
Piku Piku Interpolation
An artist-guided sampling algorithm for synthesizing detail applied to facial animation

Richard A. Roberts
CMIC, Victoria University of Wellington

Rafael K. dos Anjos
CMIC, Victoria University of Wellington

Ken Anjyo
CMIC, Victoria University of Wellington

J.P. Lewis
Victoria University of Wellington

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Our system samples FACS data to create detailed facial motion from early-stage animation.

ABSTRACT
We propose a sampling algorithm that reassembles real-life move-
ments to add detail to early-stage facial animation. We examine the
results of applying our algorithm with FACS data extracted from
video. Using our algorithm like an interpolation scheme, animators
can reduce the time required to produce detailed animation.

CCS CONCEPTS
• Computing methodologies→ Motion processing.

KEYWORDS
non-parametric sampling, facial motion, facial animation, FACS

ACM Reference Format:
Richard A. Roberts, Rafael K. dos Anjos, KenAnjyo, and J.P. Lewis. 2019. Piku
Piku Interpolation: An artist-guided sampling algorithm for synthesizing
detail applied to facial animation. In SIGGRAPH Asia 2019 Technical Briefs
(SA ’19 Technical Briefs), November 17–20, 2019, Brisbane, QLD, Australia.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3355088.3365156

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA ’19 Technical Briefs, November 17–20, 2019, Brisbane, QLD, Australia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6945-9/19/11. . . $15.00
https://doi.org/10.1145/3355088.3365156

1 INTRODUCTION AND MOTIVATION
The latest rendering techniques enable us to render near photo-
realistic characters. Despite these advances, creating detailed, varied
and plausible motion remains a difficult problem. While motion
capture (MoCap) technology and keyframe-based animation can
both produce detailed and varied motion, these approaches are
generally expensive and require intensive labour. MoCap offers
accurate tracking of points on the body and face, but the resulting
data is difficult to edit, and specialized equipment may be required.
Keyframe-based animation is more flexible, but creating the large
number of fully detailed and varied animations for a production
can require teams of animators working for many months (or even
several years); consequently, while important characters appear
detailed and varied, other characters often lack interesting detail.

To help address this problem we propose a simple system (illus-
trated in Fig. 1) that automatically details facial animation based on
real-life movement. Our approach is inspired by the Japanese phrase
Piku Piku (meaning twitching during motion), which is one type
of facial movement that is particularity hard to recreate in hand
crafted animation. Specifically, we present a non-parametric sam-
pling algorithm: the animator provides a blocked animation1, from
which our algorithm creates a new detailed animation that traces
the animator’s input while reproducing details sampled coherently
from a reference motion; in our case, we use FACS2 data extracted

1A blocked animation uses a few keyframes to outline an envisioned motion. See
discussion on pose-to-pose animation in [Williams 2001].
2The Facial Action Coding System (FACS) [Ekman and Friesen 1976] has become a
popular model for encoding facial movements. In FACS, a set of action units (AUs)
describe how different facial muscles activate to produce facial expressions. Facial
animation can be encoded with this model by recording AU configuration over time.

53

https://doi.org/10.1145/3355088.3365156
https://doi.org/10.1145/3355088.3365156

SA ’19 Technical Briefs, November 17–20, 2019, Brisbane, QLD, Australia Roberts et al.

from video via OpenFace for this reference. When used effectively,
our system helps animators to “remix” real-life movements that
improve the realistic appearance of their animation.

The advantages of our algorithm are: (1) it can be integrated
with the time-tested keyframe-based approach to animation that is
well support by commercial software, (2) it is simple to implement,
and (3) it is driven by data that is easy to obtain, even for non-
professional use. When compared to previous work that uses noise
to add naturalness to keyframe-based animations, our algorithm
produces different activation and relaxation profiles, produces re-
alistic twitches when holding expressions, and also factors in the
effect of time when creating these effects.

2 BACKGROUND
Jerk is a subtle effect (distinct from variation).3Although changes
in facial expression can appear smooth, they contain twitches. One
can observe jerk by trying to smile gradually over an extended
period, such as 10 seconds. Harris & Wolpert theorize that noise
in neural commands leads to fine scale perturbations in movement
[Harris andWolpert 1998]. Jerk might also be related to how quickly
transitions are performed, how much different facial muscles are
strained, and other factors such as the elasticity of the skin.

We hypothesize that the uncanny feeling of some character
animations is due to a lack of jerk. To investigate this, we examine
how natural facial movements exhibit changes at a fine scale, as
illustrated by Figure 2. The figure displays the activation of two
action units that we observed from FACS data (extracted from
video using OpenFace) for a smiling expression performed at three
different speeds. Both action units display distinct behavior for
each performance. While the transition from a neutral face to a
smiling expression (activation) may happen smoothly when done
quickly (Figure 2B, C, top), when done in a slower fashion (Fig. 2B,
C, bottom) it displays increasing levels of jerkiness. This is also
observed, with a different profile, when transitioning back to the
neutral face. Additionally, we can see that holding expressions for a
period of time also creates jerky movement (Fig. 2, red area). Other
literature makes similar observations [Stoiber et al. 2010; Valstar
and Pantic 2006].

2.1 Previous Work
Automating the process of adding detail and variation has been a
common goal of previous work (see Section 5 in [Van Welbergen
et al. 2010]), although with a focus on animation for the body. Bo-
denheimer et al. described the problem of varying walking motions
[Bodenheimer et al. 1999], proposing a simple approach where
noise is added to variables in a simulation creating the walking
animation. Their experimental results show that animations were
perceived as most natural when some noise was added. More re-
cently, deep neural networks have been used for motion synthesis
of walking animation [Holden et al. 2016]. While these approaches
can produce a rich variety of outputs from a simple input, they do
not enable an animator to control over how details are added.
3Variation refers to the concept that repeated human movements naturally differ from
each other, even if someone is consciously attempting to replicate the same movement.
MoCap captures such variations and the result often appears natural. Variation is
well recognized [Van Welbergen et al. 2010], and adding variation to keyframe-based
animation is a common research problem.

AU10
AU06

A

AU10
AU06

12 14 16 18 20 22
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

A
ct

iv
a
ti
o
n
 (

A
U

1
0
)

1.0

5 6 7 8 9 10 11
0.0

0.2

0.4

0.6

0.8

C Time (s)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

5 6 7 8 9 10 11
0.0

0.2

0.4

0.6

0.8

1.0

12 14 16 18 20 22
0.0

0.2

0.4

0.6

0.8

1.0

B

A
ct

iv
a
ti
o
n
 (

A
U

0
6
)

Time (s)

Figure 2: Activation curves of AU06 (cheek raiser, B) and
AU10 (upper lip raiser, C) for a person smiling (A) at three
different speeds (from top to bottom: fast, medium, and
slow). Jerkiness is noticeable throughout the movement.

Most similar to our work, [Stoiber et al. 2010] use a linear dy-
namic system (LDS) to add noise to the movement of facial land-
marks. Following from Harris & Wolpert’s observations, the model
alters the amount of noise during transitions. However, as an LDS
it has limited modeling power, and their approach does not add
detail when an expression is held approximately constant, contrary
to the results seen in Figure 2.

Importantly, configuring noise parameters to change correctly
with respect to motion is non-trivial (refer to supplementary ma-
terial for a basic illustration). This motivates our non-parametric
approach, where no parameters relating to a noise function are
used. Like our approach, [Pullen and Bregler 2002] also present a
non-parametric algorithm, where they divide an input animation
into fragments and then replace each fragment with a similar frag-
ment of MoCap. Their multi-scale implementation was developed
for body motion.

3 NON-PARAMETRIC SAMPLING
Our non-parametric sampling algorithm is inspired by Efros &
Leung’s approach for texture synthesis where pixels are synthesized
one at a time from a input image [Efros and Leung 1999]. Much like
how they grow pixels by reassembling them from an input texture,

54

Piku Piku Interpolation SA ’19 Technical Briefs, November 17–20, 2019, Brisbane, QLD, Australia

Figure 3: The sampling window. Left: synthesized data.
Right: blocked animation. Thewindow is used during a near-
est neighbour step to find a patch from the referencemotion,
which provides the next frame for the synthesized anima-
tion.

we generate detail by reassembling observed motion data. However,
distinct from Efros & Leung’s algorithm, we create the detail in a
way that traces a user-defined input.

The inputs to our algorithm are the blocked animation together
with the reference motion. For our case of facial animation, we
represent both inputs as a set of independent 1D curves that cor-
respond to FACS (each curve specifies an AU over time). For the
reference motion, we obtain the set of 1D curves directly by ap-
plying OpenFace [Baltrušaitis et al. 2016] to video recordings of a
person performing a variety of facial expressions.

Our system works in four steps: (1) It first divides the observed
the data into a collection of patches using a chosen window size.
(2) It then chooses a starting patch to initialize the synthesis, using
only the right part of the sampling window (Fig 3). (3) It then scans
through the blocked animation and repetitively adds frames until
most of motion has been synthesized. (4) To finish, it chooses a
patch using only the left part of the sampling window and copies
from it the frames required to complete the animation.

After initialization, the algorithm needs to choose a patch to
sample a frame from. To choose a patch, we need to consider both
the already synthesized detail and also the upcoming part of the
blocked animation. Figure 3 illustrates our sampling window that
considers both the already synthesized detail (left part, red) and
also the next part of the blocked animation (right part, purple). Our
algorithm uses a high-dimensional nearest neighbour algorithm
to find find patches most similar to those seen in the window. 4

The nearest neighbour algorithm selects a particular patch Pk to
minimize:

α

⌊N /2⌋∑
i=1

Gi · |Wi − Pki | + (1 − α)
N∑

i= ⌊N /2⌋+1
Gi · |Wi − Pki |

whereWi denotes samples from the window (containing previ-
ously constructed points i ≤ ⌊∗N /2⌋ on the left, along with points
from the animator’s input on the right) and Pki denotes samples
from a candidate patch Pk . The vectors representing the window
and patch are multiplied by a Gaussian falloffGi that de-emphasizes
samples away from the center, i.e. the next point to be sampled.

4In general our algorithm randomly picks one of the k nearest patches, where k is a
parameter set by the artist, however we found that k = 1 usually produced the best
results in our experiments.

This reduces the possibility of discontinuity due to sampling from
non-neigbouring patches. Finally, the contribution of left and right
parts are also scaled by the coefficient α (a constant selected by the
animator). See Section 5 for further discussion on the use of α .

Once a patch has been selected we copy the frame at the center of
that patch into the output motion. We repeat this search and sample
process until the right edge of the sampling window reaches the
end of the block animation. At this point, we complete the output
animation by copying all frames occurring after the center frame
of the last used patch into the output motion.

In summary, our two-part sampling window design can be ap-
plied to create new animation that preserves the characteristics of
the reference motion while roughly tracing the blocked animation.
An animator might choose to use a number of different reference
motions to produce a variety of detail (perhaps using videos of
different people). Importantly, the animator has control over how
closely the added detail traces the animation. The result is a detailed
and varied interpretation of the blocked animation.

4 EVALUATION
In order to validate our algorithm, we use a FACS-based character
that can be controlled by setting values for a set of AUs. For testing
we first created three blocked animations (a happy expression, a
sad expression, and an angry expression) that start with a neutral
face, transition into an expression, and then return back to a neutral
face. We applied our algorithm to each of the animated AUs, thus
creating a detailed version of each blocked animation.

Figure 4 shows plots of certain AUs for the results obtained for
two motions: anger and sadness. See the supplementary video for
comparison between the original and resulting animations.

Figure 4A shows the outputs of four AUs in the anger example.
Similar to [Stoiber et al. 2010], our algorithm correctly generates
distinctive activation profiles for each action unit. While AU04
and AU07 rise smoothly, that is not the case for AU05 and AU15.
The output AUs also display unique behaviour through the apex
phase, with different scales of jerkiness. Moreover, this figure shows
that our algorithm produces different shapes for activation and
relaxation (e.g. AU05 has jerky activation and abrupt relaxation).
These differing temporal and intensity qualities are related to the
way that facial muscles behave when contracting and relaxing.

Figure 4B shows the results obtained when our algorithm is
applied to two animation curves of different lengths for AU01. To
demonstrate the effect of our α variable, we ran the algorithm
with three different values: α = 0.8, α = 0.9, α = 0.95. Regarding
duration of the movement, the obtained results feature different
jerk profiles for curves of differing lengths, thus replicating the
same behavior that we observed earlier in Figure 2. Finally, when
α is high (0.95), the generated curve is based more strongly on the
reference motion, whereas, for lower values (0.9, 0.8), the generated
curve traces the input animation more closely.

5 DISCUSSION
There are a two variables to consider when applying the algorithm.
The size of the sampling window determines how much of the
observed motion is recognizable in the output: smaller windows
enable the synthesized data to appear more distinctive while larger

55

SA ’19 Technical Briefs, November 17–20, 2019, Brisbane, QLD, Australia Roberts et al.

Time (frames)
0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

iv
a
ti
o
n
 (

0
-1

)

Animators Curve
AU01 Inner Brow Raiser (=0.80)
AU01 Inner Brow Raiser (=0.90)
AU01 Inner Brow Raiser (=0.95)

0 20 40 60 80 100 120 140

Time (frames)

0.0

0.2

0.4

0.6

0.8

1.0 AU04 Brow Lowerer
AU05 Upper Lid Raiser
AU07 Lid Tightener
AU15 Lip Corner Depressor

A
ct

iv
a
ti
o
n
 (

0
-1

)

BA

Figure 4: Algorithm results: (A) Four different action units for an anger expression. Each AU produces a different jerk profile.
(B) Plot of AU01 for a sadness expression at two different speeds and three different parameters for α . The user can choose
how close they want to stay to the animator’s curve.

windows ensures that the output is more faithfully to the reference
motion (see Figure 2 in [Efros and Leung 1999]). Unique to our
two-part sampling window design, we also need to consider the
balance between the left and right parts of our sampling window.
Placing more importance on the right part enables us to produce
detail that traces the animator’s outline more closely, while placing
more importance on the left part produces detail that is closer to
the reference motion. By controlling these parameters (window size
and α), an animator can choose to apply our algorithm to add just
a small amount of jerk to a detailed curve, to generate a variety of
distinct detail, or anything in between. Additionally, small changes
in α can be used to achieve variation.

Our algorithm has several limitations. It cannot extrapolate de-
tail beyond that present in the reference motions, and the speed
is impacted by the number of the patches in our collection. While
deep neural networks could potentially address these issues to some
extent – they have been successfully used for full body animation
[Holden et al. 2016] – they have disadvantages. With a few excep-
tions they require extensive data and long training times, and the
most widely used algorithms generate a point estimate rather than
a predictive distribution suitable for generating a random signal,
which essentially involves sampling from a distribution. Another
limitation of our present implementation is the reliance on AU
estimation through computer vision algorithms. Both OpenFace
and other state-of-the-art techniques produce tracking noise when
tracking AUs. Consequently, it may be necessary to use smoothing
algorithms to reduce artifacts in the motion that result from this
noise. Unfortunately, such smoothing can also remove the details
added by our algorithm. Future developments in facial detection
will likely resolve this issue.

A further limitation of our work is that it does not model poten-
tial correlations between different AUs. We speculate that this is
less crucial than in the body case [Pullen and Bregler 2002] because
FACS AUs often represent individual muscles, and the small-scale
“jerk” of independent muscles may be statistically independent.
However, verifying this assertion is a subject for future work. Other
future work includes characterizing the effect of the number and
diversity of reference motions, and validating the perceptual effect

of Piku Piku interpolation with a user study and interviews with
expert animators.

6 CONCLUSIONS
We presented a non-parametric sampling algorithm to synthesize
detailed motion from blocked animation using FACS data obtained
from video. The result improves realism by correctly recreating
time and intensity related small-scale detail of the reference FACS
data. Our algorithm has simple implementation, easy setup, and can
be used as an extension to existing keyframe interpolation methods
available in commercial animation software.

ACKNOWLEDGMENTS
Special thanks to Ayumi Kimura and Ian Loh. This project was
supported by the Entrepreneurial University Programme funded
by the Tertiary Education Commission, New Zealand.

REFERENCES
T. Baltrušaitis, P. Robinson, and L. Morency. 2016. OpenFace: An open source facial

behavior analysis toolkit. In IEEE Winter Conference on Applications of Computer
Vision.

Bobby Bodenheimer, Anna V. Shleyfman, and Jessica K. Hodgins. 1999. The Effects of
Noise on the Perception of Animated Human Running. In Computer Animation and
Simulation.

Alexei A. Efros and Thomas K. Leung. 1999. Texture Synthesis by Non-Parametric
Sampling. In Proceedings of the International Conference on Computer Vision.

Paul Ekman and Wallace V. Friesen. 1976. Measuring facial movement. Environmental
psychology and nonverbal behavior 1, 1 (1976).

Christopher M Harris and Daniel MWolpert. 1998. Signal-dependent noise determines
motor planning. Nature 394 (1998).

Daniel Holden, Jun Saito, and Taku Komura. 2016. A Deep Learning Framework for
Character Motion Synthesis and Editing. ACM Trans Graph. 35, 4 (2016).

Katherine Pullen and Christoph Bregler. 2002. Motion Capture Assisted Animation:
Texturing and Synthesis. ACM Trans. Graph. 21, 3 (2002).

N. Stoiber, G. Breton, and R. Seguier. 2010. Modeling Short-Term Dynamics and
Variability for Realistic Interactive Facial Animation. IEEE Computer Graphics and
Applications 30, 4 (2010).

M. Valstar and M. Pantic. 2006. Fully Automatic Facial Action Unit Detection and
Temporal Analysis. In 2006 Conference on Computer Vision and Pattern Recognition
Workshop.

H. Van Welbergen, B. J. H. Van Basten, A. Egges, Zs. M. Ruttkay, and M. H. Overmars.
2010. Real Time Animation of Virtual Humans: A Trade-off Between Naturalness
and Control. Computer Graphics Forum 29, 8 (2010).

Richard Williams. 2001. The Animator’s Survival Kit. Faber.

56

	Abstract
	1 Introduction and Motivation
	2 Background
	2.1 Previous Work

	3 Non-parametric sampling
	4 Evaluation
	5 Discussion
	6 Conclusions
	Acknowledgments
	References

