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ABSTRACT
Feature selection (FS) is typically an essential pre-processing step
for many machine learning tasks. However, most existing FS ap-
proaches focus on single-label classification, whereas multi-label
classification (MLC) is an emerging topic where each instance can
be assigned to more than one class label. Sparsity-based FS is an
efficient and effective method that can be applied to MLC. How-
ever, existing sparsity-based approaches based on gradient descent
can get trapped at local optima, and cannot optimise the selected
number of features and classification performance simultaneously
that are often in conflict, thus making FS a multi-objective problem.
Evolutionary multi-objective optimisation (EMO) can be applied to
FS due to its potential global search ability. EMO-based algorithms
have not been utilised in sparsity-based approaches for FS in MLC.
This paper proposes a novel sparsity-based MLC FS method based
on Multi-objective Evolutionary Algorithm with Decomposition
(MOEA/D). The experimental results indicate improvement in the
MLC performance in comparison to a existing multi-objective FS
algorithms.
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1 INTRODUCTION
Classification is the task of predicting a class label based on the
instance’s features. Redundant and irrelevant features are known to
negatively impact the classification performance [1], hence feature
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selection (FS) is proposed to find small discriminate feature subsets
that can improve the classification performance over using all fea-
tures [1, 5]. Most existing FS methods are focused on single-label
classification, where each instance is assigned to a single class label.
However, it is increasingly more common for instances of data to
possess a set of class labels, which is known as multi-label classifi-
cation (MLC). Sparsity-based FS [2] can efficiently and effectively
be applied to solve FS problems for MLC. However, most existing
sparsity-based methods are limited by their tendency to converge
at local optima due to gradient-descent. Furthermore, the two main
objectives of FS, to maximise the classification performance and to
minimise the number of selected features, are often in conflict with
one another [5]. Thus, FS is a multi-objective problem.

Evolutionary Multi-objective Optimisation (EMO) can effectively
solve FS problems by employing a population of solutions, which
can explore the large search space of FS. In particular,Multi-objective
evolutionary algorithm based on decomposition (MOEA/D) [8], a
state-of-the-art EMO algorithm, is capable of evolving more diverse
solutions in comparison to NSGAII and SPEA2 [6].

To the best of our knowledge, sparsity-based EMO has not yet
been applied to solve FS for MLC. Therefore, to address the limi-
tations of existing sparsity-based methods, this paper proposes a
novel sparsity-based FS algorithm based onMOEA/D. The proposed
method is expected to efficiently evolve a diverse set of feature sub-
sets with high classification performance.

2 PROPOSED METHOD
In order to handle multi-label data, a matrix-based representa-
tion enabling sparsity-based optimisation is proposed for MOEA/D
(MOEA/D-SPAR). A candidate solution is represented by a matrix
Z𝑑×𝑞 as shown in Equation (1), where 𝑑 is the number of original
features and 𝑞 is the number of class labels. The 𝑖th row, 1 ≤ 𝑖 ≤ 𝑑 ,
represents the importance of the 𝑖th feature to 𝑞 labels.
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The importance indicates how useful the given feature is in classi-
fying each of the class labels. The selected features of a candidate
solution can be obtained by choosing the top ranked feature rows,
ordered from highest to lowest of their row norms.
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Table 1: Datasets

Dataset #Instances #Features #Labels Domain Cardinality Density
Birds 645 260 19 audio 1.014 0.053

Emotions 593 72 6 music 1.869 0.311
Enron 1702 1001 53 text 3.378 0.064
Genbase 662 1186 27 biology 1.252 0.046
Image 2000 294 5 Image 1.236 0.247
Langlog 1460 1004 75 text 1.180 0.016
Scene 2407 294 6 Image 1.074 0.179
Yeast 2417 103 14 biology 4.237 0.303

In multi-objective sparsity-based FS, the classification perfor-
mance is measured by a reconstruction error that is unbounded [2].
It has been shown that normalising such unbounded objectives may
have negative impact on the performance [4]. Thus, this work aims
to propose a novel decomposition method that does not require to
normalise the objectives. The proposed mechanism decomposes the
problem by using 𝑁 reference points, where 𝑁 is the population
size. A reference point lies on the fRatio axis, which represents an
ideal feature subset (with a classification error of 0) given the cor-
responding feature ratio. Using this method, each reference point
can form a sub-problem which aims to find the best feature subset
given a predefined feature ratio, allowing MOEA/D to directly opti-
mise the reconstruction error, hence not requiring objective space
normalization. The reconstruction error-based objective functions
are given by Equation (2)

𝑅1 (Z) = | |XZ − Y| |𝐹︸                    ︷︷                    ︸
classification loss

, 𝑅2 (Z) = | |XZ − Y| |𝐹 + ||Z| |2𝐹︸                                ︷︷                                ︸
classification loss with regularization

(2)

where X ∈ R𝑛×𝑑 is the training instance matrix, Y ∈ R𝑛×𝑞 is the
training label matrix, Z ∈ R𝑑×𝑞 is the solution matrix, 𝑛 denotes
the number of instances, and 𝐹 denotes the Frobenius norm of the
matrix.

Introducing sparsity regularization is expected to reduce the
overall magnitude of all values in the weight matrices, thus en-
couraging the evolution of sparse solutions that can shrink the
weights of less important features toward zero, hence improving
the overall quality of the population. In this work, each of the two
loss functions 𝑅1 (Z) and 𝑅2 (Z) are used together with the objec-
tive of minimising the number of selected features to form two
seperated algorithms, called MOEA/D-SPAR-𝑅1 (Z) and MOEA/D-
SPAR-𝑅2 (Z), respectively.

Furthermore, due to the sparsity-based representation and differ-
entiable objective functions, a gradient descent-based local search
can be used. This can help MOEA/D-SPAR to evolve higher quality
solutions to evolve in the final front. After a solution is chosen
for crossover or mutation, a copy of it can be enhanced with local
search by setting the derivatives of either 𝑅1 (Z), or 𝑅2 (Z) to zero.

3 EXPERIMENT DESIGN AND RESULTS
The following eight widely used benchmark datasets are chosen. For
each of the eight datasets, a 70/30 stratified split is applied. A wrap-
per based multi-label FS algorithm using MOEA/D (WMOEA/D) is
used as a benchmark that is based on previous work [3]. ML-KNN
[7] with Hamming-Loss is utilised as the wrapped classification

Table 2: Test Set Friedman/Nemenyi Multitest

Metric WMOEAD MOEA/D-SPAR-𝑅1 (Z) MOEA/D-SPAR-𝑅2 (Z)
W/D/L HV 0/0/16 9/5/2 10/5/1
W/D/L IGD 1/3/12 7/5/4 10/4/2

algorithm. The population size 𝑁 is set to 200 [6]. Based on initial
experiments, the maximum number of iterations is set to 800. In
total, each algorithm on each dataset is run over 30 independant
trials.

Table 2 shows a Friedman/Nemenyi significance test, with 𝛼 =

0.05, of the hypervolume (HV) and inverted generational distance
(IGD) metrics of fronts plotted against their Hamming-Loss and
𝑓 𝑅𝑎𝑡𝑖𝑜 values. An aggregate row is presented which sums the wins
(W), draws (D) and losses (L) of each proposed method in compari-
son to all other methods. Both of the proposed methods 𝑅1 (Z) and
𝑅2 (Z) outperform WMOEA/D. In particular, 𝑅2 (Z) mostly outper-
forms all other methods on both HV and IGD metrics. WMOEA/D
is outperformed by the proposed methods on almost all datasets,
indicating that that sparsity-based EMO is capable of solving multi-
label FS problems much better than conventional EC-based FS.

4 CONCLUSIONS
The main contributions of this paper included a new matrix rep-
resentation that allows MOEA/D to perform sparsity-based FS -
MOEA/D-SPAR, a new decomposition method that can control
the number of selected features with a reference point-based strat-
egy, two new multi-label sparsity-based objective functions for
MOEA/D-SPAR: 𝑅1 (Z), and 𝑅2 (Z), and a new efficient local search
strategy to help MOEA/D-SPAR generate high quality solutions.
The experimental results show a significant improvement in per-
formance in comparison with a wrapper-based multi-objective FS
algorithm WMOEA/D.
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