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Abstract 

In recent years, there has been considerable interest in the development of zero-emissions, sustainable energy systems 
utilising the potential of hydrogen energy technologies. However, the improper long-term economic assessment of 
costs and consequences of such hydrogen-based renewable energy systems has hindered the transition to the so-called 
hydrogen economy in many cases. One of the main reasons for this is the inefficiency of the optimization techniques 
employed to estimate the whole-life costs of such systems. Owing to the highly nonlinear and non-convex nature of 
the life-cycle cost optimization problems of sustainable energy systems using hydrogen as an energy carrier, meta-
heuristic optimization techniques must be utilised to solve them. To this end, using a specifically developed artificial 
intelligence-based micro-grid capacity planning method, this paper examines the performances of twenty meta-
heuristics in solving the optimal design problems of three conceptualised hydrogen-based micro-grids, as test-case 
systems. Accordingly, the obtained numeric simulation results using MATLAB indicate that some of the newly 
introduced meta-heuristics can play a key role in facilitating the successful, cost-effective development and 
implementation of hydrogen supply chain models. Notably, the moth-flame optimization algorithm is found capable 
of reducing the life-cycle costs of micro-grids by up to 6.5% as compared to the dragonfly algorithm. 
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1. Introduction 

Over the last three decades, research in artificial intelligence (AI) has developed a wide variety of techniques and 
methods that can be either adapted or utilised directly to solve complex problems in the energy sector (e.g. energy 
system investment planning, operation, as well as dynamic stability and control), which were thought to be unsolvable 
without several simplified assumptions [1]–[3]. Meta-heuristic optimization is a sub-discipline of AI that attempts to 
find the global optimal solutions to non-deterministic polynomial time-hard (NP-hard) problems, which are not 
amenable to exact mathematical optimization methods, through exploiting appropriate computational variations of 
natural systems [4].  

In recent years, there has been growing interest in the concept of “smart energy systems” that expands on the concept 
of “smart grids” with the aim of exploiting the interplay between the electricity and transport sectors [5], [6]. 
Furthermore, it is envisioned that accelerating the development of a hydrogen economy – the utilisation of hydrogen 
as an energy carrier for power generation, fuelling the hydrogen vehicles, long-term energy storage, and long-distance 
green energy transportation – can play a pivotal role in realizing the zero-emissions, sustainable energy systems of 
tomorrow [7]–[9].  

The optimal design and capacity planning problems of renewable and sustainable energy systems, including micro-
grids (MGs), nano-grids, energy hubs, virtual power plants, load aggregators, and so forth, is a complex combinational 
optimization problem with a non-smooth, non-convex objective function, as well as a variety of nonlinear constraints 
involved in its formulation. Accordingly, it has been classified as an NP-hard problem [10], [11]. 

Prior to the ground-breaking application of the particle swarm optimization (PSO) by Hakimi et al. [12], the exact 
mathematical optimization methods, such as linear programming [13], decomposition-based optimization [14], 
dynamic programming [15], mixed-integer linear programming [16], and mixed-integer nonlinear programming [17], 
were used to optimally design different forms of renewable energy systems. These methods are subject to some 
constraints on the continuity and derivability of the objective function, follow rigorous protocols, and often cannot 
track the dynamic changes. Following their seminal paper of 2007, several efforts have been made to harness the 
potential of the new AI-based meta-heuristic optimization techniques for making a positive impact on the quality of 
solutions either by: (1) development of the optimization algorithms that are well adapted to the class of problems at 
hand; or (2) putting the newly emerged meta-heuristics to the test using a trial-and-error mechanism, aiming at finding 
an algorithm, which improves the solution quality as compared to the algorithms previously found to be most effective 
in solving the considered problems.  

As an example of the first class of the studies mentioned above, Mohandas et al. [18] have integrated the chaos theory 
into the artificial bee colony (ABC) algorithm, and by applying the proposed hybrid algorithm to the optimal 
equipment capacity planning problem of distributed generation (DG) units in a test-case distribution system, affirmed 
its superiority to the standard ABC algorithm in the context of MG design and planning. Derakhshan et al. [19] have 
improved the basic cuckoo search algorithm (CSA) by accommodating a crossover operator and adopted it to optimize 
the design variables of a grid-tied photovoltaic (PV)/wind turbine (WT)/battery test-case MG. Bahmani-Firouzi and 
Azizipanah-Abarghooee [20] have also enhanced the original bat algorithm (BA) by adding the mechanism that self-
adaptively tunes the exploration and exploitation degrees of the optimization. The authors have demonstrated the 
higher performance of the improved BA over the basic BA, the PSO, and the genetic algorithm (GA) for the optimal 
sizing of a battery bank to be incorporated in an on-grid MG test-case system. Lorestani et al. [21] have put forward 
an enhanced variant of the PSO, named evolutionary-PSO, and considering a PV thermal/wind/battery/micro-
turbine/boiler grid-independent MG have shown its primacy in approximating the globally optimum solution over the 
PSO, the GA, the differential evolution, and the harmony search algorithm (HSA) meta-heuristic optimization 
algorithms. As another example, Sheng and Zhang [22] have developed an enhanced binary bat algorithm (BBA) to 
optimize an MG optimal sizing problem. They have also shown the supremacy of their algorithm over the basic BBA, 
as well as the GA and the PSO. It is worthwhile noting that since the GA and PSO are two well-established algorithms 
in this research area, they are usually used as reference algorithms to examine the performance of other algorithms. In 
view of this, the GA and PSO are still popular among renewable energy system designers. For instance, Nagapurkar 
and Smith [23] and Hakimi et al. [24] have recently employed the GA and the PSO to optimally size the equipment 
of different configurations of fuel cell-supported MGs, respectively. 

Putting the new meta-heuristics to the test has gained much more attention in the literature as compared to the adaption 
and enhancement of the standard meta-heuristics for the renewable energy system capacity planning purposes. Sharma 
et al. [25] have established the superiority of the grey wolf optimizer (GWO) over several other meta-heuristics, 
including the PSO and the GA, in solving the optimal sizing problem of an MG’s battery energy storage system. 



3 
 

Maleki and Pourfayaz [26] have proved the outperformance of the HSA over the simulated annealing (SA) algorithm, 
when applied to the optimal sizing problem of a PV/wind/diesel system. Singh et al. [27] have designed a cost-effective 
PV/wind/biomass MG using the ABC algorithm and validated its superior performance over the classic PSO. Fetanat 
and Khorasaninenejad [28] have affirmed the supremacy of the ant colony optimization (ACO) over the GA in solving 
the size optimization problem of a grid-independent PV/wind energy system. Kefayat et al. [29] go further and 
demonstrate the supremacy of the hybrid ABC-ACO (HABC-ACO) algorithm for the probabilistic sizing of 
distributed energy resources within a distribution system over the standard ABC and ACO algorithms. Bukar et al. 
[30] have proved the superior performance of the grasshopper optimization algorithm (GOA) over the CSA and the 
original PSO in optimizing the long-term investment planning problem of a stand-alone PV/wind/battery/diesel MG 
network. Tolba et al. [31] have shown the capability of the salp swarm algorithm (SSA) in better finding the global 
optima in renewable energy system optimal design problems as compared to the PSO, the GOA, and the gravitational 
search algorithm (GSA). Ali et al. [32] have put the ant lion optimizer (ALO) to the test for the optimal allocation and 
sizing of the renewable DG to be placed in a distribution network. The authors have highlighted that the ALO excels 
the PSO, the GA, the Big Bang-Big Crunch (BB-BC), and the CSA approaches. Furthermore, Ghorbani et al. [33] and 
Sharma et al. [34] have demonstrated the higher efficiency of the hybrid GA-PSO (HGA-PSO) compared to the 
original GA and PSO in the field of renewable energy system design using different MG test systems. Yang et al. [35] 
have confirmed the effectiveness of the teaching-learning-based optimization algorithm for the equipment capacity 
planning of MGs, whilst additionally providing a platform for the probabilistic modelling of the variability of the 
weather-dependent sources. Moreover, Gharibi and Askarzadeh [36] have adopted a multi-objective approach to 
jointly optimize the capacity of the equipment and the energy exchange of a grid-tied MG with its upstream power 
grid. Based on the numeric simulation results obtained by applying the multi-objective crow search algorithm to the 
derived optimization problem, they have demonstrated that the multi-objective crow search algorithm is not only 
computationally tractable when applied to their problem, but is also highly effective in finding the Pareto optimal 
frontier of the MG’s minimized life-cycle cost, non-renewable energy fraction, and loss of power supply probability 
(LPSP). 

The first systematic study on the efficiency comparison of a broad variety of meta-heuristics, when applied to the 
long-term infrastructure planning of a renewable energy system was carried out in 2018 by Peng et al. [37]. They have 
assessed the performance of nineteen meta-heuristics including single and hybrid algorithms in finding the optimum 
life-cycle cost of a solar/wind/battery renewable energy system that serves the purposes of water desalination. 
Although the results of their study are interesting in terms of emphasizing the need to continuously compare the 
accuracy of new optimizers, they did not take into account the state-of-the-art algorithms in their assessment. 
Furthermore, they predominantly dealt with the comparison of the new variants of well-established meta-heuristics, 
such as the modified PSO, the PSO based on constriction factor, the PSO using adaptive inertia weight, the improved 
HSA (IHSA), and the IHSA-based chaotic search.  

The above review of the achievements in applying meta-heuristics to renewable and sustainable energy system 
planning problems identifies the lack of a comprehensive comparison among the investigated methods. Put differently, 
most of the studies have been limited to the comparison of the results obtained by applying a newly developed 
algorithm with those of some traditional meta-heuristics, as benchmark algorithms. It has not yet been established 
how the recently proposed meta-heuristics perform in comparison with each other. The no-free-lunch (NFL) theorem 
[38] also gives credence to these kinds of comparisons; according to which, there cannot exist a meta-heuristic that is 
unequivocally the best for solving all types of NP-hard optimization problems. Moreover, most studies have tended 
to focus on only one non-hydrogen-based renewable energy test-case system, when evaluating the performance of 
meta-heuristic optimization algorithms. The reader is referred to [39] for a detailed systematic review of the trends in 
the optimal equipment planning of hydrogen-based renewable and sustainable energy systems. 

1.1. Objectives and contributions of the study  

Based on the above premises, several meta-heuristics have been proposed in the literature to solve the optimal design 
and equipment capacity planning problems of MGs. However, there is still a need to continuously analyse their 
efficiencies with those of the newly emerged meta-heuristics - because, due to the stochastic nature of the meta-
heuristics, there is always the prospect that a new algorithm finds a better solution in the search space. In this respect, 
this paper compares the efficiencies of twenty meta-heuristic optimization algorithms based on three hydrogen-based 
MG test-case systems, proposed to provide clean electricity and transportation fuel for remote, rural, and semi-urban 
areas of New Zealand. The following algorithms are considered in this comparison study: the PSO [40], the GA [41], 
the HGA-PSO [42], the ABC algorithm [43], the ACO [44], the HABC-ACO [45], the ALO [46], the IHSA [47], the 
BB-BC algorithm [48], the moth-flame optimization algorithm (MFOA) [49], the sine-cosine algorithm (SCA) [50], 
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the multi-verse optimizer (MVO) [51], the water evaporation optimization (WEO) [52], the GWO [53], the CSA [54], 
the SSA [55], the GOA [56], the dragonfly algorithm (DA) [57], the BA [58], and the firefly algorithm (FA) [59]. 
Table 1 highlights the merits and drawbacks of the aforementioned algorithms. Furthermore, an overview of the 
evaluated meta-heuristics is provided as Supplementary Material accompanying the paper (Additional File 1: An 
overview of the investigated meta-heuristic optimization algorithms). 

 

Table 1. Strengths and weaknesses of the investigated meta-heuristics within the context of this study. 

Algorithm Strengths Weaknesses Reference 

PSO - Fast convergence speed 
- Robustness to the choice of parameters 

- Premature convergence [40] 

GA - Exchange of information between the 
population to create new individuals 
 

- Highly susceptible to the choice of 
the values of the operators 

[41] 

HGA-PSO - Promoted diversity in the generation of 
new individuals 

- Improved exploration of the search 
space 

- Slow convergence rate [42] 

ABC - Highly efficient in solving high-
dimensional problems 

- Computationally demanding [43] 

ACO - High exploration power due to 
conducting parallel searches 

- Changes in the parametric 
probability distribution used to 
generate candidate solutions 
throughout the iterations 

- Poor performance when applied to 
continuous optimization problems  

[44] 

HABC-ACO - Enhanced efficiency in solving 
continuous optimization problems 

- Excessive number of the required 
function calls 

[45] 

ALO - Few parameters to tune - Highly sensitive to the choice of 
control parameters 

[46] 

IHSA - Fair balance between the exploration 
and exploitation phases 

- The need to fine-tune the 
parameters in different 
applications 

[47] 

BB-BC - Easy implementation - No trade-off between the 
exploration and exploitation 
potentials 

[48] 

MFOA - Well-balanced exploration and 
exploitation abilities 

- Highly vulnerable to changes in 
the values of the parameters 

[49] 

SCA - Guaranteed convergence to the near-
optima solution 

- Computationally expensive [50] 

MVO - Proven ability to avoid getting stuck in 
local optima 

- Computationally intractable in 
some applications 

[51] 

WEO - Low computational cost - Stagnation in local optima [52] 

GWO - Dynamic adjustment of control 
parameters 

- High computational complexity [53] 

CSA - Computationally-efficient - Poor exploitation power [54] 

SSA - Easy implementation stemming from its 
simple concept 

- Poor local search ability [55] 

GOA - The need to adjust only a few 
parameters 

- Excessive computational 
overheads 

[56] 

DA - Highly efficient in solving continuous 
problems 

- Overflowing the 
allowed search space limits as a 

[57] 
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result of its relatively long step 
lengths  

BA - Providing very quick convergence at a 
very initial stage by automatically 
switching from the exploration to the 
exploitation phase 

- Rigorous theoretical foundation [58] 

FA - Efficient in solving multi-modal 
optimization problems 

- Memory-less nature  [59] 

 

The key contributions of this paper are: 

1. One off-grid and two grid-connected battery-less, hydrogen-based MG architectures are proposed, which are 
first-of-their-kind in the renewable and sustainable energy systems literature. The proposed stand-alone 
system is projected to play a significant role in establishing a clean, resource-efficient, and climate-resilient 
energy economy for remote communities, while the grid-tied systems could pave the way for a cost-effective 
power system transition to integrate high levels of renewable generation and distributed energy resources. 

2. A rule-based energy management strategy based on the queuing theory is developed for the operation of the 
hydrogen-backed MGs, which cost-efficiently integrates the hydrogen fuel cell-powered light-duty commuter 
vehicles, medium-duty vessels, heavy-duty tractors, and heavy-freight trucks into the conceptualised 
sustainable energy systems - which facilitates the take-up of low-carbon transport. 

3. A statistics-based performance comparison framework is devised, which, for the first time, compares the 
efficiency of the meta-heuristic optimization algorithms in the MG design and planning context based on 
their success in nearing the global optima solutions, when applied to disparate MG configurations - either in 
terms of connection to an upstream grid or electricity generation/load demand profiles. 

2. Description of the suggested hydrogen-based MG test-case systems 

The proposed on- and off-grid hydrogen-based MGs aim at facilitating the deployment of a hydrogen economy in 
both the electricity and transport sectors, in line with the objectives of sustainable development. Accordingly, the 
configurations of the 100% renewable MGs are battery-less – either in terms of energy storage for a consistent 
power supply, or the integrated green vehicles. The rationale lies in the inefficiency of most of the commercially 
available battery types in terms of long-term energy storage, inability to track the very short-term variations of load, 
as well as the fact that they are not as environmentally friendly as they are often conceived due to the presence of toxic 
materials in their structures (which would be problematic after the end of their service lives) [60], [61].  

2.1. Micro-grid test-case system 1 

The first hydrogen-based MG, depicted in Fig. 1, is a grid-independent MG, which aims at satisfying the energy needs 
of isolated, remote island communities, whilst additionally providing a practical solution to manage their waste. It 
utilises some WTs for renewable power generation and includes a hybrid energy storage system consisting of super-
capacitors (SCs) and a hydrogen-subsystem. A reactor-reformer system, as well as a waste-to-energy (WtE) plant, 
also, to some extent, contribute to the energy generation, whilst also serving the purposes of waste management. 
Moreover, the system is equipped with a hydrogen refuelling station, providing the fuel needed for hydrogen-powered 
vessels. 

Municipal solid waste (MSW) is separated by the one-way sorting and separation system, which involves the two 
categories of MSW: organics, and non-organics. The organic fraction of the MSW, together with the agricultural 
biomass, is fed to the reactor-reformer system to produce hydrogen via methanation and steam reforming processes. 
The hydrogen produced by the reformer is then stored in a hydrogen tank, which is used as a resource to compensate 
for any lack of hydrogen. The non-organic fraction of the MSW is combusted in the WtE plant to generate electricity. 



6 
 

 
Fig. 1. Schematic diagram and power flow of the MG test-case system 1. 

The mathematical models of the components of the MG test-case system 1 are expressed in the following sub-sections, 
together with instructions on the operation of the network. 

2.1.1. Wind turbine 

The Fuhrländer FL30 WT, whose output power-wind speed (at the hub height) characteristic curve is shown in Fig. 
2, is considered in this system. The WT has a rated power of 30 kW AC and a hub altitude of 27 m [62]. 

 
Fig. 2. Characteristic curve of the FL30 WT [62]. 

In order to normalize the wind speed profile, measured at the height of ℎ!"#, to the hub height of the WT under study, 
ℎ, the following equation can be used [63]: 

 
 

𝑉$ = 𝑉!"# × %
ℎ
ℎ!"#

&
%

,																																																																	 (1) 
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where 𝑉!"# represents the reference speed recorded at the height of ℎ!"# and 𝛾 is a number in the range [0.1, 0.25] that 
reflects the status of the terrain on which the turbine is going to be installed. The value of this parameter is 0.25 for 
the non-flat, tree-covered land areas, considered in this study as case study sites. 

2.1.2. Waste-to-energy plant 

The output power of the considered generic WtE plant at time step 𝑡 can be calculated by the following equation [64]: 

 𝑃&'((𝑡) =
𝐻𝐻𝑉)*& × h&'( ×𝑀)*&(𝑡)

∆𝑡 , (2) 

where h&'( is the efficiency of the WtE plant (i.e. 18%), 𝐻𝐻𝑉)*& stands for the higher heating value of the non-
organic fraction of the MSW (i.e. 35.7 MJ/kg), 𝑀)*&(𝑡) is the amount of non-organics fed to the WtE plant at time 
step 𝑡, and ∆𝑡 is the length of each time step (i.e. 1 h).  

2.1.3. Hybrid energy storage system 

A hybrid energy storage system consisting of an SC bank and a hydrogen sub-system – an electrolyser, a reactor-
reformer system, a hydrogen tank, and a fuel cell – is considered to compensate for the intermittency 
of the renewable power generation technologies and the variations in energy demand. The hybrid 
energy storage medium is operated by the strategy proposed by Akram et al. [65] for the operation of 
a hybrid battery-SC energy storage system. In this respect, a low-pass energy filter first divides the 
energy shortfall/excess into the low- and high-frequency components, which are then 
supplied/absorbed by the hydrogen sub-system and SCs, respectively. The objective of such 
hybridization is to allow for leveraging the high power/energy density capability of SCs/hydrogen sub-
system, thereby improving the resilience of the system to both the sudden and gradual changes in 
load demand and/or output powers from the weather-driven power generators. 

2.1.3.1. Super-capacitors 

The MAXWELL EDLC SC modules with a capacity of 3.23 Wh handle the high-frequency component of the energy 
shortfall/excess [66]. The amount of energy stored in the SC bank can be expressed by the following equation [67]: 

 𝐸+,(𝑡) = 𝐸+,(𝑡 − 1) + %𝑃-$(𝑡) −
𝑃.-$(𝑡)
h+,

& × ∆𝑡, (3) 

where h+, is the round-trip efficiency of the SC bank (i.e. 95%); with 𝑃-$(𝑡) and 𝑃.-$(𝑡) representing the charging 
and discharging powers of the SC bank at time step 𝑡, respectively. 

The energy content of the SC bank is constrained using Eq. (4) [67]. 

 𝐸+,,012 ≤ 𝐸+,(𝑡) ≤ 𝐸+,,034 , (4) 

where 𝐸+,,012 and 𝐸+,,034 are the minimum and maximum allowable storage capacities of the SC bank that are 
determined as [66]: 

 𝐸+,,012 = (0.5 × 𝑁+, × 𝑈+,,0125 )/(3.6 × 106), (5) 

 𝐸+,,034 = (0.5 × 𝑁+, × 𝑈+,,0345 )/(3.6 × 106), (6) 

where 𝑁+, is the optimal number of SCs; 𝑈+,,012	  (i.e. 0.8 V) and 𝑈+,,034	  (i.e. 2.7 V) are the minimum and maximum 
allowable voltage levels of the SC modules, respectively; with the numerical value of 3.6×106 converting the unit of 
measurement from J to kWh.  

2.1.3.2. Hydrogen sub-system 

The generic hydrogen sub-system conceptualised in this paper, consists of a polymer electrolyte membrane (PEM) 
electrolyser, an anaerobic reactor-reformer system, an intermediary-pressure compressor, a hydrogen tank, as well as 
a stationary PEM fuel cell. All the components of the hydrogen sub-system are generic products, whose techno-
economic specifications are available in [68]–[70]. 



8 
 

The PEM electrolyser dissociates water molecules into oxygen and hydrogen atoms in the gas phase. The hydrogen 
power delivered from the electrolyser to the tank can be calculated as [67]: 

 𝑃(89:(𝑡) = 𝑃((𝑡) × h( , (7) 

where h( is the total efficiency of the electrolyser unit, i.e. 60%, and 𝑃((𝑡) is the power consumed by the electrolyser 
at time step 𝑡. An intermediary-pressure compressor, shown in Fig. 1, is utilised to compress the hydrogen produced 
by the electrolyser at around 1.2 bar pressure to around 20 bar in order to reduce the volume it occupies.  

The other hydrogen generator element in this layout is a united anaerobic reactor-reformer system that converts the 
organic fraction of the MSW, as well as the agricultural residues, into the hydrogen, which is also pressurized by a 
compressor before being reserved in the tank. 

The output hydrogen power of the united reactor-reformer system, conceptualised by Hakimi and Moghaddas-Tafreshi 
[71], which has a waste-to-hydrogen efficiency of 4.54% and utilises a MAHLER reformer can be calculated by [71]: 

 𝑃;;89:(𝑡) = 0.0454 × 𝐻𝐻𝑉95 ×𝑀*&8<(𝑡), (8) 

where 𝐻𝐻𝑉95 is the higher heating value of the hydrogen (i.e. 39.7 kWh/kg) and 𝑀*&8<(𝑡) is the aggregate amount 
of organic MSW and agricultural waste fed to the reactor-reformer unit at time step 𝑡. 
The level of hydrogen energy stored in the tank at each time step can be calculated by the following equation [67]: 

 𝐸9:(𝑡) = 𝐸9:(𝑡 − 1) + %𝑃(89:(𝑡) + 𝑃;;89:(𝑡) −
(𝑃9:8=,(𝑡) + 𝑃9:8+(𝑡))

h'32>
& × ∆𝑡, (9) 

where 𝑃9:8=,(𝑡) is the delivered hydrogen power from the storage tank to the fuel cell at time step 𝑡; 𝑃9:8+(𝑡) is the 
delivered hydrogen power from the hydrogen reservoir to the refilling station at time step 𝑡; and h'32> is the round-
trip efficiency of the tank, i.e. 95%. 

Accordingly, the mass of stored hydrogen at each time step can be calculated as follows [71]: 

 𝑚9:(𝑡) =
𝐸9:(𝑡)
𝐻𝐻𝑉95

. (10) 

The constraints imposed by Eq. (11) leverage the facts that the energy stored in the tank cannot exceed its nominal 
capacity and some fraction of the hydrogen energy cannot be released due to some concerns associated with the 
pressure drop [72].  

 𝐸9:,012 ≤ 𝐸9:(𝑡) ≤ 𝐸9:,034 , (11) 

where 𝐸9:,012 and 𝐸9:,034 are the minimum and maximum allowable storage capacities of the reservoir, respectively. 
In this study, 𝐸9:,012 is set as 5% of 𝐸9:,034 [73]. 
 
Furthermore, the output power of the stationary fuel cell at time step 𝑡 can be calculated by [72]: 

 𝑃=,(𝑡) = 𝑃9:8=,(𝑡) × h=, , (12) 

where h=, is the electrical efficiency of the fuel cell, i.e. 40%. 

2.1.4. Hydrogen refuelling station 

The considered hydrogen refilling station in this study, is mainly composed of a high-pressure compressor (i.e. 20 to 
350 bar), a cooling system, and a dispenser to deliver the fuel to the hydrogen fuel cell-powered vehicles or vessels 
via nozzles. The output hydrogen power of the station (kg H2/h) is employed in this paper as a decision variable to 
evaluate the optimal capacity of the station. The hydrogen refilling station conceptualised in this study is inspired by 
the schemes proposed in [74]–[78] and has an efficiency (h+) of 95%. 

2.1.4.1. Hydrogen-powered vessels 

Since the MG test system 1 is particularly designed and proposed for remote, island communities, the hydrogen fuel 
cell-powered passenger ferries are integrated within the system through utilising the considered hydrogen station. In 
this regard, the Hydrogenesis Passenger Ferry is selected as the eco-friendly, hydrogen-powered boat. The ferry is 
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powered by four 12 kW fuel cells that operate at the voltage of 48 V. Also, this 14-seater ferry is equipped with a 
purpose-built tank, which stores hydrogen at the pressure of 350 bar [79]. 

2.1.5. Inverter 

The generic DC/AC inverter, tying the residential electrical loads to the MG’s network, is modelled by its 
efficiency,	h?2@, meaning that the actual load that must be satisfied is (1/h?2@)-times the imposed load on the MG. An 
efficiency of 90% is considered in this analysis for the inverter. 

2.1.6. Operational strategy  

The cycle-charging energy dispatch scheme is employed in this study to operate the MGs, which is electrically-driven 
and absorbs/supplies the excess/shortage of renewable power by the hybrid energy storage system, illustrated in sub-
section 2.1.3. When the hydrogen tank/SC bank is fully charged or the amount of low-/high-frequency component of 
the excess power is greater than the capacity of the electrolyser/SC bank, then the surplus power is dumped through a 
DC dump load. On the other hand, when the energy storage system is not able to afford the power shortfall, a load-
shedding scheme ensures the stability of the system, which increases the unreliability of power supply. Moreover, it 
is assumed that the supply of hydrogen is guaranteed by setting a separate reliability constraint, which is illustrated in 
Section 3. 

2.2. Micro-grid test-case system 2 

The second test system, shown in Fig. 3, is a notional grid-tied hydrogen-based MG, proposed to provide green 
electricity and hydrogen as a transportation fuel for semi-urban communities.  

 
Fig. 3. Schematic diagram and power flow of the MG test-case system 2. 

The mathematical description of the functions of the components, employed within the MG test-case system 2, is 
presented in the following paragraphs, along with some information on the operation of the system.  

The mathematical models of the hybrid energy storage system (without a reactor-reformer system), the residential 
loads’ inverter, as well as the hydrogen refuelling station are developed in a similar way as outlined for system 1. In 
this layout, the electrolytic hydrogen production using renewable energy sources (RESs) is the only planned 
mechanism to provide the hydrogen demands of the system. 
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2.2.1. Micro-hydro power plant 

The Natel FreeJet FJ-7A micro-hydro power (MHP) plant is adopted in the second MG’s structure to generate power 
on a run-of-the-river scheme. The plant has a rated power of 49 kW and its output power can be calculated by Eq. (13) 
[80].  

 𝑃A9(𝑡) = 𝑁A9 × 𝜌 × ℎ × 𝑔 × hA9 ×
𝐹(𝑡)
1000, 

(13) 

where 𝑁A9 is the calculated optimal number of MHPs, 𝜌 represents the water density (i.e. 1000 kg/m3), ℎ denotes the 
gross head height (i.e. 7 m), 𝑔 represents the acceleration of gravity (i.e. 9.81 m/s2), hA9 is the overall efficiency of 
the plant (i.e. 55%), and 𝐹(𝑡) is the hourly streamflow (m3/s). 

2.2.2. Wind turbine 

The Fuhrländer FL100 WT, whose characteristic curve (provided by the manufacturer) is shown in Fig. 4, is 
considered in the MG test-case system 2. The WT has a rated power of 100 kW AC and a hub altitude of 38 m [62]. 

 
Fig. 4. Characteristic curve of the FL100 WT [62]. 

2.2.3. Photovoltaic panel 

The Canadian Solar CS6U-325P PV panel is adopted in this test-case system [68]. It is of the polycrystalline type and 
has a rated power of 325 W. The output power of the PV generation system (kW) at time step 𝑡 can be calculated 
using Eq. (14) [33]. 

 𝑃BC(𝑡) = 𝑁BC × hD × 𝐴0 × 𝐺(𝑡), (14) 

where 𝑁BC indicates the optimal number of PV panels, hD is the overall PV generator’s efficiency (i.e. 15%), 𝐴0 
identifies the area of each panel (i.e. 1.92 m2), and 𝐺(𝑡) represents the total solar irradiance on the tilted planes of the 
PV panels (kW/m2) at time step 𝑡. 

2.2.3.1. Maximum power point tracking 

A maximum power point tracking (MPPT) apparatus is employed to exploit the maximum output power of the PV 
generator at each level of irradiance. The function of the tracker can be mathematically modelled by Eq. (15) [81]. 

 𝑃BC,ABB:(𝑡) = 𝑃BC(𝑡) × (1 − 𝑘:(𝑇3(𝑡) − 𝑇E,!"#)), (15) 

where 𝑘: denotes the temperature coefficient of the apparatus (i.e. 0.5%), 𝑇3(𝑡) is the ambient temperature at time 
step 𝑡 (°C), and 𝑇E,!"# represents the panels’ temperature at the standard (reference) condition, i.e. 25°C. 

2.2.4. Biomass power plant 

The notional biomass power plant considered in this analysis incorporates an anaerobic digestion reactor, a steam 
methane reformer, an air separation unit, and an internal combustion engine. The anaerobic digestion reactor utilises 
the low-grade agricultural biomass to produce methane gas. The steam methane reformer uses the methane gas 
produced by the reactor to produce pure hydrogen gas at high temperatures between 900 and 1000°C. Finally, the 
hydrogen is burned in pure oxygen, provided by an air separation plant, in the internal combustion engine to generate 
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clean electricity - water is the only product of the combustion of hydrogen in oxygen. The overall waste (kg) to power 
(kW) efficiency of the conceptualised biomass power plant is 3.47% [71], [82]. 

2.2.5. Upstream grid  
The second MG is coupled to an upstream power grid via a bidirectional transformer. It is assumed that the grid can 
compensate for any lack of power generation within the MG, as an infinite-bus. On the other hand, it absorbs any 
surplus power generated by renewable technologies, thereby eliminating the need for a DC dump load. For the energy 
transactions, it is assumed that the grid sells the power to the MG at a flat rate of $0.21/kWh, in New Zealand currency, 
while the feed-in tariff is set at $0.13/kWh [83]. 
The cost of power exchange with the upstream power grid at each time step can be calculated as follows [84]:  

 𝑐𝑜𝑠𝑡D!1.(𝑡) = ±𝑃D!1.(𝑡) × 𝜋"4 × ∆𝑡, (16) 

where 𝑃D!1.(𝑡) denotes MG’s exchanged power with the upstream grid at time step 𝑡 and 𝜋"4 is the price of power 
exchange per kWh. It is worth noting that a positive value of 𝑃D!1. represents a purchasing power from the upstream 
power grid and a negative value represents any sold power to the upstream power grid. 
The power exchange with the upstream grid is subject to the following constraint [84]: 

 𝑃D!1.(𝑡) ≤ 𝑃D!1.,034 ,	 (17) 

where 𝑃D!1.,034 is the maximum permissible power exchange of the MG with the upstream grid. This constraint 
represents the empirical limitations on the network. In other words, the maximum value represents the practical upper 
constraint on the size of the transformer coupling the MG to the upstream grid.   
Hence, the value of 𝑃D!1.,034 is considered as one of the decision variables, which implicitly identifies the size of the 
required bidirectional transformer. In this respect, the solid-state transformer, proposed by Qin and Kimball [85], is 
adopted in this study. It utilises four-quadrant switch cells to allow bidirectional power flow and controls the power 
via a phase shift mechanism between two active H-bridges. The nominal efficiency of this transformer is expected to 
be 93%. The capacity of the transformer is going to be determined in kVA. However, for the sake of simplicity, the 
power factor (i.e. defined as active power in kW divided by apparent power in kVA) is assumed to be constant and 
equal to 0.95.  

2.2.6. Light-duty hydrogen-powered fuel cell vehicles 

Since the MG test-case 2 is particularly designed for semi-urban areas, a fleet of light-duty hydrogen fuel cell-powered 
vehicles is integrated into the system via utilising the refuelling infrastructure. Accordingly, the Rasa, manufactured 
by Riversimple, is selected as the light-duty fuel cell vehicle. It contains an 8.5 kW fuel cell-powered electric motor 
and a 1.5 kg hydrogen tank that stores the hydrogen at 350 bar. This is unlike most other light-duty fuel cell vehicles 
that store the hydrogen at 700 bar, which leads to the higher rates of energy use as well as the need for the more 
expensive filling stations [86]. 

2.2.7. Operational strategy 

As per the first test-case MG system’s operational strategy (sub-section 2.1.6), the cycle-charging energy dispatch 
mechanism is adopted to operate the second MG. The only difference is that when the hybrid energy storage system 
is not able to supply/absorb the energy shortfall/excess, the upstream grid takes the responsibility to inject/withdraw 
the requested/surplus energy, instead of load shedding/energy spillage. Nevertheless, if the requested power violates 
the constraint in Eq. (17), still, load-shedding/energy spillage would be necessary. 

2.3. Micro-grid test-case system 3 

The third test-case system, schematically diagrammed in Fig. 5, is a grid-connected MG, conceptually proposed to 
improve the energy self-sufficiency of rural communities that currently have access to the main grid, and thereby 
enhance their resilience to the upstream network outages. It also provides a platform to manage their municipal solid 
and agricultural waste. 
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Fig. 5. Schematic diagram and power flow of the MG test-case system 3. 

 

The mathematical models of the hybrid energy storage system, the WtE plant, the residential loads’ inverter, and the 
hydrogen refuelling station are the same as those outlined for the MG test-case 1, while the mathematical models of 
the upstream grid, as well as the PV and MHP generators, are the same as those illustrated for the MG test-case 2. The 
WT generation system in this scheme consists of both the FL30 and FL100 WTs, which are respectively modelled in 
sub-sections 2.1.1 and 2.2.2. Furthermore, the network is operated in a similar manner as outlined for system 2. 

2.3.1. Heavy-duty hydrogen-powered fuel cell vehicles  

For the third MG system, hydrogen fuel cell-powered trucks and tractors are considered as hydrogen loads. 
Accordingly, Hyundai’s heavy-duty fuel cell-electric truck and New Holland’s NH2 fuel cell-powered tractor are 
considered as the heavy-duty hydrogen-powered vehicles that utilise the station. The considered truck and tractor 
respectively hold 32.86 and 8.2  kg of gaseous hydrogen in the type IV carbon composite-based tanks at a pressure of 
350 bar [87], [88].  

 

3. Life-cycle cost projection methodology 

In order to project the minimized whole-life costs of installing the considered MG projects, whilst satisfying the 
requirements of electricity and hydrogen fuel supply over their life spans, a methodology is developed in this section. 
The proposed methodology utilises the concepts of the net present cost (NPC) and the LPSP respectively for modelling 
the total life-cycle costs and measuring the reliability of these systems. The devised methodology also determines the 
optimal size of the equipment included in the configurations suggested for the test-case MGs. 

3.1. Model reduction 

In order to alleviate the computational intensiveness of simulations, we adopt the idea proposed by Mavrotas et al. 
[89] to compress the hourly-basis, year-round historical input data (i.e. load demand and output powers from RESs) 
to the monthly averaged daily (24-h) profiles. 

3.2. Reliability assessment 
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In order to evaluate the reliability of power and transportation fuel supply in the conceptualised MG schemes, the 
LPSP index is employed in this study, which can be defined by Eq. (18) [90]. 

 𝐿𝑃𝑆𝑃 = 100 ×
∑ hours[𝑃FGEE(𝑖) < 𝑃."0(𝑖))])
1HI

𝑁 , (18) 

where 𝑃FGEE denotes the supplied electric/hydrogen power, 𝑃."0 represents the demand for electricity/hydrogen, and  
𝑁 indicates the total number of hours considered in the operational timeframe. 

An LPSP equal to zero means that the consumer electricity and transportation fuel demand will always be satisfied, 
while a value equal to one means that they will never be met. Two separate LPSP indices are considered in this study 
for the supply of electricity and hydrogen, whose desired values are set at zero per cent. 

3.3. Objective functions 

The objective functions are derived based on the whole-life costs of the MGs’ equipment, utilising the NPC concept. 
The NPC of each component can be obtained by [12]: 

 𝑁𝑃𝐶 = 𝑁 × Y𝐶𝐶 + 𝑅𝐶 × 𝐾 + 𝑂&𝑀	 ×
1

𝐶𝑅𝐹(𝑑, 𝑅) − 𝑆𝑉_, (19) 

where 𝑁 is the optimal size (capacity/number) of the component; 𝐶𝐶, 𝑅𝐶, and 𝑂&𝑀 denote the capital, replacement, 
and operation and maintenance costs, respectively; 𝑆𝑉 represents the salvage value (the residual value of the element 
at the end of the projected lifespan of the project) that can be calculated by Eq. (20); and 𝐶𝑅𝐹 and 𝐾 respectively 
denote the capital recovery factor and the single payment present worth, which can be obtained by Eqs. (21)-(23) [91]. 
The variables representing the optimal sizes of the components (that are considered to be the design (decision) 
variables of the problem) could be of the type either discrete or continuous (depending on the nature of the 
components), where discrete/continuous variables are assigned to the components, whose optimum 
numbers/capacities are under question; thereby, intensifying the optimization problem’s complexity. 
 

 𝑆𝑉 = 𝑅𝐶 ×
𝐿 − `𝑅 − 𝐿 × a𝑅𝐿bc

𝐿 , (20) 

 𝐶𝑅𝐹(𝑑, 𝑅) =
𝑑(1 + 𝑑);

(1 + 𝑑); − 1	, 
(21) 

 𝐾 =d
1

(1 + 𝑑)J×2 	 ,
L

2HI

 (22) 

 𝑌 = f
g
𝑅
𝐿h − 1; 				if	𝑅	is	an	integer	multiple	of	𝐿,					

g
𝑅
𝐿h ; 								if	𝑅	is	not	an	integer	multiple	of	𝐿,

 (23) 

where 𝑑 is the real interest rate per annum, which is obtained by Eq. (24) [91]; 𝑅 is the projected lifespan of the MG 
network (year); and 𝐿 is the expected lifetime of each component (year). In this study, 𝑅 is considered to be 20 years. 

 𝑑 =
𝑑M − 𝑓
1 + 𝑓 , 

(24) 

where 𝑑M denotes the nominal interest rate (i.e. the rate at which funds can be borrowed from the banks) and 𝑓 
represents the expected annual inflation rate. Currently, the nominal interest and inflation rates in New Zealand are 
16.19% (i.e. calculated by averaging the rates offered by different banks within the country for businesses) [92] and 
1.5% (i.e. reported by The Treasury New Zealand) [93], respectively. Note that in this analysis, we have taken a 
conservative approach and considered the interest rates associated with the business overdraft facilities provided by 
banks, instead of their long-term business loan services, in calculating the nominal interest rate. The reported nominal 
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interest rate does not consider any policy support mechanisms to assist investors with these renewable energy system 
projects. 

As shown in Eq. (25), the total NPCs (TNPCs) of the systems can be expressed in an annualized form by multiplying 
them by the capital recovery factor [94]. 

 𝑇𝑁𝑃𝐶322 = 𝐶𝑅𝐹(𝑑, 𝑅) × 𝑇𝑁𝑃𝐶. (25) 

Then, the MGs’ levelized costs of energy ($/kWh) can be calculated by dividing their annualized TNPCs by the 
aggregate electrical and hydrogen energy (kWh) they serve to the customers over their projected lifespans [95]. The 
levelized costs of energy can be further divided into the levelized cost of electricity (LCOE) and levelized cost of 
hydrogen (LCOH), leveraging the fact that the costs associated with the components that fulfil no functions in 
supplying each energy type should not be included in its levelized cost calculation. 

Based on the above premises, the objective functions of the established MGs that must be minimized by the meta-
heuristics under investigation, are introduced in the following sub-sections. 

3.3.1. Micro-grid 1 

The objective function, employed to economically design the first MG, is defined as follows: 

 𝑇𝑁𝑃𝐶I =	𝑁𝑃𝐶&:I +𝑁𝑃𝐶&'( +𝑁𝑃𝐶( +𝑁𝑃𝐶9: +𝑁𝑃𝐶=, +𝑁𝑃𝐶;; +𝑁𝑃𝐶+, +𝑁𝑃𝐶+ +𝑁𝑃𝐶? , (26) 

where 𝑁𝑃𝐶&:I, 𝑁𝑃𝐶&'(, 𝑁𝑃𝐶(, 𝑁𝑃𝐶9:, 𝑁𝑃𝐶=,, 𝑁𝑃𝐶;;, 𝑁𝑃𝐶+,, 𝑁𝑃𝐶+, and 𝑁𝑃𝐶? respectively represent the NPCs 
of the FL30 WTs, the WtE plant, the electrolyser, the hydrogen tank, the fuel cell, the reformer-reactor system, super-
capacitor modules, the refuelling station, and the inverter. 

3.3.2. Micro-grid 2 

The second MG’s objective function is contained in Eq. (27). 

𝑇𝑁𝑃𝐶5 =	𝑁𝑃𝐶BC +𝑁𝑃𝐶&:5 +𝑁𝑃𝐶A9B +𝑁𝑃𝐶< +𝑁𝑃𝐶( +𝑁𝑃𝐶9: +𝑁𝑃𝐶=, +𝑁𝑃𝐶: +𝑁𝑃𝐶+, +𝑁𝑃𝐶+
+𝑁𝑃𝐶? +𝑁𝑃𝐶NGO +𝑁𝑃𝐶F"PP , (27) 

where 𝑁𝑃𝐶BC, 𝑁𝑃𝐶&:5, 𝑁𝑃𝐶A9B, 𝑁𝑃𝐶<, and 𝑁𝑃𝐶: respectively denote the NPCs of the PV generator, FL100 WTs, 
the MHP plant, the biomass power plant, and the transformer; while 𝑁𝑃𝐶NGO and 𝑁𝑃𝐶F"PP respectively represent the 
NPCs associated with buying/selling electricity from/to the upstream power network, which can be calculated by the 
following equations [96]: 

 𝑁𝑃𝐶NGO =  pNGO ×
1

𝐶𝑅𝐹(𝑑, 𝑅) ×d𝑃D!1.(𝑡)
)

'HI

, (28) 

 𝑁𝑃𝐶F"PP = 𝐹𝑖𝑇 ×
1

𝐶𝑅𝐹(𝑑, 𝑅) ×d𝑃D!1.(𝑡)
)

'HI

, (29) 

where pNGO and 𝐹𝑖𝑇 denote the price of buying electricity from the upstream network and the feed-in-tariff, 
respectively. 

It is worthwhile noting that at each time step, 𝑃D!1. can be in one of three states: purchasing power (positive values), 
selling power (negative values), or neutral (zero values). Two separate binary variables are employed to restrict the 
positive and negative values of 𝑃D!1. to be only used in Eqs. (28) and (29), respectively. It is also obvious that the 
objective function presented in Eq. (27) is defined algebraically (note that the quantity of 𝑁𝑃𝐶F"PP is always negative). 
Moreover, as stated earlier,  pNGO and 𝐹𝑖𝑇 are set at the flat rates of $0.21/kWh and $0.13/kWh, in New Zealand 
currency, respectively, in compliance with average prices in New Zealand’s residential electricity market [83]. 

3.3.3. Micro-grid 3 
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The objective function related to the optimal equipment capacity planning of MG 3 is derived as follows: 

𝑇𝑁𝑃𝐶Q =	𝑁𝑃𝐶BC +𝑁𝑃𝐶&:I +𝑁𝑃𝐶&:5 +𝑁𝑃𝐶A9B +𝑁𝑃𝐶&'( +𝑁𝑃𝐶: +𝑁𝑃𝐶( +𝑁𝑃𝐶9: +𝑁𝑃𝐶=,
+𝑁𝑃𝐶;; +𝑁𝑃𝐶+, +𝑁𝑃𝐶+ +𝑁𝑃𝐶? +𝑁𝑃𝐶NGO +𝑁𝑃𝐶F"PP . (30) 

3.4. Constraints 

The minimization of the above-mentioned objective functions is undertaken subject to some constraints on the 
operation of the equipment as well as the planning of the systems. The constraints at the operation level of the 
optimization problem are those expressed in Eqs. (4), (11), and (17). There are three types of constraints at the planning 
phase of the optimization problem: (1) those related to the reliability of energy supply, which ensure a consistent 
supply of electricity and hydrogen; (2) those related to the equality of the initial and final energy contents of the 
hydrogen tank, as well as the SC bank, in one operational timeframe, and (3) those related to the upper bounds of the 
non-negative decision variables (sizes of the components) that are set as follows:  

𝑁BC ≤ 9,000; 𝑁&:I ≤ 200; 𝑁&:5 ≤ 100; 𝑁A9B ≤ 50; 𝑁< ≤ 2,000; 𝑁=, ≤ 7,000; 𝑁&'( ≤ 2,000;	𝑁;; ≤ 1,000 
𝑁( ≤ 25,000; 𝑁9: ≤ 25,000; 𝑁+ ≤ 80; 𝑁+, ≤ 100,000; 𝑁: ≤ 6,000; 𝑁? ≤ 9,000. 

The above-mentioned maximum values could represent practical limitations on the installation of the systems, such 
as land-use restrictions and available catchment areas for the MHP plants.  

To relax the imposed constraints in the simulation of the proposed method, a penalty term is added to the total costs 
of the conceptualised micro-grids (expressed as objective functions in Eqs. (26), (27), (30)). The penalty term adds a 
semi-infinite penalty value - enabled using a binary variable - in case of violation of any of the aforementioned 
constraints, which are dictated by the practical feasibility and end-user comfort requirements or derived from the 
considered precise life-cycle assessment approach. 

3.5. Overview of the proposed modelling framework 

The overview of the proposed generic modelling framework to optimally design on- and off-grid MGs is shown in 
Fig. 6. This modelling framework is employed in this study to optimally design the devised hydrogen-based test-case 
MGs (through minimizing the above-mentioned objective functions, whilst also relaxing the expressed constraints), 
whereby the performances of the considered meta-heuristics are assessed. 

 

 
Fig. 6. Flowchart of the proposed meta-heuristic optimization-based framework for the optimal design of MGs. 
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4. Case study sites and input data  

In order to evaluate the financial viability of the suggested hydrogen-based MG designs in real-world applications, as 
well as to investigate the efficiency of the considered meta-heuristics, three case studies were analysed utilising the 
developed methodology in Section 3. The proposed notional MG 1, MG 2, and MG 3 networks were respectively 
considered to provide electricity and transportation fuel to the following three communities in New Zealand over a 
20-year period: (1) the remote community residing on Stewart Island (latitude 46.9973°S, longitude 167.8372°E) with 
a population of around 400 people; (2) a semi-urban community residing in the Ohakune town (latitude 39.4180°S, 
longitude 175.3985°E) with a permanent population of around 1,000 that rises to around 8,500 people during the 
winter ski season; and (3) a rural community residing in the Feilding area (latitude 40.2253°S, longitude 175.5675°E) 
with a population of around 350 people. The locations of these case study sites are shown in Fig. 7 on the New 
Zealand’s National Grid map [97]. In the figure, the filled blue and silvery circles respectively indicate the main load 
and generation centres; while the grey, mustard yellow, and blue lines respectively indicate the 350, 220, and 110 kV 
transmission lines.  

 
Fig. 7. Locations of the considered case study sites on the New Zealand’s National Grid map [97]. 

 

The following points should also be noted: 

1. All the costs are expressed in U.S. dollars, except as otherwise noted. Where required, they are converted to 
U.S. dollars by the mean 2018 currency exchange rates. 

2. The cost associated with the DC dump load is assumed to be negligible. 
3. The costs and efficiencies of the power converters shown inside the dashed lines in Figs. 1, 3, and 5, as well 

as the illustrated compressors, are incorporated in their respective components. 
4. The cost and efficiency of the MPPT apparatus are taken into consideration in the cost and efficiency of the 

PV generator. 
5. For all three case study sites, there are existing overhead power distribution lines and we are not expecting a 

large hydrogen distribution network. 
6. This study builds on prior feasibility study performed on the potentials for the utilisation of RESs in the 

considered locations [98], [99]. 

4.1. Techno-economic specifications 

The technical and financial parameters of the components of the proposed hydrogen-based MGs are presented in Table 
2 [34], [62], [64], [66], [68], [70], [71], [74], [78], [80], [82], [84], [100]–[106].  
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Table 2. Techno-economic specifications of the components utilised within the structures of the three MGs. 

Component Product model Capital costa Replacement costa O&M costa Lifetime 
(year) Reference(s) 

PV panel CS6U-325P $700/unit $500/unit $14/unit/yr 20 [34] 

Wind turbine 
Fuhrländer FL30 $83,000/unit $75,000/unit $3,100/unit/yr 20 

[62], [102] Fuhrländer FL100 $220,000/unit $200,000/unit $8,600/unit/yr 20 
Micro-hydro power plant Natel FreeJet FJ-7A  $55,000/unit $50,000/unit $1,900/unit/yr 25 [80] 

Waste-to-energy plant Generic $9,600/kW $7,300/kW $490/kW/yr 10 [64] 
Biopower plant Generic $9,150/kW $7,500/kW $430/kW/yr 20 [71], [82] 
Super-capacitor MAXWELL EDLC $32/unit $32/unit $0.64/unit/yr 10 [66], [103] 

Electrolyser Generic $1,000/kW $1,000/kW $20/kW/yr 15 [68] 
Reactor-reformer Generic $14,500/kg H2/h $13,200/kg H2/h $910/kg H2/h/yr 20 [105] 

H2 reservoir Generic $470/kg H2 $470/kg H2 $9.4/kg H2/yr 20 [70] 
Fuel cell Generic $2,400/kW $2,400/kW $48/kW/yr 5 [106] 
Inverter Generic $750/kW $750/kW $15/kW/yr 15 [100], [101] 

Transformer Generic $100/kVA $900/kVA $5/kVA/yr 20 [84], [85] 
H2 refilling station Pure Energy Centre $10,000/kg H2/h $5,000/kg H2/h $350/kg H2/h/yr 20 [74], [78], [104] 

a All costs were normalized to 2018 U.S. dollars.  

 

4.2. Climatological data 

All the climatological data were sourced from the New Zealand’s National Institute of Water and Atmospheric 
Research (NIWA) CLiFlo database [107]. In this regard, the 10 years (2009-2018) climatological data collected for 
the considered locations were averaged at intervals of 1-hour or 1-month, depending on the availability of data. Finally, 
for the sake of computational burden alleviation, the data compression-based model reduction technique presented in 
sub-section 3.1 is applied to the hourly-basis, year-round historical input data streams.  

The heat map-like plots in Fig. 8 show the monthly averaged daily wind speed profiles at the considered three case 
study sites. Since the wind speed data were recorded at the height of 48 m at each site, where necessary, they were 
normalized to the heights of 27 and 38 m, in accordance with the hub heights of the FL30 and FL100 WT generators 
using Eq. (1). The contour plots in Fig. 9 show the monthly averaged daily solar irradiance at case study sites 2 and 
3. The monthly mean minimum and maximum daily temperatures at case study sites 2 and 3 are shown in Fig. 10. 
The monthly mean streamflow profiles for the Mangawhero River and the Rangitikei River, which are respectively 
situated at case study sites 2 and 3 are shown in Fig. 11. The monthly mean estimated available biomass profiles at 
the three sites, incorporating both the agricultural biomass and the organic fraction of the MSW (where applicable), 
are shown in Fig. 12. The Ohakune town sources a high proportion of New Zealand’s carrots (thereby, creating high 
amounts of agricultural residues), resulting in higher amounts of the total available biomass at this site as compared 
to the other two sites. Furthermore, the organic and non-organic fractions of the MSW are estimated, assuming that 
each individual in the population produces 600 g of wet waste and 2 kg of dry waste per day [71]. The aggregated bio-
waste is fed to the reactor-reformer system/biopower plant (according to the system structure) on a constant basis 
throughout the day, creating a uniform hydrogen/electricity production output profile. 
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Fig. 8. Monthly averaged daily wind speed profile (m/s) at: (a) Stewart Island; (b) the Ohakune town; and (c) the 

Feilding area. 

 

 
Fig. 9. Monthly averaged daily solar irradiance profile (kW/m2) at the: (a) Ohakune town; and (b) Feilding area. 

 

 

Fig. 10. Monthly averaged minimum and maximum daily air temperature profiles (°C) at the Ohakune town and the 
Feilding area. 
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Fig. 11. Monthly mean streamflow profile (L/s) for the: (a) Mangawhero River; and (b) Rangitikei River. 

 

 
Fig. 12. Monthly mean estimated available biomass profiles for the three considered case study sites. 

4.3. Energy demand data 

The forecasted monthly averaged daily profiles for the hourly residential electrical loads, imposed on the considered 
MG networks over a year, are shown in 3D plots in Fig. 13. The load power profiles for Stewart Island and the Feilding 
area sites were estimated in accordance to the New Zealand GREEN grid household electricity demand study [108], 
while this was conducted with respect to the actual data collected for the Ohakune’s current electricity network in the 
second case study [99]. The predicted residential load power profile for the Ohakune town covers the effect of seasonal 
variation in load demand owing to the presence of skiers in the wintertime, resulting in substantial growth in the 
demand for electricity during this time period. Also, the typical daily hydrogen load profiles imposed on the considered 
MG systems, with the aim of decarbonising the transport sector, are shown in Fig. 14. In obtaining these hydrogen 
load patterns, the following assumptions were made:  

1. Five Hydrogenesis Passenger Ferry fuel cell-powered marine vessels have to be integrated into system 1. 
These ferries are used to transport passengers between Stewart Island and the Bluff, Southland, New Zealand. 

2. A fleet of 300 light-duty fuel cell-powered vehicles, all of which are of the brand model Riversimple Rasa, 
utilise the hydrogen station integrated into system 2. 

3. Five NH2 fuel cell-powered tractors, as well as five Hyundai fuel cell-powered trucks, are integrated into 
system 3. 

4. In the MG test-cases 1 and 3, the vessels/vehicles are refuelled in the early morning hours (between 1 and 6 
am), i.e. the light residential load hours, to fill up the valley in the total daily energy demand profiles of the 
corresponding MG systems. In this respect, we allowed the challenges associated with the integration of 
green vehicles/vessels into these MGs to be opportunities for flattening the overall profiles for energy 
demand, whereby the levelized costs of energy of these MGs are reduced.  

5. In the second MG test-case system, it is assumed that the vehicles arrive at the station following a Normal 
distribution, between the hours of 9 am and 20 pm. Accordingly, the vehicles are refuelled on a first come 
first serve 𝑀/𝑀/𝑐 queuing model [109]. 
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6. The hydrogen tanks of the ferries, light-duty vehicles, and heavy-duty vehicles need to be refilled every 4, 3, 
and 5 days respectively. Taking into account this assumption, the hydrogen demands of the ferries and heavy-
duty vehicles are distributed throughout the working days to flatten the peaks in their load patterns. 

 
Fig. 13. Forecasted monthly mean daily residential electrical load power profiles on the proposed MG networks for: 

(a) Stewart Island; (b) the Ohakune town; and, (c) the Feilding area. 

 

 

Fig. 14. Typical daily hydrogen load profiles on the MGs following the devised implementation strategies to adopt 
hydrogen vehicles/vessels. 
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5. Simulation results and discussion  

The numerical simulations were conducted on the Intel® Core™ i7-8700, 3.20 GHz CPU with a RAM of 16 GB. All 
models were coded in the MATLAB 9.5 software [110]. 

5.1. Performance comparison of the selected optimizers 

In order to rank the performance of the selected algorithms, a statistics-driven framework is adopted in this study, 
which compares the algorithms’ efficiencies, taking into account their effectiveness in solving the three MG planning 
problems considered. The proposed comparison framework employs the following four metrics: the best-case results 
(𝐵𝑒𝑠𝑡), the worst-case results (𝑊𝑜𝑟𝑠𝑡), the mean results (𝑀𝑒𝑎𝑛), and the median results (𝑀𝑒𝑑𝑖𝑎𝑛) of the TNPCs, 
achieved over 30 independent trials for every MG sample. The 𝐵𝑒𝑠𝑡, 𝑊𝑜𝑟𝑠𝑡, and 𝑀𝑒𝑎𝑛 indicators reflect the accuracy 
of the algorithm, while the 𝑀𝑒𝑑𝑖𝑎𝑛 indicator reveals its precision (i.e. the number of hits to the optimum solution out 
of 30 simulation runs). Also, in order to ensure a fair comparison, the maximum number of iterations, as well as the 
number of their search agents, are kept constant for all the investigated algorithms, and equal to 300 and 45, 
respectively.  

The comparison framework does not include any indicators to evaluate the convergence speeds of the algorithms. The 
reason lies in the fact that the MG systems are usually planned for a projected 20- to 30-year period, making the 
computational cost an insubstantial metric for the comparative evaluation of different optimizers, unless they are 
associated with intractable computational complexities, which has not been the case here. In this regard, the calculated 
indicators for each MG instance are first averaged (𝐴𝑣𝑔. 1). The meta-heuristics are then scored locally, based on the 
𝐴𝑣𝑔. 1 criterion, obtained for every MG system. The mean values of the scores obtained for different optimizers under 
different testing conditions (when applied to different MG topologies (in terms of both grid connection layout and 
energy generation components) with different loading and meteorological conditions, are then calculated. These mean 
values (𝐴𝑣𝑔. 2) eventually determine the final ranks of the analysed meta-heuristic optimization algorithms. 
Accordingly, Table 3 ranks the performance of the analysed algorithms. The following notes are made to provide a 
better interpretation of the results presented in Table 3: 

1. When the 𝑀𝑒𝑎𝑛 is lower than the 𝑀𝑒𝑑𝑖𝑎𝑛, the distribution of the results obtained over 30 trials is said to be 
left-skewed (which appears as a right-leaning curve), meaning that the stability of the optimizer against 
different initial random solutions is low. Contrariwise, in the cases that the 𝑀𝑒𝑎𝑛 is higher than the 𝑀𝑒𝑑𝑖𝑎𝑛, 
the distribution of the results is skewed to the right and the optimizer is highly robust against the variations 
of initial guess.  

2. The scoring procedure presented in Table 3, eliminates the need to weight the 𝐴𝑣𝑔. 1 criteria in obtaining the 
𝐴𝑣𝑔. 2 metrics. Indeed, it leads to considering the same weight for all the identified performances of the 
algorithms on different test systems.  

From Table 3, the following conclusions can be drawn:  

1. It is possible that dissimilar evaluations arise, if the meta-heuristics are applied to a specific problem in 
different runs, or when they are applied to different MG planning problems. Therefore, their efficiencies must 
be compared based on their performance on different test cases, whilst also taking a statistical approach, to 
avoid incomplete, short-sighted, and ultimately mistaken comparative evaluations.  

2. By comparing the results obtained by the GA, the PSO, the HGA-PSO, the ABC, the ACO, and the HABC-
ACO, it can be deduced that the hybrid version of two single algorithms usually outperforms any of them 
alone.  

3. The MFOA, which is a recently developed meta-heuristic, outperforms all the other examined algorithms, 
albeit by a small margin, not only in terms of the overall performance measure, but also in terms of all the 
individual indicators. 

4. Based on the numerical tests undertaken in this study, the relative error in approximating the global optima 
(by comparing the 𝐵𝑒𝑠𝑡 indices of the MFOA (which has shown the greatest performance) and the DA (which 
has shown the weakest performance)) could be as high as 2.4%, 1.6%, and 6.5% respectively from the three 
target systems, equating to cost savings of $216,922, $683,878, and $346,180, respectively. 

5. According to the 𝐴𝑣𝑔. 2 criterion, the performance of the selected algorithms can be ranked (within the 
context of the research area) as follows: the MFOA< the HGA-PSO < the GA < the PSO < the HABC-ACO 
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< the ABC < the ACO < the IHSA < the MVO < the GWO < the BA < the BB-BC < the CSA < the FA < the 
ALO < the WEO < the SCA < the GOA < the SSA < the DA. 

 

Table 3. Statistics-based performance comparison of the algorithms in minimizing the TNPCs of the MGs ($). 
Alg. Sys. 𝐵𝑒𝑠𝑡 𝑊𝑜𝑟𝑠𝑡 𝑀𝑒𝑎𝑛 𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑣𝑔. 1 Score 𝐴𝑣𝑔. 2 Rank  

PSO 
MG 1 9,381,048 9,381,982 9,381,554 9,381,048 9,381,408 4 

3.67 4 MG 2  44,031,041 44,185,656 44,103,854 44,031,041 44,087,898 4 
MG 3 5,344,083 5,355,001 5,346,527 5,344,083 5,347,424 3 

GA 
MG 1 9,379,004 9,381,746 9,380,531 9,379,004 9,380,071 3 

3.33 3 MG 2  44,025,568 44,188,784 44,104,547 44,025,568 44,086,117 3 
MG 3 5,344,448 5,359,452 5,347,387 5,344,448 5,348,934 4 

HGA-
PSO 

MG 1 9,372,109 9,376,111 9,374,557 9,372,109 9,373,722 2 
2 2 MG 2  44,017,956 44,190,541 44,101,850 44,017,956 44,082,076 2 

MG 3 5,343,540 5,354,659 5,347,245 5,343,540 5,347,246 2 

ABC 
MG 1 9,383,870 9,401,540 9,389,321 9,383,870 9,389,650 6 

6.33 6 MG 2  44,036,141 44,197,553 44,105,521 44,036,141 44,093,839 6 
MG 3 5,350,114 5,386,327 5,361,542 5,350,114 5,362,002 7 

ACO 
MG 1 9,382,219 9,403,274 9,391,374 9,382,219 9,389,772 7 

6.67 7 MG 2  44,039,995 44,195,256 44,102,356 44,039,995 44,094,400 7 
MG 3 5,353,607 5,371,258 5,360,618 5,353,607 5,359,773 6 

HABC-
ACO 

MG 1 9,383,955 9,384,741 9,384,005 9,383,955 9,384,166 5 
5 5 MG 2  44,032,985 44,191,007 44,104,741 44,032,985 44,090,430 5 

MG 3 5,348,927 5,355,668 5,350,493 5,348,927 5,351,004 5 

ALO 
MG 1 9,386,072 9,415,984 9,396,482 9,389,974 9,397,128 13 

15 15 MG 2  44,045,750 44,215,187 44,129,001 44,091,030 44,120,242 13 
MG 3 5,675,981 5,913,542 5,792,110 5,794,115 5,793,937 19 

IHSA 
MG 1 9,386,106 9,406,002 9,391,571 9,390,143 9,393.456 10 

8.67 8 MG 2  44,041,129 44,199,522 44,101,077 44,041,129 44,095,714 8 
MG 3 5,350,974 5,379,651 5,363,444 5,360,457 5,363,632 8 

BB-BC 
MG 1 9,391,570 9,416,098 9,397,021 9,391,987 9,399,169 15 

12.67 12 MG 2  44,046,021 44,215,199 44,130,546 44,092,365 44,121,033 14 
MG 3 5,354,027 5,391,610 5,364,771 5,354,027 5,366,109 9 

MFOA 
MG 1 9,142,109 9,144,576 9,143,850 9,142,109 9,143,159 1 

1 1 MG 2  43,881,018 43,890,577 43,884,338 43,881,018 43,884,238 1 
MG 3 5,330,037 5,339,874 5,333,547 5,330,037 5,333,374 1 

SCA 
MG 1 9,392,449 9,418,995 9,401,825 9,393,736 9,401,751 17 

15.66 17 MG 2  44,052,960 44,221,652 44,139,634 44,110,111 44,131,089 18 
MG 3 5,361,540 5,402,329 5,383,669 5,389,495 5,384,258 12 

MVO 
MG 1 9,383,775 9,406,108 9,388,937 9,383,775 9,390,649 9 

9.33 9 MG 2  44,040,985 44,202,101 44,111,520 44,040,985 44,098,898 9 
MG 3 5,360,297 5,400,103 5,373,639 5,388,436 5,380,619 10 

WEO 
MG 1 9,386,254 9,416,024 9,396,552 9,391,309 9,397,534 14 

15.33 16 MG 2  44,053,133 44,222,000 44,144,984 44,115,133 44,133,813 19 
MG 3 5,361,990 5,402,773 5,383,990 5,390,061 5,384,704 13 

GWO 
MG 1 9,384,002 9,404,870 9,386,654 9,385,192 9,390,180 8 

10.66 10 MG 2  44,041,192 44,203,041 44,122,652 44,079,572 44,111,615 10 
MG 3 5,362,555 5,409,351 5,386,473 5,392,652 5,387,758 14 

CSA 
MG 1 9,392,004 9,419,259 9,397,508 9,392,966 9,400,434 16 

13 13 MG 2  44,045,698 44,205,009 44,128,635 44,089,190 44,117,133 12 
MG 3 5,361,478 5,401,691 5,389,006 5,379,309 5,382,871 11 

SSA 
MG 1 9,393,406 9,419,889 9,403,574 9,396,555 9,403,356 19 

18 19 MG 2  44,051,553 44,219,632 44,137,254 44,100,856 44,127,324 17 
MG 3 5,675,505 5,912,888 5,693,343 5,790,128 5,767,966 18 

GOA 
MG 1 9,392,907 9,419,962 9,401,939 9,395,680 9,402,622 18 

17 18 MG 2  44,049,155 44,217,112 44,133,980 44,095,333 44,123,895 16 
MG 3 5,674,547 5,911,748 5,689,900 5,758,609 5,758,701 17 

DA 
MG 1 9,395,031 9,501,430 9,452,684 9,472,200 9,455,336 20 

20 20 MG 2  44,564,896 44,984,021 44,785,652 44,874,654 44,779,806 20 
MG 3 5,676,217 6,010,872 6,000,909 6,006,537 5,923,634 20 

BA 
MG 1 9,385,662 9,419,205 9,393,101 9,385,662 9,395,908 11 

12.33 11 MG 2  44,041,543 44,204,195 44,123,563 44,085,856 44,113,789 11 
MG 3 5,362,751 5,409,399 5,386,982 5,399,505 5,389,659 15 
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FA 
MG 1 9,384,584 9,421,009 9,394,741 9,384,584 9,396,230 12 

14.33 14 MG 2  44,046,999 44,215,985 44,133,630 44,093,363 44,122,494 15 
MG 3 5,364,802 5,411,350 5,399,008 5,391,540 5,391,675 16 

In order to establish a better understanding of how the TNPCs are distributed among the MGs’ components, or, put 
differently, to reveal the sizes determined by the considered algorithms, the optimum capacity planning results 
obtained for the MG 1, MG 2, and MG 3 instances are reported in Table 4. These results are based on the best-case 
results obtained by the MFOA after 30 independent simulation runs (bolded in Table 3). From now on, all the analyses 
will be made with respect to the results gained in these optimization runs. Moreover, for the components, whose 
optimum capacities (and not quantities) are under question (i.e. continuous variables), the optimum sizes are rounded 
up to the nearest integer, except for the reactor-reformer and hydrogen station, whose capacities are rounded up to the 
second decimal place.  

 

Table 4. Breakdown of the best TNPCs obtained by the MFOA out of 30 runs for the studied MG test-case systems. 

Sys. 
PV 

panels 
(no.) 

FL30 
WTs  
(no.) 

FL100 
WTs 
(no.) 

Bio-
power 
(kW) 

SCs 
(no.) 

MHPs 
(no.) 

Elec. 
(kW) 

H2 tank 
(kg) 

Fuel 
cell 

(kW) 

Inv. 
(kW) 

Reac.-Ref. 
(kg H2/h) 

WtE 
(kW) 

Trans. 
(kVA) 

H2 station 
(kg H2/h) 

MG 1 N/A 36 N/A N/A 9,714 N/A 1,402 901 486 794 2.49 13 N/A 3.20 
MG 2 2,991 N/A 41 73 51,417 17 9,028 14,401 3,951 6,703 N/A N/A 4,116 8.14 
MG 3 554 2 3 N/A 8,311 9 1,251 730 371 662 1.56 9 391 6.79 

 

5.2. Economic and energetic analyses of the developed systems 

5.2.1. Financial sustainability verifications 

The optimized TNPCs of implementing the proposed MGs at the considered case study sites, subject to meeting the 
reliability targets for electricity and hydrogen supply during their life-spans, are estimated to be $9,142,109, 
$43,881,018, and $5,330,037 respectively for MG 1, MG 2, and MG 3. The bar chart in Fig. 15 shows the percentage 
contribution of different components to the TNPCs of the MG systems. In the figure, the revenues from selling 
electricity to the upstream networks (in the cases of second and third MGs) are first subtracted from the corresponding 
TNPCs. As can be seen in Fig. 15, the costs associated with the hydrogen storage sub-systems are the largest cost 
components in all the cases, which are followed by the costs associated with the wind power generation systems. By 
comparing the proportion of the tank to the electrolyser and fuel cell, a higher value for the capacity of the hydrogen 
reservoir in MG 2 is identified. This is because of the specific seasonal loading conditions on system 2. Accordingly, 
it can be deduced that the optimization protocol has determined the seasonal energy storage a better option than (1) 
buying electricity from the upstream grid to meet the seasonal peaks in electricity demand, and (2) oversizing of the 
components for the light-load time periods and selling the excess power to the grid.  

 
Fig. 15. Breakdown of the TNPCs associated with the MG samples. 

The levelized costs of electricity and hydrogen for the studied MGs are presented in Table 5. As shown in the table, 
the exchange of energy with the upstream grid, along with the utilisation of solar and hydro resources, have 
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significantly contributed to the energy affordability in the second and third systems. As indicated earlier, the best 
available resources at each location are determined by prior feasibility assessments. 

At present, the average electricity price at the areas connected to the main grid is around $0.21/kWh, in New Zealand 
currency, while this value rises to $0.26/kWh for Stewart Island, whose current power supply scheme is totally based 
on diesel generators operating in a centralized manner. In addition, the most up-to-date announced price for hydrogen 
in New Zealand is about $14/kg H2, in New Zealand currency, when produced locally on small-scale, and $8.91/kg 
H2 for large-scale hydrogen production schemes [111], [112]. 

 

Table 5. Levelized costs of electricity and hydrogen of the conceptualised MG systems. 

Test-case system LCOE ($/kWh)a LCOH ($/kg H2)a 

MG 1 0.18 7.82 
MG 2 0.14 6.45 
MG 3 0.12 6.17 

a The costs are reported in New Zealand currency. 

It can be observed from Table 5 that the values of LCOE and LCOH for all the devised energy systems are well below 
the existing prices of electricity and hydrogen for grid-tied and grid-independent areas of New Zealand. These findings 
not only verify the effectiveness of the proposed MG design and capacity planning methodology, but also corroborate 
the cost-effectiveness of realizing the studied MG projects.  

5.2.2. Energy flow analyses 

In this sub-section, we report on the energy flow analyses of the conceptualised MGs using the best-estimated sizes 
for their components. The analyses are conducted on the reduced operational timeframe (12-months × 24-h model), 
adopted in the optimization protocol, according to the employed data compression-based model reduction technique.  

The results of the overall energy flow analyses on the generation and consumption sides are illustrated in Fig. 16 in 
terms of their percentage contribution to the generation or consumption of energy. In the figure, the positive values 
indicate the generation of energy, while the negative values represent energy consumption. Also, the total system 
losses include the energy losses associated with the non-ideality of the system components that are characterised by 
their efficiencies. The results presented in Fig. 16 can be envisioned as an energy balance outlook for the 
conceptualised MG networks. 

 
Fig. 16. Breakdown of the generated/consumed energy within the conceptualised MGs. 

The following points can be made with regard to the results presented in Figs. 15 and 16: 

1. The negative values of the total amounts of energy exchanged with the upstream network in the cases of grid-
connected MGs (i.e. MG 2 and MG 3) indicate that the energy trading between the MGs and the network has 
made direct profits for them, thereby reducing their expected TNPCs. Much of the reason for this lies in 
avoiding the circulation of the excess energy through a dump load by selling it to the network. Utilising the 
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support of the grid for satisfying the sporadic peak demands (not seasonal) is another reason, which, to some 
extent, contributes to the energy affordability in the second and third MGs. 

2. The significant contributions of wind energy technologies to the TNPCs of all the three MGs, along with the 
substantial contributions of the wind generation systems to the total energy generation within these MGs, 
collectively imply that the examined sites are rich in wind resources. 

3. There are neither electrical nor hydrogen unmet loads on the consumption sides, which is due to the reliability 
constraints (LPSP = 0) imposed on the optimization protocol. 

4. The obtained optimum solution sets for the MGs’ components indicate a diversification in the respective 
energy mixes of the MG network, whereby the security of energy supply is strengthened. Put differently, the 
obtained results have not avoided any source of energy considered. This further verifies the efficacy of the 
proposed methodology. 

5.3. Validation of the models 

In order to further validate the financial sustainability of the considered projects, a comprehensive evaluation of the 
projected costs and profits based on the following three criteria for investment analysis is carried out with: (1) the 
discounted payback period (DPP), (2) the profitability index (PI), and (3) the internal rate of return (IRR). 

The DPP criterion conciliates the classic payback period technique with the discounted cash flow analysis to calculate 
the break-even point, after which an investment plan makes profit taking into account the discount rate, which was 
first proposed by Irving Fisher [113]. The criterion can be adapted for application in the field of MG design and 
planning as follows: 

 !𝑆(1 + 𝑖𝑟)!" − 𝑇𝑁𝑃𝐶 = 0
#$$

"%&

, (31) 

where 𝑆 is the annual income created by selling energy to the consumers of the MG and from selling the electricity to 
the upstream power grid (where applicable). In this analysis, we have assumed a flat charge of $0.26/kWh, in New 
Zealand currency, for MG 1 and a flat-rate electricity tariff of $0.21/kWh for MGs 2 and 3, as well as a hydrogen price 
of $14/kg H2 for all the three MG samples. These prices are in accordance with the service prices presently available 
at the studied sites in their energy sectors.  

The PI is defined as the ratio of the present value of the total investment expenditure of a business plan across its 
lifetime to its initial investment cost, i.e. the ratio of payoff to the investment of a project [114]. The following equation 
can be used to adapt the PI index in the MG design studies:  

𝑃𝐼 = 100 ×
∑ 𝑆(1 + 𝑖𝑟)8' − 𝑇𝑁𝑃𝐶;
'HR

𝐶𝑎𝑝:
, (32) 

where 𝑅 denotes the lifetime of the MG system and 𝐶𝑎𝑝: represents the total capital costs of the MG components in 
the base year. 

The IRR is defined as the discount rate, which makes the TNPC of an investment project equal to zero, thereby leading 
the investment to break even before it starts obtaining any incomes, whose higher values indicate the higher robustness 
of the investment analyses [115]. In order to adapt the IRR metric in the application of MG planning, the following 
equation can be utilised: 

 !
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where 𝐶𝐹(𝑡) represents the net cash inflow in the 𝑡-th year of investment. 

Table 6 presents the DPP, the PI, and the IRR of the MG projects, whose economic sustainability are under evaluation. 
The table demonstrates that these projects are not only financially profitable to undertake, but also can be characterised 
as low-risk, high-yield investment opportunities.   
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Table 6. Economic sustainability assessment of the MG projects under study. 

Test-case system DPP (year) PI (%) IRR (%) 
MG 1 8.60 2.28 13.49 
MG 2 7.95 2.77 14.72 
MG 3 7.23 3.01 15.18 

 

6. Conclusions and future work 

In this paper, the performances of twenty meta-heuristic optimization algorithms, including both traditional and 
recently developed techniques (and involving single and hybrid algorithms), are evaluated for MG optimal design and 
equipment capacity planning applications. The evaluations are made based on three hydrogen-based MG test-case 
systems, proposed to bring sustainable electricity and transportation fuel to remote, rural, and semi-urban 
communities. Furthermore, a new statistical performance comparison framework, improved by the consideration of 
the number of hits to the global optima throughout a certain number of trials, is devised. The performance assessments 
indicate that it is important to put into test the state-of-the-art meta-heuristics, since they are theoretically able to 
outperform the traditional ones in terms of solution quality and/or convergence speed. Specifically, the MFOA has 
shown a better efficiency in nearing the global optimum solution sets when applied to MG capacity planning studies 
in comparison with the nineteen other new and traditional meta-heuristics analysed in this study. More specifically, 
the numerical tests carried out in this study have revealed that the relative error in estimating the globally optimum 
solutions of the least-cost MG designs using the selected metaheuristics could go as high as 2.4%, 1.6%, and 6.5% 
respectively from the three target systems - equating to cost savings of $216,922, $683,878, and $346,180, 
respectively. The statistical tests also prove that many of the algorithms have nearly the same efficiencies, when 
assessed on the basis of their performances on different MG test-case systems with different climatic and loading 
conditions. Noticeably, an increased number of test systems and/or independent runs will tend to improve the validity 
of the conclusions drawn on the superior performance of the algorithms under evaluation.  

A novel energy management plan is also designed to cost-effectively integrate the heavy- and light-duty hydrogen 
fuel cell-powered vehicles, as well as hydrogen-powered vessels, into the 100% renewable MG networks with the 
objective of facilitating the decarbonisation of the transport sector. The hydrogen-based MGs conceptualised in this 
study have provided effective platforms for the hydrogen production through water electrolysis and gasification of 
biomass resources (i.e. the non-organic fraction of MSW as well as the agricultural biomass). Thus, they can 
effectively contribute to unlocking the potential of hydrogen as a clean, reliable, affordable, locally-controlled energy 
carrier to address the energy needs of both remote and non-remote communities, which, in turn, can make a significant 
contribution towards achieving the sustainable development goals. 

Future work will investigate the incorporation of the following features in the devised generic MG sizing framework 
towards reflecting the real-world practice in a more accurate fashion in the long-term investment planning phase of 
renewable and sustainable energy systems: (1) taking into account dynamic efficiencies for the components of MGs, 
especially the components adopted within the hydrogen sub-systems, whereby the degradation of the components over 
their service lives is effectively addressed; (2) integration of the uncertainties associated with different variables (e.g. 
energy demand, load growth, energy supply, system losses, atmospheric conditions, storage capacity, etc.) within the 
system; and (3) consideration of the power quality issues related to the harmonics generated by renewable power 
conversion systems and nonlinear loads into the model.  
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