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Abstract. We develop a differential-geometric approach to kinematic
modelling for manipulators which provides a framework for analysing
singularities for forward and inverse kinematics via input and output
mappings defined on the manipulator’s configuration space.
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1 Introduction

The goal of understanding singularities of manipulators, especially parallel ma-
nipulators, has been a major challenge in robot kinematics for more than 35 years.
While there is now detailed understanding of singularities for many specific ar-
chitectures and a number of approaches to analysing and classifying singularities
in general, there is not a robust mathematical model underpinning these. Major
contributions are due to Gosselin and Angeles [6], Zlatanov et al [12] and Park
and Kim [8], who provide a good review of research up to that time.

Following a method proposed by Piipponnen and Tuomela [9], the authors
have developed a differential geometric approach to defining the configuration
space (C-space) for a manipulator, based solely on constraints imposed on com-
ponent links by the joints [1, 2]. This approach, called the kinematic constraint
mapping (KCM), demonstrates that, for a given family of manipulators, typ-
ically there is a single Grashof-type condition, expressible in terms of design
parameters, for which the C-space has a singularity [3].

In this paper, we develop the theory to incorporate inputs and outputs,
based on choice of actuated joints (inputs) and on the manipulator’s workspace
or end-effector (outputs). This approach has a number of advantages over many
previous formulations:

(i) The roles of the variables describing link positions—pose variables in our
terminology—and joint variables are clearly distinguished. This distinction has
been blurred because often joint variables act as surrogates for a pose variables
or vice versa.

(ii) The analysis of singularities is global—the definition of the C-space cap-
tures all configurations of all the links in the manipulator in terms of its pose
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variables, so singular configurations are explicitly identified. Rather than treat-
ing Jacobians as purely local realisations of the instantaneous kinematic rela-
tionship between joint velocities and link velocities, they are matrices of partial
derivatives of globally defined mappings.

(iii) The KCM approach works for serial and parallel manipulators. It does
not require inclusion of “loop-closure” constraints, which are simply corollaries
of the joint constraints. As a result, it is easy to see why, for example, the forward
kinematics of a serial mechanism are well defined.

In Section 2 we summarise the C-space definition, then in Sections 3 and 4
the definitions of joint variables, input and output mappings are introduced.
Examples are then developed in Section 5 that demonstrate the efficacy of the
approach. We conclude with some comments about forward and inverse kine-
matics.

2 Configuration spaces

We summarise briefly the KCM approach described in [1]. For a given manipu-
lator, assign a reference coordinate frame R and body coordinate frames Mi for
each link i = 1, . . . , k (the number of links). The pose of each link is given by an
element of the Euclidean group SE(m), (m = 2, 3 in planar and spatial cases, re-
spectively). The coordinate frames determine isometries SE(m) ∼= SO(m)×Rm.
In the planar case, three pose variables ui = (θi, xi, yi) suffice to describe a pose
while in the spatial case locally six parameters suffice, though dual quaternions
may be used, along with additional equations, globally.

Each joint Jj , j = 1, . . . , t (the number of joints), connecting links Lj− , Lj+ ,
determines constraints on the corresponding pose variables that may be written
in the form fj(uj− ,uj+) = 0 ∈ Rrj , where rj is the number of constraints
imposed by the joint. For example, for a planar revolute joint rj = 2; for a
spatial spherical joint rj = 3. Each fj is termed a joint constraint mapping.

In addition to these joint constraints, it is usually assumed that one link
is fixed as the base. This corresponds to adding an additional constraint map-
ping f0 : SE(m) → SE(m) where f0(ub) = const. In this case, r0 = dm :=
dim SE(m) = 1

2m(m + 1). No additional constraints are required for loop clo-
sures: such constraints arise as a linear combination of joint constraint mappings.

Setting s =
∑t
j=0 rj , the kinematic constraint mapping (KCM) is the func-

tion F : SE(m)k → Rs, defined by F = (f1, . . . , ft) and the configuration space
(C-space) is C = F−1(0s). Note that the functions fj may also involve design
parameters (e.g. Denavit–Hartenberg parameters). For specific choices of param-
eters the KCM F may be singular for some (u1, . . . ,uk) ∈ C, which is to say
its Jacobian matrix at that point has rank deficiency. This is called a C-space
singularity. From now in we will restrict to the non-singular cases, so that C is
a manifold of dimension µ = kdm − s where dm.
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3 Joint variables

In classical manipulator kinematics, joint variables, parametrising the freedom
of displacement of one link with respect to another to which it is joined, play a
critical role. Instantaneously, this freedom can be represented in terms of twists—
elements of the Euclidean Lie algebra se(m). The freedoms of a joint are the
reciprocals of the (instantaneous) constraints with respect to the Klein form [10].
Globally, the relative motion between joined links is a coset of the subgroup of
SE(m) generated by the screws; in the case of 1-dof joints these are cosets of
the 1-parameter subgroups exp(φX) where X ∈ se(m) and φ is the associated
joint variable.

Let f : SE(m)× SE(m)→ Rr be a joint constraint mapping. Since the pair
of links (assuming no other constraints) is free to move without any relative
displacement, for any (g1, g2) ∈ f−1(0) ⊆ SE(m)×SE(m) and any h ∈ SE(m),
f(h ◦ g1, h ◦ g2) = 0; that is, the joint constraint manifold is invariant under the
action of the Euclidean group. In particular, we may take h = g−11 , so that the
first component can be chosen as the identity e ∈ SE(m). Given (e, g) ∈ f−1(0),
the kernel of the Jacobian Jf(e, g) is a subspace of se(m) × TgSE(m). The
subspace in the second component is the right translate by g of a subspace of
se(m) and a basis of twists determines the freedom of the joint.

In practice, joint variables can be realised as functions in terms of the pose
variables for the joined links. For a planar revolute joint, the joint variable is the
relative rotation φj between links and is given by the difference of the bodies’
orientations with respect to the reference frame R:

φj := θj+ − θj− (1)

The motion of link j+, resulting from the freedom of this joint alone, has the
form exp(φjX) ◦ g where X is the twist representing rotation about the joint
and g represents the pose of link j−.

For a planar prismatic joint, the variable is the relative translation φj between
the links in the direction of the joint, given by the 2-norm of the difference
between the links’ positions with respect to the reference frame R

φj :=
(

(xj+ − xj−)2 + (yj+ − yj−)2 − d2
)1/2

(2)

where d is a design parameter [2]. In practice, it is both sufficient and easier to
work with norm squared φ2j .

4 Actuator space, workspace and input/output maps

For a given manipulator, there may be several possible choices of actuated joints
or inputs. Each of these may be represented by the associated joint variable.
While, mathematically, any joint variable could be used, practical considerations
reduce the choices. Similarly, there may be different choices for the end-effector
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or output. Once again, for a typical parallel manipulator, having a platform
connected to a base by several serial legs, the only reasonable output is the
configuration of the platform.

Suppose a set of λ joints, each with just 1-dof, are selected to be actuated.
We assume λ ≤ µ = dim C allowing for under-actuation (λ > µ would result in
constraints on the freedoms of actuated joints). The actuator space (A-space) A
is the space parametrised by the actuated joint variables φ1, . . . , φλ, also called
inputs.

For a given choice of end-effector or output link, the workspace (W-space)W
is parametrised by the end-effector pose variables, which are called outputs. Note
that ν := dim W ≥ µ; we allow inequality since the outputs may not be able to
be parametrised by exactly µ pose variables.

Associated with these two spaces are functions defined on the manipulator
C-space. The input map πa : C → A is defined by:

πa(u1, . . . ,uk) = (φ1, . . . , φλ) (3)

The output map πw : C → W is the projection of C onto the space of pose vari-
ables for the end-effector. The overall model is illustrated in Fig. 1. In addition
to the input and output maps, the relationships in each direction between in-
puts and outputs, denoted ρ, υ, are the forward and inverse kinematic problems
(FKP/IKP) discussed briefly in Sect. 6.

C-space

W-space
A-space

πa

πw

r

υ

Fig. 1: Kinematic mappings and the C-space

In order to detect input and output singularities, we apply an extension of the
method of constrained optimisation which we state here in terms of mappings
between Euclidean spaces but which generalises to smooth manifolds.

Theorem 1. Let F : Rm → Rr (m > r) and suppose that 0 ∈ Rr a regular
value so that C := F−1(0) is a smooth manifold of dimension µ = m− r. Given
a differentiable function g : Rm → Rp (p ≥ µ) then u ∈ C is a singular point of
g|C : C → Rp if and only if rank Ju(g, F ) < m.



Input and output singularities for parallel manipulators 5

5 Examples

We illustrate input/output maps with two planar parallel manipulators, as shown
in Fig. 2. The results we derive are not new from a geometric point of view; see,
for example [5, 11]. However, they illustrate this robust approach, and provide a
coherent explanation of forward and inverse kinematic singularities for parallel
manipulators.
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Fig. 2: Parallel planar manipulators

The KCM approach to their C-spaces is given in [1, 2]. The manipulators
consist of k = 8 rigid bodies, where we regard the ambient space as the fixed base.
Consequently, we require (8− 1)× 3 = 21 pose variables (xi, yi, θi), i = 1, . . . , 7,
so that C ⊂ R21; there are 12 design parameters in each case and away from a
measure-zero subset of these, C is a manifold [3].

5.1 3-RRR planar parallel manipulator

The central link or platform, as shown in Fig. 2a, is classically chosen as the
end-effector so that the workspace W is parametrised by (x7, y7, θ7) ∈ R3. Let
F : R21 → R18 denote the KCM:

(xi, yi,θi)i=1,...,7 7→ (4)

( − x1,−y1, b1 − x2,−y2,−x3 + b2cβ ,−y3 + b2sβ , x1,4 + l1c1, y1,4 + l1s1,

x2,5 + l2c2, y2,5 + l2s2, x3,6 + l3c3, y3,6 + l3s3, x4,7 + l4c4, y4,7 + l4s4,

x5,7 + l5c5 − a1c7, y5,7 + l5s5 − a1s7x6,7 + l6c6 − a2cα,7, y6,7 + l6s6 − a2sα,7)

where xi,j = xi − xj , yi,j = yi − yj , 1 ≤ i < j ≤ 7, ci = cos θi, si = sin θi,
i = 1, . . . , 7, cα,7 = cos(α + θ7), sα,7 = sin(α + θ7). Let π̂w : R21 → W denote
projection onto the workspace, so that πw is the restriction of π̂w to C. To find the
output singularities of 3-RRR, we apply Theorem 1, so consider Πw := (π̂w, F ) :
R21 → R18 × R3:

(xi, yi, θi)i=1,...,7 7→ (x7, y7, θ7, F (x1, . . . , θ7)) . (5)
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The 21×21 Jacobian matrix JΠw can be reduced by deleting rows and columns
of leading 1s in row echelon form to a 9× 9 matrix:

JΠred
w =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−1 0 0 −l1s1 0 0 −l4s4 0 0
0 −1 0 l1c1 0 0 l4c4 0 0
−1 0 −a1s7 0 l2s2 0 0 l5s5 0
0 −1 a1c7 0 −l2c2 0 0 −l5c5 0
−1 0 −a2sα,7 0 0 l3s3 0 0 l6s6
0 −1 a2cα,7 0 0 −l3c3 0 0 −l6c6


(6)

Its columns correspond to partial derivatives with respect to x7, y7, θ7, θ1, . . . , θ6,
and the top left 3 × 3 identity block matrix corresponds to the non-singular
Jacobian of πw. The bottom right 6 × 6 block matrix may be rank deficient if
its determinant:

l1l2l3l4l5l6 sin(θ1 − θ4) sin(θ2 − θ5) sin(θ3 − θ6) = 0. (7)

Assuming design parameters li > 0; i = 1, . . . , 6, equation (7) holds if θi =
θi+3 + ηπ; i = 1, 2, 3, for some integer η, corresponding to a configuration in
which one or more pair of leg links is collinear, as illustrated in Fig. 3 for the
pair l1, l4.
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Fig. 3: 3-RRR output singularities

We now consider two distinct possibilities for the actuated joints: (a) the
base anchor points and (b) the medial joints p4,p5,p6.

(a) 3-RRR. The three base joints p1,p2,p3 are the actuators. Identifying the
base frame with the reference frame sets θi− = 0, i = 1, 2, 3 in equation (1). The
joint variables are then given by φi = θi; i = 1, 2, 3 which span the A-space and
the input map is the restriction to C of the projection:

π̂a(xi, yi, θi)i=1,...,7 = (θ1, θ2, θ3) . (8)
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Setting Πa := (π̂a, F ) : R21 → R18×R3, in a similar manner to the output map,
the input singularities are given by the determinant of a 6× 6 submatrix of the
Jacobian:

det


−l4s4 0 0 −1 0 0
l4c4 0 0 0 −1 0

0 −l5s5 0 −1 0 a1s7
0 l5c5 0 0 −1 −a1c7
0 0 −l6s6 −1 0 a2sα7
0 0 l6c6 0 −1 −a2cα7

 = l4l5l6
(
a1 sin(θ4 − θ6) sin(θ5 − θ7)

+a2 sin(θ4 − θ5) sin(α− θ6 + θ7)
)

= 0.

(9)
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Fig. 4: 3-RRR input singularities

Given li > 0; i = 4, 5, 6, we employ a variant of Ceva’s Theorem (see the Ap-
pendix) to interpret this geometrically. Comparison with equation (19), setting
θ4 = ψa, θ5 = ψb, θ6 = ψc, θ7 = ψt, shows that this is equivalent to the lines
spanned by links l4, l5, l6 being concurrent. The intersection can take place ei-
ther internally or externally to the platform triangle, as in Fig. 4a. Special cases
include when two links are collinear, or all three parallel and intersect at infinity.

(b) 3-RRR. Selecting the medial joints p4,p5,p6 to be actuated, their joint
variables, as in equation (1), are φi = θi− θi−3; i = 4, 5, 6 and the input map π̂a
is the restriction to C of:

(xi, yi, θi)i=1,...,7 7→ (θ4 − θ1, θ5 − θ2, θ6 − θ3) . (10)

The resulting condition for input singularities reduces to:

det


−l1s1 − l4s4 0 0 −1 0 0
l1c1 + l4c4 0 0 0 −1 0

0 −l2s2 − l5s5 0 −1 0 a1s7
0 l2c2 + l5c5 0 0 −1 −a1c7
0 0 −l3s3 − l6s6 −1 0 a2sα7
0 0 l3c3 + l6c6 0 −1 −a2cα7

 = 0. (11)
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This closely resembles the matrix given in (9) except the terms in the first three
columns denote the coordinates of the leg vectors connecting corresponding base
and platform anchor points (xi,i+3, yi,i+3) = (lici + li+3ci+3, lisi + li+3si+3),i =
1, 2, 3. From Ceva’s Theorem, the geometric interpretation of this condition is
that these vectors intersect, see Fig. 4b.

5.2 3-RPR planar parallel manipulator

The 3-RPR PPM is depicted in Fig. 2b. As for the 3-RRR, the platform deter-
mines the workspace and the associated output mapping is in the form of (5).
To find output singularities, we compute the Jacobian of Πw = (π̂w, F ) : R21 →
R18 × R3 which, after reduction, simplifies to the condition:

(x1,4c1 + y1,4s1)(x2,5c2 + y2,5s2)(x3,6c3 + y3,6s3) = 0. (12)

The vectors vi = (xi,i+3, yi,i+3), i = 1, 2, 3 connect the revolute joints in each
leg, while ui = (ci, si) designate (unit) directions of the prismatic joints ri+3, i =
1, 2, 3. Hence, an output singularity occurs whenever ξi := vi · ui = 0, i.e. one
of the vi is orthogonal to the corresponding joint direction or vanishes (so that
base and anchor joints coincide). We consider two options for actuated joints.

(a) 3-RPR. Choosing the base revolute joints p1,p2,p3 as actuators, as in
Sect. 5.1 the actuated joint variables are φi = θi; i = 1, 2, 3. Applying Thm. 1, the
21×21 Jacobian matrix can be reduced so that input singularities are determined
by the 3× 3 determinant:

det

−s1 c1 0
−s2 c2 −a1c2,7
−s3 c3 −a2c3,7,α

 = a1 sin(θ1 − θ3) sin
(
θ2 − θ7 + π

2

)
+a2 sin(θ1 − θ2) sin

(
α− θ3 + θ7 + π

2

)
= 0.

(13)

This corresponds to Ceva’s condition (19), where ψa = θ1 + π
2 , ψb = θ2 + π

2 , ψc =
θ3 + π

2 , ψt = θ7. Geometrically, the lines through the platform anchor points and
orthogonal to the prismatic joints are concurrent.

(b) 3-RPR. Actuating the prismatic joints r4, r5, r6, so φi, i = 4, 5, 6 as given
in equation (2), are joint variables, the input mapping can be taken as:

(xi, yi, θi)i=1,...,7 7→
(
(x21,4 + y21,4), (x22,5 + y22,5), (x23,6 + y23,6)

)
(14)

Theorem 1 yields a 21×21 Jacobian matrix which can be reduced and simplified
to give the determinant:

ξ1ξ2ξ3

(
a1 sin(ψ1−ψ3) sin(θ7−ψ2)−a2 sin(ψ1−ψ2) sin(α+θ7−ψ3)

)
= 0, (15)

where ψi denote the angles of the legs with respect to the reference frame.
Corresponding input singularities are given by (i) ξi = 0, i = 1, 2, 3, which are
the output singularity conditions, or (ii) the vanishing of the bracket, which by
Ceva’s condition (19), corresponds to the extensions of the leg vectors being
concurrent.
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6 Conclusion: forward and inverse kinematics

In much of the manipulator singularity literature the models have been encoded
by an implicit function F (θ,x) = 0. The ability to express inputs θ or outputs x
explicitly in terms of the other can generally only be solved locally and requires
the conditions for the Implicit Function Theorem (see, for example, [7]) to be
met. However, it is known that analysing this implicit function alone does not
provide full information about manipulator singularities in the parallel case. As
is clear from Fig. 1, the forward and inverse relations can be determined in terms
of the input and output maps, provided these have well defined (local) inverses:

ρ = π−1a ◦ πw, υ = π−1w ◦ πa. (16)

The existence of the inverses is a local question. Assume, for the moment,
that dim A = dim C = dim W. Then πa or πw has a local inverse at some
(u1, . . . ,uk) ∈ C if and only if the Jacobian at that point is non-singular. There-
fore, the input and output singularities are critical to the solutions of the FKP
and IKP. We note, for example, that for a serial manipulator, the C-space is
isomorphic to the actuator space so that πa is always invertible and the FKP is
well-posed.
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Appendix: Ceva’s Theorem

This theorem can be found in many texts on Euclidean geometry, e.g. [4]. We
state it here in terms of angle division, rather than the more common side divi-
sion.

Theorem 2. Three lines `a, `b, `c passing through the vertices of a triangle ABC
and dividing the internal angles α, β, γ = π − α − β into sub-angles (α1, α2),
(β1, β2), (γ1, γ2) are concurrent if and only if:

sinα1 sinβ1 sin γ1 = sinα2 sinβ2 sin γ2. (17)

We derive an equivalent condition in terms of the angles the lines and one
side of the triangle make with respect to a given reference frame. Denote by
ψt the angle the side AB makes with the x−axis of the reference frame and
ψa, ψb, ψc the angles lines `a, `b, `c make with the same axis, as shown in Fig. 5.
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c
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A
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Fig. 5: Ceva’s theorem

The six sub-angles αi, βi, γi; i = 1, 2 can be expressed in terms of ψa, ψb, ψc, ψt
and the given angles α, β, γ:

α1 = ψa − ψt, β1 = β − π + ψb − ψt, γ1 = −π − α+ ψc − ψt
α2 = α− ψa + ψt, β2 = π − ψb + ψt, γ2 = 2π − β − ψc + ψt

(18)

Substituting in equation (17), utilising trigonometric identities, and by the sine
rule, a1 sin(α+ β) = a2 sinβ the condition can be restated as:

0 = sin(ψa − ψt) sin(β + ψb − ψt) sin(α− ψc + ψt)

− sin(α− ψa + ψt) sin(β + ψc − ψt) sin(ψb − ψt)
= sin(α+ β) sin(ψa − ψc) sin(ψb − ψt)− sin(β) sin(ψa − ψb) sin(α− ψc + ψt)

= a1 sin(ψa − ψc) sin(ψb − ψt)− a2 sin(ψa − ψb) sin(α− ψc + ψt). (19)
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