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Abstract. Economic development shares interdependence with energy invest-
ment, a complex interaction of systems. Thus, advanced modelling tools are
required to support the development of strategic integrated energy plans,
inclusive of the technological complexities in the electricity value chain. This
paper looks at a system dynamics modelling approach with elements of control
systems engineering to determine the impact of the electric vehicle (EV) tech-
nology market penetration on the electricity demand profile and the related
environmental impact in the energy and transport sectors in South Africa.
Results indicate that the approach provided a robust framework in which to
design the model and conduct sensitivity analyses of additional EVs entering the
system due to the feedback loops inherent in the system structure.
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1 Introduction

Future investments in electricity generation technologies in South Africa will depend
on the dynamics linked to the country’s socio-economic development and the envi-
ronment, against a backdrop of policies and regulations ensuring compliance and
direction. The volatility in the power generation value chain is further impacted by
disruptive technologies such as electric vehicles, identified by the South African
Department of Transport in the Green Transport Strategy, as a possible mitigation
mechanism against climate change. The expected target for South Africa is 2.9 million
batter electric vehicles (BEVs) by 2050 to reduce carbon emissions in the transport
sector through substitution with the internal combustion engine vehicles (ICEVs) [1].
The target was expected to be affected by various drivers identified in the course of this
study including BEV reputation, charging station infrastructure, “range anxiety” and
the purchase price [2].
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The emergent behavior of these driving elements in the system was expected to
contribute an additional number of BEVs to the target, requiring structural feedback
loops to allow for the non-linear system behavior [3]. Control engineering based on
feedback theory [4], as well as system dynamics modelling were identified as having
the necessary mathematical frameworks which could provision the secondary impacts
from reiterative loop behavior in a dynamic environment. System dynamics modelling
was developed in the mid-1950s by Jay Forrester, with the first structure consisting of
hand-drawn stock-flow-feedback loops, illustrating counterintuitive system behavior
related to policy related decisions affecting attrition in General Electric [5]. The method
developed from his knowledge on control theory. This paper looks at the common
components in both control systems engineering and system dynamics modelling and
explains the leverage points and process used in the system dynamics methodology to
develop a detailed long-term electricity strategic electric vehicle (E-StratBEV) simu-
lator. The completed E-StratBEV simulator was used for scenario analysis to determine
the impact of BEVs on electricity consumption and carbon emissions in the transport
and electricity sectors.

1.1 Non-linearity in Electrical Energy Systems

Non-linear relationships identified between variables in electrical energy systems have
challenged the application of conventional econometric methods and linear program-
ming techniques. For example, the resultant impact on energy consumption in the
economic sectors due to changes in the price of electricity. When the electricity price
decreases, there is an increase in the use of electricity. This trend then reaches a
saturation level due to physical system constraints and/or production capacity maxi-
mization even if the price of electricity further decreases.

Together with non-linearity, the system has variables subject to time lags and
delays which also need to be accounted for. For example, a decision to build a new
power station is followed by a time lag, involving environmental impact assessments,
regulatory aspects, and equipment procurement and commissioning, as well as political
influences such as strikes.

This non-linearity required mathematical representation of the variables within
electrical energy systems which reflected feedback. Feedback behavior can be mod-
elled through control systems engineering (based on feedback theory and system
analysis) and system dynamics modelling.

1.2 Feedback Behaviour in Control Engineering and System Dynamics

Both control systems engineering and system dynamics modelling leverage on the
power of mathematical modelling through algebraic equations and integration. This
allows the design of model structures which are methodical but more importantly, it
allows the ability to build in qualitative and quantitative elements of feedback inherent
in most systems. The input-output relationship in a process within a system represents
the cause-effect relationships, also reflected through tools such causal loop diagrams [6]
in the system dynamics modelling process.
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Figure 1 shows the diagrammatic differences in linear and feedback views of the
world, incorporating control theory and extending into the system dynamics realm. In
Fig. 1 the linear open-loop view of the world (A) involves obtaining information about
a problem the taking an action after which a solution or result emerges (generally linear
optimization, least cost modelling approach). The closed loop feedback view of the
world (B) is the control theory backbone on which system dynamics advanced.

This closed-loop feedback view of the world suggests that information obtained
about a problem results in an action being taken and a result emerging, however, the
dynamic nature of the system means that the resultant behavior (after action was taken)
will have changed the original knowledge on the problem, which then informs a new
action and so the loop continues. In system dynamics modelling, after a result emerges,
the environment is also expected to change (C), linked to the emergence of unintended
consequences. Obtaining leverage points and intuitive insights to affect the system
changes will then be required and is usually supplemented by systems thinking tools to
understand root cause behavior as opposed to symptomatic treatment of system
problems. “End-of pipe” approaches result in perceived causes which yield reactive
solutions. In the case of a systems thinking approach, patterns of behavior are deter-
mined from the events occurring and the root cause identification will result in a
corrective solution.

In this study, the complexity of the interaction between qualitative and quantitative
variables which were expected to impact the external environment over time and
through feedback behavior required a detailed modelling process for descriptive
analysis. Thus an adapted system dynamics approach requiring more contextualization
than a control engineering mathematical platform was followed.

Fig. 1. Linear and feedback views of the world
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1.3 System Dynamics Modelling Process

System dynamics (SD) modelling allows for descriptive analysis facilitating root cause
understanding based on non-pure system responses. The primary steps include problem
identification and system conceptualization, model formulation, model development
and testing, and policy analysis. Since 2010, this method was applied to various system
problems across the electricity value chain, in Eskom, a State Owned Company
(SOC) e.g. Impact of Income Distribution on Electricity Consumption [7]. Through the
years, it became apparent that the successful implementation and application of the
system dynamics models was dependent not only on structural model development, but
also on the effectiveness of engagements with stakeholders, a comprehensive concept-
to-context process, system analysis and model communication and knowledge transfer.
The steps of this amended SD approach are detailed in Table 1 [8].

Table 1. Steps in the adapted system dynamics modelling approach [8].

No. Step Elements of the step

1 Inception of project and setting
the focusing question

• Understand the application and limitation of SD
modelling,

• Establish the focusing question linked to the system
problem,

• Identify members to form a working group
2 Concept to context • Determine the modelling timeframe,

• Understand the historical trends of variables,
• Develop a diagrammatic framework (System architecture
map) with upstream and downstream variables

3 Boundary setting • Develop causal loop diagrams,
• Define a model boundary chart (with endogenous (input)
and exogenous (output) variables)

4 System analysis • Include preliminary computations ranging from
statistical analysis to programming and data mining

5 Model development and design • Determine the modules and sub-modules to be
developed,

• Decide on the SD modelling software,
• Determine the state variables, initial conditions of stocks
and parameterization,

• Establish the mathematical linkages of variables,
• Develop engagement platforms to run relevant scenario
analysis

6 Validation and policy insights • Test the scenarios against the relevant policies,
• Validation (structural, empirical, behavioral and
application)

7 Model handover • Run a series of training workshops for knowledge
transfer and to equip model custodian with skills

8 Model maintenance and
updates

• Short term support to the model custodian through
follow up meetings,

• Data updates and minor structural changes are included
as part of the model maintenance

406 N. S. Pillay et al.



Some of the key elements of Step 2 include the development of the diagrammatic
framework or system architecture map (SAM). The SAM does not display cause and
effect relationships or directional quantities but includes a flow of elements impacting
the system experiencing the problem. It has proven to be a valuable tool for stakeholder
engagements especially in instances where the stakeholders do not want the technical
detail and provides strategic insight to the bigger picture based on mental models, as
well as theoretical and empirical linkages. The SAM constructed for this case study is
shown in Fig. 2.

The SAM includes those elements such as the drivers impacting BEVs, as well as
the components which would have to be translated into structural modules such as the
electricity supply mix (currently a coal heavy supply mix with operational performance
factors), electricity consumption (with additional charging requirements from electric
vehicle market penetration) and environmental impact (carbon emissions in the elec-
tricity and transport sectors). Additional considerations in the SD modelling process
includes the constitution of the work group team in developing the causal loop diagram
(CLD) (Step 3), since the quality will be dependent on the collective knowledge and
experience of the members.

Preliminary system analysis (Step 4), assists the validation process since involves
calculations with historical data which can be compared to simulation runs to confirm
no accumulation of integration errors or incorrect mathematical structural linkages in
the model development step.

Fig. 2. System architecture map
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2 Application and Methodology of System Dynamics
to Electric Vehicle Market Penetration

2.1 The Context for the EV Case Study

The drivers influencing consumer choice for purchasing BEVs include tax incentives,
increased charging infrastructure, longer driving ranges (with reduced “range anxiety”),
lower purchase prices, fuel efficiency, speed and acceleration, vehicle variety and
reputation effects, as well as policy mechanisms linked to climate change mitigation.
Literature indicates that these drivers are region specific [9]. Based on data and
information obtained from a collaborative three year BEV study between Eskom SOC
and Nissan [10], the drivers chosen for this study included range anxiety, purchase
price, reputation effect and charging stations. Based on the steps followed in the SD
modelling process, it was expected that the drivers would introduce a secondary impact
which would result in an additional number of BEVs to targets in the scenarios for the
E-StratBEV.

Table 2 includes the modules and sub-modules developed using iSee Stella system
dynamics software. The modelling timeframe was from 1993 until 2040.

The targets for the study start penetrating the South African market and substituting
with ICEVs from 2019. The study used a Low Growth scenario of 233,700 BEVs by
2040 based on a GDP parametric and Bloomberg New Energy Finance forecast of 41
million global electric vehicle sales by 2040 [11]. The High Growth scenario is 2.39
million EVs by 2040 based on South Africa’s pledge to support the Paris Agreement on
Climate Change commitments in April 2016, signed by the Minister of Environmental
Affairs [12].

Table 2. Modules for the E-StratBEV.

Module Sub-module

1 Electricity generation
supply mix

• Installed electricity capacity with performance factors
• Electricity sector CO2 emissions

2 Electricity demand • Residential electricity consumption
• Electricity demand from EVs

3 ICEVs • ICEVs per province
• Transport sector CO2 emissions
• Fuel efficiency
• Scrappage

4 EVs • BEVs distributed per province
• Feedback loops with the impact of drivers such as range
anxiety, purchase price, reputation effect and charging stations
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2.2 Mathematical Prerequisites

Due to the non-linear relationship between variables in the E-StratBEV, forecasted
trends were made using the logistics curve equation specified by Meyer [13], shown in
Eq. 1, which allows for asymptotic conversion to lower values, by specifying a neg-
ative value for U1, or a positive stabilizing non-zero value by retaining a positive value
for U1.

ð1Þ

where P is the dependent variable and P(t) is a function of time t; U0 is the zero offset;
U1 is the ultimate increase (or decrease) above U0, modelled using a S-curve; c is a
growth rate exponent that determines the maximum slope of the S-curve; and t0 is the
time at which the maximum slope is reached (inflection point).

The performance measures and total electricity generated in the module for the
electricity supply mix used weighted average performance formulas [14], shown in
Eq. 2.

M ¼
P

miCiP
Ci

ð2Þ

where i is the power station, M is the power station’s capacity weighted average of
performance measure m; mi is the performance measure for the power station (e.g. load
factor); and Ci is the capacity of station, i.

Regression equations were used to determine the relationship between certain
variables for mathematical structuring in the model e.g. the forecasted battery tech-
nology improvement expectations with range anxiety (Eq. 3).

Range Anxiety yð Þ¼ � 0:001 x2
� �þ 0:1886 xð Þþ 85:035 ð3Þ

The rate equations and defining the variable parameters and initial values, for the
stock flow structures in the model were based on the “Principle of Accumulation”1,
represented by differential Eq. 4.

Stock tð Þ ¼ Stock t � dtð Þþ InflowRate� Outflow rateð Þx dt ð4Þ

The differential equation tells us that the Stock at time t is found from the Stock at a
previous point in time, (t − dt), by adding the net quantity accumulated as the result of
the inflow and outflow during the period dt, basically a first order differential
equation [15].

1 Principle of Accumulation states that “all dynamic behaviour in the world occurs when flows
accumulate in stocks”.
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2.3 Initial Conditions and Targets

The fuel consumption of 21 kWh per 100 km and a daily average distance of 71 km
was used for the BEVs based on the Eskom-Nissan pilot study [10]. Based on the
national average vehicle age of *11 years, a scrappage rate of 13.84% was built into
the simulator. An annual fuel efficiency improvement of 1% per year for new ICEVs
from year 2018 was estimated, based on the Vehicle Parc Model developed by the
Energy Research Centre [14] with a sliding scale fuel efficiency improvement trend
using S-curves. The initial fuel economy for petrol ICEVs was 0.084 L/km with an
emission factor of 2.27 kg/L CO2, while for the diesel ICEVs a value of 0.063 L/km
was used with an emissions factor of 2.68 kg/L CO2.

2.4 Model Development and Design

Figure 3 shows one of the feedback structures built in the model structure which links
range anxiety to battery capacity. As battery technology improves and the range gets
higher, consumer range anxiety decreases.

The stock value of Range Anxiety depletes over time as the Battery Capacity stock
increases (improves) which then introduces an additional number of BEVs which are
then added to the original BEV target. Feedback structures were also developed linking
a reduction in purchase price, increase in charging stations and improvement in BEV
reputation to an additional number of BEVs entering the system.

Range anxiety

RA time

RA Counting time

RA Start time

RA time taken

RA max slope

RA initial val

RA final val

RA flow

Ev penetration

Battery Capacity kW

BC time

BC Counting time

BC Start time

BC time taken

BC max slope

BC initial val

BC final val

BC flow

RA EVs

RA BC ratio

Range Anxiety Factor

RA WEIGHT

EVs Range Anxiety Driver

Fig. 3. Model structure of range anxiety and battery capacity
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3 Results and Discussion

The impact of BEVs on residential electricity consumption is shown in Table 3 with an
overall increase in residential electricity consumption of 1.41% for the Low Growth
scenario and 14.46% for the High Growth scenario in 2040.

BEV drivers added a further cumulative total of 270 GWh from 2019 until 2040
while the High Growth BEV drivers add a further 2,764 GWh to the residential con-
sumption [8]. The number of additional BEVs for the growth scenarios is shown in
Fig. 4 with the largest impact due to the purchase price driver.

For a coal heavy supply mix, the cumulative carbon emissions from 2019 until
2040, for the Low Growth scenario resulted in an increase of 10.04 Mton in the
electricity sector and a 8.21 Mton decrease in the transport sector. The High Growth
scenario resulted in 102.86 Mton cumulative carbon emissions in the electricity sector
for a coal heavy supply mix and a decrease of 84.98 Mton in the transport sector.

Table 3. Impact of BEV market penetration on residential electricity consumption [8].

BEV target impact on residential electricity consumption
(% increase)

2019 2030 2040

Low Growth 0.02% 0.98% 1.41%
High Growth 0.17% 10% 14.46%

Fig. 4. BEVs introduced into the system through feedback loops [8]
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4 Conclusions and Recommendations

The most dominant feedback behavior was introduced by decreasing the purchase price
of BEVs.

Unless the electricity generation mix changes from a coal heavy to a renewables
heavy future supply, the net benefit from the emission reduction in the transport sector
versus the emission increase in the electricity sector is negligible. Well-to-wheel cal-
culations may also impact the calculations since tank-to-wheel values were used for
emission calculations.

The use of the system dynamics methodology to develop E-StratBEV allowed
sensitivity and scenario analysis of hundreds of causally linked qualitative and quan-
titative dependencies, and allowed the structural linkage of feedback loops involved in
additional BEVs due to the various drivers. Although control engineering could have
provided the necessary mathematical feedback structures for the BEV driver impact,
the key advantage of following the system dynamics methodology was the additional
steps in the modelling process which allowed for an in-depth contextualization of the
system problem to frame the elements within the system boundary.
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