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Abstract—This paper proposes a novel modeling approach 
for the efficient integration of demand response (DR) resources 
into the equipment capacity-planning problem of micro-grids 
based on Game Theory. The main advantage of this approach is 
that it determines the DR events based on the day-ahead system 
state estimates (in contrast to the conventional exogenetic 
demand-side management approaches), whilst protecting the 
customers’ welfare. A battery-less, 100%-renewable, grid-
independent micro-grid is conceptualized, and the town 
Ohakune, New Zealand is used as a test-case to evaluate the 
effectiveness of the proposed modeling framework. The 
numerical simulation results indicate that the proposed 
approach achieves substantial (12.59%) savings in the life-cycle 
cost of the target system, as compared to the case where a time-
of-use DR is implemented. 

Keywords—Microgrids, Demand-side management, Power 
system planning, Distributed power generation, Electric vehicles. 

I. INTRODUCTION 

To reduce greenhouse gas emissions, efforts are underway 
to scale up zero-emissions electricity generation, whilst 
building green transportation infrastructure. On the other 
hand, the demand for electricity is rising. That is, New 
Zealand’s electricity transmission network (National Grid) 
owner and operator, Transpower, has projected that by 2050, 
the country’s electricity demand will double as a result of 
decarbonizing the energy economy [1]. In this sense, smart 
renewable and sustainable energy systems (RSESs), such as 
micro-grids (MGs), energy hubs, virtual power plants, and so 
forth, have been proposed as interventions to facilitate the 
management of the volatility inherent in power outputs from 
weather-dependent renewable energy generators, notably 
solar and wind power, as well as to manage demand [2]. These 
RSESs not only make the intermittent, highly distributed 
renewable power visible for the system operator, but also 

significantly improve the cost-efficiency of renewable energy 
solutions through: (1) utilizing a variety of energy storage 
technologies, and (2) benefitting from the opportunities 
offered under the smart grid milieu  most significantly, the 
mass adoption of demand-side management (DSM) schemes. 

The optimal planning of the infrastructure investments in 
RSESs could potentially play a critical role in accelerating the: 
(1) financing of those investments on the supply side, and (2) 
uptake of environmentally-friendly technologies, such as 
green vehicles, on the demand side. Additionally, such 
systems can help boost the participation of the end-users of 
electricity in energy demand management schemes, by 
allowing them to take advantage of the incentives offered by 
the utility for their collaborative consumption of energy. In 
this light, few research studies have been carried out to 
estimate the impact of demand response (DR) scheduling  
using a variety of DR provision approaches  on the whole-
life cost of the RSESs in their long-term economic planning 
phase [3]–[5]. Table I presents a summary of the studies 
concerning the deployment of DR plans, while optimally 
designing RSESs [6]–[10].  

All the studies to date that integrate energy demand 
management plans into the equipment capacity-planning 
problems of RSESs (mentioned in Table I) have failed to 
address behavioral risk factors in the realization of their 
designed DSM procurement frameworks in real-time. Hence, 
suffering from epistemic uncertainty, their suggested DR 
delivery structures cannot be relied on to obtain pre-set load 
reduction goals in practice. Accordingly, the objective of this 
paper is twofold: (1) to model the consumers’ behavior in 
contributing to the load reduction in response to the utility’s 
DSM strategies using Game Theory, and subsequently (2) to 
incorporate the developed game-theoretic DR program in the 
optimal equipment capacity-planning of an MG. 

TABLE I. REVIEW OF STUDIES MODELING THE IMPACT OF DSM ON THE LONG-TERM PLANNING OF RSESS 

System architecture Responsive loads DSM 
technique  

Optimizer Ref. 

Grid-tied photovoltaic/battery  Smart appliances of a smart home and electric 
vehicle-charging loads 

Time-of-use Mixed-integer 
linear programming 

Erdinc et al. [6] 

On-grid wind/battery  Smart appliances of a smart home Real-time 
pricing 

Particle swarm 
optimization 

Kahrobaee et al. 
[7] 

Off-grid 
photovoltaic/wind/battery/diesel  

Air conditioners with a pre-determined 
maximum capacity 

Direct load 
control 

Nonlinear 
programming  

Zhu et al. [8] 

Stand-alone 
photovoltaic/wind/hydro/biogas/battery  

Smart appliances at the domestic, commercial, 
agricultural, and community levels 

Direct load 
control 

Discrete harmony 
search 

Chauhan and 
Saini [9] 

Grid-connected photovoltaic/fuel 
cell/battery/super-capacitor  

Ten per cent of the total electrical load at each 
hour 

Interruptible 
loads 

Particle swarm 
optimization 

Hassanzadehfard 
et al. [10] 
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II. DESCRIPTION OF THE MG TEST-CASE SYSTEM 

A conceptual MG model, whose configuration is shown 
in Fig. 1, is employed to evaluate the effectiveness of the 
proposed game-theoretic optimal investment planning 
method. It accommodates solar photovoltaic (PV) panels, 
wind turbines (WTs), and micro-hydro power plants 
(MHPPs) to exploit renewable energy sources (RESs) for 
electricity generation. The system is backed-up with a hybrid 
energy storage system integrating a hydrogen (H2)-based 
energy storage system (constituted of an electrolyzer, an H2 
reservoir, and fuel cell stacks), and super-capacitor (SC) 
modules. Five different load aggregators, namely the 
residential, plug-in hybrid electric vehicle (PHEV)-charging, 
industrial, agricultural, and commercial aggregation agents 
are envisioned to act as the interface between the electricity 
consumers and the DSM market  to reap scale economies. 
An electric vehicle charging infrastructure, which is 
composed of electric vehicle supply equipment (EVSE), 
serves the purpose of charging of PHEV batteries. 
Additionally, some power converters are adopted to couple 
the MG components and loads to a common busbar. The 
mathematical modeling of the energy generation, storage, and 
conversion equipment employed within the MG structure is 
detailed in our previous papers [4], [11]. 

 

Fig. 1.   Architecture and electricity flow of the conceptualized MG. 

III. GAME-THEORETIC MODELING OF DR PROGRAMS 

This section formulates the proposed game-theoretic 
approach to model the DR programs using the interruptible 
loads. In this regard, it is assumed that five independent load 
aggregators serve the purpose of aggregating different types 
of loads, including residential, industrial, agricultural, 
commercial, and PHEV-charging loads. These aggregation 
agents join the demand response resources of the customers of 
the same type, and together have the authority to act on behalf 
of them in the demand response market. This has led to a 
cooperative (coalitional), non-zero-sum, two-player game, 
where the outcome could potentially only have net results 
greater than zero, benefitting both sides. At the same time, this 
strategic game falls in the category of Stackelberg 
competition, where the utility as the leader moves first – and 
knows ex-ante that the followers notice its moves – and then 
the follower aggregators move sequentially. 

For the sake of simplicity, we first formulate the problem 
considering only one aggregation agent in a monopolistic 
situation of power supply. Suppose 𝐼𝑛(, 𝑥)  represents the 
cost imposed on the utility by rewarding the aggregator of the 
type  for its participation in the DSM program and reducing 
its load power consumption by 𝑥 kW. In this situation, the real 
amount of incentive payments received by the considered 
aggregator can be expressed as follows [12], [13]: 

𝐼𝑛(, 𝑥, 𝑦) = 𝑦 − 𝑐(, 𝑥),                           (1) 

where 𝑦 denotes the amount of financial incentive paid to the 
aggregation agent in return for the contributions made to the 
energy-use reduction, while the term 𝑐(, 𝑥)  represents the 
cost imposed on the aggregator, which will be discussed in 
more detail in the following section. As one would expect, the 
aggregator would consider engaging in the DR schemes only 
if 𝐼𝑛(, 𝑥, 𝑦) > 0.  

In this context, the profit gained by the utility for not 
supplying part of the total loads during the peak consumption 
hours can be calculated as follows [12], [13]: 

𝑃𝑟(𝑥, 𝑦) = 𝑥 − 𝑦,                               (2) 

where   denotes the per-unit cost of not serving the loads 
during the time windows labeled as peak periods ($/kW). 
Power utilities have access to such information (hereafter 
termed ‘worth of load interruption’) based on power system 
state estimation studies. Accordingly, it is assumed that the 
value of  is available for every time period (1 h) of energy 
consumption for different months of the year. 

The utility aims to maximize its expected profit, which 
could be expressed as [12], [13]: 

max
௫,௬

(𝑥 − 𝑦).                                  (3) 

On the other hand, the customers have the freedom to 
decide whether or not to be involved in any DR event called 
by the utility. Hence, the utility will have to offer appealing 
incentives to the customers (here, aggregators) to foster their 
involvement in the energy demand management plans. The 
reason is that load curtailment comes at the cost of reducing 
the customers’ comfort level to some degree, which could be 
modeled as follows [12], [13]: 

𝑐(, 𝑥) = 𝑐ଵ𝑥ଶ + 𝑐ଶ𝑥 − 𝑐ଶ𝑥,                         (4) 

where 𝑐ଵ and 𝑐ଶ represent cost factors, whose values could be 
determined through the utility’s cost-benefit analysis on the 
DR plan, whose values are assumed to be available. Also, the 
variable  (which indicates the customer type), is normalized 
in the range [0, 1]; the greater the value of , the greater the 
willingness of customers to participate in the DR mechanisms 
 for the customers who are totally unwilling to participate in 
the program,  → 0. 

Taking the derivative of (4) w.r.t. the amount of load 
reduction the aggregator is looking to deliver, the marginal 
cost imposed on the aggregator  in the form of reduced 
convenience of its customers  could be derived as [12], [13]: 

𝜕𝑐

𝜕𝑥
= 2𝑐ଵ𝑥 + 𝑐ଶ − 𝑐ଶ.                               (5) 

The presented game-theoretic approach to model DR 
resources can be easily generalized to include more than one 
aggregator and/or utility. Since the focus of this study is on 
developing a grid-independent sustainable energy system, we 
generalize the above model to include several aggregators – in 

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on August 16,2021 at 08:46:32 UTC from IEEE Xplore.  Restrictions apply. 



 

 

compliance with different aggregator categories mentioned 
above – in the presence of only one utility, which 
monopolistically controls the electricity generation. Note that 
despite the monopolistic nature of electricity supply, the 
provision of DR services is oriented by market mechanisms, 
where the customers are free to choose whether to engage in 
such programs. Therefore, the devised DR plan is, in fact, 
structured as a market-directed incentive-centered plan.  

Assuming there are 𝑁 aggregation agents in the system, 
the above-described DR procurement model can be 
generalized as follows. The amount of incentives received by 
the aggregators can be calculated as [12], [13]: 

𝐼𝑛௝ = 𝑦௝ − ൫𝑐ଵ𝑥௝
ଶ + 𝑐ଶ𝑥௝ − 𝑐ଶ௝𝑥௝൯, ∀𝑗 ∈ {1, 2, 3, … , 𝑁}.   (6) 

On the other hand, the utility’s profit function, which is to 
be maximized subject to the non-negativity of (6), as well as 
the payment of incentives to aggregators in step with their 
engagement rate and the category of their loads, can be 
determined by (7) [12], [13]. 

𝑃𝑟 = ෍൫௝𝑥௝ − 𝑦௝൯,

ே

௝ୀଵ

       ∀𝑗 ∈ {1, 2, 3, … , 𝑁}.           (7) 

As stated above, the conceptualized game is a Stackelberg 
game between the utility and the aggregators, which is led by 
the utility by taking the first move. A classic ‘tit-for-tat’ 
strategy is employed to model the behavior of the aggregators 
in response to the utility’s moves in the course of the game. In 
a tit-for-tat strategy (which can be highly cooperative, 
assuming that players would act rationally), an agent 
cooperates in the first round of the game, then duplicates the 
opponent’s last move [14]. In this light, reducing the 
incentives paid for energy-use reduction is marked as a non-
cooperative turn. As expected, in such a case, the aggregators 
will reduce their participation in the next move in retaliation 
to the utility’s previous move. 

IV. GAME THEORY-CENTERED MG PLANNING METHOD 

The proposed method uses the net present cost (NPC) 
concept to project the cost of the conceptualized system, and 
utilizes the loss of power supply probability (LPSP) indicator 
 which is set at LPSP = 0.01  to measure the performance 
of the optimized system in terms of power supply consistency. 
In addition, an hourly-basis, year-long operational timeframe 
(8760-h) is considered for the operation of the system. The 
method also uses the game-theoretic DSM provision put 
forward in Section III to model the delivery of the DR 
resources. Moreover, as the chosen optimizer, the genetic 
algorithm – which is a well-established optimization 
algorithm in this area  serves the purpose of minimizing the 
formulated long-term MG capital planning problem. For 
reasons of space, the reader is referred to [15] and the 
references cited therein, for an introduction to the NPC 
method, the LPSP index, and the genetic algorithm optimizer. 
The game-theoretic DR scheduling procedure, which is 
embedded within the pre-defined cycle-charging operational 
strategy of the MG system, starts by sending the utility’s 
proposed incentives on a day-ahead basis to the aggregators. 
The aggregators then decide whether or not to accept the offer 
based on the pre-defined game rules and their elasticity levels 
for load interruption – with respect to their pre-specified daily 
limits of interruptible power. Finally, within each 24-h time 
interval, the central DR market mechanism dispatches the DR 
resources, whose requested levels of incentives are satisfied at 

the market-clearing price determined by the Nash equilibrium 
of the game.   

V. SIMULATION RESULTS AND DISCUSSION 

A. Case Study Site 

The conceptualized off-grid MG model was considered to 
decarbonize the economy of the town Ohakune, New Zealand 
(latitude 39.4180S, longitude 175.3985E). The town has a 
permanent population of around 1,000 people, while during 
the winter ski season the population rises to about 8,500. The 
community residing in the town has experienced unaffordable 
bills driven by congestion within the regional distribution 
network connecting them to the National Grid [16]. 

B. Input Data and Assumptions 

The techno-economic specifications of the components 
put into service in the MG are listed in Table II [17]–[23]. 
Throughout this paper, all the costs are converted to US 
dollars. The climatic profiles, including the solar irradiance, 
wind speed, and the streamflow of the Mangawhero River 
were sourced from the New Zealand’s National Institute of 
Water and Atmospheric Research (NIWA) database [24].  

In this respect, the historical climatological data collected 
for the considered locations were averaged at 1-h intervals 
over a 10-year period, between 2009 and 2018. The measured 
electricity demand data set was first collected from [25], and 
then broken down into the industrial, commercial, 
agricultural, and residential data categories in accordance 
with the records of different load profiles in New Zealand 
given in [26]. In addition, a fleet of 150 light-duty, commuter 
PHEVs, whose technical characteristics and the commuting 
behavior of their owners are as those considered in [27], 
shape the energy consumption profile of the PHEV charging 
station. The hourly year-long profile for the aggregate load 
demand was characterized with an average of 11.08 
MWh/day (averaged over one year) and a peak demand of 
1.49 MW, occurring between 6 and 7 p.m. on one of the 
winter days. The real discount rate and the MG’s projected 
service life were assumed as 6% and 20 years, respectively. 

As the input data to the DR scheduling level of the 
proposed investment planning modeling framework, the pre-
defined values of the worth of load interruption () and the 
financial incentives offered to the aggregation agents (𝑦) for 
each month of the year are given in Fig. 2. The assumed cross-
price elasticities of demand () for different load aggregation 
agents, as well as their daily limits of interruptible power (DL) 
– specified as 10% of the load powers aggregated over 24 
hours for each load type  are presented in Table III. The 
expected values of the variables  and 𝑦 , as well as the 
aggregators’ cost function coefficients, were chosen based on 
the results obtained in [13] for a broad range of regimes. The 
time intervals marked as peak usage hours are identified 24 
hours ahead of schedule  and are not restricted to occurring 
only at certain, pre-defined hours of the day  which helps 
better handle the uncertainties arising from the conceptualized 
100%-renewable MG. In addition, appropriate data sets were 
used to train the game-theoretic model using the support-
vector-machine (SVM) learning algorithm – to enable the 
agents to handle the edge cases by actively responding to the 
changes in incentives offered by the utility.  
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TABLE II. TECHNO-ECONOMIC SPECIFICATIONS OF THE MG EQUIPMENT 

Component 
Rated 
size 

Capital 
cost 

Replace-
ment cost 

O&M 
cost 

Life-
time 

(year) 

PV panel 
175 
W 

$375 
/unit 

$375   
/unit 

$7.5    
/unit-yr 

20 

WT 100 
kW 

$110000 
/unit 

$70000 
/unit 

$2200 
/unit-yr 

20 

MHPP  49 
kW 

$55000 
/unit 

$55000    
/unit 

$1100 
/unit-yr 

25 

EVSE 
22 
kW 

$4000 
/unit 

$4000 
/unit 

$20 
/unit-yr 

20 

SC 
3.2 
Wh 

$62/unit $62/unit 
$1.24  

/unit-yr 
15 

Fuel cell 5 kW 
$4000 
/unit 

$4000 
/unit 

$60 
/unit-yr 

5 

Electrolyzer 1 kW 
$1000 
/kW 

$1000    
/kW 

$20     
/kW-yr 

15 

H2 tank 1 kg $470    
/kg 

$470    
/kg 

$9.4    
/kg-yr 

20 

Inverter 1 kW $750 
/kW 

$750   
/kW 

$15     
/kW-yr 

15 

 

 

Fig. 2. Pre-defined monthly values of the variables  and 𝑦. 

 

TABLE III. AGENTS’ COST FUNCTION COEFFICIENTS AND SPECIFICATIONS 

Aggregator 𝑐ଵ 𝑐ଶ  DL (kW) 

Residential 1.08 11.49 0.48 223.58 

Commercial 1.04 11.31 0.51 156.47 

Industrial 0.99 11.71 0.57 268.20 

Agricultural 0.95 11.25 0.63 67.04 

PHEV-
Charging 

0.91 11.40 0.76 29.8  

 

C. Capacity-Planning Results 

The numerical simulation was conducted on the Intel® 
Core™ i7-8700, 3.20 GHz CPU with a RAM of 16 GB using 
the MATLAB software. Table IV reports the results of the 
optimized long-term capital plan for installing the 
conceptualized MG at the site under study in terms of the size 
of the equipment. The optimized whole-life cost of the system 
is found to be $9,728,403.  

TABLE IV. MG DESIGN OPTIMIZATION RESULTS 

PV 
(no)  

WT 
(no)  

MH-
PP 

(no) 

FC 
(no) 

SC 
(no) 

Elec. 
(kW)  

Tank 
(kg) 

Inv. 
(kW) 

EV-
SE 
(no) 

1388 11 12 172 24091 1063 680 1321 3 
 

To verify the efficacy of the proposed game-theoretic 
approach for modeling the DSM resources, two cases were 
considered, where the system was designed (1) by considering 
a DR delivery service, where 10% of the loads during the pre-
defined peak consumption hours (between 5 and 9 p.m.) could 
be interrupted, and (2) without implementing any interruptible 
loads. The results obtained under these two cases are reported 
and compared with the base-case scenario results in Table V. 
In the table, the game-theoretic, non-game-theoretic DR-
infused scenarios are respectively represented by ‘GT-DR’ 
and ‘NGT-DR’, while the scenario of not implementing any 
DR strategies is represented by ‘NO-DR’. In the three 
scenarios, the optimal number of the PV panels was equal to 
1,388, which is because solar is found to be the most 
affordable energy resource (up to the saturation point)  and 
changing its size was not found as an optimum solution. The 
table indicates that the implementation of the suggested Game 
Theory-centered DR provision scheme achieves cost-savings 
of 12.59% (equating to $1,400,638) and 19.37% (equating to 
$2,337,068) over the MG’s lifetime compared with non-
game-theoretic modeling of the DR resources and not running 
any DR programs, respectively. Hence, the proposed model 
substantially contributes to the affordability of the envisioned 
plan and could act as a catalyst for the realization of the 
proposed MG system.  

 

TABLE V. IMPACT ASSESSMENT OF THE PROPOSED DSM APPROACH 

Scen.  
WT 
(no)  

MH-
PP 

(no) 

FC 
(no) 

SC 
(no) 

Elec. 
(kW)  

Tank 
(kg) 

Inv. 
(kW) 

EV-
SE 

(no) 
GT-
DR 

11 12 172 24091 1063 680 1321 3 

NGT
-DR 

15 16 184 26274 1304 713 1408 4 

NO-
DR 

16 18 195 28631 1449 749 1496 7 

The amount of interrupted load power, aggregated at the 
monthly level, by load type, for the game-theoretic and non-
game-theoretic DSM procurement scenarios are shown in Fig. 
3. Also, by exemplifying the daily load power profile, where 
the annual peak load occurs, Fig. 4 illustrates how the 
deployment of both the game- and non-game-theoretic DR 
programs have contributed to the smoothening of the hourly-
basis year-round load power profiles. As it was expected, the 
game-theoretic modeling of the DR provision framework 
leads to a flatter load power curve. This is mainly due to the 
awareness information provided on the system state (power 
outputs from renewable generators, available energy reserves, 
etc.) for the triggering of the DR events. In fact, the proposed 
game-theoretic model of DSM provides a platform for 
hedging against the deep uncertainties inherent in RSESs by 
endogenously determining the DR schedules  and not in an 
exogenous manner to the model. For example, as can be seen 
in Fig. 4, the optimization protocol distributes the available 
DR budget around different hours of the day – and not only to 
the hours marked as peak hours. Also, the assumptions made 
regarding the game type and the rational behavior of the 
players had a significant role in achieving the energy 
affordability targets by harnessing the potential of 
interruptible loads. For example, it is conceivable that the 
benefits of the proposed game-theoretic DR provision 
modeling framework would have been reduced, if the game 
was not played under the coalitional, non-zero-sum, tit-for-tat, 
Stackelberg conditions. 

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on August 16,2021 at 08:46:32 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

Fig. 3. Monthly values of the interrupted load powers. 

 

Fig. 4. Impact of DSM provision on the shape of the overall load profile.  

VI. CONCLUSIONS AND FUTURE WORK 

A novel coordinated game-theoretic demand response 
service applied to the long-term economic planning of MGs 
was proposed to realistically model the consumers’ 
engagement in the load interruption programs. Using a test-
case MG system, it has been demonstrated that the proposed 
modeling framework could hold a significant implication for 
real-world applications. Given the prohibitive cost of 
renewable energy technologies, the coalitional management 
of the DR resources could play a key role in fostering the 
uptake of renewables; more specifically, the Game Theory-
centered modeling of the DR provision plans can realize a 
sustainable and profitable business model and value chain for 
MGs, whilst not pulling the customers out of their comfort 
zones. Future work should focus on incorporating other DR 
resources (such as deferrable loads) in the proposed DSM 
approach, while considering several utilities operating under 
non-monopolistic conditions.   
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