
Caught in the Web: DoS Vulnerabilities in
Parsers for Structured Data?

Shawn Rasheed1[0000−0001−7683−4296], Jens Dietrich2[0000−0001−9019−6550], and
Amjed Tahir1[0000−0001−9454−1366]

1 Massey University, Palmerston North, New Zealand
{s.rasheed,a.tahir}@massey.ac.nz

2 Victoria University of Wellington, Wellington, New Zealand
jens.dietrich@vuw.ac.nz

Abstract. We study a class of denial-of-service (DoS) vulnerabilities
that occur in parsing structured data. These vulnerabilities enable low
bandwidth DoS attacks with input that causes algorithms to execute in
disproportionately large time and / or space. We generalise the charac-
teristics of these vulnerabilities, and frame them in terms of three as-
pects, TTT: (1) the Topology of composite data structures formed by
the internal representation of parsed data, (2) the presence of recursive
functions for the Traversal of the data structures and (3) the presence
of a Trigger that enables an attacker to activate the traversal.
An analysis based on this abstraction was implemented for one target
platform (Java), and in our study, we found that the impact of the re-
sults obtained with this method goes beyond Java. The inputs from our
investigation revealed several similar vulnerabilities in programs written
in other languages such as Rust and PHP. As a result we have reported
11 issues (of which seven have been accepted as issues), and obtained
four CVEs for some of those issues in PDF, SVG and YAML libraries
across different languages.

Keywords: DoS · Security · Vulnerabilities · Analysis.

1 Introduction

Denial-of-service (DoS) attacks based on algorithmic complexity have received
increasing attention recently [29, 26].3 Unlike classical DoS attacks based on
flooding an application with network requests, or exploiting bugs that crash
applications, algorithmic complexity-based DoS attacks target the exhaustion
of computational resources such as CPU or memory, with small inputs that
cause worst-case performance behaviour in a program [7]. Some of the more
well-known attacks based on this class of vulnerabilities are regular expression
DoS (ReDoS) [29] that target regular expression engines, and HashDos [7] that
target hash functions.

? The work of the second author was supported by Oracle Labs, Australia
3 https://blog.cloudflare.com/cloudflare-outage/ [Accessed 08-October-2020]

2 S. Rasheed et al.

A complexity-related DoS vulnerability can be due to programs recursively
traversing composite data structures. Tree and graph-like data structures that
are composed of parts are common in programs, and when such structures are
defined recursively, it is practical to define recursive operations over them. Such
an operation can potentially run in exponential time or / and space if redundant
traversals are not (or cannot be) controlled. These performance-related vulner-
abilities can be exploited to carry out DoS attacks on systems. Serialisation,4

which externalises a program’s internal data structures to disk or for transmis-
sion over a network, and external format parsers that utilise these data structures
present opportunities for DoS attacks based on these vulnerabilities [9].

Static and dynamic analysis techniques have been used for detecting performance-
related bugs in programs. However, most existing approaches for detecting them
are domain-specific - for instance, detection techniques for regular expression
engines [33]. Fuzzing has been used to detect performance defects in programs.
However, fuzzers are inefficient by nature with normal turnaround times in hours
or more [16]. Constraint-based techniques such as symbolic execution are lim-
ited when it comes to producing complex inputs and there is little work on using
them to detect performance bugs, especially for complex inputs [20, 23].

This work presents a characterisation of a class of vulnerabilities along with
a novel approach to detect them. Our approach is based on modelling the vul-
nerabilities, implementing the analysis for the Java language and constructing
payloads to verify the analysis reports. Finally, the constructed payloads are
used to check if other libraries are vulnerable as well. We characterise some of
the program structures that facilitate such an attack. This is broken down into
three parts (we refer to these parts as the three T’s):

1. Topology: a data structure that has a topology which allows the redundant
execution of recursive code/methods.

2. Traversal: the presence of recursive methods that operate on the elements
in the data structures identified in step one.

3. Trigger: an execution path, in a program, from an entry point method for
the program, typically a method that loads and evaluates data, to a recursive
method identified in step two.

We implemented this analysis for Java and then evaluated it on a set of
16 Java parser libraries for different data formats. The scope and impact of
this study goes beyond the vulnerabilities found in the Java libraries as these
libraries are used in numerous applications. We validated the vulnerabilities
by constructing malicious inputs, and it turns out that some of these reveal
vulnerabilities in libraries and applications written in other languages such as
Rust and PostScript.

In our study, we found a total of 11 vulnerabilities: Four new vulnerabilities
in Java libraries using the analysis, (i.e. Apache PDFBox, PDFxStream, Apache
Batik and SnakeYAML), and seven vulnerabilities in non-Java libraries found

4 Java serialisation, https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
[Accessed 08-October-2020]

Caught in the Web 3

during the evaluation. All 11 issues were reported to the vendors (7 were accepted
as security bugs) and four CVEs were obtained as a result. We have made the
implementation and results publicly available for replication.5

2 Motivation

The vulnerabilities that we study are closely related to the well-known billion
laughs attack on XML parsers [6] where the payload consists of an XML docu-
ment with nested XML entities where each entity’s definition contains references
to the preceding definition. Parsing the document results in an output, which
has a length exponential in the depth of the nesting, that causes the service to
degrade or fail from memory exhaustion.

The basic idea of billion laughs can be ported to an attack on Java programs
as shown by Coekaert’s SerialDoS vulnerability [5]. In SerialDoS, shown in List-
ing 1.1, the equivalent of the nested entity references in an XML element is a
serialised collection of nested sets.

Listing 1.1. SerialDoS payload construction
1 import java.util .*;
2 ...
3 Set root = new HashSet ();
4 Set s1 = root;
5 Set s2 = new HashSet ();
6 for (int i = 0; i < depthN; i++) {
7 Set child1 = new HashSet ();
8 Set child2 = new HashSet ();
9 child1.add("foo");

10 s1.add(child1);
11 s1.add(child2);
12 s2.add(child1);
13 s2.add(child2);
14 s1 = child1;
15 s2 = child2;
16 }
17
18 root.hashCode ();

The problem occurs if root.hashCode() is invoked. The hashCode of HashSet
is recursive, i.e., it is computed using the hash values of the elements of the re-
spective sets. This leads to a computation that is exponential in depthN.

The first enabling property for this attack is the shape of the data structure,
forming a network of cross-referencing parent-child relationships, where each
child node is referenced by more than one (in this case: two) parent objects. The
resulting object graph for the listing is shown in Fig. 1. The second ingredient is
the recursive method that operates on this structure, hashCode() in this case.

Finally, there must be a way to parse the format to an internal representation
with the same topology and trigger the traversal over it. The fact that the method
can be reached from the entry point of a program can be statically determined
by examining direct paths from the entry point method to the target method in
the call graph.

5 https://bitbucket.org/unshorn/ciwstudy/

4 S. Rasheed et al.

In the case of SerialDoS, the trigger is the deserialisation API. Serialisation is
a common attack surface for Java applications as demonstrated by Frohoff et al.
[2, 10]. The deserialisation of the HashSet instances encountered in the stream
will then invoke hashCode() via a call graph chain from readObject(), and the
malicious computation is activated.

Redundant traversals can be solved using dynamic programming in some
cases. However, a solution is not available in the case of SerialDoS where it is
not a programming defect that gives rise to the vulnerability. In SerialDoS, each
method invocation happens within another context (i.e., state of the stack), and
for a programmer to cache intermediate results would require knowledge about
the state of the heap and stack during each invocation.

root

child

depth depth depth depth

 1

child 2

child 1

child 2

child 1

child 2

child 1

child 2

1 2 3 n

Fig. 1. Many-to-many topology in object graphs – each vertex represents an object
and an edge represents a reference. Note that parents have two children, but children
also have two parents. The graph is abstracted in the sense that intermediate references
to elements in java.util.HashSet are not shown.

3 Characteristics of the Vulnerability

In this section, we discuss the three defining characteristics, TTT, needed to
craft DoS attacks based on vulnerabilities in code recursively traversing data
structures: topologies, traversals and triggers.

3.1 Topologies

In Java-like languages, an instance of a data structure forms a graph of objects
as depicted in Fig. 1. An object, parent, references child1 if child1 is the value
of a field of parent. Often, references are indirect via intermediate objects, in
particular arrays or collections. Given an object graph, we are particularly in-
terested in subgraphs formed by objects of some type T , where these objects
have more than one predecessor and/or successor of type T . These structures

Caught in the Web 5

can be described as following a many-to-many pattern.6 Examples of this are
common in the Java collection library, where, for instance, lists can be elements
of multiple other lists.

A pattern that is very widely used, and conceptually similar to many-to-
many, is composite [11]. A composite has containers with elements that are
either containers as well, or leaf nodes. Usually, there are dedicated container
and child types subtyping a more abstract component type, but variations of
this pattern are common.7

Whether a composite can form a many-to-many graph depends on how the
parent-child relationships are represented and controlled. Often it is an implicit
precondition for an operation with a composite as an input, that at most, the
composite has a single reference to any of its children. This is often enforced
by an explicit parent reference in the children, and an API that maintains the
consistency of the parent-child and child-parent references.8

3.2 Traversals

A many-to-many pattern in an object graph describes the data structure that
can be exploited in SerialDoS-style attacks. To actually launch an attack, a
function that operates recursively on this structure must be present. Regarding
these functions, or methods as they are called in object-oriented languages, there
are two aspects to consider. Firstly, recursion can be simply described by the
presence of strongly-connected components in the call graph.

Secondly, the recursive method needs to traverse the many-to-many object
graph. Consider such a method m with formal parameters m.this,m.arg1,m.argn.
Then, there must be a call graph chain linking m to itself. Additionally, at this
invocation there is a parameter that points to a child of an object that the
respective parameter points to at the previous invocation.

This captures several common traversal patterns found in real world pro-
grams. The most obvious one is direct recursion, where the many-to-many ele-
ments are always referenced by this.

There are more complicated traversal patterns though. For instance, it is
possible to implement traversals using static methods in some class, where the
traversed data structure is only passed as a parameter. This can be used to pro-
gram traversals implemented outside the data structure being traversed. A more
standardised way to achieve this is using the visitor pattern [11], which factors
out the operation to be performed on a data structure from its implementation.

6 Many-to-many relationships, in the database community, describe one type of car-
dinality of relationships between two entities.

7 For instance, in java.io.File, state is used to determine whether an element is a
container (a directory) or a child (a file). This can be considered a case of a composite
that uses structural instead of nominal typing.

8 A good example for this is how the parent reference is maintained in the
java.awt.Container.add* methods which add a child component to the visual com-
ponent hierarchy.

6 S. Rasheed et al.

Note that the component of traversals we have discussed so far concerns travers-
ing the graph depth-wise. Another aspect is how a method traverses the children
of each parent. In our example, this is accomplished through the for-loop which
iterates over the children in elements. A generalised technique is to use the
iterator pattern [11], which abstracts the traversal of different implementations
of collection types.

3.3 Triggers

The presence of the topology and the traversals itself is not sufficient to launch an
attack. It is also necessary to create objects that instantiate the many-to-many
pattern, and to trigger the traversal. This requires an external data structure
to be translated to a vulnerable internal representation of the object graph in a
data format, interpreted or otherwise processed, and in this process the traversal
is activated. The activation refers to an invocation chain from a method that is
called by the library or the framework when the data is processed, to the actual
traversal method (e.g., deserialisation in SerialDoS). In general, a trigger is a
method in the public API of a library that is invoked when data is processed
(either by a client program, or by the library itself), and that leads to the
invocation of the traversal (method).

4 Modelling the Analysis

In this section, we describe how we model the topology, traversal and trigger
pattern for our analysis. We formalise the analysis in graph-theoretic terms using
three graphs that model different aspects of program behaviour. These definitions
are language-agnostic, and are applicable to languages with common object-
oriented language features. We occasionally refer to Java for illustrative purposes.

4.1 Preliminaries

The Type Graph A type graph models classes and their relationships in a
program written in an object-oriented programming language, formally defined
as follows:

Definition 1. The type graph of a program is a directed labelled graph 〈T,E〉
where

– T is a set of vertices representing classes and (nested) arrays of classes that
occur in the program, we represent vertices using their class name, with the
suffix [] for array types as usual. For the sake of brevity, we identify those
names with the respective vertices from now on.

– E ⊆ T × T are the graph edges. We consider edges of two kinds, i.e.,
E = Esubtype ∪ Eassoc , representing subtype and association relationships,
respectively.

Caught in the Web 7

Subtype edges between vertices represent subtype relationships. The particular
rules differ between languages, for Java, they are defined in [13, sect 4.10]. We
use the simplified notion “B is subtype of A” to say that there is a path consisting
of subtype edges linking B to A. That is, the edge (B → A) ∈ Esubtype. If C ∈ T
is either representing an array, or a class that is a subtype of a container type
(such as Java’s java.util.Collection), then we call C a container type. If a
container type is an array A[] then A is called the component type of the con-
tainer. If the language supports the declaration of component types for container
types, using some mechanism like Java’s generics [13, sect. 8.1.2], C<A>, then A

is called the component type of C. Association edges represent the relationships
between container types and their respective component types.

The Points-To Graph A points-to graph models the memory during program
executions. There are several versions of points-to analysis, our representation
is used in an Andersen-style, field-sensitive analysis [30]. In a points-to graph,
object abstractions and variables are represented by vertices, and allocations,
assignments, field or array stores and loads are represented by edges which define
the flow of values in the program being represented.

Definition 2. The points-to graph of a program is a directed labelled bipartite
graph 〈O, V,Ealloc, Eassign, Eload, Estore〉 where

– V is the set of vertices representing the variables in the program
– O is the set vertices representing object allocation sites in the program
– Ealloc ⊆ O × V is a set of allocation edges, modelling memory allocation
– Eassign ⊆ V × V , a set of assignment edges modelling variable assignment
– Eload ⊆ V × V , a set of field load edges modelling field loads, labelled with

the respective field name
– Estore ⊆ V ×V , a set of field store edges modelling field stores, labelled with

the respective field name

Array access can be modelled similarly to field access. We omit details for
the sake of brevity here.

Given a points-to graph, the objective of a points-to analysis is to infer ad-
ditional flowsTo edges EflowsTo ⊆ O × V describing the relationship between
abstract values and variables pointing to them.9 This is a computational com-
plex problem, usually solved by computing CFL-reachability via a fixpoint algo-
rithm [28, 8].

One of the main uses of the points-to graph is alias analysis. Two variable
vertices v1, v2 alias if there is an object vertex o ∈ O and paths consisting of
flowsTo edges from o to both variable vertices v1 and v2. Aliasing means that
both variables can point to the same memory location. Furthermore, this can be
used to define a heap access path between variables. A heap access path between
v1 and v2 consists of a sequence of load edges where the destination (sink) of an
edge in the sequence aliases with the source of the next edge, v1 is the source

9 Sometimes, the reverse points-to edges are inferred

8 S. Rasheed et al.

of the first and v2 the destination of the last edge in the sequence. This models
(nested) field access in a programming language, i.e. statements like foo.f.g. By
accounting for aliases, this also covers field access with intermediate variables,
in programs like x = foo.f; x.g;.

The Call Graph A call graph statically models the interprocedural calling
(invocation) behaviour of a program. Methods are represented by vertices and
interprocedural calls by edges.

Definition 3. The call graph of a program is a directed graph 〈M, I〉 where

– M is the set of methods in the program
– I ⊆ M ×M is a set of edges, (m,n) ∈ I means that method m has a call

site with an invocation of n.

A call graph can be constructed by analysing invocation instructions found
in program code. To model runtime behaviour in languages with dynamic dis-
patch, additional edges must be inferred (devirtualisation). There are various
algorithms available for this purpose differing in their precision and efficiency
(e.g. CHA, VTA) [30]. The more precise methods require points-to information
to determine the type of the objects a receiver points to in a method invocation,
a process often referred to as call graph construction on-the-fly.

Cross-Referencing Graphs The three models defined above are widely used
in static program analysis. In practice, they are often combined. There are certain
relationships between these models we will exploit in our analysis.

Firstly, for a given method m, the variables in the points-to graph include
the return value and the parameters of this method. We denote the parame-
ters, including the receiver of an invocation (in Java, the this reference), as
param(m) ⊆ V . Secondly, call graph vertices can be associated with type graph
vertices via the types that define those methods. We refer to those types as the
owner of a method m, owner(m) ∈ T . Finally, allocation vertices o ∈ O in the
points-to graph can be associated with the types they instantiate, type(o) ∈ T .

4.2 Analysis Specification

Topologies Given a type graph 〈T,E〉, we describe an instance of composite
as a mapping between the two roles in the composite design pattern [11] and
actual types that occur in the program.10

Definition 4. Given a type graph TG = 〈T,E〉, a composite is a mapping
{cont, comp} → TG such that the following two conditions are satisfied:

– (composite(cont), composite(comp)) ∈ Eassoc

– (composite(cont), composite(comp)) ∈ Esubtype

10 The cont role corresponds to the Container role in the design pattern, whereas the
comp roles corresponds to the Component role. We do not consider a particular leaf
type.

Caught in the Web 9

Traversals We define a traversal as the presence of a recursive invocation in the
call graph and the flow of an object from a field of a composite to an argument
of the recursive call.

Definition 5. Given the type graph TG = 〈T,E〉, the call graph CG = 〈M, I〉
and the points-to graph PG = 〈V,O,Ealloc, Eassign, Eload, Estore〉, a traversal is
a method m ∈ CG such that:

– m ∈M is recursive in CG, i.e. CG contains a path connecting m to itself
– there is a composite c and c(comp) ∈ param(m)
– there is a heap access path in PG from some parameter of v ∈ param(m) to

the respective argument in the recursive call site for m

Triggers We define a trigger as the presence of a method that instantiates a
composite through a chain of method invocations. Once the composite is in-
stantiated it would also trigger the recursive traversal with the composite as an
argument.

Definition 6. Given a call graph CG = 〈M, I〉 and the points-to graph PG =
〈V,O,Ealloc, Eassign, Eload, Estore〉, a trigger is a method trigger ∈M in the call
graph that is reachable from a program entry point ep ∈ M . There must also be
a path in the CG from the trigger to a traversal method with the instantiated
composite as an argument in PG.

5 Experimental Setup and Evaluation

5.1 Approach

The approach focuses on first running the static analysis to detect instances
of the TTT pattern in Java parser libraries, then using the analysis results to
confirm whether we can construct payloads to exploit vulnerabilities, and finally
using the payload for non-Java parsers (e.g., C, Python, Rust etc...) to check
if these parsers are also vulnerable. The payloads were constructed manually
using format specifications, source code indicated by analysis results. The effort
required to construct payloads varied across different libraries, and this process
is discussed in more detail in section 5.5.

5.2 Implementation

The analysis was implemented as an extension of Doop [1], a state-of-the-art
static analysis framework for Java, which encodes static analyses declaratively
in the Datalog [4] language. Datalog programs are a natural way to express the
graph-based algorithms [35] used in the specification of our analysis. Datalog-
based formulations of static analyses have been used successfully in bug and
vulnerability detection [14, 18, 27]. The underlying analyses in Doop compute
points-to information and call graphs from an input program, and they can also
be used to obtain the type graph.

10 S. Rasheed et al.

5.3 Libraries for Analysis

We evaluated the analysis on a set of 16 widely used Java parser libraries for dif-
ferent data formats (Table 1). These popular libraries are known to parse exter-
nal data formats, and are therefore prone to the vulnerabilities we study. These
libraries process data used in messaging, object serialisation and document rep-
resentation, represented in various text and binary formats. We covered libraries
for parsing or processing XML, JSON and YAML, PDF and external DSLs. Ta-
ble 1 also contains usage data showing how many Maven artefacts depend on
those libraries. This provides some indication of the impact vulnerabilities in
these libraries have based on usage statistics.11

Table 1. Java Libraries for Analysis

Library Input Format Version Usage
batik SVG 1.1 115
gson JSON 2.8.5 11,900
jackson JSON 2.9.8 6,829
jettison JSON 1.4.0 753
jfxrt FXML 1.8 N/A
mongo BSON 3.9.1 1,048
mvel2 MVEL2 2.4.3 395
ognl OGNL 3.2.10 339
pdfbox PDF 2.0.12 403
pdfxstream PDF 3.7.0 N/A
protobuf Protocol 3.6.1 2,407
sanselan Images 0.97 52
snakeyaml YAML 1.23 1,962
stringtemplate StringTemplate 3.2 270
xbean SOAP/XMLBean 3.0.2 632
xstream XStream 1.4.11.1 1,711

After analysing these 16 libraries, we proceeded to evaluate whether libraries
for other languages, shown in Table 2 were vulnerable using the payloads con-
structed. These libraries were selected based on availability and popularity. li-
brsvg is used in the GNOME desktop,12 Ghostscript is widely deployed and used
for processing PDFs, a popular vector-based illustration software - Inkscape uses
librsvg and cairo.13 Inkscape14 is also used by ImageMagick for SVG processing.
We looked at solutions for sanitising SVG files, and found that svg-sanitizer is
the most widely used (e.g. WordPress, drupal).

11 Maven usage statistics (obtained on 12 Feb. 2020).
12 https://www.gnome.org
13 https://cairosvg.org/
14 https://inkscape.org/

Caught in the Web 11

Table 2. Non-Java libraries investigated

Library Language Input Format Version
Qt C++ SVG 5.14.1
librsvg Rust SVG 2.46
PDFtk GCJ PDF 2.0.2
qpdf C++ PDF 9.1.1
PDFium C++ PDF N/A
ghostscript PostScript PDF 9.25
svg-sanitizer PHP SVG 0.13.2
resvg Rust SVG 0.8.0
cairosvg Python SVG 2.4.2

5.4 Triggers or Entry Points

Identifying a trigger is a manual step that requires domain knowledge of the
library under analysis. For image formats this could be the rasterisation/conver-
sion process that would require traversals of the structure. Some libraries have
command line interfaces which initiate calls to the trigger methods. In the case
where we analysed libraries without command line interfaces, a driver was re-
quired as an entry point for the input program for the analysis. We have written
custom drivers for libraries that are not bundled with a command line inter-
face. The driver provides an entry point as well as a facility to interact with
the library’s API. In the case of SnakeYAML, the driver consists of statements
to instantiate the parser and load a file. Only MVEL2, PDFBox, Batik and
PDFxStream come with built-in command line interfaces and did not require
custom drivers.

5.5 Evaluation

Static Analysis The experiments were performed on an Intel(R) Core(TM) i7-
8700 CPU @ 3.20GHz with 64GB of RAM on Linux Ubuntu 18.04.3. Doop was
run using the Java 8 platform as implemented in Oracle’s version 8 of the JDK.
We used a context-insensitive analysis. the following options for the analysis:

– analysis: -a context-insensitive

– main class: -main option was used with the driver class as an argument.

For each project, we extracted facts from the input library, and then executed
Doop with custom rules to compute:

– Composites (i.e., facts instantiating the Composite rule).
– Recursive methods.
– Heap flows to refine the list of recursive methods, i.e. an object that is of

composite type must flow to the parameter of a recursive method.
– Methods with heap flows from the previous step, and that are reachable via

the entry point.

12 S. Rasheed et al.

Manual Evaluation of Analysis Results At the end of the static analysis
we find a set of candidate instances, i.e. bindings of the concepts used in TTT
to concrete artefacts within the program under analysis. However, these may
contain false positives as the malicious computation is effectively prevented by
some program logic. While we cannot accurately eliminate false positives, we
conducted a manual step to identify true positives, by constructing payloads that
expose the respective vulnerability. This consisted of inspection of the program’s
source code, debugging and reviewing specifications against the implementation
for the particular parser library.

6 Results and Discussion

Table 3 shows a summary of the outcomes of the experiment, including the
static analysis run times for the 16 libraries. Methods and composites from
the library and their dependencies are shown. The Topology column lists all
composite types in the library. The Methods (Composite) column lists only
those methods that have a composite type as a parameter. From these methods,
the Traversal column lists methods that have a value flow within the composite
field to the recursive callsite. The Triggered Traversals column lists reachable
traversals for the identified topologies. In the following sections, we discuss some
of the vulnerabilities detected in more detail.

Table 3. Overview of Experiments (Composites and Direct Recursion)

Library Format Time (sec) Topology Methods Traversal Triggered
(Composite) Traversals

batik SVG 505 430 595 34 34
gson JSON 300 27 25 1 1
jackson XML 404 126 167 10 10
jettison JSON/XML 296 19 8 1 1
jfxrt XML 784 0 0 0 0
mongo BSON 433 275 224 0 0
mvel2 MVEL 173 93 135 4 2
ognl OGNL 317 29 64 4 4
pdfbox PDF 703 480 247 11 11
pdfxstream PDF 334 115 118 3 3
protobuf Protobuf 383 199 202 5 5
sanselan Image 307 35 6 0 0
snakeyaml YAML 307 30 13 3 3
stringtemplate Template 306 32 18 0 0
xbean XML 492 363 230 0 0
xstream XML 331 120 100 1 1

Caught in the Web 13

6.1 PDF Vulnerabilities

The analysis detected 11 triggered traversals that recurse on a parameter in the
PDFBox library. From these results, a vulnerability was confirmed in Apache
PDFBox, the most used Java PDF library in the Maven repository.15

A PDF document’s format, Carousel Object Structure (COS), is described
in the PDF Reference [24]. It supports basic types such as booleans, integers,
real numbers, strings, names and more crucially, arrays and dictionaries. The
particular composite topology in the library consists of COSDictionary as the
container and COSBase as the component where the children are stored in an
object that implements the Map interface. The recursive method that traverses
this structure is checkPagesDictionary(COSDictionary pagesDict) defined
in org.apache.pdfbox.pdfparser.COSParser, which is invoked when the PDF
file is parsed. The only constraint in the path condition from the entry into the
method to the recursive call is the presence of child objects that are of the same
type as the passed parameter.

Manual inspection of the source code and the PDF specification [24] revealed
that the root of a PDF document, the catalog, points to a dictionary referred
to as a Page Tree, which can in turn refer to another Page Tree. This structure
parses to a COSDictionary composite and we can craft a PDF document that
parses into an object graph with the many-to-many pattern.

Passing the crafted PDF to the application revealed that it can result in
attacks on responsiveness and disk space as the application can also be used to
convert the pages in a PDF to disk as images. The issue was reported and it has
been accepted with the identifier CVE-2018-11797.

The same PDF document was used to confirm the vulnerability in PDFxStream
(CVE-2019-17063), and it also revealed the same vulnerability in PDFtk16, the
PDF toolkit. They both use a HashMap to store the COS structure, which in
principle makes a DoS attack possible.

We also tested the PDF document on Ghostscript [12], a PostScript and PDF
interpreter. Using the crafted PDF as an input to Ghostscript resulted in DoS.
This bug was accepted as a security vulnerability (CVE-2018-19478). The PDF
parser in Ghostscript is implemented in PostScript and the traversal of the COS
was for an entirely different purpose when compared to the previous cases, which
was to detect cycles in the Page Tree that had caused a security vulnerability
in Ghostscript. This suggests that traversals of the form that we have studied
occur across multiple languages.

6.2 Scalable Vector Graphics (SVG) Vulnerability

SVG [31] is an XML-based format for two-dimensional graphics supported by
web browsers and is used in illustration programs. SVG is processed by the
Batik library. The analysis reported 34 triggered traversals for the library. One

15 https://mvnrepository.com/
16 https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/ [Accessed 08-October-2020]

14 S. Rasheed et al.

particular composite topology in the library consists of Node as the container
with children or parents of the same type. The recursive method that tra-
verses this structure is String getCascadedXMLBase (Node node) defined in
org.apache.batik.anim.dom.SVGOMElement, which is invoked when the SVG
file is parsed. The only constraint in the path condition from the entry into the
method to the recursive call is the presence of child objects that are of the same
node type as the passed parameter (i.e. XML element nodes).

Any SVG graphics element is potentially a template object that can be re-
used (i.e., instanced) in the SVG document via a <use> element. The <use>

element references another element and indicates that the graphical contents of
that element is included/drawn at that given point in the document. The <g>

element can be used to specify a grouped container of elements. The <g> element
in conjunction with the <use> element can be used to construct a nested struc-
ture to trigger the detected vulnerability. The <use> element can also be used
to construct the SVG version for SerialDoS as shown in Listing 1.2. We based
our SVG file on this ability to nest references using <g> and <use> elements.
There is an additional way to reference elements, as shown in Listing 1.3, which
uses the pattern tag and its fill attribute set to a url function containing the
reference id for an element in the document.

Listing 1.2. Nested References in SVG

1 <g id="t0a">
2 <use xlink:href="#t1a"/>
3 <use xlink:href="#t1b"/>
4 </g>
5
6 <g id="t0b">
7 <use xlink:href="#t1a"/>
8 <use xlink:href="#t1b"/>
9 </g>

Listing 1.3. References with use() function in SVG

1 <pattern id="h" ... >
2 <rect fill="url(#g)" stroke="green" />

The same SVG document was used to verify vulnerabilities in web browsers,
and a core Linux SVG rendering library (librsvg17). The issue was reported for
librsvg and fixed by the vendor (CVE-2019-20446). We found the crafted file to
impact all tested browsers (e.g. Mozilla Firefox (version 73.0), Google Chrome
(Version 77.0.3865.120, Official Build) by excessively consuming resources (mem-
ory and CPU) for Firefox and crashing the active browser tab in Chrome. This
can be used by malicious parties to craft client-DoS for websites that allow links
to SVG code in user input (e.g. Markdown with links to external SVG files in
user comments). We confirmed this observation for the StackOverflow18 Q&A
platform, GitLab19 and GitHub20 issue trackers. The impact on these services

17 https://wiki.gnome.org/action/show/Projects/LibRsvg [Accessed 08-October-2020]
18 https://stackoverflow.com
19 https://gitlab.com
20 https://github.com

Caught in the Web 15

is that they can render the page inaccessible to users if it has malicious SVG
content.

We also considered svg-sanitizer21, which performs server-side sanitisation
of SVG content (used in Drupal and WordPress as a plugin). On passing the
crafted SVG file as input, svg-sanitizer, entered a non-terminating computation
which make services using the plugin susceptible to DoS attacks. This issue was
reported to the developer and it was fixed by adding a check to limit levels of
use recursion during SVG sanitisation.

6.3 YAML Vulnerability

YAML is a popular and widely used (human readable) serialisation language for
data interchange and application configuration. It supports primitives and com-
mon data structures such as maps and lists [34]. We looked at the SnakeYAML
library in Java and the analysis reported three triggered traversals, one of which
involves the composite MappingNode with a list of NodeTuple as children that
can potentially have the same type as the parent.

The code is the implementation of the << merge key feature in YAML, which
is used to indicate that all the keys of one or more specified maps should be
inserted into the current map. If the value associated with the key is a single
map, each of its key/value pairs is inserted into the current map, unless the key
already exists in it. If the value associated with the merge key is a sequence,
then this sequence is expected to contain multiple maps and each of these are
merged in order. Listing 1.4 shows the use of YAML merge as well as the use
of YAML aliases in constructing SerialDoS type inputs, which were detected as
vulnerabilities by the analysis.

Listing 1.4. Merging map keys in YAML
1 ? - &t2a
2 - &t3a [lol]
3 - &t3b [lol]
4 - &t2b
5 - *t3a
6 - *t3b
7 : value
8 --
9 { << { << { key: value} } }

We created a YAML file with nested merges and nested lists with aliases
forming the topology, and passed the file as input to our SnakeYAML driver to
confirm that it crashed from stack exhaustion for the nested merges case, and
entered a long-running computation for nested lists. Consequently, this issue has
been reported to the maintainer.

6.4 Newly Discovered Security Vulnerabilities

Following the guidelines for responsible disclosure, we have reported all vulner-
abilities to the libraries’ developers/maintainers. We provide a timeline and the
statuses of each of these vulnerabilities below.
21 https://github.com/darylldoyle/svg-sanitizer [Accessed 08-October-2020]

16 S. Rasheed et al.

Table 4. Status of reported bugs and vulnerabilities status.

Library Version Status Fixed date

PDFBox 2.0.12 CVE-2018-11797 6-Oct-18

PDFxStream 3.6.0 CVE-2019-17063 27-Feb-19

PDFTk 2.02 Pending

GhostScript 9.25 CVE-2018-19478 20-Nov-2018

Svg-sanitizer 0.13.0
CVE requested
(pending)

20-Jan-20

Batik 1.11 Won’t fix -

Firefox 69 Duplicate -

Drupal 6.x-8.x - 25-June-20

Snakeyaml 1.23 Won’t fix

Qtsvg 5.14.1 Bug 29-Feb-20

Librvg 2.46.2 CVE-2019-20446 15-Oct-19

6.5 Threats to Validity

Manual confirmation of the vulnerabilities reported by the tool poses a threat to
the validity of the evaluation. However, for the most likely candidates, we were
able to construct payloads and confirm that the reports are actual bugs. Even
though a hand-selected set of projects was used in the evaluation, the generality
of the model and the discovery of related bugs in other libraries are encouraging.

7 Related Work

7.1 Detecting Algorithmic Complexity vulnerabilities

Wuestholz et al. [33] discuss an approach to statically detect DoS vulnerabilities
in programs that use regular expressions. The analysis has multiple stages and
is conceptually similar to the analysis proposed in this paper: they first build a
model to detect vulnerable structures (by reasoning about the worst-case com-
plexity of NFAs), and then devise a separate (taint) analysis to establish whether
a vulnerable regular expression can be matched against an input string. The tool
they have developed, Rexploiter, finds 41 exploitable security vulnerabilities in
Java web applications. Holland et al. [15] propose a hybrid approach to detect
algorithmic complexity vulnerabilities. In a static pre analysis step, they use a
loop call graph to detect nested loop structures that are susceptible to algo-
rithmic complexity vulnerabilities. The first step is similar to our approach, but
uses a different model. Our approach is based on the presence of higher level
data structures and recursive methods which then implicitly create the nested
traversals.

7.2 Traversals / Performance bugs

The detection of performance bugs and in particular redundant traversal is a
problem related to DoS vulnerabilities. Olivo et al. [21] study redundant traver-

Caught in the Web 17

sal performance bugs in Java code, limited to traversals in non-recursive func-
tions, and a static analysis, Clarity, to detect them. Burnim et al. [3] present
WISE, automated test generation for detecting worst-case complexity in pro-
grams. WISE uses symbolic test generation. Jiayi et al. [32] describe Singularity,
another input generation technique for detecting worst-case performance bugs
in Java programs. Singularity uses a greybox fuzzing technique that looks for
critical input patterns modelled as recurrent computation graphs (RCGs). Their
technique reveals performance and DoS-related bugs in real world programs.
Other fuzzing approaches include SlowFuzz and PerfFuzz [17, 25]. Nistpor et al.
[19] propose Toddler, an example of dynamic analysis to detect performance
bugs. Toddler instruments loops and read instructions, and uses the data col-
lected using inserted code to detect similar memory-access patterns. Padhye
and Sen [22] describe Travioli, a dynamic analysis technique for detecting data-
structure traversals. It is also based on instrumenting code in order to harvest
trace data, from which the analysis model is built. The purpose is similar to what
we try to achieve in this paper with the topologies and traversal steps of our
model, however this being a dynamic model, it has different tradeoffs between
precision and recall, and its quality depends on the existence of drivers (such as
unit tests) that exercise a large part of the program under analysis.

8 Conclusion

We presented an approach to classify and detect a class of DoS vulnerabili-
ties in parsing data structures. We evaluated this approach on a set of 16 Java
parser libraries with a Datalog-based formulation of a static analysis using the
Doop analysis framework for Java. The study revealed four new vulnerabilities
in widely used Java PDF, SVG and YAML libraries. A further evaluation also
revealed seven more vulnerabilities in parser libraries for Rust, PHP, C++ and
PostScript. Out of these reports, we have obtained four CVEs and reported a
total of 11 security issues to vendors (7 of which have been accepted). The results
confirm that a lightweight static analysis can be useful in uncovering vulnerabil-
ities that belong to this class. Possible directions for future work include using
micro-fuzzing to fuzz the recursive functions reported by the static analysis for
more precise results, and using constraint-based approaches to more precisely
identify the topology and traversal patterns reported by the analysis.

References

1. Bravenboer, M., Smaragdakis, Y.: Strictly Declarative Specification of Sophisti-
cated Points-to Analyses. In: Proceedings of the 24th ACM SIGPLAN Confer-
ence on Object Oriented Programming Systems Languages and Applications. p.
243–262. OOPSLA ’09, Association for Computing Machinery, New York, NY,
USA (2009). https://doi.org/10.1145/1640089.1640108

2. Breen, S.: What Do WebLogic, WebSphere, JBoss, Jenkins, OpenNMS, and Your
Application Have in Common? This Vulnerability. https://goo.gl/cx7X4D (2015),
[Online; accessed 08-October-2020]

18 S. Rasheed et al.

3. Burnim, J., Juvekar, S., Sen, K.: WISE: Automated Test Generation for Worst-case
Complexity. In: Proc. ICSE’09. IEEE (2009)

4. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog
(and never dared to ask). IEEE TKDE 1(1) (1989)

5. Coekaerts, W.: SerialDOS. https://gist.github.com/coekie/a27cc406fc9f3dc7a70d
(2015), [Online; accessed 08-October-2020]

6. CVE-2003-1564 (Billion Laughs). https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2003-1564 (2003), [Online; accessed 14-January-
2020]

7. Crosby, S.A., Wallach, D.S.: Denial of Service via Algorithmic Complexity Attacks.
In: Proc. USENIX Security’03. USENIX Association (2003)

8. Dietrich, J., Hollingum, N., Scholz, B.: Giga-scale exhaustive points-to analysis for
Java in under a minute. In: Proc. OOPSLA’15. ACM (2015)

9. Dietrich, J., Jezek, K., Rasheed, S., Tahir, A., Potanin, A.: Evil Pickles: DoS
Attacks Based on Object-Graph Engineering. In: Proc. ECOOP’17 (2017)

10. Frohoff, C., Lawrence, G.: Marshalling Pickles. http://frohoff.github.io/appseccali-
marshalling-pickles/ (2015), [Online; accessed 08-October-2020]

11. Gamma, E., Vlissides, J., Johnson, R., Helm, R.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley (1994)

12. GhostScript, An interpreter for the PostScript language and for PDF.
https://www.ghostscript.com/ (2019), [Online; accessed 14-January-2020]

13. Gosling, J., Joy, B., Steele, G., Brache, G., Buckley, A.: The Java® Language Spec-
ification Java SE 8 Edition. https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
(2015), [Online; accessed 08-October-2020]

14. Grech, N., Smaragdakis, Y.: P/taint: Unified points-to and taint analysis. In: Proc.
OOPSLA’17. ACM (2017)

15. Holland, B., Santhanam, G.R., Awadhutkar, P., Kothari, S.: Statically-informed
dynamic analysis tools to detect algorithmic complexity vulnerabilities. In: Proc.
SCAM’16. IEEE (2016)

16. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In:
Proc. CCS’18. ACM (2018)

17. Lemieux, C., Padhye, R., Sen, K., Song, D.: PerfFuzz: Automatically Generating
Pathological Inputs. In: Proc. ISSTA’18. ACM (2018)

18. Livshits, V.B., Lam, M.S.: Finding Security Vulnerabilities in Java Applications
with Static Analysis. In: Proc. USENIX Security’14. USENIX Association (2005)

19. Nistor, A., Song, L., Marinov, D., Lu, S.: Toddler: Detecting performance problems
via similar memory-access patterns. In: Proc. ICSE’13. IEEE (2013)

20. Noller, Y., Kersten, R., Păsăreanu, C.S.: Badger: Complexity analysis with fuzzing
and symbolic execution. In: Proc ISSTA’18. ACM (2018)

21. Olivo, O., Dillig, I., Lin, C.: Static detection of asymptotic performance bugs in
collection traversals. In: Proc. PLDI’15. ACM (2015)

22. Padhye, R., Sen, K.: Travioli: a dynamic analysis for detecting data-structure
traversals. In: Proc. ICSE;17. IEEE (2017)

23. Păsăreanu, C.S., Kersten, R., Luckow, K., Phan, Q.S.: Symbolic execution and
recent applications to worst-case execution, load testing, and security analysis. In:
Advances in Computers, vol. 113. Elsevier (2019)

24. PDF Reference 6th edition. https://www.adobe.com/content/dam/acom/en/devnet/-
pdf/pdf reference archive/pdf reference 1-7.pdf (2006), [Online; accessed 14-
January-2020]

Caught in the Web 19

25. Petsios, T., Zhao, J., Keromytis, A.D., Jana, S.: SlowFuzz: Automated Domain-
Independent Detection of Algorithmic Complexity Vulnerabilities. In: Proc.
CCS’17. ACM (2017)

26. Rasheed, S., Dietrich, J., Tahir, A.: Laughter in the Wild: A Study into DoS
Vulnerabilities in YAML Libraries. In: Proc. TrustCom’19). IEEE (2019)

27. Scholz, B., Jordan, H., Subotić, P., Westmann, T.: On Fast Large-Scale Program
Analysis in Datalog. In: Proceedings of the 25th International Conference on Com-
piler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016. ACM (2016)

28. Sridharan, M., Gopan, D., Shan, L., Bod́ık, R.: Demand-driven points-to analysis
for Java. In: Proc. OOPSLA’05. ACM (2005)

29. Staicu, C.A., Pradel, M.: Freezing the Web: A Study of ReDoS Vulnerabilities in
JavaScript-based Web Servers. In: Proc. USENIX Security’18. USENIX Associa-
tion (2018)

30. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon,
E., Godin, C.: Practical virtual method call resolution for java. In: Proc. OOP-
SLA’00. ACM (2000)

31. Scalable Vector Graphics (SVG) 1.1 (2nd edition).
https://www.w3.org/TR/SVG11/REC-SVG11-20110816.pdf (2011), [Online;
accessed 14-January-2020]

32. Wei, J., Chen, J., Feng, Y., Ferles, K., Dillig, I.: Singularity: Pattern fuzzing for
worst case complexity. In: Proc. ESEC/FSE’18. ACM (2018)

33. Wüstholz, V., Olivo, O., Heule, M.J., Dillig, I.: Static Detection of DoS Vulnera-
bilities in Programs That Use Regular Expressions. In: Proc. TACAS’17. Springer
(2017)

34. YAML Ain’t Markup Language (YAML) Version 1.2 .
https://yaml.org/spec/1.2/spec.html (2019), [Online; accessed 08-October-2020]

35. Yannakakis, M.: Graph-theoretic methods in database theory. In: Proc. PODS’90.
ACM (1990)

