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Abstract

In this thesis, we have investigated the efficiency of profile likelihood in

the estimation of parameters from the Cox Proportional Hazards (PH) cure

model and joint model of longitudinal and survival data. For the profile

likelihood approach in the joint model of longitudinal and survival data,

Hsieh et al. (2006) stated “No distributional or asymptotic theory is avail-

able to date, and even the standard errors (SEs), defined as the standard

deviations of the parametric estimators, are difficult to obtain”. The reason

behind this difficulty is the estimator of baseline hazard which involves im-

plicit function in the profile likelihood estimation (Hirose and Liu, 2020).

Hence finding the estimated SE of the parametric estimators from the Cox

PH cure model and joint model using profile likelihood approach is a great

challenge. Therefore, bootstrap method has been suggested to get the esti-

mated standard errors while using the profile likelihood approach (Hsieh

et al., 2006).

To solve the difficulty, we have expanded the profile likelihood func-

tion directly without assuming the derivative of the profile likelihood score

function and obtain the explicit form of the SE estimator using the profile

likelihood score function. Our proposed alternative approach gives us not

only analytical understanding of the profile likelihood estimation, but also

provides closed form formula to compute the standard error of the pro-

file likelihood maximum likelihood estimator in terms of profile likelihood

score function. To show the advantage of our proposed approach in medi-
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cal and clinical studies, we have analysed the simulated and real-life data,

and compared our results with the output obtained from the smcure, JM

(method: ’Cox-PH-GH’) and joineRML R-packages. The outputs suggest

that the bootstrap method and our proposed approach have provided sim-

ilar and comparable results. In addition, the average computation times of

our approach are much less compared to the above mentioned R-packages.
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Chapter 1

Introduction

1.1 Survival Data

Survival data or time-to-event data refer times to occur an event of interest

such as time to failure of a machine or time to infection of a disease (Yu,

2018). In most of the medical or clinical studies, it is seen that the event of

interest is only observed for a proportion of individuals and for others, the

event time is unobserved i.e., event time is greater than the last available

follow-up time. This phenomenon is considered as censoring which is very

common in survival data (Kleinbaum and Klein, 2011; Sullivan, 2012).

Survival analysis (deals with time-to-event data which can be days, weeks,

months or years from the beginning of follow-up of the individuals) is a

statistical method widely used in medical literature that explores the time

period from a certain point until the occurrence of the event of interest (Alli-

son, 2010; Bewick et al., 2004; Cox and Oakes, 1984; Putter et al., 2007; South-

ern et al., 2006). In medical setup, an event may be death, occurrence of

disease, relapse from remission or any destined experience of interest that

may occur to a subject (Andersen and Keiding, 2006; Keiding, 2007; Law-

less, 2003).
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2 CHAPTER 1. INTRODUCTION

For example, we can consider lung cancer data from the North Central

Cancer Treatment Group (NCTTG) where the event of interest is the death of

a patient. This data contain survival times (times to deaths) of patients with

advanced lung cancer (Loprinzi et al., 1994). Figure 1.1 shows the survival

times of five randomly selected patients where event occurred for three pa-

tients and the rest are censored. Moreover, the histogram of all observed

survival times are provided to show the distribution of observed survival

times (Yu, 2018).

Figure 1.1: Survival times of randomly selected patients from NCTTG data

(left side) and histogram of observed survival times for all patients (right

side)

In regression models for survival analysis, we are interested in mod-

elling and determining the relationship between survival time and covari-

ates. We know that the parameters in parametric and non-parametric mod-

els are defined in the finite-dimensional and infinite-dimensional space re-

spectively. However, the semi-parametric models are widely used in sur-

vival analysis as they contain both finite dimensional and infinite dimen-

sional parameters (Andersen and Keiding, 2006).
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1.2 Cox Proportional Hazards (PH) model

In classical survival analysis, Cox PH model is very popular semi para-

metric model which has attracted attention for decades (Fox and Weisberg,

2018). In Cox PH model, the baseline hazard is an unknown function of sur-

vival time (infinite dimensional parameter) and the regression coefficient is

an unknown vector (finite dimensional parameter). The Cox PH model can

be expressed as

λ(t|Z) = λ(t)eβ
′Z , (1.1)

where Z = (Z1, . . . , Zp)
′ represents a set of covariates and β = (β1, . . . , βp)

′

is a vector of unknown regression coefficients. This model gives an expres-

sion for the hazard at time t for an individual with a given set of explanatory

variables denoted by the Z. Moreover, the baseline hazard function, λ(t) is

unspecified which implies that the distribution of lifetime random variable

is unknown. To estimate the regression parameters, Cox (1972) proposed

a partial likelihood approach to avoid the estimation of λ(t) (Ahmed et al.,

2007; Lewis, 2016). Cox PH model assumes that the hazards ratio is con-

stant over time (Bewick et al., 2004), therefore, it is important to check the

proportional hazard assumption (Persson, 2002). More details on Cox PH

model are given in Chapter-4.

1.3 Profile Likelihood Approach

Profile likelihood estimation technique is a familiar methodology in the

presence of an infinite-dimensional nuisance parameter. Moreover, this ap-

proach is very popular because of reducing the infinite-dimensional estima-

tion problem to a finite-dimensional one (Murphy and Van der Vaart, 2000).

For example, semi-parametric maximum likelihood estimator (MLE) from

different case control studies have been studied using the profile likelihood

approach (Scott and Wild, 1997, 2001).
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From equation (1.1), apart from the Cox PH partial likelihood, the regres-

sion parameters can also be estimated through profile likelihood where we

profile out the baseline hazard λ(t) using non-parametric maximum likeli-

hood estimator (NPMLE) approach. Let us assume λ(t) has (possible) non-

zero values on the observed time ti:

λ(ti) = λi ≥ 0 ; i = 1, 2, ..., n

and λ(t) = 0 for the rest of time (Murphy and Van der Vaart, 2000). Under

this assumption, the cumulative baseline hazard function, Λ(t) =
∫ t

0
λ(s)ds

is replaced with the following sum which considers the step function with

jumps at all event times

Λ(t) =
n∑
i=1

λi1{ti ≤ t}.

Suppose β is fixed but Λ can vary, so we can estimate Λ by maximizing

the log-likelihood function l(β,Λ) with respect to Λ as

Λ̂β = arg maxΛ l(β,Λ),

where Λ̂β depends on β. Then we plugged Λ̂β in l(β,Λ) and constuct the

profile log-likelihood function l(β, Λ̂β) and maximize it with respect to β as

β̂ = arg maxβ l(β, Λ̂β),

where we profiled out Λ. More details on profile likelihood are provided in

Chapter-3.

1.4 Cure Model

Although the Cox PH model is well developed for exploring time-to-event

data, there are complex situations where the model is not appropriate for
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instance a situation where a fraction of subjects do not experience the event

of interest. These subjects are considered as cured due to their infinite sur-

vival/ event times (Amico and Van Keilegom, 2018). The cure fraction is

incorporated in statistical models to analyse the effect of a treatment on the

event of interest (Robinson, 2014). Survival models taking this feature are

referred as cure models. Therefore, if only a subset of population is expected

to experience the event of interest, then the cure model is more realistic and

appropriate to use compared to the Cox PH model due to separate mod-

elling of the probability of cure and the time to the event.

Cure models are widely used in medical studies where the main interest

is in the time until the recurrence of a specific disease and it is possible that

some individuals will never suffer a relapse of a given disease and therefore

they are considered to be cured. From this point of view, we can say that the

population is a mixture of two subpopulations: (1) cured individuals and

(2) susceptible or uncured individuals (Patilea and Van Keilegom, 2017).

The works of Peng et al. (2007); Sy and Taylor (2000); Withers et al. (1995)

have provided an example of head and neck cancer study where the mixture

cure model has been illustrated beautifully. In this study, radiation therapy

was used as a treatment for the patients with localized disease of the tonsil.

The aim of the radiation therapy was to kill the cancerous cells within the

tumour. Moreover, the event or the endpoint of this study was recurrence

of the cancer within the tonsil region. It is well known that the majority of

local recurrences (for tonsil cancer) occur within three years and rarely after

five years. Therefore, after five years of follow-up, patients can be referred

as locally cured. This is an ideal situation of mixture model where patients

can be thought as cured or uncured at the beginning of the study by the

treatment. However, the cure or uncure status can not be observed at the

beginning of the study and possible to reveal itself later.
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The mixture cure model was first proposed to analyze survival data

with a cured fraction because of its easy-to-use mixture model structure

(Boag, 1949). Moreover, it is popular for its appealing interpretation and

the ease of generalization to more complex situations using parametric ap-

proaches (Berkson and Gage, 1952; Boag, 1949; Haybittle, 1965). The works

of Berkson and Gage (1952); Boag (1949); Haybittle (1965) have used the

log-normal and exponential models for the survival function of uncured

subjects whereas incidence was modelled as a constant. Farewell (1977)

showed that in the presence of covariates, the probability of cured subjects

can be modelled by assuming a logistic model. Later Farewell (1982) used

weibull distribution for the survival function of the uncured subjects.

1.4.1 Cox PH Cure Model

Kuk and Chen (1992) first proposed the Cox PH cure model as a semipara-

metric generalization of Farewell’s model (Farewell, 1982) where a combi-

nation of Cox PH model and logistic regression has been used to study the

survival times of uncured subjects and cure rate respectively. We know that

the population is a mixture of cured and uncured subjects in the Cox PH

cure model where the information on cure status are unobserved. There-

fore, Expectation Maximization (EM) algorithm has been used to estimate

the parameters due to treating cure status as missing data.

In this mixture model, the Cox PH partial likelihood approach devel-

oped by Cox (1972) is no longer valid to estimate the regression parame-

ters because it is not difficult to see that a mixture of PH functions is no

longer proportional (Amico and Van Keilegom, 2018; Cai, 2013; Sy and Tay-

lor, 2000). Therefore, one of the possible solutions is to incorporate profile

likelihood approach based on Breslow’s estimator (Breslow, 1972) in the Cox

PH cure model to estimate the parameters (Klein, 1992; Sy and Taylor, 2000,
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2001). We can see the application of Cox PH cure model in various disci-

plines such as biology, clinical trials, genetic engineering etc. More details

on Cox PH cure model have provided in Chapter-5.

For example, we can consider the Eastern Cooperative Oncology Group

(ECOG) phase III clinical trial data which has been used in the works of

Chen et al. (1999, 2002); Corbiere and Joly (2007); Ibrahim et al. (2001); Kirk-

wood et al. (1996). The purpose of the study was to investigate the ef-

fects of high dose interferon alpha-2b (IFN) regimen against the placebo

as the postoperative adjuvant therapy. In this study, observed relapse-free-

survival (RFS) time has defined as failure time (in years) and the recurrence

of melanoma has defined as the event of interest.

Figure 1.2: Survival curves of RFS for IFN treatment and placebo group
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From Figure-1.2, we can see that the estimated RFS curves for IFN treat-

ment and placebo groups where the survival probability of patients from

the IFN group is higher compared to the placebo group. From the figure, it

is observed that the curves for both IFN and placebo groups level off at a

value substantially greater than zero after about 8 years. Therefore, it can be

concluded that some patients didn’t experience the recurrence of melanoma

due to the presence of cured patients in both IFN and placebo group. So for

this example, Cox PH cure model is more appropriate (compared to Cox PH

model) to estimate the probability of recurrence of melanoma as well as the

time to recurrence of melanoma.

1.5 Longitudinal Data

Longitudinal data refer to measurements on variables that are collected re-

peatedly over time from a group of subjects (Rizopoulos, 2012; Yu, 2018).

In medical or clinical studies, longitudinal data play a prominent role to

understand the development and persistent of disease. By measuring the

subjects repeatedly throughout the duration of the study, longitudinal data

permit the direct assessment of changes in the response variable over time

which is a distinguish feature of longitudinal studies (Rizopoulos, 2012).

When patients are randomly assigned to take different drugs/ treatments

at the beginning of a longitudinal study and followed over time, we can in-

vestigate both (1) cross-sectional effect (how treatment means differ at the

end of the study) and (2) longitudinal effect (how treatment means change

over time) .

As an example of longitudinal study, we can consider Acquired Immune

Deficiency Syndrome (AIDS) data where CD4 (a type of immune cell that

protects a person’s immune system) is measured repeatedly to monitor dis-

ease progression of Human Immunodeficiency Virus (HIV) infected patient
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Figure 1.3: CD4 trajectories of 70 randomly selected subjects

(Abrams et al., 1994). The reason for measuring CD4 repeatedly is that when

a person is infected by the HIV, it attacks the immune system by reducing

the CD4 cells which is one of the possible reasons for developing AIDS.

Figure 1.3 shows the longitudinal trajectories of CD4 counts of 70 ran-

domly selected HIV-infected subjects from AIDS data. From Figure 1.3, we

can see a large variation between measurements across individuals and dif-

ferent number of repeated measurements across individuals.

1.6 Joint Model of Longitudinal and Survival Data

In biomedical research and clinical studies, joint modelling technique is fre-

quently used to model longitudinal and time-to-event outcomes simulta-
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neously (Wulfsohn and Tsiatis, 1997). The main goal of the joint model is

to study the effect of longitudinal covariates on the survival outcome. The

widely used example of joint model is HIV study where infected patients

are monitored until developing AIDS or death (Brown et al., 2005; Faucett

et al., 2002; Wulfsohn and Tsiatis, 1997). Moreover, the condition of the in-

fected patients immune system are regularly monitored using biomedical

markers such as CD4 lymphocyte count or the estimated viral load (Guo

and Carlin, 2004; Wu et al., 2012; Wulfsohn and Tsiatis, 1997). Similar exam-

ple of joint model can be found in cancer studies where death or metastasis

is the survival outcome (Pauler and Finkelstein, 2002; Proust-Lima and Tay-

lor, 2009).

In cancer studies, patients need to provide repeated measurements of

antibody levels or of other biomedical markers of carcinogenesis such as

Prostate Specific Antigen (PSA) measurements for prostate cancer (Pauler

and Finkelstein, 2002). In clinical trials, one important example of longitudi-

nal study is Alzheimer’s disease where height, weight, blood pressure mea-

surements are repeatedly collected to determine disease aetiology (Yang and

Gao, 2013). Even cardiovascular disease patients need to regularly monitor

their blood pressure at regular intervals to ensure health safety (Rothwell

et al., 2010).

In the above situations, separate modelling of longitudinal and time-to-

event outcomes are inappropriate to discover potential disease mechanisms

(Yang, 2014). We know that linear mixed effects (LME) models are well-

known methods to analyse longitudinal data based on maximum and re-

stricted maximum likelihood approach (Laird and Ware, 1982), where longi-

tudinal measurements can be both discrete and continuous (Salkind, 2008).

In addition, generalized estimating equations (GEE) used in marginal and

transitional models are very popular as well for analysing longitudinal data
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(Liang and Zeger, 1986). On the other hand, Cox PH model is commonly

used semi-parametric model for analysing survival data (Cox, 1972).

The association between longitudinal and survival outcomes is ignored

while analysing separately (Terrera et al., 2011). Therefore, to identify the

potential relationships between the longitudinal measures and event out-

come, an alternative framework has been introduced known as joint model

of longitudinal and survival data where primary interest is to couple the

survival model with a suitable model for the longitudinal measurements

(Faucett and Thomas, 1996; Henderson et al., 2000; Rizopoulos, 2012; Tsi-

atis and Davidian, 2001; Wulfsohn and Tsiatis, 1997). In summary, the joint

model is used to incorporate the association or correlation between lon-

gitudinal and survival outcomes (De Gruttola and Tu, 1994; Faucett and

Thomas, 1996; Guo and Carlin, 2004; lavalley and Deguttola, 1996; Pawitan

and Self, 1993; Taylor et al., 1994; Tsiatis et al., 1995; Wulfsohn and Tsiatis,

1997). More details on joint model of longitudinal and survival data are

provided in Chapter-7.

1.7 Motivation of the Research

In this thesis, we have shown asymptotic normality of the maximum profile

likelihood estimator (profile likelihood MLE) in the Cox PH cure model and

joint model of longitudinal and survival data with EM-algorithm. More-

over, we have derived the expressions for the standard error of the estima-

tors based on the profile likelihood score function.

While using the profile likelihood approach in the joint model of longi-

tudinal and survival data, we profile out the baseline hazard function by

plugging in the estimator of the hazard function in the likelihood function.

However, the key problem is the estimator of the baseline hazard which is
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an implicit function [Rizopoulos (2012); page-67]. For the joint model of lon-

gitudinal and survival data, Hsieh et al. (2006) stated “No distributional or

asymptotic theory is available to date, and even the standard errors (SEs),

defined as the standard deviations of the parametric estimators, are difficult

to obtain”. Similar kind of problem exists for the Cox PH cure model as well.

Therefore, in this research, we have considered the Cox PH cure model and

the joint model of longitudinal and survival data where the common diffi-

culty is both of them are dealing with an implicit function.

Murphy and Van der Vaart (2000) proposed a solution to the implicit

function problem in the profile likelihood estimation. They have used an

‘approximate least favorable submodel’ as a mathematical device to show

the asymptotic normality of profile likelihood estimator, however they didn’t

express any analytical formula to calculate the estimated standard error of

estimators. Therefore, they have used the numerical approximation to show

asymptotic variance of the estimator as the inverse of the information ma-

trix. According to the Corollary 3 of Murphy and Van der Vaart (2000), if

pln(θ) is the profile log-likelihood function for θ, then the (p, q)th element of

the information matrix of θ̂ can be estimated as

−ε−2{pln(θ̂+εnep+εneq)−pln(θ̂+εnep−εneq)−pln(θ̂−εnep+εneq)+pln(θ̂)},
(1.2)

where, εn is a constant of order n−1/2. Moreover, ep nd eq are the pth nd qth

canonical vectors respectively.

In the Cox PH cure model, a non-parametric maximum likelihood ap-

proach along with EM algorithm has been used for the estimation procedure

(Lu, 2008; Peng and Dear, 2000; Sy and Taylor, 2000, 2001). Sy and Taylor

(2000, 2001) have used the profile approach along with EM algorithm to esti-

mate the MLE of the parameters, however, for the standard error estimation,

baseline hazard function has been treated as a finite dimensional parameter.
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As a result, they have considered the Cox PH cure model as finite dimen-

sional parametric model and calculate the observed information using the

Hessian matrix. On the other hand, Lu (2008) has used the equation (1.2)

to get the information matrix. Though the works of Peng and Dear (2000);

Sy and Taylor (2000, 2001) were largely relied on the EM algorithm for MLE

computation, however, the large sample properties of the estimators for the

Cox PH cure model remain to be established. Fang et al. (2005) studied the

theoretical properties of the estimators under Cox PH cure model, however,

they didn’t use the profile likelihood approach.

The profile likelihood approach has also been used in the estimation of

parameters from the joint model of longitudinal and survival data. Due to

the presence of random effects in the joint model of longitudinal and sur-

vival data, Cox PH partial likelihood can no longer be used to estimate

the parameters. Therefore, as a possible solution, Wulfsohn and Tsiatis

(1997) have proposed the profile approach in the joint model of longitudinal

and survival data. Later based on the work of Murphy and Van der Vaart

(2000), a non-parametric maximum likelihood estimator of the baseline haz-

ard function has been considered i.e., baseline hazard function replaced by a

step function with jumps at the event time points in the joint model of longi-

tudinal and survival data (Hickey et al., 2018; Hsieh et al., 2006; Rizopoulos,

2012; Zeng et al., 2005). Under this situation, the estimator of baseline haz-

ard is an implicit function.

Zeng et al. (2005); Zeng and Lin (2007a, 2010) have adopted profile like-

lihood approach proposed by Wulfsohn and Tsiatis (1997) in the joint model

of longitudinal and survival data. However, dealing with the implicit func-

tion in the profile likelihood function has been avoided in the above men-

tioned joint model studies (Hirose and Liu, 2020). Zeng et al. (2005) showed

the asymptotic normality of the profile likelihood estimator using the equiv-
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alence between the maximum likelihood estimator and the profile likeli-

hood estimator. Then, for the estimation of the variance of the profile like-

lihood estimator, they used the method proposed by Murphy and Van der

Vaart (2000) given in the equation (1.2). These two papers represent mathe-

matical proofs of the asymptotic normality of the profile likelihood estima-

tor. There are many other papers following this line of approaches. How-

ever, they did not give an analytic method to calculate the information ma-

trix for the profile likelihood function. As a result there is a gap between

theoretical work and applied work in this area.

Based on the above discussions, we can say that it is difficult to find the

estimated standard error of the profile likelihood estimator from the Cox

PH cure model and joint model of longitudinal and survival data. Hence,

finding the asymptotic distributions of the estimators using profile likeli-

hood approach is a great challenge due to the presence of an implicit func-

tion (that appear in the profile likelihood estimation). Therefore, to get the

estimated standard errors from the models dealing with implicit function,

Hsieh et al. (2006) suggested to use bootstrap method (Efron and Tibshirani,

1994) while using the profile likelihood approach.

Our work aims to close the gap by proposing a new approach to show

the asymptotic normality of the profile likelihood estimator with implicit

function. This enables us to have a closed form expression for the standard

error of the profile likelihood estimator. The main idea of our approach is

to use the weak derivative. The score function for the profile likelihood

function may not be differentiable due to the existence of implicit function

in the profile likelihood score function. However, it is weakly differentiable

in a sense that

E

[√
n

{
φ
(
θ̂n
)
− φ
(
θ0

)}]
= −E

[
φ
(
θ0

)
φ′
(
θ0

)]{√
n(θ̂n − θ0)

}
+ op(1), (1.3)
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where θ0 and θ̂n are the true value and MLE of θ, and φ is the profile

likelihood score function. One of the advantages of our proposed method-

ology is to show equation (1.3) when the score function is not differentiable.

Using this weak differentiability of the score function, we are able to show

the asymptotic normality of the profile likelihood estimator and get a closed

form expression for the information matrix. Therefore we can solve the the-

oretical challenge of the Cox PH cure model and the joint model of longitu-

dinal and survival data by using equation (1.3).

Our contribution is that we have expanded the profile log-likelihood

function and used the asymptotic expansion of profile likelihood function

to get the estimated SE of the profile likelihood MLE and obtain the explicit

form of the SE estimator using the profile likelihood score function. Our

proposed approach gives us not only analytical understanding of the pro-

file likelihood estimation process, but also provides closed form formula to

compute the standard errors of the profile likelihood MLE using the profile

likelihood score function.

In addition to the theoretical challenges, some R-packages have also

faced difficulties while calculating the standard errors from the profile like-

lihood approach. For example, Cai et al. (2012) developed a R package (sm-

cure) to fit the Cox PH cure model which has received much attention in

recent years (Peng and Taylor, 2014; Amico and Van Keilegom, 2018). This

package has adopted the Breslow’s estimator (Breslow, 1972) with EM algo-

rithm to estimate the regression coefficients. However, the standard errors

of the estimated parameters are not directly available due to the presence

of implicit function in the estimating equation. Hence, bootstrap samples

(Efron and Tibshirani, 1994) have been used in smcure R-package to calcu-

late the standard errors.
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In the case of the joint model of longitudinal and survival data, Rizopou-

los (2010) developed a R package (JM) where one of the method is ’Cox-PH-

GH’ based on NPMLE of the baseline hazard function. In JM (method: ’Cox-

PH-GH’) package, the score function has been calculated without differenti-

ating the implicit function within the log-likelihood function. Then forward

or central difference approximation (numerical derivative) has been used to

differentiate the score function (for the standard error estimation). How-

ever, the standard errors of the estimated parameters based on ’Cox-PH-

GH’ method can be underestimated while calculated from the score vec-

tor (Rizopoulos, 2012). Later, Hickey et al. (2018) have developed another

R-package (joineRML) to fit the joint model with multiple longitudinal re-

sponses. Similar to the smcure and JM (method: ’Cox-PH-GH’) R-packages,

joineRML has also adopted the NPMLE of the baseline hazard function. In

addition, Monte Carlo EM (MCEM) algorithm and bootstrap process have

been considered for estimation procedure, where they have estimated the

fixed effect coefficients by ignoring the survival part from the estimation

process.

In summary, it can be said that all three above mentioned R-packages

have incorporated Breslow’s estimator for the baseline hazard and there-

fore, due to the presence of the implicit function in the profile likelihood

function, these R-packages have faced difficulty while calculating the stan-

dard errors directly. Hence smcure and joineRML R-packages use the boot-

strap method to compute the standard error in the profile likelihood esti-

mation which have theoretical advantages, but computationally expensive.

Moreover, bootstrap method may overestimate the standard errors (Hickey

et al., 2018; Hsieh et al., 2006; Xu and Zeger, 2001; Xu et al., 2014) whereas

the JM (method: ’Cox-PH-GH’) R-package uses a improper profile score

function which gives underestimated standard error. None of these work

used the equation (1.2) for standard error calculation proposed by Murphy
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and Van der Vaart (2000).

To show the application of our proposed approach in biomedical and

clinical research, we have compared our results with the output obtained

from smcure R-package (for the Cox PH cure model) in Chapter 5 and with

the output obtained from JM (method: ’Cox-PH-GH’) and joineRML R-

packages (for the joint model of longitudinal and survival data) in Chapter

7. The simulation studies suggest that the estimated standard errors from

bootstrap samples and our approach are providing similar and comparable

results. In addition, in order to assess and compare the computational time

between our proposed approach and smcure, JM (method: ’Cox-PH-GH’)

and joineRML R-packages, the average time elapsed to get the estimates of

the parameters and estimated standard errors have recorded. We observed

that the average computation times for our proposed approach are much

less compared to the smcure, JM (method: ’Cox-PH-GH’) and joineRML

R-packages.

1.8 Research Objectives

The primary objectives of this research are as follows:

1. Expand the profile likelihood function directly to show the asymp-

totic normality of the profile likelihood estimators for the Cox PH cure

model and express the standard errors in terms of the profile likeli-

hood score function.

2. Perform simulation study to compare and contrast the smcure R-package

with our proposed approach by assessing parameter and standard er-

ror estimation.

3. Apply our proposed approach to the Eastern Cooperative Oncology
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Group data and compare with the output obtained from smcure R-

package.

4. Use the asymptotic expansion of the profile likelihood function to get

the asymptotic normality of the profile likelihood estimators for the

joint model of longitudinal and survival data and obtain the explicit

form of SE estimators using the profile likelihood score function.

5. Perform simulation study to compare and contrast the results of JM

(method: ’Cox-PH-GH’) and joineRML R-packages with our proposed

approach.

6. Apply our proposed approach to the AIDS and Primary biliary cir-

rhosis (PBC) datasets (extracted from JM R-package) and compare the

results with the output obtained from JM (method: ’Cox-PH-GH’) and

joineRML R-packages.

1.9 Organization of the research

This thesis paper is organized in nine chapters:

Chapter-1 introduces a short definition of survival data, Cox PH model,

Profile likelihood approach, Cure model, Cox PH cure model, longitudinal

data, joint model of longitudinal and survival data, narration of the main

purposes of the study and highlight the primary objectives of the research.

Chapter-2 discusses briefly on estimation of a finite-dimensional param-

eter, estimation with a finite-dimensional nuisance parameter and estima-

tion with a infinite-dimensional nuisance parameter.

Chapter-3 explains the concept of profile likelihood with mathematical

notation and the literature on profile likelihood.
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Chapter-4 introduces the Cox PH model along with the likelihood func-

tion formulation procedure for parameter estimation, efficient score func-

tion for Cox PH model and the efficiency of profile likelihood in Cox PH

model.

Chapter-5 explains the Cox PH cure model, asymptotic normality of

the profile likelihood MLE with asymptotic variance, derivation of efficient

score function in the Cox PH cure model based on our proposed approach.

Moreover, for simulation study and real-life example, we have compared

our results with the output obtained from smcure R-package.

Chapter-6 explains the proofs of Theorems and Lemmas for the Cox PH

cure model.

Chapter-7 discusses the basic joint model of longitudinal and survival

data, asymptotic normality of the profile likelihood MLE with the standard

errors expressed in terms of profile likelihood score function, derivation of

efficient score function in the joint model based on our proposed approach.

Moreover, for simulation study and real-life example, our results have been

compared with the output obtained from JM (method: ’Cox-PH-GH’) and

joineRML R-packages.

Chapter-8 explains the proofs of Theorems and Lemmas for the joint

Model of Longitudinal and Survival Data.

Chapter-9 concludes with a brief discussion.
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Chapter 2

Asymptotic Normality of MLE

In this chapter, we are going to review the theory of MLE with finite dimen-

sional parameters. In addition, we are going to cover the estimation pro-

cess with finite and infinite dimensional nuisance parameters. To show the

asymptotic normality of MLE, we review the concept of the influence func-

tion and its relationship to the asymptotic variance of the estimator. The

references which have used in this chapter are Begun et al. (1983); Bickel

et al. (1993); Newey (1990); Tsiatis (2007).

2.1 Estimation of a Finite Dimensional Parameter

Let us consider a parametric model, P = {p(x; θ) : θ ∈ Θ ⊂ Rp}with density

function p(x; θ). So the log-likelihood function l(x; θ) can be defined as

l(x; θ) =
n∑
i=1

log p(xi; θ).

Now the score function is defined as

∂ l(x; θ)

∂θ
=

n∑
i=1

∂

∂θ
log p(xi; θ) =

n∑
i=1

φ(xi; θ).

We will get θ̂n (which is the MLE of θ) by solving the equation
n∑
i=1

φ(xi; θ̂n) = 0.

21
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Lemma 2.1: The score function, φ(x; θ) has mean zero and variance, I(θ);

i.e.,

E[φ(x; θ)] = 0 and V ar[φ(x; θ)] = I(θ),

where I(θ) can be expressed as

I(θ) = E[φ(x; θ)φ′(x; θ)] = −E
[
∂

∂θ′
φ(x; θ)

]
.

In order to prove the consistency and asymptotic normality of θ̂n, we need

to consider E[ ∂
∂θ′
φ(x; θ0)] be non-singular and the equation

1

n

n∑
i=1

φ(xi; θ)
P−→ E

[
φ(x; θ0)

]
,

holds uniformly in θ in a neighbourhood of θ0 and from the regularity con-

ditions we can show that θ̂n is consistent, that is

θ̂n
P−→ θ0.

So assuming the regularity conditions hold, the influence function for θ̂n can

be obtained using Taylor’s theorem as follows

0 =
n∑
i=1

φ(xi; θ̂n) =
n∑
i=1

φ(xi; θ0) +
n∑
i=1

∂

∂θ′
φ(xi; θ

∗
n)(θ̂n − θ0),

where θ∗n is an intermediate value between θ̂n and θ0. Because of assuming

sufficient regularity conditions for the consistency of θ̂n, from Uniform Law

of Large Numbers (LLN) we can write that

1

n

n∑
i=1

∂

∂θ′
φ(xi; θ

∗
n)

P−→ E

[
∂

∂θ′
φ(x; θ0)

]
.
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Therefore,

0 =
1√
n

n∑
i=1

φ(xi; θ0) +
1

n

n∑
i=1

∂

∂θ′
φ(xi; θ

∗
n)
√
n(θ̂n − θ0)

√
n(θ̂n − θ0) = −

[
1

n

n∑
i=1

∂

∂θ′
φ(xi; θ

∗
n)

]−1
1√
n

n∑
i=1

φ(xi; θ0)

= −
{[

E

(
∂

∂θ′
φ(x; θ0)

)]−1

+ op(1)

}
1√
n

n∑
i=1

φ(xi; θ0)

= −
[
E

(
∂

∂θ′
φ(x; θ0)

)]−1
1√
n

n∑
i=1

φ(xi; θ0) + op(1)
1√
n

n∑
i=1

φ(xi; θ0)

=
1√
n

n∑
i=1

φ̃(xi; θ0) + op(1)
1√
n

n∑
i=1

φ(xi; θ0),

(2.1)

where we deduce the influence function of θ̂n by

φ̃(x; θ0) = −
[
E

(
∂

∂θ′
φ(x; θ0)

)]−1

φ(x, θ0).

We know that 1√
n

∑n
i=1 φ(xi; θ0) is bounded in probability, so from equation

(2.1), we can write

1√
n

n∑
i=1

φ(xi; θ0) = Op(1).

Lemma 2.2: If Xn = op(1) and Yn = Op(1), then XnYn = op(1).

So, from equation (2.1) we can conclude that

op(1)
1√
n

n∑
i=1

φ(xi; θ0) = op(1)Op(1) = op(1).

Finally we can express equation (2.1) as

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

φ̃(xi; θ0) + op(1), (2.2)

Now we know that

E
[
φ̃(x; θ0)

]
= 0,



24 CHAPTER 2. ASYMPTOTIC NORMALITY OF MLE

and the variance of the influence function of θ̂n can be expressed as

V ar
[
φ̃(x; θ0)

]
=

[
E

(
∂

∂θ′
φ(x; θ0)

)]−1

V ar

[
φ(x; θ0)

][
E

(
∂

∂θ′
φ(x; θ0)

)]−1

= I−1(θ0)I(θ0)I−1(θ0)

= I−1(θ0),

where V ar
[
φ̃(x; θ0)

]
<∞. From Central Limit Theorem (CLT) we know that

1√
n

n∑
i=1

[
φ̃(xi; θ0)− E

{
φ̃(x; θ0)

}]
D−→ N

(
0, V ar[φ̃(x; θ0)]

)
,

or equivalently
1√
n

n∑
i=1

φ̃(xi; θ0)
D−→ N

(
0, I−1(θ0)

)
.

So finally from equation (2.2), by Slutsky’s theorem we can write
√
n(θ̂n − θ0)

D−→ N
(
0, I−1(θ0)

)
.

2.2 Estimation with a Finite Dimensional Nuisance

Parameter

Let us define a parametric model as a set of probability densities

P = {p(x; θ) : θ ∈ Θ ⊂ Rp},

where, the dimension p is some finite positive integer and the set Θ is de-

fined to be open so we are able to define derivatives with respect to each θ ∈
Θ. Let us partition the parameter θ as (β′, η′)′ where β is a m-dimensional

vector and η is a p−m dimensional vector. Then,

Θ = Θβ ×Θη = {(β, η) : β ∈ Θβ ⊂ Rm, η ∈ Θη ⊂ Rp−m},

where Θβ = {β : (β, η) ∈ Θ} and Θη = {η : (β, η) ∈ Θ}. We want to

estimate β (parameter of interest) and consider η as the nuisance parameter.

The true value of θ is denoted as θ0 = (β′0, η
′
0)′. So the parametric model can

be expressed as

P = {p(x; β, η) : β ∈ Θβ, η ∈ Θη}.
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2.2.1 Score Function

The score function for θ is partitioned into

φθ(x; β, η) =

(
φβ(x; β, η)

φη(x; β, η)

)
,

where

φβ(x; β, η) =
∂

∂β
log p(x; β, η),

is the score function for β and

φη(x; β, η) =
∂

∂η
log p(x; β, η),

is the score function for η.

As a result, the Fisher Information matrix, I(θ) can be partitioned as

I(θ) =

 Eβ0,η0(φβφ
′
β) Eβ0,η0(φβφ

′
η)

Eβ0,η0(φηφ
′
β) Eβ0,η0(φηφ

′
η)

 .

We know that if θ̂n is the MLE of θ, then we can write

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

φ̃(xi; θ0) + op(1), (2.3)

where the influence function of θ̂n can be written as

φ̃(xi; θ0) = I−1(θ0)φ(xi; θ0).

2.2.2 The Efficient Score Function

Now if we partition θ as (β′, η′)′, then we can partition the equation (2.3) as

√
n

((
β̂n
η̂n

)
−
(
β0

η0

))
=

1√
n

n∑
i=1

 Iββ Iβη

Iηβ Iηη

−1(
φβ(xi; β, η)

φη(xi; β, η)

)
+ op(1)

=
1√
n

n∑
i=1

 Iββ Iβη

Iηβ Iηη

(φβ(xi; β, η)

φη(xi; β, η)

)
+ op(1).

(2.4)
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From the block matrix form of inverse, it can be shown that

Iββ =

[
E(φβφ

′
β)− E(φβφ

′
η)E(φηφ

′
η)
−1E(φηφ

′
β)

]−1

=
[
Iββ − IβηI−1

ηη Iηβ
]−1

,

and

Iβη = −
[
E(φβφ

′
β)− E(φβφ

′
η)E(φηφ

′
η)
−1E(φηφ

′
β)
]−1

E(φβφ
′
η)E(φηφ

′
η)
−1

= −
[
Iββ − IβηI−1

ηη Iηβ
]−1

IβηI
−1
ηη

= − IββIβηI−1
ηη .

So, from the equation (2.4), we can write

√
n(β̂n − β0) =

1√
n

n∑
i=1

[
Iββφβ(xi; β, η) + Iβηφη(xi; β, η)

]
+ op(1). (2.5)

So from equation (2.5), we get

√
n(β̂n − β0) =

1√
n

n∑
i=1

[
Iββφβ(xi; β, η)− IββIβηI−1

ηη φη(xi; β, η)

]
+ op(1)

=
1√
n

n∑
i=1

[
Iββ
{
φβ(xi; β, η)− IβηI−1

ηη φη(xi; β, η)
}]

+ op(1)

=
1√
n

n∑
i=1

Iββφeff (xi; β, η) + op(1),

(2.6)

where

φeff (x; β, η) = φβ(x; β, η)− IβηI−1
ηη φη(x; β, η), (2.7)

is the efficient score function for β where IβηI−1
ηη φη = E[φβφη]E[φηφη]

−1φη is

the projection of φβ on the space spanned by φη (Begun et al., 1983; Bickel

et al., 1993).

2.2.3 The Efficient Influence Function

From equation (2.6), we can write

√
n(β̂n − β0) =

1√
n

n∑
i=1

φ̃eff (xi; β, η) + op(1), (2.8)
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where we deduce the efficient influence function of β̂n by

φ̃eff (x; β, η) = Iββφeff (x; β, η),

where

Iββ =

[
E

{
φβ(x; β, η)− IβηI−1

ηη φη(x; β, η)

}{
φβ(x; β, η)− IβηI−1

ηη φη(x; β, η)

}′]−1

=
[
E
{
φeff (x; β, η)φ′eff (x; β, η)

}]−1
.

From CLT, we can write

1√
n

n∑
i=1

[
φ̃eff (xi; β, η)− E

{
φ̃eff (x; β, η)

}] D−→ N(0, Iββ),

or equivalently

1√
n

n∑
i=1

[
φ̃eff (xi; β, η)

] D−→ N(0, Iββ).

So finally from equation (2.8), by Slutsky’s theorem we can write

√
n(β̂n − β0)

D−→ N(0, Iββ).

2.3 Estimation with a Infinite Dimensional Nui-

sance Parameter

Let us define a semi-parametric model as a set of probability densities hav-

ing both finite-dimensional and infinite-dimensional parameters.

P = {Pβ,η : β ∈ Θβ ⊂ Rm, η ∈ Θη},

where, the parameter of interest β is an m-dimensional parameter and the

nuisance parameter η is an infinite-dimensional parameter. Here we assume

that Θβ is an open neighborhood of β0 in Rm and Θη is an open neighbor-

hood of η0 of some Banach space, Bη. Let p(x; β, η) be the density for the

probability measure Pβ,η.
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A parametric submodel of a semi-parametric model P around Pβ0,η0 is

a subset of P which has a finite-dimensional smooth parametrization and

contains the true distribution Pβ0,η0 .

For each r-dimensional surface t −→ ηt, t ∈ Θt, passing through η0,

Pβ,ηt = {Pβ,ηt : β ∈ Θβ ⊂ Rm, t ∈ Θt ⊂ Rr},

is a parametric submodel with and r-dimensional nuisance parameter where

p(x; β, ηt) is a density for Pβ,ηt .

2.3.1 Score Function

First we have to define the score function for β and score operator for η in

the following ways

Score Function for β

The score function for β can be obtained as

φβ =
∂

∂β
log p(x; β, η).

Score Operator for η

Take a measurable function which is bounded such as f : [0, τ ]→ R, where

f is defined in the interval [0, τ ] where τ is a finite number and η is also

restricted within this interval. The path defined by dηt = (1 + tf)dη is a sub-

model passing through η at t = 0. By the boundedness of f , we are assured

that (1 + tf)dη is positive for sufficiently small t.

The derivative of log-likelihood function with respect to t can be ex-

pressed as ∂
∂t

log p(x; β, ηt) and when t = 0, the derivative yields

Bηf =
∂

∂t

∣∣∣∣
t=0

log p(x; β, ηt),

where Bη is the score operator for η.
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2.3.2 The Efficient Score Function

The efficient score function from equation (2.7) motivate us to define for the

semi-parametric model also. Moreover, we have defined the score function

for β and score operator for η in section (2.3.1).

We define the efficient score function in the semi-parametric model by

φeff =

[
I −Bη

(
B∗ηBη

)−1
B∗η

]
φβ , (2.9)

where φβ and Bη are the score function and score operator with respect

to β and η respectively. B∗η is the adjoint of the operator Bη. Moreover,

Bη

(
B∗ηBη

)−1
B∗ηφβ is the projection of φβ on the space spanned by Bη and I

denotes the identity operator (Begun et al., 1983; Bickel et al., 1993; Newey,

1990; Tsiatis, 2007). This definition is a natural extension of the efficient score

function in the parametric model (equation 2.7).
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Chapter 3

Profile Likelihood

3.1 Preface

Profile likelihood approach is usually used for the models with higher di-

mensional nuisance parameters (semi-parametric models). Ordinary likeli-

hood function of parametric models and profile likelihood function in semi-

parametric models can be used in the same way. The profile likelihood

can be useful to estimate parameters and produce confidence intervals for

non-linear models with better coverage (Royston et al., 2007). For example,

to estimate regression coefficients and frailty parameters in the correlated

gamma-frailty model, an inference has been made by using profile likeli-

hood approach (Chang et al., 2007). Profile likelihood approach has been

also used for estimating the parameters from the complex models such as

generalized linear mixed models (GLMM) with factor structures using stan-

dard software and minimal programming (Jeon and Rabe-Hesketh, 2012).

The efficiency of profile likelihood estimator in semi-parametric mod-

els has been done by introducing the approximate least favourable sub-

model (Murphy and Van der Vaart, 2000). Later, while investigating the

efficiency of profile likelihood estimator, an improvement has been estab-

lished directly through the quadratic expansion of the profile likelihood (Hi-
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rose, 2011b). To illustrate this approach, we apply to the Cox PH model in

Chapter-4.

3.2 Profile Likelihood Approach

Let us define the unknown parameter as θ which can be partitioned as

θ′ = (β′, η′). Here, β is a p-dimensional vector (parameter of interest) and

η is infinite dimensional nuisance parameter. Though our interest lies only

in β, but we have to estimate both β and η. To achieve our goal, first we

profile out the nuisance parameter η. Now we will describe the process of

estimating β and η in two stages to motivate the profile likelihood estima-

tion procedure.

Let us consider the density function, p(x; β, η) from which we estimate β

and η. So the log-likelihood function can be expressed as

l(β, η) =
n∑
i=1

log p(xi; β, η).

To estimate β and η, we can use

(β̂, η̂) = arg maxβ,ηl(β, η).

However, for some cases it is very difficult to directly maximize the above

equation. For this reason we consider an approach which can be easier com-

pared to above the equation. Suppose β is fixed but η can vary, so to estimate

η, we can maximize l(β, η) with respect to η as

η̂β = arg maxη l(β, η),

where η̂β depends on β. Now for estimating β, we use the profile log-

likelihood function:

β̂ = arg maxβ l(β, η̂β),

where we profiled out the nuisance parameter η.
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3.3 Efficiency of Profile Likelihood Approach in

Semi-Parametric Models

Let us define a semi-parametric model as a set of probability densities

P = {p(x; β, η) : β ∈ Θ ⊂ Rp, η ∈ H},

where, β is p dimensional parameter of interest and η is a nuisance param-

eter which is infinite dimensional. Let (β0, η0) be the true value of (β, η).

Moreover, we assume Θ is a compact set containing an open neighbour-

hood β0 in Rp and H is a convex set containing η0 in Banace space, B.

To show the alternative approach of Murphy and Van der Vaart (2000),

the definition of profile likelihood has extended by Hirose (2011b). Accord-

ing to Hirose (2011b), if there exist a function η̂(β, F ), where F is cdf such

that η̂(β0, F0) = η0 and the derivative

∂

∂β

∣∣∣∣
β=β0

logP
(
x; β, η̂(β, F0)

)
,

is the efficient score function where F0 is the cdf of the density function

P (x; β0, η0). Then the profile log-likelihood function for β (for the empirical

cdf Fn) can be written as

l
(
β, η̂(β0, Fn)

)
=

n∑
i=1

logP
(
xi; β, η̂(β, Fn)

)
.

The main purpose of Hirose (2011b) is to have an additional parameter F in

the function η̂(β, F ), so that estimating equation can be written as

φ(x; β, Fn) =
n∑
i=1

∂

∂β
logP

(
xi; β, η̂(β, Fn)

)
= 0, (3.1)

where φ(x; β, Fn) is the profile likelihood score function. Therefore, equation

(3.1) can be expressed as an explicit function of sample size n, through Fn.

Moreover, β̂n corresponding to equation (3.1) is efficient (Hirose, 2011b).
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Assumptions

To show the consistency and efficiency of β̂n, Hirose (2011b) has considered

the following assumptions:

A1: η̂(β0, F0) = η0 and

φeff (x; β0, F0) =
∂

∂β
logP

(
x; β, η̂(β, F )

)∣∣∣∣
β=β0,F=F0

,

is the efficient score function.

A2: The empirical cdf Fn is n1/2 consistent such that n1/2|Fn − F0| = Op(1).

Moreover for all x, logP
(
x; β, η̂(β, F )

)
is twice continuous differentiable

with respect to β and Hadamard differentiable with respect o F for each

(β, F ) ∈ Θ×z.

A3: The efficient information matrix I∗ = E(φeff φ
′
eff ) is invertible.

A4: There exists a ρ > 0 such that the class of functions {φ(x; β, F ) : (β, F ) ∈
Θ × ζρ} is Donsker type with square-integrable envelope function, and the

class of functions { ∂
∂β
φ(x; β, F ) : (β, F ) ∈ Θ × ζρ} is Glivenko-Cantelli with

integrable envelope function.

Theorem 3.1: Based on the assumptions {A1, A2, A3, A4}, it can be showed

that a consistent estimator β̂n corresponding to the following estimating

equation
n∑
i=1

φ(xi; β̂n, Fn) = 0,

is an asymptotically linear estimator for β0 with the efficient influence func-

tion (I∗)−1φeff (x; β0, F0). Therefore, we can write

√
n(β̂n − β0) =

1√
n

n∑
i=1

(I∗)−1φeff (xi; β0, F0) + op(1)
D−→ N{0, (I∗)−1}, (3.2)

where N{0, (I∗)−1} is a normal distribution with mean zero and variance

(I∗)−1. So from equation (3.2), we can say that the profile likelihood MLE β̂n

is efficient (Hirose, 2011b).



Chapter 4

Cox PH Model

Cox PH model is the most widely used semi-parametric regression model

where the baseline hazard is an unknown function of survival time and

the regression coefficient is an unknown vector. Different kinds of semi-

parametric models such as proportional odds models and linear transfor-

mation models have been developed to analyze time to event data in sur-

vival analysis after the establishment of Cox PH model (Hanson and Yang,

2007; Wang and Dunson, 2010; Zeng and Lin, 2007a). In addition, numer-

ous mathematical techniques such as counting process theory and empirical

process theory have been used to develop asymptotic theory of the estima-

tors (Fleming and Harrington, 1991; Van der Vaart and Wellner, 1996) .

Let T denote the failure time and Z = (Z1, ..., Zk)
′ represents a set of

available covariates. The covariates Z may include quantitative, qualitative

and time dependent variables. We are interested in modeling and deter-

mining the relationship between Z and lifetime random variable (T ). These

models assume that covariates have a multiplicative effect on the hazard for

an event, and they are formulated as,

λ(t|Z) = λ(t)eβ
′Z ,

where the form of baseline hazard function λ(t) is unspecified which im-
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plies that the distribution of lifetime random variable is unknown and β is

a vector of regression coefficients (Cox, 1972).

The Cox PH model is preferred over the logistic regression model when

the survival time information is available and there is censoring in the data

set. The Cox PH model is very popular because it is a robust model so

the results obtained from the Cox PH model will closely approximate the

results obtained from a correct parametric model. Even though the baseline

hazard function λ(t) is unspecified or unknown, it is possible to estimate the

regression coefficient vector β and the hazard ratio is easily estimable from

the estimate of β.

4.1 Estimation of Regression Parameter

Suppose we observe n observations (Ti, Zi, δi); i = 1, 2..., n where Ti is the

length of time a subject was observed, Zi a covariates whose value is mea-

sured at the beginning of the study. Moreover, δi indicates whether the ob-

served time is censored or not

δi =

 1 for Ti = event time

0 for Ti = censored time

The likelihood of observed (Ti = ti, Zi, δi = 1) is f(ti|Zi) and the likelihood

of censored (Ti = ti, Zi, δi = 0) is S(ti|Zi), where f(·) and S(·) are probabil-

ity distribution function and survival function respectively. Therefore the

likelihood of an observation (ti, Zi, δi) is generally given by

f(ti|Zi)δiS(ti|Zi)1−δi .

The likelihood of all n observations is

L(β) =
n∏
i=1

f(ti|Zi)δiS(ti|Zi)1−δi .
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We know that f(t|Z) = λ(t|Z)S(t|Z) and S(t|Z) = exp(−
∫ t

0
λ(s|Z)ds), so we

can write the likelihood as

L(β) =
n∏
i=1

λ(ti|Zi)δiS(ti|Zi).

For the Cox PH model, we know that

λ(t|Z) = λ(t)eβ
′Z , S(t|Z) = [S0(t)]e

β′Z
.

where S0(t) is the baseline survival function. So the likelihood function can

be written as

L(β) =
n∏
i=1

[
{λ(ti)e

β′Zi}δi exp(−
∫ ti

0

λ(s)ds)e
β′Zi

]
.

4.1.1 Estimate Regression Parameters using Partial Likeli-

hood

The likelihood, L(β) require λ(t) to be known and therefore an estimator

of λ(t) is needed. To avoid the estimation of λ(t), Cox proposed the partial

likelihood function (Cox, 1975).

Suppose we observe (T, δ, Z) in time interval [0, τ ], Z ⊂ Rk is a regres-

sion covariate and T is a right-censored failure time related to cumulative

hazard, Λ(t|Z) = eβ
′ZΛ(t). Let us assume there is no tie in the observation

times; so one and only one individual failed at time ti. Let Yi(t) = 1{Ti ≥ t}.
Then the partial likelihood function is given by

L(β) =
n∏
i=1

(
eβ
′Zi∑n

l=1 Yl(ti)e
β′Zl

)δi
, (4.1)

and the log partial likelihood function can be written as

log L(β) =
n∑
i=1

δi

[
Ziβ − log

n∑
l=1

Yl(ti)e
Zlβ

]
.
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The corresponding score function is

∂

∂β
logL(β) =

n∑
i=1

δi

[
Zi −

∑n
l=1 Yl(ti)Zle

Zlβ∑n
l=1 Yl(ti)e

Zlβ

]
.

The variance of β̂ is estimated by V̂ ar(β̂) = Î−1(β̂), where

Î(β̂) = − ∂2

∂β∂β′

∣∣∣∣
β=β̂

logL(β).

4.1.2 Estimate Regression Parameters using Profile Likeli-

hood

Suppose the Cox model, λ(t|Z) = λ(t)eβ
′Z and also assume that the baseline

hazard λ(t) has (possible) non-zero values on ti

λ(ti) = λi ≥ 0 ; i = 1, 2, ..., n

and λ(t) = 0 for the rest of time (Murphy and Van der Vaart, 2000). Under

the assumption, the baseline cumulative hazard function, Λ(t) =
∫ t

0
λ(s)ds

can be expressed as

Λ(t) =
n∑
i=1

λi1{ti ≤ t}.

Then the likelihood function is

L(β,Λ) =
n∏
i=1

[{
λ(ti)e

β′Zi
}δi exp

(
−
∫ ti

0

λ(s)ds
)eβ′Zi]

=
n∏
i=1

[{
λie

β′Zi
}δi exp

(
−

n∑
j=1

λj1{tj ≤ ti}
)eβ′Zi]

,

and the log-likelihood function can be written as

logL(β,Λ) =
n∑
i=1

[
δi
{

log λi + βZi
}
− eβ′Zi

n∑
j=1

λj1{tj ≤ ti}
]
.

Now the score equation with respect to λk is

∂

∂λk
logL(β,Λ) =

δk
λk
−

n∑
i=1

1{tk ≤ ti}eβ
′Zi = 0.
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So the estimate of λk is given by

λ̂k(β) =
δk∑n

l=1 1{tk ≤ tl}eβ′Zl
=

δk∑n
l=1 Yl(tk)e

β′Zl
,

and the estimate of cumulative baseline hazard can be written as

Λ̂β(t) =
n∑
i=1

δi1{ti ≤ t}∑n
l=1 Yl(t)e

β′Zl
. (4.2)

Then we can estimate β as the maximizer of a profile likelihood function for

β. The profile log likelihood function can be written as

logL
(
β, Λ̂β

)
=

n∑
i=1

[
δi
{

log λ̂i(β) + βZi
}
− eβZi

n∑
j=1

λ̂j(β)1{tj ≤ ti}
]

=
n∑
i=1

[
δi
{

log
δi∑n

l=1 Yl(ti)e
β′Zl

+ β′Zi
}
− eβ′Zi

n∑
j=1

δj1{tj ≤ ti}∑n
l=1 Yl(ti)e

β′Zl

]
.

Now the score function based on profile likelihood function is

∂

∂β
logL

(
β, Λ̂β

)
=

n∑
i=1

δi

{
Zi −

∑n
l=1 Yl(ti)Zle

β′Zl∑n
l=1 Yl(ti)e

β′Zl

}
.

The variance of β̂ is estimated by V̂ ar(β̂) = Î−1(β̂), where

Î(β̂) = − ∂2

∂β∂β′

∣∣∣∣
β=β̂

logL
(
β, Λ̂β

)
.

So it can be observed that the partial likelihood score function is identical to

the profile likelihood score function. Thus, the profile likelihood estimator

of the regression coefficient is the same as the partial likelihood estimator

(Hirose, 2011a; Yan and Yi, 2015).

4.2 Efficiency of Profile Likelihood

An estimator of the baseline cumulative hazard function in the counting

process notation (Fleming and Harrington, 1991) can be written from equa-

tion (4.2) as

Λ̂(t) =

∫ t

0

∑n
i=1 dNi(u)∑n

i=1 Yi(u)eβ′Zi
, (4.3)
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where N(t) = 1{T ≤ t, δ = 1} and Y (t) = 1{T ≥ t}.

We denote the empirical cdf of the observations {Ti, δi, Zi : i = 1, ..., n}
by Fn. Let us denote EFnf =

∫
fdFn. Then Λ̂(t) can be expressed as

Λ̂β,Fn(t) =

∫ t

0

EFndN(u)

EFnY (u)eβ′Z
. (4.4)

The profile log-likelihood function for a single observation can be written as

logP (T, δ|β, Λ̂β,Fn) = δ

{
β′Z + log

EFndN(T )

EFnY (t)eβ′Z

}
− eβ′Z

∫ T

0

EFndN(u)

EFnY (u)eβ′Z
.

(4.5)

The score function can be obtained as

φpl(T, δ|β, Fn) =
∂

∂β
logP (T, δ|β, Λ̂β,Fn)

= δ

[
Z − EFnY (t)Zeβ

′Z

EFnY (t)eβ′Z

]
− eβ′Z

∫ T

0

[
Z − EFnY (u)Zeβ

′Z

EFnY (u)eβ′Z

]
dΛ̂β,Fn(u).

(4.6)

Replace Fn by F0,we get from equation (4.4)

Λ̂β0,F0(t) =

∫ t

0

E[dN(u)]

E[Y (u)eβ
′
0Z ]

, (4.7)

where E is the expectation with respect to the true distribution F0. At the

true value of the parameters (β, F ) we can write

E[dN(u)] = E[Y (u)eβ
′
0Z ]dΛ0(u). (4.8)

Therefore from equation (4.7), we can write

Λ̂β0,F0(t) = Λ0(t),

where Λ0(t) is the true cumulative baseline hazard function. Now the

score function for Cox PH model at the true value of the parameters (β, F )

can be expressed as

φpl(T, δ|β0, F0) =
∂

∂β
logP (T, δ|β, Λ̂β,F )

∣∣∣∣
β=β0,F=F0

=

{
δ

[
Z − E[Y (T )Zeβ

′
0Z ]

E[Y (T )eβ
′
0Z ]

]
− eβ′0Z

∫ T

0

[
Z − E[Y (u)Zeβ

′
0Z ]

E[Y (u)eβ
′
0Z ]

]
dΛ0(u)

}
,

(4.9)
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which is the profile likelihood score function for the Cox PH model. In

section 4.3 (Appendix), we show that the profile likelihood score function

based on equation (4.9) is the efficient score function.

Asymptotic normalityof MLE

Using the Theorem 3.1 from Chapter 3, it can be shown that a consistent

estimator β̂n is an asymptotically linear estimator for β0 and we can write

√
n(β̂n − β0) =

1√
n

n∑
i=1

(I∗)−1φpl(T, δ|β0, F0) + op(1)
D−→ N{0, (I∗)−1}.

Here I∗ = E[φplφ
′
pl] is the efficient information matrix and N{0, (I∗)−1} is a

normal distribution with mean zero and variance (I∗)−1. So from the above

equation, we can say that the profile likelihood MLE β̂n is efficient (Hirose,

2011a,b).

4.3 Appendix

Efficient Score Function using Projection Theory

In this section, we are going to use the equation (2.9) for the calculation of

efficient score function based on the projection theory (Begun et al., 1983;

Bickel et al., 1993). Moreover, we are going to show that the score function

for Cox PH model based on profile likelihood and the efficient score func-

tion based on the projection theory are identical.

To get the efficient score function using the projection theory, we assume

the parameters (β,Λ) are evaluated at the true values β0, Λ0 and omit sub-

script “0” for brevity.
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The log-likelihood function of Cox PH model for one observation can be

written as

logP (T, δ|β,Λ) =

{
δ
(

log λ(t) + β′Z
)
− eβ′ZΛ(t)

}
.

Score Function for β

φβ =
∂

∂β
logP (T, δ|β,Λ) =

{
Z
(
δ − eβ′ZΛ(t)

)}
.

Score Operator for Λ

Let us take a bounded continuous function g : [0, τ ]→ R, where g is defined

in the interval [0, τ ] because Λ is also restricted within this interval. We

define a path by

dΛs = (1 + sg)dΛ

which defines a submodel passing through Λ at s = 0. By the boundedness

of g, we are assured that (1 + sg)dΛ is positive for sufficiently small s.

The corresponding path for the baseline hazard function is

λs(t) =
dΛs

dt
= (1 + sg)

dΛ

dt
= (1 + sg)λ(t),

and the score operator is given by the derivative of the log-likelihood

function with respect to s (at s = 0) can be expressed as

BΛ(T, δ|β,Λ)g =
∂

∂s

∣∣∣∣
s=0

logP (T, δ|β,Λs) =

{
δg(t)− eβ′Z

∫ t

0

g(u)dΛ(u)

}
.

Information Operator B∗ΛBΛ and its Inverse
(
B∗ΛBΛ

)−1

Let us start with the information operator B∗ΛBΛ and take two arbitrary

functions f and g. By definition of the adjoint, we can write

〈B∗ΛBΛf, g〉L2(Λ) = 〈BΛf,BΛg〉L2(P ). (4.10)
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The path defined by dΛr,s = (1 + rf + sg + rsfg)dΛ is positive for small

r and s. It can be written as dΛr,s = (1 + rf)(1 + sg)dΛ. The corresponding

path for the baseline hazard function is

λr,s(t) =
dΛr,s

dt
= (1 + rf + sg + rsfg)

dΛ

dt
= (1 + rf + sg + rsfg)λ(t).

Now we can write

∂

∂r

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β,Λr,s) = BΛf, (4.11)

and
∂

∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β,Λr,s) = BΛg. (4.12)

Using (4.11) and (4.12) we have that

〈BΛf,BΛg〉L2(P ) = E

{
(BΛf)(BΛg)

}
= − E

{
∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β,Λr,s)

}
= E

{
eβ
′Z

∫ T

0

f(ξ)g(ξ)dΛ(ξ)

}
.

(4.13)

Now we manipulate the integral involving the function ξ, we deduce∫ T

0

f(ξ)g(ξ)dΛ(ξ) =

∫ τ

0

I(ξ ≤ T )f(ξ)g(ξ)dΛ(ξ).

Indeed, if ξ > T , then the contribution will be 0 to the integral. So the

last term in equation (4.13) can be expressed as

E

{
eβ
′Z

∫ T

0

f(ξ)g(ξ)dΛ(ξ)

}
= E

{
eβ
′Z

∫ τ

0

I(ξ ≤ T )f(ξ)g(ξ)dΛ(ξ)

}
. (4.14)

Using Fubini’s theorem, equation (4.14) can be written as

E

{
eβ
′Z

∫ τ

0

I(ξ ≤ T )f(ξ)g(ξ)dΛ(ξ)

}
=

〈
E
{
eβ
′ZI(ξ ≤ T )f(ξ)

}
, g(ξ)

〉
L2(Λ)

.

(4.15)

From equation (4.10) we can write〈
B∗ΛBΛf, g

〉
L2(Λ)

=

〈
E{eβ′ZI(t ≤ T )f}, g

〉
L2(Λ)

.
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So, the information operator is

B∗ΛBΛf = E

{
eβ
′ZI(t ≤ T )

}
f(t).

It follows that the inverse of information operator is

(
B∗ΛBΛ

)−1
f(t) =

[
E{eβ′ZI(t ≤ T )}

]−1

f(t).

The Action of the Adjoint Score Operator B∗Λ on the Score

Function φβ

Assume the differentiable paths (r, s) 7→ P (T, δ|β + ru,Λs) can be exploited

with the path dΛs = (1 + sg)dΛ. Now we can write

∂

∂r

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β + ru,Λs) = u′φβ. (4.16)

and
∂

∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β + ru,Λs) = BΛg. (4.17)

Using equation (4.16) and (4.17) we can write〈
u′φβ, BΛg

〉
= E

{
(u′φβ)(BΛg)

}
= − E

{
∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β + ru,Λs)

}
= u′E

{
Zeβ

′Z

∫ t

0

g(ξ)dΛ(ξ)

}
.

(4.18)

Now by manipulating the integral involving the function ξ, the equation

(4.18) can be expressed as〈
u′φβ, BΛg

〉
= u′E

{
Zeβ

′Z

∫ τ

0

I(ξ ≤ T )g(ξ)dΛ(ξ)

}
. (4.19)

Using the Fubini’s theorem, we can conclude that

u′E

{
Zeβ

′Z

∫ τ

0

I(ξ ≤ T )g(ξ)dΛ(ξ)

}
=

〈
u′E

{
Zeβ

′ZI(ξ ≤ T )

}
, g(ξ)

〉
L2(Λ)

.

(4.20)
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We know that 〈
u′B∗Λφβ, g

〉
L2(P )

=

〈
u′φβ, BΛg

〉
L2(Λ)

.

So we can write

B∗Λφβ = E

{
Zeβ

′ZI(t ≤ T )

}
.

Efficient Score Function φeff :

Finally the efficient score function can be expressed as

φeff = φβ −BΛ

(
B∗ΛBΛ

)−1
B∗Λφβ

=

{
δZ − Zeβ′ZΛ(T )−

[
δ − eβ′Z

∫ T

0

dΛ(u)

]
E[Zeβ

′ZI(t ≤ T )]

E[eβ′ZI(t ≤ T )]

}
=

{
δ

[
Z − E[Y (T )Zeβ

′Z ]

E[Y (T )eβ′Z ]

]
− eβ′Z

∫ T

0

[
Z − E[Y (u)Zeβ

′Z ]

E[Y (u)eβ′Z ]

]
dΛ(u)

}
.

(4.21)

The efficient score function based on equation (4.21) and the profile like-

lihood score function from equation (4.9) are identical.
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Chapter 5

Efficient Estimation For The Cox

PH Cure Model

5.1 Introduction

Mixture cure models are commonly used in medical and clinical studies

where the population has cured and uncured subjects/ individuals. For

analyzing mixture cure model, Berkson and Gage (1952) have used a mix-

ture of exponential regression with a constant cure fraction and Farewell

(1982) adopted the weibull distribution for survival function and the logis-

tic model for the cure fraction. Later logistic regression for the mixture pro-

portion along with a generalized F-statistic has been applied for the survival

function of the uncured subjects (Peng et al., 1998). Ghitany et al. (1994) pro-

posed a combination of logistic and exponential distribution for the mixture

cure model. As an extension of Farewell’s model (Farewell, 1977), a more

flexible mixture cure model has been introduced by retaining the condi-

tional survival distribution for uncured individuals as a completely unspec-

ified function (Taylor, 1995). A class of transformation models for the event

time has been proposed to use generalized estimating equations for param-

eter estimation. Lu and Ying (2004) have used the counting process and its

associated martingale theory to show the asymptotic properties of mixture

47
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cure models. To avoid the restrictions imposed by parametric conditional

survival functions, semi-parametric mixture cure models have been used as

well. From the literature, it is seen that covariate effect has expressed both in

parametric and semi-parametric mixture cure models (Chappell et al., 1995;

Goldman, 1984; Kuk and Chen, 1992; Maller and Zhou, 1996; Peng, 2003;

Peng and Dear, 2000; Sposto et al., 1992; Sy and Taylor, 2000; Yu and Peng,

2008).

Kuk and Chen (1992) first proposed the Cox PH cure model which has

attracted attention for decades. In clinical settings, Cox PH cure model

has been widely used for modelling the failure time data for various types

of cancer studies such as breast cancer, head and neck cancer, leukemia,

prostate cancer, melanoma etc. (Amico and Van Keilegom, 2018; Othus

et al., 2012; Peng and Dear, 2000; Peng and Taylor, 2014; Sy and Taylor, 2000,

2001; Zhao and Zhou, 2006).

While using the profile likelihood approach, we profile out the baseline

hazard function from the Cox PH cure model and plugged the estimator in

the likelihood function. However the problem is that the estimator of the

baseline hazard function is an implicit function (see equations (5.12) and

(5.16) and Remark-5.1 in section 5.3.3). Therefore, it is very challenging to

find the estimated SE of the profile likelihood estimator. For this reason,

Hsieh et al. (2006) proposed to use bootstrap method to get the standard er-

rors while using the profile likelihood approach. However, in some studies,

it is mentioned that the standard errors estimated by bootstrap method can

be overestimated (Hickey et al., 2018; Hsieh et al., 2006; Xu et al., 2014).

Sy and Taylor (2000, 2001) have used NPMLE approach along with EM

algorithm to estimate both regression parameters and cumulative baseline

hazard function from the Cox PH cure model. However, Sy and Taylor
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(2000, 2001) have treated the baseline hazard function as a finite dimen-

sional parameter for the standard error calculation, therefore, they have

considered the Cox PH cure model as finite dimensional parametric model

and calculated the observed information using the Hessian matrix. On the

other hand, Lu (2008) has used Breslow-type estimator and extended the

approach developed by Murphy et al. (1994) and Murphy (1995) for MLE

calculation and used the result of Murphy and Van der Vaart (2000) for

the information matrix of profile likelihood using the equation (1.2) from

Chapter-1.

In summary, it can be said that all the existing works of Cox PH cure

model based on profile likelihood approach have avoided dealing with the

implicit function (in profile likelihood function) to show the asymptotic nor-

mality of profile likelihood MLE.

Cai et al. (2012) developed the smcure R-package to fit the semiparamet-

ric mixture cure model which has received much attention in recent years

(Amico and Van Keilegom, 2018; Peng and Taylor, 2014; Robinson, 2014). In

this package, Cai et al. (2012) have used the melanoma data from the ECOG

phase III clinical trial e1684 where Breslow-type estimator along with EM

algorithm has been used in the Cox PH cure model to estimate the regres-

sion coefficients and cumulative baseline hazard function. However, the

estimating equation was not simple due to the presence of implicit func-

tion, therefore they didn’t calculate the standard errors directly. As a result,

bootstrap samples have been used in order to obtain the variance estimator

(Cai et al., 2012).

Our contribution is that we have shown the asymptotic normality of

the profile likelihood estimator with implicit function for the Cox PH cure

model. This enables us to have a closed form expression for the standard
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error of the profile likelihood estimator (Lemma-6.3 and Theorem-6.3 in

Chapter-6). This is an alternative methodology to Murphy and Van der

Vaart (2000). Moreover, we have calculated the estimated information ma-

trix as

Î =
1

n

n∑
i=1

φ(xi; θ̂)φ
′(xi; θ̂),

where, φ is the profile score function.

Our proposed alternative approach gives us not only the direct asymp-

totic expansion of the profile likelihood, but also closed form formula to

compute the efficient information matrix for the Cox PH cure model using

the profile likelihood score function. Based on our proposed approach, we

have calculated the estimated standard error of the profile likelihood esti-

mator which is illustrated in the simulation study (Section-5.4) and real-life

example (Section-5.5). For the real-data example, we have used the same

data (ECOG phase III clinical trial e1684) from smcure package and com-

pared our results with the output obtained from the smcure package.

This chapter is organized as follows. A brief discussion on Cox PH cure

model has been given in Section-5.2. In Section-5.3, we describe the estima-

tion procedure to show that the profile likelihood estimators are consistent

and asymptotically normal. Results obtained from the simulation study and

real-life data application are shown in Section-5.4 and Section-5.5 respec-

tively. This chapter concludes in Section-5.6 with a short discussion.

5.2 Cox PH Cure Model

Let us define a binary variable V , where V = 0 indicates an individual that

will be a long-term survivor (never experience the event of interest) and V =

1 indicates an individual that will experience the event. For an individual

with covariate vector W = (1,W1, ...,Wn), the distribution of V = 1 can be
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expressed as a logistic model

p = Pr(V = 1,W ; b) =
eb
′W

1 + eb′W
, (5.1)

where p is the probability of being susceptible (often called incidence of the

model), b is a vector parameter and W include the intercept. The time to

experience the event among individuals for which V = 1 can be modelled

by Cox PH model

λ(t|V = 1, Z; β) = λ(t|V = 1)eβ
′Z , (5.2)

where we observe another set of covariate Z without intercept and λ(t|V =

1) is the baseline hazard function. The two sets of covariates may be iden-

tical, or partially or completely different from each other (Kuk and Chen,

1992).

An individual who experience the event at time t contributes a likelihood

factor

pf(t|V = 1, Z;λ, β),

which is the probability of death at time t (Kuk and Chen, 1992). On the

other hand, an individual who has been followed to time t without experi-

encing the event contributes a likelihood factor

(1− p) + pS(t|V = 1, Z;λ, β),

which is the probability of long-term survivor (cure) plus the probability

of experiencing the event after time t (Kuk and Chen, 1992). In addition

S(t|V = 1, Z;λ, β) = S0(t|V = 1)eβ
′Z is the conditional survival function

of the susceptibles (often called the latency) where S0(t|V = 1) = exp
(
−

Λ(t|V = 1)
)

= exp
(
−
∫ t

0
λ(s|V = 1)ds

)
is the baseline survival function and

Λ(t|V = 1) is the cumulative baseline hazard function.
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5.3 Estimation: Profile Likelihood with EM Algo-

rithm

In this section, first we present the likelihood function for the Cox PH cure

model. In Section 5.3.1, we profile out the baseline hazard function using

NPMLE approach and construct the profile likelihood function. In Section

5.3.2, we estimate the profile likelihood MLE through EM algorithm and in

Section 5.3.3, we prove the asymptotic normality of the profile likelihood

MLE.

Suppose the observed data for individual i can be denoted by (Ti, δi, Zi); i =

1, 2..., n where Ti is the length of time a subject was observed, Zi is a vector

of covariates. Moreover, δi indicates whether the observed time is censored

or not

δi =

 1 for Ti = event time

0 for Ti = censored time

For convenience, let Wi = (1, Z ′i)
′, although the covariates in Wi and Zi

do not have to be equal.

The likelihood for n observations will be

L(b, β, λ) =
n∏
i=1

{
pif(ti|V = 1, Zi;λ, β)

}δi{
(1−pi)+piS(ti|V = 1, Zi;λ, β)

}1−δi
,

(5.3)

where pi is the probability of ith individual being susceptible. Using

f(t|V = 1, Z;λ, β) = λ(t|V = 1, Z; β)S(t|V = 1, Z;λ, β),

the likelihood function can be written as

L(b, β,Λ) =
n∏
i=1

[
piλ(ti|V = 1, Zi;β)S(ti|V = 1, Zi;λ, β)

]δi
[
(1− pi) + piS(ti|V = 1, Zi;λ, β)

]1−δi
.

(5.4)
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Here we want to obtain the estimates of b and β that maximize L(b, β,Λ).

For maximizing L(b, β,Λ), we are going to apply profile likelihood tech-

nique in which Λ(t) is profiled out from the likelihood.

Let us define the complete data by (ti, δi, Zi, vi), i = 1, ..., n which in-

cludes the observed data and unobserved vi, where vi is the value taken by

the variable Vi. It follows that if δi = 1 then vi = 1 and if δi = 0 then vi

is unobserved. The choice for using EM algorithm (Dempster et al., 1977)

is justified by the fact that the model depends on a latent variable, vi (cure

status). So the complete data likelihood can be written as

Lc(b, β,Λ; v) =
n∏
i=1

[
piλ(ti|V = 1, Zi; β)S(ti|V = 1, Zi;λ, β)

]δivi
×

n∏
i=1

[
piS(ti|V = 1, Zi;λ, β)

](1−δi)vi
×

n∏
i=1

[
1− pi

](1−δi)(1−vi)

.

(5.5)

The above equation can be rewritten as the product of a logistic and a

PH component.

Lc(b, β,Λ; v) =
n∏
i=1

pvii (1− pi)1−vi ×
n∏
i=1

λ(ti|V = 1, Zi; β)δiviS(ti|V = 1, Zi;λ, β)vi .

(5.6)

So it is possible to estimate the incidence and the latency separately

(Amico and Van Keilegom, 2018). Now the expected complete data log-

likelihood under p(V |T, δ, Z) is

n∑
i=1

{
γ(Vi) log pi + (1− γ(Vi)) log(1− pi)

}
+

n∑
i=1

γ(Vi)

{
δi log λ(ti|V = 1, Zi; β) + logS(ti|V = 1, Zi;λ, β)

}
, (5.7)

where γ(Vi) can be defined as

γ(Vi) = E(Vi|Ti, δi, Zi) =

(
piS(ti|V = 1, Zi;λ, β)

1− pi + piS(ti|V = 1, Zi;λ, β)

)1−δi
. (5.8)
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Here, for censored cases γ(Vi) = E(Vi|Ti, δi, Zi) and for uncensored cases

γ(Vi) = 1. To estimate all parameters and the baseline hazards simultane-

ously, we combine the EM algorithm and profile likelihood approach. From

equation (5.6), it can be observed that the likelihood function for the logistic

component is same as for a classical logistic regression model.

5.3.1 Baseline Hazard Estimation and Profile Likelihood Func-

tion

Before starting the EM algorithm, we profile out the baseline hazard func-

tion λ(t) using NPMLE. We assume that the baseline hazard, λ(t) has (pos-

sible) non-zero values on the observed time ti:

λ(ti) = λi ≥ 0 ; i = 1, 2, ..., n

and λ(t) = 0 for the rest of time (Murphy and Van der Vaart, 2000). Under

the assumption, the integral, Λ(t) =
∫ t

0
λ(s)ds is replaced with the sum

Λ(t) =
n∑
i=1

λi1{ti ≤ t}.

Now the survival part of equation (5.7) can be separately maximized

with respect to λ using the log-likelihood:

n∑
i=1

γ(Vi)

[
δi
{

log λi + β′Zi
}
− eβ′Zi

n∑
j=1

λj1{tj ≤ ti}
]
. (5.9)

The score equation with respect to λk is

∂

∂λk

n∑
i=1

γ(Vi)

[
δi
{

log λi + β′Zi
}
− eβ′Zi

n∑
j=1

λj1{tj ≤ ti}
]

= 0.

By solving the above equation, the estimate of λk is

λ̂k =
δk∑n

l=1 γ(Vl)1{tk ≤ tl}eβ′Zl
,
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and the estimate of the cumulative baseline hazard, Λ(t) is

Λ̂(t|V = 1; β) =
n∑
i=1

δi1{ti ≤ t}∑n
l=1 γ(Vl)1{t ≤ tl}eβ′Zl

. (5.10)

Now the estimate of the baseline survival function can be expressed as

Ŝ0(t|V = 1; β) = exp(−Λ̂(t|V = 1; β)) = exp

(
−

n∑
i=1

δi1{ti ≤ t}∑n
l=1 γ(Vl)1{t ≤ tl}eβ′Zl

)
.

Note: Ŝ0(t|V = 1; β) may not converge to 0 as t→∞, therefore in smcure

R-package, Cai et al. (2012) have considered Ŝ0(t|V = 1; β) = 0 for all the

time points after the last event time. To compare our results with the output

obtained from smcure package, we have considered the same assumption.

Profile Likelihood Function

An estimator of the baseline cumulative hazard function in the counting

process notation can be written from equation (5.10) as

Λ̂(t) =

∫ t

0

∑n
i=1 dNi(u)∑n

i=1 γ(Vi)Yi(u)eβ′Zi
, (5.11)

where N(t) = 1{T ≤ t, δ = 1} and Y (t) = 1{T ≥ t}.
Let us denote EFnf =

∫
fdFn. Then Λ̂(t) can be expressed as

Λ̂β,Fn(t) =

∫ t

0

EFndN(u)

EFnγ(V )Y (u)eβ′Z
. (5.12)

Now we plug the baseline hazard estimator (Λ̂β,Fn in the place of Λ) in equa-

tion (5.7) and obtain the expected complete data profile log-likelihood func-

tion:
n∑
i=1

{
logP (Vi|b) + logP

(
Ti, δi|β, Λ̂β,Fn

)}
, (5.13)

where logP (Vi|b) and logP
(
Ti, δi|β, Λ̂β,Fn

)
are the expected complete data

profile log-likelihood functions (for one observation) for logistic and Cox

PH component respectively. Now we can express the components as

logP (Vi|b) =
{
γ(Vi) log pi + (1− γ(Vi)) log(1− pi)

}
= γ(Vi)b

′Wi − log(1 + eb
′Wi),

(5.14)
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and

logP
(
Ti, δi|β, Λ̂β,Fn

)
= γ(Vi)

{
δi log λ̂(ti|V = 1, Zi; β) + logS

(
ti|V = 1, Zi; Λ̂β,Fn , β

)}
= γ(Vi)

[
δi
{

log
EFndN(Ti)

EFnγ(V )Y (Ti)eβ
′Z

+ β′Zi
}
− eβ′Zi

∫ Ti

0

EFndN(u)

EFnγ(V )Y (u)eβ′Z

]
.

(5.15)

For simplicity, we can express logP
(
Ti, δi|β, Λ̂β,Fn

)
as logP

(
Ti, δi|β, Fn

)
.

5.3.2 The EM Algorithm

In this section, we will apply the EM algorithm to maximize the expected

complete data profile log-likelihood function to find the profile likelihood

MLE. First, we replace Λ with Λ̂β,Fn in equation (5.8).

The E-step

In the E-step, we use the current parameter estimates b and β to find the

expected values of Vi:

γ(Vi) = E(Vi|Ti, δi, Zi) =

(
piS
(
ti|V = 1, Zi; β, Λ̂β,Fn

)
1− pi + piS

(
ti|V = 1, Zi; β, Λ̂β,Fn

))1−δi
. (5.16)

The M-step

Now we maximize the equation (5.13) with respect to b and β to obtain b̂n

and β̂n respectively. The updated parameters from the M-step are returned

into E-step until the values of b̂n and β̂n converge.

In M step of EM algorithm, we have used non-linear optimization rou-

tine (”Nelder-Mead” method) to maximize the complete data log likelihood

function.

5.3.3 Asymptotic Normality of the MLE

Here we outline the results of asymptotic normality of the profile likelihood

estimator in the Cox PH cure model.
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The difficulty of the problem is the profile likelihood function involve

the implicit function. From equations (5.12) and (5.16), we see that γ(V ) and

Λ̂ have an iterative relationship. As a result, the estimator of the baseline

hazard function is an implicit function. Similar type of problem has been

identified in the joint model of longitudinal and survival data [Rizopoulos

(2012); page-67].

We have successfully proved the asymptotic normality of the profile like-

lihood estimator based on two results:

1. The score functions defined in equations (5.19), (5.20) and (5.21) in

Section 5.3.4 don’t involve differentiation of the implicit function and

2. Without assuming the differentiability of the profile likelihood score

function (φs) with respect to β and F , we have showed that

E

[√
n

{
φs(T, δ|β̂n, F0)− φs(T, δ|β0, F0)

}]
= −E

[
φs(T, δ|β0, F0)φ′s(T, δ|β0, F0)

]{√
n(β̂n − β0)

}
+ op(1).

The proof for the above equation is provided in Lemma-6.3 of Chapter-

6. By combining the above two results, we are able to show not only the

asymptotic normality of the estimator but also derive the closed form ex-

pression for information matrices (equations 5.17 and 5.18) without differ-

entiating the implicit function in the model.

The asymptotic properties of β̂n and b̂n are proved in Theorem-6.1, Theorem-

6.2 and Theorem-6.3 (in Chapter-6). The EM estimators b̂n and β̂n have

asymptotic normal distribution which can be expressed as

√
n(β̂n − β0)

D−→ N
{

0, (I∗s )−1
}

and
√
n(b̂n − b0)

D−→ N{0, (I∗l )−1},
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where (β0, b0) are the true values of (β, b) and, I∗s = E[φsφ
′
s] and I∗l = E[φlφ

′
l]

are the efficient information matrices for survival and logistic part respec-

tively. φl and φs given in (5.20) and (5.21) are the score functions for logistic

and survival part respectively. In Theorem-6.1 it is shown that at the true

value of parameters, φl and φs are efficient score functions. The consistency

of b̂n and β̂n are provided in Theorem-6.2 and the asymptotic normality of

b̂n and β̂n are given in Theorem-6.3. Moreover, the estimated information

matrices can be computed as

Îl =
1

n

n∑
i=1

φl(Vi|b̂n)φ′l(Vi|b̂n), (5.17)

and

Îs =
1

n

n∑
i=1

φs(Ti, δi|β̂n, Fn)φ′s(Ti, δi|β̂n, Fn). (5.18)

Note: Assumptions, Lemmas and Theorems are provided in Chapter-6.

Remark-5.1: The existing approaches don’t involve the differentiation of

the profile likelihood function. These methods have used an ’approximate

least favorable submodel’ proposed by Murphy and Van der Vaart (2000)

to avoid the differentiation of profile likelihood function and therefore they

have used the equation (1.2) from Chapter-1 to calculate the efficient infor-

mation matrix.

5.3.4 Score Functions

The score functions for the profile likelihood are

φ(Vi, Ti, δi|b, β, Fn) = φl(Vi|b) + φs(Ti, δi|β, Fn), (5.19)

where φl(Vi|b) is the score function for logistic component which can be ex-

pressed as

φl(Vi|b) =
∂

∂b
logP (Vi|b) = γ(Vi)Wi −

Wie
b′Wi

1 + eb′Wi
, (5.20)
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and φs(Ti, δi|β, Fn) is the score function for survival component which can

be written as

φs(Ti, δi|β, Fn) =
∂

∂β
logP (Ti, δi|β, Fn)

= γ(Vi)

{
δi

[
Zi −

EFnγ(V )Y (Ti)Ze
β′Z

EFnγ(V )Y (Ti)eβ
′Z

]
− eβ′Zi

∫ Ti

0

[
Zi −

EFnγ(V )Y (u)Zeβ
′Z

EFnγ(V )Y (u)eβ′Z

]
dΛ̂β,Fn(u)

}
. (5.21)

Now we will calculate the score operatorB(Ti, δi|β, F ), which is Hadamard

derivative with respect to F . For an integrable function h with the same do-

main as F , we can express

B(Ti, δi|β, F )h

= dF logP (Ti, δi|β, Λ̂β,F )h

= γ(Vi)

{
δi

[
EhdN(Ti)

EFdN(Ti)
− Ehγ(V )Y (Ti)e

β′Z

EFγ(V )Y (Ti)eβ
′Z

]
− eβ′Zi

∫ Ti

0

EhdN(u)

EFγ(V )Y (u)eβ′Z

+ eβ
′Zi

∫ Ti

0

EFdN(u)EhY (u)γ(V )eβ
′Z(

EFY (u)γ(V )eβ′Z
)2

}
.

where, dF logP (Ti, δi|β, Λ̂β,F ) represents the Hadamard derivative of

logP (Ti, δi|β, Λ̂β,F ) with respect to F (Hirose, 2011b).

5.4 Simulation Study

We are going to perform a simulation study where our goal is to compare

and contrast the smcure package with our approach by assessing param-

eter and standard error estimation. Survival times were generated from

Weibull proportional hazards model using ’simsurv’ R-package (Brilleman

et al., 2021). Moreover, censoring times were generated from uniform dis-

tribution, U [a, b] with a and b defined in order to provide chosen censoring

rates. Simulation results for Cox PH cure model were evaluated with two

covariates (fixed by design), one binary covariate from binomial distribu-
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tion with probability 0.5 and one continuous covariate generated from nor-

mal distribution N(1, 1). Therefore, the covariate vectors for logistic and

survival components were W = (1,W1,W2) and Z = (Z1, Z2) respectively.

The cure rates were varied through the coefficients (b) corresponding to

W . The slight cure rates for the treatment group (W1 = 1) and control group

(W1 = 0) were 20% and 8% respectively, resulting from b = (2.1,−1, 0.3).

The moderate cure rates for the treatment and control groups were 43% and

21% respectively, resulting from b = (1,−1, 0.3). Moreover, The substantial

cure rates for the treatment and control groups were 69% and 45% respec-

tively, resulting from b = (−0.1,−1, 0.3). For each configuration, mean was

chosen as the value of the continuous covariate (W2). Moreover, the co-

efficient vector for survival part was β = (−1, 0.5). For each setting, the

censoring rates relative to the defined cure rates and their effects were also

evaluated. These results include a sample of 150 and 300 individuals with

500 replications from both smcure package and our approach. The compu-

tation time required for different sample size and configurations has also

compared between smcure R-package and our proposed approach.

The results from simulation studies such as mean bias, empirical SE (=

the standard deviation of the parameter estimates), mean SE (=the mean of

standard error estimates calculated for each fitted model), mean square er-

ror (MSE) and 95% confidence interval coverage probabilities (95% CI cap)

for each configuration are given in Tables 5.1-5.6. Details of mean SE calcu-

lation is given later in this section (see Note).

The explicit explanation of the above mentioned statistics are given here.

Let T be the estimator for the parameter of interest θ. From our simulation

study (K = 500 replicates), we obtain K estimates T1, ..., TK for each sim-

ulated data. Based on these estimators, we can compute K biases such as
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bias1 = T1 − θ, bias2 = T2 − θ, ..., biasK = TK − θ. Moreover, we obtain

K estimates of ŜE: ŜE1, ŜE2, ..., ŜEK . Now we can calculate the following

sample statistics for the estimates:

• Sample mean, T̄ =
∑K

i=1 Ti

• Mean bias= 1
K

∑K
i=1(Ti − T̄ )

• Empirical standard error=
√

1
K−1

∑K
i=1(Ti − T̄ )2

• MSE = 1
K

∑K
i=1(Ti − θ)2

• mean ŜE = 1
K

∑K
i=1 ŜEi

• 95% CI cap= proportion of confidence intervals contains the true value

θ

Note: Method of mean SE calculation

In smcure package, due to the presence of implicit function in the estimat-

ing equation, the SE of estimated parameters are not directly available. As

a result, the package has used the bootstrap samples to compute the stan-

dard errors of estimated parameters. Here, 100 bootstrap samples have been

considered for all simulation settings. On the other hand, in our proposed

approach, we have used the profile likelihood score function to compute the

estimated SE analytically through the inverse of equations (5.17) and (5.18).

For each simulated data, we can express the observed information matrix as

Î =
1

n

n∑
m=1

φmφ
′
m ,

where φ is the profile score function and n is the number of individuals in

each simulated data. Moreover, the estimated SE for each fitted model can

be expressed as

ŜE =
√
Î−1.
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Results

From Tables 5.1-5.6, we can observe that for both smcure package and our

approach, the parameter estimates are close to the true values and mean

biases are very small (consistently less than 0.1 with most less than 0.05). For

all settings in both approaches, the bias and MSE decrease with increasing

sample size as expected and with only a few exceptions, the mean SE of the

parameters are very close for both smcure package and our approach. The

capture rates based on the 95% confidence interval are also relatively similar

for both smcure package and our approach.

Computation Time Analysis

In order to assess and compare the computational time between our pro-

posed approach and smcure package, the average time elapsed to get the

estimates of the parameters and estimated standard errors has recorded.

For all configurations, 500 datasets have generated as described before. The

average computation times for parameter estimates and standard errors for

both approaches are given in Tables 5.1-5.6.

We can see from the Tables 5.1-5.6 that the the average computation

times for our proposed approach are much less compared to smcure pack-

age. The reason for taking more time in smcure package is incorporating

bootstrap process for standard error estimation. On the other hand, we have

used profile likelihood score function to compute the estimated SE which

provides us a closed form expression to compute the efficient information

matrix, therefore the average computation time for our approach is much

less compared to the smcure package.
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5.5 Application to Eastern Cooperative Oncology

Group (ECOG) Data

We have used the melanoma data (ECOG phase III clinical trial e1684) from

smcure package as a numerical example to compare our results with the

output obtained from smcure package.

In the dataset, the subjects had melanoma cancer and were treated with

interferon alpha-2b (IFN) regimen. The main aim of this research was to in-

vestigate the effects of high dose interferon alpha-2b (IFN) regimen against

the placebo as the postoperative adjuvant therapy. In this example, recur-

rence of melanoma cancer has been defined the as the event and observed

relapse free-survival has defined as failure time. A total number of 284 ob-

servations has been used for the statistical analysis. Three covariates are

considered: gender (0=male,1=female), treatment (0=control,1=treatment)

and age (continuous variable which is centered to the mean) for both the

incidence and latency parts.

Out of 284 individuals, 196 had melanoma cancer recurring (approxi-

mately 31% censoring rate). The observed follow-up time of the individuals

ranged from 0.032 to 9.643 years. The parameter estimates, standard errors

and 95% CI using smcure package and our approach (for logistic and Cox

PH components) are given in Table 5.7 and Table 5.8 respectively.

From Table 5.7, we observed that in both smcure package and our ap-

proach, only intercept is significant in determining the long term incidence.

The result for treatment (insignificant negative estimates) suggests that the

probability of recurring melanoma for control group is higher compared to

the treatment group. However, age and sex both are insignificant on smcure

package and our approach. The positive estimates for age indicates a higher
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(though insignificant) melanoma recurrence rate for the older patients. On

the other hand, from Table 5.8 it is observed that in both smcure package

and our approach, all the covariates have insignificant effect on latency. The

insignificant negative estimates for treatment and age indicate later recur-

rence times of melanoma for IFN group and older patients respectively. In

the case of sex, insignificant positive estimate indicates earlier recurrence

times of melanoma for females.

Though both methods (smcure package and our approach) have pro-

vided similar parameter estimates, however, the estimated SE are little bit

different from each other. The reason is the calculation procedure of SE

which we mentioned in the previous section (simulation study). In smcure

package, the SE of estimated parameters have calculated using bootstrap

samples, whereas we have used the profile likelihood score function and

got the closed form for the information matrix.

5.6 Discussion

Over the years, many techniques have been proposed where the direct ex-

pansion of the profile likelihood function has been avoided by Cai et al.

(2012); Lu (2008); Peng and Dear (2000); Sy and Taylor (2000, 2001). There-

fore, these approaches didn’t derive the closed form solution for standard

error calculation.

In this chapter, we have expanded the profile log-likelihood function di-

rectly to show the asymptotic normality of the maximum profile likelihood

estimator and derived the closed form expression for the empirical observed

information matrix for the Cox PH cure model to estimate the standard er-

rors. This is an additional method to compute standard errors for the max-

imum profile likelihood estimator which shows how natural and easy our
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approach is to compute the estimate of the SE estimator.

For the application, we have performed the simulation study and anal-

ysed the real-life data, and compared our results with the output obtained

from smcure package. Our proposed approach and the smcure package

have provided similar and comparable parameter estimates and the esti-

mated SE of the estimators. In this chapter, we have used the profile likeli-

hood score function to calculate the estimated SE and got the explicit form

of the SE estimator, whereas the smcure package has used bootstrap sam-

ples which are computationally expensive. Therefore, the computation time

for our proposed approach is much less compared to the smcure R-package.
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Table 5.1: Simulation results for Cox PH cure model with cure rate 20% for

treatment group and 08% for control group (number of individuals=150)
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Table 5.2: Simulation results for Cox PH cure model with cure rate 20% for

treatment group and 08% for control group (number of individuals=300)
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Table 5.3: Simulation results for Cox PH cure model with cure rate 43% for

treatment group and 21% for control group (number of individuals=150)
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Table 5.4: Simulation results for Cox PH cure model with cure rate 43% for

treatment group and 21% for control group (number of individuals=300)



70 CHAPTER 5. EFFICIENT ESTIMATION FOR COX PH CURE MODEL

Table 5.5: Simulation results for Cox PH cure model with cure rate 69% for

treatment group and 45% for control group (number of individuals=150)
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Table 5.6: Simulation results for Cox PH cure model with cure rate 69% for

treatment group and 45% for control group (number of individuals=300)
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Table 5.7: Results for logistic component from ECOG data
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Table 5.8: Results for survival component from ECOG data
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Chapter 6

Proofs of Theorems and Lemmas

for Cox PH Cure Model

The proof of Theorems and Lemmas to show the asymptotic normality of

profile likelihood estimator in the Cox PH cure model are given in this chap-

ter. In Section 5.3.3 of Chapter-5, we have summarized the results of this

chapter. To show the asymptotic normality of the MLE and its asymptotic

variance, we have considered the following assumptions:

On the set of cdf functions z, we use the sup-norm, i.e., for F, F0 ∈ z,

||F − F0||∞ = sup
x
|F (x)− F0(x)|.

For ρ > 0, let

ζρ = {F ∈ z : ||F − F0||∞ < ρ}.

The assumptions are given below

A1: We assume the event-time T < τ where τ a finite number (τ > 0)

such that S(τ) = P (T > τ) = E[Y (τ)] > 0.

A2: The range of Z is bounded and β is in the compact set Θ which

follows ||Z|| ≤M and ||β|| ≤M for some 0 < M <∞.

A3: The empirical cdf Fn is
√
n consistent i.e.

√
n|Fn − F0| = Op(1).

75
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A4: The efficient information matrix I∗ = E[φφ′] is invertible where φ is

the efficient score function.

A5: True hazard function, λ(t) is bounded and positive in (0, τ).

6.1 Theorem- 6.1 with proof

Theorem 6.1: At the true value of (b, β, F ), we are going to prove the fol-

lowings

1. Λ̂β0,F0(t) = Λ0(t), the true cumulative hazard and

2. The score functions φl(V |b0) and φs(T, δ|β0, F0) defined in the equa-

tions (5.20) and (5.21) of Chapter-5 are the efficient score functions where

we drop the subscript i.

Proof:

1. Replace Fn by F0,we get from equation (5.12)

Λ̂β0,F0(t) =

∫ t

0

E[dN(u)]

E[γ(V )Y (u)eβ
′
0Z ]

,

where E is the expectation with respect to the true distribution F0. At the

true value of the parameters (β, F ) we can write

E[dN(u)] = E[γ(V )Y (u)eβ
′
0ZdΛ0(u)]. (6.1)

So from this point of view, we have Λ̂β0,F0(t) = Λ0(t).Hence (1) is proven.

2. We know that the logistic part is a parametric model that does not

involve Λ, so we will work on the score function of survival part only. Now

the score function for the survival part at the true value of the parameters

(β, F ) can be expressed as

φs(T, δ|β0, F0) =
∂

∂β
logP (T, δ|Λ̂β,F , β)

∣∣∣∣
β=β0,F=F0

= γ(V )

{
δ

[
Z − E[γ(V )Y (T )Zeβ

′
0Z ]

E[γ(V )Y (T )eβ
′
0Z ]

]
− eβ

′
0Z

∫ T

0

E[dN(u)]

E[γ(V )Y (u)eβ
′
0Z ]

[
Z − E[γ(V )Y (u)Zeβ

′
0Z ]

E[γ(V )Y (u)eβ
′
0Z ]

]}
.
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Let M1(u) = E[γ(V )Y (u)Zeβ
′
0Z ] and M0(u) = E[γ(V )Y (u)eβ

′
0Z ]. So by

using equation (6.1), the above equation can be expressed as

φs(T, δ|β0, F0) = γ(V )

{
δ

[
Z − M1(T )

M0(T )

]
− eβ′0Z

∫ T

0

[
Z − M1(u)

M0(u)

]
dΛ0(u)

}
,

(6.2)

which is the profile likelihood score function for the survival part of the Cox

PH cure model. In section 6.7, we showed that the profile likelihood score

function is the efficient score function.

6.2 Lemma- 6.1 with Proof

Lemma-6.1: If the assumptions (A1-A5) hold, then

(i) P (T, δ|β, F ) is bounded away from zero.

(ii) The class of functions
{

logP
(
T, δ|β, F

)
: β ∈ Θ, F ∈ ζρ

}
is uniformly

bounded Donsker.

(iii) The class of functions
{
φs
(
T, δ|β, F

)
: β ∈ Θ, F ∈ ζρ

}
is uniformly

bounded Donsker.

Proof: For (i), we know

P (T, δ|β, F ) =

[
EFdN(T )

EFγ(V )Y (T )eβ′Z
eβ
′Z

]δγ(V ){[
exp−

∫ T

0

EFdN(u)

EFγ(V )Y (u)eβ′Z

]eβ′Z}γ(V )

.

(6.3)

Since the map (f, F )→ EF (f) =
∫
fdF is continuous, there is a constant

c > 0, such that for all F ∈ ζρ (based on A1), we can write

EF [Y (τ)] ≥ c > 0.

We know γ(V ) =

(
pS(τ)

1−p+pS(τ)

)1−δ

, so we have

0 <
cp

1− p+ cp
≤ γ(V ) ≤ 1. (6.4)
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On the basis of A2, we can write e−M2 ≤ eβ
′Z ≤ eM

2 . So the upper bound

of EFγ(V )Y (u)eβ
′Z can be expressed as∣∣EFγ(V )Y (u)eβ

′Z
∣∣ ≤ ∣∣EF eβ′Z∣∣ ≤ eM

2

. (6.5)

Now by using equation (6.4), we can write

EFγ(V )Y (u)eβ
′Z ≥ c2p

1− p+ cp
e−M

2

> 0. (6.6)

For some constant c1 > 0, we can write 0 < c1 ≤ EFdN(u) ≤ 1. Since

EFγ(V )Y (u)eβ
′Z is bounded away from zero (equation 6.6), we get

0 <
c1

eM2 ≤
EFdN(u)

EFγ(V )Y (u)eβ′Z
≤ eM

2
(1− p+ cp)

c2p
.

When δ = 1, from (6.3) we get

P (T, δ|β, F ) =

[
EFdN(T )

EFγ(V )Y (T )eβ′Z
eβ
′Z

][
exp−

∫ T

0

EFdN(u)

EFγ(V )Y (u)eβ′Z

]eβ′Z
P (T, δ|β, F ) ≥ c1

eM4

{
e
− e

M4
(1−p+cp)
c2p

}
,

and when δ = 0,

P (T, δ|β, F ) =

{[
exp−

∫ T

0

EFdN(u)

EFγ(V )Y (u)eβ′Z

]eβ′Z}γ(V )

P (T, δ|β, F ) ≥
{
e
− e

M4
(1−p+cp)
c2p

}
.

From the above equations, we can write

P (T, δ|β, F ) ≥ min
{
e
− e

M4
(1−p+cp)
c2p ,

(
e
− e

M4
(1−p+cp)
c2p

)
c1

eM4

}
> 0. (6.7)

So finally we can say that P (T, δ|β, F ) is bounded away from zero and

hence (i) is proved.

For (ii), the profile log-likelihood function of the survival part for Cox

PH cure model is

logP (T, δ|β, F ) = γ(V )

[
δ
{

log
EFdN(T )

EFγ(V )Y (T )eβ′Z
+β′Z

}
−eβ′Z

∫ T

0

EFdN(u)

EFγ(V )Y (u)eβ′Z

]
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We know the set of cdf functions z is uniformly bounded Donsker. Hence

the subset ζρ ⊂ z is uniformly bounded Donsker. The class of functions{
N(t) : t ∈ [0, τ ]

}
and

{
Y (t) : t ∈ [0, τ ]

}
are uniformly bounded Donsker

(Theorem 2.10.6 in Van der Vaart and Wellner (1996)).

The class of functions
{
β′Z : β ∈ Θ

}
is Lipschitz in β. So, by Theorem

2.10.6 in Van der Vaart and Wellner (1996), the class of functions
{
β′Z : β ∈

Θ
}

is uniformly bounded Donsker.

Since eβ′Z is a Lipschitz continuous function, so by Theorem 2.10.6 in

Van der Vaart and Wellner (1996), the class of functions
{
eβ
′Z : β ∈ Θ

}
is

uniformly bounded Donsker.

Since
{
Y (t) : t ∈ [0, τ ]

}
and

{
eβ
′Z : β ∈ Θ

}
are uniformly bounded

Donsker, so by Example 2.10.8 of Van der Vaart and Wellner (1996), the

class of functions
{
γ(V )Y (t)eβ

′Z : t ∈ [0, τ ], β ∈ Θ
}

is uniformly bounded

Donsker.

SinceEF (f) =
∫
fdF is Lipschitz, so for the class of functions

{
EFγ(V )Y (t)eβ

′Z :

t ∈ [0, τ ], β ∈ Θ, F ∈ ζρ
}

, we can write

∣∣∣∣EF1γ(V )Y (t)eβ
′
1Z − EF2γ(V )Y (t)eβ

′
2Z

∣∣∣∣
=

∫
γ(V )Y (t)

∣∣∣∣eβ′1Z − eβ′2Z∣∣∣∣dF1 +

∫
γ(V )Y (t)eβ

′
2Zd
∣∣∣∣F1 − F2

∣∣∣∣
≤

∫ ∣∣∣∣eβ′1Z − eβ′2Z∣∣∣∣dF1 +

∫
eβ
′
2Zd
∣∣∣∣F1 − F2

∣∣∣∣
≤ MeM

2∣∣∣∣β1 − β2

∣∣∣∣+ eM
2∣∣∣∣F1 − F2

∣∣∣∣.
Let max

(
MeM

2
, eM

2

)
= MeM

2 , then the above equation can be expressed
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as∣∣∣∣EF1γ(V )Y (t)eβ
′
1Z − EF2γ(V )Y (t)eβ

′
2Z

∣∣∣∣ ≤MeM
2

(∣∣∣∣β1 − β2

∣∣∣∣+
∣∣∣∣F1 − F2

∣∣∣∣),
(6.8)

which is Lipschitz in parameters (β, F). So by Theorem 2.10.6 in Van der

Vaart and Wellner (1996), the class of functions
{
EFγ(V )Y (t)eβ

′Z : t ∈ [0, τ ], β ∈
Θ, F ∈ ζρ

}
is uniformly bounded Donsker. Similarly the class of functions{

EFN(t) : t ∈ [0, τ ]
}

is uniformly bounded Donsker.

Since
{
EFγ(V )Y (t)eβ

′Z : t ∈ [0, τ ], β ∈ Θ, F ∈ ζρ
}

is uniformly bounded

Donsker and EFγ(V )Y (u)eβ
′Z is bounded away from zero (equation 6.6), by

Example 2.10.9 in Van der Vaart and Wellner (1996), the class of functions{
1

EFγ(V )Y (t)eβ′Z
: t ∈ [0, τ ], β ∈ Θ, F ∈ ζρ

}
is uniformly bounded Donsker.

Since the map (f, F ) → EF (f) =
∫
fdF is Lipschitz, by Theorem 2.10.6

of Van der Vaart and Wellner (1996), the class of functions{∫ t

0

EFdN(u)

EFγ(V )Y (u)eβ′Z
: t ∈ [0, τ ], β ∈ Θ, F ∈ ζρ

}
is uniformly bounded Donsker.

Since
{
eβ
′Z : β ∈ Θ

}
is uniformly bounded Donsker, so by Example

2.10.8 of Van der Vaart and Wellner (1996), the class of functions{
eβ
′Z

∫ t

0

EFdN(u)

EFγ(V )Y (u)eβ′Z
: t ∈ [0, τ ], β ∈ Θ, F ∈ ζρ

}
is uniformly bounded Donsker.

Since the class
{
β′Z : β ∈ Θ

}
is uniformly bounded Donsker, by Exam-

ple 2.10.7 (Van der Vaart and Wellner, 1996), the class of functions{
log

EFdN(T )

EFγ(V )Y (T )eβ′Z
+ β′Z : β ∈ Θ, F ∈ ζρ

}
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is uniformly bounded Donsker.

Since the map (f, F ) → EF (f) =
∫
fdF is Lipschitz, so by Theorem

2.10.6 in Van der Vaart and Wellner (1996), the class of functions
{

logP (T, δ|β, F ) :

β ∈ Θ, F ∈ ζρ
}

is uniformly bounded Donsker. So (ii) is proven.

For (iii), we know the score function of the survival part for Cox PH cure

model is

φs(T, δ|β, F ) = γ(V )

{
δ

[
Z − EFγ(V )Y (T )Zeβ

′Z

EFγ(V )Y (T )eβ′Z

]
−

eβ
′Z

∫ T

0

EFdN(u)

EFγ(V )Y (u)eβ′Z

[
Z − EFγ(V )Y (u)Zeβ

′Z

EFγ(V )Y (u)eβ′Z

]}
.

Similar proof to (ii), we can show that the class of functions
{
φs(T, δ|β, F ) :

β ∈ Θ, F ∈ ζρ
}

is uniformly bounded Donsker.

6.3 Lemma- 6.2 with Proof

Lemma-6.2: If the assumptions (A1-A5) hold, then∣∣∣∣∣∣∣∣φs(T, δ|β̂n, Fn)− φs(T, δ|β0, F0)

∣∣∣∣∣∣∣∣ ≤M ′′(∣∣∣∣β̂n − β0

∣∣∣∣+
∣∣∣∣Fn − F0

∣∣∣∣+
∣∣∣∣Λ̂β̂n,Fn − Λ̂β0,F0

∣∣∣∣),
for some positive constant M ′′.

Proof: From equation (5.21) of Chapter-5, the score function for the survival

part is

φs(T, δ|β, Fn) = γ(V )

{
δ

[
Z − EFnγ(V )Y (T )Zeβ

′Z

EFnγ(V )Y (T )eβ′Z

]
− eβ′Z

∫ T

0

[
Z − EFnγ(V )Y (u)Zeβ

′Z

EFnγ(V )Y (u)eβ′Z

]
dΛ̂β,Fn(u)

}
.

Define

φs(T, δ|β, F,Λ) = γ(V )

{
δ

[
Z − EFγ(V )Y (T )Zeβ

′Z

EFγ(V )Y (T )eβ′Z

]
− eβ′Z

∫ T

0

[
Z − EFγ(V )Y (u)Zeβ

′Z

EFγ(V )Y (u)eβ′Z

]
dΛ(u)

}
.
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Then the function is differentiable with respect to β, F and Λ. Now we have

φs(T, δ|β, Fn) = φs
(
T, δ|β, Fn, Λ̂β,Fn

)
.

Similar to the proof of Lemma-6.1, we can show that the derivative of

the score function will also be uniformly bounded with the bound M ′′.

From these we can say that the class of functions
{
φs(T, δ|β, F,Λ) : β ∈

Θ, F ∈ ζρ,Λ ∈ H
}

is Lipschitz in parameters (β, F,Λ) and the result follows:∣∣∣∣∣∣∣∣φs(T, δ|β̂n, Fn)− φs(T, δ|β0, F0)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣φs(T, δ|β̂n, Fn, Λ̂β̂n,Fn
)− φs(T, δ|β0, F0, Λ̂β0,F0)

∣∣∣∣∣∣∣∣
≤ M ′′

(∣∣∣∣β̂n − β0

∣∣∣∣+
∣∣∣∣Fn − F0

∣∣∣∣+
∣∣∣∣Λ̂β̂n,Fn

− Λ̂β0,F0

∣∣∣∣).
6.4 Theorem- 6.2 with proof

Theorem 6.2: If the assumptions (A1-A5) hold, then

1. Λ̂β,F is continuously differentiable function of (β, F ) and Λ̂β0,F0 = Λ0

2. β̂n
P→ β0 and b̂n

P→ b0 as n→∞
Proof: Proof of (1): In Theorem-6.1 it is shown that Λ̂β0,F0 = Λ0.

Since (f, F ) → EF (f) =
∫
fdF is continuously differentiable, so clearly

the function

(β, F )→ Λ̂β,F =

∫ τ

0

EFdN(u)

EFγ(V )Y (u)eβ′Z
. (6.9)

is continuously differentiable.

Proof of (2): The profile log-likelihood function for one observation can

be expressed as logP (V, T, δ|b, β, Λ̂β,F ) which is continuously differentiable.

Now, we set

Mn(b, β) =
1

n

n∑
i=1

logP (Vi, Ti, δi|b, β, Λ̂β,Fn)
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and

M(b, β) = E

[
logP (V, T, δ|b, β, Λ̂β,F0)

]
and apply the proof of Theorem-5.7 (Van der Vaart, 2000) to the Cox PH

cure model. Based on the results of Theorem-5.7 from Van der Vaart (2000),

it can be shown that

β̂n
P→ β0 and b̂n

P→ b0 as n→∞.

6.5 Lemma- 6.3 with proof

Lemma 6.3: Suppose for assumptions (A1-A5), β̂n
P→ β0 and Fn

P→ F0 as

n→∞, then we have

E

[√
n

{
φs(T, δ|β̂n, F0)− φs(T, δ|β0, F0)

}]
= −E

[
φs(T, δ|β0, F0)φ′s(T, δ|β0, F0)

]{√
n(β̂n − β0)

}
+ op(1) (6.10)

and

E

[√
n

{
φs(T, δ|β̂n, Fn)− φs(T, δ|β̂n, F0)

}]
= −E

[
φs(T, δ|β0, F0)B(T, δ|β0, F0)

]{√
n(Fn − F0)

}
+ op

(
1 +
√
n(β̂n − β0)

)
. (6.11)

(Proof is similar to Theorem 1 of Hirose and Liu (2020)).

Remark: The results are obtained without assuming the existence of

derivative of the score functions ∂
∂β
φs(T, δ|β, F ) and dFB(T, δ|β, F ). This

result give us asymptotic expansion of profile likelihood without differenti-

ating the score function that involve implicit function.

Proof: Based on Lemma-6.1, we know P (T, δ|β0, F0) > δ > 0 for some

positive constant δ > 0. So by the differentiability of P (T, δ|β, F ) with re-
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spect to β and F , we have
√
n
{
P (T, δ|β̂n, F0)− P (T, δ|β0, F0)

}
P (T, δ|β0, F0)

= φs(T, δ|β0, F0)
{√

n(β̂n − β0)
}

+ op(1),

(6.12)√
n
{
P (T, δ|β̂n, Fn)− P (T, δ|β̂n, F0)

}
P (T, δ|β0, F0)

= B(T, δ|β0, F0)
{√

n(Fn − F0)
}

+ op(1).

(6.13)

In Lemma-1, we showed the class of functions
{
φs(T, δ|β, F ) : β ∈ Θ, F ∈

ζρ
}

is uniformly bounded. Similarly, we can show the class of functions{
B(T, δ|β, F ) : β ∈ Θ, F ∈ ζρ

}
is uniformly bounded. From these results, it

follows that there is a P0-square integrable function, such that

P (T, δ|β′, F ′)− P (T, δ|β, F )

P (T, δ|β, F )
≤M ′(||β′ − β||+ ||F ′ − F ||), (6.14)

where M ′ is a P0-square integrable function ∀β, ∀β′ ∈ Θ and ∀F, ∀F ′ ∈ ζρ.
First we start with (6.10), for each n, the equality

0 =
√
n

{∫
φs(T, δ|β̂n, F0)P (T, δ|β̂n, F0)dF −

∫
φs(T, δ|β0, F0)P (T, δ|β0, F0)dF

}
=
√
n

{∫
φs(T, δ|β̂n, F0)P (T, δ|β0, F0)dF −

∫
φs(T, δ|β0, F0)P (T, δ|β0, F0)dF

+

∫
φs(T, δ|β̂n, F0)P (T, δ|β̂n, F0)dF −

∫
φs(T, δ|β̂n, F0)P (T, δ|β0, F0)dF

}
,

holds and we can express the above equation as∫ √
n

{
φs(T, δ|β̂n, F0)− φs(T, δ|β0, F0)

}
P (T, δ|β0, F0)dF

= −
∫
φs(T, δ|β̂n, F0)

√
n

{
P (T, δ|β̂n, F0)− P (T, δ|β0, F0)

}
dF. (6.15)

By the dominated convergence theorem with (6.12), the right hand side

of (6.15) can be expressed as, when n→∞

−
∫
φs(T, δ|β̂n, F0)

√
n

{
P (T, δ|β̂n, F0)− P (T, δ|β0, F0)

}
dF

= −
∫
φs(T, δ|β̂n, F0)

√
n
{
P (T, δ|β̂n, F0)− P (T, δ|β0, F0)

}
P (T, δ|β0, F0)

P (T, δ|β0, F0)dF

= −
∫
φs(T, δ|β0, F0)φ′s(T, δ|β0, F0)P (T, δ|β0, F0)

{√
n(β̂n − β0)

}
+ op(1)

= −E
[
φs(T, δ|β0, F0)φ′s(T, δ|β0, F0)

]{√
n(β̂n − β0)

}
+ op(1). (6.16)
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So from (6.15) and (6.16), we can write

∫ √
n

{
φs(T, δ|β̂n, F0)− φs(T, δ|β0, F0)

}
P (T, δ|β0, F0)dF

= −E
[
φs(T, δ|β0, F0)φ′s(T, δ|β0, F0)

]{√
n(β̂n − β0)

}
+ op(1).

So (6.10) is proven. Now we prove (6.11) by following the similar idea of

proving (6.10). For each n, the following equation holds

0 =
√
n

{∫
φs(T, δ|β̂n, Fn)P (T, δ|β̂n, Fn)dF −

∫
φs(T, δ|β̂n, F0)P (T, δ|β̂n, F0)dF

}
=
√
n

{∫
φs(T, δ|β̂n, Fn)P (T, δ|β̂n, Fn)dF −

∫
φs(T, δ|β̂n, F0)P (T, δ|β̂n, Fn)dF

+

∫
φs(T, δ|β̂n, F0)P (T, δ|β̂n, Fn)dF −

∫
φs(T, δ|β̂n, F0)P (T, δ|β̂n, F0)dF

}
.

We can express the above equation as

∫ √
n

{
φs(T, δ|β̂n, Fn)− φs(T, δ|β̂n, F0)

}
P (T, δ|β̂n, Fn)dF

= −
∫
φs(T, δ|β̂n, F0)

√
n

{
P (T, δ|β̂n, Fn)− P (T, δ|β̂n, F0)

}
dF.

(6.17)

By using the dominated convergence theorem with (6.14) and Lemma-2,
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when n→∞, the left hand side of (6.17) can be derived as

∣∣∣∣∣∣∣∣ ∫ √n{φs(T, δ|β̂n, Fn)− φs(T, δ|β̂n, F0)

}
P (T, δ|β̂n, Fn)dF

−
∫ √

n

{
φs(T, δ|β̂n, Fn)− φs(T, δ|β̂n, F0)

}
P (T, δ|β0, F0)dF

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ ∫ {φs(T, δ|β̂n, Fn)− φs(T, δ|β̂n, F0)

}
×

√
n

{
P (T, δ|β̂n, Fn)− P (T, δ|β0, F0)

}
dF

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ ∫ {φs(T, δ|β̂n, Fn)− φs(T, δ|β̂n, F0)

}
×

√
n
{
P (T, δ|β̂n, Fn)− P (T, δ|β0, F0)

}
P (T, δ|β0, F0)

P (T, δ|β0, F0)dF

∣∣∣∣∣∣∣∣
≤

∣∣∣∣ ∫ {M ′′
(∣∣∣∣Fn − F0

∣∣∣∣+
∣∣∣∣Λ̂β̂n,Fn

− Λ̂β̂n,F0

∣∣∣∣)}×{√
n M ′

(∣∣∣∣β̂n − β0

∣∣∣∣+
∣∣∣∣Fn − F0

∣∣∣∣)}P (T, δ|β0, F0)dF

∣∣∣∣
=

{∣∣∣∣ ∫ M ′′M ′P (T, δ|β0, F0)dF

∣∣∣∣}×{√
n

(∣∣∣∣β̂n − β0

∣∣∣∣+
∣∣∣∣Fn − F0

∣∣∣∣)(∣∣∣∣Fn − F0

∣∣∣∣+
∣∣∣∣Λ̂β̂n,Fn

− Λ̂β̂n,F0

∣∣∣∣)}
= O

{√
n

(∣∣∣∣β̂n − β0

∣∣∣∣+
∣∣∣∣Fn − F0

∣∣∣∣)(∣∣∣∣Fn − F0

∣∣∣∣+
∣∣∣∣Λ̂β̂n,Fn

− Λ̂β̂n,F0

∣∣∣∣)}
=
√
n
(
β̂n − β0

)
O
(
op(1)

)
+O

(
Op(1).op(1)

)
=
√
n
(
β̂n − β0

)
.op(1) + op(1)

= op
(
1 +
√
n(β̂n − β0)

)
, (6.18)

where we used Fn − F0 = op(1) from assumption (A3), β̂n − β0 = op(1) and

Λ̂β̂n,Fn
− Λ̂β0,F0 = op(1) from Theorem-2.

By the dominated convergence theorem with (6.13), the right hand side
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of (6.17) can be written as, when n→∞

−
∫
φs(T, δ|β̂n, F0)

√
n

{
P (T, δ|β̂n, Fn)− P (T, δ|β̂n, F0)

}
dF

= −
∫
φs(T, δ|β̂n, F0)

√
n
{
P (T, δ|β̂n, Fn)− P (T, δ|β̂n, F0)

}
P (T, δ|β0, F0)

P (T, δ|β0, F0)dF

= −
∫
φs(T, δ|β0, F0)B(T, δ|β0, F0)P (T, δ|β0, F0)

√
n(Fn − F0)dF + op(1)

= −E
[
φs(T, δ|β0, F0)B(T, δ|β0, F0)

]√
n(Fn − F0) + op(1). (6.19)

So by combining (6.18) and (6.19), the equality (6.17) is equivalent to∫ √
n

{
φs(T, δ|β̂n, Fn)− φs(T, δ|β̂n, F0)

}
P (T, δ|β0, F0)dF

= −E
[
φs(T, δ|β0, F0)B(T, δ|β0, F0)

]√
n(Fn − F0) + op

(
1 +
√
n(β̂n − β0)

)
.

So equation (6.11) is also proven. Hence, we proved Lemma-6.3.

6.6 Theorem- 6.3 with proof

Theorem-6.3: The estimator β̂n from EM algorithm is an asymptotically lin-

ear estimator for β0 with the efficient influence function (I∗s )−1φs(T, δ|β0, F0),

so that

√
n(β̂n − β0) =

1√
n

n∑
i=1

(I∗s )−1φs(Ti, δi|β0, F0) + op(1)
D−→ N{0, (I∗s )−1},

where I∗s = E[φsφ
′
s] and N{0, (I∗s )−1} is a normal distribution with mean

zero and variance (I∗s )−1. So the estimator β̂n is efficient.

In addition b̂n from EM algorithm is an asymptotically linear estimator

for b0 with the influence function (I∗l )−1φl(V |b0), so that

√
n(b̂n − b0) =

1√
n

n∑
i=1

(I∗l )−1φl(Vi|b0) + op(1)
D−→ N{0, (I∗l )−1},

where I∗l = E[φlφ
′
l], so the estimator b̂n is efficient.
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(Proof is similar to Theorem 2 of Hirose and Liu (2020)).

Proof: The profile likelihood maximum likelihood estimators β̂n and b̂n

from EM algorithm described in Chapter-5 (Section 5.3) are solutions to the

following system of estimating equations
n∑
i=1

φs(Ti, δi|β̂n, Fn) = 0,

and
n∑
i=1

φl(Vi|b̂n) = 0.

Here, φs(Ti, δi|β, Fn) and φl(Vi|b) are the profile likelihood score functions

of β and b defined in equations (5.21) and (5.20). Since φl(Vi|b) is the score

function corresponding to logistic part (which is a parametric model that

doesn’t involve Λ), so we are going to focus on the survival part only.

Since φs(T,δ|β, F ) is uniformly bounded Donsker (Lemma-6.1), so by

Lemma 19.24 (Van der Vaart, 2000), we can write

1√
n

n∑
i=1

{
φs(Ti, δi|β̂n, Fn)− φs(Ti, δi|β0, F0)

}
=
√
nE

[
φs(T, δ|β̂n, Fn)− φs(T, δ|β0, F0)

]
+ op(1), (6.20)

From (6.10), it follows that
√
nE

[
φs(T, δ|β̂n, F0)− φs(T, δ|β0, F0)

]
= −E

[
φs(T, δ|β0, F0)φ′s(T, δ|β0, F0)

]√
n(β̂n − β0) + op(1)

= −I∗s
√
n(β̂n − β0) + op(1). (6.21)

From (6.11), it follows that
√
nE

[
φs(T, δ|β̂n, Fn)− φs(T, δ|β̂n, F0)

]
= −E

[
φs(T, δ|β0, F0)B(T, δ|β0, F0)

]√
n(Fn − F0)

+ op
(
1 +
√
n(β̂n − β0)

)
. (6.22)
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Since B(T, δ|β0, F0) is in the nuisance tangent space and φs(T, δ|β0, F0) is

the efficient score function, so we have

E
[
φs(T, δ|β0, F0)B(T, δ|β0, F0)

]
= 0. (6.23)

Now using (6.21), (6.22) and (6.23), the right hand side of (6.20) can be

expressed as

√
nE

[
φs(T, δ|β̂n, Fn)− φs(T, δ|β0, F0)

]
=
√
nE

[
φs(T, δ|β̂n, F0)− φs(T, δ|β0, F0)

]
+

√
nE

[
φs(T, δ|β̂n, Fn)− φs(T, δ|β̂n, F0)

]
= −I∗s

√
n(β̂n − β0) + op

(
1 +
√
n(β̂n − β0)

)
. (6.24)

We know that 1√
n

∑n
i=1 φs(Ti, δi|β̂n, Fn) = 0, so using (6.24), the equation

(6.20) can be written as

(
I∗s + op(1)

)√
n(β̂n − β0) =

1√
n

n∑
i=1

φs(Ti, δi|β0, F0) + op(1). (6.25)

By Central Limit Theorem, we can write 1√
n

∑n
i=1 φs(Ti, δi|β0, F0)+op(1) =

Op(1). Since I∗s is invertible, we have
(
I∗s + op(1)

)−1
= Op(1).

So from (6.25) we can write
√
n(β̂n − β0) =

(
I∗s + op(1)

)−1
Op(1) = Op(1).

Finally we can express (6.20) as

√
n(β̂n − β0) =

1√
n

n∑
i=1

I∗−1
s φs(Ti, δi|β0, F0) + op(1).

It follows that the large sample distribution of the estimator β̂n can be

expressed as
√
n(β̂n − β0)

D−→ N
{

0, (I∗s )−1
}
,

where I∗s = E[φsφ
′
s] is the efficient information (φs is defined as efficient

score function in Theorem- 6.1).
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6.7 Efficient Score Function for Cox PH Cure Model

using Projection Theory

To get the efficient score function using the projection theory, we assume the

parameters (β,Λ) are evaluated at the true values β0, Λ0 and omit subscript

“0” for brevity.

The log-likelihood function of the survival part for one observation can

be written as

logP (T, δ|β,Λ) = γ(V )

{
δ
(

log λ(t) + β′Z
)
− eβ′ZΛ(t)

}
.

Score Function for β

φβ(T, δ|β,Λ) =
∂

∂β
logP (T, δ|β,Λ) = γ(V )

{
Z
(
δ − eβ′ZΛ(t)

)}
.

Score Operator for Λ

Let us take a measurable function which is bounded such as g : [0, τ ] → R,

where g is defined in the interval [0, τ ] because Λ is also restricted within

this interval. The path can be defined as

dΛs = (1 + sg)dΛ.

The corresponding path for the baseline hazard function is

λs(t) =
dΛs

dt
= (1 + sg)

dΛ

dt
= (1 + sg)λ(t).

The derivative of the log-likelihood function with respect to s can be

expressed as

BΛ(T, δ|β,Λ)g =
∂

∂s

∣∣∣∣
s=0

logP (T, δ|β,Λs) = γ(V )

{
δg(t)−eβ′Z

∫ T

0

g(u)dΛ(u)

}
.
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Information Operator B∗ΛBΛ and its Inverse
(
B∗ΛBΛ

)−1

Let us start with the information operator B∗ΛBΛ and take two arbitrary

functions f and g. By definition of the adjoint, we can write

〈B∗ΛBΛf, g〉L2(Λ) = 〈BΛf,BΛg〉L2(P ). (6.26)

The path defined by dΛr,s = (1 + rf + sg + rsfg)dΛ is positive for small

r and s. The corresponding path for the baseline hazard function is

λr,s(t) =
dΛr,s

dt
= (1 + rf + sg + rsfg)

dΛ

dt
= (1 + rf + sg + rsfg)λ(t).

Now we can write

∂

∂r

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β,Λr,s) = BΛf, (6.27)

and
∂

∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β,Λr,s) = BΛg. (6.28)

Using (6.27) and (6.28) we can write

〈BΛf,BΛg〉L2(P ) = E

{
(BΛf)(BΛg)

}
= − E

{
∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β,Λr,s)

}
= E

{
γ(V )eβ

′Z

∫ T

0

f(ξ)g(ξ)dΛ(ξ)

}
.

(6.29)

Now we manipulate the integral involving the function ξ, we deduce∫ T

0

f(ξ)g(ξ)dΛ(ξ) =

∫ τ

0

I(ξ ≤ T )f(ξ)g(ξ)dΛ(ξ).

Indeed, if ξ > T , then the contribution will be 0 to the integral. So the

last term in equation (6.29) can be expressed as

E

{
γ(V )eβ

′Z

∫ T

0

f(ξ)g(ξ)dΛ(ξ)

}
= E

{
γ(V )eβ

′Z

∫ τ

0

I(ξ ≤ T )f(ξ)g(ξ)dΛ(ξ)

}
.

(6.30)
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Using Fubini’s theorem, equation (6.30) can be written as

E

{
γ(V )eβ

′Z

∫ τ

0

I(ξ ≤ T )f(ξ)g(ξ)dΛ(ξ)

}
=

〈
E
{
γ(V )eβ

′ZI(ξ ≤ T )f(ξ)
}
, g(ξ)

〉
L2(Λ)

.

(6.31)

From equation (6.26) we can write〈
B∗ΛBΛf, g

〉
L2(Λ)

=

〈
E{γ(V )eβ

′ZI(t ≤ T )f}, g
〉
L2(Λ)

.

So, the information operator is

B∗ΛBΛf = E

{
γ(V )eβ

′ZI(t ≤ T )

}
f(t).

It follows that the inverse of information operator is

(
B∗ΛBΛ

)−1
f(t) =

[
E{γ(V )eβ

′ZI(t ≤ T )}
]−1

f(t).

The Action of the Adjoint Score Operator B∗Λ on the Score

Function φβ

Assume the differentiable paths (r, s) 7→ P (T, δ|β + ru,Λs) can be exploited

with the path dΛs = (1 + sg)dΛ. Now we can write

∂

∂r

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β + ru,Λs) = u′φβ. (6.32)

and
∂

∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β + ru,Λs) = BΛg. (6.33)

Using equation (6.32) and (6.33) we can write〈
u′φβ, BΛg

〉
= E

{
(u′φβ)(BΛg)

}
= − E

{
∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|β + ru,Λs)

}
= u′E

{
γ(V )Zeβ

′Z

∫ T

0

g(ξ)dΛ(ξ)

}
.

(6.34)
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Now by manipulating the integral involving the function ξ, the equation

(6.34) can be expressed as〈
u′φβ, BΛg

〉
= u′E

{
γ(V )Zeβ

′Z

∫ τ

0

I(ξ ≤ T )g(ξ)dΛ(ξ)

}
. (6.35)

Using the Fubini’s theorem, we can conclude that

u′E

{
γ(V )Zeβ

′Z

∫ τ

0

I(ξ ≤ T )g(ξ)dΛ(ξ)

}
=

〈
u′E

{
γ(V )Zeβ

′ZI(ξ ≤ T )

}
, g(ξ)

〉
L2(Λ)

.

(6.36)

We know that 〈
u′B∗Λφβ, g

〉
L2(P )

=

〈
u′φβ, BΛg

〉
L2(Λ)

.

So we can write

B∗Λφβ = E

{
γ(V )Zeβ

′ZI(t ≤ T )

}
.

Efficient Score Function φeff :

Finally the efficient score function can be expressed as

φeff = φβ −BΛ

(
B∗ΛBΛ

)−1
B∗Λφβ

= γ(V )

{
δZ − Zeβ′ZΛ(T )−

[
δ − eβ′Z

∫ T

0

dΛ(u)

]
E[γ(V )Zeβ

′ZI(t ≤ T )]

E[γ(V )eβ′ZI(t ≤ T )]

}
= γ(V )

{
δ

[
Z − M1(T )

M0(T )

]
− eβ′Z

∫ T

0

[
Z − M1(u)

M0(u)

]
dΛ(u)

}
,

(6.37)

where M0(T ) and M1(T ) were defined in the proof of Theorem 6.1.

Here we have shown that the profile likelihood score function from equa-

tion (6.2) and the efficient score function based on the projection theory from

equation (6.37) are identical.
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Chapter 7

Efficient Estimation For The Joint

Model of Longitudinal and

Survival Data

7.1 Introduction

Many medical or clinical studies often deal with two types of outcome which

are longitudinal response measurements and the survival outcome such as

death, development of disease etc. (Rizopoulos, 2010, 2012). Therefore, the

joint model of longitudinal and survival data is considered one of the pow-

erful and popular techniques due to incorporating the association between

longitudinal and time-to-event outcomes (Dıaz and Sampedro, 2014; Guler

et al., 2014; Ibrahim et al., 2010; Sattar et al., 2012).

The longitudinal outcome and the event outcome often modelled sepa-

rately by using the mixed effect model and the Cox PH model respectively.

Several approaches have been introduced to measure the association be-

tween longitudinal and survival data. One of the widely used approach is

the Extended Cox model where time-dependent longitudinal covariate has

95
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been used to investigate the association with the event outcome (Andersen

and Gill, 1982; Andersen et al., 2012; Fleming and Harrington, 1991). How-

ever, this model assumes that the time dependent longitudinal outcomes

do not have any measurement error (Balakrishnan and Rao, 2004; Dupuy

and Mesbah, 2002; Li and Ma, 2013; Rizopoulos, 2012; Sattar et al., 2012).

Moreover, the model also assumes that the covariates change at follow-up

time and are unchanged between the follow-up times (Kalbfleisch and Pren-

tice, 2011; Rizopoulos, 2012; Wang, 2004). However, in reality, we know that

its usual to consider measurement errors while measuring the covariates,

therefore, ignoring measurement errors in the longitudinal measurements

is one of the main limitations of this model (Bang et al., 2013). To over-

come these difficulties, the joint model of longitudinal and time-to-event

outcomes was proposed in biomedical research (Sweeting and Thompson,

2011).

To see the effect of the longitudinal outcome as a time-dependent covari-

ate on event outcome, Faucett and Thomas (1996) and Wulfsohn and Tsi-

atis (1997) have proposed the joint models of longitudinal and survival out-

comes where the longitudinal outcome and the event outcome were mod-

elled jointly rather than separately. This joint modelling approach reduced

biases while doing parameter estimation (Ibrahim et al., 2010; McCrink et al.,

2011). Tsiatis and Davidian (2001) and Yu et al. (2004) reviewed the early

works of joint models done by Henderson et al. (2000); Wang and Taylor

(2001); Wulfsohn and Tsiatis (1997). In clinical settings, the joint model of

longitudinal and survival data has been widely used for various types of

medical studies such as HIV and cancer (Brown and Ibrahim, 2003; Hanson

and Yang, 2007; Hsieh et al., 2006; Ratcliffe et al., 2004; Rizopoulos, 2010;

Viviani et al., 2014).

The profile likelihood approach in the joint model of longitudinal and
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survival data with random effects has been proposed by Wulfsohn and Tsi-

atis (1997) where the parameters were estimated using the EM algorithm.

Later Zeng and Lin (2007a,b, 2010) have followed the work of Wulfsohn and

Tsiatis (1997) for parameter estimation. In the profile likelihood approach,

we profile out the baseline hazard function and plugged the estimate of

baseline hazard in the likelihood function of the joint model of longitudi-

nal and survival data. Here the estimate of the baseline hazard function

is an implicit function [see equations (7.10) and (7.12) and Remark-7.1 in

Section-7.3.4] which is similar problem to the Cox PH cure model. How-

ever, the works of Wulfsohn and Tsiatis (1997); Zeng and Lin (2007a,b, 2010)

did not address the computation with implicit function in the profile likeli-

hood estimation. Hsieh et al. (2006) first pointed out the problem of implicit

function in the joint model of longitudinal and survival data and suggested

bootstrap method as a possible solution to compute the estimated standard

errors while using the profile likelihood approach.

The efficiency and asymptotic distribution of semiparametric maximum

likelihood estimators using a NPMLE approach have been studied by Zeng

et al. (2005), however, they didn’t use the asymptotic expansion of profile

likelihood function to get the asymptotic normality of the profile likelihood

MLE. Apart from the NPMLE approach, bayesian estimation techniques

have also been used to estimate the parameters from the joint model of lon-

gitudinal and survival data (Brown and Ibrahim, 2003; Chi and Ibrahim,

2006; Guo and Carlin, 2004; Hanson and Yang, 2007; Henderson et al., 2000;

Huang et al., 2011; Ibrahim et al., 2004; Tsiatis and Davidian, 2001; Wang

and Taylor, 2001; Xu and Zeger, 2001).

The works of Zeng et al. (2005); Zeng and Lin (2007a,b, 2010) based on

profile approach have avoided dealing with the implicit function and used

the equation (1.2) from Chapter-1 for the calculation of information matrix
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which didn’t require the direct expansion of the profile likelihood function.

Rizopoulos (2010) developed a R package (JM) to fit the joint model of

longitudinal and survival data and mentioned that in ’Cox-PH-GH’ method,

the baseline hazard estimator is an implicit function and the standard errors

of the estimated parameters can be underestimated while calculating from

the score function (Rizopoulos, 2012). The possible reason for underestima-

tion can be the score function which has been calculated without differenti-

ating the implicit function within the log-likelihood function. Later, Hickey

et al. (2018) developed joineRML R-package where multivariate longitudi-

nal outcomes have been used for joint modelling and considered bootstrap

process to estimate the standard errors which are computationally expen-

sive.

In this chapter, we have shown an alternative approach to the method-

ologies of Zeng et al. (2005); Zeng and Lin (2007a, 2010) where the asymp-

totic normality of the profile likelihood estimator has been studied for the

joint model of longitudinal and survival data. Similar to Chapter-5, here our

contribution is that we have used the direct asymptotic expansion of profile

likelihood for the joint model of longitudinal and survival data and obtain

the explicit form of the variance estimator using the profile likelihood score

function where the estimated information matrix can be expressed as

Î =
1

n

n∑
i=1

φ(xi; η̂)φ′(xi; η̂).

Here, φ is the profile score function and η̂ is the MLE of η. Therefore, we

have solved the problem of estimating standard errors using the observed

information matrix based on the profile likelihood score function.

Our proposed alternative method provides us the the way to expand

the profile likelihood function directly. Moreover, we have calculated the
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estimated standard errors of the profile likelihood estimators which is illus-

trated in the simulation study (Section-7.4) and in real-data example (Section-

7.5). For the real-data examples, we have used the datasets (’AIDS’ and

’PBC’) from JM package and computed the standard errors of the estimated

parameters from the profile likelihood score function. Moreover, we have

compared our results with the output obtained from JM (method: ’Cox-PH-

GH’) and joineRML packages.

This chapter is organized as follows. A brief discussion on joint model

of longitudinal and survival data has been given in Section-7.2. In Section-

7.3, we describe the estimation procedure to show that the profile likelihood

estimators are consistent and asymptotically normal. Results obtained from

the simulation study and real-life data are shown in Section-7.4 and Section-

7.5 respectively. This chapter concludes in Section-7.6 with a short discus-

sion.

7.2 Joint Model of Longitudinal and Survival Data

Let yij be the response of subject i, i = 1, 2, ...n observed at time tij, j =

1, 2, ...ni, with fixed effects covariate vector xi(tij) and random effects co-

variate vector zi(tij). Now we assume a linear mixed model for the process

as

yij = mi(tij) + εi(tij)

where mi(tij) = x′i(tij)β + z′i(tij)bi is the longidudinal process with the fixed

effects β and the random effects bi. In addition, we assume bi ∼ N(0, D)

εi(t) ∼ N(0, σ2)

where random effects follows bivariate normal distribution with mean 0

and covariance matrix D. Moreover, the error εi(t) follows normal distribu-
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tion with mean 0 and variance σ2. The random effects are assumed inde-

pendent of εi(t).

For the survival data, let us assume T ∗i and Ci be the survival and cen-

soring times, respectively. Moreover, Ti be the observed event time which

can be defined as Ti = min(T ∗i , Ci) and δi = I(T ∗i ≤ Ci) be the censoring

indicator. We observe (Ti, δi, wi), where wi be a vector of baseline covariates.

To measure the strength of association between mi(t) and the risk of the

event, we can express the relative risk models as

λ(t|bi) = λ(t) exp {γ′wi + α′mi(t)} , (7.1)

where λ(t) is the baseline hazard function and γ is the vector of regression

coefficients corresponding to wi. Similarly α represents the effect of the un-

derlying longitudinal outcome to the risk of the event. Let Λ(t) =
∫ t

0
λ(s)ds

be the cumulative baseline hazard function. Then the survival function can

be written as

Si(t|bi) = exp

(
−
∫ t

0

λ(s) exp {γ′wi + α′mi(s)} ds
)
.

7.3 Estimation: Profile Likelihood with EM Algo-

rithm

In this section, first we present the likelihood function for the joint model of

longitudinal and survival data. In Section 7.3.1, we profile out the baseline

hazard using NPMLE approach and in Section 7.3.2 construct the profile

likelihood function. Later in Section 7.3.3, we estimate the profile likeli-

hood MLE through EM algorithm and finally in Section 7.3.4, we prove the

asymptotic normality of the profile likelihood MLE.
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We assume that the time-independent random effects bi underlies in both

longitudinal and event outcomes. Therefore, bi considers not only the asso-

ciation between survival and longitudinal outcomes, but also the correlation

between the repeated measurements of the longitudinal outcome (Rizopou-

los, 2012). The joint likelihood for the observed data can be written as

L(θ, σ2, D,Λ) =
n∏
i=1

∫
bi

p(Ti, δi, yi, bi; θ, σ
2, D,Λ)dbi

=
n∏
i=1

∫
bi

p(Ti, δi|bi; θ,Λ)p(yi|bi; β, σ2)p(bi;D)dbi

where

p(Ti, δi|bi; θ,Λ) = [λ(Ti) exp {γ′wi + α′mi(Ti)}]δi

× exp

(
−
∫ Ti

0

exp {γ′wi + α′mi(s)} dΛ(s)

)
(7.2)

p(yi|bi; β, σ2) = (2πσ2)−ni/2 exp

{
−
∑ni

j=1[yi(tij)−mi(tij)]
2

2σ2

}
, (7.3)

and

p(bi;D) = (2π)−r/2 det(D)−1/2 exp

{
−b
′
iD
−1bi
2

}
. (7.4)

Here r is the dimension of bi and (θ′, σ2, D)′ be the all parameters in the joint

model of longitudinal and event data where θ′ = (β′, γ′, α′). In our joint

model, (θ′, σ2, D)′ is the main parameter of interest whereas the cumulative

baseline hazard function Λ is the nuisance parameter.

Let us define the complete data by (ti, δi, yi, bi), i = 1, ..., n which in-

cludes the observed data and unobserved bi (treating bi as missing data).

The choice for using EM algorithm is justified by the fact that the model de-

pends on a latent variable, bi. Moreover, the aim of EM algorithm is to max-

imize observed data likelihood from a complete data likelihood (Dempster
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et al., 1977). So the complete data log-likelihood function can be written as

logLc(θ, σ
2, D,Λ; b) =

n∑
i=1

log

{
p(Ti, δi|bi; θ,Λ)p(yi|bi; β, σ2)p(bi;D)

}
.

Now the expected complete data log-likelihood under p(b|T, δ, y) will be

Eb[logLc(θ, σ
2, D,Λ; b)]

=
n∑
i=1

∫
bi

log

{
p(Ti, δi|bi; θ,Λ)p(yi|bi; β, σ2)p(bi;D)

}
p(bi|Ti, δi, yi; θ, σ2, D,Λ)dbi

=
n∑
i=1

{
Eb
[

log p(Ti, δi|bi; θ,Λ)
]

+ Eb[log p(yi|bi; β, σ2)] + Eb[log p(bi;D)]

}
,

(7.5)

where Eb is the expectation with respect to b ∼ p(b|T, δ, y; θ, σ2, D,Λ) which

can be expressed as

p(b|T, δ, y; θ, σ2, D,Λ) =
p(T, δ|b; θ,Λ)p(y|b; β, σ2)p(b;D)∫

b
p(T, δ|b; θ,Λ)p(y|b; β, σ2)p(b;D)db

∝ p(T, δ|b; θ,Λ)p(y|b; β, σ2)p(b;D).

(7.6)

7.3.1 Baseline Hazard Estimation

Before starting the EM algorithm, we profile out the baseline hazard func-

tion λ(t) using NPMLE. We assume that the baseline hazard, λ(t) has (pos-

sible) non-zero values on the observed time ti:

λ(ti) = λi ≥ 0 ; i = 1, 2, ..., n

and λ(t) = 0 for the rest of time (Murphy and Van der Vaart, 2000). Under

the assumption, the integral, Λ(t) =
∫ t

0
λ(s)ds is replaced with the sum

Λ(t) =
n∑
i=1

λi1{ti ≤ t}.

Now the survival part of equation (7.5) can be separately maximized with

respect to λ using the log-likelihood:
n∑
i=1

Eb

[
δi
{

log λi + γ′wi + α′mi(t)
}
− exp{γ′wi + α′mi(t)}

n∑
j=1

λj1{tj ≤ ti}
]
,

(7.7)
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and the score equation with respect to λk will be

∂

∂λk

n∑
i=1

Eb

[
δi
{

log λi+γ
′wi+α

′mi(t)
}
−exp{γ′wi+α′mi(t)}

n∑
j=1

λj1{tj ≤ ti}
]

= 0.

By solving the above equation, the estimate of λk is

λ̂k(t) =
δk∑n

l=1 1{tk ≤ tl}Eb[exp{γ′wl + α′ml(tk)}]
,

and the estimate of the cumulative baseline hazard can be written as

Λ̂(t; θ) =
n∑
i=1

δi1{ti ≤ t}∑n
l=1 1{t ≤ tl}Eb[exp{γ′wl + α′ml(t)}]

. (7.8)

7.3.2 Profile Likelihood Function

The NPMLE of the baseline cumulative hazard function in the counting pro-

cess notation can be written from equation (7.8) as

Λ̂(t; θ) =

∫ t

0

∑n
i=1 dNi(u)∑n

i=1 Yi(u)Eb[exp{γ′wi + α′mi(u)}]
, (7.9)

where Ni(u) = 1{Ti ≤ u, δ = 1} and Yi(u) = 1{Ti ≥ u}.
Let us denote EFnf =

∫
fdFn. Then Λ̂(t) can be expressed as

Λ̂θ,Fn(t) =

∫ t

0

EFndN(u)

EFnY (u)Eb[exp{γ′w + α′m(u)}]
. (7.10)

Now we plug the baseline hazard estimator (Λ̂θ,Fn in the place of Λ) in

the likelihood function of the joint model to obtain the profile likelihood

function. The log-profile likelihood functions (for one observation) for Cox

PH, longitudinal and random effect components can be denoted as

log p(Ti, δi|bi; θ, Λ̂θ,Fn), log p(yi|bi; β, σ2) and log p(bi;D) respectively which are

log p(Ti, δi|bi; θ, Λ̂θ,Fn) = δi

{
log

EFndN(Ti)

EFnY (Ti)Eb[exp{γ′w + α′m(Ti)}]
+ γ′wi + α′mi(Ti)

}
− exp

(
γ′wi + α′mi(Ti)

)∫ Ti

0

EFndN(u)

EFnY (u)Eb[exp{γ′w + α′m(u)}]
,

log p(yi|bi; β, σ2) = −1

2

{
ni log(2π)+log(σ2)+(σ2)−1(yi−xiβ−zibi)′(yi−xiβ−zibi)

}
,
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and

log p(bi;D) = −1

2

{
r log(2π) + log |D|+ b′iD

−1bi

}
.

For simplicity, we can express log p(Ti, δi|bi; θ, Λ̂θ,Fn) as log p(Ti, δi|bi; θ, Fn).

Now we can write the expected complete data profile log-likelihood func-

tion as

Eb[logLc(θ, σ
2, D, Λ̂θ,Fn ; b)]

=
n∑
i=1

{
Eb
[

log p(Ti, δi|bi; θ, Fn)
]

+ Eb[log p(yi|bi; β, σ2)] + Eb[log p(bi;D)]

}
.

(7.11)

7.3.3 The EM Algorithm

In this section, we will apply the EM algorithm to find the profile likeli-

hood MLE. First, we replace Λ with Λ̂θ,Fn in equation (7.6) and express the

posterior distribution as

p(bi|Ti, δi, yi; θ, σ2, D, Λ̂θ,Fn) ∝ p(T, δ|b; θ, Fn)p(y|b; β, σ2)p(b;D).

The E-step

In the E-step, we use the current parameter estimates to find the expected

values of b as

b̃i =

∫
bi

bi p(b|T, δ, y; θ̂, σ̂2, D̂, Λ̂θ̂,Fn
) dbi, (7.12)

and the posterior variance of the random effects can be expressed as

var(bi) =

∫
bi

(bi − b̃i)2 p(b|T, δ, y; θ̂, σ̂2, D̂, Λ̂θ̂,Fn
) dbi.

Here, the integral with respect to random effects is computationally chal-

lenging as its dimension increases. Therefore we have used the Gauss-

Hermite quadrature (Rizopoulos, 2012) to evaluate the integrals in the es-

timation procedure.

The M-step
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Now we maximize the equation (7.11) with respect to (θ, σ2, D) to obtain

(θ̂, σ̂2, D̂). The estimated parameters from the M-step are returned into E-

step then repeat the M-step and E-step until the values of the parameters

converge.

In the M-step, we can use the closed form solutions for the estimators

of measurement error variance (σ2) from longitudinal part and covariance

matrix (D) from random effect part. The closed form expressions for the

estimates of σ2 and D are

σ̂2 =
1

N

n∑
i=1

(yi − xiβ)′(yi − xiβ − 2zib̃i) + tr(z′izivar(bi)) + b̃′iziz
′
ib̃i

and

D̂ =
1

n

n∑
i=1

var(bi) + b̃′ib̃i,

where N =
∑

i ni. However, we couldn’t obtain the closed form solutions

of the score function for θ = (β′, γ′, α′). Thus for these parameters, in the

M-step, we have implemented a one-step Fisher-scoring update i.e.,

θ̂(k+1)
n = θ̂(k)

n +
[
Î(k)
]−1 1

n

n∑
i=1

φ(Ti, δi, yi|θ̂n, Fn)(k),

where φ(Ti, δi, yi|θ̂n, Fn)(k) represents the score function at current iteration

calculated by using equation (7.19) and Îk is the estimated information ma-

trix at current iteration which can be expressed as

Î(k) =
1

n

n∑
i=1

φ(Ti, δi, yi|θ̂n, Fn)(k)φ′(Ti, δi, yi|θ̂n, Fn)(k).

7.3.4 Asymptotic Normality of the MLE

Here we outline the results of asymptotic normality of the profile likelihood

estimator in the joint model of longitudinal and survival data.
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The difficulty of the problem is the profile likelihood function involve

the implicit function which is similar to Cox PH cure model. We can see a

circular relationship between the equations (7.10) and (7.12). This relation

shows the estimator of the baseline hazard function is an implicit function

[Rizopoulos (2012); page-67].

We have successfully proved the asymptotic normality of the profile like-

lihood estimator in the joint model of longitudinal and survival data based

on the following two results:

1. The score functions defined in equations (7.15), (7.16) and (7.17) in

Section-7.4 don’t involve differentiation of the implicit function and

2. Without assuming the differentiability of the profile likelihood score

function (φ) with respect to θ and F , we have shown that

E

[√
n

{
φ(T, δ|θ̂n, F0)− φ(T, δ|θ0, F0)

}]
= −E

[
φ(T, δ|θ0, F0)φ′(T, δ|θ0, F0)

]{√
n(θ̂n − θ0)

}
+ op(1).

The proof of the above equation is similar to Lemma-6.3 from Chapter 6.

By combining the above two results, we can show not only the asymptotic

normality of the estimators but also derived the closed form expression for

information matrix in equation (7.13) .

The asymptotic properties of the profile likelihood estimator θ̂n with

proofs are provided in Theorem-8.1, Theorem-8.2 and Theorem-8.3 (please

see Chapter-8, where we have presented the results). The estimator θ̂n has

asymptotic normal distribution which can be expressed as

θ̂n ∼ N

{
θ0,

(I∗)−1

n

}
,

where θ0 is the true values of θ and I∗ = E[φφ′] is the efficient information

matrix of the joint model, where φ given in equation (7.19) is the profile like-

lihood score function. In Theorem-8.1, it is shown that at the true value of
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parameters, φ is efficient score function. The consistency of the estimator θ̂n

are provided in Theorem-8.2 and the asymptotic normality of the estimator

θ̂n are given in Theorem-8.3. The proofs of Theorem-8.2 and Theorem-8.3

are similar to the Theorem-6.2 and Theorem-6.3 from Chapter-6. Moreover,

using equation (7.19), the estimated information matrix can be computed as

Î =
1

n

n∑
i=1

φ(Ti, δi, yi|θ̂n, Fn)φ′(Ti, δi, yi|θ̂n, Fn). (7.13)

Note: Assumptions, Lemmas and Theorems are provided in Chapter-8.

Remark-7.1: The existing approaches of the joint model of longitudi-

nal and survival data don’t involve direct asymptotic expansion of the pro-

file likelihood function. All the works of Zeng et al. (2005); Zeng and Lin

(2007a,b, 2010) have used an ’approximate least favorable submodel’ pro-

posed by Murphy and Van der Vaart (2000) to get the variance estimator.

Therefore they have used the equation (1.2) from Chapter-1 to calculate the

efficient information matrix.

7.4 Score Functions

The score function of β for longitudinal part can be expressed as

φlβ(yi|β, σ2) =
∂

∂β
Eb[log p(yi|bi; β, σ2)] =

[
xi(yi − xiβ − zib̄i)

]/
σ2. (7.14)

The score function of β for survival part can be expressed as

φsβ(Ti, δi|θ, Fn) =
∂

∂β
Eb
[

log p(Ti, δi|bi; θ, Fn)
]

= Eb

[
δi

{
αxi(Ti)−

L1β(Ti)

L0(Ti)

}]
− Eb

[ ∫ Ti

0

{
αxi(s)−

L1β(s)

L0(s)

}
exp

{
γ′wi + α′mi(s)

}
dΛ̂θ,Fn(s)

]
,

(7.15)

where

L0(u) = EFn [Y (u)Eb exp {γ′w + α′m(u)}] ,
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L1β(u) = EFn [Y (u)Eb αx(u) exp {γ′w + α′m(u)}] .

The score function of α for survival part can be expressed as

φα(Ti, δi|θ, Fn) =
∂

∂α
Eb
[

log p(Ti, δi|bi; θ, Fn)
]

= Eb

[
δi

{
mi(Ti)−

L1α(Ti)

L0(Ti)

}]
− Eb

[ ∫ Ti

0

{
mi(s)−

L1α(s)

L0(s)

}
exp

{
γ′wi + α′mi(s)

}
dΛ̂θ,Fn(s)

]
,

(7.16)

where

L1α(u) = EFn [Y (u)Eb m(u) exp {γ′w + α′m(u)}] .

The score function of γ for survival part can be expressed as

φγ(Ti, δi|θ, Fn) =
∂

∂γ
Eb
[

log p(Ti, δi|bi; θ, Fn)
]

= Eb

[
δi

{
wi −

L1γ(Ti)

L0(Ti)

}]
− Eb

[ ∫ Ti

0

{
wi −

L1γ(s)

L0(s)

}
exp

{
γ′wi + α′mi(s)

}
dΛ̂θ,Fn(s)

]
,

(7.17)

where

L1γ(u) = EFn [Y (u)Eb w exp {γ′w + α′m(u)}] .

From equations (7.14) and (7.15), the score function of β can be written

as

φβ(Ti, δi, yi|θ, Fn) = φlβ(yi|β, σ2) + φsβ(Ti, δi|θ, Fn). (7.18)

Finally, by combining equations (7.18), (7.16) and (7.17), the score func-

tion for the joint model can be expressed as

φ(Ti, δi, yi|θ, Fn) =


φβ(Ti, δi, yi|θ, Fn)

φα(Ti, δi|θ, Fn)

φγ(Ti, δi|θ, Fn)

 . (7.19)
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Now we will calculate the score operatorB(Ti, δi|θ, F ), which is Hadamard

derivative with respect to F . For an integrable function h with the same do-

main as F , we can express

B(Ti, δi|θ, F )h = Eb
[
dF log p(Ti, δi|bi; θ, F )

]
h

= Eb

{
δi

[
EhdN(Ti)

EFdN(Ti)
− EhY (Ti)Eb[exp{γ′w + α′m(Ti)}]
EFY (Ti)Eb[exp{γ′w + α′m(Ti)}]

]
− exp{γ′wi + α′mi(Ti)}

∫ Ti

0

EhdN(u)

EFY (u)Eb[exp{γ′w + α′m(u)}]

+ exp{γ′wi + α′mi(Ti)}
∫ Ti

0

EFdN(u)EhY (u)Eb[exp{γ′w + α′m(u)}](
EFY (u)Eb[exp{γ′w + α′m(u)}]

)2

}
.

where, Eb
[
dF log p(Ti, δi|bi; θ, F )

]
represents the Hadamard derivative of

Eb
[

log p(Ti, δi|bi; θ, F )
]

with respect to F .

7.5 Application to Real Life Data

We have used the AIDS and PBC datasets from JM package as real data

examples to compare our results with the output obtained from JM (“Cox-

PH-GH” method) and joineRML packages.

7.5.1 Application to AIDS Data

We have 467 patients in the AIDS dataset having advanced human immun-

odeficiency virus infection during antiretroviral treatment. The study was

conducted to compare the efficiency of two antiretroviral drugs: didanosine

(ddI) and zalcitabine (ddC) in the time-to-death. Drug ddI or ddC were as-

signed randomly to the patients and CD4 cell counts were recorded at study

entry randomly at 2, 6, 12, and 18 months thereafter (Abrams et al., 1994).

Out of 467 individuals, 188 died (approximately 60% censoring rate).

Here our main aim is to analyze the joint model to study the associ-

ation between the CD4 count and the risk for death for advanced HIV-
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infected patients.. In particular, the CD4 cells are a type of white blood

cells which are part of the infection-fighting system. Therefore, a decrease

in the CD4 cell count over time is an indication to the worse condition of the

immune system of the patient, and therefore higher susceptibility to infec-

tion. CD4 represents the CD4 cell count measurements and constitutes an

important marker of the strength of the immune system, obstime- the time

points at which the corresponding longitudinal response was recorded and

treatment- a factor with levels ddC and ddI.

First we perform a mixed model analysis where the model postulates

that the CD4 cell counts of all patients have different evolution in time from

baseline, i.e., each patient has own intercept and slope with some patients

starting with a higher CD4 count and some with lower. As a primary anal-

ysis we presented the subject-specific longitudinal profiles (Figure 7.1) and

the Kaplan-Meier estimate of survival probability (Figure 7.2).

For mixed model, in the fixed-effects part we include the main effect

of obstime and the interaction between treatment and obstime, and in the

random-effects design matrix we include an intercept and obstime term. For

the survival submodel, we include treatment as a time-independent covari-

ate and the true underlying profile of the CD4 cell count estimated from the

longitudinal model as time-dependent covariate.

The Cox model fitted with aids.id dataset (from JM package)- containing

only the survival information (i.e., single row per patient). In the results for

the survival process, γ is the regression coefficient corresponding to base-

line covariate (treatment) and α (association parameter) measures the asso-

ciation between the risk for death and longitudinal covariate.

The parameter estimates, estimated standard errors and 95% CI based on
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Figure 7.1: Subject-specific evolutions in time of the CD4 cell count mea-

surements separately for ddC and ddI

JM package (method:“Cox-PH-GH”), joineRML package and our approach

are given in Table 7.1.

From Table 7.1, it is observed that for all three approaches, intercept and

obstime have significant effects on CD4 in the longitudinal process. On the

other hand, from survival process it is seen that for JM (method:“Cox-PH-

GH”) package and our approach, the treatment and CD4 cell counts have

significant effects on death of patients. Since α is significant in all three

approaches, therefore it can be said that the joint model finds a significant

strong association between the CD4 cell count and the risk for death.

Calculation procedure of estimated SE

Though all three approaches have incorporated NPMLE approach for pa-

rameter estimation, however, the estimated SE are little bit different from
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Figure 7.2: Kaplan-Meier estimate of survival probability for the ddC and

ddI treatment groups

each other. The main reason is incorporating different methods to calculate

score function which is briefly explained as follows:

While calculating the score functions from JM (method:“Cox-PH-GH”)

package, Rizopoulos (2012) has ignored differentiating the estimator of base-

line hazard function (within the log-likelihood function) and treated it as an

independent parameter. Then forward or central difference approximations

have been used to calculate the derivative of the score vector (which was

used to estimate the SE of estimated parameters). In the case of joineRML

package, Hickey et al. (2018) considered the Monte Carlo EM (MCEM) al-

gorithm and bootstrap process for estimation procedure, where they have

estimated the fixed effect coefficients by ignoring the survival part from the

estimation process.
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The advantage of our approach is that we can express the efficient infor-

mation matrix as the variance of the profile likelihood score function (using

equation 7.19). We have calculated the estimated SE of parameter estimates

through the square root of the inverse of equation (7.13).

7.5.2 Application to PBC Data

PBC is a fatal and chronic but rare liver disease which eventually leads to

cirrhosis of the liver. This study originally conducted by the Mayo Clinic

between 1974 and 1984 (Murtaugh et al., 1994) and we are considering 312

patients, where D-penicillamine and placebo were assigned randomly to

158 and 154 patients respectively. In this study, 140 died out of 312 patients

(censoring rate over 55%). Patients survival was the primary interest of this

study where they also wanted to test the efficiency of D-penicillamine. In

addition, follow-up measurements for several biomarkers such as serum

bilirubin, prothrombin time, the presence of spiders (blood vessel malfor-

mations in the skin), hepatomegaly (enlarged liver) etc. were also recorded.

In this section, we perform a joint model to test whether serum bilirubin

is a strong indicator of disease progression or not. From the Q-Q plots of

residuals while fitting linear mixed model separately for serum bilirubin, it

has been confirmed that log transformation of serum bilirubin is standard

to use (Hickey et al., 2018).

First we perform a mixed model analysis where model postulates that

the log transformation of serum bilirubin of all patients have different evo-

lution in time from baseline. As a primary analysis we presented the subject-

specific longitudinal profiles (log transformation of serum bilirubin) in Figure-

7.4 and the Kaplan-Meier estimate of survival probability in Figure-7.5. Our

main aim is to study the association between the log transformation of serum
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bilirubin and the risk for death.

From Figure-7.3, we can see that some of the patients have non-linear

profiles. Therefore, for mixed model, in both fixed-effect and random-effect

parts, we consider the natural cubic splines for year (number of years be-

tween enrolment and this visit date, remaining values on the line of data re-

fer to this visit) with two internal knots corresponding to 33.3% and 66.7% of

the observed follow-up times (Andrinopoulou and Rizopoulos, 2016). For

the survival submodel, we include treatment as a baseline covariate and

time-dependent one as the true underlying profile of the log transformation

of serum bilirubin as estimated from the longitudinal model.

In the results for the survival process, γ is the regression coefficient cor-

responding to baseline covariate (treatment) and α (association parameter)

measures the association between longitudinal covariate (log transforma-

tion of serum bilirubin) and the risk for death.

The parameter estimates, standard errors and 95% CI using JM package

( method:“Cox-PH-GH”), joineRML package and our approach are given in

Table 7.2.

From Table 7.2, we have observed that the intercept and year have signif-

icant effects in longitudinal process (in all three approaches). On the other

hand, in survival process, only log-transformation of serum bilirubin has

significant effect on death of patients. Based on the results from all ap-

proaches, it can be said that the joint model finds a significant strong as-

sociation between the log-transformation of serum bilirubin and the risk for

death. From Table 7.2, it is seen that the estimated parameters and SE values

are different which similar case to Table 7.1. The possible reason for these

differences is explained in the section 7.5.1.
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7.6 Simulation Study

We are going to perform the simulation study where our goal is to compare

and contrast the JM (“Cox-PH-GH” method) and joineRML packages with

our proposed approach by assessing parameter and standard error estima-

tion. For simulating data, we have considered AIDS data from JM package.

In the AIDS dataset, there is a variable called ’prevOI’ which has two lev-

els: ’aids’ and ’no-aids’ where the first one denotes previous opportunistic

infection (AIDS diagnosis) at study entry and the later one is denoting no

previous infection. In this section, we are going to use the subset of pa-

tients with ’aids’ factor from ’prevOI’ variable for simulating datasets using

a function called ’simulate’ from JM package. This function provides a data

frame that contains the simulated responses for the longitudinal process, the

simulated event times, the event indicator, the subject identification number

and related covariates (Rizopoulos, 2012).

A brief description about the dataset and other variables have provided

in section 7.5.1 (Application to AIDS Data). Here, first we perform a mixed

model where the model postulates that the CD4 cell counts of patients have

different evolution in time from baseline. For mixed model, in the fixed-

effects part we include the main effect of ‘obstime’ and ‘treatment’, and

in the random-effects design matrix we include an intercept and ‘obstime’

term. For the survival submodel, we have considered ‘treatment’ as time-

independent covariate and the true underlying profile of the CD4 cell count

(time dependent covariate) estimated from the longitudinal model. Then

we fit a joint model using Weibull proportional hazards model with Gauss-

Hermite quadrature (method: ”weibull-PH-GH”) to describe the evolution

in time of the CD4 cell count of the patients with previous opportunistic in-

fection from the AIDS dataset. Using the results from this fitted joint model,

we have simulated longitudinal and survival data for our simulation pur-

pose.
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The results include samples of 200 and 300 individuals with 500 replica-

tions where the results obtained from our approach have compared with the

output obtained from JM (“Cox-PH-GH” method) and joineRML packages.

The true parameter values and the results from the simulation studies such

as mean bias, mean SE (the mean of SE estimates calculated for each fitted

model) and MSE for each configuration are given in Table-7.3 and Table-7.4.

The explicit explanation of the above mentioned statistics are given below

Let U be the estimator for the parameter of interest θ. From our simula-

tion study (J = 500 replicates), we obtain J estimates U1, U2, ..., UJ for each

data generating condition. Based on these estimators, we can compute J bi-

ases: bias1 = U1 − θ, bias2 = U2 − θ, ..., biasJ = UJ − θ. Moreover, we obtain

J estimates of ŜE; ŜE1, ŜE2, ..., ŜEJ . Now we can calculate the following

sample statistics for the estimates:

• Sample mean, Ū =
∑J

i=1 Ui

• Mean bias= 1
J

∑J
i=1(Ui − Ū)

• MSE = 1
J

∑J
i=1(Ui − θ)2

• mean ŜE = 1
J

∑J
i=1 ŜEi

Note: Method of mean SE calculation based on our approach

We have calculated the estimated variance analytically through the inverse

of equation (7.13). For each simulated data, we can express the observed

information matrix as

Î =
1

p

p∑
q=1

φqφ
′
q ,

where p is the number of individuals in each simulated data and φ is the

profile score function. Then the estimated SE for each fitted model can be

expressed as

ŜE =
√
Î−1.
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Results

In Table-7.3 and Table-7.4, the fixed effect coefficients for the longitudinal

process are defined as (β0, β1, β2). Moreover, the time independent baseline

covariate and the association parameter between longitudinal process and

survival outcome are defined as γ and α respectively.

For all configurations in Table-7.3 and Table-7.4, with a few exceptions,

the mean bias estimates are very small (the parameter estimates are close to

the true values), consistently less than 0.15 with most less than 0.05. For all

three approaches, with a few exceptions, bias and MSE for each parameter

estimate decrease with increasing sample size.

Computation Time Analysis

In order to assess and compare the computational time between our ap-

proach, JM (“Cox-PH-GH” method) and joineRML packages, the average

time elapsed to get the estimates of the parameters and estimated standard

errors has recorded. For all configurations, 500 datasets have generated as

described before. The average computation times for parameter estimates

and standard errors for all three approaches are given in Table-7.5.

From Table 7.5, we can see that the average computation time is longest

for the JM (“Cox-PH-GH” method) package. The possible reason is the com-

putation process of the derivative of the score function. On the other hand,

joineRML package has incorporated bootstrap process for standard error

estimation which is comparatively faster than JM (“Cox-PH-GH” method)

package.

From Table-7.5, we can see that the average computation times are much

less for our approach compared to JM (“Cox-PH-GH” method) and join-
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eRML packages. The reason for taking shortest time is our computation

approach where the explicit form of the efficient score function has been

found via profile likelihood score function and hence we computed the SE

through the closed form of the efficient information matrix.

7.7 Discussion

It is difficult to find the estimated standard errors of profile likelihood esti-

mators from the joint model of longitudinal and survival data.The works of

Wulfsohn and Tsiatis (1997); Zeng et al. (2005); Zeng and Lin (2007a,b, 2010)

have adopted the profile likelihood approach, however, they have avoided

expanding the profile likelihood function directly. Therefore, they didn’t in-

volve the profile likelihood score function to calculate the standard error.

In this chapter, we have expanded the profile likelihood function directly

and found the estimated SE of the profile likelihood MLE in the joint model

of longitudinal and survival data. Here, we have shown the estimated SE

in terms of the profile likelihood score function. Our approach gave us not

only the analytical understanding of the profile likelihood estimation in the

joint model of longitudinal and survival data but also an alternative method

to compute the estimated SE for profile estimators based on profile likeli-

hood score function.

We have analysed the simulated and real-life data, and compared our

results with the output obtained from JM (“Cox-PH-GH” method) and join-

eRML packages. Though our approach and the JM (“Cox-PH-GH” method)

package provided similar estimates of the parameter, however, the stan-

dard errors of the estimated parameters are quite different. In “Cox-PH-

GH” method of JM package, the estimated SE are calculated based on the

derivative of the score function where the implicit function within the score
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functions haven’t differentiated. On the other hand, we have used the pro-

file likelihood score function and got the explicit form of the information

matrix. In the case of joineRML package, bootstrap samples have been used

to calculate the SE of estimated parameters. Another advantage of our pro-

posed approach is the computation time which is faster compared to the JM

(“Cox-PH-GH” method) and joineRML packages.
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Table 7.1: Results for joint model using AIDS data
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Figure 7.3: Smooth longitudinal measurements of log transformation of

serum bilirubin from 9 randomly selected patients
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Figure 7.4: Subject-specific evolutions in time of the log transformation of

serum bilirubin separately for D-penicillamine and placebo
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Figure 7.5: Kaplan-Meier estimate of survival probability for the D-

penicillamine and placebo treatment groups
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Table 7.2: Results for joint model using PBC data
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Table 7.3: Simulation results for Joint model (number of individuals=200,

number of simulations=500)
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Table 7.4: Simulation results for Joint model (number of individuals=300,

number of simulations=500)
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Table 7.5: Average computation time for the model parameter estimation
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Chapter 8

Proofs of Theorems and Lemmas

for Joint Model of Longitudinal

and Survival Data

The proof of Theorems and Lemmas to show the asymptotic normality of

profile likelihood estimator in the joint model of longitudinal and survival

data are given in this chapter. We have summarized the results of this chap-

ter in Section 7.3.4 of Chapter-7. To show the asymptotic normality of the

MLE and its asymptotic variance, we consider the following assumptions:

On the set of cdf functions z, we use the sup-norm, i.e., for F, F0 ∈ z,

||F − F0||∞ = sup
u
|F (u)− F0(u)|.

For ρ > 0, let

ζρ = {F ∈ z : ||F − F0||∞ < ρ}.

The assumptions are given below

A1: P (T, δ|b; θ0, F0) > δ > 0 for some positive constant δ > 0 and S(τ) =

P (T > τ) = E[Y (τ)] > 0.

A2: The range of x, z and w are bounded and θ = (α, β, γ) is in the

compact set Θ which follows ||x|| ≤ M , ||z|| ≤ M , ||w|| ≤ M and ||β|| ≤ M ,

129
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||α|| ≤M , ||γ|| ≤M for some 0 < M <∞.

A3: The empirical cdf Fn is
√
n consistent i.e.

√
n|Fn − F0| = Op(1).

A4: The efficient information matrix, I∗ = E[φφ′] is invertible where φ′ is

the efficient score function.

A5: True hazard function, λ(t) is bounded and positive in (0, τ).

8.1 Theorem-8.1 with proof

Theorem 8.1: At the true value of (θ, F ), we are going to proof the follow-

ings

1. Λ̂θ0,F0(t) = Λ0(t), the true cumulative hazard and

2. The score functions for survival part φsβ , φα and φγ defined in equa-

tions (7.15), (7.16) and (7.17) are efficient score functions (we drop the sub-

script i).

Proof:

1. Replace Fn by F0,we get from (7.10)

Λ̂θ0,F0(t) =

∫ t

0

E[dN(u)]

E[Y (u)Eb exp{γ′0w + α′0m(u)}]
, (8.1)

where E is the expectation with respect to the true distribution F0. At the

true value of the parameters (θ, F ) we can write

E[dN(u)] = E
[
Y (u)Eb exp{γ′0w + α′0m(u)}

]
dΛ0(u). (8.2)

So from this point of view, we have Λ̂θ0,F0(t) = Λ0(t).Hence (1) is proven.

2. We know that the longitudinal and random effect parts are parametric

models those do not involve Λ, so we will work on the score function of the

survival part only. Now the score functions of the survival part at the true

value of the parameters (θ, F ) can be expressed as
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φα(Ti, δi|θ0, F0) = Eb

[
δ

{
m(T )− L1α0(T )

L0(T )

}]
− Eb

[ ∫ T

0

{
m(s)− L1α0(s)

L0(s)

}
exp {γ′0w + α′0m(s)} dΛ0(s)

]
(8.3)

φsβ(Ti, δi|θ0, F0) = Eb

[
δ

{
α0x(T )− L1β0(T )

L0(T )

}]
− Eb

[ ∫ T

0

{
α0x(s)− L1β0(s)

L0(s)

}
exp {γ′0w + α′0m(s)} dΛ0(s)

]
(8.4)

φγ(Ti, δi|θ0, F0) = Eb

[
δ

{
w − L1γ0(T )

L0(T )

}]
− Eb

[ ∫ T

0

{
w − L1γ0(s)

L0(s)

}
exp {γ′0w + α′0m(s)} dΛ0(s)

]
(8.5)

Now by combining (8.3) , (8.4) and (8.5), we can write the profile likeli-

hood score function for the survival part as

φ(T, δ|θ0, F0) =


φα(Ti, δi|θ0, F0)

φsβ(Ti, δi|θ0, F0)

φγ(Ti, δi|θ0, F0)



= Eb

δ



m(T )

α0x(T )

w

− L1(T )

L0(T )




− Eb

∫ T

0




m(s)

α0x(s)

w

− L1(s)

L0(s)

 exp
{
γ′0w + α′0m(s)

}
dΛ(s)

 ,
(8.6)
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where

L0(s) = E [Y (s)Eb exp {γ′0w + α′0m(s)}] ,

L1(s) =


L1α0

L1β0

L1γ0



= E

Y (s)Eb


m(s)

α0x(s)

w

 exp {γ′0w + α′0m(s)}

 . (8.7)

Here φs in equation (8.6) is the profile likelihood score function for the sur-

vival part of the joint model of longitudinal and survival data. In section

8.6, we show that the equation (8.6) is same as the efficient score function

based on the projection theory given in equation (8.21).

8.2 Lemma-8.1 with Proof

Lemma-8.1: If the assumptions (A1-A5) hold, then

(i) The class of functions
{
Eb[log p(T, δ|b; θ, F )] : θ ∈ Θ, F ∈ ζρ

}
is uni-

formly bounded Donsker.

(ii) The class of functions
{
φ
(
T, δ|θ, F

)
: θ ∈ Θ, F ∈ ζρ

}
is uniformly

bounded Donsker.

Proof: Proof is similar to Lemma-6.1 of Chapter-6.

8.3 Theorem- 8.2 with proof

Theorem 8.2: If the assumptions (A1-A5) hold, then

1. Λ̂θ,F is continuously differentiable function at (θ, F ) and Λ̂θ̂n,Fn
= Λ0

2. θ̂n
P→ θ0 as n→∞

Proof: Proof is similar to Theorem- 6.2 of Chapter-6.
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8.4 Lemma- 8.3 with proof

Lemma 8.3: Suppose for assumptions (A1-A5), θ̂n
P→ θ0 and Fn

P→ F0 as

n→∞, then we have

E

[√
n

{
φ(T, δ|θ̂n, F0)− φ(T, δ|θ0, F0)

}]
= −E

[
φ(T, δ|θ0, F0)φ′(T, δ|θ0, F0)

]{√
n(θ̂n − θ0)

}
+ op(1) (8.8)

and

E

[√
n

{
φ(T, δ|θ̂n, Fn)− φ(T, δ|θ̂n, F0)

}]
= −E

[
φ(T, δ|θ0, F0)B(T, δ|θ0, F0)

]{√
n(Fn − F0)

}
+ op

(
1 +
√
n(θ̂n − θ0)

)
. (8.9)

Proof: Proof is similar to Lemma- 6.3 of Chapter-6.

8.5 Theorem- 8.3 with proof

Theorem 8.3: The estimator θ̂n from EM algorithm is an asymptotically lin-

ear estimator for θ0 with the efficient influence function (I∗)−1φ(T, δ|θ0, F0),

so that
√
n(θ̂n − θ0) =

1√
n

n∑
i=1

(I∗)−1φ(Ti, δi|θ0, F0) + op(1)
D−→ N{0, (I∗s )−1},

where I∗ = E[φφ′] and N{0, (I∗)−1} is a normal distribution with mean zero

and variance (I∗)−1. So the estimator θ̂n is efficient.

Proof: Proof is similar to Theorem- 6.3 of Chapter-6.

8.6 Efficient Score Function for Joint Model using

Projection Theory

To get the efficient score function using the projection theory, we assume the

parameters (θ,Λ) are evaluated at the true values θ0, Λ0 and omit subscript
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“0” for brevity.

The log-likelihood function of the survival part for one observation can

be written as

logP (T, δ|b; θ,Λ) = Eb

{
δ
(

log λ(T ) + γ′w + α′m(T )
)
− eγ′w+α′m(T )Λ(T )

}
.

Score Function for θ

φθ(T, δ|θ,Λ) =
∂

∂θ
logP (T, δ|b; θ,Λ) = Eb




m(T )

αx(T )

w

(δ − eγ′w+α′m(T )Λ(T )

) .

Score Operator for Λ

Let us take a measurable function which is bounded such as g : [0, τ ] → R,

where g is defined in the interval [0, τ ] because Λ is also restricted within

this interval. The path can be defined as

dΛs = (1 + sg)dΛ.

The corresponding path for the baseline hazard function is

λs(t) =
dΛs

dt
= (1 + sg)

dΛ

dt
= (1 + sg)λ(t).

The derivative of the log-likelihood function with respect to s can be

expressed as

BΛ(T, δ|θ,Λ)g =
∂

∂s

∣∣∣∣
s=0

logP (T, δ|b; θ,Λs) = Eb

{
δg(T )−eγ′w+α′m(T )

∫ T

0

g(u)dΛ(u)

}
.

Information Operator B∗ΛBΛ and its Inverse
(
B∗ΛBΛ

)−1

Let us start with the information operator B∗ΛBΛ and take two arbitrary

functions f and g. By definition of the adjoint, we can write

〈B∗ΛBΛf, g〉L2(Λ) = 〈BΛf,BΛg〉L2(P ). (8.10)
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The path defined by dΛr,s = (1 + rf + sg + rsfg)dΛ is positive for small

r and s. It can be written as dΛr,s = (1 + rf)(1 + sg)dΛ. The corresponding

path for the baseline hazard function is

λr,s(T ) =
dΛr,s

dt
= (1 + rf + sg + rsfg)

dΛ

dt
= (1 + rf + sg + rsfg)λ(T ).

Now we can write

∂

∂r

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|b; θ,Λr,s) = BΛf, (8.11)

and
∂

∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|b; θ,Λr,s) = BΛg. (8.12)

Using (8.11) and (8.12) we can write

〈BΛf,BΛg〉L2(P ) = E

{
(BΛf)(BΛg)

}
= − E

{
∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|b; θ,Λr,s)

}
= E

{
Eb e

γ′w+α′m(T )

∫ T

0

f(ξ)g(ξ)dΛ(ξ)

}
.

(8.13)

Now we manipulate the integral involving the function ξ, we deduce∫ T

0

f(ξ)g(ξ)dΛ(ξ) =

∫ τ

0

I(ξ ≤ T )f(ξ)g(ξ)dΛ(ξ).

Indeed, if ξ > T , then the contribution will be 0 to the integral. So the

last term in equation (8.13) can be expressed as

E

{
Eb e

γ′w+α′m(T )

∫ T

0

f(ξ)g(ξ)dΛ(ξ)

}
= E

{
Eb e

γ′w+α′m(T )

∫ τ

0

I(ξ ≤ T )f(ξ)g(ξ)dΛ(ξ)

}
. (8.14)

Using Fubini’s theorem, equation (8.14) can be written as

E

{
Eb e

γ′w+α′m(T )

∫ τ

0

I(ξ ≤ T )f(ξ)g(ξ)dΛ(ξ)

}
=

〈
E

{
Eb e

γ′w+α′m(T )I(ξ ≤ T )f(ξ)

}
, g(ξ)

〉
L2(Λ)

. (8.15)
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From equation (8.10) we can write〈
B∗ΛBΛf, g

〉
L2(Λ)

=

〈
E

{
Eb e

γ′w+α′m(T )I(t ≤ T )f

}
, g

〉
L2(Λ)

.

So, the information operator is

B∗ΛBΛf = E

{
Eb e

γ′w+α′m(T )I(t ≤ T )

}
f(t).

It follows that the inverse of information operator is

(
B∗ΛBΛ

)−1
f(t) =

[
E

{
Eb e

γ′w+α′m(T )I(t ≤ T )

}]−1

f(t).

The Action of the Adjoint Score Operator B∗Λ on the Score

Function φθ

Assume the differentiable paths (r, s) 7→ P (T, δ|b; θ+ru,Λs) can be exploited

with the path dΛs = (1 + sg)dΛ. Now we can write

∂

∂r

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|b; θ + ru,Λs) = u′φθ. (8.16)

and
∂

∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|b; θ + ru,Λs) = BΛg. (8.17)

Using equation (8.16) and (8.17) we can write〈
u′φθ, BΛg

〉
= E

{
(u′φθ)(BΛg)

}
= − E

{
∂2

∂r∂s

∣∣∣∣
(r,s)=(0,0)

logP (T, δ|b; θ + ru,Λs)

}

= u′E

Eb


m(T )

αx(T )

w

 eγ
′w+α′m(T )

∫ T

0

g(ξ)dΛ(ξ)

 .

(8.18)

Now by manipulating the integral involving the function ξ, the equation

(8.18) can be expressed as
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〈
u′φθ, BΛg

〉
= u′E

Eb


m(T )

αx(T )

w

 eγ
′w+α′m(T )

∫ τ

0
I(ξ ≤ T )g(ξ)dΛ(ξ)

 . (8.19)

Using the Fubini’s theorem, we can conclude that

u′E

Eb


m(T )

αx(T )

w

 eγ
′w+α′m(T )

∫ τ

0

I(ξ ≤ T )g(ξ)dΛ(ξ)


=

〈
u′E

Eb


m(T )

αx(T )

w

 eγ
′w+α′m(T )I(ξ ≤ T )

 , g(ξ)

〉
L2(Λ)

. (8.20)

We know that 〈
u′B∗Λφθ, g

〉
L2(P )

=

〈
u′φθ, BΛg

〉
L2(Λ)

.

So we can write

B∗Λφθ = E

Eb


m(T )

αx(T )

w

 eγ
′w+α′m(T )I(t ≤ T )

 .

Efficient Score Function φeff :

Finally the efficient score function can be expressed as

φeff = φθ −BΛ

(
B∗ΛBΛ

)−1
B∗Λφθ

= Eb

δ



m(T )

αx(T )

w

− L1(T )

L0(T )




− Eb

∫ T

0




m(s)

αx(s)

w

− L1(s)

L0(s)

 exp {γ′w + α′m(s)} dΛ(s)

 .
(8.21)
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where L0(T ) and L1(T ) were defined in the proof of Theorem 8.1 (equation

8.7).

Here we have shown that the profile likelihood score function from equa-

tion (8.6) and the efficient score function based on the projection theory from

equation (8.21) are identical.
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Conclusion

The Cox PH cure model and joint model of longitudinal and survival data

have received much attention in recent years in the field of public health,

medical studies and biostatistics. The classical survival models assume that

all patients will eventually experience the event of interest. However, mix-

ture cure model such as Cox PH cure models take into account for a pro-

portion of subjects who will never experience the event. Therefore, Cox PH

cure model has been used to model the cured and uncured individuals si-

multaneously. In the case of joint model of longitudinal and survival data,

we model the longitudinal process and survival outcome simultaneously.

The objective of the joint model is to investigate the effect of time depen-

dent longitudinal process on survival outcome. Therefore, joint model is

an useful statistical tool to study the association between repeated measure-

ments and survival outcome.

It is difficult to find the estimated SE for the parametric estimators using

profile likelihood approach from the Cox PH cure model and joint model

due to the presence of an implicit function in the profile likelihood func-

tion which is difficult to differentiate (Hirose and Liu, 2020). In this the-

sis, we have solved the theoretical challenge for these models by showing

the equation (1.3) without assuming the differentiability of the profile like-

139
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lihood score function. We have expanded the profile likelihood function di-

rectly and found the estimated SE of the profile likelihood MLE in the Cox

PH cure model and joint model of longitudinal and survival data. More-

over, we have expressed the standard errors in terms of the profile likeli-

hood score function.

The goal of this thesis is to propose an alternative approach of Murphy

and Van der Vaart (2000) to analyse the Cox PH cure model and the joint

model of longitudinal and survival data based on profile likelihood ap-

proach. Due to the theoretical and computational complexity in the method

of Murphy and Van der Vaart (2000), the R-packages: smcure, JM (“Cox-

PH-GH” method) and joineRML have avoided the method of Murphy and

Van der Vaart (2000) to calculate the standard errors. Among these pack-

ages, smcure and joineRML have used bootstrap process to calculate the

estimated standard errors (Cai et al., 2012; Hickey et al., 2018). On the other

hand, JM (“Cox-PH-GH” method) package has used the derivative of the

score function (without differentiating the implicit function) for SE calcula-

tion. From computational perspective, to show the advantage of our pro-

posed approach, we have performed the simulation studies and analysed

the real-life data to compare our results with the output obtained from sm-

cure, JM (“Cox-PH-GH” method) and joineRML R-packages.

In Chapter-2, we have reviewed the theory of estimation with finite di-

mensional parameters and the estimation process with finite and infinite di-

mensional nuisance parameters. Moreover, we have discussed the concept

of the influence function and its relationship to the asymptotic variance of

the estimator and showed the asymptotic normality of MLE for all configu-

rations.

In Chapter-3, a brief explanation on the profile likelihood concept has
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been highlighted. Moreover, we have reviewed the work of Hirose (2011b)

where the efficiency of profile likelihood approach in semi-parametric mod-

els has been highlighted.

In Chapter-4, we briefly described the Cox PH model with estimation

procedure based on partial likelihood and profile likelihood approaches.

Later, we computed the score function of Cox PH model based on profile

likelihood approach, and calculated the efficient score function based on the

projection theory. Finally, we have shown that the score function based on

profile likelihood and projection theory are identical. Therefore, the score

function calculated from profile likelihood approach is efficient score func-

tion.

In Chapter-5, we have shown the asymptotic normality of the maximum

profile likelihood estimator via asymptotic expansion of the profile likeli-

hood and derived the estimated information matrix for the Cox PH cure

model (without assuming the differentiability of the profile likelihood score

function) to estimate the standard errors. Here, we have expressed the ef-

ficient information matrix of the Cox PH cure model as the variance of the

profile likelihood score function. Later we have performed simulation study

and compared the bias, SE, MSE, coverage rate and computation time with

the output obtained from smcure R-package. We found that for all configu-

rations, with only a few exceptions, both smcure package and our proposed

approach have provided similar results. In the case of computation time,

our proposed approach takes less time compared to the smcure package.

Moreover, for real-life data comparison, we have used Eastern Cooperative

Oncology Group data. Due to the presence of implicit function in the EM

algorithm, smcure package has used bootstrap process to calculate the stan-

dard errors of the estimated parameters, whereas we have found the explicit

form of the efficient score function via profile likelihood score function and
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computed the SE analytically through the efficient information matrix.

In Chapter-6, we have stated the necessary assumptions and proved the

theorems and lemmas which were used to show the asymptotic normality

of the profile likelihood estimator in the Cox PH cure model.

In Chapter-7, the asymptotic normality of the maximum profile likeli-

hood estimator in the joint model of longitudinal and survival data has been

shown via asymptotic expansion of the profile likelihood function. Similar

to the Cox PH cure model, we have expanded the profile likelihood func-

tion and expressed the efficient information matrix without assuming the

differentiability of the profile likelihood score function. For the purpose of

analysis, we have used the AIDS and PBC datasets from JM package as real-

life data examples to compare our results with the output obtained from JM

(“Cox-PH-GH” method) and joineRML packages. In JM (method: ’Cox-PH-

GH’) package, score function has been calculated from the derivative of the

log-likelihood function (by ignoring the derivative of the implicit function

within the log-likelihood function) for standard error estimation whereas

joineRML package has considered the bootstrap samples. In the case of our

approach, we have expressed the efficient information matrix as the vari-

ance of the profile likelihood score function. We have also performed the

simulation study and compared the bias, SE, MSE and computation time

with the output obtained from JM (“Cox-PH-GH” method) and joineRML

packages. We found that the computation time for our proposed approach

are much less compared to the JM (“Cox-PH-GH” method) and joineRML

packages.

In Chapter-8, we have proven the theorems and lemmas which were

used to show the asymptotic normality of the profile likelihood estimator in

the joint model of longitudinal and survival data with random effects.
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In summary, we have expanded the profile likelihood function directly

for the Cox PH cure model and joint model of longitudinal and survival

data. Moreover, we have found the estimated SE of the profile likelihood

MLE and expressed the efficient information matrix in terms of the profile

likelihood score function. Our proposed technique gave us not only the

analytical understanding of the profile likelihood estimation but also pro-

vided closed form expression to compute the SE of the profile likelihood

MLE without assuming the differentiability of the profile likelihood score

function.

9.1 Limitation and future research

In this thesis, we have used e1684 data in Chapter 5, and AIDS and PBC data

in Chapter 7 for real-life data analysis. These historic datasets are publicly

available and easy to extract from the smcure, JM (’Cox-PH-GH’) and join-

eRML R-packages. Hence we have used the above mentioned datasets to

show the better performance and computational efficiency of our proposed

approach over the existing R-packages. However, it is a fact that the ex-

amples with publicly available data can be out of date, therefore, for future

research we will use modern and up-to-date clinical and medical datasets

for example newly released Demographic Health Survey (DHS) datasets.

Since the thesis emphasizes the practical importance of the cure model and

joint model in the field of medical science, therefore, it will be great to see

the plausibility of our proposed approach while using up-to-date clinical

datasets.

Another limitation is that we have considered the application of our ap-

proach to the interval censored data with the proportional hazard model.

However, we are unable to generalize our proposed profile likelihood ap-
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proach to the interval censored data. This is because the profile likelihood

approach requires a closed form expression of the estimator of the baseline

hazard function which is not available in the setting of interval censoring.

For the Cox PH cure model, we have considered only time-independent

covariates. The Cox PH cure model is identifiable because the cured sub-

population leads to a specific pattern of decrease in hazard ratios over time.

However, the scenarios with time dependent covariates and time-dependent

coefficients remain to be established. Therefore, for our future research, we

can consider the above mentioned scenarios to check whether it is possible

to distinguish the model from one where the effects of covariates just de-

crease over time.

On the other hand, we can consider several extensions of the joint model

of longitudinal and survival data for future research which includes several

families of parametrizations for the association structure between the longi-

tudinal and survival outcomes, joint models with multiple longitudinal re-

sponses and incorporating stratification factors (either observed or latent).

One possible limitation of fitting multivariate joint models is the numerical

integration with respect to the random effects which will create the com-

putational complexity. More specifically, when the number of longitudinal

outcomes increased from moderate to large, it is quite evident that the di-

mensionality of the random effects vector is going to be increase as well.

Moreover, the situation will become more complex when the subject-specific

longitudinal profiles are non-linear (which require even higher-dimensional

random effects vectors). Therefore, it will be difficult to handle the complex

situation such as joint model (with high-dimensional data) while using the

profile likelihood approach and hence we may need to come up with a new

approach to handle more complex settings.
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