tasks such
as the regression [42, 44] and classification [40, 162] simultaneously. How-
ever, feature selection is rarely used in GP for JSS which is an unsupervised
machine learning task.

Existing works [152, 155] about feature selection for dynamic JSS were
mainly presented in an offline way. This means that feature selection is
always applied as a pre-processing step to get a promising subset of ter-
minals first, and then the selected terminals are used in another indepen-
dent GP run to solve the problems. It is noted that this pre-processing
step is actually running GP for more than one time, and detects impor-
tant features based on the outputs of GP runs. There are some drawbacks
of the offline way. First, this will lose some generated good structures of
individuals which have been generated in the process of feature selection
(i.e., GP runs). Second, GP evaluation is very time-consuming, and GP

10 CHAPTER 1. INTRODUCTION

with feature selection requires more individual evaluations to investigate
the feature importance, and thus making it even time-consuming. In ad-
dition, there is no work about using feature selection to solve the DFJSS
problem. All these unexplored research questions motivate this thesis to
propose an effective GPHH algorithm with feature selection for DFJSS.

Third, the search mechanism for generating the offspring of the tra-
ditional GP is not effective, since there is no guidance for choosing the
genetic materials from the parent(s). A GP individual (i.e., a tree) contains
a number of subtrees. Taking the crossover operator as an example, in a
typical GP crossover, subtrees are randomly chosen from the two parents
for swapping to produce two offspring. However, the importance of sub-
trees of a GP individual can be different. Some subtrees play important
roles for an individual, and removing them may worsen the fitness of an
individual. Some other subtrees may be redundant (unimportant) [64],
and removing them does not affect the fitness of an individual. In general,
it is more likely to get offspring with good fitness, if the important sub-
trees of one parent can be reserved and the unimportant subtrees of one
parent can be replaced by the important subtrees from the other parent.

Theoretical studies in [203, 204] suggest that introducing biases of GP
operators can be beneficial for different purposes, such as improving the
quality of offspring and controlling the size of offspring. To improve the
quality of offspring, this thesis aims at incorporating biases for the crossover
operator by measuring the importance of subtrees, since crossover is the
most important genetic operators for GP [129]. However, there are no ex-
isting studies about measuring the importance of subtrees for a GP indi-
vidual in DFJSS. In addition, it is not clear how to apply the expected “bi-
ases” to GP for DFJSS. All these open research questions motivate this the-
sis to propose effective specialised genetic operators to improve the search
mechanism of GP.

Last, the multitask GP algorithm in the hyper-heuristics domain for
solving multiple JSS tasks simultaneously is still an unexplored area.

1.4. RESEARCH GOALS 11

Multitask learning is a paradigm in the optimisation that aims at solving
multiple self-contained tasks simultaneously. The paradigm of multifac-
torial optimisation toward evolutionary multitask (MFEA) was developed
in [90, 91] for solving multiple tasks simultaneously by evolutionary algo-
rithms. The success of MFEA relies on the knowledge sharing mechanism
[92] between tasks by assortative mating and vertical cultural transmis-
sion during the evolutionary process. Specifically, the candidate solutions
in a population for different tasks enhance each other by harnessing the
hidden relationships between them via continuous genetic sharing in a
unified search space. Based on the assumption that many problems in
real-world are interconnected, MFEA has been widely and successfully
applied to solve different problems such as continuous numeric optimisa-
tion [91, 138, 256], symbolic regression [255], and JSS [234, 239]. A recent
multitask selective hyper-heuristic has been investigated in [96] on exam
timetabling and graph colouring problems. However, to the best of our
knowledge, there is no study on multitask generative hyper-heuristic.

In addition, surrogate techniques have been incorporated into multi-
task learning [62, 104, 146, 157]. However, the surrogate techniques were
used to improve the performance of a single task rather than enhancing
the core mechanism of multitask learning, such as the knowledge sharing
between tasks. All these unexplored research questions motivate this the-
sis to propose an effective multitask GPHH algorithm to solve multiple
DFJSS tasks simultaneously, and develop an effective surrogate-assisted
multitask GPHH algorithm by enhancing the knowledge sharing between
tasks with surrogate techniques.

1.4 Research Goals

The overall goal of this thesis is to develop an effective GPHH approach by
considering the training efficiency, search space, search mechanism, and
multitask solving ability, to evolving scheduling heuristics automatically

12 CHAPTER 1. INTRODUCTION

for DFJSS from different aspects. Specifically, this thesis focuses on im-
proving training efficiency of GPHH via surrogate techniques, reducing
the search space of GPHH with feature selection techniques, improving
the search mechanism of GPHH by developing specialised genetic opera-
tors, and improving the multiple task solving ability of GPHH with mul-
titask learning and surrogate techniques. The details of each objective are
shown as follows.

The first objective is to develop an effective GPHH algorithm with
multi-fidelity based surrogate models to automatically evolve schedul-
ing heuristics for the DFJSS problems more efficiently. The proposed
algorithm is expected to both speed up the convergence and reduce the
training time of GPHH for DFJSS. Specifically, multi-fidelity surrogates
are built by simplifying the DFJSS problem to be solved to different de-
grees. Involving multi-fidelity surrogates aims to reduce the dependence
of the algorithm performance on specific model accuracy. In addition, an
effective collaboration framework with knowledge transfer is proposed to
utilise the advantages of surrogate models with different fidelities to en-
hance the final performance of the overall algorithm.

The second objective is to develop effective GPHH algorithms with
feature selection to reduce the search space for evolving scheduling heuris-
tics for DFJSS efficiently. The proposed algorithms are expected to help
GPHH find smaller rules only with selected features without sacrificing
the performance. The rules with smaller sizes and fewer unique features
tend to be more interpretable. First, this thesis develops an effective two-
stage GPHH feature selection framework for DFJSS with surrogate and
niching techniques to detect important features effectively and efficiently.
Second, this thesis proposes GPHH feature selection algorithms with novel
individual adaptation strategies to generate new individuals only with
the selected features but with similar performance. Individual adapta-
tion strategies are proposed to utilise the information of both the selected
features and examined individuals during the feature selection process.

1.5. MAJOR CONTRIBUTIONS 13

The third objective is to develop effective GPHH algorithms by im-
proving the quality of generated offspring with new search mechanisms
based on the importance of subtrees for DFJSS. The proposed algorithm
is expected to help GPHH find better scheduling heuristics by improving
the quality of the produced offspring. This thesis proposes two subtree
importance measures. One is based on the frequency of features, and the
other is based on the correlation between subtrees and the whole tree (i.e.,
an individual). The developed correlation importance measure reflects
the degree of relationship between the behaviour of the subtree and the
entire tree. An effective recombinative guidance strategy is developed to
improve the quality of offspring in GPHH for DFJSS via the crossover op-
erator. Specifically, the probability of a subtree to be chosen is set based
on its importance. An offspring is generated by replacing an unimportant
subtree from one parent with an important subtree from the other.

The last objective is to develop effective multitask GPHH algorithms
for evolving scheduling heuristics for multiple DFJSS tasks automati-
cally. The proposed algorithm is expected to both speed up the conver-
gence of GPHH and improve the quality of obtained scheduling heuris-
tics for solving multiple DFJSS tasks simultaneously. A multitask GPHH
framework is firstly developed by adapting the traditional evolutionary
multitask algorithm based on the characteristics of GPHH. In addition,
based on the proposed multitask GPHH framework, this thesis introduces
to use the surrogate technique to assist multitask GPHH for DFJSS. The
built surrogates are used to improve the effectiveness of solving a single
task and the effectiveness of sharing knowledge between tasks.

1.5 Major Contributions

This thesis makes the following contributions:

1. This thesis has shown how to employ multi-fidelity based surro-
gate models to improve the efficiency of GPHH to evolve schedul-

14 CHAPTER 1. INTRODUCTION

ing heuristics automatically for DFJSS. This is successfully achieved
by proposing an effective collaboration framework in GPHH that al-
lows multi-fidelity based surrogates to learn from each other with an
effective knowledge transfer mechanism.

The results show that the proposed algorithm can dramatically re-
duce the computational time of GPHH for DFJSS without losing its
performance. Within the same training time, the proposed algorithm
can achieve significantly better performance in most test scenarios,
while no worse than its counterparts in all the scenarios. The effi-
ciency of the proposed algorithm is verified by comparing the train-
ing time. The effectiveness of the proposed algorithm is verified
with two stopping criteria, i.e., the same number of generations and
the same training time. The knowledge transfer mechanism is also
further analysed. In summary, the proposed algorithm can success-
fully improve the efficiency of GP, and achieve effective scheduling
heuristics for DFJSS. The proposed algorithm shows its superiority
compared with the state-of-the-art algorithms related to surrogate
for the JSS problems.

Part of this contribution has been published in:

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “Collab-
orative Multifidelity-Based Surrogate Models for Genetic Program-
ming in Dynamic Flexible Job Shop Scheduling”. IEEE Transactions
on Cybernetics, 2021, pp. 1-15. (Doi: 10.1109/TCYB.2021.3050141)

Fangfang Zhang, Yi Mei, and Mengjie Zhang. “Surrogate-Assisted
Genetic Programming for Dynamic Flexible Job Shop Scheduling”.
in Proceedings of the Australasian Joint Conference on Artificial Intelli-
gence, 2018, pp. 766-772.

2. This thesis has shown how feature selection can be applied to GPHH
to reduce the search space for evolving scheduling rules with fewer
unique features and smaller sizes for DFJSS without compromising

1.5. MAJOR CONTRIBUTIONS 15

the performance. This is achieved by proposing a two-stage GPHH
feature selection framework with surrogate and niching techniques
for DFJSS. In addition, the GPHH feature selection algorithm is fur-
ther improved with novel individual adaptation strategies to elim-
inate the unselected features for evolving scheduling rules without
sacrificing the performance. The effective individual adaptation strat-
egy utilises the information of the selected features and the investi-
gated individuals in the feature selection process.

The results show that the proposed two-stage GPHH algorithm with
feature selection can effectively and efficiently detect important fea-
tures for routing and sequencing rules. In addition, the evolved
rules by the proposed GPHH feature selection algorithm with indi-
vidual adaptation strategies have fewer unique features and smaller
rule sizes. The proposed algorithm is less time-consuming than the
baseline algorithm, since the average rule size over population is re-
duced. Overall, the proposed algorithm can efficiently evolve schedul-
ing heuristics with only the selected features without comprising the
performance.

Part of this contribution has been published in:

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “Evolv-
ing Scheduling Heuristics via Genetic Programming with Feature Se-
lection in Dynamic Flexible Job Shop Scheduling”. IEEE Transactions
on Cybernetics, vol. 51, no. 4, pp. 1797-1811, 2021.

Fangfang Zhang, Yi Mei, and Mengjie Zhang. “A Two-stage Genetic
Programming Hyper-heuristic Approach with Feature Selection for
Dynamic Flexible Job Shop Scheduling”. in Proceedings of the Genetic
and Evolutionary Computation Conference, 2019, pp. 347-355.

3. This thesis has shown how effective recombinative guidance strate-
gies in GPHH can improve its search mechanism to evolve effec-
tive scheduling heuristics by improving the quality of produced off-

16 CHAPTER 1. INTRODUCTION

spring for DFJSS. This is achieved by proposing effective ways to
measure the importance of subtrees of an individual. This thesis
proposes two measures for the importance of subtrees, one based
on the frequency of features, and the other based on the correlation
between the behaviours of the subtree and the entire tree. These two
measures are compared with each other to show their effectiveness.
A recombinative guidance mechanism is carefully designed to utilise
the subtree importance information to replace unimportant subtrees
from one parent with important subtrees from the other parent in
crossover to improve the quality of generated offspring in GPHH.

The results show that the evolved rules by the proposed algorithm
with correlation coefficient based recombinative guidance have bet-
ter performance in most scenarios while no worse in all other sce-
narios due to its effectiveness for producing offspring. The correla-
tion based importance measure is better than the feature frequency
based importance measure for detecting the importance of subtrees.
The analyses also verify this in terms of the depth ratios of selected
subtrees, the correlations of selected subtrees, and the probability
difference between subtrees during the evolutionary process. In ad-
dition, the proposed algorithm does not need extra computational
time compared with its counterparts. This verifies the advantages of
utilising the information produced by GPHH during the evolution-
ary process and the efficient information calculation techniques such
as correlation coefficient.

Part of this contribution has been published in:

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “Cor-
relation Coefficient based Recombinative Guidance for Genetic Pro-
gramming Hyper-heuristics in Dynamic Flexible Job Shop Schedul-
ing”. IEEE Transactions on Evolutionary Computation, vol. 25, no. 3,
pp. 552-566, 2021.

1.5. MAJOR CONTRIBUTIONS 17

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “Guided
Subtree Selection for Genetic Operators in Genetic Programming for
Dynamic Flexible Job Shop Scheduling”. in Proceedings of the Euro-
pean Conference on Genetic Programming, Springer, 2020, pp. 262-278.

4. This thesis has shown how multitask learning can be used to handle
multiple DFJSS problems simulataneously for the first time. First,
this thesis proposes a new multitask GPHH algorithm by adapting
the traditional evolutionary multitask algorithms based on the char-
acteristics of GPHH for solving multiple DFJSS tasks simultane-
ously. Second, based on the proposed multitask GPHH algorithm,
this thesis proposes a novel surrogate-assisted multitask GPHH for
DFJSS. The built surrogate mechanism can not only improve the ef-
fectiveness of solving a single task, but also help share knowledge
between tasks in the multitask learning framework. The proposed
surrogate-assisted multitask algorithm has three main features as
compared to the traditional multitask framework. First, a large num-
ber of new offspring are generated for providing useful materials for
solving the tasks. Second, the newly generated individuals are eval-
uated with the surrogate rather than actual simulation evaluations.
Third, the individuals are assigned to optimise tasks based on the
estimated fitness by surrogates directly rather than the computation-
ally expensive simulation evaluations.

The results show that the proposed multitask GPHH framework can
solve multiple related DFJSS tasks effectively. In addition, the pro-
posed surrogate-assisted multitask GPHH algorithm can evolve ef-
fective scheduling heuristics for DFJSS with high convergence speed
for all the examined multitask scenarios. The performance of the
proposed algorithm is examined by comparing the convergence speed,
the quality of evolved scheduling heuristics, the analyses of the di-
versity of individuals for tasks and the structures of the evolved

18 CHAPTER 1. INTRODUCTION

scheduling heuristics. It has also been observed that the individual
allocations for the tasks are highly related to the utilisation level of
the job shop. This implies that the complexities of tasks (i.e., a task
with a higher utilisation level is more complex) significantly impact
knowledge sharing between tasks in a multitask DFJSS scenario. In
addition, we found that the sizes of the evolved rules over gener-
ations are highly related to the objective examined rather than the
utilisation level.

Part of this contribution has been published in:

Fangfang Zhang, Yi Mei, Su Nguyen, Mengjie Zhang, and Kay Chen
Tan. “Surrogate-Assisted Evolutionary Multitask Genetic Program-
ming for Dynamic Flexible Job Shop Scheduling”. IEEE Transactions
on Evolutionary Computation, vol. 25, no. 4, pp. 651-665, 2021.

Fangfang Zhang, Yi Mei, Su Nguyen, Kay Chen Tan, and Mengjie
Zhang. “Multitask Genetic Programming Based Generative Hyper-
heuristics: A Case Study in Dynamic Scheduling”. IEEE Transactions
on Cybernetics, 2021, pp. 1-15. (Doi: 10.1109/TCYB.2021.3065340)

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. “A Pre-
liminary Approach to Evolutionary Multitask for Dynamic Flexible
Job Shop Scheduling via Genetic Programming”. in Proceedings of
the Genetic and Evolutionary Computation Conference, ACM, 2020, pp.
107-108.

Fangfang Zhang, Yi Mei, Su Nguyen, Kay Chen Tan and Mengjie
Zhang. “Adaptive Multitask Genetic Programming for Dynamic Job
Shop Scheduling”. Submitted to IEEE Transactions on Evolutionary
Computation (Under Review)

1.6. TERMINOLOGY 19

1.6 Terminology

To avoid confusion due to ambiguity, below are the definitions of the terms
commonly used in this thesis:

• A problem is a high-level proposition we aim at solving, such as JSS.

• A simulation is the process to represent the environment of a prob-
lem.

• An instance is a specific simulation with a fixed random seed.

• A scenario represents a specific problem to be solved with the in-
stances generated by the same problem configuration, e.g., the same
objective and utilisation level. An instance is an example of a sce-
nario.

• A task is a specific problem to be solved which is represented by a
scenario. Solving the problems in different scenarios simultaneously
is a multitask learning problem.

1.7 Organisation of Thesis

Figure 1.2 shows the outline of this thesis, including the main goals (listed
with •) and involved techniques (listed with �) in each chapter, and the
connection between the chapters in this thesis. The remainder of this thesis
is organised as follows. Chapter 2 presents the literature review. Then, our
achievements on the four research objectives are presented in four chap-
ters from Chapter 3 to Chapter 7. Chapter 8 concludes this thesis. An
overview of each chapter is shown as follows.

Chapter 2 presents the literature review, including scheduling, evolu-
tionary computation, GP, and heuristic and hyper-heuristics. The detailed
descriptions of the JSS problem with a focus on DFJSS are given. How to

20 CHAPTER 1. INTRODUCTION
C

h
a
p

te
r 1

In
tro

d
u
ctio

n

C
h

a
p

te
r 2

L
ite

ratu
re

 R
ev

ie
w

C
h

a
p

te
r 3

E
ffic

ien
c
y
 Im

p
ro

v
em

e
n
t w

ith

M
u
lti-fid

elity
 S

u
rro

g
ate

s


 Im

p
ro

v
e train

in
g

 efficien
cy


 Im

p
ro

v
e effectiv

en
ess


S

u
r
r
o

g
a

te


K

n
o

w
le

d
g

e
 sh

a
r
in

g

C
h

a
p

te
r 4

S
e
a
rch

 S
p
ac

e
 R

ed
u
c
tio

n
 w

ith

F
e
a
tu

re
 S

e
lec

tio
n


 E

v
o

lv
e
 ru

le
s o

n
ly

 w
ith

 selected

featu
res


 R

ed
u

ce
th

e
n

u
m

b
er

o
f

u
n

iq
u

e

featu
res o

f ru
les


 R

ed
u

ce sizes o
f ru

les


S

u
r
r
o

g
a
te


F

e
a

tu
r
e
 se

le
c
tio

n


In

d
iv

id
u

a
l a

d
a

p
ta

tio
n


P

h
e
n

o
ty

p
ic

 ch
a

ra
c
te

r
isa

tio
n

C
h

a
p

te
r 5

 N
e
w

 S
ea

rc
h
 M

e
ch

a
n
ism

w
ith

 S
p
e
cia

lise
d
 G

e
n
e
tic

O
p

e
ra

to
rs


 Im

p
ro

v
e effectiv

en
ess


S

u
b

tr
e
e
 im

p
o

r
ta

n
c
e m

e
a

su
r
e


P

h
e
n

o
ty

p
ic

 ch
a

ra
c
te

r
isa

tio
n

C
h

a
p

te
r 6

M
u
ltita

sk
 G

e
n
e
tic

P
ro

g
ra

m
m

in
g
 H

y
p
e
r-h

e
u
ristic


 Im

p
ro

v
e

m
u

ltip
le

task
s

so
lv

in
g

ab
ility


 In

tro
d

u
c
e
 m

u
ltitask

 le
a
rn

in
g

 in

h
y

p
er-h

eu
ristic d

o
m

ain


K

n
o

w
le

d
g

e
 sh

a
r
in

g

C
h

a
p

te
r 7

S
u
rro

g
a
te-A

ssisted
 M

u
ltita

sk

G
e
n

e
tic

 P
ro

g
ram

m
in

g


 E

n
h

an
ce

th
e

effectiv
en

ess
o

f

m
u

ltitask
 g

en
etic p

ro
g

ram
m

in
g


S

u
r
r
o

g
a

te


K

n
o

w
le

d
g

e
 sh

a
r
in

g


P

h
e
n

o
ty

p
ic

 ch
a

ra
c
te

r
isa

tio
n

C
h

a
p

te
r 8

C
o

n
c
lu

sio
n

s



Figure
1.2:T

he
outline

ofthis
thesis,including

the
m

ain
goals

and
involved

techniques
ofeach

chapter,and
the

connection
betw

een
the

chapters
in

this
thesis.

1.7. ORGANISATION OF THESIS 21

use scheduling heuristics for DFJSS is also described. This chapter also
provides details on how to use GPHH to evolve scheduling heuristics for
DFJSS automatically. In addition, existing studies related to the four re-
search objectives of this thesis are discussed in details.

Chapter 3 describes the proposed GPHH algorithm with multi-fidelity
surrogate models to improve the training efficiency and effectiveness for
DFJSS. Details of the proposed GPHH algorithm with multi-fidelity surro-
gates are given in this chapter. Specifically, the framework of the proposed
algorithm is described firstly. Then, the main component of the proposed
algorithm, i.e., the knowledge transfer mechanism for collaborating the
multi-fidelity surrogates is provided. The efficiency and effectiveness of
the proposed algorithm are verified along with further analyses. The sur-
rogate and knowledge sharing mechanism are the main techniques in this
chapter.

Chapter 4 presents the proposed novel two-stage GPHH feature selec-
tion framework to reduce the search space of GPHH by selecting impor-
tant features for routing and sequencing rules. Based on the proposed
framework, this chapter further describes a new GPHH feature selection
algorithm with individual adaptation strategies. The performance of the
proposed algorithms, the sizes of the evolved scheduling heuristics, the
number of unique features in the evolved scheduling heuristics, and the
semantics of the evolved routing and sequencing rules (i.e., how they
make decisions) are analysed. The surrogate, feature selection, individ-
ual adaptation, and phenotypic characterisation are the main techniques
in this chapter.

Chapter 5 introduces the newly proposed recombinative guidance mech-
anism for generating offspring with good quality to improve the search
mechanism of GPHH based on the characteristics of DFJSS. Two strate-
gies of measuring the importance of subtrees of an individual are given
in details. Different aspects such as the performance, the depth ratios and
correlations between the selected subtrees of the proposed algorithm are

22 CHAPTER 1. INTRODUCTION

studied. In addition, the sizes and the semantics of the evolved schedul-
ing heuristics are analysed to show how the proposed algorithm can ef-
fectively solve the DFJSS problems. The subtree importance measure and
phenotypic characterisation are the main techniques in this chapter.

Chapter 6 gives the details of the proposed multitask GPHH approach
in hyper-heuristic domain, focusing on the proposed knowledge sharing
mechanism. The comparison between the multitask GPHH and tradi-
tional multitask evolutionary algorithms is discussed in details with ho-
mogeneous and heterogeneous multitask scenarios. In addition, the qual-
ity of the evolved scheduling heuristics, and the evolved routing and se-
quencing rules are analysed. The knowledge sharing is the main technique
in this chapter.

Chapter 7 illustrates the proposed surrogate-assisted multitask GPHH
algorithm for solving multiple DFJSS tasks simultaneously. The quality of
the evolved scheduling heuristics and the effectiveness of the built surro-
gates are verified. The diversity of individuals and individual allocation
by the surrogate technique for tasks are analysed. Last, the sizes and se-
mantic insight of the evolved scheduling heuristics are further studied.
The surrogate, knowledge sharing, and phenotypic characterisation are
the main techniques in this chapter.

Chapter 8 summaries the achieved objectives and the main conclusions
of this thesis. Some discussions and future research directions are also
presented in this chapter.

Figure 1.2 shows that this thesis aims to enhance the performance of
GPHH for DFJSS from different aspects. However, different chapters in
this thesis share the same techniques from chapter to chapter, and they
are highly connected. It is noted that the ways to use the same technique
in a different chapter can be different. Each chapter also has its unique
characteristic for the goal in that chapter.

Chapter 2

Literature Review

This chapter starts by introducing basic concepts in scheduling, the ma-
chine learning basics and the related methodologies used in this thesis
such as evolutionary computation, GP, heuristics and hyper-heuristics.
Second, the details of DFJSS are presented, followed by introducing on
how to use scheduling heuristics for DFJSS. Third, this chapter illustrates
how to use GPHH to evolve scheduling heuristics for DFJSS. Forth, the JSS
approaches, including exact optimisation approach, heuristic approach,
and hyper-heuristic approach, are described. Last, the related studies for
the research goals in this thesis are discussed in details.

2.1 Basic Concepts

This section provides basic concepts of scheduling, machine learning ba-
sics, evolutionary computation, GP, heuristic and hyper-heuristics.

2.1.1 Scheduling

Scheduling [87, 200] is a decision-making process to optimise the resources,
which is commonly used in many applications, especially in the manufac-
turing and services industries [149, 199]. The resources can be machines in

23

24 CHAPTER 2. LITERATURE REVIEW

a job shop, gates at an airport, the staff at the hospital, and so on. In other
words, scheduling is the activity of planning the times at which particular
tasks will be done, or events will happen. The optimised scheduling objec-
tives can be different, either minimising the total cost to get more benefit
or minimising the total operating time to deliver service to customers on
time.

Scheduling problems in this thesis are characterised by three types of
sets, i.e., the set J = {J1, J2, ..., Jn} of n jobs, the setM = {M1,M2, ...,Mm}
of m machines, and the set OJj = (Oj1, Oj2, ..., Ojlj) for lj operations for
job Jj . A scheduling problem aims to use the set of machines to complete
the given set of jobs. According to [17], there are three common models of
scheduling, i.e., flow shop, open shop, and job shop.

A job in flow shop scheduling consists of an ordered list of operations.
The number of operations of each job equals the number of machines. All
operations have the same processing order through the machines. This means
that the processing order for each operation in flow shop scheduling is the
same, i.e., the ith operation of the job must be executed on the ith machine.
Flow shop scheduling can occur in a manufacturing site with 100% stan-
dardization operated in an assembly production line. Open job schedul-
ing is the same as the flow shop scheduling except that the order of pro-
cessing operations comprising one job may be arbitrary. This means that there
are no ordering constraints on operations. A job in job shop scheduling is
composed of an ordered list of operations. Each job can have different process-
ing order through the machines. A job shop can occur in a business with
100% customisation with a typical batch size of 1, which implies that every
finished product is unique. The job shop is complex because of the differ-
ent production processes for jobs. Job shop scheduling provides flexible
form of manufacturing, and thus it is the focus of this thesis.

It is challenging to make an effective schedule efficiently for scheduling
problems, especially when there are any dynamic factors (e.g., jobs arrives
continuously) or a large scale scheduling problem. Manually designing

2.1. BASIC CONCEPTS 25

heuristics is only suitable for static (i.e., static scheduling, for example,
the information of all jobs is available when making the schedule) and
small scale problems. However, in practice, the scheduling environment
is normally under dynamic situations with unpredicted events (e.g., in
dynamic scheduling, the jobs can arrive in real-time, and the information
of an arrived job is unknown until it arrives at the shop floor). Advanced
and automated approaches are worth investigating.

2.1.2 Machine Learning Basics

Machine learning can be defined as computational methods using experi-
ence (i.e., reflected in the form of data) to improve performance or make
accurate predictions [160]. Machine learning is an area of artificial intel-
ligence [209] that can learn from experience automatically and improve
from experience without being explicitly programmed.

There are three main types of learning problem in machine learning: (1)
supervised learning, (2) unsupervised learning, and (3) reinforcement
learning. In supervised learning problems (e.g., classification and regres-
sion), the target outputs for a problem are known (i.e., labelled data) for
learning from the experience. On the other hand, in unsupervised learning
problems (e.g., clustering), the target outputs for a problem are unknown
(i.e., unlabelled data), and the models need to discover information by
themselves. In reinforcement learning problems (e.g., game), the learner
interacts with the environment and receives an immediate reward for each
action. Reinforcement learning differs from supervised learning in not
needing labelled data instances to be presented, and there is no long-term
reward feedback provided by the environment.

In machine learning, the data instances are normally divided into two
subsets, i.e., training set and test set. The training set is a subset of the
data to derive a model. The test data is unseen to the trained models, and
used to measure the performance of the trained models. Generalisation

26 CHAPTER 2. LITERATURE REVIEW

is a term used to describe a model’s ability to react to test data, which is
central to the success of a trained model. Overfitting is to describe the
issue that a model is trained too well on training data to generalise on test
data. Overfitting is a potential problem mainly with supervised learning.
A good model is expected to have good generalisation ability.

Three popularly used machine learning techniques (i.e., surrogate, fea-
ture selection/construction, transfer learning especially multitask learn-
ing) used in this thesis, so they are introduced in this subsection. Surro-
gate techniques aim to build computationally cheap models that can esti-
mate the outcome of interest as closely as possible [116]. Surrogate mod-
els have attracted increasing attention to assist evolutionary algorithms
to reduce the computationally expensive problems [117]. Feature selec-
tion [93] is the process of selecting the features which contribute most to a
particular task. Removing weakly relevant features or redundant features
with feature selection techniques can bring a number of benefits such as re-
ducing the search space and improve the training efficiency, since there are
few opportunities to make decisions based on noise. Feature construction
[148] is the application of a set of constructive operators to generate new
features from a set of existing features. Transfer learning [185] focuses on
gaining knowledge for solving one problem and applying the knowledge
to a different but related problem. Multitask learning [35] is a typical
transfer learning technique that addresses multiple related tasks simul-
taneously. The success of multitask learning lies in effective knowledge
sharing between the tasks. Multitask learning may be particularly help-
ful if the tasks share significant commonalities and are generally slightly
under sampled [95].

2.1.3 Evolutionary Computation

Evolutionary computation [7] is a computational intelligence technique in-
spired from natural evolution based on population, which is a sub-field of

2.1. BASIC CONCEPTS 27

Initialise population

Population P
Evaluate individuals

Produce offspring from P

Population Pnew

Stop?

Best individual

Yes
No

Choose parent(s) with

tournament selection from P

Fill P with the

individuals in Pnew

Figure 2.1: The flowchart of a typical evolutionary computation algorithm.

artificial intelligence [36]. The success of evolutionary computation relies
on the improvement of individuals generation by generation. There are
two main categories in EC, which are evolutionary algorithms such as ge-
netic algorithms [50], GP [202], evolution strategies [16] and evolutionary
programming [77], and swarm intelligence such as particle swarm optimisa-
tion [125, 179] and ant colony optimisation [66]. Evolutionary algorithms
are the focus in this thesis.

Figure 2.1 shows the flowchart of a typical evolutionary algorithm. An
evolutionary algorithm starts with generating a population with many in-
dividuals that represent solutions to the problem. The initial population
could be created randomly. The individuals are evaluated with a fitness
function, and the output of the function shows how well the individuals
solve the investigated problem. Then, genetic operators, such as crossover,
mutation, and reproduction, are applied to the selected parents to gen-
erate new individuals. The individuals with higher quality have higher
chances to be selected as the parent(s) to produce offspring. This process
continues until the termination criterion (e.g., reaching a certain number
of generations) is met. The best individual is selected as the output of the
evolutionary algorithm.

Since GP is the main technique used in this thesis, we will provide
details of GP in the next subsection.

28 CHAPTER 2. LITERATURE REVIEW

max

x 5 - 0

y x

+

×

Figure 2.2: An example of tree-based GP program.

2.1.4 Genetic Programming

GP [129], is one of the most popular used evolutionary algorithms, can
automatically generate computer programs to solve problems. The distin-
guishing feature of GP from other evolutionary algorithms is its variable-
length representation. In the rest of this section, the main concepts of GP
are presented to show how GP works.

Representation/Program Generation

Representation [72] is a way of representing individuals in evolutionary
algorithms. A typical GP uses the tree structure to represent individuals.
Specifically, GP generates tree-based individuals based on a terminal set
(for leaf nodes) and a function set (for non-leaf nodes). Figure 2.2 shows an
example of a GP program 5x+max(y−x, 0). In this program, the terminals
consist of the variables {x, y} and two constants {5, 0}, and the functions
are composed of {×,+,−,max}. The program is the combination of the
components in the terminal set and the function set. Except for tree-based
GP, there are also some other popular representations such as linear GP
[12, 181], graph-based GP [201], grammar-guided GP [130] and cartesian
GP [156].

It is noted that the selection of the terminals and functions is critical for
GP to succeed. The terminal set and the function set should be selected to
satisfy the requirements of sufficiency and closure. Sufficiency means that
there must be some combinations of terminals and functions that can solve

2.1. BASIC CONCEPTS 29

(a) full (b) grow

Figure 2.3: An example of programs generated by full method and grow
method.

the problem, while closure means that any function can accept any input
value returned by any function and terminal.

Initialisation/Program Generation

Initialisation [72] is the first step of GP to generate a population with a
number of individuals randomly. For GP, full and grow [129] methods are
commonly used to initialise population. A maximum depth can be deter-
mined for each GP individual to restrict the size of one program. For the
full method, the terminals can only be sampled at the maximum depth of
the trees. On the other hand, in the grow method, the terminals can be
sampled at any position of the tree to early prune some branches. As a re-
sult, the full method always generates full trees at a given depth, while
the grow method can generate trees that are much smaller and unbal-
anced than the full trees. In order to improve the diversity of the initial
population, these two methods are commonly combined to initialise the
population, which is known as ramped half-and-half. Specifically, this hy-
brid method is to generate half of the population by the full method, and
the other half by the grow method. An example of generated individual
by full method and grow method are shown in Figure 2.3 (a) and 2.3 (b).

30 CHAPTER 2. LITERATURE REVIEW

Evaluation

Evaluation is an important step to measure the quality of the individuals
in the GP population according to the fitness function. The fitness function
plays a significant rule in GP to guide the search to find good programs.
Individuals with bad quality are eliminated generation by generation. In
general, the fitness function is defined based on the objectives of the prob-
lem. For example, fitness can be defined as the classification accuracy in
the classification problem, and the total flowtime in a JSS problem.

Selection

Selection is the stage for evolutionary algorithms to decide which individ-
ual to chosen from a population (i.e., parent) for later breeding. There are a
number of methods for selection such as roulette wheel selection [145] and
tournament selection [128]. For roulette wheel selection, the probability of
choosing an individual for breeding of the next generation is proportional
to its fitness. The better the fitness is, the higher chance for that individ-
ual to be chosen. Tournament selection also chooses parent(s) based on
fitness. It randomly selects a number of individuals first, and then selects
the one with the best fitness as the parent. Tournament selection is widely
used in GP [42, 99, 166].

Evolution

Evolution is the main process of GP to generate offspring for the next gen-
eration. There are three genetic operators for GP, which are crossover, muta-
tion and reproduction. These operators aim at generating a new population
by inheriting good materials from the old population.

• For crossover, two individuals are selected as the parents with the
selection method. First, a subtree will be selected randomly from
each parent. Then, these two subtrees from the parents are swapped

2.1. BASIC CONCEPTS 31

to produce two new individuals, and they will be put into the new
population.

• For mutation, one individual is selected as the parent with the selec-
tion method. First, a subtree of the parent will be selected randomly.
Then, the chosen subtree will be replaced by a newly generated sub-
tree.

• For reproduction, an individual will be firstly chosen by the selection
method, then the selected individual is copied into the new popula-
tion directly. It is noted that the elitism mechanism (i.e., a special
case of reproduction) picks up the top individuals from the current
population. The selected individuals are inserted into the population
of the next generation. This aims to ensure that the best individuals
will not be lost when generating new populations.

2.1.5 Heuristics and Hyper-heuristics

In computer science, heuristic [192] is a technique designed for solving a
problem more quickly when classic approaches are too slow, or for finding
an approximate solution when classic approaches fail to find any exact so-
lution. Commonly used evolutionary heuristic algorithms are genetic al-
gorithms and particle swarm optimisation algorithm [124, 179]. A simple
rule, such as the dispatching rule in scheduling that can rank alternatives
in a search process based on the available information, is also a heuristic.

A hyper-heuristic [24, 25] is a heuristic search approach to selecting
and generating heuristics to solve hard computational search problems. A
hyper-heuristic is a learning algorithm when it uses some feedback from
the search process. The term hyper-heuristics was first used to describe
heuristics to choose heuristics in combinatorial optimisation [51]. The
hyper-heuristic approaches can be classified into two types according to
different considerations. In terms of the nature of the search space of the
heuristics, there are two kinds of hyper-heuristic approach [26]. One is

32 CHAPTER 2. LITERATURE REVIEW

Training

InstanceStop?

GP Population

Mutation/Crossover/Reproduction

Parent Selection

Corresponding

Heuristic
Offspring

Low-level Heuristics

High-level Heuristic

Yes

No

GP based Generative Hyper-heuristic

Evaluated Heuristic

Figure 2.4: An example of generating high-level heuristic from simple low-
level heuristics with GP.

heuristic selection, which aims to select from existing heuristics for differ-
ent situations. The other is heuristic generation, which generates new high-
level heuristics from existing low-level heuristics. In terms of the sources
of feedback information, the hyper-heuristics approaches can be grouped
into online learning hyper-heuristics and offline learning hyper-heuristics. For
the online learning hyper-heuristics, the learning algorithm aims at solv-
ing an instance of a problem. For the offline learning hyper-heuristics,
the learning algorithm learns knowledge in the form of rules or programs
from a set of training instances, and expects the learned rules or programs
to have good generalisation to unseen instances.

Figure 2.4 shows how to generate high-level heuristic from low-level
heuristics with GP. The circles with different colours indicate three differ-
ent low-level heuristics. The boxes with light grey background mean the

2.2. DYNAMIC FLEXIBLE JOB SHOP SCHEDULING 33

corresponding heuristics are evaluated with fitness. The low-level heuris-
tics are set as the terminal set of GP and combined with the function set to
form a GP individual. The quality of the individuals in the population is
improved generation by generation with genetic operators (i.e., mutation,
crossover, and reproduction). The offspring is actually a GP individual,
and it is a function/rule that can be used as a heuristic to optimise prob-
lems by assigning priority values for machines and operations in produc-
tion scheduling for example. Taking a generated offspring as an example,
its corresponding heuristic is obtained based on the GP individual. The
heuristic is then executed on training instances to get its fitness value. If
the algorithm meets the stopping criterion, the current best heuristic will
be selected as the final obtained high-level heuristic. Otherwise, the search
continues. The final high-level heuristic is the best generated heuristic in
the population.

Overall, the fundamental difference between the heuristic and hyper-
heuristic approaches is that heuristic approaches work on solution space,
while hyper-heuristic approaches work on heuristic space. In this thesis,
we use GP as a hyper-heuristic approach, i.e., heuristic generation, and an
offline learning hyper-heuristic approach. The goal is to generate effective
heuristics that have good generalisation for solving DFJSS problems.

Evolutionary computation methods are powerful artificial intelligence
algorithms that have been used for applications in many areas, including
machine learning. GPHH, as one of the popular used evolutionary com-
putation methods, have been successfully used to solve different machine
learning tasks, including classification [109] and regression [42]. GPHH
has also been successfully used to evolve scheduling heuristics for JSS.

2.2 Dynamic Flexible Job Shop Scheduling

In JSS, n jobs J = {J1, J2, ..., Jn} need to be processed by m machines
M = {M1,M2, ...,Mm}. Each job has a sequence of operations OJj =

34 CHAPTER 2. LITERATURE REVIEW

(Oj1, Oj2, ..., Ojlj). The completion of the last operation for a job means the
job has been finished. In DFJSS, each operation Oji can only be processed
by one of its optional machines π(Oji) and its processing time δ(Oji,M(Oji))

depends on the machine that processes it. The routing and sequencing
decisions need to be made simultaneously in DFJSS. In DFJSS, dynamic
events are necessary to be taken into account when constructing sched-
ules. This thesis focuses on one type of dynamic event, i.e., stochastically
and continuously arriving new job arrivals. This indicates that the infor-
mation about a job is unknown until it arrives at the shop floor.

The objective of DFJSS is the optimised performance criterion for a
problem while satisfying all the constraints. In this thesis, we consider
various commonly used objective functions such as flowtime and tardi-
ness. The parameters, variables, constraints and how to use scheduling
heuristics for DFJSS in this thesis are described as follows.

Parameters:

• J : the set of jobs in the job shop

• n: the number of jobs in the job shop

• M: the set of machines in the job shop

• m: the number of machines in the job shop

• j: the index of job

• i: the index of operation

• lj : the number of operations for job Jj , lj <= m

• OJj = (Oj1, Oj2, ..., Ojlj): the set of operations of job Jj

• wJj : the weight of job Jj (i.e., jobs with larger weights are more im-
portant)

• dJj : the due date of job Jj

2.2. DYNAMIC FLEXIBLE JOB SHOP SCHEDULING 35

• M(Oji): the machine that processes operation Oji

• δ(Oji,M(Oji)): the processing time of operation Oji

• π(Oji): the set of candidate machines of Oji, π(Oji) ⊆ M. This pa-
rameter is used in flexible JSS which will be described later.

Variables:

• CJj : the completion time of job Jj

• r(Oji): the release time of operation Oji. That is, the time that ith
operation of job Jj is allowed to be processed. For the first operation
of each job, it is set to zero. Otherwise, it is set to the completion time
of its preceding operation.

• r(Jj): the release time of job Jj . It is the release time of the first
operation of a job.

Constraints:

• The (i + 1)th operation of job Jj (i.e., Oj(i+1)) can only be processed
after its preceding operation Oji has been processed (i.e., precedence
constraint).

• Each machine can only process at most one operation at a time.

• The scheduling is non-preemptive, i.e. once started, the processing
of an operation cannot be stopped or paused until it is completed.

• Each operation Oji can be processed on one of the corresponding set
of machines π(Oji) ⊆Mwith processing time δ(Oji,M(Oji)).

Scheduling Heuristics for DFJSS:
Due to the precedence constraint, only the ready operations are allowed

to be allocated to machines. Two kinds of operations will become ready
operations. One is the first operation of a job that has arrived at the shop

36 CHAPTER 2. LITERATURE REVIEW

Machine 1

Machine 2

Machine 3

O63

O81

Routing Rule

O32 O22

O91

O71 O62

O82

O11

Operations

Sequencing RuleJob n

Unknown Jobs

Machines

O52

O82
O81

Next Operation

Figure 2.5: An example of decision making processes of DFJSS with
scheduling heuristics (i.e., routing rule and sequencing rule).

floor. The other is the subsequent operation whose preceding operation
has been finished. As scheduling heuristics, routing rule and sequencing
rule work together to do machine assignment and operation sequencing
in DFJSS. Both routing and sequencing rules are numerical priority func-
tions, which are used to prioritise the machines or operations in different
decision situations. When a new operation becomes ready, the routing
rule will be applied to prioritise its candidate machines, and the operation
will be assigned to the machine with the best priority (e.g., has the least
workload under the least-work-in-queue rule). When a machine becomes
idle, the sequencing rule will be triggered to prioritise the operations in
its queue, and the operation with the best priority (e.g., the one with the
shortest processing time if the shortest-processing-time rule is used) will
be chosen to be processed next.

Figure 2.5 shows an example of the decision making processes of DFJSS
with scheduling heuristics. There are three machines, each with several
operations waiting in its queue. The operation O81 is being processed on
Machine 3. A routing (sequencing) decision situation includes a temporal

2.3. GPHH FOR DFJSS 37

job shop state, the given operation (machine) and the candidate machines
(operations). The routing decision and sequencing decision are made with
the routing and sequencing decision situation, respectively.

• Routing Decision: Once an operation becomes a ready operation
(a routing decision situation is encountered), it will be allocated to the
machine with the highest priority according to the routing rule. For
example, when a new job (J9) arrives at the job shop, its first op-
eration O91 is allocated to Machine 2 which has the highest priority
value among the three machines according to the routing rule. In ad-
dition, whenO81 is finished, its next operation (O82) becomes a ready
operation and is allocated to Machine 1 by the routing rule.

• Sequencing Decision: When a machine (e.g., Machine 1) becomes
idle, and its queue is not empty (a sequencing decision situation is en-
countered), the sequencing rule will be used to calculate the priority
value of each operation in its queue. The operation with the highest
priority is then chosen as the next operation to be processed (e.g., in
this case, O32 is selected to be processed on Machine 1).

2.3 GPHH for DFJSS

2.3.1 Overall Process of GPHH for DFJSS

GP, as a hyper-heuristic approach [27], has been successfully applied to
evolve scheduling heuristics for combinatorial optimisation problems such
as packing [28, 107], timetabling [8, 198], and JSS [69, 175, 243, 248]. The
optimal structures of heuristics are normally not known in real-world ap-
plications, which makes the heuristic learning process challenging. Tree-
based GP [21, 131] is a good candidate to learn heuristic for DFJSS due to
its flexible representation. This implies that the structures of heuristics do
not need to be defined in advance. In addition, tree-based programs ob-

38 CHAPTER 2. LITERATURE REVIEW

Training Instances

Scheduling Heuristic

Test Instances

Solution

Genetic
Programming

Hyper-heuristics

G
en

erate

Training Test

Routing Rule Sequencing Rule

Figure 2.6: The overall process of GPHH for DFJSS.

tained by GP (i.e., can be considered as functions) provide us with oppor-
tunities to understand the behaviour of the evolved rules, which is very
important for real-world applications.

Figure 2.6 shows the overall process of GPHH for DFJSS in this the-
sis. In the training phase, GPHH is used to train heuristics based on a set
of training instances. The outputs of the training process are heuristics
(routing and sequencing rules) rather than solutions (schedules). In the
test phase, the evolved heuristics obtained in the training phase are tested
on unseen instances. Specifically, to calculate the test performance of a
trained heuristic, it is applied to each test instance to construct a schedule.
The test performance is then defined as the (normalised) average objective
value, such as the mean flowtime, of the constructed schedules on the test
instances.

The pseudo-code of GPHH to learn heuristics for DFJSS is shown in Al-
gorithm 1. The input of the proposed algorithm is a task that is expected to
be solved, and the output is the learned heuristic h∗ with a routing heuris-
tic r∗ and sequencing heuristic s∗. As a population-based algorithm, GP
starts with a randomly initialised population (line 1). It is noted that each
GP individual contains two trees [244]. The first tree represents the rout-
ing rule, and the second tree represents the sequencing rule. The fitness

2.3. GPHH FOR DFJSS 39

Algorithm 1: Pseudo-code of GPHH to learn routing and sequencing

heuristics for DFJSS
Input : A task
Output: The learned scheduling heuristics h∗ with r∗ and s∗

1: Initialisation: Randomly initialise the population
2: set r∗ ← null and fitness(r∗)← +∞
3: set s∗← null and fitness(s∗)← +∞
4: set h∗← r∗ ∪ s∗

5: gen← 0

6: while gen < maxGen do
7: // Evaluation: Evaluate the individuals in the population
8: for i = 1 to popsize do
9: Run a DFJSS simulation with hi to get the schedule Schedulei

10: fitnesshi ← Obj(Schedulei)

11: end
12: for i = 1 to popsize do
13: if fitnesshi

< fitnessh∗ then
14: h∗ ← hi

15: end

16: end
17: if gen < maxGen− 1 then
18: Evolution: Generate a new population by crossover, mutation, and

reproduction
19: end
20: gen← gen+ 1

21: end
22: return h∗ with r∗ and s∗

of heuristics are evaluated based on the objective functions (from line 7
to line 11). Specifically, a simulation is run with the heuristic hi to get a
schedule Schedulei (line 9). The fitness of the heuristic hi is assigned by
calculating the objective value of its obtained schedule Schedulei (line 10).
A new population is generated by recombining the heuristics (crossover),
mutating the heuristics (mutation), or copying the heuristics with good
fitness directly (reproduction and elitism) (line 18) to the next generation.

40 CHAPTER 2. LITERATURE REVIEW

routing sequencing

Figure 2.7: An example of the representation with cooperative coevolution
for DFJSS.

2.3.2 Representation

According to the characteristics of DFJSS, a routing rule and a sequencing
rule are needed to make two decisions simultaneously. To date, there have
been three main frameworks to handle DFJSS. Tay et al. [219] proposed
to use GP to only evolve the sequencing rule by fixing the routing rule as
a manually designed rule for flexible JSS. However, only the sequencing
rule is evolved, which may not be effective. Yska et al. [233] introduced
a cooperative coevolution framework with GP for the first time to evolve
routing and sequencing rules simultaneously by applying two subpop-
ulations. The proposed approach showed its superiority due to the co-
evolution mechanism. Zhang et al. [244] introduced GP with multi-tree
representation for evolving two rules within an individual in one popu-
lation. The approach is promising in terms of the effectiveness, efficiency,
and sizes of evolved rules.

Figure 2.7 shows an example of the representation of evolving routing
and sequencing rule simultaneously for DFJSS with cooperative coevolu-
tion technique. Routing and sequencing rules are evolved in two different
subpopulations (i.e., indicated by rectangles). The best routing rule (in
orange) in one subpopulation makes a number of scheduling heuristics
pairs with all the sequencing rules for DFJSS, while the best sequencing

2.3. GPHH FOR DFJSS 41

Figure 2.8: An example of the multi-tree representation with a routing rule
and a sequencing rule for DFJSS.

rule (in blue) in the other subpopulation makes various scheduling heuris-
tics pairs for DFJSS with all the routing rules for DFJSS. All these pairs are
evaluated when evaluating the individuals in these two subpopulations.
The fitness of an individual is calculated by the fitness function with the
best individual in the other subpopulation.

Figure 2.8 shows an example of the multi-tree representation with a
routing rule and a sequencing rule for DFJSS. The routing rule can be con-
sidered as a priority function to give priority values for candidate ma-
chines. The corresponding priority function of the routing rule in Figure
2.8 is WIQ * MWT + NIQ, where WIQ is the needed total processing time
of operations in the queue of a machine, MWT is the waiting time for a ma-
chine to become idle, and NIQ is the number of operations in the queue
of a machine. The machine with the smallest priority value assigned by
the routing rule will be selected to allocate the operation. Similarly, the
operation with the smallest priority value assigned by the sequencing rule
(i.e., PT / W, where PT is the processing time, and W is the weight of an
operation) will be selected as the next operation to be processed on the idle
machine.

Both the representations with cooperative coevolution and multi-tree
can evolve the routing rule and sequencing rule simultaneously for DFJSS.
The advantage of the representation with cooperative coevolution is that it
can separate the routing and sequencing decisions properly, which makes

42 CHAPTER 2. LITERATURE REVIEW

it easy to implement new genetic operators. The representation with multi-
tree makes it easy to manage the population, since the routing and se-
quencing rules are considered as a whole. In this thesis, we choose to use
the representation with cooperative coevolution or multi-tree based on the
characteristics of the algorithms.

2.3.3 Evaluation

In this thesis, there are mainly four measures for the performance of the
algorithms. Different measures are chosen based on the characteristics of
the proposed algorithms.

Quality of the Evolved Best Scheduling Heuristics: The objectives con-
sidered in this thesis are shown as follows. It is noted that we do not
consider all these objectives simultaneously in a many-objective case. We
consider them separately as a single objective in different scenarios.

• Max-flowtime: maxnj=1{CJj − r(Jj)}

• Mean-flowtime:
∑n

j=1 {CJj
−r(Jj)}

n

• Mean-weighted-flowtime:
∑n

j=1 wJj
∗{CJj

−r(Jj)}
n

• Max-tardiness: maxnj=1max{0, CJj − dJj}

• Mean-tardiness:
∑n

j=1 max{0,CJj
−dJj }

n

• Mean-weighted-tardiness:
∑n

j=1 wJj
∗max{0,CJj

−dJj }
n

where CJj is the completion time of a job Jj , r(Jj) is the release time of Jj ,
dJj is the due date of Jj , wJj is the weight (importance) of job Jj , and n is
the number of jobs to be processed.

2.3. GPHH FOR DFJSS 43

For the sake of convenience, Fmax, Fmean, WFmean, Tmax, Tmean,
and WTmean are used to indicate max-flowtime, mean-flowtime, mean-
weighted flowtime, max-tardiness, mean-tardiness and mean-weighted-
tardiness respectively. The utilisation level is a commonly used param-
eter [20, 197] to represent different job shop scenarios for measuring the
effectiveness of the algorithms. It is noted that a higher utilisation level
will lead to a more complex task. This thesis focuses on using the objec-
tive function and the utilisation level to construct multiple test scenarios
because our preliminary studies have shown that the performance of the
evolved scheduling heuristics is influenced significantly by these two fac-
tors.

Training Efficiency: Training time is a common way to measure the effi-
ciency of algorithms. If an algorithm can achieve comparable scheduling
heuristics with a shorter time, the algorithm is efficient. The CPU time is
reported as the training time to measure the efficiency of the algorithms.

Sizes of the Evolved Scheduling Heuristics: The rule size is defined as
the number of nodes in this thesis, and the rule with a smaller size is pre-
ferred. There are a number of advantages of evolving smaller rules. First,
smaller rules tend to be more interpretable by decision makers, which is
particularly important for the floor operators of the job shop. Second,
smaller rules are easier to implement real-world applications, which are
more efficient to make real-time decisions with dynamic events compared
with larger rules.

Number of Unique Features of Evolved Scheduling Heuristics: The
number of unique features is the number of different features needed to
construct the rules. The number of unique features in the scheduling
heuristics is one indicator of the complexity of evolved rules [242]. The
smaller the number of unique features, the easier the scheduling heuris-

44 CHAPTER 2. LITERATURE REVIEW

tics to potentially interpret the rules.

It is noted that except for the above measures, the mechanism of the
effectiveness of the algorithm (i.e., the measures are defined especially in
each chapter) is also evaluated based on the characteristics of the investi-
gated algorithm.

2.4 Job Shop Scheduling Approaches

A large number of approaches have been developed for JSS. This section
discusses the exact approaches, heuristic approaches and hyper-heuristic
approaches to JSS which have been proposed in the literature.

2.4.1 Exact Optimisation Approaches

The job shop problem is an NP-hard problem for which it is extremely
hard to find optimal solutions [216]. Exact mathematical programming
such as branch-and-bound [135] and dynamic programming [15], has been
applied extensively for JSS. A branch-and-bound algorithm carries out a
depth-first search to find feasible solutions to the JSS problems [200]. After
a feasible solution is found, the algorithm eliminates any branches where
the lower bound on the problem is worse than the best solution so far. The
algorithm then searches for new solutions exhaustively until all branches
have been explored to ignored, and the best solution found is returned.
Heuristics have been incorporated to enhance the search of branch-and-
bound algorithm [2, 4, 31]. A fast branch and bound algorithm for the
JSS problem has been developed in [22] by combining a branching scheme
[86] and a method to fix disjunctions before each branching step [33]. This
algorithm has been successfully found an optimal solution for a JSS prob-
lem with 10 jobs, 10 machines, and 10 operations per job. The details of
branch-and-bound techniques can be found in [205]. Dynamic program-
ming approaches divide a problem into constituent sub-problems and aim

2.4. JOB SHOP SCHEDULING APPROACHES 45

to solve the problem by solving all the sub-problems. A dynamic program-
ming algorithm was proposed to solve one machine scheduling problem
in [134]. The results showed that the proposed algorithm can find the opti-
mal solution for the JSS with one machine. A new dynamic programming
algorithm has been proposed to find optimal solutions for solving the JSS
problems with up to 10 jobs and 5 machines in [88]. This algorithm was
adapted from the proposed algorithm for the travelling salesman problem
in [98].

Although exact mathematical programming technique can provide an
optimal solution for JSS, they are generally time-consuming. Normally,
they are limited to static and small scale JSS. They are not suitable for
dynamic JSS, since the dynamic events may lead to the current optimal
solution not be optimal any more. Searching for an optimal solution again
makes the algorithm time-consuming.

2.4.2 Heuristic Approaches

Heuristics approaches aim to find good enough solutions. Unlike exact
optimisation techniques, heuristic approaches do not guarantee to find an
optimal solution. The heuristics techniques can be grouped into two cat-
egorisations, i.e., heuristic search approach and scheduling heuristic ap-
proach.

Heuristic Search

Heuristic search approaches aim to find a good enough solution gradu-
ally. The most popularly used heuristic search approaches are evolution-
ary algorithms. Genetic algorithm is the most popular evolutionary algo-
rithm for JSS [46]. A genetic algorithm with different strategies for gener-
ating the initial population, selecting the individuals for reproduction and
producing new individuals was proposed for flexible JSS [196]. The re-
sult showed that the integration of more strategies in a genetic framework

46 CHAPTER 2. LITERATURE REVIEW

leads to better results than other compared algorithms. An improved ge-
netic algorithm (i.e., improve the quality and diversity of the initial pop-
ulation, improve crossover to preserve good solutions, adapt mutation
probability) was developed to solve JSS problems in [250]. The results
demonstrated the good performance of the proposed algorithm.

Swarm intelligence approaches have also been successfully applied to
JSS. A new hybrid swarm intelligence algorithm consists of particle swarm
optimization, simulated annealing technique and multi-type individual
enhancement scheme, was presented to solve the job-shop scheduling prob-
lem in [144]. The experimental resulted show that the new proposed job-
shop scheduling algorithm is more robust and efficient than the compared
algorithms. A hybrid discrete particle swarm algorithm based on maxi-
mum fitness function was proposed for a dual-resources constrained flex-
ible JSS problem with multiple optimisation objectives [252]. The simu-
lation results demonstrated that the proposed algorithm effectively de-
creases both production time and production cost. A two-level particle
swarm optimization algorithm was developed for the flexible JSS prob-
lem [235]. The upper level handles the operations-to-machines mapping,
while the lower level handles the ordering of operations on machines.
The algorithm showed its superiority on a significant number of diverse
benchmark flexible JSS problems.

Overall, the heuristic search approaches can find good solutions in a
reasonable time, and can handle large scale problems well. However, it is
not suitable for dynamic JSS, since the rescheduling process for heuristic
search approaches is time-consuming. It is not efficient to react to dynamic
events quickly.

Scheduling Heuristics

Dispatching rules, as scheduling heuristics, have been popularly used to
dynamic JSS due to its ability to cope with the dynamic changes of the job
shop. There are a large number of scheduling heuristics in the literature,

2.4. JOB SHOP SCHEDULING APPROACHES 47

and they can be grouped into three categories [118]: (1) Simple priority
rules, which are mainly based on the information related to jobs or ma-
chines. A commonly used simple routing rule is WIQ (i.e., the workload
in the queue of machines), where a ready operation will be allocated to
the machine with the least workload. A commonly used sequencing rule
is SPT (i.e., shortest processing time), where the idle machine will choose
the operation with the shortest processing time as the next operation to be
processed. (2) Combination of priority rules, which consists of combina-
tions of well-known rules from the literature. (3) Weighted priority rules,
which is a weighted sum of a number of commonly used priority rules.

The comparison of different scheduling heuristics have been studied
in many studies [100, 103, 114, 121, 206, 214]. However, they are normally
manually designed based on specific scenarios, which is not easy to be ap-
plied to other scenarios. In addition, the designing process highly relies
on experts, which are time-consuming and not always available. In addi-
tion, it is still challenging for scheduling researchers to develop scheduling
heuristics that can perform well on multiple objectives.

2.4.3 Hyper-heuristic Approaches

Hyper-heuristics are a relatively new research area that focuses on explor-
ing the heuristic search space rather than solution space [25]. This is differ-
ent from heuristic search approaches. Two hyper-heuristics research direc-
tions are heuristic selection and heuristic generation. The heuristic selec-
tion has been successfully used to adaptively select heuristic based on the
problem solving states in many JSS studies [9, 78, 79]. A number of hyper-
heuristic frameworks have been developed for heuristic selection such
as the simulated annealing based hyper-heuristic [68], tabu search based
hyper-heuristic [29], and choice function [51, 52]. The output of heuristic
selection approaches is normally a sequence of heuristics. Heuristic gener-
ation has been widely used to generate comprehensive scheduling heuris-

48 CHAPTER 2. LITERATURE REVIEW

tic for the JSS problem [97, 188, 215, 242, 259]. The evolved scheduling
heuristics by heuristic generation approaches are expected to have good
generalisation ability to perform well on a set of unseen problems. GPHH
based algorithms are currently the most popularly approaches for heuris-
tic generation. Different machine learning techniques such as surrogate
[240, 245], feature selection [59, 60, 152, 155, 242, 249], transfer learning
and multitask learning [13, 239], have been incorporated into GPHH to
improve its effectiveness to evolve scheduling heuristics for JSS.

2.5 Related Work

As mentioned above, scheduling heuristics are more effective and efficient
for JSS, especially for dynamic JSS. In this section, the studies that aim to
solve the JSS problems by using GPHH approaches to evolve scheduling
heuristics will be presented. This is because GPHH is a dominating ap-
proach to automatically evolve scheduling heuristics for dynamic JSS. In
addition, the existing studies related to our four research objectives (i.e.,
surrogate technique, feature selection strategy, specialising genetic opera-
tor and multitask learning) are discussed in details.

2.5.1 GPHH to Evolve Scheduling Heuristics for JSS

In this section, the previous literature related to JSS are classified into two
categorisations according to the machine environment (i.e., the number of
machines in the job shop). The reason is that the machine environment
(e.g., single machine environment and multi-machine environment) is a
key factor in determining the type of the JSS problems. In a single ma-
chine environment, there is only one machine in the job shop. While, in
a multi-machine environment, more than one machine is available. The
goal here is not to enumerate all the literature, but to give a big picture of
the research about GPHH for JSS.

2.5. RELATED WORK 49

Single Machine Environment

In 2001, Dimopoulos and Zalzala [61] firstly investigated the GP frame-
work to evolve dispatching rules for solving static scheduling problems
with one machine. The results showed that the evolved dispatching rules
are better than traditional rules in different scenarios with different lev-
els of tardiness and tightness of due dates. Geiger et al. [80] examined a
GP learning system for scheduling in a single machine environment. In
this work, both the static and dynamic problems were considered, and the
results showed GP can handle well these two situations. This paper also
investigated a two-machine flow shop environment, however, this work
tried to evolve the dispatching rule for each machine, which increased
the complexity of the scheduling processes in the job shop system. Nie
et al. [177] presented a gene expression programming based scheduling
rules constructor to construct effective scheduling rules for the dynamic
single-machine scheduling problems with one or more objectives. Yin et
al. [232] proposed a bi-tree structured representation scheme for GP to
make it possible to search sequencing and idle time in different uncer-
tain environments. In this paper, the use of GP to evolve single-machine
predictive scheduling heuristics with stochastic breakdowns was investi-
gated, where both tardiness and stability objectives in the face of machine
failures were considered. Jakobović et al. [112] proposed a multiple tree
adaptive heuristic for dynamic single machine scheduling problem, where
the decision tree was used to distinguish between resources based on their
load characteristics. It works as a GP-3 system that evolves three compo-
nents, a discriminant function and two dispatching rules. Among them,
the discriminant serves as a monitor. Choosing which rule to use depends
on the decision made by discriminant function, which was designed to
identify the bottleneck machine.

In conclusion, in the single machine environment, the job shop schedul-
ing problems can be static or dynamic, but cannot be flexible because flex-
ible problems are generated in the multi-machine environment. The deci-

50 CHAPTER 2. LITERATURE REVIEW

sion in a single machine environment is operation sequencing only.

Multi-machine Environment

In the multi-machine environment, JSS can be investigated in either static
or dynamic conditions. It can be flexible or non-flexible. The type of JSS
can also be any combinations of the four factors (i.e., static, dynamic, flex-
ible and non-flexible). This section will give a high-level survey of these
studies with focusing on dynamic JSS, flexible JSS and DFSS.

Dynamic Job Shop Scheduling. Jakobović et al. [113] applied GP to build
scheduling algorithms for multiple machine environment and also con-
sidered the dynamic variants (i.e., job arrival continuously) of the prob-
lem. The work showed the effectiveness of GP over existing scheduling
approaches. Mei et al. [152] presented a feature selection, in which a
niching-based search framework was used for extracting a diverse set of
good rules, for job shop scheduling. In addition, a surrogate model was
applied to reduce the training time. The experimental studies showed
that it took less than about 10% of the training time of the standard GP
training process, and can obtain much better feature subsets than the en-
tire feature set. Nguyen et al. [174] adopted the surrogate model in [99]
for fitness approximation and proposed a select scheme to investigate the
influence of surrogate models in dynamic job shop scheduling. This pa-
per also analysed the advantages and disadvantages of different selection
schemes in surrogate-assisted GP. Mei et al. [154] defined the concept of
time-invariance and developed a new terminal selection scheme to guar-
antee the time-invariance throughout the GP process in a dynamic envi-
ronment. Mei et al. [155] aimed at selecting a small set of useful features
according to the contribution of the features and investigated the feature
selection mechanism in the static and dynamic environment. The results
showed that using only the selected features can achieve significantly bet-
ter GP-evolved rules on both training and unseen test instances. Nguyen

2.5. RELATED WORK 51

et al. [169] proposed a diversified multi-objective cooperative coevolution
algorithm based on GP to evolve dispatching rules and due-date assign-
ment rules in dynamic job shop scheduling. The results showed that the
proposed algorithm can effectively evolve Pareto fronts of scheduling pol-
icy compared to NSGA-II [58] and SPEA2 [260] while the uniformity of
scheduling policy is better than those evolved by NSGA-II and SPEA2.
Nguyen et al. [170] investigated different representations of the dispatch-
ing rules based on the previous literature. The results showed that the
representation that integrates system and machine attributes can improve
the quality of the evolved rules.

All of these studies show the superiority of using GP to evolve rules
for dynamic JSS in the multi-machine environment. However, they are
still non-flexible JSS.

Flexible Job Shop Scheduling. Ho et al. [101] applied GP to evolve com-
posite dispatching rules for solving the FJSS problem, and the results showed
that the obtained rules outperform the selected benchmark rules in 74% to
85% of problem instances. Tay et al. [219] tried to evolve dispatching rules
for solving multi-objective flexible job shop scheduling problems using ge-
netic programming. However, the multi-objective problem was converted
into a single objective problem by linearly combining all objective func-
tions. Hildebrandt et al. [100] re-examined this work in different dynamic
job shop scenarios and showed that the rules evolved in [219] are only
slightly better than the earliest release date rule and quite far away from
the performance of the SPT rule. They explained that the poor perfor-
mance of these rules was caused by the use of linear combination of differ-
ent objectives and the fact that the randomly generated instances cannot
effectively represent the situations that happened in a long-term simula-
tion. Thus, Hildebrandt et al. [100] aimed at only minimizing mean flow
time by evolving dispatching rules which were trained on four simulation
scenarios. The experimental results indicated that the evolved rules were

52 CHAPTER 2. LITERATURE REVIEW

quite complicated but effective when compared to other existing rules.

The investigations among these studies belong to flexible JSS, which
are more practical. However, they are conducted in static environments,
which are not normal cases in the real-world. Moreover, the routing rules
in these work are fixed, and actually only sequencing rules are evolved.

Dynamic Flexible Job Shop Scheduling. Yska et al. [233] proposed a
new GPHH algorithm with cooperative coevolution to explore the pos-
sibility of evolving both routing and sequencing rules together. The re-
sults showed that co-evolving the two rules together can lead to much
more promising results than evolving the sequencing rule only. This is
the first work that considered to evolve routing rule and sequence rule
simultaneously using GP. Multi-tree representation was also introduced
to evolve routing and sequencing rules for DFJSS in [244]. The results
showed its effectiveness for evolving the routing rule and sequencing rule
simultaneously. Stochastic dispatching rules were studied in [246] to in-
vestigate how to use scheduling heuristics for DFJSS. The results showed
that always choosing the machines or operations with the highest priority
value is an effective way to make scheduling decisions in DFJSS. The sur-
rogate technique was successfully used for DFJSS to reduce GP training
time in [245]. However, the effectiveness of the proposed algorithm was
not improved. A new representation was developed for GP to evolve ef-
fective scheduling heuristics for DFJSS in [248]. The results showed that
the proposed algorithm can achieve good performance in a range of sce-
narios. In addition, multi-objective GP was firstly proposed to solve con-
flicting objectives in multi-objective DFJSS [247]. The results showed that
the proposed multi-objective GP algorithm successfully incorporated the
strategy of NSGA-II [58] into GP for DFJSS. An adaptive search was pro-
posed to guide GP explore more promising areas with important features
which were detected based on the frequency of features [237]. The results
showed that the feature importance varied in DFJSS, and using the feature

2.5. RELATED WORK 53

importance information can help improve the effectiveness of GP. Feature
construction with different strategies was firstly developed in [233] to im-
prove the efficiency of GP. The experiment results showed that although
the proposed feature construction algorithms did not manage to improve
the results, they improved the stability of the evolutionary process. A pre-
liminary evolutionary multitask approach was firstly developed to solve
multiple DFJSS tasks simultaneously [239]. The results showed that the
proposed multitask GP algorithm can improve training efficiency dramat-
ically. However, the effectiveness of the proposed algorithm was not sig-
nificant. In addition, the visualisation technique was introduced in [167]
to provide a better understanding of computer programs in GP for DFJSS.

These studies consider to evolve the routing and sequencing rules si-
multaneously, which have real merits. Different machine learning tech-
niques with GP such as representation, surrogate, feature selection and
multitask learning have been studied. However, the research in this field
is still in a very early stage, and little work has been reported on these
significant topics.

2.5.2 Surrogate Models in GP for JSS

In the past decades, surrogate-assisted evolutionary computation [116,
217] has been widely studied to reduce the computational cost of evolu-
tionary algorithms. The basic idea is to use computationally cheap surro-
gate models to replace part of the computationally expensive evaluations
of individuals. The commonly used techniques for surrogate models in-
clude radial basis function networks [189] and kriging model [49].

However, there are some challenges that make these kinds of surro-
gate techniques not directly applicable in DFJSS. The task (i.e., prioritis-
ing operations or machines) and the training instances in DFJSS are dif-
ferent from the traditional machine learning tasks such as regression [44]
and numerical optimisation [38]. The training data in DFJSS are dynam-

54 CHAPTER 2. LITERATURE REVIEW

ically generated along with simulation execution, while the training data
are available in advance in traditional machine learning tasks. Although
we can collect data during the simulation process, it is not trivial to decide
what kinds of information are useful for training the surrogate model, and
how to represent the collected data.

There is little research about surrogate-assisted GP for solving the JSS
problems. Hildebrandt and Branke [99] proposed to approximately es-
timate the fitness of individuals by finding the most similar rule in the
previous generation. However, the best value in the last generation is an
upper bound of estimated fitness, which cannot totally reflect the quality
of a new individual. The proposed surrogate approach was applied in a
pre-selection way in which a larger number of individuals were generated
to form an intermediate population, and only the top individuals were se-
lected into the next generation for real fitness evaluations. The influence
of surrogate models and the use of simulation replications on the perfor-
mance of GP was investigated in [174]. This work showed the advantages
and disadvantages of different selection schemes in surrogate-assisted GP.
Nguyen et al. [176] also used the pre-selection way for the surrogate with
a simplified model based surrogate-assisted GP for dynamic JSS. The nov-
elty of this work lied on the surrogate models based on simplified simula-
tion models of the job shop. It showed the effectiveness of using simplified
simulation models. Zhang et al. [245] further proposed to use an adap-
tive surrogate strategy with dynamic fidelities of simulation models over
generation to estimate the fitness of individuals in the population directly
rather than in the intermediate population for DFJSS.

The studies mentioned above show the superiority of using surrogate-
assisted GP for JSS. However, there are still some limitations. From the
perspective of the way to incorporate surrogate into GP, pre-selection tech-
nique is commonly used to speed up the convergence of GP by increas-
ing the number of evaluations (i.e., cheap evaluation) of extra individuals
which is conducted in an intermediate population [99, 176]. Then, only

2.5. RELATED WORK 55

the individuals that achieve good fitness which are estimated by the sur-
rogate model, are re-evaluated to get real fitness. The other way is to use
the surrogate model to evaluate the fitness of individuals directly [245].
Both ways are sensitive to the accuracy of surrogate models. The surrogate
models greatly affect which individuals can be used to generate offspring
for the next generation, and thus will further affect the quality of individ-
uals in the population. More advanced surrogate models are worthing to
be studied to improve the effectiveness and efficiency of GP for JSS.

2.5.3 Feature Selection in GP for JSS

The performance of GP heavily relies on a proper selection of the terminal
set [220]. In the terminal set, features (terminals) are not equally impor-
tant. Besides, some features may be irrelevant, redundant or noisy, and
the original features are typically not informative enough. All of these fac-
tors may lead to various performance limitations. Feature selection is an
effective process for selecting a subset of relevant and complementary fea-
tures [41, 231]. Feature selection algorithms are generally classified into
three categories [231]: filter approaches, wrapper approaches, and embed-
ded approaches.

However, to the best of our knowledge, little is yet known about using
feature selection in JSS. Feature selection based on the frequency of ter-
minals was introduced to help GP evolve dispatching rules for dynamic
JSS in [105]. A novel feature importance measure instead of frequency
was firstly introduced in [155] to select features for the dynamic JSS prob-
lem. Then, an efficient feature selection was proposed in [152] based on
the feature importance measure in [155]. However, these approaches are
only related to dynamic JSS. The feature selection technique was firstly
used for DFJSS in [249]. In [249], a GPHH approach with feature selection
was proposed for DFJSS, which involves two feature sets. However, the
main drawback in [249] is that the selected features are only used to guide

56 CHAPTER 2. LITERATURE REVIEW

the behaviour of GP by mutation operator. It does not change the evolu-
tion sufficiently, which greatly limits the influence of the feature selection.
This points to an important question of applying the selected features ef-
fectively after obtaining a great feature set. It is still an important but
unexplored research topic in DFJSS.

2.5.4 Genetic Operators in GP

The flexibility of GP makes it stand out among lots of evolutionary com-
putation algorithms. However, GP still has some limitations. For example,
an individual is likely to behave very differently and become much worse
even after small changes. It is not fully clear what kinds of genetic op-
erators can make the performance of GP better. In terms of the way to
enhance the effectiveness of the genetic operators, we group the related
studies into three categories. In this section, we review the related studies
on genetic operators of GP with a focus on the crossover.

Adaptive Rate for Genetic Operators: Changing the rates of genetic op-
erators is a simple way to improve the effectiveness of producing off-
spring. Adaptive operator selection rates with designed reward policies
were proposed in [126] for GP. The results show that adaptive rate selec-
tion is an effective way to improve the performance of GP. Different al-
gorithms of adapting the probabilities of genetic operators were proposed
in [178] based on population-level, fitness, or individual-level informa-
tion during the evolutionary process of GP. In [6], an adaptive decreasing
mutation rate was proposed for GP to solve the truss structure optimi-
sation problem. These algorithms succeed by balancing exploration and
exploitation during the evolutionary process.

Depth-dependent Crossover: Intuitively, the depth of crossover point is
an important factor for the quality of offspring because the performance
of subtree is related to the depth to some extent. A general heuristic

2.5. RELATED WORK 57

that can be used to guide the development of the most effective depth-
control strategy for any given problem was discussed in [228]. A “height-
fair” crossover operator that only allowed to swap subtrees with the same
depth was proposed in [184]. A depth selection probability was defined
in [110] to ensure the node towards the root of an individual has a higher
probability of being chosen as a crossover point than the ones towards
leaves. These approaches aim to bias the crossover depth to improve the
performance of GP. However, it is not straightforward to apply them to
DFJSS, since the optimal depth is not known.

Semantic Crossover: The information of GP individuals can be used to
produce offspring that bias to some semantics. Two new geometric search
operators were developed in [43] to fulfil precise semantic requirements
for symbolic regression. A novel crossover operator was proposed in [164]
to address the exponential growth in the size of the individuals. The con-
strained dimensionally aware GP was designed based on the types of fea-
tures in [153] to ensure only semantically correct individuals can be gener-
ated to improve the interpretability of evolved rules for JSS. The crossover
bias for having the more fit parent as the root parent was presented in
[151]. These approaches tend to achieve the goal by utilising the seman-
tics of GP individuals during the evolutionary process.

Although there are some studies [108, 191, 253] on genetic operators
of GP, little research has been conducted on the crossover to improve the
quality of offspring by investigating the importance of subtrees directly.
To this end, this thesis aims to improve the effectiveness of crossover by
proposing an effective and adaptive recombinative guidance mechanism
based on the importance of subtrees.

2.5.5 Multitask Learning

Multitask learning aims at solving multiple related tasks simultaneously
[91], which is an important type of transfer optimisation [92]. Although

58 CHAPTER 2. LITERATURE REVIEW

evolutionary multitask learning [90, 91] is a relatively new paradigm, it
has recently received much research interests in optimising multiple tasks
simultaneously. The paradigm of evolutionary multitask learning was
given in [90, 91] for solving multiple tasks simultaneously. The success
of evolutionary multitask learning relies on the knowledge sharing mech-
anism between tasks during the evolutionary process. Evolutionary mul-
titask learning has been successfully applied to solve different problems
such as continuous numeric optimisation [91, 138, 256], feature selection
[39], symbolic regression [255] and job shop scheduling [234, 239]. How-
ever, most of the existing approaches are only applied to continuous, nu-
meric optimisation problems rather than discrete, combinatorial problems
such as DFJSS. In real-world applications, each product has different de-
mands at different times, which is a typical DFJSS problem. The complex-
ities of job shops such as the frequencies of production orders for pro-
ducing a specific product, may vary [76]. For example, in the clothing
industry, the orders for the down jacket in winter are usually higher than
in summer. For the down jacket job shop, the frequencies of orders for
producing down jacket vary between seasons. It is thus beneficial to have
various kinds of scheduling heuristics for a company to handle different
cases. Intuitively, giving multiple solutions simultaneously for a company
is an effective way to improve problem-solving capability.

Multitask Learning in Hyper-heuristic Domain: Most existing multi-
task approaches aim at improving the qualities of solutions for all the tasks
directly [62, 143], thus ignoring the hyper-heuristic research area. A uni-
fied framework of graph-based evolutionary multitasking hyper-heuristic
approach was proposed and examined on timetabling and graph-colouring
problems [96]. However, the proposed approach was a heuristic selec-
tion approach rather than a heuristic generation approach. In addition, it
was only compared with the simple single-tasking hyper-heuristics, and
there is no further analysis of the heuristic structure. From the perspec-

2.5. RELATED WORK 59

tive of involved research fields, evolutionary multitasking has been suc-
cessfully applied to continuous numeric optimisation with benchmarks
[62, 91, 138, 139], and regression problems [255]. However, the studies on
discrete, combinatorial problems which have more complex situations are
still very limited. This limits its applications in practice. In terms of so-
lution representation, most studies are conducted with the vector-based
search space [75, 84, 139, 257] rather than tree-based search space.

Multitask GP has been investigated for combinatorial optimisation prob-
lems, such as team orienteering [123] and dynamic job shop scheduling
[186, 239]. The problem investigated in [123] is static. The training in-
stances are clustered for each island, and several individuals with better
fitness are transferred between islands. However, the approach cannot
be applied for dynamic problems with simulation, since the training in-
stances are not available for clustering. In addition, in [186], a niching
approach was proposed for dynamic job shop scheduling. However, the
main drawback is that the niched individuals need further evaluations,
which is inefficient. In [239], multitask GP was applied to DFJSS, and
the efficiency of solving multiple DFJSS problems was dramatically im-
proved. However, the quality of the evolved scheduling heuristics were
not improved.

Surrogate-assisted Multitask Learning: A surrogate-assisted multitask
learning algorithm was proposed in [146] for the memetic algorithm with
benchmark problems. However, the surrogate with Gaussian Process [208]
was only used to assist the search process in the designed component
of global search. In [104], surrogate models are built based on historical
search information for each task to reduce the number of fitness evalu-
ations in multitask problems. These works [104, 146] use the surrogate
solely to improve the search efficiency for each task independently or for
a single component in a multitask problem rather than enhancing the core
multitask mechanism such as knowledge sharing. In addition, the mecha-

60 CHAPTER 2. LITERATURE REVIEW

nism of individual allocation for tasks based on the original evaluations is
computationally expensive if applied to DFJSS, since reallocated individ-
uals would need to be re-evaluated with the simulation in the DFJSS.

In summary, the research about multitask learning on combinatorial
optimisation, especially with hyper-heuristic approaches, is still very lim-
ited. In addition, surrogate-assisted multitask learning is also in its early
stage. This thesis focuses on multitask learning in the hyper-heuristic do-
main with GPHH, and works on combinatorial optimisation, i.e., DFJSS.
In addition, this thesis works on the surrogate-assisted multitask GPHH
that can benefit the knowledge sharing between DFJSS tasks by the surro-
gate models directly.

Knowledge Transfer Schemes in Genetic Programming: In the field of
transfer learning in GP, according to “what to transfer”, there are two main
schemes [63]. One is the “FullTree” that migrates a number of individuals
with good quality from the source domain to the target domain. The other
is the “SubTree” that is extracted from individuals in the source domain
and adapted to the target domain.

Different from the traditional transfer learning in GP, there are no source
and target domains in this work. The knowledge is transferred between
different tasks directly without the knowledge extraction process from the
source domain. In [255], assortative mating and vertical cultural transmis-
sion [91] were introduced to transfer information between different tasks
in GP, which can be seen as a “FullTree” transfer. In [239], the knowledge
transfer was realised by the crossover operator between the GP individ-
uals for different tasks, which belongs to the “Subtree” transfer scheme.
Compared with transferring “SubTree”, the advantage of transferring “Full-
Tree” is that the knowledge extraction process is not necessary. The key
to transferring “FullTree” is that the chosen individuals must be of good
quality for the problem that is expected to be solved. Otherwise, the trans-
ferred individuals will be eliminated subsequently during the evolution-

2.6. CHAPTER SUMMARY 61

ary process, and lose the role of knowledge transfer [63]. On the contrary,
compared with transferring “FullTree”, the advantage of transferring “Sub-
Tree” is that the transferred knowledge might be more precise. However,
the knowledge extraction of “SubTree” is complex and time-consuming.

2.6 Chapter Summary

This chapter introduces the basic concepts of scheduling, evolutionary
computation, GP, and heuristics and hyper-heuristics which are funda-
mental knowledge of this thesis. The details of the investigated problem,
i.e., DFJSS, are provided, and how to use scheduling heuristics for DFJSS
is given with examples. Meanwhile, the approaches for JSS, including ex-
act optimisation approaches, heuristic approaches, and hyper-heuristics
approaches, are discussed. The technical details of using GPHH for DFJSS
are described. The existing studies that use GPHH to evolve scheduling
heuristics for JSS are discussed by categorising them into different groups.
In addition, based on the research objectives of this thesis, the related stud-
ies are summarised. The limitations of the existing studies are highlighted
as follows.

• The training process of GPHH for DFJSS is time-consuming.

• GPHH has a large search space which limits its search effectiveness
and efficiency.

• For GPHH, the method to generate offspring for the next generation
is not effective, since there is no guidance for choosing the genetic
materials from the parents.

• The multiple task solving ability of GPHH is still an unexplored area.

The contents in this chapter help prepare the reading of this thesis by
giving details of related concepts and techniques, and guiding the research

62 CHAPTER 2. LITERATURE REVIEW

in the following chapters. The follow five contribution chapters will ad-
dress these limitations to improve the performance of DFJSS problems.

Chapter 3

Efficiency Improvement with
Multi-fidelity Surrogates

The literature has identified a number of key gaps and limitations of ex-
isting work in GPHH for DFJSS. From this chapter, we will develop new
methods to address them one after another, from training efficiency im-
provement, search space reduction, search mechanism improvement, to
multitask learning development. This chapter will focus on using multi-
fidelity surrogate techniques to improve the training efficiency of GPHH
for DFJSS.

3.1 Introduction

Simulation [57] is a promising technique to investigate the complex real-
world problems such as health care [133] and quay crane scheduling [171].
This thesis conducts test beds based on dynamic flexible simulation model
for JSS [233] to measure the effectiveness of the proposed GPHH algo-
rithms. The simulation-based individual evaluations increases the train-
ing time of GPHH, since there are many priority calculations with GP in-
dividuals for making decisions during DFJSS simulation execution. Surro-
gate models [116, 183, 217, 240] have been widely used to reduce the com-

63

64 CHAPTER 3. MULTI-FIDELITY SURROGATES

putational cost in evolutionary computation. The success lies in building
computationally cheap models to approximate the fitness of individuals
without requiring the original computationally expensive evaluations.

To the best of our knowledge, little is yet known to improve the effi-
ciency of GP in JSS. The existing works of surrogate-assisted GP for JSS
can be grouped into two categories according to the way of using the sur-
rogate model to estimate the fitness of a GP individual. One is to use
existing models such as applying KNN (i.e., K nearest neighbour) [194]
to estimate the fitness of GP individuals with the most similar individual
that has been evaluated in the previous generation [99, 174]. The other
is to use a simplified simulation model as a surrogate model, which is a
problem approximation technique to estimate the fitness of GP individuals
[176, 245]. In [99], [174] and [176], the surrogates are used in a pre-selection
way. Brief speaking, a large number of offspring are generated, and only
the top individuals are selected (i.e., based on the estimated fitness by the
surrogates) to be re-evaluated with real fitness evaluations. In [245], surro-
gates with different fidelities are used to evaluate the individuals directly
by increasing the fidelity of applied surrogate model gradually along with
the search process.

The studies mentioned above all show the superiority of using the
surrogate technique in JSS. However, the performance of the algorithms
highly relies on the accuracy of used surrogate models, either based on
nearest neighbour [99, 174] or simplified simulation models [176, 245]. In
addition, each surrogate in the multi-fidelity surrogate models was used
independently at different generations [245]. On one hand, the perfor-
mance at a specific generation is sensitive to the surrogate used in that
generation. On the other hand, it may not be effective since there is no
communication between the surrogates with different fidelities. More ad-
vanced techniques are worth investigating.

To address the above issues, this chapter proposes to use multiple sur-
rogate models with different fidelities collaboratively to improve the train-

3.1. INTRODUCTION 65

ing efficiency of GPHH to evolve effective scheduling heuristics for DFJSS
automatically. Multi-fidelity surrogates are developed to achieve a trade-
off between the accuracy and computational cost of surrogate models.
Specifically, multi-fidelity surrogates are built by simplifying the DFJSS
problem to be solved. In addition, an effective collaboration framework
with knowledge transfer is proposed to utilise the information of sur-
rogate models with different fidelities. It is noted that using the multi-
fidelity surrogates can reduce the dependence of the algorithm perfor-
mance on specific model accuracy.

3.1.1 Chapter Goals

The goal of this chapter is to develop an effective GPHH with multi-fidelity
based surrogate models to evolve scheduling heuristics for the DFJSS problems
efficiently. The proposed algorithm is expected to both speed up the con-
vergence and reduce the training time of GPHH for DFJSS. Specifically,
this chapter has the following research objectives:

1. Develop multiple surrogate models with different fidelities by sim-
plifying the problem to be solved according to its characteristics.

2. Propose an effective collaboration framework with knowledge trans-
fer for the designed multi-fidelity based surrogate models to learn
from each other for solving the desired problem.

3. Analyse the efficiency of the proposed algorithm in terms of the
training time and the convergence speed.

4. Analyse the effectiveness of the proposed algorithm in terms of the
quality of the evolved rules.

5. Analyse the behaviour of the proposed GPHH algorithm in terms of
the effect of the knowledge transfer mechanism.

66 CHAPTER 3. MULTI-FIDELITY SURROGATES

3.1.2 Chapter Organisation

The rest of this chapter is organised as follows. Detailed descriptions of
the proposed algorithm are given in Section 3.2. The experiment design
is shown in Section 3.3, followed by results and discussions in Section 3.4.
Further analyses are conducted in Section 3.5. Finally, Section 3.6 con-
cludes this chapter.

3.2 Proposed Algorithm

This section describes the framework of the proposed algorithm first. Then,
the key components of the proposed algorithm are given.

3.2.1 Framework of the Proposed Algorithm

The main framework of the proposed algorithm is presented in Algorithm
2. The input is k designed surrogate models with different fidelities. The
surrogate models are developed using shorter DFJSS simulations. One
of them is the original simulation which can be considered as a surrogate
model of the original problem with an accuracy of 100%. The output of the
proposed algorithm is a set of best evolved rules obtained from subpopu-
lations with different surrogate models. The problems solved in different
subpopulations can be considered as similar problems but with different
problem scales (i.e., different simulation lengths). The proposed algorithm
has three main differences compared with the traditional GPHH for JSS. At
the initialisation stage, the population is formed with multiple subpopula-
tions to incorporate multi-fidelity surrogate models into GP (line 1). Each
subpopulation is associated with a surrogate model, respectively. During
the evaluation process, the individuals in different subpopulations are eval-
uated with the surrogate model associated with it (from line 6 to line 18).
During the evolution stage, the offspring of each subpopulation are gener-
ated for the next generation according to the proposed knowledge transfer

3.2. PROPOSED ALGORITHM 67

Algorithm 2: Framework of the Proposed Algorithm
Input : k multi-fidelity surrogate models S1, S2, ... , Sk

Output: The best evolved heuristics with each surrogate model ind∗1, ind∗2, ... ,
ind∗k

1: Initialisation: Randomly initialise the population with k subpopulations
2: set ind∗1, ind∗2, ... , ind∗k ← null

3: set fitness(ind∗1), fitness(ind∗2), ... , fitness(ind∗k)← +∞
4: gen← 0

5: while gen < maxGen do
6: // Evaluation: Evaluate the individuals in the population
7: for i = 1 to k do
8: for j = 1 to |subpopsize| do
9: Run a DFJSS simulation with indj to get the schedule Schedulej

10: fitness(indj)← Obj(Schedulej)

11: end
12: for j = 1 to |subpopsize| do
13: if fitness(indj) < fitness(ind∗i) then
14: ind∗i ← indj

15: fitness(ind∗i)← fitness(indj)

16: end

17: end

18: end
19: Evolution: Generate offspring for each subpopulation by genetic operators

with the proposed knowledge transfer mechanism — refer to Algorithm 3
20: gen← gen+ 1

21: end
22: return ind∗1, ind∗2, ... , ind∗k

mechanism (line 19).

The key idea of this chapter is to collaborate multi-fidelity based sur-
rogates for GPHH to evolve scheduling heuristics for DFJSS. Introducing
multi-fidelity surrogate models implies that some individuals are evalu-
ated with a simpler surrogate, and some individuals are evaluated with
a more complex surrogate. This chapter uses multiple subpopulations to
solve multiple tasks simultaneously, each subpopulation for one task. The

68 CHAPTER 3. MULTI-FIDELITY SURROGATES
routing rule sequencing rule

S2 Sk

S1

Subpop2 Subpopk

Subpop1

. . .

BestRule1

BestRule2 BestRulek

Knowledge

transfer

. . .

Figure 3.1: The evolutionary framework of the proposed algorithm.

individuals in the same or different subpopulation are evaluated with the
surrogate with the same or different fidelity. From the perspective of the
evolutionary process, the subpopulations can be considered as several in-
dependent evolutionary processes that are evolved simultaneously.

Figure 3.1 shows the evolutionary framework of the proposed algo-
rithm. Assuming k surrogate models (S1, S2, ... , Sk) with different fideli-
ties from simple to complex are used to improve the efficiency of GPHH
to evolve effective scheduling heuristics, where the problem with Sk is the
desired problem to be solved. The population of GP is divided into k sub-
populations (e.g., Subpop1, Subpop2, ... , Subpopk) and each subpopulation
will evolve scheduling heuristics based on the corresponding surrogate
model. In addition, during the evolutionary process, different subpopula-
tions assist each other by sharing their knowledge. It is noted that all the
subpopulations are evolved in parallel. Therefore, the output of a GP run
consists of k best evolved rules (i.e., BestRule1 (ind∗1), BestRule1 (ind∗2),
... , BestRulek (ind∗k)). However, we only focus on the best evolved rule

3.2. PROPOSED ALGORITHM 69

BestRulek obtained from Subpopk with Sk, since it is the problem we aim
to solve.

There are some advantages of using the proposed evolutionary frame-
work to realise collaborative multi-fidelity based surrogate-assisted GPHH
for DFJSS. First, the evolutionary framework facilitates the collaboration
between the surrogate models with different fidelities. In addition, the
proposed algorithm is not sensitive to the accuracy of any single surro-
gate model, since multiple surrogate models with different fidelities are
involved at each generation. Finally, as a by-product, problems with dif-
ferent scales (e.g., number of different jobs) are solved simultaneously. It is
an efficient way to utilise computational resources, if one prefers to solve
multiple problems with different scales simultaneously.

3.2.2 Knowledge Transfer

The key element of the proposed algorithm is to introduce a collabora-
tive mechanism to utilise the information of surrogate models with mul-
tiple fidelities. “How” and “when” to transfer knowledge, and “what” to
transfer are important research questions in this section [109, 185]. Dif-
ferent from the traditional transfer learning in GP, this chapter does not
involve the source problem and the target problem. It implies that there
is no knowledge extraction process from the source problem. This chapter
proposes to conduct the knowledge transfer implicitly via the crossover
operator [92].

How and when to transfer. Crossover is an important genetic op-
erator in GP to produce offspring, which can be an effective carrier for
knowledge transfer. Crossover can occur between individuals from the
same subpopulation or different subpopulations. The proposed knowl-
edge transfer mechanism is shown in Algorithm 3. We define a trans-
fer ratio tr to control when to transfer knowledge from other subpopula-
tions in each generation. A larger (smaller) tr value indicates the knowl-

70 CHAPTER 3. MULTI-FIDELITY SURROGATES

Algorithm 3: Generating Offspring with Knowledge Transfer
Input : A population with k subpopulations

P = {Subpop1, Subpop2, ..., Subpopk}
Output: A new population with k subpopulations

P
′
= {Subpop′1, Subpop

′

2, ..., Subpop
′

k}
1: set P , P

′ ← null

2: gen← 0

3: while gen < maxGen do
4: // Evaluation: Evaluate the individuals in each subpopulation,

respectively
5: // Evolution
6: for i = 1 to k do
7: if rand <= tr then
8: parent1 ← Select the first parent from Subpopsi — Algorithm 4
9: parent2 ← Select the second parent from Subpopsqi — Algorithm 4

10: point1: the crossover point of parent1
11: point2: the crossover point of parent2
12: offspring: replace point1 of parent1 by point2

13: Subpop
′

i ← Subpop
′

i ∪ offspring

14: else
15: parent1 ← Select the first parent from Subpopsi — Algorithm 4
16: parent2 ← Select the second parent from Subpopsi — Algorithm 4
17: point1: the crossover point of parent1
18: point2: the crossover point of parent2
19: offspring1: replace point1 of parent1 by point2

20: offspring2: replace point2 of parent2 by point1

21: Subpop
′

i ← Subpop
′

i ∪ offspring1 ∪ offspring2

22: end
23: P

′ ← P
′ ∪ Subpop

′

i

24: end
25: gen← gen+ 1

26: end
27: return P

′
= {Subpop′1, Subpop

′

2, ..., Subpop
′

k}

edge transfer between different subpopulations is (not) encouraged. If the
knowledge transfer mechanism is triggered, the first parent parent1 will be

3.2. PROPOSED ALGORITHM 71

selected from the current subpopulation (line 8). The other parent parent2
will be selected from one of the other subpopulations (line 9). Only the
offspring derived from parent1 is kept in the new generation (line 10 to
line 13). If the knowledge mechanism is not triggered, both parents will
be selected from the current subpopulation (i.e., the same subpopulation)
to produce two offspring for generating the new subpopulation (from line
14 to line 22).

It is noted that the knowledge can be transferred from a subpopulation
with a lower-fidelity surrogate model to that with a higher-fidelity sur-
rogate model, and vice versa. From the knowledge transfer perspective,
the subpopulation with a lower fidelity surrogate (simpler problem) can
find promising individuals faster than the subpopulation with a higher fi-
delity surrogate (more complex problem). For a subpopulation with a high
fidelity surrogate model, introducing knowledge from a subpopulation
with a lower fidelity surrogate model can speed up its convergence. For a
subpopulation with a lower fidelity surrogate model, learning knowledge
from a subpopulation with a higher fidelity surrogate model can help in-
crease the quality of individuals, since the evolved rules with a higher fi-
delity surrogate model are more reliable. In general, the collaboration with
knowledge transfer is expected to benefit all of the involved problems.

What to transfer. It is critical to decide what kinds of knowledge are
useful to be transferred. Intuitively, the knowledge carried by promis-
ing individuals is beneficial. In this chapter, we use the knee point tech-
nique [254] to decide the set of promising individuals. The individuals
with smaller fitness values (i.e., our problem is a minimisation problem)
than the fitness of the knee point individual, are selected as promising in-
dividuals. It is noted that the number of promising individuals varies in
different generations, and the knee point technique can capture promis-
ing individuals efficiently. In addition, the number of selected promising
individuals is not required to be defined in advance (i.e., the knowledge
transfer mechanism is parameter-free). With the knee point technique, the

72 CHAPTER 3. MULTI-FIDELITY SURROGATES

Algorithm 4: Pseudo-code of selecting promising individuals for knowl-

edge transfer
Input : The current subpopulation with a set of individuals Ind
Output: Promising individuals Ind∗ for knowledge transfer

1: sort(subpopulation)

2: minPoint(0, fitness(ind0)
3: maxPoint(subpopsize -1, fitness(indsubpopsize−1))
4: set maxDistance← 0 and kneePointIdx← 0

5: get a line L based on minPoint and maxPoint points
6: for i = 0 to subpopsize− 1 do
7: calculate the distance (d) from Point(i, fitness(indi)) to line L
8: if d > maxDistance then
9: maxDistance← d

10: kneePointIdx← i

11: end

12: end
13: for i = 0 to subpopsize− 1 do
14: if i <= kneePointIdx then
15: Ind∗ ← Ind∗ ∪ Ind[i]

16: end

17: end
18: return Ind∗

promising individuals can be decided adaptively. Only the knowledge
carried by the promising individuals is allowed to be transferred to other
subpopulations.

Algorithm 4 shows the pseudo-code of selecting promising individ-
uals for knowledge transfer. First, the individuals in the subpopulation
are sorted in ascending order of their fitness values (line 1). Second, one
line (L) is generated between the two points with maximal and minimal
fitness. Then, the distance between each individual and L is calculated
(from line 6 to line 12), and the knee point which has the highest distance
to L is detected. Finally, the individuals whose fitness values are smaller
than the fitness of knee point, are chosen as the promising individuals for

3.2. PROPOSED ALGORITHM 73

Figure 3.2: The selected promising individuals based on knee-point.

knowledge transfer (line 13 to line 17).
An example of choosing promising individuals from a number of in-

dividuals with knee point technique can be found in Figure 3.2. First, the
individuals in the population are sorted based on fitness values in ascend-
ing order, and a curve related to fitness values is obtained. Second, a line
is generated by connecting the points with the smallest and the largest fit-
ness value. Then, the distance between each point on the curve and the
line is calculated. The point that has the largest distance to the line is se-
lected as the knee point, and the individuals whose fitness value is smaller
than that of the knee point are selected to be adapted.

3.2.3 Algorithm Summary

This chapter develops multi-fidelity surrogate models by shorting DFJSS
simulations. Involving lower fidelity surrogate models with simplified
DFJSS will reduce the computational cost of GP. However, the evaluations
of individuals with lower fidelity surrogate models are often inaccurate.
The proposed algorithm deftly addresses this conflicting issue by collabo-

74 CHAPTER 3. MULTI-FIDELITY SURROGATES

rating the surrogate models with different fidelities. An effective knowl-
edge transfer strategy realises the collaboration mechanism.

3.3 Experiment Design

3.3.1 Simulation Model

The simulation model contains 5000 jobs that need to be processed by 10
machines. Each job has a different number of operations that are randomly
generated from a discrete uniform distribution between 1 and 10. The im-
portance of jobs might be different, which are indicated by weights. The
weights of 20%, 60%, and 20% jobs are set as 1, 2, and 4 following the
setting in [99]. The processing time of each operation is sampled from a
uniform discrete distribution with the range [1, 99]. The number of can-
didate machines for an operation follows a uniform discrete distribution
between 1 and 10.

A problem instance is an instantiation of the problem with a partic-
ular pseudo-random number generator seed [21]. Multiple different in-
stances will be used to train and test the scheduling heuristics. At each
generation, we only use one instance to evaluate the quality of evolved
rules. However, the instance will be changed at each generation during
the training process by assigning a different random seed to improve the
generalisation of the GP algorithm. This strategy has been shown to be
useful to improve the effectiveness and generalisation of evolved rules of
GP [100, 165].

To verify the effectiveness and efficiency of the proposed algorithm,
scenarios with different settings (i.e., different objectives and utilisation
levels) are examined. New jobs will arrive over time according to a Pois-
son process with rate λ. The utilisation level (p) is an essential factor to
simulate different scenarios. It indicates the proportion of time that a ma-
chine is expected to be busy. The expression is shown in Eq. 3.1, where

3.3. EXPERIMENT DESIGN 75

µ is the average processing time of the machines. PM is the probability
of a job visiting a machine. For example, PM is 2/10 if each job has two
operations. A larger utilisation level leads to a busier and more complex
job shop scenario.

λ = µ ∗ PM/p (3.1)

The first 1000 jobs are treated as warm-up jobs to get typical situations
occurring in a long-term simulation of a dynamic job shop system, and
jobs arrive as a continuous arrival process. We collect data from the next
5000 jobs. The simulation stops when the 6000th job is finished.

3.3.2 Comparison Design

The goal of this chapter is to improve the training efficiency of GPHH
with collaborative multi-fidelity surrogate models for DFJSS. Two algo-
rithms are involved in this chapter. The GP with multi-tree representa-
tion [244] (MTGP) algorithm is selected as the baseline algorithm because
it can evolve two rules simultaneously, and its framework is suitable for
applying collaborative multi-fidelity surrogate models. The proposed al-
gorithm with collaborative multi-fidelity surrogate models, is named as
M3GP, since it involves multi-population framework, multi-tree represen-
tation, and multi-fidelity surrogate models. The algorithms are verified
with two surrogate models. It is noted that MTGP works with one pop-
ulation with 1024 individuals while M3GP operates with two subpopula-
tions with 1024 individuals (i.e., 512 individuals for each subpopulation).
M3GP1 and M3GP2 can be considered as the algorithms to measure the
performance of the evolved rules with the lower surrogate model S1 and
the original model S2 with the problem to be solved.

The performance of the proposed algorithm is first measured by the
comparison between MTGP and M3GP2, since we mainly focus on solv-
ing the desired problem. The state-of-the-art algorithms in [99] and [176],
which is named as SGP−K and SGP−H in this chapter, are further com-

76 CHAPTER 3. MULTI-FIDELITY SURROGATES

pared with the proposed algorithm. In addition, the proposed algorithm
with more than two surrogates with different fidelities is also studied. In
order to verify the effectiveness of the proposed knowledge transfer mech-
anism for GPHH, the performance of M3GP1 with and without the knowl-
edge transfer are compared with each other. Similarly, the effectiveness of
knowledge transfer on M3GP2 is also further analysed.

Max-flowtime, mean-flowtime and mean-weighted-flowtime are three
commonly used objectives. To verify the effectiveness of the proposed
algorithm, we expect to test the proposed algorithm on complex scenarios.
We set the utilisation level as 0.85 and 0.95, since they can lead to complex
job shop scenarios, and are commonly used to evaluate the performance
of the proposed algorithm Overall, the proposed algorithms are tested on
six different scenarios with the three objectives (i.e., max flowtime, mean
flowtime, and mean weighted flowtime) and the two utilisation levels (i.e.,
0.85 and 0.95).

3.3.3 Parameter Setting

This section introduces the common parameter settings of GPHH, which
are also used for the parameter settings in other chapters if they are not
redefined. It is noted that each chapter also has its own specialised param-
eter settings for GPHH according to the characteristics of the proposed
algorithm in the corresponding chapters.

Common Parameter Settings of GPHH

Some common parameter settings of GPHH are shown in Table 3.1 [128].
The individuals are initialised with the ramped-half-and-half method with
a minimum depth of 2 and a maximum depth of 6. When generating a GP
individual, the rates to the terminal and non-terminal to use are 10% and
90%, respectively. The maximal of the depth of a GP individual is 8. To
maintain the quality of the obtained individuals in the evolutionary pro-

3.3. EXPERIMENT DESIGN 77

Table 3.1: The common parameter settings of GPHH.

Parameter Value

Method for initialising population ramped-half-and-half
Initial minimum/maximum depth 2 / 6

Terminal / non-terminal selection rate 10% / 90%
Maximal depth of programs 8

The number of elites for a task 10
Parent selection Tournament selection with size 7

Crossover / Mutation / Reproduction rate 80% / 15% / 5%
The number of generations 51

cess of GP, the best 10 individuals (i.e., elites) from the last generation are
moved to the next generation directly. The rest individuals for the next
generation are produced by crossover, mutation, and reproduction (i.e.,
genetic operators) with a rate of 80%, 15%, and 5%, respectively. Tour-
nament selection with size 7 is used to select the parent(s) for the genetic
operators. The algorithm is stopped after 51 generations. In this thesis, the
settings of the GPHH parameters in Table 3.1 are the same in all chapters,
if they are not redefined in the following chapters. For other parameters,
they are specialised in each chapter based on the investigated problems.

The terminals of GP serve as features of the problem to capture suffi-
cient information about the problem. The terminal set of GP in this thesis
consists of a number of basic features of machines, jobs and operations
in the job shop following the suggestions in [21, 170, 249]. The routing
terminal set is set the same as the sequencing terminal set in this thesis.

Machine-related features: the states of machines such as workload are
key factors for allocating operations to machines. A good schedule should
not overload or underload a machine.

• NIQ is the number of operations in the machine’s queue. It is de-
signed to capture the workload of a machine by counting the number
of operations in its queue.

78 CHAPTER 3. MULTI-FIDELITY SURROGATES

• WIQ is the total processing time of the operations in the machine’s
queue. It is used to capture the workload of a machine by calculat-
ing the total processing time required for a machine to finish all the
operations in its queue without any delay.

• MWT indicates the waiting time for the machine to become idle again,
i.e., the completion time of the current processing on the machine mi-
nus the current time.

Job-related features: the states of jobs have a significant effect on deciding
which job has a better priority to be processed earlier. A good schedule is
expected to process important jobs earlier, and take the current and look-
ahead job information into account.

• W is the weight of a job. A job with a larger weight is more impor-
tant.

• NOR is the number of remaining operations for a job. It reflects the
current processing stage of the job.

• WKR is the median processing time needed for the remaining opera-
tions. The median time is an estimation of the processing time, since
the exact processing time of the operation in DFJSS depends on the
machine, and is unknown in advance as the machine is not decided
yet. This feature estimates the processing stage of the job in terms of
processing time.

• TIS is the time that the job has stayed in the job shop since its arrival.

Operation-related features: the characteristics and states of operations are
important factors for choosing the next operation to be processed. A good
schedule is supposed to consider the time cost of processing the operation
and its waiting time properly.

• PT is the processing time of the operation on the candidate machine.

3.3. EXPERIMENT DESIGN 79

• NPT is the median processing time of the next operation of the can-
didate operation (0 if the candidate operation is the last one of the
job)

• OWT is the time that the operation has waited in the machine’s queue.

GPHH can automatically select proper simple features from the terminals
and construct high-level features that are appropriate for a particular prob-
lem. The function set is set to {+, −, ∗, /, Max, Min} [170, 242]. The
arithmetic operators take two arguments. The “/” operator is a protected
division, returning one if divided by zero. The Max and Min functions
take two arguments and return the maximum and minimum of their ar-
guments, respectively.

In this thesis, all experiments are run on an Arch Linux OS with an Intel
(R) Core (TM) i7-4770 CPU at 3.40GHz, with 8-GB RAM. The algorithms
are encoded with the java programming language.

Specialised Parameter Settings of GPHH

The specialised parameter settings of GPHH in this chapter are shown
in Table 3.2. For simplicity, only two models with different fidelities are
mainly considered firstly. Therefore, GP population consists of two sub-
populations and the number of individuals is set to 512 for each subpop-
ulation. Borrowing the idea in [176], the designed surrogate model (S1) is
generated by creating a “half shop” job shop with 2500 (i.e., 5000 * 0.5 =
2500) jobs, which reduces the number of jobs to half of the original model
but without reducing the number of machines to keep the characteristics
of DFJSS. The other model (S2) is designed by the job shop scenario with
5000 jobs, which is the original model (i.e., can be considered as a surro-
gate model with 100% accuracy). The only difference between S1 and S2

is the number of jobs, and the original model S2 is more accurate than the
surrogate model S1, since S2 reflects the problem itself. We set the transfer

80 CHAPTER 3. MULTI-FIDELITY SURROGATES

Table 3.2: The parameter settings of GPHH.

Parameter Value

Number of subpopulations 2
Subpopulation size 512

Transfer Ratio tr 0.6
*The number of jobs in surrogate model S1 2500
*The number of jobs in original model S2 5000

* for M3GP only

ratio tr to 0.6, and the details of the sensitivity analysis of the knowledge
transfer ratio are provided in Section 3.5.2.

To make fair comparison, the sizes of intermediate population of SGP−H,
SGP−K are set as two times of the population, as suggested in [99]. The
half shop surrogate model based on problem approximation is set the
same as in [176] but with the maximum number of operations for a job
as five for applying the idea properly in the investigated problem. In ad-
dition, the number of neighbours for KNN in SGP−K is set to 1.

3.4 Results and Discussions

The evolved rule is tested on 50 unseen instances, and the average objec-
tive value across the 50 test instances is reported as the test performance
of the rule, which can be a good approximation of the true performance of
the rule. This thesis works on the minimisation problem, and a smaller ob-
jective value indicates a better performance. Friedman’s test with a signif-
icance level of 0.05 is applied to compare all the algorithms based on their
performance. If Friedman’s test gives significance results, we will further
conduct Wilcoxon rank-sum test with Bonferroni correction between the
proposed algorithm and other algorithms with a significance level of 0.05
for pairwise comparisons with at least 30 independent runs (i.e., 30 runs

3.4. RESULTS AND DISCUSSIONS 81

Table 3.3: The mean (standard deviation) of the training time (in minutes)
of MTGP and M3GP according to 30 independent runs in six DFJSS sce-
narios.

Scenario MTGP M3GP

<Fmax, 0.85> 64(9) 51(9)(–)
<Fmax, 0.95> 67(12) 53(9)(–)
<Fmean, 0.85> 61(11) 48(8)(–)
<Fmean, 0.95> 64(13) 49(6)(–)

<WFmean, 0.85> 62(13) 49(7)(–)
<WFmean, 0.95> 63(11) 49(6)(–)

and 50 runs). For all the results in this thesis, “–”, “+”, and “≈” indicate
the corresponding result is significantly better than, worse than or similar
to its counterpart. An algorithm is compared with the algorithm(s) before
it one by one, as shown in the tables in the Results and Discussions section.
The results in other chapters are also compared in the same way.

3.4.1 Training Time

Table 3.3 shows the mean and standard deviation of the training time of
MTGP and M3GP based on 30 independent runs in six DFJSS scenarios.
The training time of the proposed algorithm M3GP is significantly shorter
than that of MTGP in all the examined scenarios. For example, the training
time of M3GP is reduced by 23.40% in the scenario <Fmean, 0.95>. In
general, M3GP is more efficient than MTGP, and the training time of M3GP

is roughly 78.5% of that of MTGP in all the tested scenarios.

Figure 3.3 shows the curve of the training time of MTGP and M3GP

during the training process in six different scenarios. It shows that the
training time of M3GP is shorter than MTGP at all generations in all the
scenarios. It indicates that M3GP can successfully save more computa-
tional cost throughout the entire evolutionary process. In addition, the

82 CHAPTER 3. MULTI-FIDELITY SURROGATES

●
●

●

●
●

●
●

●

●

●
●

●●●

● ●●●●●

●●●
●●

●●●●●
●●●●●

●●●
●

● ●●

●

●
●

●●●
●

●

●●
●

●●

●●
●●

●
●

●●●● ●●
●

●
●

●●●●● ●●

●●●
●●

●●

●

●

●
●●●

●

●

●●●
●

●

●
●

●
●

●
●

●●
●●●●● ●●

●●● ●●●●
● ●●

●●●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

● ●●●

●

●
●

●
●●

●
●

●
●●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

● ●

●
●●

● ●
●

●●●

●●
●

●
● ●

●●
●●

●●
●●● ●●

●
●

●
●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●
●●

●
●

●
●●

●●
● ●

●

●●
●

●●
●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50
40

60

80

100

40

60

80

50

60

70

80

90

40

50

60

70

80

90

40

50

60

70

80

90

40

50

60

70

80

90

Generation

Tr
ai

ni
ng

 T
im

e

● MTGP M3 GP

Figure 3.3: The curve of the training time (in seconds) of MTGP and M3GP

during the training process according to 30 independent runs in six DFJSS
scenarios.

training time of M3GP is increasing more slowly than that of MTGP. As
the number of generation increases, the training time of M3GP grows from
40 to 70 seconds roughly in all scenarios. However, the training time of
MTGP increases from about 50 to 90 seconds in the scenarios with util-
isation level as 0.85 (i.e., <Fmax, 0.85>, <Fmean, 0.85> and <WFmean,
0.85>) while rises from 55 to 95 roughly in the scenarios with utilisation
level as 0.95 (i.e., <Fmax, 0.95>, <Fmean, 0.95> and <WFmean, 0.95>).

More training time is normally needed in the scenarios with higher
utilisation levels than the scenarios with lower utilisation levels, since the

3.4. RESULTS AND DISCUSSIONS 83

corresponding job shop environments in the scenarios with higher utili-
sation levels are more complicated. Specifically, compared with the train-
ing time needed in scenarios with utilisation level of 0.85, for MTGP, more
training time is needed in the scenarios with utilisation level of 0.95. How-
ever, this is not the case for M3GP. This indicates that the training time of
M3GP is not sensitive to the utilisation level of the job shop. One possi-
ble reason is that the surrogate models with lower fidelities are less time-
consuming, since the corresponding simulations are shorter. The simpler
problem with even a higher utilisation level does not significantly impact
the training time.

3.4.2 Quality of the Evolved Scheduling Heuristics

Table 3.4 shows the mean and standard deviation of the objective values
on unseen instances of MTGP and M3GP2 with the same number of gen-
erations over 30 independent runs in six different scenarios. It shows that
there is no statistical difference in the performance between MTGP and
M3GP2 in five out of the six scenarios. In addition, M3GP2 performs signif-
icantly better than its counterpart in scenario <Fmax, 0.95>. This shows
that M3GP2 can achieve similar or even better performance than MTGP
with a less computational cost.

It is also interesting to know whether the performance of M3GP2 can
be better than MTGP if the same training time is given. To answer this
question, we set a fixed training time for all the algorithms. In this case,
the number of generations in each run for one algorithm can be different,
and we cannot compare with the algorithms based on generations any
more. To make a fair comparison, we process the results by choosing the
compared data properly before comparison. We aim to choose data at the
same or similar time points from each run of the compared algorithms.
In addition, the number of chosen data in each run for all the compared
algorithms is expected to be equal. We use time to indicate the training

84 CHAPTER 3. MULTI-FIDELITY SURROGATES

Table 3.4: The mean (standard deviation) of the objective values on test in-
stances of MTGP and M3GP2 with the same number of generations over
30 independent runs in six DFJSS scenarios.

Scenario MTGP M3GP2

<Fmax, 0.85> 1235.73(41.27) 1232.39(31.70)(≈)
<Fmax, 0.95> 1967.24(65.18) 1932.22(42.22)(–)
<Fmean, 0.85> 384.55(1.04) 385.98(2.98) (≈)
<Fmean, 0.95> 555.32(9.91) 552.50(5.07)(≈)

<WFmean, 0.85> 831.30(7.32) 831.24(5.22)(≈)
<WFmean, 0.95> 1114.93(13.80) 1114.36(8.88)(≈)

time budget, and the results are equally divided into g groups. The av-
erage period time in each group is time

g
, and the demarcation points of

training time of g groups are time
g
∗ 1, time

g
∗ 2, ..., time

g
∗ g. According to

the demarcation points, the closest recorded time is identified to map the
compared data. It is noted that there are inevitable errors to measure the
performance of the algorithm in this way, since the compared data is not
obtained with exactly the same number of evaluations. Fortunately, these
data are still representative to measure the performance of the algorithms
since the sampling time is similar for different runs of one algorithm and
different algorithms.

We limit the training time to 80 minutes for MTGP and M3GP, since the
training time of the baseline MTGP with 51 generations is about 80 min-
utes. We set the number of groups g to 20 that can get enough data for in-
vestigating the objective values along with training time of MTGP, SGP−H,
SGP−K, and M3GP2. The objective values around 80 minutes are used to
measure the performance of the involved algorithms. Table 3.5 shows the
mean and standard deviation of the objective values on unseen instances
of MTGP, SGP−H, SGP−K, and M3GP2 with the same training time over
30 independent runs in the six test scenarios. First, SGP−H, SGP−K, and
M3GP2 are compared with MTGP, respectively. Second, M3GP2 is com-

3.4. RESULTS AND DISCUSSIONS 85

Table 3.5: The mean (standard deviation) of the objective values on test
instances of MTGP, SGP−H, SGP−K, and M3GP2 with the same training
time of 80 minutes over 30 independent runs in six DFJSS scenarios.

Scenario MTGP SGP−H SGP−K M3GP2

<Fmax, 0.85> 1225.58(44.21)1267.49(40.76)(+)1239.48(40.73)(≈)1212.25(28.60)(–)(–)(–)
<Fmax, 0.95> 1963.85(61.53)1981.81(52.60)(≈)1956.72(29.60)(≈)1925.87(28.98)(–)(–)(–)
<Fmean, 0.85> 384.20(0.93) 387.24(4.22)(+) 386.74(3.32)(+) 384.61(1.25)(≈)(–)(–)
<Fmean, 0.95> 554.62(9.79) 554.75(6.71)(≈) 554.07(8.18)(≈) 550.56(3.32)(–)(–)(–)
<WFmean, 0.85> 830.36(7.09) 834.79(8.13)(+) 830.40(5.52)(≈) 829.25(3.37)(–)(–)(≈)
<WFmean, 0.95>1112.40(11.34)1115.75(13.46)(≈)1110.21(11.15)(≈)1109.14(5.47)(≈)(–)(≈)

pared with SGP−H and SGP−K, respectively. With the same training time,
compared with MTGP, SGP−H and SGP−K perform significantly worse
in three and two scenarios, respectively. However, M3GP2 can achieve
significantly better performance than MTGP in four out of six scenarios
(i.e.,<Fmax, 0.85>,<Fmax, 0.95>,<Fmean, 0.95> and<WFmean, 0.85>).
M3GP2 is no worse than MTGP in all the other scenarios. This verifies the
effectiveness of the proposed algorithm.

Figure 3.4 shows the curve of average objective values according to
30 independent runs on unseen instances of MTGP, SGP−H, SGP−K, and
M3GP2 with the same training time in the six DFJSS scenarios. With the
same training time, the proposed algorithm M3GP2 can converge faster
than the compared algorithms in all the scenarios. The performance of
M3GP2 becomes better than the compared algorithms after about 10 min-
utes in scenario <Fmean, 0.85> and <Fmean, 0.95>. In addition, M3GP2

performs better than its counterparts after 20 minutes roughly in scenario
<Fmax, 0.95> and <WFmean, 0.85>. It is noted that SGP−H performs
worse than SGP−K, this is consistent with our expectations since the eval-
uations with half shop surrogate in [176] is more time consuming than the
KNN surrogate in [99].

Overall, the proposed algorithm can improve the efficiency of GPHH

86 CHAPTER 3. MULTI-FIDELITY SURROGATES

●●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ●●
●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●● ● ● ● ●

●

●

●
●

●
●

● ●
●

● ● ● ● ● ● ●● ● ● ●
●

●
●

●
●

●
●

● ●
● ●

● ● ● ● ● ● ● ● ● ●

●

●
●

●
●

●
● ●● ● ● ● ● ● ● ● ● ● ● ● ●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

20 40 60 80 0 20 40 60 80

0 20 40 60 80 0 20 40 60 80

0 20 40 60 80 0 20 40 60 80
1900

2000

2100

2200

2300

2400

550

570

590

610

1100

1200

1300

1200

1300

1400

1500

1600

385

390

395

400

830

840

850

860

870

880

Training Time

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

● MTGP SGP_H SGP_K M3 GP_2

Figure 3.4: The curve of average objective values according to 30 indepen-
dent runs on test instances of MTGP, SGP−H, SGP−K, and M3GP2 with
the same training time (in minutes) in six DFJSS scenarios.

for DFJSS by reducing the computational cost without losing its perfor-
mance, and thus speeding up its convergence. Given the same training
time, the proposed algorithm can achieve significantly better performance
than the compared state-of-the-art GPHH algorithms with surrogate in
most scenarios while no worse in all the scenarios.

3.4. RESULTS AND DISCUSSIONS 87

Table 3.6: The mean (standard deviation) of the objective values of M3GP1

and M3GP2 with and without knowledge transfer with the same number
of generations on test instances according to 30 independent runs in six
DFJSS scenarios.

Scenario M3GP1(without) M3GP1(with) M3GP2(without) M3GP2(with)

<Fmax, 0.85> 1201.44(60.42) 1170.31(29.48)(–) 1261.85(65.40) 1232.39(31.70)(–)
<Fmax, 0.95> 1815.72(76.82) 1758.22(34.88)(–) 2001.56(80.43) 1932.22(42.22)(–)
<Fmean, 0.85> 390.24(4.21) 388.14(2.98)(–) 387.98(4.10) 385.98(2.98)(–)
<Fmean, 0.95> 566.98(7.81) 561.28(5.30)(–) 558.10(7.38) 552.50(5.07)(–)
<WFmean, 0.85> 840.19(9.50) 835.37(5.21)(–) 836.31(9.29) 831.24(5.22)(–)
<WFmean, 0.95> 1149.64(25.43) 1135.75(9.23)(–) 1130.06(25.95) 1114.36(8.88)(–)

3.4.3 Effectiveness of Knowledge Transfer Mechanism

In order to examine the effectiveness of the proposed knowledge transfer
mechanism, several experiments are conducted. We set the transfer ratio
tr to zero in M3GP to disable the knowledge transfer between different
subpopulations. M3GP1(without) and M3GP2(without) indicate that there
is no knowledge transfer between subpopulations while M3GP1(with) and
M3GP2(with) indicate that there is knowledge transfer between subpopu-
lations with a tr of 0.6.

Table 3.6 shows the mean and standard deviation of the objective val-
ues of M3GP with and without knowledge transfer with the same number
of generations on test instances according to 30 independent runs in the
six scenarios. With knowledge transfer, the performance of the evolved
rules with multi-fidelity surrogate models is significantly better than its
counterpart without knowledge transfer. To be specific, the performance
of M3GP1(with) is better than M3GP1(without) while the performance of
M3GP2(with) is better than M3GP2(without) in all the scenarios. This indi-
cates that the knowledge transfer can benefit both involved problems with
different complexities. The knowledge obtained with the simpler surro-

88 CHAPTER 3. MULTI-FIDELITY SURROGATES

Table 3.7: The mean (standard deviation) of the objective values on test
instances of MTGP and M3GP2(without) according to 30 independent runs
in six DFJSS scenarios.

Scenario MTGP M3GP2(without)

<Fmax, 0.85> 1235.73(41.27) 1261.85(65.40)(+)
<Fmax, 0.95> 1967.24(65.18) 2001.56(80.43)(+)
<Fmean, 0.85> 384.55(1.04) 387.98(4.10)(+)
<Fmean, 0.95> 555.32(9.91) 558.10(7.38)(+)
<WFmean, 0.85> 831.30(7.32) 836.31(9.29)(+)
<WFmean, 0.95> 1114.93(13.80) 1130.06(25.95)(+)

gate model is useful for more complex surrogate models. The knowledge
derived from complex surrogate model is also beneficial to the simpler
surrogate model. This confirms the effectiveness of the proposed knowl-
edge transfer mechanism.

Table 3.7 shows the mean and standard deviation of the objective val-
ues on unseen instances of MTGP and M3GP2 without knowledge trans-
fer in the six scenarios. It shows that the performance of M3GP2 without
knowledge transfer is significantly worse than that of MTGP. It verifies
the effectiveness of the proposed knowledge transfer mechanism. In addi-
tion, it is in line with our expectation, since more computational resources
are used for solving the desired problem in MTGP. To be specific, with-
out knowledge transfer, the number of individuals for solving the desired
problem in M3GP2(without) is 512, which is only half of the number of
individuals in MTGP.

Figure 3.5 shows the curve of average objective values on unseen in-
stances of M3GP1(without) and M3GP1(with) based on 30 independent
runs in the six different DFJSS scenarios. It is obvious that the perfor-
mance of M3GP1(with) is better than that of M3GP1(without) after gener-
ation 5 roughly in the max-flowtime related scenarios (i.e., <Fmax, 0.85>
and <Fmax, 0.95>) and after about 10 generations in mean-flowtime and

3.4. RESULTS AND DISCUSSIONS 89

●

●

●
●

●

●●

●●●

●●
●

●● ●●●
●● ●

●●●● ●●●●
● ●●●●● ●●●●

●
●●

●

●

●
●

●●
●

●
●

●●●●
●

●●●●
●

●●●● ●●●
●●

●●●●● ●●●●● ●●●●

●

●
●

●●
●

●●●●

●
●●

●●●
●

●●
●● ●●●●●

●●●●● ●●●●●
●●●●●

●
●

●●

●
●

●●
●●●

●●
●●●

●●
●●

● ●●●
●●

●●●●● ●●●●● ●
●●●●

●

●

●
●

●
●●●●

●
●

●

●●●
●●●●

● ●
●●●● ●●●

●

● ●●
●

●
● ●●

●

●
●

●●

●

●

●

●
●●●

●
●●●●

●
●●●●● ●●●●● ●●●●● ●

●●●● ●●●●● ●●●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

1800

1900

2000

2100

2200

560

580

600

620

1200

1300

1200

1300

1400

1500

388

392

396

400

404

840

850

860

870

880

890

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

● M3 GP1(without) M3 GP1(with)

Figure 3.5: The curve of average objective values on test instances of
M3GP1(without) and M3GP1(with) according to 30 independent runs in
six DFJSS scenarios.

weighted mean-flowtime related scenarios (i.e., <Fmean, 0.85>, <Fmean,
0.95>, <WFmean, 0.85> and <WFmean, 0.95>). It may be because the in-
dividuals in the population before generation 5 or generation 10 have not
reached good quality yet, and the transferred knowledge does not have
sufficient contribution to the other subpopulation. Fortunately, the trans-
ferred knowledge before generation 5 or 10 does not have a negative ef-
fect on the other subpopulation. The same pattern is also found between
M3GP2(without) and M3GP2(with), which is shown in Figure 3.6.

90 CHAPTER 3. MULTI-FIDELITY SURROGATES

●

●

●
●

●

●●

●●●

●●
●●● ●●●

●● ●
●●●● ●●●●● ●●●●● ●●●●● ●

●

●

●

●
●

●●
●

●
●

●●●●
●

●●●● ●●●●● ●●●
●●

●●●●● ●●●●● ●●●●

●

●
●

●●
●

●●●●

●
●●●●●

●
●●

●● ●●●●●
●●●●● ●●●●● ●●●●●

●
●

●
●

●
●

●
●

●●●
●●

●●● ●
●●●

● ●●●
●●

●●●●
● ●●●●● ●

●●●●

●

●

●
●

●
●●●●

●
●

●

●●●
●●●●● ●●●●● ●●●

●

● ●●
●

●
● ●●

●

●●
●●

●

●

●

●
●●

●●
●●●●

●
●●●●● ●●●●● ●●

●●● ●●●●● ●●●●● ●●●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

2000

2100

2200

2300

2400

560

580

600

620

1150

1200

1250

1300

1350

1200

1300

1400

1500

1600

390

395

400

830

840

850

860

870

880

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

● M3 GP2(without) M3 GP2(with)

Figure 3.6: The curve of average objective values on test instances of
M3GP2(without) and M3GP2(with) according to 30 independent runs in
six DFJSS scenarios.

3.5 Further Analyses

To deeply understand the effectiveness of the proposed algorithm, we
have conducted in-depth analyses. The proposed algorithm with more
surrogate models with different fidelities and the sensitivity analysis of
knowledge transfer ratio, are further analysed in this section.

3.5. FURTHER ANALYSES 91

Table 3.8: The settings of the number of individuals/jobs of the proposed
algorithm with two, three, four, and five surrogates.

Algorithm Subpop1 Subpop2 Subpop3 Subpop4 Subpop5

M3GP2 512/2500 512/5000 – – –
M3GP3 256/1667 256/3333 512/5000 – –
M3GP4 170/1250 171/2500 171/3750 512/5000 –
M3GP5 128/1000 128/2000 128/3000 128/4000 512/5000

3.5.1 Number Analysis of Multi-fidelity Surrogate Models

It is interesting to investigate whether the collaboration between more
models with different fidelities can benefit problem-solving or not. To en-
sure the performance of the algorithm for the problem to be solved, half
population individuals in the population are kept for optimising the de-
sired problem. The other half population individuals are divided equally
for solving simplified problems with simpler surrogate models. The num-
ber of jobs between surrogate models with different fidelities follows an
arithmetic sequence with an upper bound as 5000. M3GP2, M3GP3, M3GP4,
and M3GP5 denote the corresponding algorithms on the desired problem,
respectively. Table 3.8 shows the settings of the number of individuals and
jobs of the proposed algorithm with one, two, three, and four surrogates.

Table 3.9 shows the mean and standard deviation of the training time of
the involved algorithms with the same number of generations according
to 30 independent runs in six different scenarios. Compared with M3GP2,
as the number of surrogate models increases, the training time of M3GP3,
M3GP4, and M3GP5 has no significant difference in most scenarios.

Table 3.10 shows the mean and standard deviation of the objective val-
ues of M3GP2, M3GP3, M3GP4, and M3GP5 on unseen instances with the
same number of generations according to 30 independent runs in six dif-
ferent scenarios. In terms of the objective values on the unseen data, there
is no significant difference among the compared algorithms in most sce-

92 CHAPTER 3. MULTI-FIDELITY SURROGATES

Table 3.9: The mean (standard deviation) of the training time (in minutes)
of the involved algorithms with the same number of generations based on
30 independent runs in six DFJSS scenarios.

Scenario M3GP2 M3GP3 M3GP4 M3GP5

<Fmax, 0.85> 51(9) 48(9)(≈) 46(8)(≈) 48(8)(≈)
<Fmax, 0.95> 53(9) 48(7)(–) 47(7)(–) 49(7)(–)
<Fmean, 0.85> 48(8) 43(4)(–) 47(8)(≈) 47(7)(≈)
<Fmean, 0.95> 49(6) 47(7)(≈) 48(6)(≈) 46(7)(≈)
<WFmean, 0.85> 49(7) 48(7)(≈) 48(6)(≈) 47(8)(≈)
<WFmean, 0.95> 49(6) 47(9)(≈) 47(8)(≈) 47(7)(≈)

Table 3.10: The mean (standard deviation) of the objective values on test
instances of M3GP2, M3GP3, M3GP4, and M3GP5 with the same number of
generations according to 30 independent runs in six DFJSS scenarios.

Scenario M3GP2 M3GP3 M3GP4 M3GP5

<Fmax, 0.85> 1232.39(31.70)1228.03(37.98)(≈) 1222.44(29.73)(≈) 1230.54(33.47)(≈)
<Fmax, 0.95> 1932.22(42.22)1948.53(45.67)(≈)1960.67(120.22)(≈)1954.50(68.28)(≈)
<Fmean, 0.85> 385.98(2.98) 385.33(2.06)(≈) 384.93(1.73)(≈) 385.59(3.11)(≈)
<Fmean, 0.95> 552.50(5.07) 553.43(5.30)(≈) 554.02(4.84)(≈) 555.82(6.76)(+)
<WFmean, 0.85> 831.24(5.22) 830.83(6.50)(≈) 831.36(6.56)(≈) 830.79(4.27)(≈)
<WFmean, 0.95> 1114.36(8.88) 1119.21(15.79)(+) 1122.82(17.39)(+) 1117.59(12.98)(≈)

narios. In one of the scenarios of M3GP3, M3GP4, and M3GP5, the perfor-
mance is significantly worse than that of M3GP2. In terms of the mean
and standard deviation, the performance of M3GP2 is better than other
compared algorithms in half of the scenarios (i.e., <Fmax, 0.95>, <Fmean,
0.95>, and<WFmean, 0.95>) as shown in bold. In addition, the examined
problems are not very sensitive to the number of surrogates as the per-
formance of the proposed algorithm with different number of surrogates
achieve similar performance.

Overall, the results show that the proposed algorithm with two surro-

3.5. FURTHER ANALYSES 93

gates achieves the best performance with the settings in this chapter. A
possible reason is that the additional surrogate models in the experiments
were not accurate enough, and thus introduced more noise than the first
two surrogate models. The accuracy of surrogates can be different for dif-
ferent problem complexities, such as utilisation levels. In our case, we
observe that using two surrogate models is a proper choice. There are sev-
eral interesting but challenging questions are worth studying in the future.
First, how to decide the optimal number of surrogates. Second, how to de-
sign efficient surrogate models according to the domain knowledge or in-
formation from the evolutionary process. Last but not least, how to design
effective knowledge transfer mechanisms for a large number of surrogates
since the interaction between more surrogates is even complex. However,
this is out of the scope of this study, and we would like to investigate it in
the future.

3.5.2 Sensitivity Analysis of Knowledge Transfer Ratio

The transfer ratio decides the frequency to transfer knowledge between
different problems at each generation, and is further analysed in this sub-
section. Figure 3.7 shows the curve of average objective values on unseen
instances of M3GP2 with different transfer ratios obtained by the 30 inde-
pendent runs in six different scenarios. The performance of M3GP2 with
different transfer ratios is almost the same in the scenarios <Fmax, 0.95>,
<WFmean, 0.85>, and <WFmean, 0.95>. In the scenarios <Fmax, 0.85>,
<Fmean, 0.85>, and <Fmean, 0.95>, there are some slight differences be-
tween the algorithms with different transfer ratios. From an overall per-
spective, M3GP2 with a transfer ratio of 0.6 has a slightly better perfor-
mance than its counterparts. Therefore, this chapter sets the transfer ratio
to 0.6 to M3GP to compare with other algorithms, as we mentioned ear-
lier. However, in general, the performance of M3GP2 is not sensitive to the
transfer ratio.

94 CHAPTER 3. MULTI-FIDELITY SURROGATES

● ●

●

●
●

●
●

● ●
●

● ● ●

●

●

●

●

●
●

●
●

● ● ●

● ●
● ●

●

●

●

●

●
●

●
●

● ●
● ●

● ●

●

●

●
●

●

●
●

●
● ●

●
● ● ●

●

●
●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

● ●

●
●

● ● ● ●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

10 20 30 40 50 10 20 30 40 50

10 20 30 40 50 10 20 30 40 50

10 20 30 40 50 10 20 30 40 50

2000

2100

2200

560

570

580

1125

1150

1175

1250

1300

1350

1400

1450

387

390

393

396

830

840

850

860

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

● M3 GP2(0.0)

M3 GP2(0.6)

M3 GP2(0.2)

M3 GP2(0.8)

M3 GP2(0.4)

M3 GP2(1.0)

Figure 3.7: The curve of average objective values on test instances of
M3GP2 with different transfer ratios over 30 independent runs in six DFJSS
scenarios.

3.6 Chapter Summary

The goal of this chapter is to develop an effective strategy that collabo-
rates multi-fidelity surrogate models to improve the efficiency of GPHH
to evolve scheduling heuristics automatically for DFJSS. The purpose is
successfully achieved by proposing an effective collaboration framework
in GP that allows the subpopulations with different surrogate models to
learn from each other, and developing an effective knowledge transfer
mechanism.

3.6. CHAPTER SUMMARY 95

The results show that the proposed algorithm M3GP2 can dramatically
reduce the computational time of GPHH without losing its performance.
Within the same training time, M3GP2 can achieve significantly better per-
formance in most of the scenarios, while no worse than its counterpart
in all the scenarios. The efficiency of the proposed algorithm is verified
by comparing the training time. The effectiveness of the proposed algo-
rithm is verified by comparing the quality of evolved scheduling heuristics
and the analysis of knowledge transfer mechanism. In summary, M3GP2

can successfully improve the efficiency of GPHH, and achieve effective
scheduling heuristics automatically for DFJSS. The proposed algorithm
shows its superiority compared with the state-of-the-art surrogate-assisted
GPHH algorithms for the JSS problems.

This chapter mainly uses surrogate techniques to improve the train-
ing efficiency and effectiveness of GPHH for DFJSS. In the next chapter,
surrogate techniques will be used with other techniques to improve the
efficiency for feature selection in GPHH for DFJSS.

96 CHAPTER 3. MULTI-FIDELITY SURROGATES

Chapter 4

Search Space Reduction with
Feature Selection

In Chapter 3, we investigate how to use surrogate techniques in GPHH
for DFJSS. This chapter will focus on using surrogates along with individ-
ual adaptation and phenotypic characterisation techniques to reduce the
search space of GPHH for evolving effective scheduling heuristics only
with the selected features efficiently.

4.1 Introduction

A GP individual is a priority function, typically represented as a tree. GP
evolves a population of such trees using a terminal set (i.e., the leaf nodes,
reflecting the features of the job shop state) and a function set (i.e., non-
leaf nodes, indicating the operations to combine the features in the priority
function). The terminal set is a critical factor in the success of GPHH [220].
A compact terminal set can improve the effectiveness of GPHH. In DFJSS,
a wide range of features about the job shop state (e.g., the processing time
of each operation and the idle time of each machine) can be considered as
terminals. However, the importance of a feature depends on job shop sce-
narios and objectives to be optimised. In practice, it is usually unknown

97

98 CHAPTER 4. FEATURE SELECTION

which features are useful, and which features are not important. There-
fore, existing studies typically place all the possible job shop features in
the terminal set. As a result, the evolved rules tend to have a large number
of different features, making it hard to interpret the rules [81]. Besides, a
large terminal set with redundant or unrelated features leads to exponen-
tially large and noisy search space, and negatively affects the capability of
GP in searching the solution space. This chapter aims to develop feature
selection algorithms to reduce the search space of GPHH for DFJSS.

The feature selection in GPHH for DFJSS is different from and more
challenging than in the traditional machine learning tasks, as the data is
not available in advance, and should be generated before applying fea-
ture selection. The current state-of-the-art feature selection approach [152]
used a short GP process with surrogate and niching techniques to evolve
a diverse set of good GP individuals as the data for feature selection. Then
the features were selected based on their importance to these individuals.
There are two types of information obtained from the feature selection pro-
cess [152]. The first is the selected features, and the second is the promising
individuals found during the feature selection process. Most existing al-
gorithms [89, 211] only use the former one and re-initialise the population
using the selected features. This may not be effective, since the obtained
information (e.g., evolved individual structures) during the feature selec-
tion process, except for the selected features, is not fully utilised.

4.1.1 Chapter Goals

The goal of this chapter is to reduce the search space of GPHH with feature se-
lection to evolve scheduling heuristics for DFJSS. First, this chapter develops
a new GPHH algorithm with feature selection for DFJSS, which aims at
making feature selection for the two terminal sets (i.e., one for the routing
rule, and the other for the sequencing rule) simultaneously. Second, indi-
vidual adaptation strategies are proposed to utilise the information of the

4.1. INTRODUCTION 99

selected features and examined individuals used in the feature selection
stage. The proposed algorithms are expected to help GPHH find the rout-
ing and sequencing rules with only the selected features without sacrific-
ing the performance. Specifically, this chapter has the following research
objectives:

1. Propose a novel two-stage framework for GPHH with feature selec-
tion to evolve routing and sequencing rules simultaneously.

2. Develop a new two-stage GPHH algorithm to utilise the information
of both the selected features and the examined individuals obtained
from the feature selection process.

3. Propose novel individual adaptation strategies that inherit the infor-
mation of the examined individuals obtained from the feature selec-
tion.

4. Analyse how the proposed algorithms influence the effectiveness
and sizes of the evolved rules.

5. Analyse how the proposed individual adaptation strategies influ-
ence the efficiency of the proposed algorithms.

4.1.2 Chapter Organisation

The rest of this chapter is organised as follows. Detailed descriptions of
the proposed algorithm are given in Section 4.2. The experiment design
is shown in Section 4.3, followed by results and discussions in Section 4.4.
Further analyses are conducted in Section 4.5. Finally, Section 4.6 con-
cludes this chapter.

100 CHAPTER 4. FEATURE SELECTION

4.2 Proposed Algorithm

This section describes the proposed two-stage GPHH algorithm with fea-
ture selection for DFJSS. The framework of the proposed algorithm is first
illustrated, followed by the details of its key components.

4.2.1 Proposed Two-stage GPHH with Feature Selection

The flowchart of the proposed approach is shown in Figure 4.1. The main
steps, which are evaluation, selection and evolution, are the same as the
classical GPHH algorithm. The difference is that there is a checkpoint (i.e.,
generation 50) for separating the whole GPHH process into two stages. In
the first stage (i.e., before generation 50), GPHH proceeds with a niching
evaluator and a surrogate model. The output of stage 1 is a population for
feature selection. At generation 50, feature selection mechanism will be in-
voked to select two subsets of informative terminals for evolving routing
and sequencing rules, respectively. Then, the terminal sets for evolving
routing and sequencing rules are reset to the selected subsets. In the second
stage (i.e., after generation 50), the population will be evaluated without
niching and surrogate techniques. The mutation operator samples only
from the selected terminals rather than the entire terminal set while gen-
erating the new sub-tree. The main process of the second stage is the same
as the classical GPHH.

In conclusion, the two-stage GPHH approach contains two consecutive
phases. The first stage is mainly for feature selection. Using the niching
and surrogate techniques help GP quickly reach a diverse set of reasonably
good individuals. In the second stage, the obtained information in the
first stage is well utilised by inheriting the final population of stage 1. In
addition, the selected features are used to guide the search space during
the subsequent evolutionary search.

4.2. PROPOSED ALGORITHM 101

Initialisation

Population Evaluation
with and Niching Surrogate

Feature Selection

Selection

Evolution via
Genetic Operators

Routing
Terminal Set

No
Stage 2 Stop?End

Yes

Population
Evaluation

Selection

Evolution

Stage 1 Stop?

Sequencing
Terminal Set

Yes No

Stage 1 Stage 2

Reproduction

Mutation

Crossover

Figure 4.1: The flowchart of two-stage GPHH with feature selection for
DFJSS.

4.2.2 Niching and Surrogate

The GPHH with feature selection is more computationally expensive com-
pared with the classical GPHH algorithm because of the extra individual
evaluations in the first stage for feature selection of the algorithm. To re-
duce extra computing costs, a niching based and surrogate assisted algo-
rithm was proposed for feature selection in [152]. The algorithm aims to
get a diverse set of good individuals quickly for feature selection. The
niching technique [195] maintains the diversity of the population, and
the surrogate is to speed up the evaluations. Briefly speaking, the nich-
ing technique maintains the diversity of individuals by building different
niches and controlling the number of individuals in each niche. The surro-
gate technique was designed based on the assumption that the knowledge
of solving simpler or auxiliary problems can be transferred to the original
problems [176]. This chapter applies the idea but explores it to the DFJSS.
In the original simulation, there are 5000 jobs and 10 machines. In the
surrogate model, we shorten the simulation to 500 jobs and 5 machines.

102 CHAPTER 4. FEATURE SELECTION

Algorithm 5: Feature selection
Input : A diverse set of good individuals (baseInds) from stage 1
Output: The selected features F

1: set F ← {}
2: for i = 1 to |features| do
3: votefi ← 0 // the number of votes for feature fi

4: for j = 1 to |baseInds| do
5: Calculate the contribution Cfi of feature fi

6: ind← baseIndsj

7: if Cind
fi

> 0 then
8: votefi ← votefi +1
9: end

10: end
11: if votefi > 0.5 ∗ |baseInds| then
12: T ← T ∪ fi

13: end

14: end
15: return F

4.2.3 Feature Selection

There are three main steps of the feature selection algorithm. First, the
top 10 individuals in the population based on fitness values are selected
as a diverse set of good individuals baseInds. Second, the importance of
each feature is measured according to its contributions to the fitness of
the individuals in baseInds, and an individual in baseInds will vote for a
feature if the feature has contributions to it. Finally, if a feature can get
more than half of the votes, the feature will be selected. The pseudo-code
of feature selection is shown in Algorithm 5.

The Importance of Features. The importance of a feature f is mea-
sured by its contributions to a set of individuals baseInds (from line 4 to
line 10). To calculate the contribution of a feature f to an individual r (i.e.,
denoted byCr

f), the feature f is first replaced with the constant of one, then
the contribution is calculated as the difference between the fitness before

4.2. PROPOSED ALGORITHM 103

Initialisation

Stage 1 Stop?

Population Evaluation

with Niching and

Surrogate

Selection

Reproduction

Crossover

Mutation

Evolution

Feature Selection

Evaluation

Final Population

Reservation

Routing

Feature Set

Sequencing

Feature Set

Stage 2 Stop?

Selection

Reproduction

Crossover

Mutation

Evolution

Initialisation with

Individual Adaptation

End
YesNo Yes No

Stage 1 Stage 2

/

+ z

x y

/

+ z

1 y

r|x=1r

Figure 4.2: An example of how to examine the contribution (denoted as
Cx) of a feature x for an individual r.

and after the replacement, as shown in Eq. 4.1.

Cr
f = fitness(r|f = 1)− fitness(r) (4.1)

The DFJSS problem investigated in this thesis is a minimisation problem.
Therefore, if Cf > 0, it means the fitness becomes worse without the mea-
sured feature, and the measured feature is important. Thus, the measured
feature can get one vote from the individual r.

Figure 4.2 shows an example of a GP individual r with three features
(x, y, and z). To examine the importance of feature x, x is firstly be replaced
with 1, and the contribution of feature x is defined as Cr

x = fitness(r|x =

1)− fitness(r).

Feature Selection Decision. This chapter makes two extensions of the
feature selection algorithm in [152] to fit the DFJSS problems. First, two
sets of individuals obtained from the two subpopulations for evolving
routing rules and sequencing rules are selected, respectively. Second, the
feature selection algorithm is applied for selecting the routing feature set
and the sequencing feature set based on the two sets of individuals, re-
spectively. Feature f is selected if it makes positive contributions to at
least 50% of the selected individuals baseInds (from line 11 to line 13).

104 CHAPTER 4. FEATURE SELECTION

Initialisation

Stage 1 Stop?

Population Evaluation

with Niching and

Surrogate

Selection

Reproduction

Crossover

Mutation

Evolution

Feature Selection

Evaluation

Final Population

Reservation

Routing

Feature Set

Sequencing

Feature Set

Stage 2 Stop?

Selection

Reproduction

Crossover

Mutation

Evolution

Initialisation with

Individual Adaptation

End
YesNo Yes No

Stage 1 Stage 2

/

+ z

x y

/

+ z

1 y

r|x=1r

Figure 4.3: The flowchart of two-stage GPHH feature selection algorithm
with individual adaptation strategies (i.e., the reddish font parts are the
main steps of the proposed algorithm).

4.2.4 GPHH Feature Selection with Proposed Individual

Adaptation Strategies

Based on the proposed two-stage GPHH feature selection algorithm, to
eliminate unselected features in scheduling heuristics, we propose indi-
vidual adaptation strategies to utilise the information of both the selected
features and investigated individuals during the feature selection process.
The flowchart of the two-stage GPHH feature selection algorithm with in-
dividual adaptation is shown in Figure 4.3. Stage 1 is designed to obtain
an informative population with individuals for feature selection and in-
dividual adaptation. Stage 1 is the same as introduced in Section 4.2.1.
The main difference between the proposed algorithm with the algorithm
in Section 4.2.1 is the initialisation in stage 2.

Stage 2 of the proposed GPHH feature selection with individual adap-
tation strategies is developed for using the information (i.e., final popula-
tion and selected features) obtained in stage 1 to evolve effective schedul-

4.2. PROPOSED ALGORITHM 105

ing heuristics with only selected features. This chapter develops a num-
ber of novel individual adaptation strategies to initialise the population in
stage 2, consisting only of the selected features without deteriorating the
performance. It is noted that the selected features will be used in two sit-
uations in stage 2. One is to generate new individuals for building a new
population during the initialisation process by the ramped half-and-half
method. The other is to generate a new sub-tree by the grow method with
only the selected features as the terminals to replace a selected subtree of a
parent by mutation. Readers interested in the genetic operators of GP can
refer to [202].

Individual Adaptation Strategies

One important task is to inherit the information of the promising indi-
viduals in the final population of stage 1 to keep the quality of evolved
scheduling heuristics with only selected features in stage 2. To this end,
this chapter proposes two strategies to adapt the individuals in the final
population of stage 1 to stage 2. The goal is to generate new individuals
with only the selected features but still have the same or similar behaviour
with the promising individuals obtained in stage 1.

The first individual adaptation strategy is to simply replace each unselected
feature with a constant of one. This can completely remove the unselected
features from the individuals, while still keeping the structures of individ-
uals as much as possible. If a feature is not selected, it is expected to have
little contribution to a majority of individuals, and thus replacing them by
one would not change the fitness much. A potential drawback is that the
average quality of individuals in the first generation of stage 2 might not
be as well as the last generation of stage 1. One possible reason is that
replacing a number of unselected features in an individual by one is more
likely to change the behaviour of the individual in certain ways.

The second individual adaptation strategy is based on the idea of “mimicking”.
Specifically, it randomly generates a large number of individuals with only

106 CHAPTER 4. FEATURE SELECTION

the selected features. For each promising individual in the final popula-
tion of stage 1, it is replaced by the randomly generated individual that
has the closest behaviour with it. The behaviour is defined based on the
phenotypic characterisation [99], which is a numeric vector. The details of
the phenotypic characterisation calculation are shown as follows.

Phenotypic Characterisation

The phenotypic characterisation of an individual is a decision vector based
on a set of decision situations [99]. In this chapter, decision situations are
sampled from preliminary simulation runs with 5000 jobs on 10 machines
using the reference rules (e.g., WIQ, work in the queue for routing, and
SPT, shortest processing time for sequencing). The preliminary simulation
generated about 50,000 routing and 50,000 sequencing decision situations.
Following the steps in [99], we randomly sampled decision situations from
the generated decision situations that contains 2 and 20 jobs. To balance
the accuracy and complexity of the phenotypic characterisation, the num-
ber of candidates, i.e., machines for routing and operations for sequencing,
in each decision situation, is set to 7 in this chapter. In other words, from
all the generated decision situations, a subset of 20 routing situations and
20 sequencing situations with the length of 7 is sampled for measuring the
phenotypic characteristic of an individual. A smaller distance between
the phenotypic characterisations of two individuals suggests that the two
individuals are more similar.

The phenotypic characterisation of a rule is a vector of rank numbers,
where the number of dimensions equals the number of decision situations.
The element in the ith dimension indicates the rank of the most prior can-
didate, i.e., operation or machine, by the examined rule in the rank list
of the reference rule (i.e., WIQ for routing, and SPT for sequencing). Ta-
ble 4.1 shows an example of calculating the phenotypic characterisation
of a routing rule with four decision situations, and each decision situation
consists of three candidate machines. In the first decision situation, M3

4.2. PROPOSED ALGORITHM 107

Table 4.1: An example of calculating the phenotypic characterisation of a
routing rule with four decision situations and each with three candidate
machines.

Decision Situation Reference Rule Examined Rule PCi

1 (M1) 3 2
1 (M2) 2 3 1
1 (M3) 1 1

2 (M1) 1 3
2 (M2) 3 1 3
2 (M3) 2 2

3 (M1) 2 3
3 (M2) 3 2 1
3 (M3) 1 1

4 (M1) 1 3
4 (M2) 2 1 2
4 (M3) 3 2

PCi indicates the ith dimension of phenotypic characterisation.

is the most prior machine by the characterised routing rule. When look-
ing at the rank value of M3 by the reference rule, we find that the rank
value is 1. Therefore, the value of the phenotypic characterisation in the
first situation PC1 is set to 1. Similarly, PCi can be obtained in other de-
cision situations. The corresponding observation indicators for finalising
the phenotypic characterisation are underlined in each decision situation.
Finally, the phenotypic characterisation of this routing rule is [1, 3, 1, 2].
It is noted that the way to calculate the phenotypic characterisation of se-
quencing rule is the same as the routing rule, except that sequencing rule
is examined with sequencing decision situations rather than routing deci-
sion situations.

This chapter extends the idea in [167, 168] to calculate the phenotypic
characterisation for an individual in DFJSS by concatenating the pheno-

108 CHAPTER 4. FEATURE SELECTION

1 3 1 2 3 2 1 2

Routing PC Sequencing PC

Figure 4.4: An example of the phenotypic characterisation of an individual
in DFJSS (PC indicates phenotypic characterisation).

New individual
Promising individual

Phenotypic characterisation in decision situation 1

P
h

e
n

o
ty

p
ic

 c
h

a
ra

c
te

ri
sa

ti
o
n

 i
n

 d
e
c
is

io
n

 s
it

u
a
ti

o
n

 2

Figure 4.5: The process of mimicking individuals by generating new indi-
viduals only with selected features.

typic characterisations of routing and sequencing rules. An example of
the phenotypic characterisation of an individual in DFJSS is shown in Fig-
ure 4.4. The phenotypic characterisation of an individual consists of the
decision vectors of routing and sequencing heuristics. The individuals
with both similar routing (left part) and sequencing (right part) pheno-
typic characterisations are considered to have similar behaviour.

Figure 4.5 shows an example of the process of mimicking individuals,
where the phenotypic characterisation is 2-dimensional. Two decision sit-
uations are used to generate phenotypic characterisation. A decision situa-
tion is when a rule is to make a decision (i.e., a machine becomes idle or an

4.2. PROPOSED ALGORITHM 109

operation becomes ready). The stars indicate the promising individuals in
stage 1 that need to be mimicked. A large number of new individuals (i.e.,
denoted as circles) are generated with only the selected features. The new
individuals whose phenotypic vectors are closest to that of the mimicked
individuals will be chosen to replace the promising individuals in stage
1. It is noted that it is not always possible to find individuals with the
same behaviour (i.e., the distance between two individuals equals zero).
The new individuals with the most similar behaviours with promising in-
dividuals will be saved in the initial population for stage 2.

It is noted that it is not meaningful to adapt all the individuals obtained
from stage 1. If the number of adapted individuals is too small, there will
be too many randomly generated individuals, and the performance will be
close to purely re-initialisation. If it is too large, it will bring some noise,
lose diversity, and increase the training time. Only the “promising” in-
dividuals are adapted in this chapter. This chapter identifies promising
individuals using the knee point, which is a parameter-free approach. The
knee point can be used as a demarcation point. The individuals whose
fitnesses are smaller (i.e., minimising problem) than that of knee point are
selected as promising individuals. The details of detecting promising in-
dividuals can be found in Section 3.2.3. It is noted that if there is more
than one knee point, the knee point that has the largest distance to the
generated line will be selected. The rest of the individuals in the initial
population of stage 2 will be randomly initialised with selected features.
Finally, a new population with only the selected features is obtained.

4.2.5 Algorithm Summary

This chapter proposes two GPHH feature selection algorithms for DFJSS.
The first algorithm is a two-stage GPHH feature selection algorithm for
DFJSS where the feature selection is conducted on both the routing termi-
nal set and sequencing terminal set simultaneously. The output of the fea-

110 CHAPTER 4. FEATURE SELECTION

ture selection is two feature subsets, one for routing rule and the other for
sequencing rule. The selected features are used during the evolutionary
process of GPHH via mutation in stage 2. The second algorithm further
extends the two-stage GPHH feature selection algorithm, where individ-
ual adaptation strategies are proposed to initialise the individuals to elim-
inate the unselected features in stage 2. The evolved scheduling heuristics
are expected to be effective and contain only the selected features.

4.3 Experiment Design

4.3.1 Comparison Design

We introduce the framework in [233] with two subpopulations to evolve
routing and sequencing rules simultaneously with the cooperation coevo-
lutionary strategy for DFJSS. This is to separate the routing rules and se-
quencing rules into different subpopulations to make it easy to measure
the importance of features for the routing rule and sequencing rule.

Five algorithms are taken into the comparison in this chapter. The co-
operative coevolution genetic programming (CCGP) [233] (i.e., without
feature selection and individual adaptation strategies) is selected as the
baseline algorithm. The first algorithm proposed in this chapter is named
as (CCGP2) [249]. CCGP2 uses the selected features in stage 2 only in mu-
tation, and it is used to verify whether the new mutation operator will
affect the performance. The proposed algorithms with the new individ-
ual adaptation strategies are named as CCGP2a(mimic) [242] (i.e., mim-
icking the behaviour of promising individuals) and CCGP2a(rep) (i.e., re-
placing the unselected features by one directly). To verify the effective-
ness of CCGP2a(mimic) and CCGP2a(rep), the algorithm (i.e., named as
CCGP2a(rand)) that randomly initialises all the individuals in the new
population in stage 2 is also compared. This is because using the selected
features to re-initialise the new population in stage 2 randomly is the most

4.4. RESULTS AND DISCUSSIONS 111

Table 4.2: The specialised parameter settings of GPHH.

Parameter Value

Number of subpopulations 2
Subpopulation size 512

Number of generations in stage 1 and stage 2 50 / 50

straightforward way to eliminate unselected features intuitively.
In order to verify the effectiveness and efficiency, the proposed algo-

rithms are tested on six different scenarios. The scenarios consist of three
objectives (i.e., max flowtime, mean flowtime, and mean weighted flow-
time) and two utilisation levels (i.e., 0.85 and 0.95).

4.3.2 Specialised Parameter Settings of GPHH

The specialised parameter settings of GPHH are shown in Table 4.2. The
representation with cooperative coevolution is used in this chapter to sep-
arate routing rule and sequencing rule to make it easy of the feature se-
lection for the routing terminal set and the sequencing terminal set. There
are two subpopulations, i.e., one is for evolving the routing rules, and the
other is for evolving the sequencing rules. The GPHH with feature selec-
tion contains 100 generations. The first 50 generations are designed for
feature selection, and the second 50 generations aims to evolve scheduling
heuristics for DFJSS.

4.4 Results and Discussions

4.4.1 Quality of the Evolved Scheduling Heuristics

Table 4.3 shows the mean and standard deviation of involved five algo-
rithms according to 30 independent runs in the six DFJSS scenarios. CCGP2

which only uses the selected features in the mutation operator achieves

112 CHAPTER 4. FEATURE SELECTION

Table 4.3: The mean (standard deviation) of the objective values of the five
algorithms over 30 independent runs for six DFJSS scenarios.

Sce. CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

1 1223.83(41.78) 1225.41(43.51)(≈) 1314.87(121.35)(+) 1237.53(81.28)(≈) 1238.34(99.27)(≈)
2 1959.24(46.63)1998.09(115.26)(≈)2054.56(204.36)(+)2032.85(145.16)(≈)2034.08(153.61)(≈)
3 385.42(2.65) 384.77(1.32)(≈) 387.34(2.23)(≈) 385.07(1.24)(≈) 385.14(1.87)(≈)
4 553.65(7.89) 552.88(6.78)(≈) 559.21(8.21)(+) 553.07(6.31)(≈) 551.20(6.11)(≈)
5 830.74(6.89) 829.58(5.56)(≈) 833.02(6.15)(+) 830.11(5.42)(≈) 831.51(6.52)(≈)
6 1109.89(13.07) 1110.86(12.01)(≈) 1112.35(12.91)(≈) 1109.58(7.96)(≈) 1112.94(14.62)(≈)

* 1: <Fmax, 0.85>, 2: <Fmax, 0.95>, 3: <Fmean, 0.85>
* 4: <Fmean, 0.95>, 5: <WFmean, 0.85>, 6: <WFmean, 0.95>

similar performance with CCGP. One possible reason is that the GP itself
can detect important features automatically. The other is that there is not
much difference when only applying selected features by mutation with
a small rate (i.e., 0.15). However, the drawback is that the evolved rules
by CCGP2 still contain unselected features. It does not make it easier to
interpret the rules, since all/most of the features are still included in the
rules which makes the rules complex.

The performance of CCGP2a(rand) is significantly worse than that of
CCGP in most scenarios. One reason might be that a completely new ran-
dom population which has worse performance (i.e., a new start), is gener-
ated for stage 2. It is hard to achieve good performance as CCGP (i.e., actu-
ally evolved for 100 generations). CCGP2a(mimic) and CCGP2a(rep) (i.e.,
only with selected features) can achieve similar performance with CCGP2

in most scenarios. It indicates that the proposed individual adaptation
strategies are effective to take advantage of the population information
from stage 1.

It is noted that all the algorithms have larger variances in scenario
<Fmax, 0.85> and <Fmax, 0.95>, especially the algorithms with feature
selection (i.e., CCGP2, CCGP2a(rand), CCGP2a(rep), and CCGP2a(mimic)).

4.4. RESULTS AND DISCUSSIONS 113

Figure 4.6: The curves of average objective values on test instances of the
five algorithms according to 30 independent runs in six DFJSS scenarios.

One possible reason is that the max flowtime is more sensitive to the worst
case of processing jobs than the mean flowtime. Another possible reason
is that feature selection is not always accurate (depending on the individ-
uals obtained in stage 1), and inaccurate feature selection results can lead
to some outliers.

Figure 4.6 shows the convergence curves of the average objective value
on unseen instances of CCGP, CCGP2, CCGP2a(rand), CCGP2a(rep), and
CCGP2a(mimic) according to 30 independent runs in different scenarios.
In all the scenarios, CCGP2a(mimic), and CCGP2a(rep) can mimic the be-
haviours well (i.e., shown at generation 50), and the performance does

114 CHAPTER 4. FEATURE SELECTION

not decrease too much. CCGP2a(mimic) can achieve similar performance
in the scenario <Fmax, 0.95> after generation 50 compared with CCGP2.
However, CCGP2a(rep) can get similar performance with CCGP2 in all sce-
narios. This means that CCGP2a(rep) has a more promising inheritance
ability. In general, the effectivenesses of CCGP2a(mimic) and CCGP2a(rep)

are better than that of CCGP2a(rand). Both CCGP2a(mimic) and CCGP2a(rep)

can inherit the individuals’ information well from stage 1 to stage 2.

4.4.2 Sizes of Evolved Scheduling Heuristics

Figure 4.7 and Figure 4.8 show the curves of the sizes (i.e., the mean value
of 30 independent runs at each generation) of the routing rules and se-
quencing rules. From the figures, we can see that for both the routing rules
and sequencing rules, the rule sizes of CCGP2a(mimic) and CCGP2a(rand)

decrease dramatically at the beginning of stage 2 due to the individual
adaptation strategies, especially for the routing rules. It is noted that the
size of the routing rules of CCGP2a(rep) is not that small compared with
CCGP2a(mimic) and CCGP2a(rand). This is because the structures of the
large rules in stage 1 are kept to stage 2.

The sizes of the best routing rules obtained by CCGP2a(mimic) are smaller
than that of other algorithms in most scenarios (i.e.,<Fmax, 0.85>,<Fmean,
0.85>, <Fmean, 0.95>, <WFmean, 0.85>, and <WFmean, 0.95>). How-
ever, the sizes of the best routing rules of CCGP2a(mimic) are similar with
that of other compared algorithms in <Fmax, 0.95>. This may be because
Fmax with a higher utilisation level (i.e., 0.95) is more difficult to be opti-
mised due to its sensitiveness to the worst case (i.e., the longest finished
time among all jobs). Compared with the curves of the sizes of sequencing
rules, the proposed individual adaptation strategies have a great impact
on the size of routing rules. The sizes of the best sequencing rules obtained
by CCGP2a(mimic) are similar with that of other algorithms.

It is noted that the routing rule and sequencing rule work together

4.4. RESULTS AND DISCUSSIONS 115

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●●

●

●
●

●●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●
●

●

●

●●

●●
●●

●●
●

●
●

●

●●
●

●

●●

●
●

●●●

●

●

●

●●
●●●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●●
●

●●●

●●

●

●

●
●

●

●●

●●

●●●
●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●●
●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●●
●

●
●●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●
●

●●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●
●●●

●

●●

●●

●

●

●

●

●
●●●

●●●

●

●

●
●●

●
●●

●●
●

●
●●●

●

●
●

●

●

●

●
●

●

●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

20

30

40

50

60

70

20

30

40

50

60

70

20

40

60

20

30

40

50

60

70

30

40

50

60

70

20

30

40

50

60

70

Generation

S
iz

e
of

 R
ou

tin
g

R
ul

e

● CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

Figure 4.7: The curves of the best routing rule sizes of the population of
the five algorithms according to 30 independent runs in six DFJSS scenar-
ios.

in DFJSS. It makes sense to take a routing rule and a sequencing rule as
a pair to measure the rule size. This is because a smaller routing rule
and a larger sequencing can have the same ability for DFJSS compared
with a larger routing rule and a smaller sequencing rule based on our ob-
servation. Based on the analyses as mentioned earlier, it turns out that
CCGP2a(mimic) can achieve similar performance with CCGP2a(rep) but
with small scheduling heuristics. The rule sizes of three algorithms (i.e.,
CCGP, CCGP2, and CCGP2a(mimic)) are further compared.

Table 4.4 shows the mean and standard deviation of the rule sizes (i.e.,

116 CHAPTER 4. FEATURE SELECTION

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●
●

●

●

●
●●●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●

●●
●

●
●●

●

●

●●●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●●●

●

●

●
●

●

●

●●

●
●

●
●

●

●●

●

●
●

●
●

●●
●

●●●

●
●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●●

●

●

●
●

●●●
●

●

●
●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●
●

●
●●

●

●

●
●●

●
●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●

●
●●

●
●●

●
●

●●
●

●●

●●●

●●
●

●

●
●●●

●

●
●●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

20

30

40

50

10

20

30

40

50

10

20

30

40

50

60

20

30

40

50

60

20

30

40

50

20

40

60

Generation

S
iz

e
of

 S
eq

ue
nc

in
g

R
ul

e

● CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

Figure 4.8: The curves of the best sequencing rule sizes of the population
of the five algorithms according to 30 independent runs in six DFJSS sce-
narios.

routing rule size plus sequencing rule size) evolved by CCGP, CCGP2, and
CCGP2a(mimic) according to 30 independent runs in six DFJSS scenarios.
It shows that the rule sizes obtained by these three algorithms are similar.
The main difference among the evolved rules is that the rules evolved by
CCGP2a(mimic) only contain selected features (i.e., fewer features) while
the rules evolved by CCGP and CCGP2 consist of all features possibly.
The unique feature is further studied in the next subsection.

4.4. RESULTS AND DISCUSSIONS 117

Table 4.4: The mean (standard deviation) of the rule sizes obtained by
CCGP, CCGP2 and CCGP2a(mimic) over 30 independent runs in six DFJSS
scenarios.

Scenario CCGP CCGP2 CCGP2a(mimic)

<Fmax, 0.85> 122.07(30.60) 123.80(26.72)(≈) 112.60(25.75)(≈)
<Fmax, 0.95> 117.27(25.22) 117.27(28.72)(≈) 112.27(31.38)(≈)
<Fmean, 0.85> 115.73(24.91) 125.07(18.18)(≈) 108.93(26.32)(≈)
<Fmean, 0.95> 121.27(17.60) 118.53(28.08)(≈) 110.47(22.31)(≈)

<WFmean, 0.85> 116.87(23.88) 115.67(26.53)(≈) 115.73(26.31)(≈)
<WFmean, 0.95> 127.40(24.40) 125.67(23.84)(≈) 121.47(22.80)(≈)

Table 4.5: The mean (standard deviation) of the average number of
unique features of routing rules obtained by the five algorithms over 30
independent runs in six DFJSS scenarios.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax, 0.85> 8.40(1.33) 7.80(1.47)(≈) 6.27(1.68)(–) 6.57(1.74)(–) 6.67(1.81)(–)
<Fmax, 0.95> 8.67(0.92) 8.37(1.33)(≈) 6.73(1.72)(–) 6.83(1.64)(–) 6.70(1.66)(–)
<Fmean, 0.85> 8.03(1.03) 7.67(1.03)(≈) 5.70(1.62)(–) 5.83(1.46)(–) 5.63(1.52)(–)
<Fmean, 0.95> 8.40(1.10) 7.87(1.14)(≈) 5.57(1.33)(–) 5.73(1.53)(–) 5.83(1.56)(–)
<WFmean, 0.85> 8.27(1.23) 7.93(1.23)(≈) 5.60(1.63)(–) 6.17(2.09)(–) 5.70(1.99)(–)
<WFmean, 0.95> 8.20(1.13) 7.50(1.57)(≈) 5.70(1.47)(–) 5.90(1.73)(–) 5.70(1.99)(–)

4.4.3 Unique Feature Analysis

Table 4.5 shows the mean (standard deviation) of the number of unique
features in routing rules in six DFJSS scenarios. There is no statistical dif-
ference between CCGP and CCGP2 in terms of the number of unique fea-
tures in routing rules in all scenarios. This means that applying selected
features only to mutation is not an effective way for reducing the unique
number of features of the evolved routing rules. In addition, no matter
what kind of individual adaptation strategies are used (i.e., CCGP2a(mimic)

with mimicking behaviour strategy, CCGP2a(rep) with replacing by one

118 CHAPTER 4. FEATURE SELECTION

Table 4.6: The mean (standard deviation) of the average number of
unique features of sequencing rules obtained by the five algorithms over
30 independent runs in six DFJSS scenarios.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax, 0.85> 7.13(1.59) 6.53(1.14)(–) 5.23(1.41)(–) 5.00(1.20)(–) 5.20(1.27)(–)
<Fmax, 0.95> 7.40(1.57) 6.53(1.41)(–) 4.97(1.25)(–) 5.03(1.27)(–) 5.17(1.39)(–)
<Fmean, 0.85> 6.57(2.10) 5.47(1.36)(–) 3.53(1.07)(–) 3.40(1.00)(–) 3.70(1.06)(–)
<Fmean, 0.95> 6.90(1.60) 6.03(1.43)(–) 4.00(1.23)(–) 3.97(1.19)(–) 3.70(0.99)(–)

<WFmean, 0.85> 6.53(1.59) 5.17(1.05)(–) 4.00(0.79)(–) 3.93(0.69)(–) 4.00(0.79)(–)
<WFmean, 0.95> 6.80(1.52) 5.70(1.47)(–) 4.33(0.92)(–) 4.17(0.95)(–) 4.27(0.87)(–)

strategy and CCGP2a(rand) with 100% randomly initialisation strategy),
the number of unique features in routing rules are significantly smaller
than CCGP.

Table 4.6 shows the mean (standard deviation) of the number of unique
features in the sequencing rules over 30 independent runs in different
DFJSS scenarios. For all the algorithms (i.e., CCGP2a(mimic), CCGP2a(rep),
CCGP2a(rand), and CCGP2) that involve feature selection, the number of
unique features in the sequencing rules is significantly smaller in all sce-
narios, especially the individual adaptation strategies related algorithms
(i.e., CCGP2a(mimic), CCGP2a(rep), and CCGP2a(rand)).

Assuming that the rules evolved by CCGP2a(mimic)) with fewer fea-
tures are easier to be simplified by the algebraic transformation. Simplifi-
cation aims to simplify the complicated expression by some algebraic op-
erations to make the evolved rules easier to be interpreted. For example,
given a rule (A - B) / (A - B), it will be simplified to be one. Moreover, the
rule A + B + A + A will become 3 * A + B, while the rule A * B / B will be
simplified as A.

Figure 4.9 shows the violin plot of rule size after the simplification tak-
ing routing and sequencing rules as a pair obtained by CCGP, CCGP2, and
CCGP2a(mimic) over 30 independent runs in six DFJSS scenarios. It shows

4.4. RESULTS AND DISCUSSIONS 119

●

●

●

●

●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

50

100

150

50

100

150

200

80

120

160

50

75

100

125

150

60

90

120

150

40

80

120

160

Algorithm

T
he

 S
iz

e
of

 S
im

pl
ifi

ed
 R

ul
e

CCGP CCGP2 CCGP2a(mimic)

Figure 4.9: The violin plot of rule sizes (i.e., routing rule plus sequencing
rule) obtained by CCGP, CCGP2, and CCGP2a(mimic) after simplification
over 30 independent runs in six DFJSS scenarios.

that the sizes of simplified rules evolved by CCGP2a(mimic) are much
smaller than that of CCGP and CCGP2. It indicates that CCGP2a(mimic)

has more potential to get smaller rules which are important for interpret-
ing rules.

Figure 4.10 shows the scatter plot of the sizes of routing and sequenc-
ing rules before and after simplification. It shows that the routing rule
sizes become much smaller (i.e., located downwards) in all scenarios. In
addition, the sequencing rule sizes tend to be smaller (i.e., located towards
the left) compared with the sizes without simplification in all scenarios. In
summary, after simplification, CCGP2a(mimic) can achieve smaller routing

120 CHAPTER 4. FEATURE SELECTION

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

● ●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●●

●●
● ●

●

●
●

●

●
●

●
●

●
●

●●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

20 40 60 80 20 40 60 80 100

20 40 60 80 20 40 60 80

0 20 40 60 80 0 25 50 75 100

30

60

90

120

20

40

60

80

25

50

75

25

50

75

25

50

75

25

50

75

The Size of Sequencing Rule

T
he

 S
iz

e
of

 R
ou

tin
g

R
ul

e

● CCGP2a(mimic)(before) CCGP2a(mimic)(after)

Figure 4.10: The scatter plot of the sizes of routing rules and sequencing
rules before and after simplification obtained by CCGP2a(mimic) over 30
independent runs in six DFJSS scenarios.

rules and sequencing rules than that of CCGP and CCGP2.

4.4.4 Training Time

Table 4.7 shows the training time (in minutes) of the algorithms CCGP,
CCGP2, CCGP2a(rand), CCGP2a(rep), and CCGP2a(mimic). The training
time of CCGP2 has no significant difference compared with that of CCGP.
It is obvious that the training time of CCGP2a(rand), CCGP2a(rep), and
CCGP2a(mimic) decrease dramatically compared with that of CCGP and
CCGP2. The main difference of the training time between CCGP, CCGP2

and the algorithms with individual adaptation strategies (i.e., CCGP2a(rand),

4.4. RESULTS AND DISCUSSIONS 121

Table 4.7: The mean(standard deviation) of training time (in minutes) by
the five algorithms in six DFJSS scenarios.

Scenario CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

<Fmax, 0.85> 100(17) 96(14)(≈) 80(15)(–) 83(13)(–) 75(10)(–)
<Fmax, 0.95> 107(15) 111(20)(≈) 88(13)(–) 92(15)(–) 88(12)(–)
<Fmean, 0.85> 98(12) 99(13)(≈) 78(11)(–) 87(12)(–) 77(12)(–)
<Fmean, 0.95> 109(15) 108(16)(≈) 86(11)(–) 94(16)(–) 85(12)(–)
<WFmean, 0.85> 94(11) 98(11)(≈) 82(9)(–) 88(15)(≈) 83(15)(–)
<WFmean, 0.95> 113(16) 109(16)(≈) 90(13)(–) 98(16)(–) 88(13)(–)

CCGP2a(rep), and CCGP2a(mimic)), is caused by the individual adaptation
strategy. Intuitively, for CCGP2a(rand), CCGP2a(rep) and CCGP2a(mimic),
a longer training time might be needed due to the extra algorithm opera-
tors, i.e., individual adaptation. However, it turns out that the time of the
proposed algorithms with the individual adaptation strategies are smaller
than CCGP and CCGP2, especially CCGP2a(rand) and CCGP2a(mimic).
This is because the sizes of the evolved scheduling heuristics obtained by
CCGP2a(rand) and CCGP2a(mimic) are smaller than CCGP and CCGP2. In
summary, CCGP2a(mimic) is more efficient in terms of the mean values of
the training time despite more algorithm operators (i.e., feature selection
and mimicking individuals’ behaviours operations in the algorithm) are
involved.

When looking at the curve of average rule sizes in the population in
Figure 4.11, the average rule sizes over the population of CCGP2a(rand)

and CCGP2a(mimic) are smaller than its counterparts. The reason is that
all the individuals in the population at generation 50 are re-initialised, and
they have smaller sizes. The smaller rules tend to save computational
time by reducing the individual evaluation time. Thus, CCGP2a(rand) and
CCGP2a(mimic) can reduce the computational time significantly.

122 CHAPTER 4. FEATURE SELECTION

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●

●●
●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●
●●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●
●●

●

●

●

●

●

●

●

●
●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●
●●

●
●●

●●●●●
●●

●●●●●●
●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●●●●●●

●

●

●

●

●

●

●

●
●●●●●●●●

●●●●
●

●●●●●
●●●●●●●●●●

●●
●●●●●●

●●●●●●
●

●●●●●●●
●

●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●

●●●●●●●●
●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●●●●
●●●

●●●●●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100
30

50

70

90

110

50

75

100

50

75

100

50

75

100

40

60

80

100

40

60

80

100

120

Generation

A
ve

ra
ge

 R
ul

e
S

iz
e

O
ve

r
P

op
ul

at
io

n

● CCGP CCGP2 CCGP2a(rand) CCGP2a(rep) CCGP2a(mimic)

Figure 4.11: The average rule (routing rules plus sequencing rules) sizes
over population of the five algorithms in six DFJSS scenarios.

4.5 Further Analyses

To deeply understand the effect of the proposed algorithm, the selected
features and evolved rules are further analysed in this section.

4.5.1 Feature Analysis

Figure 4.12 and Figure 4.13 show the selected and unselected features of 30
runs by the sequencing rules and routing rules in the six DFJSS scenarios,
respectively. For a feature, a bigger blue area (i.e., the corresponding fea-
ture is selected more frequently) means the corresponding feature is more
important. It is noted that the selected features of CCGP2, CCGP2a(rand),

4.5. FURTHER ANALYSES 123

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

Terminal

R
un

Unselected Selected

Figure 4.12: Selected and unselected features of sequencing rules of 30
independent runs in six DFJSS scenarios.

CCGP2a(rep), and CCGP2a(mimic) are the same in the same run (i.e., with
the same random seed) since the evolutionary processes are the same in
stage 1. In each run, for the sequencing rules and routing rules, the se-
lected features vary from each other based on the proposed feature se-
lection algorithm. This means that the selected features can be adjusted
adaptively with the proposed two-stage framework and that the selected

124 CHAPTER 4. FEATURE SELECTION

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

M
W

T
N

IQ
N

O
R

N
P

T
O

W
T

P
T

TI
S W W
IQ

W
K

R

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

Terminal

R
un

Unselected Selected

Figure 4.13: Selected and unselected features of routing rules of 30 inde-
pendent runs in six DFJSS scenarios.

features are based on the specific problems (i.e., different runs).

For sequencing rules, the top three important features for the scenario
<Fmax, 0.85> are PT, TIS, and WKR, as shown in Figure 4.12. Except
for these three features, NIQ and NOR are also important in the scenario
<Fmax, 0.95>. Compared with <Fmax, 0.85>, Figure 4.12 shows that
more features are selected in the scenario <Fmax, 0.95>. It might be be-

4.5. FURTHER ANALYSES 125

cause a higher utilisation level makes the problem more difficult to be
optimised. For minimising the mean flowtime (i.e., <Fmean, 0.85> and
<Fmean, 0.95>), PT and WKR play an important role (i.e., they are se-
lected in all the 30 runs). When taking the mean weighted flowtime into
consideration (i.e., <WFmean, 0.85> and<WFmean, 0.95>), except for PT
and WKR, W is also a significant feature. It is consistent with our intuition
that PT (i.e., processing time) and WKR (i.e., median amount of work re-
maining for a job) are important factors for the flowtime related objectives.
In addition, W is often chosen for minimising the mean weighted flowtime
rather than max flowtime and mean flowtime. It is consistent with our ex-
pectation, since the calculations of mean flowtime and max flowtime do
not involve W at all.

For routing rules, MWT, OWT, and WIQ, are significant for evolving
routing rules in all the scenarios, as shown in Figure 4.13. It is consistent
with our intuition that the machine with less workload (WIQ) and ear-
lier ready time (MWT) is preferred, since the new operation has a higher
chance to be processed early. In addition, this chapter will allocate a new
operation once it becomes a ready operation (i.e., OWT, the operation wait-
ing time equals zero). Compared with the selected features in the sequenc-
ing rules, more features are used in the routing rules (i.e., larger blue ar-
eas). It indicates that the evolved routing rules might be more complex
than the sequencing rules.

Figure 4.14 shows the distributions of test objective values of the 30
independent runs of CCGP2a(mimic) in the scenario <Fmax, 0.85>, cate-
gorised by whether each feature is selected or not in the sequencing rules.
TIS is not selected in three runs, the test performance is much worse when
it is selected. However, even NIQ is a relatively important feature (i.e., it
is selected in half runs roughly) and it is not selected in half runs, the test
performance is still very good. WKR is not selected in three runs, how-
ever, WKR has a greater impact on the quality of the evolved scheduling
heuristics on two runs while it has no effect on one run. This indicates that

126 CHAPTER 4. FEATURE SELECTION

●
●

●
●●

●

● ●● ●

●●

●

●
●●
●

●

●

●

●

●
● ●

●

●●●●

●
●

●

●

●●

●●● ●

●

●

●
●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●● ●●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●
●

●

●●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●● ●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

OWT WKR NOR W TIS

NIQ WIQ MWT PT NPT

FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

1200

1300

1400

1500

Selected

O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

Figure 4.14: The distributions of the test objective values of the 30 inde-
pendent runs of CCGP2a(mimic) in scenario <Fmax, 0.85>, categorised by
whether each feature is selected or not in sequencing rules.

although the features used in the scheduling heuristics are important, the
quality of the scheduling heuristics also depend on other factors, e.g., the
structures of the rules.

4.5.2 Rule Analysis

This section considers the scenario <WFmean, 0.95> as an example for
rule analysis. This is because the objective in the scenario <WFmean,
0.95> is more difficult to be optimised than other scenarios. Specially, we
take the best routing rule and the corresponding sequencing rule (i.e., its
objective value is 1096.02) for analysing. It is noted that the rules select the
candidate (i.e., operation for sequencing or machine for routing) that has
the lowest priority value.

For CCGP2, the routing terminal set consists of NIQ, WIQ, MWT, PT,
NPT, OWT, WKR, NOR, and W (i.e., nine features). There are six fea-
tures which are NIQ, WIQ, MWT, PT, WKR, and W selected as sequencing
terminal set. For the routing rules obtained by CCGP2a(mimic), all the fea-

4.5. FURTHER ANALYSES 127

tures in the routing terminal set (i.e., seven features, NIQ, WIQ, MWT, PT,
OWT, WKR, and W) are selected. When further looking into the sequenc-
ing rule obtained by CCGP2a(mimic), five of them (i.e., NIQ, WIQ, PT,
WKR, and W) are involved. Fewer features are used by CCGP2a(mimic)

compared with CCGP2.
However, the evolved scheduling heuristics obtained by CCGP2a(mimic)

have better test performance than that of CCGP2. The routing rule ob-
tained by CCGP2a(mimic) can be simplified, as shown in Eq. 4.2.

R1 =min{2 ∗NIQ,max(
NIQ ∗ PT
MWT

,

PT ∗WIQ ∗min(WIQ,WKR))}+

NIQ ∗ PT
W
−MWT

(4.2)

It is obvious that this routing rule is quite small after simplification. In
terms of the features related to machines, this routing rule prefers to choose
the machine which has a large waiting time (i.e., MWT) and a smaller NIQ
(i.e., the number of operations in the queue) and WIQ (i.e., the workload
of machines). In terms of the features of operations, this routing rule tends
to choose the machine which can process an operation more efficient with
a smaller PT (i.e., processing time). In addition, from the perspective of
operation, W (i.e., the weight that is used to indicate the importance of op-
eration) is a constant when choosing a machine. From a machine’s point
of view, more important operation with a larger W has more priority to
select a machine.

The corresponding sequencing rule obtained by CCGP2a(mimic) is sim-
plified, as shown in Eq. 4.3.

S1 =
PT +WKR

W

− W

PT
(W ∗WIQ−W +WIQ)− W

PT
∗

(W ∗WIQ+WKR +
PT +WKR

W ∗WIQ−W +WKR
)

(4.3)

128 CHAPTER 4. FEATURE SELECTION

It is noted that for all the operations in the queue of a machine, the machine-
related feature such as WIQ (i.e., the workload of a machine) is the same
for all operations. This means that it is not a vitally important feature. This
sequencing rule prefers to choose the operation with smaller PT (i.e., pro-
cessing time) and larger W (i.e., weight, the importance of an operation).
It is interesting that this sequencing rule prefers to smaller WKR (i.e., the
median amount of work remaining for a job) based on the first line of S1

while it tends to select the operations with larger WKR based on the third
line of S1 partially. It indicates that although we can interpret the rules
to some extent, it is still hard to completely understand the behaviour of
rules. We will continue to work on this topic in the future.

The corresponding routing and sequencing rules obtained by CCGP2,
can be simplified as shown in Eq. 4.4 and Eq. 4.5, respectively.

R2 =Max{NIQ2, (NIQ+NPT) ∗Min(NIQ,NOR)}

−Min(MWT,
WKR

MWT ∗WKR− 1
)

∗Max{WKR,−MWT ∗WKR+

NIQ ∗ PT ∗Max{WIQ, Min(MWT,PT)
(W+WKR)

}
Max{NIQ2, NOR−W+WKR

W
, NIQ+NPT
(Min(NIQ,NOR))−1}

}

(4.4)

S2 =NIQ(PT −W)(PT +
WKR

W
∗Max{PT, WIQ

W
,

Max{WIQ, WKR
W
}

W
}) +Max{WIQ

W 2
,
NIQ

W 2
+WIQ}

∗ (MWT +W +Max{WKR

W 2
, NIQ− 1})

∗
Max{WIQ, WKR

W
}

W

(4.5)

The structures of both this routing rule and sequencing rule are more
complex than that of CCGP2a(mimic) even after simplification. From the
perspective of the components, the function Max and Min are used a lot
and nested inside each other. It is hard to know which component has

4.6. CHAPTER SUMMARY 129

played a real role since it relies on multiple factors. It is not easy to under-
stand it from a human perspective.

In summary, CCGP2a(mimic) can evolve effective scheduling heuristics
with smaller number of unique features and sizes. This can benefit the
real-world applications, since the evolved scheduling heuristics tend to be
understood by human easier.

4.6 Chapter Summary

The goal of this chapter is to develop an effective GPHH feature selection
algorithm to evolve scheduling heuristics for DFJSS without compromis-
ing any performance. To achieve this goal, this chapter firstly proposes
the two-stage feature selection algorithm CCGP2 for DFJSS. The proposed
algorithm is based on the idea that promising features can benefit more for
the evolutionary process and can be used to guide the process effectively.
In addition, this chapter proposes GPHH feature selection algorithm with
novel individual adaptation strategies to eliminate unselected features in
the evolved scheduling heuristics. The quality of the scheduling heuris-
tics is kept by utilising both the information of the selected features and
the investigated individuals in the feature selection process.

The results show the effectiveness of the proposed GPHH feature selec-
tion algorithm CCGP2. Moreover, the results show that the evolved rules
by CCGP2a(mimic) are smaller and contain fewer unique features due to
feature selection. Thesis kinds of rules tend to be interpreted easier. This is
also verified by the semantic analyses of the routing and sequencing rules
evolved by CCGP2a(mimic). In terms of training time, CCGP2a(mimic) is
more efficient than that of the baseline algorithm, since it can reduce the
average rule size of the population. In summary, the proposed algorithm
CCGP2a(mimic) can evolve effective scheduling heuristics with a smaller
number of unique features and smaller size efficiently.

It is noted that the surrogate technique is used to improve the train-

130 CHAPTER 4. FEATURE SELECTION

ing efficiency of GPHH in both the last chapter and this chapter. The last
chapter focuses on the design of surrogate models for DFJSS. However,
this chapter focuses on using the individual information and selected fea-
tures to maintain the quality of individuals only with the selected features.
The surrogate technique used in this chapter is to improve the efficiency of
obtaining individuals for feature selection, and the surrogate itself is not
the focus in this chapter.

This chapter uses the phenotypic characterisation technique to mea-
sure the behaviour/performance of GP individuals for finding their simi-
lar individuals with only the selected features. In the next chapter, pheno-
typic characterisation will be used to measure the subtree importance for
improving the search mechanism of GPHH for DFJSS.

Chapter 5

New Search Mechanism with
Specialised Genetic Operators

In Chapter 4, we develop the phenotypic characterisation technique to
measure the behaviour/performance of individuals for feature selection.
This chapter will focus on using the phenotypic characterisation technique
to measure the subtree importance to improve the search mechanism of
GPHH for DFJSS.

5.1 Introduction

For an evolutionary computation algorithm, genetic operators play impor-
tant roles for generating offspring. The crossover operator is an essential
genetic operator for GP to produce offspring during the evolutionary pro-
cess. An effective crossover is expected to generate offspring with good
quality. In essence, the crossover is a recombination of different materials
from the parents. In traditional GP, subtrees are randomly chosen from
two parents to swap to produce two offspring. However, the importance
of subtrees in each individual can be different. Some subtrees are redun-
dant or less important, and removing them might not affect the fitness of
an individual too much. On the other hand, some subtrees play essen-

131

132 CHAPTER 5. SPECIALISED GENETIC OPERATORS

tial roles for an individual and losing them will cause considerable loss
to the fitness. The random way of recombination may disrupt beneficial
building-blocks.

To the best of our knowledge, little is yet known to improve the recom-
binative effectiveness of GPHH via the crossover for DFJSS. Riccardo et
al. provided a comprehensive general schema theory for GP with subtree-
swapping crossover in [203, 204]. This theory suggests that the biases of
GP operators can be beneficial for different purposes, such as improving
the quality of the offspring and controlling the size or shape of the off-
spring. However, it is challenging when we apply bias in GP to practice.
One critical challenge is how to measure the subtrees based on the desired
purpose. The other challenge is how to apply the expected “biases” to GP
for a specific problem.

5.1.1 Chapter Goals

The goal of this chapter is to develop an effective GPHH with specialised ge-
netic operators (i.e., the crossover operator) with recombination guidance to evolve
effective scheduling heuristics for DFJSS. The key is to design effective strate-
gies to measure the importance of subtrees. This chapter develops two
importance measures to reflect the degree of relationship between the be-
haviour of the subtree and the entire tree. First, this chapter proposes
a subtree importance measure based on the feature importance informa-
tion. Second, this chapter proposes to use the correlation between the be-
haviour (i.e., phenotypic) of a subtree and the whole tree to measure the
importance of a subtree. The probability of a subtree to be chosen for the
crossover operator is then set based on its importance. An offspring is
generated by replacing an unimportant subtree from one parent with an
important subtree from the other. The proposed algorithm is expected to
help GPHH find better scheduling heuristics more efficiently by improv-
ing the quality of the produced offspring. Specifically, this chapter has the

5.2. PROPOSED ALGORITHM 133

following research objectives:

1. Develop effective strategies to measure the importance of subtrees
of an individual according to the characteristics of the investigated
DFJSS problem.

2. Propose a novel recombinative guidance mechanism for the crossover
operator in GPHH.

3. Analyse the effectiveness of the proposed algorithm in terms of the
quality of evolved scheduling heuristics.

4. Analyse the efficiency of the proposed algorithm based on the con-
vergence speed and training time.

5. Analyse how the proposed recombinative guidance influences the
behaviour of GPHH to select crossover points.

6. Analyse the evolved scheduling heuristics in terms of size and rule
structure.

5.1.2 Chapter Organisation

The rest of this chapter is organised as follows. Detailed descriptions of
the proposed algorithm are given in Section 5.2. The experiment design
is shown in Section 5.3, followed by results and discussions in Section 5.4.
Further analyses are conducted in Section 5.5. Finally, Section 5.6 con-
cludes this chapter.

5.2 Proposed Algorithm

5.2.1 Framework of the Proposed Algorithm

Figure 5.1 shows the flowchart of the proposed algorithm. The main pro-
cess is the same as the traditional GP. It starts with initialising the pop-

134 CHAPTER 5. SPECIALISED GENETIC OPERATORS

Initialisation

Subtree Importance Calculation

Population 1

Stop?

Parent Selection

Elitism

Mutation

Crossover with
Recombinative Guidance

End

No

Yes

Evaluation

Population 2

Reproduction

Figure 5.1: The flowchart of the proposed algorithm.

ulation randomly, and then evaluates the individuals in the population.
It is noted that there are two subpopulations. One subpopulation is de-
signed for evolving the routing rules, and the other for the sequencing
rules. However, there are two new components that are different from
the traditional GP, which are highlighted in red in Figure 5.1. First, the
importance of each subtree of the parents is calculated before the mating
process. Second, during the mating process, the crossover is conducted
based on the proposed recombinative guidance mechanism.

According to the framework of the proposed algorithms, the two re-
search questions in this chapter are (1) how to measure the importance
of subtrees, and (2) how to apply the subtree importance information to
guide the recombination between the parents via the crossover operator.
This chapter proposes two strategies for subtree importance calculation
for GP.

5.2. PROPOSED ALGORITHM 135

A B C

A

A B A

B

C A

A: 5 B: 3 C: 2

Figure 5.2: The occurrences of features in the top three individuals.

5.2.2 Subtree Importance Measure Based on Feature Im-

portance

An advantage of GP is that it can automatically select important features to
build individuals. The features of individuals with good fitness are more
likely to be important. The individuals that contain important features are
more likely to be promising individuals. This indicates that the features
involved in promising individuals can be used to measure the importance
of subtrees.

The Occurrences of Features

The occurrences of features in the top ten individuals are used to assess
the importance of subtrees of an individual, since our preliminary studies
show that the top ten individuals tend to have promising fitness which is
good for detecting feature characteristics. Another advantage of using the
occurrence information of features is that we do not need to put too much
extra effort to obtain useful information, since the information is already
generated during the evolutionary process. Figure 5.2 shows an example
of how to extract feature occurrence information based on three individ-
uals. These three individuals contain different numbers of features and
have different structures. Assuming that they are the top three individuals
in the population based on the fitness. According to the three individuals,
the occurrences of features in all three individuals are counted. The occur-

136 CHAPTER 5. SPECIALISED GENETIC OPERATORS

5

3 4

1 2

A: 5 B: 3 C: 2A: 5

B: 3 C: 2

4 3.5

3.75 2.5

3.125

Figure 5.3: The importance (i.e., scores) of subtrees of an individual.

rences of feature A, B, and C are 5, 3, and 2, respectively. This information
will be used to measure the importance of subtrees of an individual.

The Importance of Subtrees

An individual (i.e., a tree) can be considered to be composed of multiple
subtrees. After a function node is selected, the subtree is determined. The
importance of subtrees is measured from bottom to top, and we use the
concept score to indicate the importance of a subtree. Each feature has its
occurrence information at the bottom level of an individual, and the score
of their parent node (i.e., the importance of subtree) is set as the average
occurrence number of its child nodes. Assuming that the importance (i.e.,
occurrence) of feature A, B and C are ranked as A > B > C (i.e., 5 > 3 >

2). If only considering the simplest subtrees (i.e., depth is two) and only
take two features, there will be three possible combinations for the subtree
which are A and B, A and C, and B and C. The importance of the subtrees
should be ranked as subtree(A,B) > subtree(A,C) > subtree(B,C).

Figure 5.3 shows an example of how to measure the importance of each
subtree for an individual. For example, the subtree1 (i.e., in the bottom-
left corner) contains two features (i.e., A and B), the score of their parent
node is set as 4 (i.e., (5 + 3) / 2). The importance of subtree3 (i.e., 3.75,
(4 + 3.5) / 3) is assigned as the average scores of its two subtrees (i.e.,
subtree1 and subtree2). By analogy, the scores of all the subtrees will be
assigned, as shown in Figure 5.3. Taking the subtrees with the depth of

5.2. PROPOSED ALGORITHM 137

T1

T2 T5

T3 T4

Figure 5.4: An example of a labelled tree-based GP individual.

two into consideration, there are three subtrees (i.e., indicated by subtree
1, 2 and 4) whose importance are marked as 4, 3.5 and 2.5, respectively.
The importance of subtree 1, 2 and 4 are ranked as subtree1 > subtree2 >

subtree4, which is consistent with the importance measurement design.
When looking at all the subtrees, the importance rank of all subtrees in
this individual is subtree1 > subtree3 > subtree2 > subtree5 > subtree4.

5.2.3 Subtree Importance Measure Based on the Correla-

tion Between the Behaviour of Subtrees and the Whole

Tree

Intuitively, a subtree is considered to be more important to the tree if it can
make more consistent decisions with the entire tree. Figure 5.4 shows an
example of a GP individual with five subtrees. Each subtree can be consid-
ered as an independent “individual”, which has its own decision-making
ability. To characterise the behaviour of a subtree Ti under a decision sit-
uation, this chapter uses a decision vector ~di (i.e., phenotypic characteri-
sation) which is the list of the ranks of the candidates (i.e., machines for
routing decision situations, or operations for sequencing decision situa-
tions) decided by Ti.

Table 5.1 shows an example of how to calculate the decision vectors of
subtrees. The individual is a routing rule, and it has four subtrees. For
simplicity, the decision situation is to allocate a ready operation to one of
the three candidate machines. The numbers in the machine columns (i.e.,

138 CHAPTER 5. SPECIALISED GENETIC OPERATORS

Table 5.1: An example of the calculation for decision vector of the subtrees
of an individual.

Subtree (Ti) M1 M2 M3 Decision Vector (di)

T1 100 1 150 2 200 3 (1, 2, 3)
T2 300 1 320 2 350 3 (1, 2, 3)
T3 140 3 120 2 110 1 (3, 2, 1)
T4 100 1 160 3 130 2 (1, 3, 2)

M1, M2 and M3) are the priority values (i.e., real numbers) based on the
corresponding subtrees (i.e., routing rules) and the ranks of the machines
based on the priority values. A machine with a smaller priority value
has a better priority than other machines. Finally, the decision vectors
are composed of the ranks. It shows that different subtrees can have the
same decisions (T1 and T2), opposite decisions (T1 and T3) or partially same
decisions (T1 and T4). Since a decision is made solely based on the ranks
rather than the exact priority values of the candidates, this chapter focuses
on the relationship in terms of the ranks rather than the priority values.

Pearson and Spearman correlation coefficients [54] are two commonly
used measures of the relationship between the two variables. Pearson’s
correlation coefficient assesses linear relationships [163], while Spearman’s
correlation coefficient assesses monotonic relationships (i.e., regardless of
whether they are linear or not). Specifically, the Spearman correlation co-
efficient measures the statistical dependence between the rank values of
two variables. The decision making processes of subtrees in DFJSS are
based on the ranks of machines or operations. Therefore, the Spearman
correlation coefficient is a natural candidate for measuring the correlation
between the behaviour of subtrees. This chapter uses correlation ci be-
tween the decisions (i.e., ~di and ~d1) made by Ti and T1 (i.e., the whole tree)
to measure the importance of a subtree Ti. The values range between -1
and 1. If |ci| is close to 1, the behaviour of Ti is highly consistent with T1

(i.e., either positively or negatively), and Ti is an important subtree for an

5.2. PROPOSED ALGORITHM 139

Table 5.2: An example of the calculations for correlation of subtrees of an
individual in a decision situation.

Subtree (Ti) Decision Vector (di) Correlation (ci)

T1 (1, 2, 3, 4, 5, 6) 1
T2 (1, 2, 3, 4, 5, 6) 1
T3 (1, 3, 2, 6, 4, 5) 0.77
T4 (6, 5, 1, 2, 3, 4) -0.43
T5 (6, 5, 4, 3, 2, 1) -1

individual. If |ci| is close to 0, the behaviour of Ti is almost irrelevant with
the behaviour of T1, and thus Ti is not important subtree for T1.

Table 5.2 shows an example of the calculations for the correlation of
subtrees of the individual shown in Figure 5.4. Different subtrees have
different correlations (i.e., either positive or negative values). T2 makes
exactly the same decisions with T1, and thus is a very important subtree of
T1. On the other hand, T5 has a correlation of -1, which means its behaviour
is completely reverse as the behaviour of T1. In this case, T5 is also a very
important subtree of T1, since its behaviour can be converted to be the
same as that of T1 by a slight modification, i.e., “0−T1”. In contrast, T3 and
T4 show relatively weaker relationship with T1, and thus are considered to
be less important than T2 and T5.

The pseudo-code of measuring the importance of a subtree is shown
in Algorithm 6. An absolute value of the correlation closer to 1 leads to
a more important subtree. It is noted that the correlation between the be-
haviours of two trees can vary across different decision situations since
the characteristics of jobs (e.g., processing time) and machines (e.g., the
workload) can be different. To have a reliable measure of the relationship,
we sample a set of representative decision situations [99], and define the
relationship between the behaviours of two trees to be the average cor-
relation values over all the sampled decision situations. To sample a set
of representative decision situations, this chapter uses the WIQ (i.e., work

140 CHAPTER 5. SPECIALISED GENETIC OPERATORS

Algorithm 6: Calculation of the importance of a subtree
Input : An individual T , a subtree Ti of T , and a set of decision situations
Output: The importance of the subtree Ti

1: S(Ti)← null, ~di ← null

2: ci ← 0, sum(ci)← 0
3: for j = 1 to |decisionSituations| do
4: Calculate the priority values of machines or operations based on the

subtree Ti

5: Rank machines or operations based on the priority values
6: ~di ← get the decision vector of subtree Ti based on the ranks
7: ci ← calculate the correlation of ~di and ~d1

8: sum(ci)← sum(ci) + |ci|
9: end

10: S(Ti)← sum(ci)
|decisionSituations|

11: return S(Ti)

in the queue) rule for routing and the SPT (i.e., shortest processing time)
rule for sequencing, and runs a preliminary simulation with 5000 jobs on
10 machines, which generate about 50,000 routing and 50,000 sequenc-
ing decision situations. In [99], decision situations were created randomly
containing between 2 and 20 jobs, which have been proven to be good for
measuring the behaviour of individuals by phenotypic characteristic. Tak-
ing the complexity of DFJSS into consideration, the number of candidates,
either machines or operations, is 7 in this chapter for both the routing and
sequencing decisions. Then, we randomly select 50 routing and 50 se-
quencing decision situations from the generated routing and sequencing
decisions with a length of 7. This means that each subtree has a decision
vector with a dimension of 7. The fixed dimension length aims to set the
same length decision vectors for all the individuals to get feasible corre-
lation value with the Spearman’s correlation coefficient. In each decision
situation, the priority values of machines or operations are calculated (line
4) to get their ranks (line 5). A vector ~di denotes the decision made by Ti
(line 6). The correlation ci between Ti and T1 is used to measure the im-

5.2. PROPOSED ALGORITHM 141

portance of Ti (line 7). The final importance of subtree Ti is the average ci
over all the decision situations (line 10).

5.2.4 Crossover with Recombinative Guidance

A GP crossover operator is typically conducted on two parents (parent1
and parent2) which are both considered to be promising individuals in the
population (e.g., selected by tournament selection). For each parent, it is
reasonable to choose the unimportant subtree and replace it with an im-
portant subtree from the other. Based on the importance of subtrees S(T),
two probability calculations are designed for different purposes. One is
designed for selecting important subtrees, while the other for selecting
unimportant subtrees. Then, we design the crossover operator with re-
combinative guidance according to the probabilities.

The probability for each subtree. Based on the subtree importance in-
formation, this chapter uses the idea of roulette wheel selection to choose
the desired subtrees. The probability of each subtree is proportional to its
importance. We use the example shown in Table 5.2 with the correlation
to show how to calculate the probability of each subtree. We assume that
there is only one decision situation, and the calculated importance (i.e.,
using Algorithm 1) of subtrees from T1 to T5 are 1, 1, 0.77, 0.43, and 1.

Figure 5.5 shows an example of two different ways to calculate the
probability of each subtree in an individual for crossover. Figure 5.5 (a)
shows the way for choosing unimportant subtrees. A subtree with a larger
score has a lower probability of being selected, which is shown as “↓” in
the caption. Figure 5.5 (b) shows the way for choosing important subtrees.
A subtree with a larger score has a higher the probability of being selected,
which is indicated as “↑” in the caption. The ways to calculate the prob-
abilities of subtrees follow the roulette-wheel selection according to the
correlation values or the converted correlation values. As shown in Figure
5.5, at the beginning, the correlation values of subtrees are the same, as

142 CHAPTER 5. SPECIALISED GENETIC OPERATORS

T1

T2 T5

T3 T40.77 0.43

1 1

1T1

T2 T5

T3 T40.77 0.43

1 1

1

(b) Correlation (a) Correlation

T1

T2 T5

T3 T40.77 0.43

1 1

1T1

T2 T5

T3 T40.23 0.57

0 0

0

(b) Converted Correlation (a) Converted Correlation

T1

T2 T5

T3 T40.18 0.10

0.24 0.24

0.24T1

T2 T5

T3 T40.29 0.71

0 0

0

(b) Probability (a) Probability

Figure 5.5: An example of calculating the probabilities for subtrees. Figure
5.5 (a) tends to choose unimportant subtrees while Figure 5.5 (b) tends to
choose important subtrees.

shown in Figure 5.5 “(a) Correlation ↓” and Figure 5.5 “(b) Correlation ↑”.
However, different from Figure 5.5 (b), the correlation value of each sub-
tree will be converted to 1 − S(T), as shown in Figure 5.5 “(a) Converted
Correlation ↓”, since we are choosing unimportant subtrees. The proba-
bilities of subtrees are shown beside the function nodes in the last row of
Figure 5.5. The rank of the probability of subtrees in Figure 5.5 (a) is T4 >
T3 > T1 = T2 = T5, and in Figure 5.5 (b) is T1 = T2 = T5 > T3 > T4. In this
way, this chapter can make sure that important and unimportant subtrees
can be selected in accordance with the requirements.

The recombinative guidance mechanism. The pseudo-code of the
proposed crossover operator is shown in Algorithm 7. The importance

5.2. PROPOSED ALGORITHM 143

Parent1 Parent2

Offspring1 Offspring2

Figure 5.6: An example of produced offspring from two parents with the
proposed recombinative guidance mechanism.

of subtrees of an individual is calculated before choosing important and
unimportant subtrees based on roulette wheel selection (line 2 to line 8 for
parent1, line 9 to line 13 for parent2). Finally, one offspring is produced by
replacing the unimportant subtree parent1(T ∗)n from parent1 with the im-
portant subtree parent2(T ∗)p from parent2 (line 14). The other offspring is
produced by replacing the unimportant subtree parent2(T ∗)n from parent2

with the important subtree parent1(T ∗)p from parent1 (line 15).

Continuing the example in Figure 5.5, Figure 5.6 shows an example of
the produced offspring with the proposed recombinative guidance. For
parent1 (parent2), the unimportant subtree with an unhappy face from
parent1 (parent2) is expected to be replaced by the important subtree with
a happy face from parent2 (parent1), aiming to produce an even better off-
spring. The produced offspring are expected to preserve the promising
building-blocks of one parent and incorporate good building-blocks from
the other parent (i.e., produce offspring with more happy faces).

144 CHAPTER 5. SPECIALISED GENETIC OPERATORS

Algorithm 7: Crossover with recombinative guidance
Input : Two parents for the crossover (parent1 and parent2)
Output: The generated offspring (offspring)

1: set offspring← null
2: if parent1 then
3: S(T)← Calculate the importance of subtrees (Algorithm 1)
4: S(T)p← |S(T)|
5: S(T)n← 1− |S(T)|
6: parent1(T

∗)p ← Selected important subtree based on roulette wheel
selection with S(T)p

7: parent1(T
∗)n ← Selected unimportant subtree based on roulette wheel

selection with S(T)n

8: end
9: if parent2 then

10: repeat from line 3 to line 5
11: parent2(T

∗)p ← Selected important subtree based on roulette wheel
selection with S(T)p

12: parent2(T
∗)n ← Selected unimportant subtree based on roulette wheel

selection with S(T)n

13: end
14: offspring1← produce offspring by replacing the subtree chosen from

parent1(T
∗)n with parent2(T

∗)p

15: offspring2← produce offspring by replacing the subtree chosen from
parent2(T

∗)n with parent1(T
∗)p

16: offspring← offspring1 ∪ offspring2

17: return offspring

5.2.5 Algorithm Summary

The proposed algorithm aims to improve the effectiveness of crossover
by introducing recombinative guidance mechanism rather than choosing
subtrees randomly. We assume that removing an unimportant subtree
from an individual does not make a big difference to its fitness. However,
introducing an important subtree to the position of the removed unimpor-
tant subtree has a high probability of making the individual better. It is
noted that the idea in this chapter is not limited to DFJSS but can benefit

5.3. EXPERIMENT DESIGN 145

GP in general. An important issue is to design a proper measure for the
subtree importance based on the specific problem to be solved. Taking the
symbolic regression problem as an example, the subtree importance can
be measured with sampling semantics [222].

5.3 Experiment Design

5.3.1 Comparison Design

The goal of this chapter is to improve the effectiveness and efficiency of
the crossover operator of GPHH with recombinative guidance mechanism
to evolve effective scheduling heuristics for DFJSS. Three algorithms are
taken into the comparison in this chapter. The cooperative coevolution
genetic programming (CCGP) [233] is selected as the baseline algorithm.
CCGP uses the uniform crossover operator. The proposed algorithm in
this chapter that measures the subtree importance based on feature impor-
tance is named as CCGPf [238], while the proposed algorithm that mea-
sures the subtree importance based on the correlation between subtrees
and the whole tree is named as CCGPc. In addition, to further verify the
proposed subtree importance measure and recombinative guidance mech-
anism, we compare with a reverse algorithm named CCGP!c that uses
unimportant subtrees to replace important subtrees to GPHH.

In order to verify their effectiveness and efficiency, the proposed al-
gorithm is tested on six scenarios. The scenarios consist of three objec-
tives (i.e., max-flowtime, mean-flowtime, and mean-weighted-flowtime)
and two utilisation levels (i.e., 0.85 and 0.95).

5.3.2 Specialised Parameter Settings of GPHH

The specialised parameter settings of GPHH are shown in Table 5.3. This
chapter adopts the representation with cooperative coevolution along with

146 CHAPTER 5. SPECIALISED GENETIC OPERATORS

Table 5.3: The specialised parameter settings of GPHH.

Parameter Value

Number of subpopulations 2
Subpopulation size 512

The number of elites for each subpopulation 5

two subpopulations, since the crossover operation of the routing and se-
quencing individuals is independent in this way. Therefore, there are two
subpopulations of the algorithms in this chapter. This makes it convenient
for validating the effectiveness of the proposed crossover operator.

5.4 Results and Discussions

5.4.1 Quality of the Evolved Scheduling Heuristics

Table 5.4 shows the mean (standard deviation) of the objective values of
the four compared algorithms on unseen instances based on 50 indepen-
dent runs in six DFJSS scenarios. It can be seen that CCGPf shows similar
performance with CCGP in all the scenarios. One possible reason is that
using the occurrences of features to measure the importance of subtrees
may not be accurate due to the redundant branches in GP. CCGPc is sig-
nificantly better than CCGP in half of the scenarios (i.e., <Fmean, 0.85>,
<WFmean, 0.85> and <WFmean, 0.95>) and no worse in all other scenar-
ios. Although CCGPc is not significantly better than that of CCGP in the
scenarios <Fmax, 0.85> and <Fmean, 0.95>, it still shows its superiority
in terms of the mean and standard deviation values obtained. In addition,
CCGPc is significantly better than CCGPf in the most complex scenario
(<WFmean, 0.95>), which is shown in bold. CCGP!c is significantly worse
than all other algorithms, which is as expected. This verifies the effective-
ness of proposed subtree importance measure with correlation coefficient

5.4. RESULTS AND DISCUSSIONS 147

Table 5.4: The mean (standard deviation) of the objective values of CCGP,
CCGPf , CCGPc and CCGP!c on unseen instances over 50 independent
runs in six DFJSS scenarios.

Scenario CCGP CCGPf CCGPc CCGP!c

<Fmax, 0.85> 1212.05(34.68)1215.55(32.62)(≈)1211.83(27.45)(≈)1291.96(48.23)(+)
<Fmax, 0.95> 1941.98(29.93)1939.84(32.97)(≈)1942.09(29.16)(≈)2026.88(80.15)(+)
<Fmean, 0.85> 385.95(3.22) 384.66(1.19)(≈) 384.68(1.92)(–) 389.79(3.96)(+)
<Fmean, 0.95> 551.18(5.78) 551.11(3.81)(≈) 550.30(3.72)(≈) 563.76(10.14)(+)
<WFmean, 0.85> 831.41(6.08) 829.89(4.76)(≈) 828.98(3.57)(–) 841.22(9.78)(+)
<WFmean, 0.95>1111.01(12.02)1109.52(11.27)(≈) 1105.84(7.21)(–) 1141.54(23.04)(+)

technique and recombinative guidance from an opposite perspective.

Figure 5.7 shows the violin plot of the test objective values of CCGP,
CCGPf , CCGPc and CCGP!c over 50 independent runs in six DFJSS scenar-
ios. It shows that although CCGPf is not significantly better than CCGP in
any scenario, it achieves better performance than CCGP in most scenarios
(i.e., <Fmean, 0.85>, <Fmean, 0.95>, <WFmean, 0.85> and <WFmean,
0.95>). For CCGPc, most obtained test objective values distribute at a
lower position (i.e., the smaller, the better) than that of CCGPf and CCGP
in the scenarios <Fmean, 0.85>, <Fmean, 0.95>, <WFmean, 0.85> and
<WFmean, 0.95>. In addition, the obtained objectives of CCGP!c are larger
than the other compared algorithms, since the idea of CCGP!c is the oppo-
site of that of the proposed algorithm CCGPc. This verifies the effective-
ness of the proposed subtree importance measure and the proposed re-
combinative guidance based on replacing unimportant subtrees with im-
portant ones.

Figure 5.8 shows the converges curves of the average objective values
based on 50 independent runs on the unseen instances of CCGP, CCGPf ,
CCGPc and CCGP!c in six DFJSS scenarios. In most scenarios (i.e.,<Fmean,
0.85>, <Fmean, 0.95>, <WFmean, 0.85> and <WFmean, 0.95>), CCGPc

achieves better performance than its counterparts. In half of the scenar-

148 CHAPTER 5. SPECIALISED GENETIC OPERATORS

●

●

●

●

●
●

●●

●

●

●
●●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

1900

2000

2100

2200

2300

550

560

570

580

1110

1130

1150

1170

1190

1100

1200

1300

1400

386

390

394

830

840

850

860

Algorithm

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

s
on

 T
es

t I
ns

ta
nc

es

CCGP CCGPf CCGPc CCGP!c

Figure 5.7: The violin plot of the average objective values of CCGP,
CCGPf , CCGPc and CCGP!c on unseen instances over 50 independent
runs in six DFJSS scenarios.

ios (i.e., <Fmean, 0.85>, <WFmean, 0.85> and <WFmean, 0.95>), CCGPc

convergence much faster than CCGP and CCGPf . In addition, the individ-
uals evolved by CCGP!c are much worse than the other algorithms over
generations, which also demonstrates the effectiveness of CCGPc. For the
max-flowtime related scenarios (i.e., <Fmax, 0.85> and <Fmax, 0.95>),
the performance of the involved three algorithms do not have obvious
difference. This may be because max-flowtime is not easy to be optimised
due to its sensitivity to the worst case.

5.4. RESULTS AND DISCUSSIONS 149

●
●

●

● ●
●

●
● ● ● ●

● ●
● ● ● ● ● ●

● ●

● ●
●

●
● ● ●

●
●

● ● ●
● ●

● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ●
● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●
●

● ● ●
● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ●

●
● ● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

20 30 40 50 20 30 40 50

20 30 40 50 20 30 40 50

20 30 40 50 20 30 40 50

1950

2000

2050

2100

2150

550

555

560

565

570

1120

1140

1160

1240

1280

1320

1360

386

388

390

392

830

835

840

845

850

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

s
on

 T
es

t I
ns

ta
nc

es

● CCGP CCGPf CCGPc CCGP!c

Figure 5.8: The curves of the average objective values of CCGP, CCGPf ,
CCGPc and CCGP!c on unseen instances over 50 independent runs in six
DFJSS scenarios.

5.4.2 Depth Ratios of Selected Subtrees

Both CCGPc and CCGPf attempt to choose proper crossover points, how-
ever, only CCGPc shows its superiority. It is interesting to analyse the
different behaviours of CCGPc and CCGPf . We define the depth ratio to
measure the location of the selected subtrees of a tree. The depth ratio
is the division of the depth where a selected subtree on and the depth of
the tree. A smaller (larger) ratio lends to a closer location of the selected
subtree to the root node (terminals) of a tree.

150 CHAPTER 5. SPECIALISED GENETIC OPERATORS

●●

●●

●●
●

●●
●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●●●●●●●●●
●●●●●●●●●●

●●●
●●

●●●●●
●●

●●●●●
●●

●●
●

●●●●
●●●

●●●●●●●●●●●●●●●●●●●●

●
●●

●●
●

●●
●●●●

●●●
●●

●●●●●●●●
●●●●●●●

●●●
●●

●●

●●

●
●●

●●●●●●●●●●
●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●
●●

●

●●●●
●

●●●●
●●●

●●●●●●●●●●●●●●●●
●●

●●●●●●●

●●

●●
●●

●
●●

●●
●●●

●●
●

●●●●
●●●●●●●

●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50
0.36

0.40

0.44

0.48

0.35

0.40

0.45

0.50

0.35

0.40

0.45

0.50

0.40

0.44

0.48

0.52

0.35

0.40

0.45

0.50

0.35

0.40

0.45

0.50

Generation

T
he

 A
ve

ra
ge

 D
ep

th
 R

at
io

s
fo

r
th

e
S

el
ec

te
d

S
ub

tr
ee

s

● CCGPc(important) CCGPc(unimportant)

Figure 5.9: The curves of the average depth ratios for the selected impor-
tant and unimportant subtrees of CCGPc over 50 independent runs in six
DFJSS scenarios.

Figure 5.9 and Figure 5.10 show the average depth ratios for the se-
lected important and unimportant subtrees of CCGPc and CCGPf over 50
independent runs in six DFJSS scenarios, respectively. For both CCGPc

and CCGPf , the depth ratios of important subtrees are smaller than that
of unimportant subtrees. This is consistent with our intuition that the sub-
trees closer to the root are more likely to be important subtrees because
they contain more comprehensive components. The gaps in depth ratios
between important subtrees and unimportant subtrees of CCGPc is much
bigger than that of CCGPf . In addition, it can be seen that CCGPc can de-

5.4. RESULTS AND DISCUSSIONS 151

●●

●●

●●

●

●●
●●●

●●●●
●●

●●●●●
●●●●●

●●

●●

●
●●

●●

●●
●

●●
●●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●
●

●●

●●
●●

●
●●

●●
●●●●●●●●●●●●●●●●●

●●
●●●

●●

●●

●

●●

●●
●

●●
●●

●●●●●●●●
●●

●●

●

●●
●●

●

●●
●●

●
●●

●●
●●●

●●●●
●●●

●●

●●

●●●
●●

●●
●

●●
●●

●
●●

●●●●
●●●●●●●●●●●●●

●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0.35

0.40

0.45

0.35

0.40

0.45

Generation

T
he

 A
ve

ra
ge

 D
ep

th
 R

at
io

s
fo

r
th

e
S

el
ec

te
d

S
ub

tr
ee

s

● CCGPf(important) CCGPf(unimportant)

Figure 5.10: The curves of the average depth ratios for the selected impor-
tant and unimportant subtrees of CCGPf over 50 independent runs in six
DFJSS scenarios.

tect important and unimportant subtrees better than CCGPf in the early
stage (i.e., before generation 10).

Figure 5.11 shows the curves of average depth ratios of important sub-
trees obtained by the 50 independent runs of CCGP, CCGPf and CCGPc

in six DFJSS scenarios. It shows that the depth ratios of the selected im-
portant trees of CCGP, CCGPf and CCGPc are similar to each other. The
average depth ratios of important subtrees of CCGP, CCGPf , and CCGPc

are consistently between 0.4 and 0.45 after generation 10, which means we
do not usually select the important subtrees towards the root. In general,

152 CHAPTER 5. SPECIALISED GENETIC OPERATORS

●

●

●

●
●● ●

● ●● ● ●
●● ● ● ● ●● ●

● ●●
● ●

●● ●

●

●

●

●●

●
●

●● ●
●

●
●●

● ● ●● ● ● ●● ● ●
●

● ● ●

●

●

●

●

●
●

●
●

● ● ● ●● ●
●

●● ● ● ●● ● ●
● ●● ●

●

●

●

●

●
●●

●
●

●● ● ● ● ●● ●
● ●● ● ● ●● ● ● ●●

●

●

●

●

●

●
●

●
●

● ●● ●
● ●●

● ● ●● ● ● ●● ● ● ● ●

●

●

●

●

●
●●

●
● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0.35

0.40

0.45

Generation

T
he

 A
ve

ra
ge

 D
ep

th
 R

at
io

s
fo

r
th

e
Im

po
rt

an
t S

el
ec

te
d

S
ub

tr
ee

s

● CCGP CCGPf CCGPc

Figure 5.11: The curves of the average depth ratios of important subtrees
obtained by CCGP, CCGPf and CCGPc over 50 independent runs in six
DFJSS scenarios.

the depth ratios of the selected important subtrees of CCGPc are slightly
smaller than its counterparts. However, the main difference is that CCGPc

prefers to choose the subtrees which are further away from root node with
a larger depth ratio while CCGP and CCGPf tend to select the subtrees
that are closer to the root node with a smaller depth ratio in the early stage
(i.e., from generation 1 to generation 5 roughly). It implies that the ability
of CCGPf to detect promising subtrees is limited at the early stage. One
possible reason is that the occurrences of features are not accurate to mea-
sure the importance of features. This shortcoming is very obvious at the

5.4. RESULTS AND DISCUSSIONS 153

●

●

●

●
●● ● ● ●● ● ● ●●

● ● ● ●● ● ● ●● ● ● ●● ●

●

●

●

●●

● ●
●● ●

● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●

●

●

●
●

●
● ● ●● ● ● ●● ●

● ●● ● ● ●● ●
● ● ●● ●

●

●

●

●
●

●●
●

● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ●●

●

●

●

●

●

●●
● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●

●

●

●

●
●

●
●

● ● ●● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0.30

0.35

0.40

0.45

0.50

0.30

0.35

0.40

0.45

0.50

0.30

0.35

0.40

0.45

0.50

0.30

0.35

0.40

0.45

0.50

0.30

0.35

0.40

0.45

0.50

0.30

0.35

0.40

0.45

0.50

Generation

T
he

 A
ve

ra
ge

 D
ep

th
 R

at
io

s
fo

r
th

e
U

ni
m

po
rt

an
t S

el
ec

te
d

S
ub

tr
ee

s

● CCGP CCGPf CCGPc

Figure 5.12: The curves of the average depth ratios of unimportant sub-
trees of CCGP, CCGPf and CCGPc over 50 independent runs in six DFJSS
scenarios.

early stage because the individuals have not evolved well yet, and the oc-
currence information of features is not reliable.

Figure 5.12 shows the curves of the average depth ratios of unimpor-
tant subtrees obtained by CCGP, CCGPf and CCGPc based on 50 indepen-
dent runs in six DFJSS scenarios. Figure 5.12 shows that CCGP, CCGPf and
CCGPc make clearly different decisions when selecting unimportant sub-
trees. On one hand, both CCGPf and CCGPc tend to choose the subtrees
with larger tree depths, i.e., on the lower parts of an individual. On the
other hand, compared with CCGPf , the depth ratios of the unimportant

154 CHAPTER 5. SPECIALISED GENETIC OPERATORS

1 0 1
0

2000
4000
6000
8000

10000

Gen 1 Large

1 0 1
0

2000

4000

6000

8000

10000

Gen 25 Large

1 0 1
0

2000

4000

6000

8000

10000
Gen 45 Large

1 0 1
0

1000

2000

3000

4000

5000
Gen 1 Small

1 0 1
0

2000

4000

6000

8000
Gen 25 Small

1 0 1
0

2000

4000

6000

Gen 45 Small

Correlation

O
cc

ur
re

nc
e

Figure 5.13: The histogram plot for the correlations of the selected subtrees
of CCGPc at generation 1, 25, and 45 in the scenario<WFmean, 0.95> over
50 independent runs.

subtrees of CCGPc are much larger. At the later stage (i.e., from gener-
ation 10 to generation 50 roughly), the depth ratios of CCGPf fluctuate
around 0.45 while the depth ratios of CCGPc show a trend of fluctuation
around 0.5. This means that CCGPc treats the subtrees closer to the leaf
nodes as unimportant subtrees.

5.4.3 Correlations of Selected Subtrees

The correlations of subtrees determine the subtree selection probabilities.
Figure 5.13 shows the histogram plot for the correlations of the selected
subtrees of CCGPc at early, middle and late stages over 50 independent
runs in the scenario <WFmean, 0.95>. The “Gen X Large (Small)” in the
subtitle indicates that the subtree with a larger (smaller) score has a higher
(lower) chance of being chosen. All the correlations are between -1 and 1.
From the sub-figures in the first row (i.e., for selecting important subtrees),

5.4. RESULTS AND DISCUSSIONS 155

we find that the subtrees with correlations of zero are seldom selected, and
the absolute values of the correlations of the selected subtrees are close to
1. This is in line with our expectation because we tend to choose important
subtrees with larger absolute correlation values.

For selecting unimportant subtrees, as shown in the sub-figures of the
second row, much more selected subtrees have their correlations close to
zero, especially at the early stage (generation 1). However, it is inconsis-
tent with our intuition that there are still lots of correlations of the selected
unimportant subtrees between 0.5 and 1 at generation 25 and generation
45. When we further look at the correlations during the process of select-
ing unimportant subtrees, we find that it can occur that all of the subtrees
in an individual are important with the correlations range between 0.5 and
1, especially in the middle and late stages. This is the reason why the cor-
relations of the selected unimportant subtrees show in such a distribution.
In other words, the proposed algorithm still chooses relatively unimpor-
tant subtrees.

5.4.4 Probability Difference

The basic idea in this chapter is to differentiate the probabilities of subtrees
to be chosen instead of choosing subtrees randomly. We use probability dif-
ference to measure how the proposed algorithm influences the chance of
subtrees to be selected. The probability difference is defined as the differ-
ence (i.e., subtraction) between the assigned probability by the proposed
recombinative guidance mechanism and the uniform probability of the se-
lected subtree. It is noted that the probability difference can be positive,
negative, and zero. A positive probability difference indicates that the cur-
rent subtree is selected with a higher chance compared with uniform prob-
ability. A negative probability difference means that the current subtree is
selected with a lower chance than uniform probability. If the probabil-
ity difference is zero, the assigned probability is the same as the uniform

156 CHAPTER 5. SPECIALISED GENETIC OPERATORS

0.0 0.5 1.0
0

500

1000

1500

Gen 1 Large

0.0 0.5 1.0
0

500

1000

1500

2000

Gen 25 Large

0.0 0.5 1.0
0

500

1000

1500

2000
Gen 45 Large

0.0 0.5 1.0
0

1000

2000

3000

Gen 1 Small

0.0 0.5 1.0
0

500

1000

1500

2000

2500

Gen 25 Small

0.0 0.5 1.0
0

500

1000

1500

2000

Gen 45 Small

Probability Difference

O
cc

ur
re

nc
e

Figure 5.14: The histogram plot of probability difference of the selected
subtrees of CCGPc at generation 1, 25, and 45 in the scenario <WFmean,
0.95> over 50 independent runs.

probability. This means that the proposed algorithm does not have effec-
tive guidance on choosing the crossover point for producing offspring.

We take CCGPc in the scenario <WFmean, 0.95> as an example to in-
vestigate how CCGPc affects subtree selection, since CCGPc performs sig-
nificantly better than the other two algorithms in this scenario. Figure 5.14
shows the histogram plot of the probability difference in the early (gener-
ation 1), middle (generation 25) and late (generation 45) stages of the evo-
lutionary process in the scenario <WFmean, 0.95> over 50 independent
runs. Overall, most of the probability differences are positive numbers.
This indicates that the proposed algorithm increases the probabilities of
both selecting important and unimportant subtrees. This is in line with
our expectation that CCGPc can successfully guide GPHH to choose im-
portant or unimportant subtrees for crossover as required.

5.5. FURTHER ANALYSES 157

Table 5.5: The mean (standard deviation) of training time (in minutes) of
CCGP, CCGPf , and CCGPc over 50 independent runs in six DFJSS scenar-
ios.

Scenario CCGP CCGPf CCGPc

<Fmax, 0.85> 73(9) 74(13)(≈) 74(11)(≈)
<Fmax, 0.95> 87(15) 88(13)(≈) 89(12)(≈)
<Fmean, 0.85> 71(10) 72(10)(≈) 72(9)(≈)
<Fmean, 0.95> 80(13) 81(11)(≈) 81(12)(≈)
<WFmean, 0.85> 73(13) 75(16)(≈) 74(15)(≈)
<WFmean, 0.95> 82(13) 82(12)(≈) 83(13)(≈)

5.4.5 Training Time

Table 5.5 shows the mean and standard deviation of the training time (in
minutes) of CCGP, CCGPf and CCGPc over 50 independent runs in six
DFJSS scenarios. It is obvious that there is no significant difference among
CCGP, CCGPf and CCGPc in terms of training time. In other words, the
extra subtree importance calculations of CCGPf and CCGPc are efficient
compared with the GP evolution and evaluation, since it does not incur
significantly longer training time.

For CCGPf , it verifies the advantages of taking the information such
as the occurrences of terminals during the evolutionary process of GP to
improve the algorithm further. For CCGPc, it verifies the advantages of
taking some techniques such as correlation coefficient that can be quickly
utilised along with the information during the evolutionary process of GP
to enhance the performance of the algorithm.

5.5 Further Analyses

To deeply understand the effects of the proposed algorithms, the occur-
rences of the potential unsuccessful crossover whose offspring exceed the

158 CHAPTER 5. SPECIALISED GENETIC OPERATORS

maximum depth limit are firstly studied. Then, the sizes of evolved rules,
the insight of the evolved scheduling heuristics of CCGPc, and the occur-
rences of features of CCGPf are further analysed.

5.5.1 Occurrences of Potential Invalid Crossover

The sizes of offspring highly depend on the depth ratios of selected sub-
trees from parents. Intuitively, a subtree closer to the root (with larger
depth ratio) tends to be more important, while a subtree closer to the leaf
nodes (with smaller depth ratio) tends to be less important. If a subtree
closer to the root of a parent replaces a subtree closer to the leaf nodes of
the other parent, the produced offspring tends to have a large size. We
are interested in how the proposed algorithm affects the size of offspring,
since the offspring whose depths are larger than eight (the maximal depth
set in the experiment) will be ignored during the crossover.

We record the number of “invalid” crossover which generates an off-
spring whose depth is larger than eight. We name the “invalid” crossover
as potential invalid replacements since the produced offspring are ignored,
and the crossover actually does not happen. The number of potential in-
valid replacements can be used to investigate how the proposed algorithm
influences the process of generating offspring. Figure 5.15 shows the av-
erage potential invalid replacements for the crossover of CCGP, CCGPf

and CCGPc at each generation over 50 independent runs in the six DFJSS
scenarios. In all the scenarios, CCGPc leads to more potential invalid re-
placements than CCGPf over the generations. It is consistent with the
analyses in Section 5.4.4. In CCGPc, the unimportant subtrees with larger
depth ratios are more likely to be replaced by the important subtrees with
smaller depth ratios, which leads to more potential invalid replacements.
Fortunately, it does not have a significant impact on the effectiveness of
the proposed algorithm.

5.5. FURTHER ANALYSES 159

●

●

●

●

●
●

●
●

●●
●

●
●● ●

● ● ●● ● ● ●● ●
● ●

● ●

●

●

●

●
●

●
●

●● ● ●
● ●● ● ● ●● ● ● ●● ● ● ●●

● ●

●

●

●

●

●

●
●

●●
●

●
●●

● ● ●● ● ● ●● ● ● ● ●● ●

●

●

●

●

●

●
●

●
●

●● ● ●
●

●●
● ● ●● ● ● ●● ● ● ●●

●

●
●

●

●

●
●

●
●

●
●● ●

● ●● ● ● ●● ● ● ●● ● ● ● ●

●

●

●

●

●

●●

●
● ●● ●

● ●● ● ● ● ●● ● ● ●● ● ● ●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50
0

50

100

150

200

0

50

100

150

200

250

0

100

200

0

50

100

150

200

100

200

100

200

Generation

T
he

 A
ve

ra
ge

 O
cc

ur
re

nc
es

 o
f P

ot
en

tia
l I

nv
al

id
 R

ep
la

ce
m

en
ts

 fo
r

C
ro

ss
ov

er

● CCGP CCGPf CCGPc

Figure 5.15: The curve of average occurrences of potential invalid replace-
ments of CCGPf and CCGPc over 50 independent runs in six DFJSS sce-
narios.

5.5.2 Sizes of Evolved Scheduling Heuristics

The size (i.e., the number of nodes) can be a measure for the “interpretabil-
ity” [81] of the evolved rules. A smaller rule can be more easily interpreted
than a larger rule. In this subsection, we investigate how the proposed al-
gorithm influences the sizes of the evolved rules in terms of the sizes of
the evolved best rules. Table 5.6 shows the mean and standard deviation
of the sizes of the evolved best routing and sequencing rules in six DFJSS
scenarios. Compared with CCGP, there is no statistical significant differ-
ence between the sizes of evolved routing and sequencing rules obtained

160 CHAPTER 5. SPECIALISED GENETIC OPERATORS

Table 5.6: The mean (standard deviation) of the sizes of evolved the best
routing and sequencing rules of CCGP, CCGPf , and CCGPc over 50 inde-
pendent runs in six DFJSS scenarios.

Routing Rule

Scenario CCGP CCGPf CCGPc

<Fmax, 0.85> 61.48(18.30) 68.68(18.68)(≈) 62.32(19.07)(≈)
<Fmax, 0.95> 59.28(19.20) 66.28(20.30)(≈) 60.68(18.87)(≈)
<Fmean, 0.85> 59.84(15.05) 61.52(16.21)(≈) 59.40(18.09)(≈)
<Fmean, 0.95> 64.16(19.42) 65.28(16.45)(≈) 59.60(16.52)(≈)
<WFmean, 0.85> 59.00(17.35) 63.12(17.99)(≈) 64.52(17.20)(≈)
<WFmean, 0.95> 63.88(15.95) 61.44(15.30)(≈) 65.20(18.11)(≈)

Sequencing Rule

Scenario CCGP CCGPf CCGPc

<Fmax, 0.85> 54.40(18.12) 51.36(15.01)(≈) 53.72(18.23)(≈)
<Fmax, 0.95> 51.32(16.34) 53.92(16.77)(≈) 50.08(19.32)(≈)
<Fmean, 0.85> 46.64(19.98) 47.32(18.43)(≈) 45.32(15.22)(≈)
<Fmean, 0.95> 44.92(16.04) 44.80(15.47)(≈) 42.12(19.94)(≈)
<WFmean, 0.85> 46.44(18.77) 50.92(13.93)(≈) 46.32(18.32)(≈)
<WFmean, 0.95> 47.04(18.45) 52.92(20.33)(≈) 51.68(19.11)(≈)

by CCGPf and CCGPc. We can conclude that the proposed CCGPc with
recombinative guidance achieves better performance without having an
impact on the sizes of the evolved rules.

5.5.3 Insight on the Evolved Scheduling Heuristics

To study the behaviours of the evolved rules obtained by CCGPc, this sec-
tion conducts structural analyses on the evolved sequencing rules. Specif-
ically, the best sequencing rules obtained by CCGPc for minimising max-
flowtime and mean-weighted-flowtime with utilisation level of 0.95 are
further investigated, respectively.

Evolved Rule for Max-flowtime. Figure 5.16 shows one of the best

5.5. FURTHER ANALYSES 161

Min

+ -

TIS WKR Min +

- +

- +

PT +

+ WKR

TIS WKR

+ WKR

TIS WKR

TIS WKR

+ +

TIS WKR - Max

NIQ PT WIQ NOR

Figure 5.16: One of the best evolved sequencing rules evolved by CCGPc

in scenario <Fmax, 0.95>.

evolved sequencing rules by CCGPc in the scenario <Fmax, 0.95>. It is
observed that the rule is a combination of six simple terminals (TIS, WKR,
PT, NIQ, WIQ, and NOR), and TIS and WKR are the most frequently used
terminals for building this rule. In addition, “TIS + WKR” might be an ef-
fective constructed building block for this sequencing rule, since it appears
five times in this rule.

To make analysis easy, the rule in Figure 5.16 is further simplified, as
shown in Eq. 5.1.

S1 =Min{TIS +WKR,

Min{PT − 2TIS − 4WKR,TIS +WKR}−

(TIS +WKR +NIQ− PT +Max{WIQ,NOR})}

≈Min{TIS +WKR,

2PT − 3TIS − 5WKR−NIQ−WIQ}

≈2PT − 3TIS − 5WKR−NIQ−WIQ

=2PT − 3TIS − 5WKR

(5.1)

162 CHAPTER 5. SPECIALISED GENETIC OPERATORS

From step 1 to step 2, “Min{PT - 2TIS - 4WKR, TIS + WKR}” is simplified
as “PT - 2TIS - 4WKR”, since “PT - 2TIS - 4WKR” is almost always smaller
than “TIS + WKR”. In addition, “Max{WIQ, NOR}” is represented as
WIQ, since WIQ (time) tends to be larger than NOR (between 1 and 10).
Similarly, the rule in step 2 can be mostly replaced by the rule in step 3.
Finally, NIQ and WIQ are the same for all operations in the same queue,
and can be safely ignored, since they do not affect the final decision of
choosing an operation. This rule suggests that when a machine is idle, the
machine should process the operation with small processing time first. In
addition, the jobs that arrive at the shop floor earlier or have more remain-
ing work should be processed earlier. Otherwise, if they are completed
too late, the max-flowtime will be increased. It is consistent with our intu-
ition for minimising max-flowtime due to its sensitivity to the worst case.
The weights of the terminals may require domain knowledge and many
rounds of trial-and-error if manually designed.

Evolved Rule for Mean-weighted-flowtime. Figure 5.17 shows one
of the best evolved sequencing rules obtained by CCGPc in the scenario
<WFmean, 0.95>. This rule consists of four simple terminals (WKR, W,
PT, MWT), and four functions (+, /, Max, Min). “WKR / W” is an impor-
tant learned component in this rule, and it appears four times. W tends
to play its role as a denominator. PT is also an important terminal which
mainly plays its role as a component for addition.

The simplification of the sequencing rule in Figure 5.17 is shown in Eq.
5.2.

S2 =(Min{WKR/W + PT,WKR}+ PT

+Min{WKR/W + PT,WKR/W +WKR}+ PT

+ PT +Max{WKR/W,PT}+W)/(W +MWT)

=(Min{WKR/W + PT,WKR}+ 3PT

+Min{PT,WKR}

+Max{WKR/W,PT}+W)/(W +MWT)

(5.2)

5.5. FURTHER ANALYSES 163

/

+ +

+ +

+ +

Min PT

+ WKR

/ PT

WKR W

Min PT

+ +

/ PT

WKR W

/ WKR

WKR W

+ W

PT Max

/ PT

WKR W

W MWT

Figure 5.17: One of the best evolved sequencing rules evolved by CCGPc

in the scenario <WFmean, 0.95>.

This rule suggests to process the important operation with a large W ear-
lier. In addition, the operations with short processing time and the jobs
with small remaining work are preferred to be processed as soon as possi-
ble. Otherwise, the weighted-flowtime will increase.

In summary, this section shows the advantage of evolving scheduling
heuristics with the proposed algorithm. The evolved scheduling heuristics
consist of simple heuristics but are combined in an effective way, which is
not easy to be designed manually. In addition, the evolved scheduling
heuristics have good interpretability, which is important for real-world
applications.

5.5.4 Occurrences of Features

Figure 5.18 shows the curves of the occurrence of features in routing rules
during the evolutionary process of CCGPc. The MWT (i.e., machine wait-

164 CHAPTER 5. SPECIALISED GENETIC OPERATORS

0 20 40
0

20

40

60

<Fmax, 0.85>

0 20 40
0

25

50

75

<Fmean, 0.85>

0 20 40
0

25

50

75

<WFmean, 0.85>

0 20 40
0

25

50

75
<Fmax, 0.95>

0 20 40
0

25

50

75

<Fmean, 0.95>

0 20 40
0

25

50

75
<WFmean, 0.95>

Generation

Th
e

O
cc

ur
re

nc
es

 o
f F

ea
tu

re
s

in
 R

ou
ti

ng
 R

ul
es

NIQ
WIQ

MWT
PT

NPT
OWT

WKR
NOR

W
TIS

Figure 5.18: The curves of the occurrence of features in routing rules dur-
ing the evolutionary process of CCGPc.

ing time) is the most important feature for the routing rules in all the sce-
narios. The importance of MWT is much higher than the other features. In
the scenarios whose utilisation levels are 0.85, WIQ (i.e., the workload in
the queue) plays a second important role. In the scenarios with a high util-
isation level (i.e., 0.95), NIQ (i.e., the number of operations in the queue)
plays a significant role. Intuitively, both WIQ and NIQ are important in-
dicators for measuring the workload for machines, they might have the
same functionality, and one might take over the other. However, we do
not know how they work in different scenarios. It is interesting to see that
the role of NIQ is significantly higher than that of WIQ in the scenarios
that have higher utilisation level. This indicates that NIQ is an important
factor in busy scenarios.

Figure 5.19 shows the curves of the occurrence of terminals in sequenc-
ing rules during the evolutionary process of CCGPc. Different from rout-

5.6. CHAPTER SUMMARY 165

0 20 40
0

20

40

<Fmax, 0.85>

0 20 40
0

25

50

75

<Fmean, 0.85>

0 20 40
0

20

40

60

<WFmean, 0.85>

0 20 40
0

20

40

60
<Fmax, 0.95>

0 20 40
0

25

50

75

<Fmean, 0.95>

0 20 40
0

25

50

75
<WFmean, 0.95>

Generation

Th
e

O
cc

ur
re

nc
es

 o
f F

ea
tu

re
s

in
 S

eq
ue

nc
in

g
Ru

le
s

NIQ
WIQ

MWT
PT

NPT
OWT

WKR
NOR

W
TIS

Figure 5.19: The curves of the occurrence of features in sequencing rules
during the evolutionary process of CCGPc.

ing rules, three terminals (i.e., WKR, TIS, and PT) play a vital role in min-
imising max-flowtime. PT and WKR are also the two important termi-
nals in minimising mean-flowtime and weighted mean-flowtime. Except
for them, W plays a dominant role in minimising the weighted mean-
flowtime, which is consistent with our intuition. In addition, W plays its
role mainly in sequencing rules instead of routing rules.

5.6 Chapter Summary

The goal of this chapter is to develop an effective recombinative guidance
strategy for GPHH to automatically evolve effective scheduling heuristics
by improving the quality of produced offspring for DFJSS. To achieve this
goal, this chapter firstly proposes to measure the subtree importance with
the feature importance information. The proposed algorithm is based on

166 CHAPTER 5. SPECIALISED GENETIC OPERATORS

the idea that the subtrees contain important features are more important
for the whole tree. In addition, this chapter proposes an effective way to
measure the importance of subtrees of an individual based on the char-
acteristics of DFJSS with the correlation coefficient technique. A properly
designed recombinative guidance mechanism is then developed for the
crossover operator of GP to generate offspring by replacing the unimpor-
tant subtrees of one parent with the important subtrees from the other
parent.

The results show that the evolved rules by the proposed algorithm with
the correlation coefficient based recombinative guidance have better per-
formance in most scenarios while no worse in all the other scenarios due
to its effectiveness for producing offspring. This is also verified by the
analyses in terms of the depth ratios, the correlations, and the probabil-
ity difference of selected subtrees during the evolutionary process. In ad-
dition, the proposed algorithm does not need extra computational time
compared with its counterparts. This verifies the advantages of utilising
the information produced by GP during the evolutionary process and the
efficient information calculation techniques such as correlation coefficient.

In Chapters 3-5, we have already studied different techniques (i.e., sur-
rogate, knowledge sharing, phenotypic characteristic) for different chap-
ter goals. However, Chapters 3-5 only solve a single DFJSS task at a time.
In the next two chapters, multitask GPHH will be studied to solve mul-
tiple DFJSS tasks simultaneously with the investigated techniques in the
previous chapters.

Chapter 6

Multitask Genetic Programming
Hyper-heuristic

Chapters 3-5 aim to develop effective GPHH methods for solving a single
DFJSS task. In Chapters 6 and 7, we will focus on how multitask learning
can help improve the multiple task solving ability of GPHH with the in-
vestigated techniques in the previous chapters for solving multiple DFJSS
tasks simultaneously. This chapter will focus on adapting the traditional
evolutionary multitask algorithm to GPHH for DFJSS, focusing on knowl-
edge sharing.

6.1 Introduction

Evolutionary multitask learning has achieved great success due to its abil-
ity to handle multiple tasks simultaneously [90, 91]. Figure 6.1 shows the
flowchart of an evolutionary multitask learning algorithm named multi-
factorial evolutionary algorithm (MFEA) with k tasks [91]. In the begin-
ning, a population of individuals are randomly initialised based on the
predefined unified representation. Then, each individual is evaluated on
all tasks, and the individual is allocated for its fittest task. As an evolu-
tionary algorithm, the working of MFEA is based on the transmission of

167

168 CHAPTER 6. MULTITASK GPHH

Initialise population

Population P
Evaluate individuals on Ti (i = 1, 2, , k)

Assign skill factors for

individuals in population P

Produce offspring from P with assortative

mating and vertical cultural transmission

Population Pnew

Evaluate individuals in

Pnew with skill factors

Concatenate P and Pnew

Population Pimd

Fill P with best individuals from Pimd

Best individual for Ti

(i = 1, 2, , k)

Stop?

Yes

No

Choose parents randomly

from population P

Figure 6.1: The flowchart of MFEA with k tasks, where P , Pnew, and Pimd

denote the evaluated, newly generated offspring, and the concatenated
population.

cultural genetic materials from parents to their offspring. This is an im-
portant step of MFEA that plays a role of transferring knowledge between
tasks. In particular, assortative mating and vertical cultural transmission
are used with two randomly selected parents to generate offspring. Assor-
tative mating states that individuals prefer to mate with those belonging
to the same cultural background. In MFEA, the skill factor is regarded as
an individual’s cultural bias. The individuals with the same or different
skill factor(s) have the same or different culture. Vertical cultural transmis-
sion is a mode of inheritance that the phenotype of an offspring is directly
affected by the phenotype of its parents. In MFEA, it is realised by allow-
ing offspring to inherit the skill factor of their parents. Finally, the parent
population P and offspring population Pnew are concatenated as an inter-
mediate population Pimd, and the top popsize fittest individuals from Pimd

are kept into the next generation. The output of MFEA is k individuals,
each for one task. The unique features of MFEA are highlighted in blue.

However, multitask learning is rarely used in the hyper-heuristic do-
main to generate heuristics rather than solutions. Multitask selective hyper-

6.1. INTRODUCTION 169

heuristic has been investigated in [96] on exam timetabling and graph
colouring problems, however, to the best of our knowledge, there is no
study on multitask generative hyper-heuristic.

GP hyper-heuristic (i.e., generative hyper-heuristic) with tree-based rep-
resentations has been successfully used for evolving scheduling heuris-
tics for complex combinatorial optimisation problems such as dynamic
JSS [71, 167, 173, 236, 249] and routing [227]. While, GP is rarely used
in multitask learning. Multitask GP was successfully used to the symbolic
regression problem in [255]. However, the GP approach in [255] worked
on the solution space rather than heuristic space. There are a number of
related dynamic tasks in real-world applications such as cloud computing
[94, 218] and JSS [166] with a preference for hyper-heuristic approaches.
Thus, this chapter presents an attempt to fill the gap of multitask in gen-
erative hyper-heuristic by adapting the idea of MFEA to multitask GP
hyper-heuristic for evolving scheduling heuristics in DFJSS. The main ben-
efit of multitask GP learning in this chapter is that by handling a number
of tasks simultaneously, each task can be solved more effectively with the
help from solving the other tasks than being solved independently.

GP and hyper-heuristics have their own features so that directly apply-
ing MFEA [91] to GP and hyper-heuristics may not achieve satisfactory ef-
fectiveness and efficiency. First, GP uses a different way from the genetic
algorithm [50] to control the selection pressure. In GP, the selection pres-
sure is typically implemented by the parent selection for breeding. How-
ever, MFEA follows a common genetic algorithm framework that com-
bines the parent and offspring populations, and selects the best individu-
als from the combined population to the next generation. Using both the
parent selection in GP and offspring selection in MFEA simultaneously
will make MFGP too greedy and lose the population diversity. Second,
in addition to the training performance, hyper-heuristic approaches ul-
timately aim to achieve good performance on the unseen test instances,
which is known as generalisation. To improve generalisation, a commonly

170 CHAPTER 6. MULTITASK GPHH

used strategy used in GP hyper-heuristic is to rotate the training instances
at each generation [21]. Selecting the best individuals from both the par-
ent population and the offspring population requires to re-evaluate the
individuals in the parent population on the same training instances of the
offspring. This can make the training process less efficient. Last but not
least, MFEA allocates individuals to different tasks by calculating their fit-
ness on all the tasks at the first generation, and assigns them to their the
best task. It is time-consuming due to the requirement of extra individual
evaluations.

6.1.1 Chapter Goals

The goal of this chapter is to develop an effective multitask GPHH algo-
rithm based on the characteristics of GP. Specifically, this chapter removes
the concatenation operation, and proposes to use multiple subpopulations
for the tasks. In addition, this chapter develops an effective knowledge
sharing mechanism for the tasks. The proposed algorithm is expected to
improve the quality of the evolved high-level heuristics for all the tasks
considered in the multitask scenarios. Specifically, this chapter has the
following research objectives:

1. Propose an effective framework for multitask GP based generative
hyper-heuristic according to the characteristics of GP. Specifically,
the tasks are solved independently via multiple subpopulations.

2. Develop a novel multitask GPHH algorithm with an origin-based
offspring reservation strategy to share knowledge between the tasks
via crossover.

3. Verify the effectiveness of the algorithm variations obtained from the
adaptation of MFEA to GPHH.

4. Verify the effectiveness of the proposed multitask GPHH algorithm
with origin-based offspring reservation strategy on a wide range of

6.2. PROPOSED ALGORITHM 171

multitask DFJSS scenarios.

5. Analyse the structure and behaviour of the evolved scheduling heuris-
tics and show how the proposed algorithm can solve multiple tasks
collaboratively.

6.1.2 Chapter Organisation

The rest of this chapter is organised as follows. Detailed descriptions of
the proposed algorithm are given in Section 6.2. The experiment design
is shown in Section 6.3, followed by results and discussions in Section 6.4.
Finally, Section 6.5 concludes this chapter.

6.2 Proposed Algorithm

6.2.1 Framework of the Proposed Algorithm

This chapter proposes to use multiple subpopulations to solve multiple
related tasks and keep knowledge sharing among them. To handle mul-
tiple tasks (T1, T2, ... , Tk) simultaneously, this chapter groups the GP
individuals by equally dividing the entire population into k subpopula-
tions (Subpop1, Subpop2, ... , Subpopk). The individuals in the same (differ-
ent) subpopulation are used to optimise the same (different) task. On one
hand, each subpopulation is independent from each other, and the indi-
viduals in different subpopulations are evolved for different tasks. Each
subpopulation can be seen as individuals with the same skill factor in
MFEA. On the other hand, different subpopulations assist with each other
by sharing their knowledge with others, which is realised by crossover.

The main framework of the proposed algorithm is presented in Algo-
rithm 8. The input is the k tasks that are expected to be solved. The output
of a GP run consists of k best evolved rules (h∗1, h∗2, ... , h∗k), each for a
task. subpopsizei indicates the number of individuals of subpopulation i.

172 CHAPTER 6. MULTITASK GPHH

The fitness of a heuristic hi is denoted by fitnesshi
. There are three main

differences between the proposed multitask GP hyper-heuristic and the
traditional GP for a single task. Specifically, at the initialisation stage, the
population consists of multiple subpopulations, and each subpopulation
is designed to solve one task (line 1). During the evaluation process, the in-
dividuals in different subpopulations are evaluated independently (from
line 6 to line 11). During the evolution stage, the crossover operator is ap-
plied to share knowledge between the tasks. If the knowledge sharing
condition is met, the offspring of each subpopulation are generated ac-
cording to the proposed knowledge sharing mechanism with the origin-
based offspring reservation strategy (from line 25 to line 28). Otherwise,
traditional GP crossover will be used to produce two offspring (from line
29 to line 32). It is noted that the proposed knowledge sharing mechanism
via crossover is conducted on the individuals from different subpopula-
tions (for different tasks), while the traditional GP crossover works on the
individuals from the same subpopulation (for the same task).

6.2.2 Knowledge Sharing

Figure 6.2 shows the evolutionary process of the proposed multitask GP
based generative hyper-heuristic with a focus on the knowledge sharing.
At generation 0, a population with k subpopulations is initialised for k
tasks. The individuals in each subpopulation are assigned to the corre-
sponding task and fixed for that task during the evolutionary process.
Specifically, the individuals with white, grey and blue colours in Figure
6.2 are initialised for T1 (task 1), T2 (task 2), and Tk (task k), respectively.
When generating offspring to the next generation, we use the crossover
operator for knowledge transfer but keep the individuals for each task
fixed, and the offspring for each subpopulation are produced sequentially.
Thus, the best evolved high-level heuristic for each task consists of the
genetic materials of individuals that originally belong to that tasks.

6.2. PROPOSED ALGORITHM 173

Algorithm 8: The Framework of the Proposed Algorithm
Input : k tasks T1, T2, ... , Tk

Output: The best evolved heuristics for each task h∗1, h∗2, ... , h∗k
1: Initialisation: Randomly initialise the population with k subpopulations
2: set h∗1, h∗2, ... , h∗k ← null

3: set fitnessh∗1 , fitnessh∗2 , ... , fitnessh∗k ← +∞
4: gen← 0

5: while gen < maxGen do
6: // Evaluation: Evaluate the individuals in the population
7: for i = 1 to k do
8: for j = 1 to subpopsizei do
9: Calculate fitnesshj based on fitness function of Ti

10: end

11: end
12: for i = 1 to k do
13: for j = 1 to subpopsizei do
14: if fitnesshj

< fitnessh∗i then
15: h∗i ← hj

16: end

17: end

18: end
19: if gen < maxGen− 1 then
20: // Instance rotation with a new random seed
21: // Evolution: Generate offspring for each subpopulation
22: for i = 1 to k do
23: for j = 1 to subpopsizei do
24: if Crossover is applied then
25: if rand ≤ rmp then
26: Choose the first parent from Subpopi

27: Choose the second parent from Subpopqi

28: Produce one offspring with the proposed origin-based offspring
reservation strategy

29: else
30: Choose two parents from Subpopi, and produce
31: two offspring with traditional GP crossover

32: end

33: else
34: Choose one parent from Subpopi

35: Do mutation or reproduction accordingly

36: end

37: end

38: end

39: end
40: gen← gen+ 1

41: end
42: return h∗1, h∗2, ... , h∗k

174 CHAPTER 6. MULTITASK GPHH

Training

InstanceStop?

GP population

Mutation/Crossover/Reproduction

Parent Selection

Corresponding

Heuristic
Offspring

Low-level Heuristic

High-level Heuristic

Yes

No

High-level Algorithm

Tasks

T1 T2 Tk

Subpop1 Subpop2 Subpopk

Subpop1 Subpop2 Subpopk

Gen0

Subpop1 Subpop2 Subpopk

Gen1

Gent

Figure 6.2: The framework of the proposed multitask GP based generative
hyper-heuristic with a focus on the knowledge sharing.

This chapter uses a knowledge transfer ratio of rmp to control the fre-
quency to gain knowledge from other subpopulations at each generation.
If the knowledge share mechanism is triggered (rand ≤ rmp), the first par-
ent parent1 will be selected from the current subpopulation, and the other
parent parent2 will be selected from other subpopulations. It is noted that
if there are more than two subpopulations, when producing offspring for
one subpopulation, one of the remaining subpopulations will be selected
randomly. Taking Subpop1 as an example, a random subpopulation is cho-
sen to share knowledge with Subpop1. Assume that Subpop2 is selected,
the generated offspring with knowledge transfer for Subpop1 consists of
white (from Subpop2) and grey (from Subpop1) elements as shown in Fig-
ure 6.3 (b), thus, the knowledge transfer among the tasks is realised. We
can see that the newly generated offspring contain genetic materials from

6.2. PROPOSED ALGORITHM 175

Parent1 from Subpop1 Parent2 from Subpop2

Offspring1 (Retained) Offspring2 (Abandoned)

(b) Traditional crossover operator retains both offspring

(c) The origin-based offspring reservation retains only the

offspring derived from Subpop1

Offspring1 (Retained) Offspring2 (Retained)

(a) Selected parents for crossover

Figure 6.3: An example of generating offspring for Subpop1 by sharing
knowledge from Subpop2.

individuals for different tasks. Otherwise (rand > rmp), two parents will
be selected from the current subpopulation (i.e., the same subpopulation)
to produce two offspring for the next generation.

For an individual, an effective knowledge sharing mechanism should
not only make the individual obtain useful information but also maintain
the original characteristics of the individual. We call this the origin-based
offspring reservation. When producing offspring for the current task, only
the offspring generated based on the parent from the corresponding sub-
population (e.g., Subpop1 in this example) will be kept. Specifically, Figure
6.3 (b) shows the traditional crossover operator that retains both offspring.

176 CHAPTER 6. MULTITASK GPHH

It is noted that the knowledge sharing used in Chapter 3 is the same, as
shown in Figure 6.3 (b). On the other hand, Figure 6.3 (c) shows the origin-
based offspring reservation, which retains only the offspring generated
based on the parent from Subpop1.

6.2.3 Algorithm Summary

The proposed algorithm is an extension of the traditional multifactorial
evolutionary multitask in [90] by optimising the multitask framework ac-
cording to the characteristics of GP for developing hyper-heuristic ap-
proach. It is noted that the proposed algorithm is not problem-dependent,
and can be applied to other domains but with proper construction of re-
lated tasks for the specific problems such as evolving routing rules for
the arc routing problems. There are a number of improvements com-
pared with the traditional MFEA. First, in terms of the number of eval-
uations, the proposed algorithm requires fewer evaluations than MFEA.
The individuals in the initialised population do not need to be evaluated
for all tasks for deciding the skill factor for each individual (i.e., can save
popsize ∗ k evaluations). Second, in terms of the individual selection pres-
sure, there is no concatenation operation of the parent and offspring pop-
ulations, which brings another benefit. If we handle dynamic problems
with changed training instance at each generation, we will avoid the extra
re-evaluation of the individuals in the parent population (i.e., potentially
popsize ∗maxGen evaluations). Third, in terms of evaluation resource, the
number of individuals for each task is fixed and equal, which is easy to
manage. This also reduces the parameters in the algorithm, such as skill
factor. From the perspective of computational cost, the proposed algo-
rithm can save up to popsize ∗ (k +maxGen) evaluations compared with
directly applying MFEA.

In summary, the proposed multitask GP based generative hyper-heuristic
approach modifies the evolutionary multitask learning process in [90] to

6.3. EXPERIMENT DESIGN 177

match the characteristics of GP from the following aspects. First, the pro-
posed algorithm saves the evaluation requirements for assigning individ-
uals to different tasks at the first generation. Second, the proposed al-
gorithm can handle dynamic problems with changed training instances
successfully without increasing the number of evaluations, which can pro-
mote the application of multitask learning in dynamic problems. Finally,
the proposed algorithm can successfully obtain promising offspring with-
out extra evolutionary operations such as concatenating parent and off-
spring population.

6.3 Experiment Design

6.3.1 Multitask DFJSS Task Definition

Although there are lots of studies related to multitask learning, most of
them work on benchmark problems, for which the relatedness between
tasks has been widely studied [53]. However, what kinds of DFJSS prob-
lems are related and can be optimised in a multitask scenario is not clear.
In this section, this chapter defines the related tasks based on the charac-
teristics of DFJSS.

Tasks with the Same Objective but Different Utilisation Levels

In real-world applications, the demand for a specific product varies over
time rather than fixed [76]. For example, the amount of orders of T-shirt
in summer is likely to be larger than that in winter. A larger amount leads
to more complex scheduling. Although the complexities of job shops can
be different, they are commonly similar in production, and have the same
goal such as minimising the total production time. Thus, we define the
tasks with different utilisation levels (i.e., indicate different complexities)
but with the same objective to be naturally related tasks for building mul-
titask scenarios.

178 CHAPTER 6. MULTITASK GPHH

Tasks with Different Objectives but the Same Utilisation Level

For a scheduling task, different customers may have different require-
ments [200]. One may require to minimise the flowtime to reduce the
total cost. Others may prefer to minimise the tardiness to hand out prod-
ucts to the customers in time. Although the objectives are different, they
all involve reducing the idle time of the machines in the shop floor. The
knowledge learned from one objective might be also helpful for the others.
Therefore, we define the tasks with different objectives but with the same
utilisation level as the related tasks considered in multitask scenarios.

For simplicity, we name the multitask problem with the same objective
but with the different utilisation levels as homogeneous multitask, while the
multitask problem with different objectives but with the same utilisation
level as heterogeneous multitask.

6.3.2 Comparison Design

We consider three homogeneous multitask scenarios, each with a different
objective, i.e., mean flowtime, mean tardiness, and mean weighted tardi-
ness. The utilisation levels of 0.75, 0.85, and 0.95 are used in the homo-
geneous multitask scenarios, since they are three typical distinct config-
urations in DFJSS [242, 248] with different complexities. With the same
objective in each homogeneous multitask scenario, each utilisation level
represents a task in the homogeneous multitask [137], which is used to
verify the effectiveness of the proposed multitask learning algorithm on
the tasks with the same objective but different complexities. The details of
the designed homogeneous multitask scenarios represented by optimised
objective and utilisation level are shown in Table 6.1.

We also consider three heterogeneous multitask scenarios and choose
the most complex scenario with a utilisation level of 0.95 for investigation
[167]. For each heterogeneous multitask scenario, two different objectives
are involved without varying the utilisation levels between the tasks. In

6.3. EXPERIMENT DESIGN 179

Table 6.1: The designed homogeneous multitask scenarios with tasks rep-
resented by optimised objective and utilisation level.

Scenario task 1 task 2 task 3

Scenario 1 <Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>
Scenario 2 <Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>
Scenario 3 <WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

Table 6.2: The designed heterogeneous multitask scenarios with tasks rep-
resented by optimised objective and utilisation level.

Scenario task 1 task 2

Scenario 1 <Fmax, 0.95> <Tmax, 0.95>
Scenario 2 <Fmean, 0.95> <Tmean, 0.95>
Scenario 3 <WFmean, 0.95> <WTmean, 0.95>

this way, this chapter can focus on verifying the effectiveness of the pro-
posed algorithm on the tasks with the same utilisation level but different
objectives. The details of the designed heterogeneous multitask scenarios
are shown in Table 6.2.

The GP algorithm with k subpopulations to solve k tasks indepen-
dently is regarded as the baseline algorithm. The second compared al-
gorithm adapts MFEA [91] to GP without rotating training instances (i.e.,
no need to do re-evaluation), which is named MFGP. In addition, the al-
gorithm adapts MFEA to GP with rotating training instances but without
re-evaluation is named MFGPr−. While the algorithm adapts MFEA to GP
with both rotating training instances and re-evaluation is named MFGPr+.
Table 6.3 summaries the characteristics of MFGP, MFGPr−, and MFGPr+

according to whether they involves instance rotation or re-evaluation or
not. The proposed multitask GP based generative hyper-heuristic approach
without the proposed offspring reservation strategy is named M2GP, since
it involves both multitask and multi-population. M2GP with the proposed

180 CHAPTER 6. MULTITASK GPHH

Table 6.3: The availability of instance rotation and re-evaluation of MFGP,
MFGPr−, and MFGPr+.

MFGP MFGPr– MFGPr+

Instance Rotation
√ √

Re-evaluation
√

Table 6.4: The specialised parameter settings of GPHH.

Parameter Value

*Number of subpopulations k

*Subpopulation size 400

**Number of tasks k

**Population size with re-evaluation 200 * k
**Population size without re-evaluation 400 * k

The transfer ratio 0.6
∗ : for the algorithms with multiple subpopulations only
∗∗ : for the algorithms with one population only

offspring reservation strategy named M2GPf .

To verify the adaptability of MFEA to GP in dynamic scheduling, MFGPr−,
MFGPr+ and MFGP are compared. To verify the effectiveness of the pro-
posed M2GP and the origin-based offspring reservation strategy, GP, MFGP,
M2GP, and M2GPf are compared. In addition, the effectiveness of the pro-
posed M2GPf on the common tasks between homogeneous and heteroge-
neous scenarios is further compared with MFGP. The effectiveness of the
multitask learning mechanism is also examined by analysing the evolved
scheduling heuristics for each task in a multitask scenario.

6.4. RESULTS AND DISCUSSIONS 181

Table 6.5: The mean (standard deviation) of the objective values on test
instances of MFGPr−, MFGPr+ and MFGP over 30 independent runs in
three homogeneous multitask scenarios.

Scenario Task MFGPr− MFGPr+ MFGP

<Fmean, 0.75> 339.97(1.11) 337.01(1.39)(–) 336.60(1.21)(–)(≈)
1 <Fmean, 0.85> 396.21(2.90) 387.91(3.72)(–) 386.67(2.93)(–)(≈)

<Fmean, 0.95> 586.77(6.50) 560.04(8.64)(–) 556.55(5.83)(–)(≈)

<Tmean, 0.75> 16.08(0.95) 13.90(0.66)(–) 13.60(0.25)(–)(≈)
2 <Tmean, 0.85> 46.32(2.74) 41.51(1.92)(–) 40.54(0.66)(–)(≈)

<Tmean, 0.95> 202.54(3.40) 182.88(5.60)(–) 180.39(4.46)(–)(≈)

<WTmean, 0.75> 33.56(2.55) 28.44(1.87)(–) 27.26(0.61)(–)(–)
3 <WTmean, 0.85> 97.12(5.22) 79.90(4.79)(–) 76.95(2.19)(–)(–)

<WTmean, 0.95> 381.03(29.32) 310.91(15.34)(–) 303.05(8.84)(–)(–)

6.3.3 Specialised Parameter Settings of GPHH

The specialised parameter settings are shown in Table 6.4. k subpopu-
lations are used to solve k tasks, and each subpopulation contains 400
individuals. To keep the number of individual evaluations is the same
between different algorithms for fair comparison, population size of the
algorithm with re-evaluation mechanism is set to 200 * k, and the popula-
tion size of the algorithm without re-evaluation mechanism is set to 400 *
k. The transfer ratio for knowledge transfer is set to 0.6.

6.4 Results and Discussions

6.4.1 Adaptation of MFEA to GPHH

Table 6.5 shows the mean and standard deviation of the objective values of
MFGPr−, MFGPr+ and MFGP on the unseen instances according to 30 in-
dependent runs in the three homogeneous multitask scenarios. Compared

182 CHAPTER 6. MULTITASK GPHH

Table 6.6: The mean (standard deviation) of the objective values on test
instances of GP, MFGP, M2GP, and M2GPf over 30 independent runs in
three homogeneous multitasking scenarios.

Sce. Task GP MFGP M2GP M2GPf

<Fmean, 0.75> 337.57(1.80) 336.60(1.21)(≈) 335.86(0.91)(–)(–) 336.17(1.04)(–)(≈)(≈)
1 <Fmean, 0.85> 388.79(4.30) 386.67(2.93)(≈) 385.14(1.94)(–)(–) 385.73(2.33)(–)(–)(≈)

<Fmean, 0.95> 561.35(9.16) 556.55(5.83)(≈) 553.11(4.26)(–)(–) 552.74(4.75)(–)(–)(≈)

<Tmean, 0.75> 14.08(1.10) 13.60(0.25)(≈) 13.34(0.27)(–)(–) 13.33(0.25)(–)(–)(≈)
2 <Tmean, 0.85> 41.61(2.73) 40.54(0.66)(≈) 39.75(0.87)(–)(–) 39.78(0.84)(–)(–)(≈)

<Tmean, 0.95> 182.34(7.72) 180.39(4.46)(≈) 176.84(3.10)(–)(–) 176.65(4.17)(–)(–)(≈)

<WTmean, 0.75> 28.81(2.66) 27.26(0.61)(≈) 27.27(0.99)(–)(–) 26.92(0.72)(–)(–)(≈)
3 <WTmean, 0.85> 81.23(7.63) 76.95(2.19)(≈) 76.43(3.19)(–)(–) 75.34(2.06)(–)(–)(–)

<WTmean, 0.95>312.26(15.86) 303.05(8.84)(–) 297.72(10.38)(–)(–) 295.67(8.44)(–)(–)(≈)

with MFGPr−, the performance of MFGPr+ is significantly better. This in-
dicates that rotating training instances requires the re-evaluation of the
individuals in the next generation to achieve accurate fitness. The results
also show that MFGP without rotating training instances can achieve simi-
lar (better) performance with MFGPr+ in six (three) scenarios, respectively.
MFGP will be used for the comparisons in the subsequent experiments,
since it performs the best among the adapted algorithms from MFEA.

6.4.2 Quality of the Evolved Scheduling Heuristics

Homogeneous Multitask Scenarios

Table 6.6 shows the mean and standard deviation of the objective values
on the test instances of GP, MFGP, M2GP, and M2GPf over 30 independent
runs in three homogeneous multitask scenarios. MFGP does not show any
significant difference from GP in most of the scenarios, which indicates
that directly applying the idea of MFEA is not effective in the context of

6.4. RESULTS AND DISCUSSIONS 183

●

●
●

●

●●

●
●●

●

●

●●
●

●
●●●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●●

●

●

●
●

●

●

●

●●

● ●
●

●

●

●

●●

●
●

●

●

● ●

●

●●

●

●

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

550

560

570

580

180

190

200

300

320

340

384

388

392

396

40.0

42.5

45.0

47.5

75

80

85

90

95

336

338

340

13

14

15

16

27.5

30.0

32.5

35.0

Algorithm

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

s
on

 T
es

t I
ns

ta
nc

es

GP MFGP M2 GP M2 GPf

Figure 6.4: The violin plot of the average objective values on test instances
of GP, MFGP, and M2GP based on 30 independent runs in three homoge-
neous multitask scenarios (each row is a multitask scenario).

GP hyper-heuristic. The characteristics of GP are quite different from the
genetic algorithm that is used in MFEA. M2GP performs significantly bet-
ter than both GP and MFGP in all the examined scenarios. This verifies the
effectiveness of the proposed M2GP in the homogeneous multitask scenar-
ios. M2GPf also shows it superiority compared with GP and MFGP. How-
ever, M2GPf only significantly better than M2GP in the one scenario (i.e.,
<WTmean, 0.85>).

Figure 6.4 shows the violin plot of the average objective values on the
test instances based on 30 independent runs of GP, MFGP, M2GP, and
M2GPf in the three homogeneous multitask scenarios. According to the
distribution of the 30 objective values, MFGP can achieve smaller values
than that of GP but not significantly better. We can see that M2GP shows its

184 CHAPTER 6. MULTITASK GPHH

Table 6.7: The mean (standard deviation) of the objective values on test
instances of GP, MFGP, M2GP, and M2GPf over 30 independent runs in
three heterogeneous multitask scenarios.

Sce. Task GP MFGP M2GP M2GPf

1
<Fmax, 0.95> 2032.96(98.29)2081.77(76.40)(+) 1991.15(88.56)(–)(–) 1981.28(37.19)(–)(–)(≈)
<Tmax, 0.95> 1580.81(54.13)1647.75(55.45)(+)1576.03(54.94)(≈)(–)1575.13(37.84)(≈)(–)(≈)

2
<Fmean, 0.95> 560.72(10.18) 556.10(6.10)(≈) 556.52(9.11)(≈)(≈) 553.79(7.43)(–)(–)(≈)
<Tmean, 0.95> 180.81(6.83) 178.76(3.47)(≈) 180.20(6.51)(≈)(≈) 177.55(5.72)(–)(–)(–)

3
<WFmean, 0.95>1136.33(25.65)1121.67(12.74)(–)1123.87(20.45)(–)(≈) 1121.05(22.20)(–)(–)(≈)
<WTmean, 0.95> 311.20(16.82) 301.12(8.07)(–) 303.06(15.23)(–)(≈) 300.00(15.38)(–)(–)(≈)

superiority with smaller objective values than GP and MFGP. This shows
that the tasks with the same objective but different utilisation levels in
DFJSS can be solved simultaneously in a mutually reinforcing way. In
addition, the objective values of M2GPf tend to be smaller than M2GP

in most of the scenarios (i.e., <Fmean, 0.95>, <Tmean, 0.75>, <Tmean,
0.95>, <WTmean, 0.75>, <WTmean, 0.85>, and <WTmean, 0.95>). This
indicates that the proposed origin-based offspring strategy can benefit the
algorithm M2GP.

Heterogeneous Multitask Scenarios

Table 6.7 shows the mean and standard deviation of the objective values
on the test instances of GP, MFGP, M2GP and M2GPf based on 30 inde-
pendent runs in the three heterogeneous multitask scenarios. Different
from the observations in the homogeneous multitask scenarios, MFGP and
M2GP do not outperform GP, since they are not significantly better than
GP in most scenarios. While, M2GPf achieves significantly better results
than GP and MFGP in most of the scenarios, and it outperforms M2GP in
one scenario (i.e., <Tmean, 0.95>). One possible reason is that the tasks
with different objectives in the heterogeneous multitask scenarios are less

6.4. RESULTS AND DISCUSSIONS 185

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

<Tmax, 0.95> <Tmean, 0.95> <WTmean, 0.95>

<Fmax, 0.95> <Fmean, 0.95> <WFmean, 0.95>

1100

1125

1150

1175

1200

300

320

340

550

560

570

580

180

190

1900
2000
2100
2200
2300
2400

1500

1600

1700

Algorithm

O
bj

ec
tiv

e
V

al
ue

s
on

 T
es

t I
ns

ta
nc

es

GP MFGP M2 GP M2 GPf

Figure 6.5: The violin plot of the average objective values on test instances
of GP, MFGP, M2GP, and M2GPf based on 30 independent runs in three
heterogeneous multitask scenarios (each column is a multitask scenario).

related, and GP, MFGP, and M2GP cannot maintain the quality of indi-
viduals for each task. The proposed origin-based offspring reservation
strategy can help GPHH maintain the quality of individuals for each task,
since it aims to keep the main characteristics of the individuals for the cor-
responding tasks.

Figure 6.5 shows the violin plot of the average objective values of GP,
MFGP, M2GP, and M2GPf on the unseen instances based on 30 indepen-
dent runs in the three heterogeneous multitask scenarios. It is obvious that
the objective values achieved by M2GP tend to be much smaller than that
of GP and MFGP. This indicates that the tasks with different objectives but
the same utilisation level in DFJSS can also be solved simultaneously in a
mutually reinforcing way. In addition, we can see that the objective val-
ues obtained by M2GPf tend to be smaller than M2GP, which confirms the
positive effect of the proposed origin-based offspring reservation strategy.

186 CHAPTER 6. MULTITASK GPHH

Homogeneous Versus Heterogeneous Multitask Scenarios

There are three common tasks (i.e., <Fmean, 0.95>, <Tmean, 0.95>, and
<WTmean, 0.95>) solved in both the homogeneous and heterogeneous
multitask scenarios. It is interesting to know the quality of the evolved
scheduling heuristics obtained for the same task in different types of mul-
titask scenarios.

Figure 6.6 shows the violin plot of the average objective values of MFGP
and M2GPf on the unseen data for the common tasks (i.e., <Fmean, 0.95>,
<Tmean, 0.95>, and <WTmean, 0.95>) between the homogeneous and
heterogeneous multitask scenarios. Overall, for all the scenarios, M2GPf

performs better than MFGP in both homogeneous and heterogeneous mul-
titask. Based on the distributions of the achieved objective values, both
MFGP and M2GPf show its superiority in heterogeneous multitask sce-
narios rather than the homogeneous multitask scenarios for most of the
common tasks. The objective values obtained from heterogeneous multi-
task are distributed in a relatively lower position.

In summary, M2GPf can achieve effective scheduling heuristics for both
the homogeneous and heterogeneous multitask scenarios. In addition, we
find that learning in a heterogeneous multitask scenario has more poten-
tial to improve the quality of scheduling heuristics.

6.4.3 Evolved High-level Scheduling Heuristics

This section chooses the evolved scheduling heuristics, including the rout-
ing and sequencing rules for the tasks in a heterogeneous multitask sce-
nario to investigate how the tasks help with each other from the perspec-
tive of the genotypes of individuals. The second heterogeneous multitask
scenario is selected, since it contains two out of three common tasks (i.e.,
<Fmean, 0.95>, <Tmean, 0.95>, and <WTmean, 0.95>) with homoge-
neous multitask scenarios. The routing rules are the best evolved rules for
task 1 and task 2 from the same run in heterogeneous multitask scenario

6.4. RESULTS AND DISCUSSIONS 187

●

●●

●
●●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●

<Fmean, 0.95> <Tmean, 0.95> <WTmean, 0.95>

300

320

340

180

190

200

550

560

570

AlgorithmA
ve

ra
ge

 T
es

t O
bj

ec
tiv

es

MFGP (homo) MFGP (hete) M2 GPf (homo) M2 GPf (hete)

Figure 6.6: The violin plot of the average objective values on test instances
of MFGP and M2GPf in both homogeneous (denoted as homo) and het-
erogeneous (denoted as hete) multitask scenarios for their common tasks
based on 30 independent runs.

2, and the sequencing rules are the corresponding sequencing rules of the
routing rules mentioned above. It is noted that a machine or an operation
with a smaller priority value is more prior.

Routing Rules

Figure 6.7 and Figure 6.8 show one of the evolved routing rules for the
tasks <Fmean, 0.95> and <Tmean, 0.95> in the second heterogeneous
multitask scenario, respectively. It is obvious that these two scheduling
heuristics share knowledge with each other, since the major part of the
rules is the same which is highlighted in grey.

We further investigate the behaviour of the routing rule for minimising
mean-tardiness, as shown in Figure 6.8. It can be further simplified, as

188 CHAPTER 6. MULTITASK GPHH

-

/ /

- NIQ

- Min

+ /

WKR -

PT MWT

WKR PT

NIQ WIQ

+ PT

/ WKR

+ /

WKR -

PT MWT

+ PT

W PT

Figure 6.7: One of the best evolved routing rules for task 1 <Fmean, 0.95>
in heterogeneous multitask scenario 2.

shown in Eq. 6.1.

R ={WKR + PT −MWT − WKR

PT
−Min{

Max{WKR,MWT}
PT

,
WKR

PT
−NOR}}/NIQ

− Min{WKR,TIS}
PT (NPT +W)

− WKR

PT

≈{PT −MWT − WKR

PT
−Min{

Max{WKR,MWT}
PT

,
WKR

PT
−NOR}}/NIQ

− Min{WKR,TIS}
PT (NPT +W)

− WKR

PT

(6.1)

WKR and PT are the two most commonly used low-level heuristics for this
routing rule based on the occurrences of heuristics. However, the value of
WKR (i.e., the remaining work of the corresponding job of an operation for
all the machines) is the same. This indicates that WKR is not an important
factor for this rule to distinguish the machines, and it can be considered
as a constant. Similarly, W (i.e., the importance of a job), NOR (i.e., the

6.4. RESULTS AND DISCUSSIONS 189

-

/ /

- NIQ

- Min

+ /

WKR -

PT MWT

WKR PT

/ -

Max PT

WKR MWT

- -

/ /

WKR PT WKR NIQ

NOR /

WKR NIQ

+ PT

/ WKR

Min +

WKR TIS NPT W

Figure 6.8: One of the best evolved routing rules for task 2 <Tmean, 0.95>
in heterogeneous multitask scenario 2.

number of remaining operations of a job), NPT (i.e., the median processing
time of the next operation), and TIS (i.e., the time that an operation in the
job shop floor) are also considered as constants here. Without considering
the constant features (i.e., WKR, W and NOR) where it is possible, this rule
can be further simplified as shown in step 2 of Eq. 6.1.

This rule tends to choose the machine with smaller processing time
(i.e., efficient machine for an operation) and a longer waiting time (i.e., the
time when the machine is idle). It is consistent with our intuition, since
we would like to use efficient machines to reduce the producing time for
products. In addition, this rule prefers to allocate an operation to a ma-
chine with a larger number of operations (NIQ). It is noted that a larger
NIQ does not mean an overhead workload for a machine, since the pro-
cessing time of the operations can be small.

Sequencing Rules

Figure 6.9 and Figure 6.10 show the corresponding sequencing rules of
the routing rules, as shown in Figure 6.7 and Figure 6.8, respectively. The
main structure of these two sequencing rules for different tasks in a mul-

190 CHAPTER 6. MULTITASK GPHH

+

- +

/ MWT

- Min

MWT TIS + *

* +

NOR NIQ NPT WKR

Min PT

/ /

WKR MWT NPT WIQ

WIQ -

/ MWT

- Min

MWT TIS + *

+ +

NPT W NPT WKR

- MWT

W OWT

Figure 6.9: One of the best evolved sequencing rules for task 1 <Fmean,
0.95> in heterogeneous multitask scenario 2.

titask scenario is the same as shown in grey, and only two smaller parts of
them are different. This means that these two sequencing rules strongly
share their knowledge in the evolutionary process. In the grey area, MWT
and NPT are the two most important terminals based on the frequency of
terminals. This indicates that MWT and NPT are both important operation
sequencing in minimising mean-flowtime and mean-tardiness.

The corresponding sequencing rule (Figure 6.10) of the routing rule
in Figure 6.8 is shown in Eq. 6.2. From step 1 to step 2, “Min{W, PT
* Min{WKR

MWT
, NPT

WKR
}}” can be further simplified to W, since W (i.e., 1, 2

and 4) is more likely to be smaller than “PT * Min{WKR
MWT

, NPT
WKR

}”. “(W -
OWT) * MWT” is more likely to be a negative number, because W is usu-
ally smaller than OWT. Therefore, “Min{2NPT + W + WKR, (W - OWT) *
MWT}” can be further simplified as “(W - OWT) * MWT”. Finally, since
the value of W is much smaller than OWT, W is removed, as shown in the

6.4. RESULTS AND DISCUSSIONS 191

+

- +

/ MWT

- Min

MWT TIS W *

Min PT

/ /

WKR MWT NPT WKR

WIQ -

/ MWT

- Min

MWT TIS + *

+ +

NPT W NPT WKR

- MWT

W OWT

Figure 6.10: One of the best evolved sequencing rules for task 2 <Tmean,
0.95> in heterogeneous multitask scenario 2.

last step of Eq. 6.2.

S =
MWT − TIS

Min{W,PT ∗Min{WKR
MWT

, NPT
WKR

}}
−

MWT − TIS
Min{2NPT +W +WKR, (W −OWT) ∗MWT}
− 2MWT +WIQ

≈MWT − TIS
W

+
MWT − TIS

(OWT −W) ∗MWT

≈MWT − TIS
W

+
MWT − TIS
OWT ∗MWT

(6.2)

For the operations in the queue of a machine, MWT (i.e., machine wait-
ing time) is the same for all the operations, and can be considered as a
constant. This sequencing rule suggests to choose the operation that has
stayed in the job shop floor for a long time (i.e., large TIS), and has waited
in the queue of a machine for a long time (i.e., large OWT). It is consis-
tent with our intuition that a long waiting time will delay the production,
and it is conducive to minimise the tardiness. In addition, the machine
prefers to choose an important operation with a large W. This is also con-

192 CHAPTER 6. MULTITASK GPHH

sistent with our intuition that important jobs should be processed earlier
to reduce the delay and improve customer satisfaction.

In summary, both the routing and sequencing rules for the tasks in het-
erogeneous multitask scenarios share lots of knowledge with each other.
We observe the same pattern in the homogeneous multitask scenarios. We
can conclude that the proposed algorithm can solve the tasks in a mutually
reinforcing way.

6.5 Chapter Summary

The goal of this chapter is to develop an effective multitask GP hyper-
heuristic algorithm to solve multiple DFJSS problems simultaneously. To
achieve this purpose, this chapter proposes a multi-population based GP
framework for solving multiple related DFJSS tasks simultaneously. This
chapter also develops an effective knowledge sharing mechanism with
origin-based offspring reservation strategy for sharing knowledge between
the tasks. The effectiveness of the proposed algorithm is examined on both
homogeneous and heterogeneous multitask DFJSS scenarios.

The results show that the proposed M2GPf can achieve effective schedul-
ing heuristics in all homogeneous and heterogeneous multitask DFJSS sce-
narios. In addition, M2GPf is robust in terms of the performance in both
homogeneous and heterogeneous multitask scenarios. We also found that
the task with a heterogeneous multitask scenario has more potential to be
optimised well. The effectiveness of the proposed multitask GP hyper-
heuristic was examined by not only comparing the quality of evolved
scheduling heuristics, but also the structures and behaviours of the evolved
scheduling heuristics for all tasks in a multitask scenario. It has also been
observed that the proposed algorithm manages to solve the tasks in a mu-
tually reinforcing way.

This chapter proposes a novel multitask GPHH algorithm by adapting
the traditional evolutionary multitask learning algorithm with an effective

6.5. CHAPTER SUMMARY 193

knowledge sharing strategy based on the characteristics of GP. It is the
first time to use multitask GPHH for solving multiple DFJSS tasks simul-
taneously. It expands the paradigm of evolutionary multitask to GPHH
for DFJSS (i.e., complex dynamic combinatorial optimisation problems).
Chapter 6 is a start point for using multitask GPHH for DFJSS, and pro-
vides a basic framework for studying multitask GPHH for DFJSS. In the
next chapter, we will further enhance the effectiveness of multitask GPHH
for DFJSS.

194 CHAPTER 6. MULTITASK GPHH

Chapter 7

Surrogate-Assisted Multitask
Genetic Programming

In Chapter 6, we propose a novel multitask GPHH algorithm with an ef-
fective knowledge sharing strategy for DFJSS by adapting the traditional
evolutionary multitask algorithm to GP. This chapter will focus on us-
ing the investigated techniques in Chapters 3-6 (i.e., surrogate, knowledge
sharing, and phenotypic characterisation) to further enhance the effective
of multitask GPHH in Chapter 6 for DFJSS. Specifically, the surrogate tech-
nique will be used to improve the efficiency of individual evaluation and
share knowledge between tasks.

7.1 Introduction

Although surrogate and multitask techniques can improve the efficiency
and effectiveness of evolutionary optimisation in different aspects, they
are often used independently. Based on the studies of multitask GPHH for
DFJSS in Chapter 6, this chapter aims at further introducing the surrogate
to assist multitask GPHH. To the best of our knowledge, there are only a
few studies on surrogate-assisted multitask learning [62, 104, 146, 157]. In
[146], Gaussian Process was introduced to build a surrogate model for the

195

196 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

designed global search component of the algorithm. In [104], surrogates
are applied to reduce the fitness evaluations for each task on benchmark
problems. In [62, 157], computationally cheap models are applied to han-
dle expensive optimisation problems by sharing its acquired knowledge.
Although these studies have shown good performance for multitask learn-
ing, the surrogate is only used to improve the effectiveness for each single
task independently rather than multiple tasks simultaneously. In other
words, these studies are not about using surrogate for the core mechanism
of multitask such as knowledge transfer between the tasks.

Moreover, it is not easy to apply existing approaches [62, 104, 146, 157]
in DFJSS with multitask GPHH directly. First, allocating individuals for
different tasks by evaluating individuals on all the tasks is computation-
ally expensive for DFJSS. Second, existing surrogate and multitask learn-
ing approaches are mostly applied to benchmarks with continuous, nu-
meric optimisation problems [255] rather than discrete, combinatorial op-
timisation problems, thus, they are not directly applicable for DFJSS.

7.1.1 Chapter Goals

The goal of this chapter is to develop an effective surrogate-assisted multitask
GPHH algorithm to evolve scheduling heuristics for multiple DFJSS tasks simul-
taneously. The built surrogates are used for improving not only the effec-
tiveness of solving a single task but also the effectiveness of knowledge
sharing between the tasks. The proposed algorithm is expected to im-
prove the quality of scheduling heuristics of multitask GPHH for DFJSS.
Specifically, this chapter has the following research objectives:

1. Build surrogates for different tasks accordingly by taking the be-
haviour of individuals and their real fitness into account.

2. Propose a new knowledge mechanism by allocating the newly gen-
erated individuals to appropriate tasks incorporated with the surro-
gate models for multitask learning.

7.2. PROPOSED ALGORITHM 197

3. Analyse the effectiveness of the proposed algorithm in terms of the
quality of the evolved scheduling heuristics and the constructed sur-
rogate.

4. Analyses the diversity of individuals for tasks, and individual allo-
cation for tasks of the proposed algorithm.

5. Analyse the size, structure, and schematics of the evolved scheduling
heuristics obtained by the proposed algorithm.

7.1.2 Chapter Organisation

The rest of this chapter is organised as follows. Detailed descriptions of
the proposed algorithm are given in Section 7.2. The experiment design
is shown in Section 7.3, followed by results and discussions in Section 7.4.
Further analyses are conducted in Section 7.5. Finally, Section 7.6 con-
cludes this chapter.

7.2 Proposed Algorithm

7.2.1 Framework of the Proposed Algorithm

The framework of the proposed algorithm is presented in Algorithm 9.
The inputs are the k tasks to be solved. The output is a set of best evolved
scheduling heuristics obtained from the subpopulations, one for each task.
At the initialisation stage, the population is formed with k subpopulations
to solve the k tasks (line 1). During the evaluation process, the individuals
in different subpopulations are evaluated with different training instances
according to the tasks (from line 8 to line 18). In addition, the surrogates
are built with the phenotypic characterisations of the individuals in each
subpopulation and their real fitness (from line 19 to line 22). It is noted that
there are k surrogates generated at each generation, one for each task. The

198 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

surrogates are updated at the next generation. During the evolution stage,
n ∗ subpopsize number of offspring are generated for each subpopulation
to build an offspring pool (from line 24 to line 26). The duplicated individ-
uals are then removed from the offspring pool according to their pheno-
typic characterisations (line 27). To obtain the final offspring newInds for
Subpopi for task Ti, the fitness of all the individuals in the offspring pool
are estimated by the surrogate Si (line 30). Then, the individuals in the
offspring pool are ranked according to the fitness estimated by Si, and the
top subpopsize individuals are selected as the final offspring population
for Subpopi (from line 28 to line 33). With surrogates, the knowledge car-
ried by individuals can be evaluated more efficiently. The surrogates can
also help with knowledge transfer between tasks by allocating the newly
generated individuals from different subpopulations to proper tasks.

7.2.2 Surrogate Model

The main idea in this chapter is to use surrogate to assist the multitask
learning, and the surrogate design itself is not the focus in this chapter.
KNN with phenotypic characterisation has been successfully proposed in
[99] for dynamic JSS with GP. Since KNN is efficient and straightforward,
it is chosen as the surrogate to estimate the fitness of individuals by finding
the most similar individual based on the phenotypic characterisations of
individuals with Euclidean distance as suggested in [55]. The Euclidean
distance is a reasonable technique to measure the similarity between the
behaviour of individuals, since the phenotypic characterisation (i.e., the
details can be found in Section 4.2.4) is a vector of ranking numbers that
indicate the decisions made by a rule. The individuals that have been
evaluated using the real fitness evaluation in the previous generation are
used to build the KNN surrogate, and the surrogate is updated at each
generation.

7.2. PROPOSED ALGORITHM 199

Algorithm 9: Framework of the Proposed Algorithm
Input : Tasks T1, T2, ... , Tk

Output: The best evolved heuristics for each task h∗1, h∗2, ... , h∗k
1: Initialisation: Randomly initialise the population with k subpopulations
2: set h∗1, h∗2, ... , h∗k ← null

3: set fitness(h∗1), fitness(h∗2), ... , fitness(h∗k)← +∞
4: gen← 0

5: while gen < maxGen do
6: set S ← null

7: set newPop← null

8: // Evaluation: Evaluate the individuals in the population
9: for i = 1 to k do

10: for j = 1 to subpopsize do
11: Run a DFJSS simulation with hj according to task Ti to get the schedule

Schedulej

12: fitnesshj
← Obj(Schedulej)

13: end
14: for j = 1 to subpopsize do
15: if fitnesshj

< fitnessh∗i then
16: h∗i ← hj

17: end

18: end
19: Calculate the phynotypic characterisation vector for each individual in

Subpopi

20: Build surrogate model Si with the phenotypic characterisations and the
corresponding fitness of indivudlas in Subpopi

21: S ← S ∪ Si

22: end
23: if gen < maxGen− 1 then
24: // Evolution: generate new population
25: Generate n ∗ subpopsize offspring for each subpopulation by genetic

operators, respectively.
26: Offspring Pool: Put the offspring of all subpopulations together
27: Clearing the individuals in the offspring pool
28: // Assign individuals to tasks
29: for i = 1 to k do
30: Estimate the fitness of individuals in the offspring pool using the

surrogate model Si built for Subpopi
31: newInds: Choose the top subpopsize individuals from offspring pool

based on the estimated fitness
32: newPop← newPop ∪ newInds

33: end

34: end
35: gen← gen+ 1

36: end
37: return h∗1, h∗2, ... , h∗k

200 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

Offspring Pool

Subpop2

Subpop3

Subpop1

S1 S2

S3

Subpop2*

Subpop3*

Figure 7.1: An example of the proposed surrogate-assisted multitask
GPHH with three tasks in terms of the surrogate and knowledge sharing
mechanism.

Regarding the way of using the surrogate model, previous studies [99,
174, 176] show that pre-selection is an effective approach. Specifically, an
intermediate population with a large number of offspring is generated at
each generation, then the surrogate is used to estimate the fitness of all
the offspring efficiently. Only the individuals with good surrogate fitness
are pre-selected to the next generation, and are re-evaluated with the real
fitness evaluation. This chapter uses the surrogate in a pre-selection man-
ner at each generation but in a different way. Specifically, the surrogate is
used to not only improve the effectiveness of solving a single task but also
sharing knowledge between different tasks.

7.2.3 Knowledge Sharing with Surrogate

To find suitable individuals for knowledge transfer, we employ the KNN-
based surrogate mechanism with phenotypic characterisation to help trans-
fer knowledge between different tasks due to its effectiveness in distin-
guishing the behaviour of individuals. Figure 7.1 illustrates the knowl-
edge transfer process in a multitask scenario with three tasks via surro-

7.2. PROPOSED ALGORITHM 201

gate. In this example, there are three subpopulations, and each subpop-
ulation consists of three individuals. Each subpopulation is designed to
solve a single task. The individuals in Subpop1, Subpop2, and Subpop3 are
marked in solid blue, orange, and green circles, respectively. If there is
no knowledge transfer between them, the three subpopulations can be
considered as three independent evolutionary processes. For multitask
learning, the main consideration is to design the mechanism for transfer-
ring knowledge between these three subpopulations. First, the phenotypic
characterisations and the fitness of individuals in the subpopulations are
used to build the corresponding KNN surrogate model for each subpop-
ulation (i.e., S1, S2, S3), respectively. Second, to get more potentially use-
ful knowledge, n ∗ subpopsize (where n offspring is two in this example)
are generated based on each subpopulation independently and put into
the offspring pool. The offspring pool is composed of the offspring from
Subpop1, Subpop2 and Subpop3. The individuals in the offspring pool are
then cleared by removing the duplicated individuals according to their
phenotypic characterisations. The clearing procedure for offspring pool
is shown in Algorithm 10. In Figure 7.1, the removed individuals in the
offspring pool are marked in dotted circles. Finally, the individuals in the
offspring pool are evaluated based on S1 (S2 or S3 respectively), and the
best subpopsize individuals according to fitness are selected as the final
offspring for Subpop1 (Subpop2 or Subpop3 respectively). The newly gener-
ated subpopulations are shown as Subpop1∗, Subpop2∗, and Subpop3

∗. It is
noted that an offspring in the offspring pool can be allocated to multiple
subpopulations, since an offspring is possible to work well on multiple
tasks.

From the perspective of transferred materials, the knowledge is trans-
ferred with a FullTree strategy via the surrogate-assisted multitask mecha-
nism. However, in fact, the knowledge is also shared in a SubTree manner
via the crossover operator in each subpopulation, since the chosen parents
in each subpopulation can come from different subpopulations. As a re-

202 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

Algorithm 10: Pseudo-code of clearing procedure of offspring pool
Input : All the individuals in the offspring pool Ind
Output: Cleared individuals with different behaviour NonRepInd

1: set PC ← null

2: distance←∞
3: for i = 1 to |Ind| do
4: PCi: Calculate the phenotypic characteristic of Indi
5: PC ← PC ∪ PCi

6: end
7: for i = 1 to |PC| do
8: for j = i +1 to |PC| do
9: distance: Calculate the distance between PCi and PCj

10: if distance == 0 then
11: remove Indj from Ind

12: distance←∞
13: end

14: end

15: end
16: NonRepInd← Ind

17: return NonRepInd

sult, the proposed approach can take advantage of transferring knowledge
in terms of both the FullTree and SubTree.

7.2.4 Algorithm Summary

The proposed algorithm combines the advantages of the surrogate and
multitask learning to GPHH for DFJSS. It improves the effectiveness of
not only solving a single task but also sharing knowledge between tasks
in a multitask scenario. From the perspective of solving each single task,
the surrogate is used in a pre-selection way by estimating the fitness of a
large number of individuals in the offspring pool. From the perspective
of solving multiple related tasks simultaneously, the surrogate plays a role
to share knowledge between different tasks by reallocating the generated

7.3. EXPERIMENT DESIGN 203

individuals to different tasks. The surrogate technique makes it possible
to efficiently examine more useful materials carried by the individuals in
the offspring pool, while multitask with the surrogate can make a bet-
ter decision of individual allocations for the tasks. This chapter provides
a good case study to illustrate the effectiveness of the surrogate-assisted
evolutionary multitask algorithm for solving dynamic discrete and com-
binatorial optimisation problems.

7.3 Experiment Design

7.3.1 Comparison Design

The homogeneous multitask scenarios designed in Section 6.3.2 are used
to examine the proposed algorithm in this chapter. The details of the de-
signed multitask scenarios are shown in Table 6.1. Four algorithms are
taken into comparison. The GP with k subpopulations to solve k tasks
independently named MTGP (GP with multi-tree representation) [244], is
selected as the baseline algorithm, since there is no surrogate or multitask
mechanism involved. The multitask algorithm proposed in chapter 6 [239]
named M2GPf , is also taken into consideration. It is the state-of-the-art al-
gorithm that introduces multitask learning in DFJSS. The algorithm in [99]
that uses KNN to build surrogate only, named SMTGP in this chapter,
is compared by applying it to each single task separately. The proposed
surrogate-assisted multitask algorithm in this chapter is named SMT2GP,
since it involves surrogate, multitask, and multi-tree GP.

To verify the effectiveness of the proposed SMT2GP, the approaches
of MTGP, M2GPf and SMTGP are compared with SMT2GP in terms of
the test objective values on the unseen instances. The effectiveness of the
constructed surrogates in DFJSS is illustrated by the comparison between
MTGP and SMTGP. The effect of the proposed multitask mechanism of
SMT2GP is examined by the comparison between SMTGP and SMT2GP.

204 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

Table 7.1: The specialised parameter settings of GPHH.

Parameter Value

Number of subpopulations 3
Subpopulation size 400

The number of offspring for each task 400*12
Intermediate population size of SMTGP / SMT2GP 400*12*3 / 400*4*3

7.3.2 Specialised Parameter Settings of GPHH

Table 7.1 shows the specialised parameter settings of GPHH in this chap-
ter. Three subpopulations with a size of 400 individuals are used to solve
the three tasks simultaneously. It is noted that increasing the number of
individuals in the intermediate population can improve the performance
of SMTGP. However, the improvement for SMTGP is marginal, especially
when the number of individuals increases to a certain number. This is con-
sistent with the finding drawn in [99]. Our preliminary experiments show
that 400*12 is a proper intermediate subpopulation size for SMTGP, and
no further improvement can be found if the size is further increased. Ac-
cordingly, the number of generated offspring from each subpopulation is
set to 400*4 for SMT2GP in order to keep the same number of evaluations
with a surrogate (400*4*3 = 400*12) as SMTGP for each task.

7.4 Results and Discussions

7.4.1 Quality of the Evolved Scheduling Heuristics

Figure 7.2 shows the violin plot of the average objective values on the test
instances of MTGP, M2GPf , SMTGP, and SMT2GP over 30 independent
runs in the three multitask scenarios. The obtained objective values of
the problems with utilisation level 0.95 or 0.85 are much larger than the
problems with utilisation level 0.85 or 0.75. This indicates that a higher

7.4. RESULTS AND DISCUSSIONS 205

●●●

●

●

●●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●●
●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●
●

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

550

560

570

580

590

170

180

190

200

300

320

340

385

390

395

40.0

42.5

45.0

47.5

75

80

85

90

95

336

338

340

13

14

15

16

17

27.5

30.0

32.5

Algorithm

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

s
on

 T
es

t I
ns

ta
nc

es

MTGP SMTGP SMT2 GP

Figure 7.2: The violin plot of average objective values on test instances of
MTGP, M2GPf , SMTGP, and SMT2GP over 30 independent runs in three
multitask DFJSS scenarios (each row is a multitask scenario).

utilisation level leads to a more complex problem. Compared with MTGP,
both M2GPf and SMTGP achieve better performance in all the scenarios.
This shows the effectiveness of using surrogate and multitask techniques
in DFJSS in an independent way, which is consistent with the conclusion
drawn in [99, 239]. Compared with M2GPf and SMTGP, SMT2GP achieves
better performance with smaller average objective values and standard
deviations, illustrating the effectiveness of SMT2GP.

Figure 7.3 shows the curves of the average objective values on the test
instances based on 30 independent runs of MTGP, M2GPf , SMTGP, and
SMT2GP in the three multitask scenarios with totally nine tasks. The re-
sults show that SMT2GP converges faster than MTGP, M2GPf , and SMTGP

206 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

●
●

● ●
●

●
●

● ●
●

● ● ● ●

●

●

● ●

●
●

● ● ●
● ● ●

● ●

●

●

●
● ● ● ●

●
●

● ●
● ● ●

●

●
● ●

● ●
● ● ●

● ● ● ● ●

●

●
●

●

● ●
● ● ●

● ● ● ●
●

●

●
●

●
●

●
●

● ●
● ●

● ● ●

●

● ●
● ●

●

●
● ●

●
● ● ● ●

●
●

●
●

● ●
●

● ● ●
● ● ●

●

●

●

●
●

●
● ●

●
● ● ● ● ● ●

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
550
560
570
580
590
600

180

190

200

210

300
325
350
375
400

384

388

392

396

40.0

42.5

45.0

47.5

80

90

100

335
336
337
338
339
340

13

14

15

16

30

35

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

s
on

 T
es

t I
ns

ta
nc

es

● MTGP SMTGP SMT2 GP

Figure 7.3: The curves of the average objective values on test instances
based on 30 independent runs of MTGP, M2GPf , SMTGP, and SMT2GP in
three multitask DFJSS scenarios (each row is a multitask scenario).

in all the nine tasks of the three multitask scenarios. As stated earlier, the
only difference between SMTGP and SMT2GP is the allocation of indi-
viduals for different tasks with the surrogate. The advantage of SMT2GP

over SMTGP indicates that the proposed surrogates are capable of sharing
knowledge between different tasks by assigning appropriate individuals
from the offspring pool to different tasks. This demonstrates the effec-
tiveness of the proposed surrogate-assisted multitask GPHH algorithm.
The effectiveness of SMT2GP mainly depends on the proposed knowledge
sharing mechanism via surrogate.

7.4. RESULTS AND DISCUSSIONS 207

Table 7.2: The mean (standard deviation) of the objective values on test in-
stances of MTGP and SMTGP over 30 independent runs in three multitask
scenarios.

Scenario Task MTGP SMTGP

<Fmean, 0.75> 337.57(1.80) 335.60(1.20)(–)
1 <Fmean, 0.85> 391.04(4.65) 384.35(1.86)(–)

<Fmean, 0.95> 573.70(12.17) 548.77(4.60)(–)

<Tmean, 0.75> 14.03(1.01) 13.15(0.48)(–)
2 <Tmean, 0.85> 41.61(2.73) 39.16(0.81)(–)

<Tmean, 0.95> 184.60(8.04) 173.32(1.25)(–)

<WTmean, 0.75> 29.67(2.55) 26.53(0.59)(–)
3 <WTmean, 0.85> 82.75(6.71) 74.84(2.63)(–)

<WTmean, 0.95> 312.26(15.86) 289.48(6.73)(–)

7.4.2 Effectiveness of the Constructed Surrogate

A proper surrogate for DFJSS is important for the success of surrogate-
assisted multitask learning. Table 7.2 shows the mean and standard de-
viation of the objective values on unseen instances of MTGP and SMTGP
according to 30 independent runs in three multitask scenarios with nine
DFJSS tasks. The results show that SMTGP significantly outperforms MTGP
on all the tasks of the examined multitask scenarios. This shows the effec-
tiveness of the surrogates for DFJSS in multitask scenarios. In addition, for
both MTGP and SMTGP, the objective values in each task increase along
with the utilisation level. This shows that a higher utilisation level leads
to a more complex task, which is harder to optimise.

Figure 7.4 shows the curves of the average objective values on the test
instances based on 30 independent runs of MTGP and SMTGP in the nine
tasks of the three multitask scenarios. SMTGP performs much better for all
the scenarios than MTGP for all tasks with a higher convergence speed af-
ter roughly five generations in the examined multitask scenarios. In most

208 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●

●●●●●●●●●●●●●●●●●●

●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
550

600

650

700

175
200
225
250
275

300
350
400
450
500
550

390

400

410

40
45
50
55
60

90

110

130

337.5

340.0

342.5

345.0

13

15

17

19

30

40

50

60

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

s
on

 T
es

t I
ns

ta
nc

es

● MTGP SMTGP

Figure 7.4: The curves of the average objective values on test instances
based on 30 independent runs of MTGP and SMTGP in three multitask
scenarios (each row is a multitask scenario).

cases, before generation five roughly, the difference between MTGP and
SMTGP is not clear. One possible reason is that the sample data in the
surrogate with KNN are not accurate before generation five, since the in-
dividuals in the population are not well evolved at the beginning of the
evolutionary process. In summary, the results show the effectiveness of
constructed surrogates for the multitask DFJSS scenarios.

7.4.3 Effectiveness of Diversity Preservation

The individuals in the offspring pool are cleared (as shown in Algorithm
10) to reduce the duplicated individuals based on their behaviour before

7.4. RESULTS AND DISCUSSIONS 209

●●

●●●
●●

●●
●

●
●●

●●●●
●●

●

●
●

●●●●
●●

●

●

●

●●
●

●
●

●
●
●

●●●
●
●

●
●

●
●
●

●●
●

●●●
●

●

●

●●●
●●

●
●
●

●
●●

●●
●●●●

●

●●●●●
●●

●

●

●
●

●
●●●●

●●
●

●

●
●
●●

●●

●
●●●●

●●●
●

●

●

●

●
●

●
●

●●
●

●●●●
●●

●
●

●

●
●●

●●●

●●

●●

●

●

●
●

●

●
●

●
●

●●

●●
●

●
●

●
●●

●
●

●●●
●●

●

●

●

●

●

●

●

●
●
●●

●
●●

●
●●

●
●

●●
●●

●●
●

●

●

●

●

●

●
●

●

●●●
●●●

●●●
●●

●
●

●

●●●●
●●

●

●
●●

●
●

●
●●●

●
●●

●

●

●●
●●●

●●
●●

●●
●●

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

450

500

425
450
475
500

400

425

450

475

500

400

440

480

360

390

420

450

480

360

390

420

450

480

390

420

450

480

375
400
425
450

375

400

425

450

Generation

T
he

 N
um

be
r

of
 C

le
ar

ed
 In

di
vi

du
al

s
fo

r
Ta

sk
s

● SMTGP SMT2 GP

Figure 7.5: The curves of the average number of cleared individuals for
tasks of SMTGP and SMT2GP over 30 independent runs in three multitask
DFJSS scenarios (each row is a multitask scenario).

assigning to different subpopulations by the surrogates. Among the four
algorithms, SMTGP and SMT2GP are designed with the clearing process.
It is interesting to see the effect of the proposed SMT2GP on the number
of cleared individuals in the offspring pool, since the number of cleared
individuals is a good indicator for measuring the diversity of the offspring
pool. A smaller number of cleared individuals generally indicates a higher
diversity of the offspring pool.

Figure 7.5 shows the curves of the number of cleared individuals by
SMTGP and SMT2GP over 30 independent runs in the nine tasks of the
three multitask scenarios. The results show that the number of cleared in-
dividuals in the tasks with the utilisation level 0.75 and 0.85 of SMT2GP is

210 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

much smaller than that of SMTGP during the evolutionary process. This
indicates that SMT2GP can improve the diversity of generated offspring
of Subpop1 for task 1 and Subpop2 for task 2. One possible reason is that the
final offspring for task 1 in Subpop1 and task 2 in Subpop2 contain different
individuals from all subpopulations. In this case, the newly generated off-
spring for task 1 in Subpop1 and task 2 in Subpop2 vary due to the diversity
of selected parents (i.e., also can be produced by the individuals for differ-
ent tasks). However, it is not the case for task 3 in Subpop3 that optimises
the task with a utilisation level of 0.95, especially in <WTmean, 0.95>.

7.4.4 Individual Allocation for Tasks

One of the main ideas in this work is to allocate individuals to appropriate
tasks. It is interesting to see the allocation of individuals for each task, i.e.,
the individuals originally generated for which task. Figure 7.6 shows the
curves of the average number of assigned individuals by SMT2GP over 30
independently runs to each of the nine tasks of the three multitask scenar-
ios. The results show that the utilisation level is a more important factor
for individual allocation than the objective. The tasks with the same utili-
sation level but with different objectives (i.e., in the same column) have a
similar trend of allocated individuals.

For the subpopulation of task 1 with utilisation level of 0.75, the num-
ber of individuals originally generated for task 1 fluctuates around 40%
over generations. The number of individuals originally generated for task
2 and task 3 shares a similar trend during the evolutionary process, which
is 30% roughly. For task 2, with utilisation level of 0.85, the number of
individuals from Subpop1 for task 1 is the largest, and is approximately
45%. The number of individuals generated in Subpop2 for task 2 ranks sec-
ond, fluctuating between 30% and 35%. The least number of individuals
is generated in Subpop3 for task 3, which is lower than 25% roughly. For
task 3 with the utilisation level of 0.95, the number of individuals gener-

7.4. RESULTS AND DISCUSSIONS 211

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

● ●
●

●

●
● ●

● ● ●

●

●
● ●●

● ●●

● ●

●

●
●

● ● ● ●

● ●
●● ●

●● ● ●

●
●

●

●●
●

●

●●
●

●

● ● ●

●●
●

●

●

●
●

●
●

●

●

●

● ●
●

●
●

●
● ●

●

●
●

●

●

● ●

●

●

●

●

●
● ●● ●

●
●

●

●
●●

●
●

●
●

●
●

●

● ●
●

● ●

●
●

● ●●
●

●

●

●

●

●

● ●

●

● ●
●

●

●

●
●

●
● ●●

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.2

0.3

0.4

0.2

0.3

0.4

0.20
0.25
0.30
0.35
0.40
0.45

0.2

0.3

0.4

0.2

0.3

0.4

0.3

0.4

0.3

0.4

0.25
0.30
0.35
0.40
0.45

0.3

0.4

0.5

Generation

T
he

 A
ve

ra
ge

 P
ro

po
rt

io
n

of
 In

di
vi

du
al

s
fo

r
Ta

sk
s

● fromSubPop1 fromSubPop2 fromSubPop3

Figure 7.6: The curves of the average number of assigned individuals for
a specific task from different tasks of SMT2GP over 30 independent runs
in three multitask DFJSS scenarios (each row is a multitask scenario).

ated for task 1 and task 2 is quite similar, fluctuating between 35% and
40%. However, compared with the number of individuals originally gen-
erated for task 1 and task 2, the number of individuals generated for task
3 is quite small. In other words, the individuals for task 3 are not well
allocated. This might be why the diversity of individuals in Subpop3 for
task 3 of SMT2GP is not as high as expected, which is shown in the last
column of Figure 7.5. In addition, the offspring generated by the current
subpopulation are not guaranteed to perform well in the corresponding
problem.

The samples in the pools of the surrogates contain individuals from dif-
ferent subpopulations because of the knowledge transfer. According to the

212 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

0 20 40 60 80 100
Rank of Individual

0.04

0.02

0.00

0.02

0.04

Subpop1 Subpop2 Subpop3

Figure 7.7: The ranks of individuals samples of the surrogate for task 3.

mechanism of KNN, the newly generated individuals in the intermediate
population tend to be selected into the next generation if they have similar
phenotypic behaviour with the top-ranked individual samples in the sur-
rogate pool. To investigate the effect of surrogate on choosing individuals,
we set the subpopsize to 100 and take task 3 in the multitask scenario with
mean-flowtime as an example. We collect the individual samples in the
surrogate for task 3 at generation 20 (i.e., a steady state), and evaluate the
individuals on task 3 (i.e., mean-flowtime with utilisation level 0.95).

Figure 7.7 shows the ranks of individuals samples of the surrogate for
task 3. For task 3, the results show that individuals from task 1 and task 2
have better ranks than those generated by task 3. The individuals which
are close to the individuals originally from task 1 and task 2 based on
phenotypic characteristics tend to be selected. This is the reason why the
proportions of individuals for task 3 from Subpop1, Subpop2, and Subpop3

are 0.4 (large), 0.4 (large), and 0.2 (small), respectively.

Individuals in the surrogate (named as mapped individuals) are close to

7.4. RESULTS AND DISCUSSIONS 213

Task 1 Task 2 task 3
The Corresponding Tasks of the Mappped Individuals in Surrogate

0

20

40

60

80

100

Th
e

N
um

be
r

of
 O

cc
ur

re
nc

es

100

91

79

63 66

50

1
7 6

Subpop1
Subpop2
Subpop3

Figure 7.8: The corresponding tasks of the mapped individuals in surro-
gate of the newly generated individuals for tasks.

the generated individuals for tasks that directly affect the choices of indi-
viduals in the intermediate population. Figure 7.8 shows the correspond-
ing tasks of the mapped individuals in the surrogates for the individuals
in the intermediate population for task 1, task 2 and task 3. The results
show that the newly generated individuals for the current task Ti tend to
near the individual samples that are originally generated from the corre-
sponding subpopulation Subpopi (i.e., 100 > 91 > 79 corresponding to task
1, 66 > 63 > 50 corresponding to task 2, and 6 ≈ 7 > 1 corresponding to
task 3). It is consistent with our intuition that the newly generated individ-
uals based on the corresponding subpopulation tend to benefit the current
task. Taking Figure 7.7 into consideration, this is one reason for the bias
to choose individuals from task 1 and task 2 for task 3, as shown in Figure
7.6.

When we further look at the mapped individuals in task 3, most newly
generated individuals for task 3 are close to the surrogate samples that are
originally from task 1 and task 2. It is noted that although the surrogate

214 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

samples for task 3 consist of large proportions of individuals that are orig-
inally for task 1 and task 2, the samples are good for task 3 (as shown in
Figure 7.7) and become the individuals for optimising task 3. The newly
generated individuals for task 3, which have good quality, can still be kept
into the next generation. Although the proportion of individuals samples
in the surrogate S3 is not high, this does not mean the individuals gener-
ated for task 3 are useless for task 3.

In summary, we find that among the individuals in the surrogate pool,
the ones from task 1 and task 2 have better ranks than that generated from
task 3. On the other hand, the newly generated individuals tend to have
similar phenotypic characterisation with the samples in the surrogate pool
that are originally for the same task. Therefore, the offspring from task 1
and 2 tend to have better predicted fitness than that from task 3, and thus
more likely to be selected into the next generation. In addition, Figure 7.6
shows that the number of removed individuals increases from task 1 to
task 3. This indicates that task 3 has the smallest number of individuals
to be allocated. These explain why the proportion of individuals from
Subpop3 is consistently smaller than that from other subpopulations.

7.5 Further Analyses

To understand the effect of the proposed algorithm for solving the DFJSS
problems, the sizes, structures and behaviour of the evolved scheduling
heuristics are further analysed in this section.

7.5.1 Sizes of Evolved Scheduling Heuristics

Figure 7.9 shows the curves of the average sizes of the routing and se-
quencing rules obtained by MTGP, SMTGP, and SMT2GP over 30 indepen-
dent runs in each task of the three multitask scenarios. The results show
that a more complex task requires a larger rule size for all the algorithms.

7.5. FURTHER ANALYSES 215

●
●

● ●

●
●

●

●

●
●

● ● ●
● ● ●

●● ●

●

●

●●

●

●
●

●
●

●
●● ● ● ●● ● ●

●

●
● ●

●
●●

●
●

●●
● ● ●

● ● ● ●●

●
●● ●

●

●
●

●

●
●● ●

● ● ●●
● ●

●
● ●

●

●
●

●

●
●

●
●

● ● ●● ● ● ●●

●

●
●●

●
● ●

●
●

●
●

●
●

● ● ●● ●

●
●

● ●

●
●

●

●

●
● ● ● ●

● ● ●
●● ●

●

●

●●

●
●

●
●

●
●

●● ● ● ●● ● ●

●

●
● ●

●
●●

●
●

●●
●

● ●
● ● ● ●●

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

150

200

250

150

200

250

150

200

250

75

100

125

150

75

100

125

150

75
100
125
150
175

40
50
60
70
80

40
50
60
70
80

40
50
60
70
80

Generation

T
he

 S
iz

e
of

 R
ul

e

● MTGP SMTGP SMT2 GP

Figure 7.9: The curves of the average rule sizes (routing plus sequencing
rule) for tasks of MTGP, SMTGP, and SMT2GP over 30 independent runs
in three multitask DFJSS scenarios (each row is a multitask scenario).

For example, the rule sizes for the tasks with utilisation level 0.95 are larger
than those for the tasks with utilisation level 0.75 and 0.85. The rule sizes
of SMTGP and SMT2GP are similar over generations, and the rule sizes of
SMTGP and SMT2GP are larger than MTGP in all the scenarios from the
early stage. This indicates that surrogate and multitask techniques tend to
increase sizes of the evolved scheduling heuristics compared to MTGP. For
SMTGP, one possible reason is that it tends to choose scheduling heuristics
with large sizes due to their good quality in the intermediate population.
For SMT2GP, another possible reason is that the parents may have large
sizes, since they may come from other subpopulations for complex tasks
with large rules. This might also be a reason that the scheduling heuris-

216 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

●

●
● ●

●
●

●

●
●

● ● ●
●● ● ● ●● ●

●

●
●●

●
●

●
●

●
● ●● ● ● ●● ● ●

●

●
● ●

●
●● ● ●

●●
● ● ●● ● ● ●●

●

●●
●

●
●

●
●

●
●● ●

● ● ●●
● ●

●

●
●

●

●●
●

● ●
● ● ● ● ●● ● ●

●●

●

●

●● ●
● ●●

●
●

● ●● ● ● ●● ●

●

●
● ●

●
●

●
●

●
● ● ●

●● ● ● ●● ●

●

●
●●

●
●

●
● ●

● ●● ● ● ●● ● ●

●

●
● ●

●
●● ● ●

●●
● ● ●● ● ● ●●

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

75
100
125
150

75

100

125

150

75
100
125
150

50

70

90

40

60

80

100

40

60

80

100

20

30

40

50

20

30

40

50

20

30

40

50

Generation

T
he

 A
ve

ra
ge

 S
iz

e
of

 R
ou

tin
g

R
ul

es
 fo

r
Ta

sk
s

● MTGP SMTGP SMT2 GP

Figure 7.10: The curves of the average routing rule sizes for tasks of MTGP,
SMTGP, and SMT2GP over 30 independent runs in three multitask DFJSS
scenarios (each row is a multitask scenario).

tics with good qualities can be obtained by SMTGP and SMT2GP from the
early stage.

To further study the effect of the proposed SMT2GP on the rule size,
the routing and sequencing rule are examined respectively due to the sim-
ilarity of rule sizes of SMTGP and SMT2GP. Figure 7.10 and Figure 7.11
show the curves of the average routing and sequencing rule sizes obtained
by MTGP, SMTGP, and SMT2GP over 30 independent runs for each of the
nine tasks in the three multitask scenarios, respectively. It can be seen that
the sizes in each multitask (i.e., the tasks with the same objective but with
different utilisation level) show a similar trend but with different scales. It
may be due to the tasks in each multitask scenario are handled simulta-

7.5. FURTHER ANALYSES 217

●
● ●

●

●
●

●

●

●●
●

● ●
● ● ●

●● ●

●

●

●
●

●
●

●
●

●
●

●● ● ● ●
● ● ●

●
●● ●

●

●
●

●
●

●●
●

● ●
● ● ● ●●

●

●● ●

●

●
●

●

●
●●

●
●

● ●●
●

●

●
●

●
●

●
● ●

●
●

●
●

● ● ●●
● ● ●●

●

● ●●
●

●
●

●
●

● ●
●

●
● ● ●● ●

●● ●
●

●
●

●

●

●●
●

● ●
● ● ●

●● ●

●

●

●
●

●
●

●
●

●
●

●● ● ● ●
● ● ●

●
●● ●

●

●
●

●
●

●●
●

● ●
● ● ● ●●

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

60

80

100

40

60

80

100

60

80

100

30

40

50

60

70

30
40
50
60
70

40
50
60
70

15

20

25

30

15
20
25
30
35

15
20
25
30
35

Generation

T
he

 A
ve

ra
ge

 S
iz

e
of

 S
eq

ue
nc

in
g

R
ul

es
 fo

r
Ta

sk
s

● MTGP SMTGP SMT2 GP

Figure 7.11: The curves of the average sequencing rule sizes for tasks of
MTGP, SMTGP, and SMT2GP over 30 independent runs in three multitask
DFJSS scenarios (each row is a multitask scenario).

neously by one population with three subpopulations, and the rule sizes
of the subpopulations highly interact with each other. We can see that
the trend of individual allocation is highly related to the utilisation level,
while the trend of the rule size, either routing or sequencing, is highly
related to the objective examined.

For the sizes of routing rules, as shown in Figure 7.10, SMT2GP tends
to evolve larger rules than that of SMTGP for most tasks (i.e., <Tmean,
0.75>, <Tmean, 0.85>, <Tmean, 0.95>, <WTmean, 0.75>, <WTmean,
0.85>, and <WTmean, 0.95>). In addition, the sizes of the evolved rout-
ing rules by SMTGP is similar to that of MTGP. For the sizes of sequencing
rules, as shown in Figure 7.11, SMTGP obtains larger rule sizes than that

218 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

-

Max MWT

* Max

/ Max

WIQ MWT Max Max

NPT TIS NOR NIQ

- /

WIQ MWT WIQ -

* *

NIQ NPT OWT *

TIS NPT

Figure 7.12: One of the best evolved routing rules for task 1 <WTmean,
0.75> in multitask scenario 3.

of SMT2GP for all the tasks. The sizes of the evolved sequencing rules of
SMT2GP and MTGP are similar. This indicates that the sizes of rules for
tasks can be similar but with various routing and sequencing combina-
tions. In addition, SMT2GP improves the quality of the evolved schedul-
ing heuristics via routing rule, while SMTGP improves its performance
by sequencing rule. It shows that enhancing the quality of routing rule
may be an effective way to improve effectiveness of the final schedules in
DFJSS.

7.5.2 Insight of Evolved Scheduling Heuristics

As stated in the previous subsection, the proposed algorithm SMT2GP has
a significant impact on the routing rule. In this section, we choose three
routing rules evolved by SMT2GP for each task in the multitask scenario
3 related to WTmean for further analysis. Figs. 7.12-7.14 show the best
routing rules for task<WTmean, 0.75>,<WTmean, 0.85> and<WTmean,
0.95> in a multitask scenario, respectively. These three routing rules are

7.5. FURTHER ANALYSES 219

-

Max MWT

* Max

/ Max

WIQ MWT - Max

TIS -

Max WIQ

NOR NIQ

NOR NIQ

- /

WIQ MWT WIQ -

* *

NIQ NPT / *

NPT TIS TIS NPT

Figure 7.13: One of the best evolved routing rules for task 2 <WTmean,
0.85> in multitask scenario 3.

evolved together in the same multitask scenario.

In terms of the structures of the routing rules, we can see that the ma-
jor part of the structure of the three routing rules is the same (as shown in
grey). One possible reason is that the optimised objective in a multitask
scenario is the same, and the rules for different tasks have inherent sim-
ilarities. For the evolved building-blocks, except for the building-blocks
shown in grey, the routing rule for task 1 shares the same component
(i.e., Max{*, Max{NOR, NIQ}}) with the routing rule for task 2. Similarly,
“Max{NOR, NIQ}” and “NPT / TIS” are evolved building-blocks of both
the routing rule for task 2 and task 3. In addition, “Max{NOR, NIQ}” is a
common constructed feature shared by the routing rules of task 1, task 2
and task 3. This is a sign that the tasks in a multitask scenario learn from
each other, which is as expected. In terms of the rule size, the sizes of the
routing rules for task 1, task 2, and task 3 are 29, 35 and 37, respectively.
We can see that complex tasks often require larger rules.

To make it easy for analysis, we simplify the routing rules by calculat-
ing its different components. Note that a machine with a smaller priority

220 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

-

Max MWT

* Max

/ +

WIQ MWT Max Min

Max +

NOR NIQ OWT PT

Min PT

WIQ TIS

- /

WIQ MWT WIQ -

* *

NIQ NPT / *

NPT TIS TIS NPT

Figure 7.14: One of the best evolved routing rules for task 3 <WTmean,
0.95> in multitask scenario 3.

value is considered to be more prior. The routing rule for task 1 in Figure
7.12 can be further simplified, as shown in Eq. 7.1.

R1 =Max{ WIQ

MWT
∗Max{NPT, TIS,NOR,NIQ},

WIQ−MWT,

WIQ

NIQ ∗NPT −OWT ∗ TIS ∗NPT
} −MWT

≈Max{ WIQ

MWT
∗ TIS,WIQ−MWT,

WIQ

NPT (NIQ−OWT ∗ TIS)
} −MWT

=
WIQ

MWT
∗ TIS −MWT

(7.1)

The Max function connects the main parts of this rule, and the key of this
priority function is the component with the largest value. “Max{NPT, TIS,
NOR, NIQ}” is simplified as TIS from step 1 to step 2, since TIS is almost
always larger than NPT, NOR, and NIQ. Similarly, this rule can be further
simplified as WIQ

MWT
∗TIS−MWT . We can see that this routing rule suggests

the choice of the machine with a small workload (small WIQ) and a long

7.5. FURTHER ANALYSES 221

idle time (large MWT). It is noted that TIS is a constant here that will not
significantly impact the final decision, since TIS is a property of operation
and it is the same for all the candidate machines of an operation.

The routing rule for task 2 in Figure 7.13 can be simplified, as shown in
Eq. 7.2.

R2 =Max{ WIQ

MWT
∗Max{

TIS −Max{NIQ,NOR}+WIQ,NOR,NIQ},

WIQ−MWT,
WIQ

NPT (NIQ−NPT)
} −MWT

≈Max{ WIQ

MWT

∗Max{TIS −Max{NIQ,NOR}+WIQ},

WIQ−MWT,
WIQ

NPT (NIQ−NPT)
} −MWT

=
WIQ

MWT
∗ (TIS +WIQ−Max{NIQ,NOR})

−MWT

(7.2)

From step 1 to step 2, “Max{TIS-Max{NIQ, NOR} + WIQ, NOR, NIQ}”
can be simplified as “TIS - Max{NOR, NIQ} + WIQ”, since “TIS - Max{NOR,
NIQ} + WIQ” is more likely to be larger than NOR and NIQ. Compared
with Eq. (2), except for WIQ and MWT, this routing rule takes NIQ or NOR
into consideration. If NIQ is larger than NOR, this rule will be simplified
as WIQ

MWT
∗(TIS+WIQ−NIQ)−MWT . Compared with the routing rule for

task 1, except for WIQ and MWT, this rule takes the number of operations
in the queue (NIQ) into consideration. This rule suggests selecting the
machine with a larger number of operations but a smaller work in queue.
This means that this rule prefers to select the machine with operations that
need a short processing time. In this way, the newly allocated operations
have a high probability of being processed earlier, since the number of se-
quencing decision point is increased. If NOR is larger than NIQ, this rule
will be simplified as WIQ

MWT
∗ (TIS+WIQ−NOR)−MWT . Like TIS, NOR

222 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

(the number of operations remaining of a job) is a characteristic of the op-
eration, which is a constant for candidate machine and will not affect the
routing decision too much. In addition, compared with the routing rule
for task 1, WIQ plays an important role in this rule since it appears twice.

The routing rule for task 3 in Figure 7.14 can be simplified, as shown in
Eq. 7.3. “Max{NOR, NIQ, OWT + PT}” is denoted as “OWT + PT”, since
“OWT + PT” is almost always larger than NOR and NIQ. PT is used to
indicate “Min{WIQ, TIS, PT}”, since PT is usually the smallest one among
them. Different from R1 and R2, R3 suggests choosing the machine that
has high processing efficiency for a specific operation. It is consistent with
our intuition that operations tend to be assigned to the most efficient ma-
chine for processing it. In addition, operation waiting time (OWT) can be
considered as a constant as it is the same for all its candidate machines of
an operation that are expected to be allocated.

R3 =Max{ WIQ

MWT
∗ {Max{NOR,NIQ,OWT + PT}

+Min{WIQ, TIS, PT}},WIQ−MWT,

WIQ

NPT (NIQ−NPT)
} −MWT

≈Max{ WIQ

MWT
∗ (OWT + PT + PT),

WIQ−MWT,
WIQ

NPT (NIQ−NPT)
} −MWT

=
WIQ

MWT
∗ (OWT + 2PT)−MWT

(7.3)

In summary, the routing rules evolved in a multitask scenario that opti-
mises the same objective have similarities. All the rules are highly related
to WIQ and MWT, and “WIQ / MWT” is a shared pattern of the routing
rules. However, they differ from each other according to the complexities
of tasks. For the slightly complex task (task 2), the routing rule pays more
attention to the workload of the machine. For the most complex task (task
3), the routing rule focuses on the processing efficiency of the machine.

7.6. CHAPTER SUMMARY 223

This shows the effectiveness of the proposed surrogate-assisted multitask
algorithm in DFJSS, since it not only shares the knowledge between differ-
ent tasks but also keeps the unique characteristics for each task.

7.6 Chapter Summary

The goal of this chapter is to develop an effective surrogate-assisted evo-
lutionary multitask approach to improve the effectiveness of GPHH for
DFJSS. To achieve this purpose, this chapter builds surrogate models for
all the tasks. The built surrogate models are used to improve the effective-
ness of GPHH to solve a single task and transfer knowledge between the
tasks.

The proposed surrogate-assisted multitask algorithm has three main
features as compared to traditional multitask framework. First, a large
number of new offspring are generated for providing useful materials for
tasks. Second, the newly generated individuals are evaluated with sur-
rogate rather than actual simulation evaluations. Third, individuals are
assigned to optimise tasks based on the estimated fitness by surrogates di-
rectly rather than computationally expensive simulation revaluations. The
results show that the proposed SMT2GP can evolve highly-competitive
scheduling heuristics for DFJSS with high convergence speed for all the
examined multitask scenarios. The effectiveness of SMT2GP is examined
by comparing the quality of the evolved scheduling heuristics, the analy-
ses of the diversity of individuals for tasks, structures and behaviour of the
evolved scheduling heuristics. It has also been observed that the individ-
ual allocations for the tasks are highly related to the utilisation level. This
implies that the complexities significantly impact the knowledge transfer
between the tasks in a multitask scenario. In addition, we found that the
sizes of the evolved rules over generations are highly related to the objec-
tive to be optimised in the task rather than the utilisation level.

Chapters 6-7 propose effective multitask GPHH algorithms to solve

224 CHAPTER 7. SURROGATE-ASSISTED MULTITASK GP

multiple DFJSS tasks simultaneously. Chapter 6 focuses on an develop-
ing effective multitask GPHH algorithm based on the characteristic of GP,
which is the first time to use multitask GPHH for DFJSS. Chapter 7 further
enhances the performance of multitask GPHH with the surrogate, knowl-
edge sharing, and phenotypic characterisation techniques. The proposed
multitask GPHH algorithms have successfully used to evolve scheduling
heuristics for multiple DFJSS tasks simultaneously.

In this thesis, we have developed a series of new GPHH methods for
DFJSS, i.e., GPHH with surrogates, GPHH with the feature selection tech-
nique, GPHH with specialised genetic operators, and multitask GPHH.
The next chapter will provide an overall summary on what objectives we
have achieved and conclude this thesis.

Chapter 8

Conclusions

This thesis focuses on developing new GPHHs for the DFJSS problems.
The overall goal is to improve the performance of GPHHs to evolve effec-
tive scheduling heuristics for DFJSS efficiently. This goal has been success-
fully achieved by investigating different aspects of GPHHs, including effi-
ciency improvement with multi-fidelity surrogates, search space reduction
with feature selection, search mechanism improvement with specialised
genetic operators, and multitask GPHH. The effectiveness of each pro-
posed algorithm is measured using the DFJSS simulation with a range of
measurements and analyses.

The rest of this chapter highlights the achieved objectives in this thesis,
followed by the main conclusions. Then, insightful discussions are pro-
vided to help understand the key issues in this research area. Finally, this
chapter presents some potential research directions which are motivated
by the studies in this thesis.

8.1 Achieved Objectives

The following research objectives have been fulfilled by this thesis.

1. This thesis has proposed an effective GPHH algorithm with multi-

225

226 CHAPTER 8. CONCLUSIONS

fidelity surrogate models to improve training efficiency for evolv-
ing effective scheduling heuristics for DFJSS efficiently (Chapter 3).
This thesis builds multiple surrogate models with different fideli-
ties by shorting the simulation of the original problem. In addi-
tion, we propose a collaborative strategy to promote the effective of
multi-fidelity surrogate models by developing an effective knowl-
edge transfer mechanism. With the collaborations between the mul-
tiple surrogate models with different fidelities, the proposed algo-
rithm has successfully achieved better efficiency and effectiveness
to evolve scheduling heuristics for DFJSS. This work not only moti-
vates the study of multi-fidelity surrogate models on GPHH but also
broadens the applications of surrogate techniques to evolve rules for
dynamic scheduling problems.

2. This thesis has developed an effective two-stage feature selection
GPHH approach with individual adaptation strategies to automat-
ically evolve scheduling heuristics only with the selected features
for DFJSS efficiently (Chapter 4). First, a two-stage feature selection
algorithm is developed to select only the important features and re-
duce the search space of GPHH. The first stage is a GPHH with a
niching and surrogate model to quickly collect the data for the fea-
ture selection. The second stage uses the selected features to evolve
promising scheduling heuristics by GPHH further. Second, based
on the proposed two-stage feature selection algorithm, this thesis
develops a new GPHH algorithm with feature selection to evolve
effective scheduling heuristics with only the selected features. The
proposed novel individual adaptation strategies are used to inherit
the information of the examined individuals during the feature se-
lection to maintain the quality of individuals with only the selected
features. The results show that the proposed algorithms can help
GPHH find rules with only selected features without sacrificing the
performance. This thesis also shows how feature selection can im-

8.1. ACHIEVED OBJECTIVES 227

prove the effectiveness and sizes of the evolved rules, and how the
proposed individual adaptation strategies can improve the efficiency
of the proposed algorithms.

3. This thesis has proposed a new effective search mechanism with spe-
cialised genetic operators for GPHH to generate offspring based on
the importance of the subtrees (Chapter 5). Specifically, this thesis
develops recombinative guidance for the crossover to generate effec-
tive offspring by swapping subtrees between the parents according
to their importance. The new crossover tends to retain the more im-
portant subtrees, and replace the less important subtrees with the
important subtrees from the other parent. This thesis designs two
measures for subtree importance. The first one is based on the impor-
tance of features. The second is based on the correlation between the
behaviour of subtrees and the whole tree. This thesis then proposes
a novel recombinative guidance mechanism for the crossover oper-
ator that defines the probabilities of each subtree to be selected to
be (negatively) proportional to its importance. The results show that
the GPHH algorithm with the correlation-based subtree importance
performs better than the compared algorithms. The way of mea-
suring the importance of subtrees in our problem can provide guid-
ance for developing subtree importance measures for other prob-
lems such as regression. In addition, the analyses between the algo-
rithms with feature frequency and correlation-based subtree impor-
tance measures provide a better understanding of the mechanism of
GP based algorithms from the perspective of building-block recom-
bination.

4. This thesis has developed an effective multitask GPHH approach,
and a surrogate-assisted multitask GPHH approach to improving
the effectiveness of GPHH to evolve scheduling heuristics for mul-
tiple DFJSS tasks, respectively (Chapters 6 and 7). First, this thesis

228 CHAPTER 8. CONCLUSIONS

develops a novel and effective evolutionary multitask framework
for GPHH by adapting the traditional evolutionary multitask algo-
rithms based on the characteristics of GP and dynamic scheduling
to optimise multiple DFJSS tasks simultaneously (Chapter 6). The
results show that the proposed multitask GPHH is effective for dy-
namic scheduling. Second, this thesis proposes to transfer knowl-
edge by allocating the newly generated individuals to appropriate
tasks incorporated with the surrogate technique. Specifically, this
thesis builds surrogates for different tasks accordingly by taking the
behaviour of individuals and their real fitness into account. The pro-
posed surrogates can not only improve the efficiency for solving a
single task but also help share knowledge between the tasks. The re-
sults show that the proposed knowledge sharing mechanism can ef-
fectively transfer knowledge between tasks. The proposed surrogate-
assisted multitask GPHH algorithm outperformed the state-of-the-
art algorithm, and can evolve highly-competitive scheduling heuris-
tics for DFJSS for different tasks in all examined multitask scenarios.

8.2 Main Conclusions

This section describes the main conclusions for this thesis drawn from the
five major contribution chapters, i.e., Chapter 3 to Chapter 7.

8.2.1 Efficiency Improvement with Multi-fidelity Surrogates

To improve the efficiency of GPHH to evolve scheduling heuristics with
the surrogate technique, two main issues need to be considered. First, how
to generate surrogate models? Second, how to use the surrogate models
in an effective and efficient way?

Chapter 3 develops an effective GPHH with multi-fidelity surrogate
models to improve the efficiency for evolving scheduling heuristics in the

8.2. MAIN CONCLUSIONS 229

DFJSS problems. This thesis uses the degree of simplification of the prob-
lem to indicate the fidelity of the surrogate model. The surrogate models
are designed by shortening the simulation of the original problem. The
key idea of chapter 3 is to solve the desired problem by utilising the ad-
vantages of surrogate models with different fidelities. The problem with
lower fidelity surrogates is computationally cheaper but less accurate. On
the contrary, the problem with higher fidelity surrogates is computation-
ally more expensive but more accurate. The most important thing is that
an effective knowledge transfer mechanism is used to collaborative the
multiple surrogate models to learn from each other.

The results verify the effectiveness and efficiency of the proposed algo-
rithm, and the proposed algorithm is insensitive to the surrogate models.
We can see that for improving training efficiency with the surrogate tech-
nique, how we manage to develop an effective collaboration strategy is im-
portant. This work broadens the studies of the surrogate technique to JSS
by investigating a new collaborative way to improve training efficiency
with surrogates rather than only focusing on improving the accuracy of
the surrogates. Similar ideas of multi-fidelity based surrogate techniques
can also be applicable to other problems.

In real-world applications, factories generally have a large production
scale, making it impossible to learn scheduling heuristics using all the pro-
duction data. Using surrogate techniques can help learn effective schedul-
ing heuristics for factories in a reasonable time, which is more practical for
handling real-world problems. However, the proposed algorithms have
not investigated how to simplify a problem appropriately as the surrogate
model. We will explore more in this direction in the future.

8.2.2 Search Space Reduction with Feature Selection

To reduce the search space of GPHH using feature selection, two main
issues need to be considered. First, how to measure the importance of

230 CHAPTER 8. CONCLUSIONS

features? Second, how to use the selected features and other information
from the feature selection process properly?

Chapter 4 proposes a two-stage feature selection algorithm to select
important features for the routing rule and the sequencing rule in DFJSS,
respectively. The selected features are used in the mutation operator in the
second stage of the proposed algorithm. Chapter 4 further proposes novel
individual adaptation strategies to help GPHH evolve scheduling heuris-
tics only with the selected features without losing the qualities of the rules.
The success of the proposed individual adaptation based on mimicking
the behaviour of individuals lies in the conversion of variable-length rep-
resentation to vector-based fixed representation for GP individuals with
phenotypic characterisation.

The results show that the proposed algorithm can detect important fea-
tures effectively and efficiently. The results also show that the proposed
algorithm can reduce the size of the evolved scheduling heuristics, thus
to improve their interpretability potentially. The individual adaptation
strategies that generate individuals by mimicking the behaviours of indi-
viduals with only the selected features are also applicable to other prob-
lems, if one can design proper mechanisms to mimic individual behaviour
with only the selected features based on the problem-specific characteris-
tics.

From the perspective of a practical problem, a number of features (i.e.,
factors) can affect the decision making of production schedules. However,
the importance of the features usually is unclear. In addition, the schedul-
ing heuristics with many features are not easy to be understood by the
job shop operators. Feature selection algorithms proposed in this thesis
can handle these two issues in real-world applications well. However, the
proposed feature selection algorithms in this thesis treat the selected fea-
tures equally to learn scheduling heuristics. A more effective way to use
the selected features obtained by the feature selection algorithm is worth
studying.

8.2. MAIN CONCLUSIONS 231

8.2.3 New Search Mechanism with Specialised Genetic Op-

erators

Crossover is the main operator for GP to generate offspring by exchanging
genetic materials (i.e., subtrees) of the parents. To generate high-quality
offspring via crossover, we propose to improve the crossover operator by
replacing unimportant subtrees from one parent with important subtrees
from the other parent. Two main issues need to be considered. First, how
to measure the importance of subtrees of an individual? Second, how to
implement the subtree exchange according to the subtree importance in-
formation?

Chapter 5 proposes two strategies to measure the importance of sub-
trees. The first strategy is based on the frequency of features, assuming
that important subtrees tend to have more important features. The sec-
ond strategy is based on the coefficient between the behaviour of subtrees
and the whole tree. If the behaviour of a subtree has a high (low) co-
efficient with the behaviour of the whole tree, the subtree is important
(unimportant). A recombinative guidance mechanism is then designed
for crossover to replace unimportant subtrees of one parent with impor-
tant subtrees from the other parent.

The results show that the selected subtrees for crossover have a sig-
nificant effect on the quality of the generated offspring. The evolved rules
by the proposed algorithm with correlation-based recombinative guidance
have better performance in most scenarios while no worse in all other sce-
narios due to its effectiveness for producing offspring. This is also verified
by the analyses in terms of the depth ratios of selected subtrees, the cor-
relations of selected subtrees, and the probability difference during the
evolutionary process. The proposed algorithm does not need extra com-
putational time compared with its counterparts. This verifies the advan-
tages of utilising the information produced by GP during the evolutionary
process and the efficient information calculation techniques such as corre-

232 CHAPTER 8. CONCLUSIONS

lation coefficient. It is noted that the idea in this chapter is not limited
to GP for DFJSS but can benefit GP in general. An important issue is to
design a proper measure for the subtree importance based on the specific
problem to be solved. Taking the symbolic regression problem as an ex-
ample, the subtree importance can be measured with sampling semantics
[222].

One key factor of the proposed GP algorithm with specialised genetic
operators is measuring the subtree behaviour with decision situations. A
better way of selection/design decision situations can positively affect the
performance of the proposed algorithm. However, this thesis has not in-
vestigated how to extract representative decision situations for handling
real-world applications. We will work on this in the near future.

8.2.4 Multitask Learning Ability in GPHH

To improve the multiple task solving ability of GPHH, two main issues
need to be considered. First, is it applicable to use the traditional evolu-
tionary multitask algorithms to GPHH for DFJSS directly? Second, how to
improve the knowledge transfer effectiveness with GPHH for DFJSS?

Chapter 6 firstly adapts the traditional MFEA to GPHH with a num-
ber of modifications due to the specific characteristics of our problem. In
addition, a novel origin-based offspring reservation strategy is proposed
to enhance the knowledge sharing between tasks via crossover. The pro-
posed algorithm in Chapter 6 is the first multitask GPHH approach for
DFJSS. Based on the study in Chapter 6, Chapter 7 makes a deep study
of the surrogate for multitask learning by considering two issues. First,
how to build surrogates effectively? Second, how to use the surrogate
to transfer knowledge between tasks properly? Chapter 7 uses the phe-
notypic characterisation and the fitness of fully-evaluated individuals to
build the surrogates for all the tasks. The built surrogates are used to es-
timate the fitness of all the individuals for all the tasks, and allocates indi-

8.3. FURTHER DISCUSSIONS 233

viduals to different tasks with the estimated fitness. The built surrogates
are not only used to improve the effectiveness of solving a single task but
also for knowledge transfer between tasks.

The results show that the proposed algorithm in Chapter 6 is effective
for multitask GPHH to evolve scheduling heuristics for multiple DFJSS
tasks simultaneously. This is a start point for the study in multitask GPHH
for DFJSS. The results in Chapter 7 show that the proposed surrogate-
assisted GPHH can evolve highly-competitive scheduling heuristics for
DFJSS with high convergence speed for all the examined multitask scenar-
ios. In addition, the scheduling heuristic evolving processes for different
tasks highly interact with each other in a multitask scenario. It is a good
case study to illustrate the effectiveness of surrogate-assisted evolution-
ary multitask for solving dynamic discrete and combinatorial optimisation
problems.

It is not uncommon that a factory in practice involves different pro-
duction tasks, and the tasks are typically related to each other. The pro-
posed multitask algorithms can handle multiple production tasks simul-
taneously. However, the proposed multitask GP algorithms have not con-
sidered the effect of the relatedness between tasks on the performance of
proposed algorithms. This is a promising direction to explore in the future.

8.3 Further Discussions

The previous section gives a summary of the key findings in this thesis.
This section further provides discussions on general issues covered by this
thesis and related to this research field.

8.3.1 Genotype vs Phenotype

Genotype considers the structures of GP individuals, while phenotype
focuses on the behaviour of GP individuals [190]. Although phenotypic

234 CHAPTER 8. CONCLUSIONS

characteristic has been successfully used in the literature (i.e., also in Chap-
ter 4, Chapter 5 and Chapter 7) to measure the quality of GP individuals,
genotype can also play an important role for investigation of GP individ-
uals. For example, the genotype can provide us a better understanding of
the genetic materials used in GP individuals. The variation of GP individ-
uals occurs at the genotypic level but fitness is evaluated at the phenotypic
level. Therefore, the mapping between the genotype and phenotype of GP
individuals [11] in DFJSS is an interesting topic.

8.3.2 Implicit vs Explicit Knowledge Transfer

The knowledge sharing mechanisms in Chapter 3, Chapter 6, Chapter
7 are implemented implicitly via crossover. Explicit knowledge transfer
represents another form to share knowledge, which can guarantee the ef-
fectiveness of knowledge sharing in different tasks [75]. As an explicit
knowledge transfer, task adaptation aims to convert the search space of
one task being good for an other task. A linearised domain adaptation
was developed to transform the search space of a simple task to the search
space similar to its constitutive complex task [10]. The transformed search
space resembled a high correlation with its constitutive task and provided
a platform for efficient knowledge transfer. All tasks were transformed
into new space while maintaining the same geometric properties of solu-
tions in [62]. The individuals were transformed to fit an other task by task
space mapping strategy for generating higher-quality offspring in [142].
These kinds of studies [45] focus on adapting solutions of one task being
good for other tasks, which is good to be also investigated in GPHH for
DFJSS.

8.3.3 Surrogate

The surrogates in Chapter 3, Chapter 4 and Chapter 7 (i.e., either based
on the KNN model or simplified problem) have shown their effectiveness

8.4. FUTURE WORK 235

to estimate the fitness of GP individuals. There is a lot of information we
can obtain from the simulation execution, such as the processing informa-
tion in the early and middle stages. If one can utilise the information in
an early stage to build surrogate models to estimate the performance of an
individual in the later stage, the simulation can be dramatically shortened.
Thus, training efficiency can be significantly improved. This is an interest-
ing direction that uses the historical data to predict the performance of an
individual in the future.

8.4 Future Work

8.4.1 Interpretability of Scheduling Heuristics

Evolving interpretable models is a hot topic in machine learning [81], es-
pecially in recent years. GP provides better interpretability due to its
tree-based representation. However, the concepts or measures of the in-
terpretability of the evolved scheduling heuristics by GPHH are still un-
clear. This thesis mainly uses the number of nodes, the number of unique
features, and semantic analyses to investigate the interpretability of the
evolved scheduling heuristics. More promising measures for evaluating
the interpretability of the obtained scheduling heuristics by GPHH are
worth to be studied. In addition, new algorithms to improve the inter-
pretability of the evolved scheduling heuristics need to be further studied.

Some potential directions of the interpretability of the evolved schedul-
ing heuristics obtained by GPHH are: (1) propose effective criteria to mea-
sure the interpretability of the evolved rules, for example, considering the
types of features such as time-related feature, e.g., processing time, and
number related feature, e.g., the number of operations left for a job. If the
evolved subtrees contain the same type of features, it tends to be easier
to be understood, (2) develop grammar-based GPHH to restrict the search
space to evolve interpretable scheduling heuristics automatically during

236 CHAPTER 8. CONCLUSIONS

the evolutionary process.

8.4.2 Local Search

Local search [1] is a widely used technique in evolutionary algorithms to
exploit good solutions by looking around their neighbourhoods. How-
ever, it is rarely applied in GPHH, since it is challenging to define neigh-
bourhood relationship for GP individuals with the variable-length tree-
based representation. A small change in the GP tree may lead to a big
influence on the behaviour of a GP individual. In addition, the fitness
evaluation of GP individuals in DFJSS is time-consuming, since there are
lots of priority calculations in the simulation. Thus, measuring the quality
of the neighbours of an individual is time-consuming.

To handle these issues, some potential directions are: (1) consider the
phenotypic space of GP individuals to define the neighbourhood relation-
ship. If two GP individuals have similar phenotypic characteristics, we
can say they are neighbours in the local search domain, (2) utilise the sur-
rogate technique to estimate the fitness of the neighbours of a good solu-
tion.

8.4.3 Relatedness Between Tasks

The relatedness between tasks is an important prerequisite for the effec-
tiveness of multitask algorithm, and measuring the relatedness between
tasks is still an open question [182], especially in combinatorial optimisa-
tion. The existing studies mainly focus on the relatedness between contin-
uous benchmark functions, where the characteristics of the problem, such
as the fitness landscape are known. However, it is not the case in combina-
torial optimisation. It is challenging to decide what kinds of information
can be used for measuring the relatedness between tasks, and how to mea-
sure the relatedness between tasks.

Some potential future directions are: (1) use the individual information

8.4. FUTURE WORK 237

during the evolutionary process to measure the relatedness between tasks,
since the individuals become more and more specific to the optimised task
along with the evolutionary process, (2) apply the machine learning tech-
nique such as Kullback–Leibler divergence [132] to measure the related-
ness between tasks based on the obtained individual information.

8.4.4 Multi/many-objective Optimisation

Scheduling problems normally involve multiple objectives. A major chal-
lenge for evolving scheduling heuristics for DFJSS is to balance and han-
dle conflicting objective simultaneously such as minimising max-flowtime
and mean-flowtime. This is particularly true in DFJSS, since its parameters
and variables can change over time [207]. To the best of our knowledge,
handling multiple or many conflicting objectives for DFJSS has not tacked
by GPHH due to the difficulty of the problem.

Some potential directions that worth to be investigated are: (1) develop
a new multi/many-objective GPHH algorithm for DFJSS based on the
characteristics of Pareto-front optimisation, (2) develop preference-based
multi/many-objective GPHH algorithms for DFJSS. The preference-based
algorithms can be used to narrow down the Pareto-front search space of
GPHH, (3) develop new algorithms to analyses the behaviour of evolved
scheduling heuristics to identify how the trade-offs between different ob-
jectives are made.

238 CHAPTER 8. CONCLUSIONS

Bibliography

[1] AARTS, E., AARTS, E. H., AND LENSTRA, J. K. Local search in combi-
natorial optimization. Princeton University Press, 2003.

[2] AITZAI, A., BENMEDJDOUB, B., AND BOUDHAR, M. Branch-and-
bound and pso algorithms for no-wait job shop scheduling. Journal
of Intelligent Manufacturing 27, 3 (2016), 679–688.

[3] AMJAD, M. K., BUTT, S. I., KOUSAR, R., AHMAD, R., AGHA,
M. H., FAPING, Z., ANJUM, N., AND ASGHER, U. Recent research
trends in genetic algorithm based flexible job shop scheduling prob-
lems. Mathematical Problems in Engineering 2018 (2018), 1–32.

[4] APPLEGATE, D., AND COOK, W. A computational study of the job-
shop scheduling problem. ORSA Journal on Computing 3, 2 (1991),
149–156.

[5] ARDEH, M. A., MEI, Y., AND ZHANG, M. Genetic programming
hyper-heuristic with knowledge transfer for uncertain capacitated
arc routing problem. In Proceedings of the Genetic and Evolutionary
Computation Conference (2019), pp. 334–335.

[6] ASSIMI, H., JAMALI, A., AND NARIMAN-ZADEH, N. Multi-
objective sizing and topology optimization of truss structures us-
ing genetic programming based on a new adaptive mutant operator.
Neural Computing and Applications 31, 10 (2019), 5729–5749.

239

240 BIBLIOGRAPHY

[7] BÄCK, T., FOGEL, D. B., AND MICHALEWICZ, Z. Handbook of evolu-
tionary computation. CRC Press, 1997.

[8] BADER-EL-DEN, M. B., POLI, R., AND FATIMA, S. Evolving
timetabling heuristics using a grammar-based genetic programming
hyper-heuristic framework. Memetic Computing 1, 3 (2009), 205–219.

[9] BAI, R., AND KENDALL, G. An investigation of automated
planograms using a simulated annealing based hyper-heuristic. In
Metaheuristics: Progress as real problem solvers. Springer, 2005, pp. 87–
108.

[10] BALI, K. K., GUPTA, A., FENG, L., ONG, Y. S., AND SIEW, T. P. Lin-
earized domain adaptation in evolutionary multitasking. In Proceed-
ings of the IEEE Congress on Evolutionary Computation (2017), IEEE,
pp. 1295–1302.

[11] BANZHAF, W. Genotype-phenotype-mapping and neutral varia-
tion—a case study in genetic programming. In Proceedings of the In-
ternational Conference on Parallel Problem Solving from Nature (1994),
Springer, pp. 322–332.

[12] BANZHAF, W., NORDIN, P., KELLER, R. E., AND FRANCONE, F. D.
Genetic programming: an introduction, vol. 1. Morgan Kaufmann San
Francisco, 1998.

[13] BAYKASOĞLU, A., HAMZADAYI, A., AND KÖSE, S. Y. Testing the
performance of teaching–learning based optimization (TLBO) algo-
rithm on combinatorial problems: Flow shop and job shop schedul-
ing cases. Information Sciences 276 (2014), 204–218.

[14] BENNETT, S., NGUYEN, S., AND ZHANG, M. A hybrid discrete
particle swarm optimisation method for grid computation schedul-
ing. In Proceedings of the IEEE Congress on Evolutionary Computation
(2014), IEEE, pp. 483–490.

BIBLIOGRAPHY 241

[15] BERTSEKAS, D. P. Dynamic programming and optimal control, 3rd Edi-
tion. Athena Scientific, 2005.

[16] BEYER, H.-G., AND SCHWEFEL, H.-P. Evolution strategies–A com-
prehensive introduction. Natural computing 1, 1 (2002), 3–52.

[17] BLAZEWICZ, J., ECKER, K., PESCH, E., SCHMIDT, G., AND

WEGLARZ, J. Handbook on scheduling. Springer, 2019.

[18] BOKHORST, J. A., NOMDEN, G., AND SLOMP, J. Performance eval-
uation of family-based dispatching in small manufacturing cells. In-
ternational Journal of Production Research 46, 22 (2008), 6305–6321.

[19] BOYLE, E., AL-AKASH, M., GALLAGHER, A. G., TRAYNOR, O.,
HILL, A. D., AND NEARY, P. C. Optimising surgical training: use
of feedback to reduce errors during a simulated surgical procedure.
Postgraduate medical journal 87, 1030 (2011), 524–528.

[20] BRANKE, J., HILDEBRANDT, T., AND SCHOLZ-REITER, B. Hyper-
heuristic evolution of dispatching rules: A comparison of rule rep-
resentations. Evolutionary Computation 23, 2 (2015), 249–277.

[21] BRANKE, J., NGUYEN, S., PICKARDT, C. W., AND ZHANG, M. Au-
tomated design of production scheduling heuristics: A review. IEEE
Transactions on Evolutionary Computation 20, 1 (2016), 110–124.

[22] BRUCKER, P., JURISCH, B., AND SIEVERS, B. A branch and bound al-
gorithm for the job-shop scheduling problem. Discrete applied math-
ematics 49, 1-3 (1994), 107–127.

[23] BRUCKER, P., AND SCHLIE, R. Job-shop scheduling with multi-
purpose machines. Computing 45, 4 (1990), 369–375.

[24] BURKE, E., KENDALL, G., NEWALL, J., HART, E., ROSS, P., AND

SCHULENBURG, S. Hyper-heuristics: An emerging direction in

242 BIBLIOGRAPHY

modern search technology. In Handbook of metaheuristics. Springer,
2003, pp. 457–474.

[25] BURKE, E. K., GENDREAU, M., HYDE, M., KENDALL, G., OCHOA,
G., ÖZCAN, E., AND QU, R. Hyper-heuristics: A survey of the state
of the art. Journal of the Operational Research Society 64, 12 (2013),
1695–1724.

[26] BURKE, E. K., HYDE, M., KENDALL, G., OCHOA, G., ÖZCAN,
E., AND WOODWARD, J. R. A classification of hyper-heuristic ap-
proaches. In Handbook of metaheuristics. Springer, 2010, pp. 449–468.

[27] BURKE, E. K., HYDE, M. R., KENDALL, G., OCHOA, G., OZCAN,
E., AND WOODWARD, J. R. Exploring hyper-heuristic methodolo-
gies with genetic programming. In Proceedings of the Computational
intelligence. Springer, 2009, pp. 177–201.

[28] BURKE, E. K., HYDE, M. R., KENDALL, G., AND WOODWARD, J. R.
A genetic programming hyper-heuristic approach for evolving 2-d
strip packing heuristics. IEEE Transactions Evolutionary Computation
14, 6 (2010), 942–958.

[29] BURKE, E. K., KENDALL, G., AND SOUBEIGA, E. A tabu-search
hyperheuristic for timetabling and rostering. Journal of heuristics 9, 6
(2003), 451–470.

[30] CAMACHO-HERNANDEZ, G. A., AND TAYLOR, P. Lessons from na-
ture: structural studies and drug design driven by a homologous
surrogate from invertebrates, achbp. Neuropharmacology 179 (2020),
108108.

[31] CARLIER, J. The one-machine sequencing problem. European Journal
of Operational Research 11, 1 (1982), 42–47.

[32] CARLIER, J., AND PINSON, É. An algorithm for solving the job-shop
problem. Management Science 35, 2 (1989), 164–176.

BIBLIOGRAPHY 243

[33] CARLIER, J., AND PINSON, E. A practical use of jackson’s preemp-
tive schedule for solving the job shop problem. Annals of Operations
Research 26, 1 (1990), 269–287.

[34] CARLIER, J., AND PINSON, E. Adjustment of heads and tails for
the job-shop problem. European Journal of Operational Research 78, 2
(1994), 146–161.

[35] CARUANA, R. Multitask learning. Machine learning 28, 1 (1997), 41–
75.

[36] CHARNIAK, E. Introduction to artificial intelligence. Pearson Educa-
tion India, 1985.

[37] CHEN, H., CHU, C., AND PROTH, J.-M. An improvement of the
lagrangean relaxation approach for job shop scheduling: a dynamic
programming method. IEEE Transactions on Robotics and Automation
14, 5 (1998), 786–795.

[38] CHEN, K., XUE, B., ZHANG, M., AND ZHOU, F. Novel chaotic
grouping particle swarm optimization with a dynamic regrouping
strategy for solving numerical optimization tasks. Knowledge-Based
Systems (2020), 105568.

[39] CHEN, K., XUE, B., ZHANG, M., AND ZHOU, F. An evo-
lutionary multitasking-based feature selection method for high-
dimensional classification. IEEE Transactions on Cybernetics (2020.
Doi: 10.1109/TCYB.2020.3042243).

[40] CHEN, K., ZHOU, F., AND XUE, B. Particle swarm optimization
for feature selection with adaptive mechanism and new updating
strategy. In Proceedings of the Australasian Joint Conference on Artificial
Intelligence (2018), Springer, pp. 419–431.

244 BIBLIOGRAPHY

[41] CHEN, K., ZHOU, F., AND YUAN, X. Hybrid particle swarm opti-
mization with spiral-shaped mechanism for feature selection. Expert
Systems with Applications 128 (2019), 140–156.

[42] CHEN, Q., ZHANG, M., AND XUE, B. Feature selection to improve
generalization of genetic programming for high-dimensional sym-
bolic regression. IEEE Transactions on Evolutionary Computation 21, 5
(2017), 792–806.

[43] CHEN, Q., ZHANG, M., AND XUE, B. Geometric semantic genetic
programming with perpendicular crossover and random segment
mutation for symbolic regression. In Proceedings of the Simulated Evo-
lution and Learning (2017), pp. 422–434.

[44] CHEN, Q., ZHANG, M., AND XUE, B. Structural risk minimization-
driven genetic programming for enhancing generalization in sym-
bolic regression. IEEE Transactions on Evolutionary Computation 23, 4
(2019), 703–717.

[45] CHEN, Z., ZHOU, Y., HE, X., AND ZHANG, J. Learning task
relationships in evolutionary multitasking for multiobjective con-
tinuous optimization. IEEE Transactions on Cybernetics (2020, Doi:
10.1109/TCYB.2020.3029176).

[46] CHENG, R., GEN, M., AND TSUJIMURA, Y. A tutorial survey of job-
shop scheduling problems using genetic algorithms, part ii: hybrid
genetic search strategies. Computers & Industrial Engineering 36, 2
(1999), 343–364.

[47] CHIANG, T.-C., AND FU, L.-C. Using dispatching rules for job shop
scheduling with due date-based objectives. International Journal of
Production Research 45, 14 (2007), 3245–3262.

[48] CHONG, C. S., SIVAKUMAR, A. I., LOW, M. Y. H., AND GAY, K. L.
A bee colony optimization algorithm to job shop scheduling. In Pro-

BIBLIOGRAPHY 245

ceedings of the Conference on Winter Simulation (2006), Winter Simula-
tion Conference, pp. 1954–1961.

[49] CHUGH, T., JIN, Y., MIETTINEN, K., HAKANEN, J., AND SINDHYA,
K. A surrogate-assisted reference vector guided evolutionary algo-
rithm for computationally expensive many-objective optimization.
IEEE Transactions Evolutionary Computation 22, 1 (2018), 129–142.

[50] CONROY, G. Handbook of genetic algorithms. The Knowledge Engi-
neering Review 6, 4 (1991), 363–365.

[51] COWLING, P., KENDALL, G., AND SOUBEIGA, E. A hyperheuristic
approach to scheduling a sales summit. In Proceedings of the Inter-
national Conference on the Practice and Theory of Automated Timetabling
(2000), Springer, pp. 176–190.

[52] COWLING, P., KENDALL, G., AND SOUBEIGA, E. A parameter-
free hyperheuristic for scheduling a sales summit. In Proceedings
of the Metaheuristic International Conference (2001), vol. 2001, Citeseer,
pp. 127–131.

[53] DA, B., ONG, Y.-S., FENG, L., QIN, A. K., GUPTA, A., ZHU, Z.,
TING, C.-K., TANG, K., AND YAO, X. Evolutionary multitasking
for single-objective continuous optimization: Benchmark problems,
performance metric, and baseline results. arXiv:1706.03470 (2017).

[54] DANIEL, W. W., ET AL. Applied nonparametric statistics. Houghton
Mifflin, 1978.

[55] DANIELSSON, P.-E. Euclidean distance mapping. Computer Graphics
and Image Processing 14, 3 (1980), 227–248.

[56] DASH, M., AND LIU, H. Feature selection for classification. Intelli-
gent Data Analysis 1, 3 (1997), 131–156.

246 BIBLIOGRAPHY

[57] DAVIS, J. P., EISENHARDT, K. M., AND BINGHAM, C. B. Developing
theory through simulation methods. Academy of Management Review
32, 2 (2007), 480–499.

[58] DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transac-
tions on Evolutionary Computation 6, 2 (2002), 182–197.

[59] DICK, G. Sensitivity-like analysis for feature selection in genetic
programming. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (2017), pp. 401–408.

[60] DICK, G., RIMONI, A. P., AND WHIGHAM, P. A. A re-examination
of the use of genetic programming on the oral bioavailability prob-
lem. In Proceedings of the Conference on Genetic and Evolutionary Com-
putation (2015), pp. 1015–1022.

[61] DIMOPOULOS, C., AND ZALZALA, A. M. Investigating the use of
genetic programming for a classic one-machine scheduling problem.
Advances in Engineering Software 32, 6 (2001), 489–498.

[62] DING, J., YANG, C., JIN, Y., AND CHAI, T. Generalized multitasking
for evolutionary optimization of expensive problems. IEEE Transac-
tions on Evolutionary Computation 23, 1 (2017), 44–58.

[63] DINH, T. T. H., CHU, T. H., AND NGUYEN, Q. U. Transfer learn-
ing in genetic programming. In Proceedings of the IEEE Congress on
Evolutionary Computation (2015), IEEE, pp. 1145–1151.

[64] DOERR, B., KÖTZING, T., LAGODZINSKI, J. G., AND LENGLER, J.
Bounding bloat in genetic programming. In Proceedings of the Genetic
and Evolutionary Computation Conference (2017), pp. 921–928.

[65] DOMINIC, P. D., KALIYAMOORTHY, S., AND KUMAR, M. S. Efficient
dispatching rules for dynamic job shop scheduling. The International
Journal of Advanced Manufacturing Technology 24, 1-2 (2004), 70–75.

BIBLIOGRAPHY 247

[66] DORIGO, M., BIRATTARI, M., AND STUTZLE, T. Ant colony opti-
mization. IEEE Computational Intelligence Magazine 1, 4 (2006), 28–39.

[67] DOUGUET, D. e-LEA3D: a computational-aided drug design web
server. Nucleic Acids Research 38, suppl 2 (2010), W615–W621.

[68] DOWSLAND, K. A., SOUBEIGA, E., AND BURKE, E. A simulated an-
nealing based hyperheuristic for determining shipper sizes for stor-
age and transportation. European Journal of Operational Research 179,
3 (2007), 759–774.

[69] DURASEVIC, M., AND JAKOBOVIC, D. Evolving dispatching rules
for optimising many-objective criteria in the unrelated machines
environment. Genetic Programming and Evolvable Machines 19, 1-2
(2018), 9–51.

[70] DURASEVIC, M., AND JAKOBOVIC, D. A survey of dispatching rules
for the dynamic unrelated machines environment. Expert Systems
with Applications 113 (2018), 555–569.

[71] DURASEVIC, M., JAKOBOVIC, D., AND KNEZEVIC, K. Adaptive
scheduling on unrelated machines with genetic programming. Ap-
plied Soft Computing 48 (2016), 419–430.

[72] EIBEN, A. E., AND SMITH, J. E. What is an evolutionary algorithm?
In Introduction to Evolutionary Computing. Springer, 2015, pp. 25–48.

[73] EMMERICH, M., GIOTIS, A., ÖZDEMIR, M., BÄCK, T., AND GIAN-
NAKOGLOU, K. Metamodel—Assisted evolution strategies. In In-
ternational Conference on Parallel Problem Solving from Nature (2002),
Springer, pp. 361–370.

[74] FATTAHI, P., AND FALLAHI, A. Dynamic scheduling in flexible job
shop systems by considering simultaneously efficiency and stability.

248 BIBLIOGRAPHY

CIRP Journal of Manufacturing Science and Technology 2, 2 (2010), 114–
123.

[75] FENG, L., ZHOU, L., ZHONG, J., GUPTA, A., ONG, Y.-S., TAN, K.-
C., AND QIN, A. Evolutionary multitasking via explicit autoencod-
ing. IEEE Transactions on Cybernetics 49, 9 (2018), 3457–3470.

[76] FISHER, M., AND RAMAN, A. Reducing the cost of demand uncer-
tainty through accurate response to early sales. Operations Research
44, 1 (1996), 87–99.

[77] FOGEL, D. B. An overview of evolutionary programming. In Pro-
ceedings of the Evolutionary Algorithms (1999), Springer, pp. 89–109.

[78] GARZA-SANTISTEBAN, F., CRUZ-DUARTE, J. M., AMAYA, I.,
ORTIZ-BAYLISS, J. C., CONANT-PABLOS, S. E., AND TERASHIMA-
MARÍN, H. Influence of instance size on selection hyper-heuristics
for job shop scheduling problems. In Proceedings of the IEEE Sympo-
sium Series on Computational Intelligence (2019), IEEE, pp. 1708–1715.

[79] GARZA-SANTISTEBAN, F., SÁNCHEZ-PÁMANES, R., PUENTE-
RODRÍGUEZ, L. A., AMAYA, I., ORTIZ-BAYLISS, J. C., CONANT-
PABLOS, S., AND TERASHIMA-MARÍN, H. A simulated annealing
hyper-heuristic for job shop scheduling problems. In Proceedings of
the IEEE Congress on Evolutionary Computation (2019), IEEE, pp. 57–
64.

[80] GEIGER, C. D., UZSOY, R., AND AYTUĞ, H. Rapid modeling and
discovery of priority dispatching rules: An autonomous learning
approach. Journal of Scheduling 9, 1 (2006), 7–34.

[81] GILPIN, L. H., BAU, D., YUAN, B. Z., BAJWA, A., SPECTER, M.,
AND KAGAL, L. Explaining explanations: An overview of inter-
pretability of machine learning. In Proceedings of the IEEE Interna-

BIBLIOGRAPHY 249

tional Conference on Data Science and Advanced Analytics (2018), IEEE,
pp. 80–89.

[82] GOMES, M. C., BARBOSA-PÓVOA, A. P., AND NOVAIS, A. Q. Reac-
tive scheduling in a make-to-order flexible job shop with re-entrant
process and assembly: a mathematical programming approach. In-
ternational Journal of Production Research 51, 17 (2013), 5120–5141.

[83] GONG, G., CHIONG, R., DENG, Q., AND GONG, X. A hybrid ar-
tificial bee colony algorithm for flexible job shop scheduling with
worker flexibility. International Journal of Production Research 58, 14
(2020), 4406–4420.

[84] GONG, M., TANG, Z., LI, H., AND ZHANG, J. Evolutionary multi-
tasking with dynamic resource allocating strategy. IEEE Transactions
on Evolutionary Computation 23, 5 (2019), 858–869.

[85] GOODFELLOW, I., BENGIO, Y., AND COURVILLE, A. Machine learn-
ing basics. Deep learning 1 (2016), 98–164.

[86] GRABOWSKI, J., NOWICKI, E., AND ZDRZAŁKA, S. A block ap-
proach for single-machine scheduling with release dates and due
dates. European Journal of Operational Research 26, 2 (1986), 278–285.

[87] GRAVES, S. C. A review of production scheduling. Operations Re-
search 29, 4 (1981), 646–675.

[88] GROMICHO, J. A., VAN HOORN, J. J., SALDANHA-DA GAMA, F.,
AND TIMMER, G. T. Solving the job-shop scheduling problem op-
timally by dynamic programming. Computers & Operations Research
39, 12 (2012), 2968–2977.

[89] GU, S., CHENG, R., AND JIN, Y. Feature selection for high-
dimensional classification using a competitive swarm optimizer. Soft
Computing 22, 3 (2018), 811–822.

250 BIBLIOGRAPHY

[90] GUPTA, A., ONG, Y., FENG, L., AND TAN, K. C. Multiobjec-
tive multifactorial optimization in evolutionary multitasking. IEEE
Transactions on Cybernetics 47, 7 (2017), 1652–1665.

[91] GUPTA, A., ONG, Y.-S., AND FENG, L. Multifactorial evolution:
toward evolutionary multitasking. IEEE Transactions on Evolutionary
Computation 20, 3 (2015), 343–357.

[92] GUPTA, A., ONG, Y.-S., AND FENG, L. Insights on transfer opti-
mization: Because experience is the best teacher. IEEE Transactions
on Emerging Topics in Computational Intelligence 2, 1 (2017), 51–64.

[93] GUYON, I., AND ELISSEEFF, A. An introduction to variable and
feature selection. Journal of Machine Learning Research 3 (2003), 1157–
1182.

[94] GUZEK, M., BOUVRY, P., AND TALBI, E.-G. A survey of evolution-
ary computation for resource management of processing in cloud
computing. IEEE Computational Intelligence Magazine 10, 2 (2015),
53–67.

[95] HAJIRAMEZANALI, E., DADANEH, S. Z., KARBALAYGHAREH, A.,
ZHOU, M., AND QIAN, X. Bayesian multi-domain learning for can-
cer subtype discovery from next-generation sequencing count data.
arXiv preprint arXiv:1810.09433 (2018).

[96] HAO, X., QU, R., AND LIU, J. A unified framework of graph-based
evolutionary multitasking hyper-heuristic. IEEE Transactions on Evo-
lutionary Computation (2020. Doi: 10.1109/TEVC.2020.2991717).

[97] HART, E., AND SIM, K. A hyper-heuristic ensemble method for
static job-shop scheduling. Evolutionary Computation 24, 4 (2016),
609–635.

BIBLIOGRAPHY 251

[98] HELD, M., AND KARP, R. M. A dynamic programming approach to
sequencing problems. Journal of the Society for Industrial and Applied
Mathematics 10, 1 (1962), 196–210.

[99] HILDEBRANDT, T., AND BRANKE, J. On using surrogates with ge-
netic programming. Evolutionary Computation 23, 3 (2015), 343–367.

[100] HILDEBRANDT, T., HEGER, J., AND SCHOLZ-REITER, B. Towards
improved dispatching rules for complex shop floor scenarios: a ge-
netic programming approach. In Proceedings of the Conference on Ge-
netic and Evolutionary Computation (2010), ACM, pp. 257–264.

[101] HO, N. B., AND TAY, J. C. Evolving dispatching rules for solving
the flexible job-shop problem. In Proceedings of the IEEE Congress on
Evolutionary Computation (2005), pp. 2848–2855.

[102] HOFFMANN, P. A dynamic limit order market with fast and slow
traders. Journal of Financial Economics 113, 1 (2014), 156–169.

[103] HOLTHAUS, O., AND RAJENDRAN, C. Efficient jobshop dispatching
rules: further developments. Production Planning & Control 11, 2
(2000), 171–178.

[104] HUANG, S., ZHONG, J., AND YU, W. Surrogate-assisted evolution-
ary framework with adaptive knowledge transfer for multi-task op-
timization. IEEE Transactions on Emerging Topics in Computing (2019).

[105] HUNT, R. Genetic Programming Hyper-heuristics for Job Shop Schedul-
ing. Victoria University of Wellington, 2016.

[106] HUNT, R., JOHNSTON, M., AND ZHANG, M. Evolving less-myopic
scheduling rules for dynamic job shop scheduling with genetic pro-
gramming. In Proceedings of the Conference on Genetic and Evolutionary
Computation (2014), ACM, pp. 927–934.

252 BIBLIOGRAPHY

[107] HYDE, M. R. A genetic programming hyper-heuristic approach to auto-
mated packing. PhD thesis, University of Nottingham, UK, 2010.

[108] IBA, H., AND DE GARIS, H. Extending genetic programming with
recombinative guidance. Advances in Genetic Grogramming 2 (1996),
69–88.

[109] IQBAL, M., XUE, B., AL-SAHAF, H., AND ZHANG, M. Cross-
domain reuse of extracted knowledge in genetic programming for
image classification. IEEE Transactions on Evolutionary Computation
21, 4 (2017), 569–587.

[110] ITO, T., IBA, H., AND SATO, S. A self-tuning mechanism for depth-
dependent crossover. Advances in Genetic Programming 3 (1999), 377.

[111] IWASAKI, Y., SUZUKI, I., YAMAMOTO, M., AND FURUKAWA, M.
Job-shop scheduling approach to order-picking problem. Transac-
tions of the Institute of Systems, Control and Information Engineers 26, 3
(2013), 103–109.

[112] JAKOBOVIĆ, D., AND BUDIN, L. Dynamic scheduling with genetic
programming. In Proceedings of the European Conference on Genetic
Programming (2006), Springer, pp. 73–84.

[113] JAKOBOVIĆ, D., JELENKOVIĆ, L., AND BUDIN, L. Genetic program-
ming heuristics for multiple machine scheduling. In Proceedings
of the European Conference on Genetic Programming (2007), Springer,
pp. 321–330.

[114] JAYAMOHAN, M., AND RAJENDRAN, C. New dispatching rules for
shop scheduling: a step forward. International Journal of Production
Research 38, 3 (2000), 563–586.

[115] JAYAMOHAN, M., AND RAJENDRAN, C. Development and analysis
of cost-based dispatching rules for job shop scheduling. European
Journal of Operational Research 157, 2 (2004), 307–321.

BIBLIOGRAPHY 253

[116] JIN, Y. Surrogate-assisted evolutionary computation: Recent ad-
vances and future challenges. Swarm and Evolutionary Computation
1, 2 (2011), 61–70.

[117] JIN, Y., WANG, H., CHUGH, T., GUO, D., AND MIETTINEN, K.
Data-driven evolutionary optimization: An overview and case stud-
ies. IEEE Transactions on Evolutionary Computation 23, 3 (2018), 442–
458.

[118] JONES, A., RABELO, L. C., AND SHARAWI, A. T. Survey of job shop
scheduling techniques. NISTIR, National Institute of Standards and
Technology, Gaithersburg, MD (1998).

[119] JORDAN, M. I., AND MITCHELL, T. M. Machine learning: Trends,
perspectives, and prospects. Science 349, 6245 (2015), 255–260.

[120] JURADO, S., NEBOT, À., MUGICA, F., AND AVELLANA, N. Hybrid
methodologies for electricity load forecasting: Entropy-based fea-
ture selection with machine learning and soft computing techniques.
Energy 86 (2015), 276–291.

[121] KABAN, A., OTHMAN, Z., AND ROHMAH, D. Comparison of dis-
patching rules in job-shop scheduling problem using simulation: a
case study. International Journal of Simulation Modelling 11, 3 (2012),
129–140.

[122] KANET, J. J., AND LI, X. A weighted modified due date rule for
sequencing to minimize weighted tardiness. Journal of Scheduling 7,
4 (2004), 261–276.

[123] KARUNAKARAN, D., MEI, Y., AND ZHANG, M. Multitasking ge-
netic programming for stochastic team orienteering problem with
time windows. In Proceedings of the IEEE Symposium Series on Com-
putational Intelligence (2019), IEEE, pp. 1598–1605.

254 BIBLIOGRAPHY

[124] KENNEDY, J. Particle swarm optimization. Encyclopedia of Machine
Learning (2010), 760–766.

[125] KENNEDY, J., AND EBERHART, R. Particle swarm optimization. In
Proceedings of the International Conference on Neural Networks (1995),
vol. 4, IEEE, pp. 1942–1948.

[126] KIM, M. H., MCKAY, R. I. B., HOAI, N. X., AND KIM, K. Operator
self-adaptation in genetic programming. In Proceedings of the Euro-
pean Conference on Genetic Programming (2011), Springer, pp. 215–226.

[127] KOULAMAS, C. A new constructive heuristic for the flowshop
scheduling problem. European Journal of Operational Research 105, 1
(1998), 66–71.

[128] KOZA, J. R. Genetic programming: A paradigm for genetically breeding
populations of computer programs to solve problems, vol. 34. Stanford
University, Department of Computer Science Stanford, CA, 1990.

[129] KOZA, J. R. Genetic programming as a means for programming
computers by natural selection. Statistics and Computing 4, 2 (1994),
87–112.

[130] KOZA, J. R., KEANE, M. A., STREETER, M. J., MYDLOWEC, W.,
YU, J., AND LANZA, G. Genetic programming IV: Routine human-
competitive machine intelligence, vol. 5. Springer Science & Business
Media, 2006.

[131] KOZA, J. R., AND POLI, R. Genetic programming. In Search Method-
ologies. Springer, 2005, pp. 127–164.

[132] KULLBACK, S. Information theory and statistics. Courier Corporation,
1997.

BIBLIOGRAPHY 255

[133] LAMÉ, G., AND DIXON-WOODS, M. Using clinical simulation to
study how to improve quality and safety in healthcare. BMJ Simula-
tion and Technology Enhanced Learning 6, 2 (2020), 87–94.

[134] LAWLER, E. L., AND MOORE, J. M. A functional equation and its
application to resource allocation and sequencing problems. Man-
agement Science 16, 1 (1969), 77–84.

[135] LAWLER, E. L., AND WOOD, D. E. Branch-and-bound methods: A
survey. Operations Research 14, 4 (1966), 699–719.

[136] LENSEN, A., XUE, B., AND ZHANG, M. Particle swarm optimisation
representations for simultaneous clustering and feature selection. In
Proceedings of the IEEE Symposium Series on Computational Intelligence
(2016), pp. 1–8.

[137] LEUSIN, M. E., FRAZZON, E. M., URIONA MALDONADO, M.,
KÜCK, M., AND FREITAG, M. Solving the job-shop scheduling prob-
lem in the industry 4.0 era. Technologies 6, 4 (2018), 107.

[138] LI, G., LIN, Q., AND GAO, W. Multifactorial optimization via ex-
plicit multipopulation evolutionary framework. Information Sciences
512 (2020), 1555–1570.

[139] LI, H., ONG, Y.-S., GONG, M., AND WANG, Z. Evolutionary mul-
titasking sparse reconstruction: Framework and case study. IEEE
Transactions on Evolutionary Computation 23, 5 (2018), 733–747.

[140] LI, L., ZHANG, F., LIU, C., AND NIU, B. A hybrid artificial bee
colony algorithm with bacterial foraging optimization. In Proceed-
ings of the IEEE International Conference on Cyber Technology in Au-
tomation, Control, and Intelligent Systems (2015), IEEE, pp. 127–132.

[141] LIAN, Z., JIAO, B., AND GU, X. A similar particle swarm optimiza-
tion algorithm for job-shop scheduling to minimize makespan. Ap-
plied Mathematics and Computation 183, 2 (2006), 1008–1017.

256 BIBLIOGRAPHY

[142] LIANG, Z., ZHANG, J., FENG, L., AND ZHU, Z. A hybrid of genetic
transform and hyper-rectangle search strategies for evolutionary
multi-tasking. Expert Systems with Applications 138 (2019), 112798.

[143] LIN, J., LIU, H.-L., TAN, K. C., AND GU, F. An effec-
tive knowledge transfer approach for multiobjective multitask-
ing optimization. IEEE Transactions on Cybernetics (2020. Doi:
10.1109/TCYB.2020.2969025).

[144] LIN, T.-L., HORNG, S.-J., KAO, T.-W., CHEN, Y.-H., RUN, R.-S.,
CHEN, R.-J., LAI, J.-L., AND KUO, I.-H. An efficient job-shop
scheduling algorithm based on particle swarm optimization. Expert
Systems with Applications 37, 3 (2010), 2629–2636.

[145] LIPOWSKI, A., AND LIPOWSKA, D. Roulette-wheel selection via
stochastic acceptance. Physica A: Statistical Mechanics and its Appli-
cations 391, 6 (2012), 2193–2196.

[146] LIU, D., HUANG, S., AND ZHONG, J. Surrogate-assisted multi-
tasking memetic algorithm. In Proceedings of the IEEE Congress on
Evolutionary Computation (2018), pp. 1–8.

[147] LIU, D., JIANG, T., WANG, Y., MIAO, R., SHAN, F., AND LI, Z.
Clearness of operating field: a surrogate for surgical skills on in vivo
clinical data. International Journal of Computer Assisted Radiology and
Surgery 15, 11 (2020), 1817–1824.

[148] LIU, H., AND MOTODA, H. Feature extraction, construction and selec-
tion: A data mining perspective, vol. 453. Springer Science & Business
Media, 1998.

[149] LIU, Y., WANG, L., WANG, X. V., XU, X., AND ZHANG, L. Schedul-
ing in cloud manufacturing: state-of-the-art and research challenges.
International Journal of Production Research 57, 15-16 (2019), 4854–
4879.

BIBLIOGRAPHY 257

[150] MANNE, A. S. On the job-shop scheduling problem. Operations
Research 8, 2 (1960), 219–223.

[151] MCPHEE, N. F., DRAMDAHL, M. K., AND DONATUCCI, D. Impact
of crossover bias in genetic programming. In Proceedings of the Ge-
netic and Evolutionary Computation Conference (2015), pp. 1079–1086.

[152] MEI, Y., NGUYEN, S., XUE, B., AND ZHANG, M. An efficient fea-
ture selection algorithm for evolving job shop scheduling rules with
genetic programming. IEEE Transactions on Emerging Topics in Com-
putational Intelligence 1, 5 (2017), 339–353.

[153] MEI, Y., NGUYEN, S., AND ZHANG, M. Constrained dimensionally
aware genetic programming for evolving interpretable dispatch-
ing rules in dynamic job shop scheduling. In Proceedings of the
Asia-Pacific Conference on Simulated Evolution and Learning (2017),
Springer, pp. 435–447.

[154] MEI, Y., NGUYEN, S., AND ZHANG, M. Evolving time-invariant dis-
patching rules in job shop scheduling with genetic programming. In
Proceedings of the European Conference on Genetic Programming (2017),
Springer, pp. 147–163.

[155] MEI, Y., ZHANG, M., AND NYUGEN, S. Feature selection in evolv-
ing job shop dispatching rules with genetic programming. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (2016),
ACM, pp. 365–372.

[156] MILLER, J. F., AND HARDING, S. L. Cartesian genetic program-
ming. In Proceedings of the Conference on Genetic and Evolutionary
Computation (2008), pp. 2701–2726.

[157] MIN, A. T. W., ONG, Y.-S., GUPTA, A., AND GOH, C.-K. Multi-
problem surrogates: transfer evolutionary multiobjective optimiza-

258 BIBLIOGRAPHY

tion of computationally expensive problems. IEEE Transactions on
Evolutionary Computation 23, 1 (2017), 15–28.

[158] MIYASHITA, K. Job-shop scheduling with genetic programming. In
Proceedings of the Conference on Genetic and Evolutionary Computation
(2000), Morgan Kaufmann Publishers Inc., pp. 505–512.

[159] MOHAN, J., LANKA, K., AND RAO, A. N. A review of dynamic job
shop scheduling techniques. Procedia Manufacturing 30 (2019), 34–39.

[160] MOHRI, M., ROSTAMIZADEH, A., AND TALWALKAR, A. Foundations
of machine learning. MIT press, 2018.

[161] NADAFZADEH, M., MEHDIZADEH, S. A., AND SOLTANIKAZEMI,
M. Development of computer vision system to predict peroxidase
and polyphenol oxidase enzymes to evaluate the process of banana
peel browning using genetic programming modeling. Scientia Hor-
ticulturae 231 (2018), 201–209.

[162] NAG, K., AND PAL, N. R. A multiobjective genetic programming-
based ensemble for simultaneous feature selection and classifica-
tion. IEEE Transactions on Cybernetics 46, 2 (2016), 499–510.

[163] NESHATIAN, K., AND ZHANG, M. Unsupervised elimination of re-
dundant features using genetic programming. In Proceedings of the
Australasian Joint Conference on Artificial Intelligence (2009), Springer,
pp. 432–442.

[164] NGUYEN, Q. U., PHAM, T. A., NGUYEN, X. H., AND MCDERMOTT,
J. Subtree semantic geometric crossover for genetic programming.
Genetic Programming and Evolvable Machines 17, 1 (2016), 25–53.

[165] NGUYEN, S., MEI, Y., XUE, B., AND ZHANG, M. A hybrid genetic
programming algorithm for automated design of dispatching rules.
Evolutionary Computation 27, 3 (2019), 467–496.

BIBLIOGRAPHY 259

[166] NGUYEN, S., MEI, Y., AND ZHANG, M. Genetic programming for
production scheduling: a survey with a unified framework. Complex
& Intelligent Systems 3, 1 (2017), 41–66.

[167] NGUYEN, S., ZHANG, M., ALAHAKOON, D., AND TAN, K. C. Vi-
sualizing the evolution of computer programs for genetic program-
ming. IEEE Computational Intelligence Magazine 13, 4 (2018), 77–94.

[168] NGUYEN, S., ZHANG, M., ALAHAKOON, D., AND TAN,
K. C. People-centric evolutionary system for dynamic production
scheduling. IEEE Transactions on Cybernetics (2019).

[169] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. A co-
evolution genetic programming method to evolve scheduling poli-
cies for dynamic multi-objective job shop scheduling problems. In
IEEE Congress on Evolutionary Computation (2012), pp. 1–8.

[170] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. A
computational study of representations in genetic programming to
evolve dispatching rules for the job shop scheduling problem. IEEE
Transactions on Evolutionary Computation 17, 5 (2013), 621–639.

[171] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Hy-
brid evolutionary computation methods for quay crane scheduling
problems. Computers & Operations Research 40, 8 (2013), 2083–2093.

[172] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Auto-
matic design of scheduling policies for dynamic multi-objective job
shop scheduling via cooperative coevolution genetic programming.
IEEE Transactions on Evolutionary Computation 18, 2 (2014), 193–208.

[173] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Genetic
programming for evolving due-date assignment models in job shop
environments. Evolutionary Computation 22, 1 (2014), 105–138.

260 BIBLIOGRAPHY

[174] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Se-
lection schemes in surrogate-assisted genetic programming for job
shop scheduling. In Proceedings of the Asia-Pacific Conference on Sim-
ulated Evolution and Learning (2014), Springer, pp. 656–667.

[175] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Auto-
matic programming via iterated local search for dynamic job shop
scheduling. IEEE Transactions on Cybernetics 45, 1 (2015), 1–14.

[176] NGUYEN, S., ZHANG, M., AND TAN, K. C. Surrogate-assisted ge-
netic programming with simplified models for automated design of
dispatching rules. IEEE Transactions on Cybernetics 47, 9 (2017), 2951–
2965.

[177] NIE, L., SHAO, X., GAO, L., AND LI, W. Evolving scheduling rules
with gene expression programming for dynamic single-machine
scheduling problems. The International Journal of Advanced Manu-
facturing Technology 50, 5-8 (2010), 729–747.

[178] NIEHAUS, J., AND BANZHAF, W. Adaption of operator probabilities
in genetic programming. In Proceedings of the European Conference on
Genetic Programming (2001), pp. 325–336.

[179] NIU, B., ZHANG, F., LI, L., AND WU, L. Particle swarm optimiza-
tion for yard truck scheduling in container terminal with a cooper-
ative strategy. In Intelligent and Evolutionary Systems. Springer, 2017,
pp. 333–346.

[180] NOWICKI, E., AND SMUTNICKI, C. A fast taboo search algorithm
for the job shop problem. Management Science 42, 6 (1996), 797–813.

[181] OLTEAN, M., AND GROSAN, C. A comparison of several linear ge-
netic programming techniques. Complex Systems 14, 4 (2003), 285–
314.

BIBLIOGRAPHY 261

[182] ONG, Y.-S., AND GUPTA, A. Evolutionary multitasking: a computer
science view of cognitive multitasking. Cognitive Computation 8, 2
(2016), 125–142.

[183] ONG, Y.-S., ZHOU, Z., AND LIM, D. Curse and blessing of uncer-
tainty in evolutionary algorithm using approximation. In Proceed-
ings of the IEEE International Conference on Evolutionary Computation
(2006), IEEE, pp. 2928–2935.

[184] O’REILLY, U.-M., AND OPPACHER, F. Program search with a hier-
archical variable length representation: Genetic programming, sim-
ulated annealing and hill climbing. In International Conference on Par-
allel Problem Solving from Nature (1994), Springer, pp. 397–406.

[185] PAN, S. J., AND YANG, Q. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering 22, 10 (2010), 1345–
1359.

[186] PARK, J., MEI, Y., NGUYEN, S., CHEN, G., AND ZHANG, M. Evo-
lutionary multitask optimisation for dynamic job shop scheduling
using niched genetic programming. In Proceedings of the Australasian
Joint Conference on Artificial Intelligence (2018), Springer, pp. 739–751.

[187] PARK, J., MEI, Y., NGUYEN, S., CHEN, G., AND ZHANG, M. Inves-
tigating a machine breakdown genetic programming approach for
dynamic job shop scheduling. In Proceedings of the European Confer-
ence on Genetic Programming (2018), Springer, pp. 253–270.

[188] PARK, J., MEI, Y., NGUYEN, S., CHEN, G., AND ZHANG, M. An
investigation of ensemble combination schemes for genetic pro-
gramming based hyper-heuristic approaches to dynamic job shop
scheduling. Applied Soft Computing 63 (2018), 72–86.

262 BIBLIOGRAPHY

[189] PARK, J., AND SANDBERG, I. W. Universal approximation using
radial-basis-function networks. Neural Computation 3, 2 (1991), 246–
257.

[190] PATERSON, N. R., AND LIVESEY, M. Distinguishing genotype and
phenotype in genetic programming. Late Breaking Papers at the Ge-
netic Programming (1996), 141–150.

[191] PAWLAK, T. P., AND KRAWIEC, K. Synthesis of constraints for math-
ematical programming with one-class genetic programming. IEEE
Transactions on Evolutionary Computation 23, 1 (2018), 117–129.

[192] PEARL, J. Heuristics - intelligent search strategies for computer problem
solving. Addison-Wesley, 1984.

[193] PENG, C., WU, G., LIAO, T. W., AND WANG, H. Research on
multi-agent genetic algorithm based on tabu search for the job shop
scheduling problem. PloS one 14, 9 (2019), e0223182.

[194] PETERSON, L. E. K-nearest neighbor. Scholarpedia 4, 2 (2009), 1883.

[195] PÉTROWSKI, A. A clearing procedure as a niching method for ge-
netic algorithms. In Proceedings of the IEEE International Conference on
Evolutionary Computation (1996), pp. 798–803.

[196] PEZZELLA, F., MORGANTI, G., AND CIASCHETTI, G. A genetic al-
gorithm for the flexible job-shop scheduling problem. Computers &
Operations Research 35, 10 (2008), 3202–3212.

[197] PICKARDT, C. W., HILDEBRANDT, T., BRANKE, J., HEGER, J., AND

SCHOLZ-REITER, B. Evolutionary generation of dispatching rule
sets for complex dynamic scheduling problems. International Journal
of Production Economics 145, 1 (2013), 67–77.

BIBLIOGRAPHY 263

[198] PILLAY, N., AND BANZHAF, W. A genetic programming approach
to the generation of hyper-heuristics for the uncapacitated examina-
tion timetabling problem. In Proceedings of the Portuguese Conference
on Aritficial Intelligence (2007), pp. 223–234.

[199] PINEDO, M. Planning and scheduling in manufacturing and services.
Springer, 2005.

[200] PINEDO, M. Scheduling, vol. 29. Springer, 2012.

[201] POLI, R. Evolution of graph-like programs with parallel distributed
genetic programming. In Proceedings of the International Conference on
Genetic Algorithms (1997), pp. 346–353.

[202] POLI, R., LANGDON, W. B., MCPHEE, N. F., AND KOZA, J. R. A
field guide to genetic programming. Lulu. com, 2008.

[203] POLI, R., AND MCPHEE, N. F. General schema theory for genetic
programming with subtree-swapping crossover: Part I. Evolutionary
Computation 11, 1 (2003), 53–66.

[204] POLI, R., AND MCPHEE, N. F. General schema theory for genetic
programming with subtree-swapping crossover: Part II. Evolution-
ary Computation 11, 2 (2003), 169–206.

[205] POTTS, C. N., AND STRUSEVICH, V. A. Fifty years of scheduling: a
survey of milestones. Journal of the Operational Research Society 60, 1
(2009), S41–S68.

[206] RAJENDRAN, C., AND HOLTHAUS, O. A comparative study of dis-
patching rules in dynamic flowshops and jobshops. European Journal
of Operational Research 116, 1 (1999), 156–170.

[207] RAQUEL, C., AND YAO, X. Dynamic multi-objective optimization: a
survey of the state-of-the-art. In Evolutionary computation for dynamic
optimization problems. Springer, 2013, pp. 85–106.

264 BIBLIOGRAPHY

[208] RASMUSSEN, C. E. Gaussian processes in machine learning. In Sum-
mer School on Machine Learning (2003), Springer, pp. 63–71.

[209] RUSSELL, S. J., AND NORVIG, P. Artificial intelligence - A modern
approach. Pearson Education, 2010.

[210] SAIDI, R., BOUAGUEL, W., AND ESSOUSSI, N. Hybrid feature selec-
tion method based on the genetic algorithm and pearson correlation
coefficient. In Machine Learning Paradigms: Theory and Application.
2019, pp. 3–24.

[211] SAYED, G. I., HASSANIEN, A. E., AND AZAR, A. T. Feature selec-
tion via a novel chaotic crow search algorithm. Neural Computing
and Applications 31, 1 (2019), 171–188.

[212] SELS, V., GHEYSEN, N., AND VANHOUCKE, M. A comparison of
priority rules for the job shop scheduling problem under different
flow time-and tardiness-related objective functions. International
Journal of Production Research 50, 15 (2012), 4255–4270.

[213] SIMON, F. Y.-P., ET AL. Integer linear programming neural networks
for job-shop scheduling. In Proceedings of the IEEE International Con-
ference on Neural Networks (1988), IEEE, pp. 341–348.

[214] SLOAN, T. W. Shop-floor scheduling of semiconductor wafer fabs:
Exploring the influence of technology, market, and performance
objectives. IEEE Transactions on Semiconductor Manufacturing 16, 2
(2003), 281–289.

[215] SONG, H.-B., AND LIN, J. A genetic programming hyper-heuristic
for the distributed assembly permutation flow-shop scheduling
problem with sequence dependent setup times. Swarm and Evolu-
tionary Computation 60 (2021), 100807.

BIBLIOGRAPHY 265

[216] SOTSKOV, Y. N., AND SHAKHLEVICH, N. V. NP-hardness of shop-
scheduling problems with three jobs. Discrete Applied Mathematics
59, 3 (1995), 237–266.

[217] SUN, X., GONG, D., JIN, Y., AND CHEN, S. A new surrogate-
assisted interactive genetic algorithm with weighted semisuper-
vised learning. IEEE Transactions on Cybernetics 43, 2 (2013), 685–698.

[218] TAN, B., MA, H., AND MEI, Y. A hybrid genetic programming
hyper-heuristic approach for online two-level resource allocation in
container-based clouds. In Proceedings of the IEEE Congress on Evolu-
tionary Computation (2019), IEEE, pp. 2681–2688.

[219] TAY, J. C., AND HO, N. B. Evolving dispatching rules using
genetic programming for solving multi-objective flexible job-shop
problems. Computers & Industrial Engineering 54, 3 (2008), 453–473.

[220] TAY, J. C., AND HO, N. B. Evolving dispatching rules using
genetic programming for solving multi-objective flexible job-shop
problems. Computers & Industrial Engineering 54, 3 (2008), 453–473.

[221] TERAMOTO, K., MORINAGA, E., WAKAMATSU, H., AND ARAI, E. A
neighborhood limitation method for job-shop scheduling based on
simulated annealing. Transactions of the Institute of Systems, Control
and Information Engineers 33, 6 (2020), 171–181.

[222] UY, N. Q., HOAI, N. X., O’NEILL, M., MCKAY, R. I., AND LÓPEZ,
E. G. Semantically-based crossover in genetic programming: appli-
cation to real-valued symbolic regression. Genetic Programming and
Evolvable Machines 12, 2 (2011), 91–119.

[223] UYSAL, A. K. An improved global feature selection scheme for text
classification. Expert Systems with Applications 43 (2016), 82–92.

266 BIBLIOGRAPHY

[224] VAN BREEDAM, A. Improvement heuristics for the vehicle routing
problem based on simulated annealing. European Journal of Opera-
tional Research 86, 3 (1995), 480–490.

[225] VAN LAARHOVEN, P. J., AND AARTS, E. H. Simulated annealing. In
Simulated annealing: Theory and applications. Springer, 1987, pp. 7–15.

[226] VEPSALAINEN, A. P., AND MORTON, T. E. Priority rules for job
shops with weighted tardiness costs. Management Science 33, 8
(1987), 1035–1047.

[227] WANG, S., MEI, Y., AND ZHANG, M. Novel ensemble genetic
programming hyper-heuristics for uncertain capacitated arc routing
problem. In Proceedings of the Genetic and Evolutionary Computation
Conference (2019), pp. 1093–1101.

[228] XIE, H., ZHANG, M., AND ANDREAE, P. An analysis of depth of
crossover points in tree-based genetic programming. In Proceedings
of the IEEE Congress on Evolutionary Computation (2007), pp. 4561–
4568.

[229] XIONG, J., XING, L.-N., AND CHEN, Y.-W. Robust scheduling for
multi-objective flexible job-shop problems with random machine
breakdowns. International Journal of Production Economics 141, 1
(2013), 112–126.

[230] XU, M., ZHANG, F., MEI, Y., AND ZHANG, M. Genetic program-
ming with archive for dynamic flexible job shop scheduling. In
Proceedings of the IEEE Congress on Evolutionary Computation (2021),
IEEE, pp. 2117–2124.

[231] XUE, B., ZHANG, M., BROWNE, W. N., AND YAO, X. A survey
on evolutionary computation approaches to feature selection. IEEE
Transactions Evolutionary Computation 20, 4 (2016), 606–626.

BIBLIOGRAPHY 267

[232] YIN, W.-J., LIU, M., AND WU, C. Learning single-machine schedul-
ing heuristics subject to machine breakdowns with genetic program-
ming. In Proceedings of the IEEE Congress on Evolutionary Computation
(2003), vol. 2, IEEE, pp. 1050–1055.

[233] YSKA, D., MEI, Y., AND ZHANG, M. Genetic programming hyper-
heuristic with cooperative coevolution for dynamic flexible job shop
scheduling. In European Conference on Genetic Programming (2018),
Springer, pp. 306–321.

[234] YUAN, Y., ONG, Y.-S., GUPTA, A., TAN, P. S., AND XU, H. Evolu-
tionary multitasking in permutation-based combinatorial optimiza-
tion problems: Realization with tsp, qap, lop, and jsp. In Proceedings
of the IEEE Region 10 Conference (2016), IEEE, pp. 3157–3164.

[235] ZARROUK, R., BENNOUR, I. E., AND JEMAI, A. A two-level particle
swarm optimization algorithm for the flexible job shop scheduling
problem. Swarm Intelligence 13, 2 (2019), 145–168.

[236] ZHANG, F., MEI, Y., NGUYEN, S., TAN, K. C., AND ZHANG, M.
Multitask genetic programming-based generative hyper-heuristics:
A case study in dynamic scheduling. IEEE Transactions on Cybernetics
(2021, Doi: 10.1109/TCYB.2021.3065340).

[237] ZHANG, F., MEI, Y., NGUYEN, S., AND ZHANG, M. Genetic pro-
gramming with adaptive search based on the frequency of features
for dynamic flexible job shop scheduling. In Proceedings of the Eu-
ropean Conference on Evolutionary Computation in Combinatorial Opti-
mization (2020), Springer, pp. 214–230.

[238] ZHANG, F., MEI, Y., NGUYEN, S., AND ZHANG, M. Guided subtree
selection for genetic operators in genetic programming for dynamic
flexible job shop scheduling. In Proceedings of the European Conference
on Genetic Programming (2020), Springer, pp. 262–278.

268 BIBLIOGRAPHY

[239] ZHANG, F., MEI, Y., NGUYEN, S., AND ZHANG, M. A preliminary
approach to evolutionary multitasking for dynamic flexible job shop
scheduling via genetic programming. In Proceedings of the Genetic and
Evolutionary Computation Conference (2020), ACM, pp. 107–108.

[240] ZHANG, F., MEI, Y., NGUYEN, S., AND ZHANG, M. Collaborative
multi-fidelity based surrogate models for genetic programming in
dynamic flexible job shop scheduling. IEEE Transactions on Cybernet-
ics (2020. Doi: 10.1109/TCYB.2021.3050141).

[241] ZHANG, F., MEI, Y., NGUYEN, S., AND ZHANG, M. Correlation
coefficient-based recombinative guidance for genetic programming
hyperheuristics in dynamic flexible job shop scheduling. IEEE Trans-
actions on Evolutionary Computation 25, 3 (2021), 552–566.

[242] ZHANG, F., MEI, Y., NGUYEN, S., AND ZHANG, M. Evolving
scheduling heuristics via genetic programming with feature selec-
tion in dynamic flexible job shop scheduling. IEEE Transactions on
Cybernetics 51, 4 (2021), 1797–1811.

[243] ZHANG, F., MEI, Y., NGUYEN, S., ZHANG, M., AND TAN, K. C.
Surrogate-assisted evolutionary multitask genetic programming for
dynamic flexible job shop scheduling. IEEE Transactions on Evolu-
tionary Computation 25, 4 (2021), 651–665.

[244] ZHANG, F., MEI, Y., AND ZHANG, M. Genetic programming with
multi-tree representation for dynamic flexible job shop scheduling.
In Proceedings of the Australasian Joint Conference on Artificial Intelli-
gence (2018), Springer, pp. 472–484.

[245] ZHANG, F., MEI, Y., AND ZHANG, M. Surrogate-assisted genetic
programming for dynamic flexible job shop scheduling. In Proceed-
ings of the Australasian Joint Conference on Artificial Intelligence (2018),
Springer, pp. 766–772.

BIBLIOGRAPHY 269

[246] ZHANG, F., MEI, Y., AND ZHANG, M. Can stochastic dispatch-
ing rules evolved by genetic programming hyper-heuristics help in
dynamic flexible job shop scheduling? In Proceedings of the IEEE
Congress on Evolutionary Computation (2019), IEEE, pp. 41–48.

[247] ZHANG, F., MEI, Y., AND ZHANG, M. Evolving dispatching rules
for multi-objective dynamic flexible job shop scheduling via genetic
programming hyper-heuristics. In Proceedings of the IEEE Congress
on Evolutionary Computation (2019), IEEE, pp. 1366–1373.

[248] ZHANG, F., MEI, Y., AND ZHANG, M. A new representation in
genetic programming for evolving dispatching rules for dynamic
flexible job shop scheduling. In Proceedings of the European Confer-
ence on Evolutionary Computation in Combinatorial Optimization (2019),
Springer, pp. 33–49.

[249] ZHANG, F., MEI, Y., AND ZHANG, M. A two-stage genetic pro-
gramming hyper-heuristic approach with feature selection for dy-
namic flexible job shop scheduling. In Proceedings of the Genetic and
Evolutionary Computation Conference (2019), ACM, pp. 347–355.

[250] ZHANG, G., HU, Y., SUN, J., AND ZHANG, W. An improved genetic
algorithm for the flexible job shop scheduling problem with multi-
ple time constraints. Swarm and Evolutionary Computation 54 (2020),
100664.

[251] ZHANG, J., DING, G., ZOU, Y., QIN, S., AND FU, J. Review of job
shop scheduling research and its new perspectives under industry
4.0. Journal of Intelligent Manufacturing 30, 4 (2019), 1809–1830.

[252] ZHANG, J., JIE, J., WANG, W., AND XU, X. A hybrid particle swarm
optimisation for multi-objective flexible job-shop scheduling prob-
lem with dual-resources constrained. International Journal of Com-
puting Science and Mathematics 8, 6 (2017), 526–532.

270 BIBLIOGRAPHY

[253] ZHANG, M., GAO, X., AND LOU, W. A new crossover operator in
genetic programming for object classification. IEEE Transactions on
Systems, Man, and Cybernetics, Part B 37, 5 (2007), 1332–1343.

[254] ZHANG, X., TIAN, Y., AND JIN, Y. A knee point-driven evolution-
ary algorithm for many-objective optimization. IEEE Transactions
Evolutionary Computation 19, 6 (2015), 761–776.

[255] ZHONG, J., FENG, L., CAI, W., AND ONG, Y.-S. Multifactorial ge-
netic programming for symbolic regression problems. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems (2018).

[256] ZHOU, L., FENG, L., TAN, K. C., ZHONG, J., ZHU, Z., LIU, K., AND

CHEN, C. Toward adaptive knowledge transfer in multifactorial
evolutionary computation. IEEE Transactions on Cybernetics (2020,
Doi: 10.1109/TCYB.2020.2974100).

[257] ZHOU, L., FENG, L., ZHONG, J., ONG, Y.-S., ZHU, Z., AND SHA,
E. Evolutionary multitasking in combinatorial search spaces: A
case study in capacitated vehicle routing problem. In Proceedings of
the IEEE Symposium Series on Computational Intelligence (2016), IEEE,
pp. 1–8.

[258] ZHOU, Q., JIANG, P., SHAO, X., HU, J., CAO, L., AND WAN, L.
A variable fidelity information fusion method based on radial basis
function. Advanced Engineering Informatics 32 (2017), 26–39.

[259] ZHOU, Y., YANG, J.-J., AND ZHENG, L.-Y. Hyper-heuristic coevo-
lution of machine assignment and job sequencing rules for multi-
objective dynamic flexible job shop scheduling. IEEE Access 7 (2018),
68–88.

[260] ZITZLER, E., AND THIELE, L. Multiobjective evolutionary algo-
rithms: a comparative case study and the strength pareto approach.
IEEE Transactions on Evolutionary Computation 3, 4 (1999), 257–271.

