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Abstract—This paper develops an innovative sustainable 
energy investment planning framework to select the most 
economically viable option among a range of conceptual micro-
grid (MG) projects proposed to be implemented in an area, as 
well as the sizes of the associated components. It is assumed that 
the technical feasibility of a project is verified in advance based 
on the estimation of the potentials of renewable energy sources. 
Since the considered optimal capacity planning problem is not 
amenable to exact methods of optimization due to its non-
deterministic polynomial-time hard (NP-hard) nature, 
metaheuristic optimization algorithms (MHOAs) are used in the 
devised optimum sizing approach. We demonstrate the 
applicability and efficacy of the proposed modelling framework 
based on three representative MGs in different topologies. The 
efficiencies of four newly introduced MHOAs viz. the moth-flame 
optimization algorithm, the sine-cosine algorithm, the multi-verse 
optimizer, and the water evaporation optimization algorithm are 
examined in solving the considered problem, whilst the hybrid 
genetic algorithm-particle swarm optimization is chosen as the 
benchmark algorithm. The simulation results indicate that the 
MFOA yields the highest quality solution sets in solving the MG 
design problems, and provides the most accurate estimate of the 
life-cycle costs of the MGs. 

Keywords— Microgrids, Hybrid power systems, Power system 
planning, Heuristic algorithms, Particle swarm optimization 

I. INTRODUCTION  

Almost 20% of the world’s population has no access to 
electricity [1]. Addressing this demand requires solutions that 
are both cost-effective and environmentally benign. 
Consequently, sustainable energy systems that use the potential 
of renewable energy sources (RES) are envisioned to provide 
reliable, affordable, and clean electricity to remote 
communities in an autonomous manner. If such systems are 
accurately designed, their long-term economic vitality could be 
ensured [2], [3].  

Due to the non-linearity and non-convexity of the optimal 
design problem of the sustainable energy systems, and owing 
to the fact that the design variables could be of the type either 
discrete or continuous, a powerful optimization technique is 

required to solve such a complex problem. The multi-
dimensional optimal design problems of sustainable energy 
systems, which are also subject to several linear and non-linear 
constraints, are not amenable to exact treatments if the design 
process is not simplified. In order to avoid jeopardizing the 
accuracy of the simulation results due to the model 
simplifications, the use of metaheuristic optimization 
algorithms (MHOAs) is strongly suggested in the literature. 
The successful application of several MHOAs to the problem 
at hand has been reported in many studies, among which, the 
following well-known algorithms can be mentioned: the 
particle swarm optimization (PSO) [4], the genetic algorithm 
(GA) [5], as well as the hybrid GA-PSO (HGAPSO) [6]. A 
detailed review of the optimization techniques applied to the 
optimum capacity planning of the renewable and sustainable 
energy systems can be found in [7]. However, because of the 
continuously developing nature of the MHOAs, and also the 
so-called no-free-lunch theorem [8], which postulates that there 
is no universally best MHOA covering a broad scope of 
problems, there is an on-going imperative to evaluate the 
performances of newly developed MHOAs in solving the 
optimum design problems of sustainable energy systems.  

On the other hand, a major issue in the field of optimal 
design, sizing, and planning of the sustainable energy systems 
is that often the studies have determined the supremacy of an 
optimization algorithm, based only on the results obtained 
using a single renewable energy test system and simply 
generalized their findings across other systems. A crucial 
defect of such an inference regarding the succession of an 
optimization algorithm is that the results might not be the 
same, when the algorithms are applied to different sustainable 
energy system structures. 

Based on the above premises, in this paper, we go beyond 
the state of the art by proposing a comparison framework to 
examine the performances of the MHOAs to be used in the 
optimal design studies of renewable and sustainable energy 
systems, which is sensitive to the topology of the test system. 
The main contributions of this study are as follows: 

1. A generic sustainable energy investment planning 
modelling framework is proposed to select the best 
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configuration of a micro-grid (MG), among all proposed 
cases to be implemented, for electrifying an area over 
a scheduled time horizon following an assessment on the 
renewable energy potential of the site under study. 

2. A general MHOA-based optimal capacity planning 
approach is devised to calculate the optimum sizes of the 
components of MGs. 

3. The performances of the four recently introduced MHOAs 
are compared with each other in terms of solution 
accuracy in the context of different MG structures. 

The remainder of this paper is organized as follows. 
Section II briefly introduces the MHOAs, the performances of 
which for the optimal design and capacity planning of the 
sustainable energy systems are evaluated in this paper. Section 
III describes the MG configurations, used as test systems to 
examine the performances of the selected MHOAs. The 
proposed MHOA-based approach to optimally size the 
components of each MG structure is developed in Section IV. 
The case study application based on the three most fitting types 
of MGs for the considered site is demonstrated in Section V. 
Section VI concludes the paper. Finally, Section VII outlines 
the limitations of this study and suggests guidelines for future 
research.  

II. SELECTED METAHEURISTICS  

This section concisely reviews the MHOAs, whose 
efficacies in solving the optimal capacity planning problems 
of sustainable energy systems are under investigation. All the 
algorithms start the optimization procedure by creating a 
population as the search agents to be positioned randomly in 
the n-dimensional design space of the considered problem (in 
accordance with n design variables). An objective (fitness) 
function is then used to guide these agents towards the global 
optimum point through ranking their performances over the 
course of the search process. They also continue the 
optimization process until a maximum number of iterations as 
the stopping criterion is reached. 

A. Moth-Flame Optimization Algorithm 

The moth-flame optimization algorithm (MFOA) is a 
nature-based stochastic optimization technique, proposed by 
Mirjalili in 2015 [9]. The development of the algorithm was 
inspired by the so-called transverse orientation, which is the 
navigation system of moths at night. In this algorithm, both 
the moths and flames search the design space to find the 
global optima and the positions of the moths are updated with 
the guidance of the flames using the following logarithmic 
spiral function: ܵ൫ܯ௜, ௝൯ܨ = ௜݁௕௥ܦ cos(2ݎߨ) +  (1)																							௝,ܨ
where ܯ௜  represents the ݅-th moth; ܨ௝  denotes the ݆-th flame; ܦ௜  identifies the distance between the ݅-th moth and the ݆-th 
flame; ܵ indicates the spiral function; ܾ is a constant, which 
describes the shape of the logarithmic spiral, considered to be 
1 in this paper; with ݎ  being a random number within the 
range [-1, 1]. 

The algorithm uses the recent best solution sets obtained 
so far as the flames to lead the moths over the course of 

iterations and saves the fitness values of the best flame at each 
iteration as the best solution set approximated by the 
algorithm. This procedure is replicated N times, where N is 
the total number of function evaluations, which serves as the 
stopping criterion. 

B. Sine-Cosine Algorithm 

The sine-cosine algorithm (SCA), introduced by Mirjalili 
in 2016 [10], is a straightforward yet effective stochastic 
optimization technique based on the sine and cosine functions. 
The main strategy used in the SCA for updating the positions 
of the search agents can be mathematically expressed as (2). 

௜ܺ௧ାଵ = ቊ ௜ܺ௧ + ଵݎ × sin(ݎଶ) × หݎଷ ௜ܲ௧ − ௜ܺ௧ห,					ݎସ < 0.5௜ܺ௧ + ଵݎ × cos(ݎଶ) × หݎଷ ௜ܲ௧ − ௜ܺ௧ห,					ݎସ ≥ 0.5									(2)         
where ௜ܺ௧  represents the position of the ݅ -th population 
member at the ݐ-th iteration; ௜ܲ௧  is the position of the target 
point of the ݅ -th search agent at the ݐ -th iteration; ݎଵ  is a 
random coefficient that dictates the movement direction of the 
elements and is obtained by (3); ݎଶ is a random factor within 
the range [0, 2ߨ] defining how far the movement should be 
towards or outwards the target point; ݎଷ is a random parameter 
to model the influence of the target point on the distance to be 
crossed; and ݎସ is a random number in the range [0, 1]. ݎଵ = ܽ − ݐ × ܽܶ ,																																						(3) 
where ݐ  denotes the current iteration, ܶ  stands for the 
maximum number of iterations, and ܽ is a constant, the value 
of which is assumed to be 3 in this research study. 

The best approximate solution sets of the considered 
problem over the course of iterations are recorded in a variable 
as the target point, the final value of which is returned at the 
end of the optimization process. 

C. Multi-Verse Optimizer 

The multi-verse optimizer (MVO) is another cutting-edge 
population-based stochastic MHOA, devised by Mirjalili et al. 
in 2016 [11]. The MVO takes inspiration from some of the 
cosmological theorems, including the big-bang theory, the 
theory of multiple universes, and the theory of general 
relativity. It also uses the notions of black holes, white holes, 
and wormholes to approximate the global optima through 
defining some rules. The mathematical formulation of the 
MVO algorithm is given by (4)-(6). ݔ௜௝
= ۔ۖەۖ
൞ۓ ௝ܺ + ܴܦܶ × ቀ൫ݑ ௝ܾ − ݈ ௝ܾ൯ × ଷݎ + ݈ ௝ܾቁ , ଶݎ < 0.5																						௝ܺ − ܴܦܶ × ቀ൫ݑ ௝ܾ − ݈ ௝ܾ൯ × ଷݎ + ݈ ௝ܾቁ , ଶݎ ≥ ଵݎ	0.5 < ܲܧܹ
௜,ோௐ௝ݔ ଵݎ																																																																																	 ≥ ܴܦܶ (4)	ܲܧܹ = 1 − ݈ଵ/௣ܮଵ/௣ ܲܧܹ (5)																																			, = ܿ + ݈ × ൬݀ − ܮܿ ൰,																												(6) 

where ݔ௜௝ represents the position of the ݅-th candidate solution 
(universe) in the ݆-th dimension; ௝ܺ denotes the best candidate 
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solution found so far in the ݆-th dimension; ݑ ௝ܾ and ݈ ௝ܾ are the 
upper and lower bounds in the ݆-th dimension, respectively; ݎଵ, ݎଶ, and ݎଷ  are random numbers within the range [0, 1]; ܴܶܦ 
stands for the travelling distance rate; ܹܲܧ  stands for the 
wormhole existence probability; ݔ௜,ோௐ௝  identifies the position 
of the ݅ -th universe in the ݆ -th dimension chosen using a 
roulette wheel selection strategy; ݈ is the current iteration; ܮ is 
the maximum number of iterations; ݌  is the exploitation 
accuracy (i.e. 6 in this paper); and ܿ  and ݀  are constants, 
which in this paper equal 0.2 and 1, respectively.   

Finally, the best position of the candidate solution sets is 
reported, when the termination criterion is met. 

D. Water Evaporation Optimization 

The water evaporation optimization (WEO), put forward 
by Kaveh and Bakhshpoori in 2016 [12], is a novel swarm-
based MHOA inspired by the evaporation of a miniscule 
amount of water molecules on solid surfaces. The algorithm 
mainly consists of the following three stages: 

1) Monolayer Evaporation: In this stage, first, the fitness 
functions of the search agents (i.e. water molecules) are scaled 
to the interval [−3.5, −0.5] by (7) and the substrate energy 
vectors are constructed. ܧ௦௨௕(݅)௧ = ௠௔௫ܧ) − (௠௜௡ܧ × ௜௧ݐ݅ܨ) − (ݐ݅ܨ)ݔܽܯ((ݐ݅ܨ)݊݅ܯ − (ݐ݅ܨ)݊݅ܯ +  (7)						௠௜௡,ܧ
where ܧ௦௨௕(݅)௧ represents the substrate energy vector of the ݅-
th search agent at the ݐ-th iteration; ݐ݅ܨ௜௧ is the fitness function 
of the ݅-th search agent at the ݐ-th iteration;  ܧ௠௔௫  (i.e. −0.5) 
and ܧ௠௜௡ (i.e. −3.5)  are the maximum and minimum values of ܧ௦௨௕ , respectively; and ݔܽܯ and ݊݅ܯ  are the maximum and 
minimum functions, respectively. 

Then, the so-called monolayer evaporation matrix is 
constructed by (8). ܧܯ ௜ܲ,௝௧ = ቊ1					݂݅	݀݊ܽݎ௜,௝ < exp(ܧ௦௨௕(݅)௧)0					݂݅	݀݊ܽݎ௜,௝ ≥ exp(ܧ௦௨௕(݅)௧)															(8) 
where ܧܯ ௜ܲ,௝௧  represents the updating probability for the ݆-th 
variable of the ݅ -th search agent at the ݐ -th iteration and ݀݊ܽݎ௜,௝  is a number generated randomly from a uniform 
distribution between 0 and 1. 

2) Droplet Evaporation: In this stage, the fitness functions 
of the molecules are scaled to the interval [−50°, −20°]  
according to a procedure analogous to that described by (7). 
Then, the so-called droplet evaporation matrix ( ܲܧܦ ) is 
constructed. 

3) Updating the Water Molecules: The next set of 
molecules can be generated as follows: ܹܯ(௧ାଵ) = (௧)ܯܹ + ܵ × ቊܲܧܯ(௧),						ݐ ≤ ݐ					,(௧)ܲܧܦ2/ܶ > ܶ/2 													(9) 
where ܵ  is a random permutation-based step size matrix, ݐ 
represents the current iteration, and ܶ denotes the maximum 
number of iterations. Then, for each water molecule, if the 
fitness function of the newly generated one is better than the 
previous one, the molecule’s position will be updated to the 

new position. Subsequently, at each iteration, the best water 
molecule among all the molecules is selected. Finally, the 
algorithm terminates and the position of the best water 
molecule is returned if the stopping criterion is satisfied.  

E. Hybrid Genetic Algorithm-Particle Swarm Optimization 

The HGAPSO has been used as a benchmark optimization 
algorithm in this research study to evaluate the performances 
of the newly born MHOAs. The reason is that its efficiency in 
the context of the optimal planning of sustainable energy 
systems has been proven in [13] by comparing its performance 
with those of the most prevalent algorithms in this area, 
namely the basic GA and PSO. 

For reasons of space, and also since the GA and PSO are 
well-known algorithms in this area, we omit their introduction. 
It must be noted that among different types of the HGAPSO, 
we use the algorithm that runs both of them in parallel. We 
refer the reader to [13] and the references therein for more 
details on the implementation of the HGAPSO technique. 

Furthermore, the parameters of the HGAPSO are assigned 
as follows: the crossover and mutation probabilities in the GA 
part are chosen as 0.9 and 0.1, respectively; while the learning 
factors and inertia weight in the PSO part are considered to be 
2 and 0.7, respectively. Moreover, a roulette wheel selection 
mechanism is adopted in the GA part of the hybrid algorithm 
to generate the parents. 

III. MICRO-GRID TEST SYSTEMS 

A. Photovoltaic/Wind Turbine/Battery/Super-Capacitor 

The first MG test system, schematically diagrammed in 
Fig. 1, is a stand-alone MG, which is equipped with 
photovoltaic (PV) panels and wind turbines (WTs) as power 
generation components, and incorporates a hybrid energy 
storage system, which consists of a battery bank and super-
capacitors (SCs). The system also includes some power 
converters, among which the inverter that couples the 
residential loads to the MG’s network is the only one whose 
size is going to be optimized independently. Note that the 
technical and financial specifications of the other converters 
shown inside the dashed lines in Fig. 1 are included in their 
respective components. 

The mathematical modelling and description of the 
components of the MG test system 1 is illustrated below with 
instructions on the operation and power flow of the network. 

 The 175 W Shell Solar PowerMax Ultra (SQ175) PV 
panels, which feature monocrystalline PowerMax silicon solar 
cells are employed in this study. The power output from the 
PV generator at the ݅-th time slot can be calculated as in (10) 
[6]. 

௉ܲ௏௜ = ௉ܰ௏ × ௚ × ௠ܣ ×                    (10)																									௜,ܩ
where ௉ܰ௏ is the optimum number of PV panels approximated 
at each iteration of the optimization process; ௚ represents the 

overall efficiency of the PV generator, i.e. 13.3%; ܣ௠ refers to 
the area of each PV panel, i.e. 1.31 m2; and ܩ௜  denotes the 
solar irradiance (W/m2) at the ݅-th time slot. 
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The WT generation system is the other power generator in 
this layout. The Northern Power NW100/19 WT is utilized in 
this study, which has a rated power of 100 kW AC. The power 
curve of each WT generator considered in this study is plotted 
in Fig. 2, which shows the relationship between its power 
output and the wind speed at the hub height (i.e. 25 m) [14], 
[15]. The total amount of generated wind power at the ݅-th 
time slot can be calculated by multiplying the optimum 
number of WTs determined at each iteration of the 
optimization procedure by the wind power corresponding to 
the wind speed measured at that time slot, determined using 
the power curve of the WT. 

 
Fig. 1.  Schematic diagram of the MG test system 1. 

 
Fig. 2.  Power curve of the Northern Power NW100/19 WT [15]. 

The energy storage system utilized in this configuration is 
a hybrid one to guarantee the dynamic stability of the system, 
which comprises of a battery bank and an SC bank offering 
mid-long- and short-term energy storage buffers, respectively, 
whose optimal capacities must be determined independently. 
The battery packs are considered to be of the advanced deep 
cycle lead acid battery type and of the product model Dryfit 
A600 OPzV, whose rated capacity is 1.92 kWh and is 
associated with an overall charging-discharging (round-trip) 
efficiency (௕௔௧) of 75% and its allowable depth of discharge 
is equal to 0.75. The SC modules are considered to be generic 
ones with a nominal capacitance of 3500 F (i.e. equivalent to 
∼3.23 Wh considering a maximum current of 1500 A) and a 
round-trip efficiency of 96% (ௌ஼ ). These components also 
impose inequality constraints on the operation of the system at 
each time slot, which integrate their minimum and maximum 
allowable capacities into the model. Note that the optimum 
number of battery packs and SC modules chosen at each 
iteration of the optimization protocol multiplied by their 

respective maximum allowable capacities represent the total 
capacities of the battery and SC banks, respectively. 

In this paper, a low pass energy filter is used to determine 
the quotas of the battery and SC banks for backing up the 
renewable power generation, where the high-frequency 
component of the surplus/shortage of energy production must 
be stored/supplied by SCs, while the batteries take the 
responsibility to absorb/inject the low-frequency component 
of the energy excess/shortfall. Finally, the energy stored in the 
battery and SC banks at the ݅-th time slot can be expressed by 
the following equations: ܧ௕௔௧௜ = ௕௔௧௜ିଵܧ + (൫ ௖ܲ௛,௅௜ × ௕௔௧൯ − ( ௗܲ௖௛,௅௜ /௕௔௧)) × ∆௜,						(11) ܧௌ஼௜ = ௌ஼௜ିଵܧ + (൫ ௖ܲ௛,ு௜ × ௌ஼൯ − ( ௗܲ௖௛,ு௜ /ௌ஼)) × ∆௜,							(12) 
where ௖ܲ௛,௅௜  and ௗܲ௖௛,௅௜  are the low-frequency components of 
the charging and discharging powers at the ݅ -th time slot, 
respectively; ௖ܲ௛,ு௜  and ௗܲ௖௛,ு௜  are the high-frequency 
components of the charging and discharging powers at the ݅-th 
time slot, respectively; and ∆௜ is the time slot increment (1 h).  

Finally, the generic DC/AC inverter used to interface the 
residential loads with the MG network is modelled using its 
efficiency (௜௡௩), which is considered to be 95%. 

B. Photovoltaic/Wind Turbine/Micro-Hydroelectric/Fuel Cell 

The second MG test system, depicted in Fig. 3, is an off-
grid hydrogen-based MG system, which includes the PV, WT, 
micro-hydroelectric (MH), and fuel cell (FC) power 
generation units, and uses the hydrogen as the energy storage 
carrier. The hydrogen in this system is produced using an 
electrolyser, which can be stored in a hydrogen tank. Similar 
to the MG 1, the efficiencies and costs associated with all the 
power converters used within the structure of the system are 
included in their respective components, except for the 
residential loads’ inverter. The mathematical models of the 
components of the system 2 are developed in the following 
paragraphs, together with the regulations on the operation of 
the system. 

The PV panels, WTs, and the DC/AC inverter are 
modelled in a similar way as outlined for system 1. 

A run-of-the-river hydropower scheme has also been 
considered in this system as a renewable power generation 
technology to supply the residential loads. The Natel FreeJet 
FJ-7A MH plant is used in this study to generate power, which 
has a rated power of 49 kW, and the optimum number of 
which is going to be established. The power output from the 
MH plant (kW) at the ݅-th time slot can be calculated as in 
(13) [16]. 

ெܲு௜ = ܰெு × ߩ × ℎ × ݃ × ெு ×  (13)															௜1000,ܨ
where ܰெு  represents the optimal number of MH plants 
computed at each iteration of the optimization protocol; ߩ is 
the water density, i.e. 1000 kg/m3; ℎ denotes the gross head 
height, i.e. 7 m; ݃ is the acceleration of gravity, i.e. 9.81 m/s2; 
ெு  is the efficiency of the MH system considering the 
AC/DC converter’s efficiency, i.e. 55%; and ܨ௜ is the hourly 
streamflow at the ݅-th time slot (m3/s). 
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Fig. 3.  Schematic diagram of the MG test system 2. 

A hydrogen sub-system comprising of an electrolyser, a 
hydrogen tank, and an FC has also been embedded in this MG 
topology. The electrolyser draws the excess energy available 
from the RES to produce hydrogen, which is then stored in the 
hydrogen tank, while the FC has the role of providing the 
backup power to fulfil the residential demand when the power 
generated from the RES is not sufficient. In this study, the 
hydrogen sub-system is considered to be generic. The 
efficiencies of the electrolyser and FC taking into account the 
efficiencies of their respective converters are considered to be 
60% and 40%, respectively. Also, the round-trip efficiency of 
the hydrogen tank is assumed to be 95%. 

Furthermore, the hydrogen tank imposes some constraints 
on the operation and planning of the system: (1) the energy 
content of the tank at the end of the operational time span 
must be equal or more than its initial energy content, and (2) 
the energy content of the tank at each time slot of the 
operation must lie within a certain range to assure the 
admission of two following facts into the model: the inability 
of the tank to store the amounts of hydrogen beyond its 
allocated capacity (i.e. calculated at each iteration of the 
optimization process), and to release the amounts of hydrogen 
beyond its state of charge. 

C. Photovoltaic/Wind Turbine/Biomass/Flywheel 

The third MG test system, shown in Fig. 4, is also an 
isolated MG, which utilizes the power generations from the 
PV, WT, and biomass generators, while incorporating a 
flywheel (FW) as an energy storage system. Likewise to the 
previous cases, the DC/AC inverter connecting the residential 
loads to the MG network is the only converter that participates 
in the optimal sizing procedure in an unsupervised fashion.  

In the following paragraphs, we mathematically describe 
the performances of the components employed in the test 
system 3, along with some information on how to operate the 
system.  

The mathematical models of the PV and WT generation 
systems, as well as the residential loads’ inverter, are 
developed in a similar manner as outlined for system 1. 

The biomass power plant considered in this study consists 
of an anaerobic digestion reactor, a methane reformer, an air 
separation plant, and an internal combustion engine as an 
integrated set, the optimal power generation capacity of which 
is going to be calculated. 

 
Fig. 4.  Schematic diagram of the MG test system 3. 

The anaerobic digestion reactor converts the wet biomass 
into the methane gas. The reformer then uses the methane to 
produce pure hydrogen gas based on the steam reforming 
process at high temperatures between 900 and 1000°C. 
Finally, the hydrogen is burned with oxygen purified out of 
the air using the air separation plant in the internal combustion 
engine to generate clean electricity. Note that water is the only 
product of the combustion of hydrogen with oxygen. The 
overall waste (kg) to power (kW) efficiency of the plant, 
taking into account the efficiencies of the digestion reactor, 
methane reformer, and the hydrogen-fuelled internal 
combustion engine, is assumed to be 3.86%, calculated by 
multiplying the efficiency of the reactor-reformer system 
proposed in [17], i.e. 4.54%, by the efficiency of the hydrogen 
internal combustion engine proposed in [18], i.e. 85%. Also, it 
is assumed that the wet waste is fed to the biomass power 
plant on a uniform basis, based on the available amount of 
waste on each day and, accordingly, the power generation 
profile of the biomass power plant is assumed to be uniform 
during the day. Furthermore, in this layout, the biomass plant 
does not engage in the optimum capacity planning practice, 
and its capacity is determined in advance based on the 
maximum daily amount of wet agricultural residues during the 
year in an independent way. 

An FW is utilized in this system as an energy storage 
system, the optimum capacity of which must be determined. 
The FW stores the energy as kinetic in the form of a rotating 
rotor. The excess energy is stored within the FW through 
accelerating the rotor and rapidly increasing its speed, whereas 
the shortfall of energy is compensated for through 
deaccelerating the rotor and quickly decreasing its speed. 
Generally, the energy stored in an FW can be calculated as 
follows [19]: ܧி = 12  (14)																																									ଶ,߱ܫ
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where ܫ  denotes the moment of inertia and ߱  represents the 
angular velocity of the rotor. 

However, in our case, the amount of energy stored in the 
FW at the ݅-th time slot can be modelled as in (15). ܧி௜ = ி௜ିଵܧ + (൫ ிܲ,௖௛௜ × ி൯ − ( ிܲ,ௗ௖௛௜ /ி)) × ∆௜,								(15) 
where ிܲ,௖௛௜  and ிܲ,ௗ௖௛௜  are the power flows injected/drawn 
to/from the FW, while ி denotes the round-trip efficiency of 
the FW, which is considered to be 80% for a generic FW. The 
FW also imposes two inequality constraints on the system in 
terms of its minimum and maximum allowable rotor speeds.  

Moreover, it must be noted that in all the MG test systems 
above, a resistive dump load with a negligible total cost 
impact absorbs the surplus power beyond the capacities of the 
battery packs/SC modules/FW/electrolyser/hydrogen tank to 
keep the power balance in the MG networks. 

IV. MHOA-BASED OPTIMAL SIZING METHODOLOGY 

In this paper, an MHOA-based sizing strategy is adopted 
to minimize the 20 year-round total costs of the MGs subject 
to the associated technical and operational constraints 
discussed in Section III. In this manner, we use the net present 
cost (NPC) concept, which calculates the present value of all 
the costs that each MG brings on over its expected lifetime 
(here, the capital, replacement, and operation and maintenance 
(O&M) costs of the components), minus the present value of 
the total revenue that it collects over the project horizon (here, 
the salvage values of the components), utilizing the real 
interest rate notion. In this study, we have used the real 
interest rate of 5% to discount the future cash flows. The year 
2019 is considered as the base year and the lifetimes of all the 
aforesaid projects are 20 years. For each test system, the 
summation of the NPCs of all the components, whose 
optimum sizes are under question, called the total NPC 
(TNPC), is selected as the objective function. 

We have also used the equivalent loss factor (ELF) 
reliability indicator, which is modelled as a constraint element 
in the planning level, against which the optimization is 
undertaken. In this research study, the ELF is constrained to 
be lower than 0.01, as suggested in [17] for stand-alone MGs, 
which is enough for ensuring a reliable power supply to the 
considered case study. For considerations of space, we refer 
the reader to [17] and references therein for further discussion 
on the NPC and ELF methods. 

Accordingly, for each MG, the optimum capacity planning 
method developed in this paper minimizes the TNPC against 
the predetermined reliability index (i.e. calculated by 
operating the MG using the operational strategy presented in 
Section III over the timeframe considered at each optimization 
iteration), using each of the MHOAs, whose performances are 
under investigation utilizing an average ranking index, 
through which the optimum sizes of the respective 
components of the MGs are calculated. The operational 
timeframe is initially considered to be one representative year 
in 1-hour intervals. Then, the year-round operational model is 
reduced to a 12 × 24 model, which uses the monthly averaged 
24-h profiles for the meteorological and load demand input 
data to ease the computational effort. 

V. CASE STUDY 

A. Input Data 

In order to evaluate the performance of the proposed 
approach, a case study analysis is carried out. A remoted 
community in the Feilding area, New Zealand (latitude 
40.2253°N, longitude 175.5675°E), was selected as the case 
study site. The load profile is predicted for a population of 
350, according to the New Zealand GREEN grid household 
electricity demand study [20], which has a peak load demand 
of 695 kW occurring in July due to the maximum application 
of electric space heaters. 

The heatmap like plots of the forecasted total residential 
load on the MG networks, the forecasted solar irradiance, and 
the forecasted wind speed at the considered case study site, in 
the form of monthly mean 24-h profiles, are shown in Figs. 5-
7, respectively. The monthly mean profiles for the streamflow 
of the Rangitikei River that flows through the community’s 
valley, as well as of the wet biomass assumed to be available 
at the site in metric tonnes per day, are shown in Fig. 8. Notice 
that the climatic data are forecasted based on the actual 
measured data at the Feilding area for a period of 15 years 
between 2003 and 2017, which were acquired from New 
Zealand’s National Climate Database [21]. 

Also, notice that the wind speed data were monitored at 48 
m above the ground level and scaled to the height of 25 m (in 
compliance with the Northern Power NW100/19 WT’s hub 
height) according to the technique suggested in [14]. 

 
Fig. 5.  Monthly mean 24-h profile for the residential loads (kW). 

 
Fig. 6.  Monthly mean 24-h profile for the solar irradiance (W/m2). 

Furthermore, Table I lists the data on the technical and 
financial specifications of the components utilized in the MG 
samples described above [13]–[18], [22], [23].  
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Fig. 7.  Monthly mean 24-h profile for the wind speed (m/s). 

 

Fig. 8.  Monthly mean profiles for the streamflow and available wet biomass. 

TABLE I.       SPECIFICATIONS OF THE COMPONENTS [13]–[18], [22], [23] 

Component 
Product 
model 

Capital 
cost 

Replace-
ment cost 

O&M 
cost 

Life-
time 

(year) 

PV panel SQ175 
$375 
/unit 

$375   
/unit 

$7.5/ 
unit-yr 

20 

WT 
NW100/

19 
$110000 

/unit 
$70000 

/unit 
$2200/
unit-yr 

20 

MH unit FJ-7A  
$55000 

/unit 
$55000    

/unit 
$1100/
unit-yr 

25 

Biopower Generic 
$2150 
/kW 

$2150 
/kW 

$43/ 
kW-yr 

20 

Battery 
A600-
OPzV 

$827 
/unit 

$827  
/unit 

$17/ 
unit-yr 

5 

SC Generic $62/unit $62/unit 
$1.24/ 
unit-yr 

15 

Flywheel Generic 
$800 
/kWh 

$800 
/kWh 

$16/ 
kWh-yr 

15 

Electrolyser Generic 
$1000 
/kW 

$1000    
/kW 

$20/ 
kW-yr 

15 

H2 tank Generic 
$470    
/kg 

$470    
/kg 

$9.4/   
kg-yr 

20 

Fuel cell Generic 
$2400  
/kW 

$2400       
/kW 

$48/ 
kW-yr 

5 

Inverter Generic 
$750 
/kW 

$750   
/kW 

$15/ 
kW-yr 

15 

B. Design Results 

In this paper, the MATLAB software is utilized to code 
and execute the proposed MHOA-based optimal sizing 
technique. Table II compares the performances of the MHOAs 
embedded in the framework of the proposed approach in terms 
of approximating the global optimum solution set based on the 

average results obtained over 30 independent runs. In the 
table, the acronym MTNPC stands for mean total net present 
cost. In this study, the comparisons are made only with regard 
to the mean solution accuracy and no attention has been paid 
to the computational expensiveness of the algorithms. This is 
because the considered sustainable MGs are going to be 
installed for a projected life span of 20 years in the studied 
site. This implies that a long computational time (in the order 
of several hours or even days) is tolerable, unless they rise 
computational intractability, which has not been the case in 
the metaheuristic algorithms analyzed in this study. Also, the 
maximum number of iterations, and the number of candidate 
solution sets for all the evaluated algorithms, are considered to 
be the same and equal to 350 and 60, respectively.  

TABLE II.      STATISTICAL PERFORMANCE COMPARISON OF THE MHOAS 

Test 
system 

MTNPC/
Score 

Algorithm 

MFOA SCA MVO WEO 
HGA-
PSO 

MG 1 
MTNPC 

($M) 
4.31 4.37 4.87 4.62 4.40 

Score 1 2 5 4 3 

MG 2 
MTNPC 

($M) 
5.78 5.99 6.07 6.25 5.91 

Score 1 3 4 5 2 

MG 3 
MTNPC 

($M) 5.13 5.37 5.26 5.59 5.04 

Score 2 4 3 5 1 

Average score 

Final rank 

1.33 3 4 4.66 2 

1 3 4 5 2 

Table II is interesting in several ways. Firstly, it shows that 
the first test system is by far a better option than the other two 
for the considered case study. This can be attributed to the 
technology matureness level of the components used within its 
structure (especially those integrated to supply backup power, 
namely the battery and SC banks), whose costs have reduced 
much in recent years. Secondly, it highlights the potential 
significance of the MFOA in minimizing the TNPCs of the 
MGs. Thirdly, it verifies our hypothesis concerning the 
inaccuracy of the generalization of the findings regarding the 
superiority of an MHOA according to the assessments 
undertaken for a single test system. According to the average 
scores given to each MHOA, we can rank the performances of 
the analyzed algorithms within the context of the study area as 
follows: the MFOA> the HGAPSO > the SCA > the MVO > 
the WEO. In order to provide a better understanding of how 
the TNPCs are distributed among components, or in other 
words, the sizes determined by the considered algorithms, the 
optimum sizing results obtained for the three MGs are 
reported in Tables III-V, which represent the best-case 
performances of the adopted algorithms over 30 trials. 

TABLE III.       Best Performance Comparison of the MHOAs for the MG 1 

Algorithm PV 
(no.) 

WT 
(no.) 

Bat. 
(no.) 

SC 
(no.) 

Inv. 
(kW) 

TNPC 
($M) 

MFOA 941 5 141 17 561 4.18 
SCA 955 5 146 18 574 4.20 
MVO 1048 5 166 19 621 4.51 
WEO 987 5 159 18 595 4.36 

HGAPSO 966 5 152 17 585 4.23 
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TABLE IV.       Best Performance Comparison of the MHOAs for the MG 2 

Alg. PV 
(no.) 

WT 
(no.) 

MH 
(no.) 

Elec. 
(kW) 

Tank 
(kg) 

FC 
(kW) 

Inv. 
(kW) 

TNPC 
($M) 

MFOA 682 4 5 1119 902 277 566 5.61 

SCA 697 4 5 1195 908 285 588 5.70 

MVO 703 4 5 1204 915 291 590 5.73 

WEO 714 4 5 1239 932 310 601 5.86 

HGA-
PSO 

693 4 5 1174 912 284 579 5.67 

TABLE V.       Best Performance Comparison of the MHOAs for the MG 3 

Algorithm PV 
(no.) 

WT 
(no.) 

Bio. 
(kW) 

FW 
(KWh) 

Inv. 
(kW) 

TNPC 
($M) 

MFOA 748 5 170 309 568 4.89 

SCA 760 5 170 308 574 5.07 

MVO 755 5 170 314 570 4.96 

WEO 772 5 170 324 599 5.31 

HGAPSO 739 5 170 307 565 4.84 

VI. CONCLUSIONS  

This paper has introduced a mean-based adaptive scheme 
for quantifying the performances of MHOAs applied to 
infrastructure planning of MGs. In this light, the performances 
of the four recently developed MHOAs viz. the MFOA, the 
SCA, the MVO, and the WEO are assessed by applying them 
to three MG projects considered for a remote community in 
the Feilding area, New Zealand, while taking into account the 
HGAPSO as the standard algorithm. As the primary finding, 
we have acknowledged the possibility of arising dissimilar 
evaluations when MHOAs are applied to different case 
studies/MG systems, and accordingly, proposed a mean-based 
framework to assess the qualification of the algorithms. 
Furthermore, utilizing a statistical approach, we have revealed 
the proper performance of the MFOA in the optimal design of 
sustainable energy systems. Moreover, from the case study 
standpoint, a PV/WT MG equipped with a hybrid battery-SC 
energy storage system is shown to be the most cost-effective 
plan to electrify an additional population of 350 to be resettled 
in the Feilding area, New Zealand, whilst also addressing the 
dynamic stability concerns due to the presence of the high 
power density SC modules within its network. 

VII. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

Given that the focus of the study was on developing the 
most economically viable scenario for a specific case study, 
there is the possibility that dissimilar evaluations would have 
arisen if the focus had been on another case study with 
different climatic and loading conditions. It is also obvious 
that the comparison study was limited by the selected 
MHOAs. In order to resolve these limitations, future work will 
focus on developing a comprehensive framework for 
calculating the ranks of a wider range of MHOAs in solving 
the MG planning problems on a broader level involving the 
scores obtained by applying them to various MG topologies 
proposed for different case study sites. 
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