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• A Lévy-flight moth-flame optimisation 

algorithm-based micro-grid (MG) sizing 

model is proposed. 
• A day-ahead operational planning opti- 

misation framework is nested within the 

optimal sizing model. 
• The superiority of the Lévy-flight moth- 

flame optimiser to a range of well- 

established meta-heuristics is shown. 
• The effectiveness of the model is demon- 

strated by benchmarking it against the 

HOMER Pro software. 
• The profitability is improved by at least 

18% for a community MG scheme in ru- 

ral New Zealand. 
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a b s t r a c t 

Bridging the gap between simulation and reality for successful micro-grid (MG) implementation requires accu- 

rate mathematical modelling of the underlying energy infrastructure and extensive optimisation of the design 

space defined by all possible combinations of the size of the equipment. While exact mathematical optimisa- 

tion approaches to the MG capacity planning are highly computationally efficient, they often fail to preserve 

the associated problem nonlinearities and non-convexities. This translates into the fact that the available MG 

sizing tools potentially return a sub-optimal (inferior) MG design. This brings to light the importance of nature- 

inspired, swarm-based meta-heuristic optimisation algorithms that are able to effectively handle the nonlinear 

and non-convex nature of the MG design optimisation problem – and better approximate the globally optimum 

solution – though at the expense of increased computational complexity. Accordingly, this paper introduces 

a robust MG capacity planning optimisation framework based on a state-of-the-art meta-heuristic, namely the 

Lévy-flight moth-flame optimisation algorithm (MFOA). An intelligent linear programming-based day-ahead en- 

ergy scheduling design is, additionally, integrated into the proposed model. A case study is presented for a real 

grid-tied community MG in rural New Zealand. A comparison of the modelling results with those of the most 

popular tool in the literature and industry, HOMER Pro, verifies the superiority of the proposed meta-heuristic- 

based MG sizing model. Additionally, the efficiency of the Lévy-flight MFOA is compared to nine well-established 

meta-heuristics in the MG capacity planning literature. The comparative analyses have revealed the statistically 

significant outperformance of the Lévy-flight MFOA to the examined meta-heuristics. Notably, its superiority to 

the original MFOA, the hybrid genetic algorithm-particle swarm optimisation, and the ant colony optimiser, by at 

least ~6.5%, ~8.4%, and ~12.8%, is demonstrated. Moreover, comprehensive capital budgeting analyses have 

confirmed the financial viability of the test-case system optimised by the proposed model. 
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Nomenclature 

𝐶 𝐶 capital cost 

𝐶 𝐿 component lifetime 

𝐶 𝑅𝐹 capital recovery factor 

𝐶 𝐵,𝑟 rated capacity of each battery pack 

𝐶 𝑡𝑟,𝑛 total cost of energy exchanges with the grid 

𝐷 cycle-life degradation factor of the battery 

𝐷𝑂𝐷 depth of discharge 

𝐷 𝑖𝑗 distance between moth 𝑖 and flame 𝑗

𝐸 𝐵 ( 𝑡 ) energy content of the battery bank in time 𝑡 

𝐹 𝑗 𝑗-th flame 

𝐼 𝐺 

( 𝑡 ) global horizontal irradiance in time 𝑡 

𝐿𝐶 𝑂𝐸 levelised cost of energy 

𝐿𝑃 𝑆 𝑃 loss of power supply probability 

𝐿𝑃 𝑆 𝑃 

𝑚𝑎𝑥 maximum allowed loss of power supply prob- 

ability 

𝑀 𝑖 𝑖 -th moth 

𝑁 𝑂𝐶 𝑇 nominal operating cell temperature 

𝑁 𝑃 𝐶 𝑡𝑟,𝑛𝑒𝑡 net present cost of power exchanged with the 

grid 

𝑁 𝑃 𝐶 𝑐 net present cost of component 𝑐

𝑁 𝑐 optimal size of component 𝑐

𝑁 

𝑚𝑎𝑥 
𝑐 

maximum allowed size of component 𝑐

𝑂&𝑀 operation and maintenance cost 

𝑂𝑃 𝐸 𝑋 operating expenditure 

𝑃 𝐿 project lifetime 

𝑃 𝑊 𝑇 ,𝑟 rated power of wind turbines 

𝑃 

𝑚𝑖𝑛 
𝑐 

, 𝑃 

𝑚𝑎𝑥 
𝑐 

minimum/maximum allowed operating power 

of component 𝑐

𝑃 𝑐 ℎ,𝐵 ( 𝑡 ) , 𝑃 𝑑 𝑐 ℎ,𝐵 ( 𝑡 ) charging/discharging power of the battery 

bank in time 𝑡 

𝑃 

𝑚𝑎𝑥 
𝑐 ℎ,𝐵 

, 𝑃 

𝑚𝑎𝑥 
𝑑 𝑐 ℎ,𝐵 

maximum charging/discharging power of the 

battery bank 

𝑃 

𝑚𝑖𝑛 
𝑐 ℎ,𝐵 

, 𝑃 

𝑚𝑖𝑛 
𝑑 𝑐 ℎ,𝐵 

minimum charging/discharging power of the 

battery bank 

𝑃 𝑖𝑚 ( 𝑡 ) , 𝑃 𝑒𝑥 ( 𝑡 ) grid import/export power in time 𝑡 

𝑃 𝐿 power load 

𝑃 𝑃 𝑉 power output from photovoltaic plant 

𝑃 𝑊 𝑇 power output from wind plant 

𝑃 𝑐 ( 𝑡 ) operating power of component 𝑐 in time 𝑡 

�̇� losses in the series resistance of the battery 

𝑅𝐶 replacement cost 

𝑆 𝑃 𝑃 𝑊 single-payment present-worth factor 

𝑆 𝑆 𝑅 self-sufficiency ratio 

𝑆 𝑆 𝑅 

𝑚𝑖𝑛 minimum allowed self-sufficiency ratio 

𝑆 𝑉 salvage value 

𝑇 𝑐 ,𝑟𝑒𝑓 reference solar cell temperature 

𝑇 𝑎 ( 𝑡 ) ambient temperature in time 𝑡 

𝑇 𝑐 ( 𝑡 ) solar cell temperature in time 𝑡 

𝑇 𝑖 ( 𝑡 ) internal operating temperature of the battery 

in time 𝑡 

𝑇 

𝑚𝑖𝑛 
𝑖 

, 𝑇 

𝑚𝑎𝑥 
𝑖 

minimum/maximum allowed internal operat- 

ing temperature of the battery 

𝑊 𝐿 𝐶 𝑀 𝐺 

whole-life cost of the micro-grid 

𝑎 𝑃 𝑉 area of each photovoltaic panel 

𝑐 specific heat capacity of the battery 

𝜂𝑐 ℎ,𝐵 , 𝜂𝑑 𝑐 ℎ,𝐵 battery charging/discharging efficiency 

𝜂𝑃 𝑉 ( 𝑡 ) solar photovoltaic panel efficiency in time 𝑡 

𝜂𝑟 rated efficiency of photovoltaic panels 

ℎ battery thermal conductance to ambient tem- 

perature 

𝑖𝑟 real interest rate 
2 
𝑘𝑡 rate of increase of the calendar degradation 

factor of the battery 

𝑚 mass of the battery 

𝑝 penalty factor 

𝑣 ( 𝑡 ) wind speed in time 𝑡 

𝑣 𝑐 𝑖 cut-in wind speed 

𝑣 𝑐 𝑜 cut-out wind speed 

𝑣 𝑟 rated wind speed 

𝜋 wholesale electricity market price 

𝜎𝐵 battery self-discharge rate 

Δ𝑡 duration of time-step 

. Introduction 

The micro-grid (MG) infrastructure capacity planning optimisation

nvolves determining the whole life cost-optimal mix of the sizes of the

andidate distributed energy resources and conversion devices so as to

eet the energy requirements at a prescribed reliability level subject to

 set of operational and planning constraints [1–3] . 

.1. Literature review 

Several review studies have discussed approaches and trends for MG

nergy planning and capacity optimisation. Gamarra and Guerrero [4] ,

athima and Palanisamy [5] , as well as, more recently, Emad et al.

6] analyse the MG design optimisation literature; Sinha and Chandel

7] , Hannan et al. [8] , as well as Yang et al. [9] , review the methods

nd algorithms for sizing energy storage systems; while Mellit and Kalo-

irou [10] discuss various artificial intelligence (AI) techniques used

or the optimal sizing of photovoltaic (PV) systems. The optimisation

pproaches developed in the literature on the capacity planning of re-

ewable and sustainable energy systems can be broadly categorised as

ither based on the exact mathematical optimisation algorithms or (AI)

echniques, the most widely-used of which are summarised in Fig. 1 . 

Table 1 presents a summary of the notable studies in the optimal MG

izing literature that have provided closed-form solutions to the prob-

em. The main issue associated with exact mathematical optimisation

lgorithms in the context of MG designing and sizing is that they require

trong assumptions and implications to be made on the structure of the

nderlying objective function, such as convexity, linearity, continuity,

ifferentiability, and so forth. This is because the optimal MG sizing

roblem has been shown to be associated with non-deterministic poly-

omial time-hardness (NP-hardness) [11 , 12] . This means that although

ormulating the economic MG energy planning problem such that it is

menable to exact mathematical solution algorithms considerably alle-

iates the computational burden, it substantially increases the risk of

ub-optimality – or, in other words, it can result in a loss of solution

delity, especially for highly nonlinear and non-convex design prob-

ems [13] . Associated developed simplified solution approaches, based

n mathematical optimisation techniques, have included various decom-

osition techniques, linear programming (LP), mixed-integer program-

ing (MIP), mixed-integer linear programming (MILP), mixed-integer

onlinear programming (MINLP), and dynamic programming, of which

ILP is the most popular approach. 

However, given that the optimal MG asset allocation is an off-line,

ne-time process, it can be argued that computational complexity should

ot be the primary concern from an optimisation point of view, pro-

ided that optimising a solution to the problem is not computation-

lly intractable. In this light, a recent, emerging strand of the long-

erm MG investment planning literature has proposed using AI-based

eta-heuristic optimisation algorithms as an alternative to classical op-

imisation methods. The MG energy planning optimisation literature has

onvincingly demonstrated that meta-heuristic optimisation algorithms
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Fig. 1. Categorisation of the optimisation techniques applied to the MG capacity allocation problem. 

Table 1 

Summary of the notable studies employing exact mathematical optimisation algorithms for MG sizing. 

Reference System architecture Optimisation method Sizing variables Bus (AC/DC) Main objectives 

[14] An off-grid solar PV/battery MG MILP Solar PV panels, battery bank DC Economic 

[15] A combined heat and power (CHP) 

MG 

MILP CHP system AC Economic, reliability 

[16] A wind power plant/hydrogen 

energy storage system 

Dynamic programming Hydrogen tank AC Economic 

[17] A conventional power system LP Solar PV panels, wind turbines, 

fuel cells, micro-turbines 

AC Economic, reliability 

[18] An off-grid MG system Lagrange multipliers Distributed energy resources DC Economic 

[19] A stand-alone MG that consists of 

wind turbines, diesel generators, 

and a hydrogen system 

MIP Wind turbines, diesel generators, 

fuel cells, electrolyser, hydrogen 

tank 

AC Economic 

[20] A grid-tied MG that consists of 

solar PV panels, wind turbines, 

diesel generators, and a hydrogen 

system 

MIP Solar PV panels, wind turbines, 

diesel generators, fuel cells, 

electrolyser, hydrogen tank 

DC Economic 

[21] A grid-tied boiler/micro-CHP/heat 

storage system 

MILP Boiler, micro-CHP, heat storage AC Economic, greenhouse 

gas emissions 
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ould be effectively used to optimise an efficient solution to the MG siz-

ng problem [22–26] . The main advantage of meta-heuristics over exact

athematical approaches in this context is their ability to solve the NP-

ard problem at hand in polynomial time, while effectively handling the

odel-inherent nonlinearities and non-convexities. Table 2 summarises

he notable studies that have adopted a meta-heuristic-based MG sizing

pproach. The most widely-used meta-heuristic algorithms in the liter-

ture include: the particle swarm optimisation (PSO) [27] , the genetic

lgorithm (GA) [28] , the hybrid GA-PSO [29] , the harmony search (HS)

30] , the simulated annealing (SA) [31] , the artificial bee colony (ABC)

32] , the ant colony optimisation (ACO) [33] , and the ant lion optimiser

ALO) [34] . 

In addition, a series of recent academic papers [53–55] have shown

he statistical significance and superiority of the moth-flame optimisa-

ion algorithm (MFOA) [56] to more than 30 meta-heuristics (including

ell-established and state-of-the-art algorithms) when applied to differ-

nt on- and off-grid MG configurations considering various technologies

n the candidate pool. 

Moreover, to support the stakeholder decision-making process on the

ost-optimal mix of energy generation, storage, and conversion tech-
3 
ologies, many MG design optimisation and long-term investment plan-

ing software tools exist in the literature and industry [57 , 58] . The so-

ution approaches used in the available tools can be broadly classified

nto two groups. 

The first class of the tools takes a simplistic full-factorial approach to

olving the optimal design problem. The most notable software packages

n this group are HOMER [59] and RETScreen [60] . Given that the full-

actorial approach selects component sizes at a limited number of fixed

ntervals, it cannot be formally considered as an ‘optimal’ solution [61] .

urthermore, it leads to the ‘combinatorial explosion’ when increasing

he granularity of the search space and/or increasing the number of

andidate technologies above a low critical value. 

The second, more algorithmically complex class of the existing tools

mploy a linearized approach to equipment capacity planning, such as

ILP. The notable software packages in this group include: HOMER Pro

62] , Hybrid2 [63] , SAM [64] , XENDEE [65] , REOpt [66] , and DER-

AM [67] ). A simplified exact mathematical problem formulation is

sed in these tools by providing convex constraints. That is, these tools

re plagued by the same significant deficiencies as exact mathematical

ptimisation-based solution algorithms. 
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Table 2 

Summary of the notable studies employing meta-heuristic optimisation algorithms for MG sizing. 

Reference System architecture Optimisation method(s) Sizing variables Bus (AC/DC) Main objective(s) 

[35] An off-grid MG that consists of 

wind turbines, a waste-to-energy 

plant, and a hydrogen-based 

storage system 

PSO Wind turbines, converter, fuel cell, 

electrolyser, hydrogen tank 

DC Economic 

[36] A grid-connected MG that consists 

of solar PV panels, battery packs, 

and a hydrogen-based storage 

system 

GA PV panels, fuel cell, electrolyser, 

hydrogen tank, battery 

DC Economic 

[37] A stand-alone PV/wind/battery MG HS PV panels, wind turbines, battery 

bank 

AC Economic 

[38] An off-grid solar PV/wind 

turbine/battery MG 

ACO PV panels, wind turbines AC Economic 

[39] A stand-alone MG that consists of 

solar PV panels, wind turbines, 

and a hydrogen storage system 

ABC PV panels, wind turbines, fuel cell, 

electrolyser, hydrogen tank 

DC Economic, loss of 

power supply 

probability 

[22] A stand-alone MG that consists of 

solar PV panels, battery packs, and 

a hydrogen-based storage system 

PSO, HS, SA, tabu search PV panels, wind turbines, fuel cell, 

electrolyser, hydrogen tank, 

battery 

DC Economic 

[40] An islanded solar PV/wind 

turbine/battery MG 

SA PV panels, wind turbines DC Economic, 

reliability 

[41] Three stand-alone MGs with 

different combinations of solar PV 

panels, wind turbines, biomass 

power plants, flywheels, 

micro-hydro power plants, 

hydrogen system, batteries, 

super-capacitors 

Sine-cosine algorithm, multi-verse 

optimiser, water evaporation 

optimisation, hybrid GA-PSO 

PV panels, wind turbines, battery 

packs, electrolysers, fuel cells, 

hydrogen tanks, super-capacitors, 

biopower plants, micro-hydro 

plants, and flywheels 

DC Economic 

[42] A grid-tied solar PV/wind 

turbine/battery MG 

PSO, GA, flower pollination 

algorithm 

Battery bank AC Economic 

[43] An off-grid solar PV/wind 

turbine/tidal turbine/battery/diesel 

generator MG 

Hybrid expert fuzzy system-grey 

wolf optimisation 

Battery bank DC Economic 

[44] An off-grid solar PV/wind 

turbine/battery MG 

Whale optimisation algorithm Solar PV panels, wind turbines, 

battery packs, electric vehicle 

charging station, converters 

DC Economic 

[45] A non-grid-connected wind 

turbine/hydrogen/super-capacitor 

MG 

Non-dominated sorting genetic 

algorithm II 

Wind turbines, electrolyser, 

hydrogen tank, fuel cell, 

super-capacitor 

DC Economic, power 

quality 

[46] A grid-tied solar PV/wind 

turbine/fuel cell/hydrogen 

tank/boiler MG 

Hybrid bird mating 

optimisation-differential evolution 

Solar PV panels, wind turbines, 

fuel cell, hydrogen reservoir, boiler 

DC Economic 

[47] Three off-grid MGs with different 

combinations of solar PV panels, 

wind turbines, fuel cells, 

electrolysers, and hydrogen 

storage 

Hybrid chaotic search-SA-HS Solar PV panels, wind turbines, 

fuel cell, hydrogen tank, 

electrolyser 

DC Economic 

[48] An off-grid solar PV/wind 

turbine/electrolyser/hydrogen 

tank/fuel cell MG 

Non-dominated sorting genetic 

algorithm II 

Solar PV panels, wind turbines, 

fuel cell, hydrogen tank, 

electrolyser 

DC Economic, 

reliability, energy 

curtailment 

[49] An off-grid solar PV/wind turbine 

MG backed with different battery 

technologies 

ALO, grey wolf optimiser, krill 

herd algorithm 

Solar PV panels, wind turbines, 

and different battery technologies 

DC Economic 

[50] An off-grid solar PV/pumped 

hydro storage/battery bank/biogas 

generator MG for a radio 

transmitter station 

Water cycle algorithm Solar PV panels, pumped hydro 

storage, battery bank, biogas 

generator 

DC Economic 

[51] A grid-connected solar PV/wind 

turbine/battery bank/biomass 

gasifier MG 

ABC, PSO Solar PV panels, wind turbines, 

battery packs, and biomass 

gasifier 

DC Economic 

[52] An off-grid solar PV/wind 

turbine/battery MG 

Multi-objective variants of the 

grasshopper optimisation, PSO, 

and cuckoo search optimisation 

algorithms 

Solar PV panels, wind turbines, 

and battery packs 

DC Economic, 

reliability 
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.2. Literature gaps 

The above review of the long-term energy planning and MG design

ptimisation literature identifies crucial gaps in knowledge, giving rise

o a set of specific research questions, namely: 

• While the basic versions of meta-heuristics are continuously evolv-

ing, their improved variants are seldom applied to the optimal

MG sizing problem. This raises the question to which extent meta-
4 
heuristic improvements actually matter in the context of MG plan-

ning. Accordingly, although its potential benefit in improving the

population diversity and the efficiency of the local search process

of the basic versions of meta-heuristics (around the global optima)

has been demonstrated in a number of instances [68 , 69] , Lévy-

flight-supported meta-heuristics applied to MG capacity planning re-

main underutilised. In particular, a recently-improved variant of the

MFOA, namely the Lévy-flight MFOA [70] , has not yet been applied

to the optimal MG capacity allocation problem. 
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1 The single-payment present-worth factor calculates the unknown present 

value of a lump sum payment needed that returns a known future value given 

the interest rate. 
2 The capital recovery factor is used to calculate the present value of a series 

of equal annual cash flows as a ratio of a constant annuity to the present value 

of receiving that annuity. 
3 The salvage value, alternatively referred to as resale value, scrap value, and 

residual value, is the estimated value that is expected at the end of the useful 

life of a MG asset, which is used to calculate the asset’s depreciation expense. 
• While many software packages tailored to the long-term MG invest-

ment planning problem are available in the literature and commer-

cially, there is a capability gap in terms of estimating the globally-

optimum solution, especially for large-scale systems and/or when

seeking the cost-optimal sizes for a large number of technologies in

the candidate pool. The research question following from this gap

is how existing community-scale applicable software tools can be

improved to more accurately calculate the optimal sizes of the MG

components. 
• An in-depth review of the meta-heuristic-based MG capacity plan-

ning approaches failed to identify any such models integrating an

optimisation-based energy dispatch strategy. The reason lies in the

time-consuming nature of the meta-heuristic-based solution algo-

rithms, making them intractable to include any look-ahead schedul-

ing provisions – that need to be repeated for each of the hundreds

of their search agents. Hence, a research question arises how a

computationally-tractable MG dispatch optimisation framework can

be designed for longer periods of time (e.g., one year), so that it can

be integrated into meta-heuristic-based MG sizing approaches with-

out incurring prohibitive computational constraints. 

.3. Contributions of paper 

To address the literature gaps this paper introduces a robust, de-

erministic, global-search MG capacity-planning algorithm. Founded on

he principles of meta-heuristic optimisation, the proposed model is able

o handle high levels of nonlinearity and non-convexity in the objective

unction – and can be applied to MGs of any size and any architecture.

n particular, the key contributions of the paper are: 

1 The performance of the novel Lévy-flight MFOA is evaluated in MG

capacity planning applications. To this end, it is accommodated in

a standard meta-heuristic-based MG sizing model that includes the

total discounted system cost as a decision criterion and ensures a

user-specified level of energy reliability, which is estimated based

on the typical one-year (8,760 h) MG operation simulations. 

2 By leveraging the power and speed of the Lévy-flight MFOA,

which is additionally reinforced with an adaptive stopping crite-

rion, the model provides a platform to optimise the operation of

MGs over a moving 24-h horizon using a LP-based approach in a

computationally-feasible way during the investment planning phase.

The optimal day-ahead energy dispatch algorithm is for the first time

accommodated into a meta-heuristic-based MG capacity planning

model enabling it to cost-optimally respond to the dynamic nature of

the model input data – load demand, meteorological, and wholesale

electricity market price – based on forward-looking predictions. 

.4. Paper organisation 

The remainder of the paper is organised as follows. Section 2 presents

he proposed Lévy-flight MFOA-based MG sizing model. A test-case MG

ystem is laid out in Section 3 and the model is populated for the case of

 rural community in New Zealand. Section 4 presents the solution of the

odel and validates its efficacy through a direct comparison with the

ndustry-leading MG sizing software, HOMER Pro, as well as the most

fficient meta-heuristics reported in the literature. Finally, conclusions

re made and areas for further work are discussed in Section 5 . 

. Methodology 

The following sections lay out the structure of the proposed meta-

euristic-based long-term MG investment planning and capacity opti-

isation model. 
5 
.1. Planning-level objective function 

The objective is to minimise the whole-life cost of the project, which

onsists of the lifetime costs of the components and the total cost of

ower trading with the utility grid (i.e., net electricity imports) over the

G life-cycle in present value, as follows: 

in 𝑊 𝐿 𝐶 𝑀 𝐺 

= 

∑
𝑐∈𝐶 

𝑁 𝑃 𝐶 𝑐 + 𝑁 𝑃 𝐶 𝑡𝑟,𝑛𝑒𝑡 + 𝑝, (1)

here 𝑁 𝑃 𝐶 𝑐 denotes the net present cost of the candidate technology 𝑐

hat is included in the model for consideration, 𝑁 𝑃 𝐶 𝑡𝑟,𝑛𝑒𝑡 is the cost of to-

al net energy purchased from the upstream grid in present value, while

 penalizes the solutions that violate any of the imposed constraints. 

The net present cost of a component in the context of MG design and

evelopment refers to the present value of all the costs associated with

ts new installation, replacement, as well as operation and maintenance

O&M) over the life-cycle of the project. The term “present value ” in this

ontext describes costs that have been discounted back to the baseline

ear, which accounts for the growth of inflation and the rise of inter-

st rates. Mathematically, the net present cost of a component can be

xpressed by the following equation [71] : 

𝑃 𝐶 𝑐 = 𝑁 𝑐 ×
( 

𝐶 𝐶 + 𝑅𝐶 × 𝑆 𝑃 𝑃 𝑊 + 

𝑂&𝑀 

𝐶 𝑅𝐹 ( 𝑖𝑟, 𝑃 𝐿 ) 
− 𝑆 𝑉 

) 

, (2)

here 𝑁 𝑐 denotes the optimal capacity/quantity of component 𝑐, 𝐶 𝐶 

nd 𝑅𝐶 respectively represent the capital cost and replacement cost

f the component, 𝑆 𝑃 𝑃 𝑊 stands for the single-payment present-worth

actor, which is defined in Eq. (3) [35] , 1 𝑂&𝑀 indicates the operation

nd maintenance cost of the component, 𝐶 𝑅𝐹 stands for the capital

ecovery factor that is a function of the real interest rate, 𝑖𝑟 , and the

rojected service life of the project, 𝑃 𝐿 , as expressed in Eq. (5) [35] , 2 

nd 𝑆 𝑉 is the salvage value of the component, which is expressed in

q. (6) [72] . 3 Any additional residual value, other than what is reflected

n the equipment salvage value, is assumed to be counterbalanced by the

osts associated with the equipment recycling or disposal. 

𝑃 𝑃 𝑊 = 

𝑁 ∑
𝑛 =1 

1 
( 1 + 𝑖𝑟 ) 𝐶 𝐿 ×𝑛 

, (3)

here 𝐶 𝐿 denotes the component lifetime and 𝑁 can be determined by

he following equation: 

 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
[

PL 

CL 

]
− 1 if PL mod CL = 0 , [

PL 

CL 

]
othe rwise , 

(4) 

𝑅𝐹 ( 𝑖𝑟, 𝑃 𝐿 ) = 

𝑖𝑟 ( 1 + 𝑖𝑟 ) 𝑃 𝐿 

( 1 + 𝑖𝑟 ) 𝑃 𝐿 − 1 
, (5)

V = RC ×
CL − 

(
PL − CL ×

[
𝑃 𝐿 

𝐶 𝐿 

])
CL 

. (6) 

In addition, to adjust the energy exchange cost components for the

eal interest rate, the net present cost of the net energy purchased from

he utility grid over the MG life-cycle can be obtained as [73] : 

𝑃 𝐶 𝑡𝑟,𝑛𝑒𝑡 = 

𝑃 𝐿 ∑
𝑛 =1 

𝐶 𝑡𝑟,𝑛 

( 1 + 𝑖𝑟 ) 𝑛 
, (7)



S. Mohseni, A.C. Brent, D. Burmester et al. Energy and AI 3 (2021) 100047 

w  

p

2

 

(  

p  

b  

a  

t  

o  

t  

t  

y  

(  

o  

(

𝐿  

𝑆  

𝐸

0  

2

 

m  

m  

s  

s  

t  

s  

i  

‘  

e  

m  

s

𝑷  

𝐸  

w  

t  

p  

s  

b  

n  

i  

c  

t  

d  

h

 

o  

p  

o  

e  

i  

a  

Fig. 2. Structure of solving a sequence of look-ahead optimal scheduling prob- 

lems over a moving 24-h time window. 
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here 𝐶 𝑡𝑟,𝑛 denotes the total cost associated with the total net energy

urchased from the grid in year 𝑛 of the MG operation. 

.2. Planning-level constraints 

Several constraints need to be relaxed at the planning level, namely:

1) a maximum allowed unreliability constraint measured by the loss of

ower supply probability ( 𝐿𝑃 𝑆 𝑃 ) index ( Eq. (8) ) [74] , which is set to

e equal to 0, i.e. load always satisfied (see Appendix A for details), (2)

 minimum allowed self-sufficiency ratio ( 𝑆 𝑆 𝑅 ) constraint measured as

he percentage of demand served by local distributed energy resources

ver the one-year operation of the system ( Eq. (9) ) [75] , which is set

o 80%, (3) a terminal energy in store constraint, which ensures that

he state-of-charge (SOC) of the battery storage system at the end of the

ear-long operating horizon equals or exceeds its initial energy content

 Eq. (10) ), and (4) specific upper bounds on the decision variables (sizes

f the components), in compliance with physical, real-world limitations

 Eq. (11) ). 

𝑃 𝑆 𝑃 ≤ 𝐿𝑃 𝑆 𝑃 

𝑚𝑎𝑥 , (8)

 𝑆 𝑅 ≥ 𝑆 𝑆 𝑅 

𝑚𝑖𝑛 , (9)

 𝐵 ( 𝑇 ) ≥ 𝐸 𝐵 ( 0 ) , (10) 

 ≤ 𝑁 𝑐 ≤ 𝑁 

𝑚𝑎𝑥 
𝑐 

. (11)

.3. Nested MG scheduling optimisation 

In contrast to the rule-based, hourly-basis dispatch strategy com-

only employed in the MG design optimisation software packages and

ost of the existing MG sizing methods in the literature (to charge the

torage when excess renewable power is present and to discharge the

torage when renewable sources are not satisfying the load demand),

he proposed algorithm accommodates an intelligent scheduling optimi-

ation algorithm nested within the optimal sizing problem. The schedul-

ng optimisation is formulated as a LP problem solved using the built-in

linprog’ MATLAB function over a moving 24-hour time horizon. Math-

matically, the optimal scheduling problem can be expressed as [76] :

in 𝑶 𝑷 𝑬 𝑿 = 𝑷 𝒊 𝒎 𝝅
𝑇 Δ𝑡 − 𝑷 𝒆 𝒙 𝝅

𝑇 Δ𝑡 + 10 −6 ‖𝒖 ‖1 , (12)

ubject to: 

 𝒊 𝒎 − 𝑷 𝒆 𝒙 = 𝑷 𝑳 − 𝑷 𝑷 𝑽 − 𝑷 𝑾 𝑻 + 𝑷 𝒄 𝒉 , 𝑩 − 𝑷 𝒅 𝒄 𝒉 , 𝑩 , (13)

 𝐵 ( 𝑡 ) = 𝐸 𝐵 ( 𝑡 − 1 ) . 
(
1 − 𝜎𝐵 . Δ𝑡 

)
+ 𝜂𝑐 ℎ,𝐵 . 𝑃 𝑐 ℎ,𝐵 ( 𝑡 ) . Δ𝑡 − 

𝑃 𝑑 𝑐 ℎ.𝐵 ( 𝑡 ) . Δ𝑡 

𝜂𝑑 𝑐 ℎ,𝐵 

∀𝑡, (14)

here 𝑶 𝑷 𝑬 𝑿 , 𝑷 𝒊 𝒎 , 𝑷 𝒆 𝒙 , 𝝅, 𝑷 𝑳 , 𝑷 𝑷 𝑽 , 𝑷 𝑾 𝑻 , 𝑷 𝒄 𝒉 , 𝑩 , and 𝑷 𝒅 𝒄 𝒉 , 𝑩 denote

he 24-hour column vectors of the daily operational expenditure, im-

orted power, exported power, wholesale electricity price, load demand,

olar PV power output, WT power output, battery charging power, and

attery discharging power, respectively; 10 −6 ‖𝒖 ‖1 represents the L1-

orm of the battery schedules over the 24-hour operational horizon that

s included to penalize any needless battery cycling; 𝐸 𝐵 is the energy

ontent of the battery bank; 𝜂𝑐 ℎ,𝐵 and 𝜂𝑑 𝑐 ℎ,𝐵 respectively denote the bat-

ery charging and discharging efficiencies (92%); 𝜎𝐵 is the battery self-

ischarge rate (0.3%/day); and Δ𝑡 is the length of each time-step (1

our). 

The objective function is, additionally, subject to a secondary set

f operational constraints. Specifically, at the operational level, strictly

ositive minimum and maximum installed capacity bounds are placed

n the operating points of the non-dispatchable renewable energy gen-

ration and energy conversion assets Eq. (15) ); for the battery bank, this

ncludes lower and upper limits on the energy in store ( Eq. (16) ), as well

s the charge and discharge power capacities ( Eqs. (17) and ( (18) ). The
6 
pper bounds represent the optimised sizes of the components, whereas

he lower bounds are controlled by the corresponding upper bounds.

pecifically, the maximum depth of discharge of the battery bank was as-

umed as 90% [77] . Also, an initial energy in store constraint ( Eq. (19) )

ets the battery bank to be fully charged at the beginning of the simula-

ions (the first time-step of the MG operation). Moreover, two separate

onstraints enforce the product of the hourly battery charging and dis-

harging powers, as well as the hourly imported and exported powers

o be equal to zero, as behind-the-meter batteries cannot be operated

o simultaneously charge and discharge ( Eq. (20) ), and the transformer

t the point of common coupling cannot be operated to concurrently

mport and export electricity ( Eq. (21) ). 

 

𝑚𝑖𝑛 
𝑐 

≤ 𝑃 𝑐 ( 𝑡 ) ≤ 𝑃 

𝑚𝑎𝑥 
𝑐 

, (15)

 

𝑚𝑖𝑛 
𝐵 

≤ 𝐸 𝐵 ( 𝑡 ) ≤ 𝐸 

𝑚𝑎𝑥 
𝐵 

, (16)

 

𝑚𝑖𝑛 
𝑐 ℎ,𝐵 

≤ 𝑃 𝑐 ℎ,𝐵 ( 𝑡 ) ≤ 𝑃 

𝑚𝑎𝑥 
𝑐 ℎ,𝐵 

, (17)

 

𝑚𝑖𝑛 
𝑑 𝑐 ℎ,𝐵 

≤ 𝑃 𝑑 𝑐 ℎ,𝐵 ( 𝑡 ) ≤ 𝑃 

𝑚𝑎𝑥 
𝑑 𝑐 ℎ,𝐵 

, (18)

 𝐵 ( 0 ) = 𝑁 𝐵 . 𝐶 𝐵,𝑟 , (19)

 𝑐 ℎ,𝐵 ( 𝑡 ) . 𝑃 𝑑 𝑐 ℎ,𝐵 ( 𝑡 ) = 0 , (20)

 𝑖𝑚 ( 𝑡 ) . 𝑃 𝑒𝑥 ( 𝑡 ) = 0 . (21)

It is worth noting that it is assumed that the MG has a contract with a

nancially responsible market participant (FRMP), which has financial

bligations with respect to their subscribers for energy sold or purchased

hrough the wholesale spot market. This allows the MG to access the

holesale electricity market. Of the various FRMPs working under the

xisting wholesale market regulatory arrangements, the registered small

enerator aggregators – which aggregate the outputs of a number of

mall generating units and dispatch the collective output into the spot

arket – are particularly well-suited for the purpose of this study. 

Fig. 2 illustrates the structure of solving a sequence of day-ahead

24-h) optimal dispatch problems (at an hourly resolution) using the

P-based energy scheduling framework. 

.4. Battery degradation 

The battery degradation over its lifetime is modelled using two vari-

bles, each of which represents a fractional capacity loss (from 0 when

ew to 0.2 at the end of its life for a 20% capacity degradation limit),

amely: the calendar and cycling degradation. The battery capacity fade

s defined as the maximum of the two values. That is, the battery’s end

f life is determined by the calendar or cycling degradation, whichever

s greater. 
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Fig. 3. Fitting a second-degree polynomial curve to the relative battery capacity 

versus temperature data. 
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Fig. 4. Illustrative example of the rainflow cycle counting algorithm (adapted 

from [80] ). 
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The calendar-induced degradation, the rate of increase of which de-

ends on the operating temperature, is modelled as [78] : 

𝑡 = 𝐵 × 𝑒 
− 𝑑 

𝑇 𝑖 , (22)

here 𝑘𝑡 denotes the rate of increase of the calendar degradation vari-

ble, 𝐵 (2.28 × 10 − 6 ) and 𝑑 (0) are the manufacturer-provided constants

t to empirical data, and 𝑇 𝑖 is the battery’s internal temperature [K],

hich can be calculated as [78] : 

 𝑖 ( 𝑡 + 1 ) = ( 𝑇 𝑖 ( 𝑡 ) − 𝑇 𝑎 ( 𝑡 ) − 

�̇� 

ℎ 

) 𝑒 − 
ℎ 

𝑚𝑐 
Δ𝑡 + 

�̇� 

ℎ 

+ 𝑇 𝑎 , (23)

here 𝑇 𝑎 is the ambient temperature [K], 𝑚 is the mass of the battery

9.08 kg per 1 kWh pack), 𝑐 is the specific heat capacity (800 J/kg-K),

 is the thermal conductance to ambient temperature (10 W/K), and �̇�

 �̇� = 

𝑉 2 

𝑅 

) denotes the losses in the series resistance that are converted

o heat, with 𝑉 representing the battery pack’s nominal voltage (3.7 V)

nd 𝑅 denoting its effective series resistance (3.6 × 10 − 4 ohms). 

The battery is enforced to operate within an allowable internal tem-

erature range, as: 

 

𝑚𝑖𝑛 
𝑖 

≤ 𝑇 𝑖 ≤ 𝑇 

𝑚𝑎𝑥 
𝑖 

, (24)

here 𝑇 

𝑚𝑖𝑛 
𝑖 

and 𝑇 

𝑚𝑎𝑥 
𝑖 

are the minimum and maximum internal operating

emperature limits of the battery, which are fixed at 0 °C and 60 °C,

espectively. 

Furthermore, the mathematical model of the battery includes varia-

ion in capacity with temperature, which can be formulated as follows:

 𝐵 

(
𝑇 𝑎 

)
= 𝐶 𝐵,𝑟 ×

(
𝑑 0 + 𝑑 1 × 𝑇 𝑎 + 𝑑 2 × 𝑇 𝑎 

2 ), (25) 

here 𝑇 𝑎 is the ambient temperature-dependent relative capacity of the

attery, 𝐶 𝐵,𝑟 is the rated capacity of the battery, while 𝑑 0 , 𝑑 1 , and 𝑑 2 
re the coefficients obtained from fitting a second-degree polynomial

urve to the manufacturer-provided relative capacity versus ambient

emperature data ( Fig. 3 ), which are respectively fixed at 9.23 × 10 − 1 ,

.45 × 10 − 3 , and − 3.75 × 10 − 5 . 4 

Moreover, the cycle fatigue on the battery is modelled by the follow-

ng equation [78] : 

∕ 𝑁 = 𝐴 × 𝐷 𝑂 𝐷 

𝛽 , (26)

here 𝑁 is the number of cycles to failure, 𝐷 𝑂𝐷 is the depth of dis-

harge, while 𝐴 (1.44 × 10 − 4 ) and 𝛽 (1.79) are fitted constants. 

The rainflow cycle counting algorithm [79] is utilised to convert the

attery’s one-year SOC profile into a set of discrete cycles with the cor-

esponding depth of discharge values. To this end, the built-in ‘rainflow’
4 Although increasing the number of observed data points results in narrow- 

ng the gap between the confidence band and the best-fit curve, improving the 

ccuracy of input data has been deemed secondary for the goal of demonstrating 

he utility and effectiveness of the proposed MG equipment capacity-planning 

ethod. 

a  

s

𝑆  

w  

fl  

7 
ATLAB function is used. Then, the total (cumulative) cycle-life degra-

ation is determined as: 

 = 

𝑁 ∑
𝑖 =0 

𝐴 × 𝐷 

𝛽

𝑖 
. (27)

Fig. 4 shows an illustrative example of the rainflow algorithm ap-

lied to a representative battery SOC profile [80] . The figure demon-

trates three half-cycles; the red arrow represents a non-continuous

harging half-cycle, while the green and yellow arrows respectively rep-

esent continuous discharging and charging half-cycles that are of the

ame cycle depth. 

It should also be noted that the battery bank is limited by the charg-

ng and discharging power capacities, which are both fixed at C/2,

eaning that the battery bank can be fully charged or discharged in

wo hours. 

.5. Moth-flame optimisation algorithm 

The search and selection of the cost-minimal MG configuration con-

ist of an application of a modified version of the MFOA to the objec-

ive function derived in Eq. (1) . The MFOA is a state-of-the-art, nature-

nspired, population-based metaheuristic that systemically rebalances

xploration (i.e., the early stages of the optimisation process that mim-

cs the long-range movement of individuals) for improved exploitation

i.e., the local search around promising regions) of the search space for

otential solutions. The MFOA simulates the navigation system of moths

t night − referred to as ‘transverse orientation’. It considers both the

oths and flames as search agents and is one of a few meta-heuristics

hat makes use of two types of search agents, whereby the exploration

nd exploitation are traded off as the search progresses. More specifi-

ally, the moths represent the individuals that search the design space,

hereas the flames are the pins dropped by the moths to keep a track

f the best solution obtained over the course of iterations. 

In this algorithm, the relationship between the moths and flames is

odelled using the following equation [56] : 

 𝑖 = 𝑆 

(
𝑀 𝑖 , 𝐹 𝑗 

)
, (28)

here 𝑀 𝑖 and 𝐹 𝑗 respectively represent the position of the 𝑖 -th moth

nd 𝑗-th flame, while 𝑆 is a logarithmic spiral function that directs the

earch, which can be defined as follows: 

 

(
𝑀 𝑖 , 𝐹 𝑗 

)
= 𝐷 𝑖𝑗 𝑒 

𝑏𝑡 cos ( 2 𝜋𝑡 ) + 𝐹 𝑗 , (29)

here 𝐷 𝑖𝑗 indicates the distance between the 𝑖 -th moth and the 𝑗-th

ame that can be calculated by Eq. (30) , 𝑏 is a constant that defines the



S. Mohseni, A.C. Brent, D. Burmester et al. Energy and AI 3 (2021) 100047 

Fig. 5. Conceptual illustration of the exploration-exploitation trade-off ability 

of the MFOA (adapted from [56] ). 
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Fig. 6. Illustrative example of Lévy flights [81] . 
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hape of the logarithmic spiral, and 𝑡 is a random number in the range

 − 1, 1] that controls the degree of closeness of the moths with respect

o flames in the next iteration. 

 𝑖𝑗 = 

|||𝐹 𝑗 − 𝑀 𝑖 
|||. (30) 

Furthermore, to reduce the probability of local optima stagnation,

ach moth is constrained to update its position with respect to only one

ame. 

This procedure continues iteratively until the maximum number of

terations, as the stopping criterion, is reached. Finally, the best indi-

idual’s fitness value (return value of the objective function) in the last

teration of the algorithm is reported as the optimal value of the objec-

ive function over the feasible region of the optimisation problem. 

Fig. 5 provides a conceptual illustration of the update process of the

FOA, where the grey dots represent the next possible solutions of a

ypothetical problem (i.e., a representative moth’s possible positions in

he next iteration). As the figure shows, the MFOA is able to adaptively

rade-off the exploration and exploitation. Specifically, the algorithm

xploits the search space if the corresponding flame is in the vicinity of

he moth (as labelled by arrow 2 in the figure), otherwise, it explores

he design space (as indicated by arrows 1, 3, and 4). 

.5.1. Lévy-flight MFOA 

The Lévy-flight MFOA was initially introduced by Li et al. [70] . In

athematics, the Lévy-flight is a random walk in that the step-lengths

re Lévy-distributed – a heavy-tailed probability distribution. Equipping

he original MFOA with the Lévy-flight mechanism has been found to

mprove the diversity of the population of individuals necessary to avoid

remature convergence. Specifically, Lévy flights are composed of clus-

ers of multiple short steps connected by longer relocations (see Fig. 6 )

81] . 

The main principle of the Lévy-flight MFOA is to let each moth per-

orm one Lévy-flight after updating its position, which can be formulated

s [70] : 

 

𝑡 +1 
𝑖 

= 𝑋 

𝑡 
𝑖 
+ 𝑢 sign [ rand − 0 . 5 ] ⊕ Levy ( 𝛽) , (31)

here 𝑋 

𝑡 
𝑖 

is the position of the 𝑖 -th moth at the 𝑡 -th iteration, 𝑢 is

 random number drawn from a uniform (0,1) distribution, the term

ign [ rand − 0 . 5 ] takes on one of the three values of − 1, 0, and 1, ⊕ de-

otes the element-wise product, while Levy ( 𝛽) is defined as follows [70] :
8 
evy ( 𝛽) ∼ ∅ × 𝜇

|𝑣 | 1 𝛽

, (32) 

here 𝜇 and 𝑣 are random numbers drawn from a standard normal dis-

ribution, 𝛽 is a parameter that is fixed at 1.5, while ∅ is defined as

ollows [70] : 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
Γ( 1 + 𝛽) × sin 

(
𝜋×𝛽

2 

)
Γ
( (

1+ 𝛽
2 

)
× 𝛽 × 2 

𝛽−1 
2 

) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

1∕ 𝛽

, (33) 

here Γ is the standard gamma function, computed using the built-in

gamma(X)’ MATLAB function. 

.6. Overview of the proposed model 

Fig. 7 illustrates the general meta-heuristic-based MG capacity plan-

ing solution algorithm with nested optimal energy dispatch strategy.

s the figure shows, the overall problem is formulated as an outer loop

apacity planning optimisation problem, within which daily optimal en-

rgy management problems are nested. The simulation process, in which

omponent sizes are treated as ‘here-and-now’ variables and the oper-

ting schedules serve as ‘wait-and-see’ variables, is described in more

etail along the following steps: 

1 The Lévy-flight MFOA’s population of candidate solutions (to the op-

timal sizing problem with the objective function defined in Eq. (1) )

is randomly initialised subject to the imposed component-specific

maximum allowable capacity constraint ( Eq. (11) ) at the capacity

planning level, and then passed to the inner operational planning

loop. 

2 For each search agent in the inner loop, the optimal daily operating

strategy is determined until the operating schedules have been de-

veloped for the whole representative operation period (one year)

and the obtained results are returned to the outer loop. To this

end, the optimal dispatch problem with the objective function de-

fined in Eq. (12) is solved subject to the operational-level constrains

in Eqs. (13) –(21) , whilst additionally accounting for the calendar

and cycling-driven battery degradation components using Eqs. (22) –

(27) . This provides a platform to check whether the non-maximum-

capacity-related constraints at the planning level Eqs. (8) –( (10) ) are

relaxed. 

3 The return values of the investment planning objective function

( Eq. (1) ) are calculated to evaluate the fitness of each candidate so-

lution. 

4 The outer design process will loop with the updated positions of the

dedicated search agents until any of the termination conditions are

met. Specifically, additionally to the main iteration counter, 𝐼 𝑡𝑒𝑟 ,

an auxiliary iteration counter, 𝑁 𝑢𝑚 , is defined, which serves as an
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Fig. 7. Meta-heuristic-based solution ap- 

proach for MG capacity planning problem 

with nested optimal operational scheduling. 
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𝑃  

𝜂  
adaptive stopping criterion. The auxiliary counter helps speed up the

simulation process by terminating the equipment size selection loop

if the fitness of the outer loop capacity planning objective function

has not improved over a pre-defined number of iterations, denoted

by 𝑁 𝑢 𝑚 

𝑚𝑎𝑥 (in this paper, 𝑁 𝑢 𝑚 

𝑚𝑎𝑥 = 50). If the auxiliary counter has

not reached the maximum value, the iteration limit set for the main

counter, denoted by 𝐼 𝑡𝑒 𝑟 𝑚𝑎𝑥 (in this paper, 𝐼 𝑡𝑒 𝑟 𝑚𝑎𝑥 = 200) controls

the termination of the programme. 

. Test-case system model 

The grid-connected, DC-coupled community MG, shown in Fig. 8 , is

odelled for an eight-lot residential subdivision, namely Totarabank,

hich is located in the Wairarapa District of the North Island of New

ealand (see Fig. 9 ). Designed based on permaculture principles, To-

arabank is a small resilient eco-community committed to sustainable

ural living, with 14 inhabitants [82 , 83] . The energy flow through the

G components was modelled without losses. However, conversions

rom AC to DC, from DC to AC, and from DC to DC, were assumed to
9 
ave efficiencies of 96% for each direction [84] . Also, the transformer’s

ound-trip efficiency for exchanges with the AC grid was assumed to

e 94% [85] . The optimal sizes of the power conversion devices serv-

ng as interfaces between the MG components and the common DC bus

re dependent on the optimal sizes of the corresponding energy gen-

ration/storage components. That is, out of the power electronics de-

ices, only the size of the multi-mode (hybrid) system inverter is deter-

ined independently. Additionally, the real interest rate is assumed to

e 2.45% [86] and the system is expected to last 20 years. 

The following section mathematically models the distributed energy

eneration and storage technologies of the MG system. 

.1. PV panels 

The power output from each PV panel in time 𝑡 is [87] : 

 𝑃 𝑉 ( 𝑡 ) = 𝜂𝑃 𝑉 ( 𝑡 ) . 𝑎 𝑃 𝑉 . 𝐼 𝐺 

( 𝑡 ) , (34)

𝑃 𝑉 ( 𝑡 ) = 𝜂𝑟 + (1 − 𝛽
(

𝑇 𝑐 ( 𝑡 ) − 𝑇 𝑐 ,𝑟𝑒𝑓 

)
, (35)
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Fig. 8. Schematic of the conceptual grid-tied, DC- 

coupled solar PV/WT/battery community MG sys- 

tem. 

Fig. 9. Case study site: (a) location on a New Zealand satellite map (GPS coordinates: 41°1 ′ 4 ” S 175°40 ′ 0 ” E); (b) satellite photograph with subdivision lots overlaid 

(image courtesy of Google Earth). 
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 𝑐 ( 𝑡 ) = 𝑇 𝑎 ( 𝑡 ) + 

(
𝑁 𝑂𝐶 𝑇 − 20 

0 . 8 

)
𝐼 𝐺 

( 𝑡 ) , (36)

here 𝜂𝑃 𝑉 ( 𝑡 ) is the time-variant efficiency of the panel, 𝑎 𝑃 𝑉 is the panel’s

rea (1.64 m 

2 ), 𝐼 𝐺 

( 𝑡 ) is the global horizontal solar irradiance in time 𝑡

kW/m 

2 ], 𝜂𝑟 is the panel’s rated efficiency (17.4%), 𝛽 is the PV temper-

ture coefficient of power ( − 0.48%/°C), 𝑇 𝑐 is the cell temperature, 𝑇 𝑐 ,𝑟𝑒𝑓 

s the reference cell temperature (25 °C), 𝑇 𝑎 is the ambient temperature

°C], and 𝑁 𝑂𝐶 𝑇 denotes the nominal operating cell temperature (43

C). 

.2. Wind turbines 

The power output from each WT is given by [16] : 

 WT ( 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 if 𝑣 ( 𝑡 ) ≤ 𝑣 ci or 𝑣 ( 𝑡 ) ≥ 𝑣 co , 

𝐴 if 𝑣 ci < 𝑣 ( 𝑡 ) ≤ 𝑣 𝑟 , 

𝑃 WT ,𝑟 if 𝑣 𝑟 < 𝑣 ( 𝑡 ) < 𝑣 co , 

(37) 

 = 

𝑃 𝑊 𝑇 ,𝑟 

𝑣 3 
𝑟 
− 𝑣 3 

𝑐 𝑖 

𝑣 3 ( 𝑡 ) − 

𝑣 3 
𝑐 𝑖 

𝑣 3 
𝑟 
− 𝑣 3 

𝑐 𝑖 

𝑃 𝑊 𝑇 ,𝑟 , (38)

here 𝑣 ( 𝑡 ) denotes the wind speed in time t, 𝑣 𝑐 𝑖 is the WT’s cut-in wind

peed (2.7 m/s), 𝑣 𝑟 is the WT’s rated wind speed (11 m/s), 𝑣 𝑐 𝑜 is the
10 
T’s cut-out wind speed (25 m/s), and 𝑃 𝑊 𝑇 ,𝑟 is the selected turbine’s

ated power (5 kW). 

Fig. 10 displays the monthly mean 24-h profiles for the forecasted

ower load, solar irradiance, ambient temperature, wind speed, and

holesale electricity price. The forecasted meteorological and whole-

ale electricity market price profiles were derived by taking an average

ver the years of 2010 to 2019 from data provided by the New Zealand’s

ational Institute of Water and Atmospheric Research [88] and the New

ealand Electricity Authority [89] , respectively. Also, the power load

rofile was synthesised based on the New Zealand GREEN grid project’s

stimates of the future household demand profiles in accordance with

he site’s population and household size [90] . Note that figures depict

ew Zealand time for the relevant month. As the associated profiles

n Fig. 10 suggest, (1) low-grade heat uses are electricity dominated,

mplying that load peaks on long dark cold winter nights, (2) the case

tudy site is well-endowed with solar PV and wind resources, which

ave complementary diurnal and seasonal production profiles – wind

igher at night and in winter, solar PV higher in the daytime in summer,

nd (3) in the context of New Zealand’s hydro-dominated system, spot

lectricity prices are typically higher during the drier summer months

hen hydro lakes (storage) and inflows are below average and the back-

p role is primarily filled by more expensive natural gas-fired and coal

ower plants. 
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Fig. 10. Monthly mean daily profile for: (a) load demand; (b) solar irradiance; (c) ambient temperature; (d) wind speed; (e) wholesale electricity price. 

Table 3 

Data values and sources for the techno-economic specifications of the MG system. 

Component Nameplate rating Capital cost Replacement cost O&M cost a Lifetime Efficiency Source 

PV panel 375 W (Canadian Solar KuMax) $437/unit N/A b $1.9/unit/yr 20 years 18.9% [91] 

Wind turbine 5 kW (AWS HCM) $6,450/unit N/A b $28/unit/yr 20 years N/A c [92] 

Battery pack 1 kWh (Generic) $885/kWh $417/kWh d $2.1/kWh/yr 15 years or 12,000 cycles e 92% f [84] 

Hybrid inverter 3 kW (Selectronic SPMC240) $4,600/unit $4,600/unit g $3.9/unit/yr 15 years 96% [93] 

a Estimated based on the capital-to-O&M cost ratios presented in [94 , 95] for the relevant technologies. 
b Not applicable, as no replacement is needed over the analysis period. 
c Not applicable, as the power output from the wind plant is adaptively estimated based on wind speed (see Eq. (37) ). 
d Estimated based on cost projections from the Australia’s National Science Agency for behind-the-meter Li-ion batteries [96] . 
e Estimated considering a depth of discharge of 100%. 
f Charge and discharge efficiencies. 
g No significant change is projected for the costs of power electronics devices [84] . 
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It is assumed that low-temperature heat is the main source of house-

old electrical energy use. Specifically, it collectively amounts to 46%

f the total electricity use, of which 27% is used for space heating and

9% is used for water heating. Also, residential appliances account for

4% of the total household electricity use, with the breakdown as fol-

ows: plug-load appliances (19%); refrigeration (15%); lighting (12%);

nd range (8%). Note that the above percentage points represent the as-

ociated total annual electricity uses, which are to a great degree subject

o seasonality. 

Also, Table 3 lists the data values and sources for the MG equipment

echno-economic parameters. Note that, in this paper, all monetary val-

es are expressed in 2019 NZ$; where required, foreign currencies were

onverted into NZ$ at the yearly average currency exchange rates in

019. 

. Simulation results and discussion 

The results associated with the application of the developed model to

he test-case are presented in this section. The section begins by provid-

ng a comparative evaluation of the performance of the proposed model
11 
ith that of the leading pre-feasibility design software for modelling

Gs, HOMER Pro, for initial validation ( Section 4.1 ). It then demon-

trates the superiority of the Lévy-flight MFOA to the basic MFOA, as

ell as eight well-established and state-of-the-art meta-heuristics in the

iterature, when embedded in the proposed meta-heuristic-based MG

apacity planning solution approach ( Section 4.2 ). The section then

roceeds to focus explicitly on the system optimised by the Lévy-flight

FOA with representative energy balance analyses ( Section 4.3 ), cash

ow analyses ( Section 4.4 ), capital budgeting analyses ( Section 4.5 ),

nd a specific sensitivity analysis ( Section 4.6 ). 

.1. Model validation 

To validate the effectiveness of the model in estimating the globally

ptimum MG sizing solutions, the results are benchmarked against the

esign of a similar system using HOMER Pro. In order to precisely match

he proposed model to a model in HOMER Pro, the power output from

olar PV and WT calculations used in HOMER Pro [97 , 98] were adopted

n the proposed model. Fig. 11 shows the layout of the HOMER Pro

odel. 
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Fig. 11. HOMER Pro model of the MG used for benchmarking. 
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Table 4 presents a direct comparison of the proposed modelling and

OMER Pro results. 

Fig. 12 provides a statistical representation of the hourly change in

he SOC of the Li-ion battery bank over a one-year operation of the op-

imally sized system. The boxplots show the interquartile range of the

attery SOC with the lines that divide the boxplots into two parts repre-

enting the median of the relevant data. The whiskers represent the most

xtreme data points (minimum and maximum values) obtained from the

imulations. A smaller distribution of the battery SOC, as described by

he boxplots, indicates that the hourly data are more condensed. Note

hat a positive value represents an increase (charging mode) in the bat-

ery SOC, negative a reduction (discharging mode). 

Figs. 13 and 14 respectively show the monthly mean profiles for the

nergy purchased from the grid and energy sold back to the grid in the

ptimal solution sets determined by the proposed Lévy-flight MFOA-

ased model and HOMER Pro. 
Table 4 

Comparative Lévy-flight MFOA-based model an

Output 

Total net present cost of the MG a [$] 

Total discounted renewable energy generated 

LCOE b [$/kWh] 

PV size [kW] 

WT size [kW] 

Battery size [kWh] 

System inverter size [kW] 

Total equipment-related costs [$] 

Total net energy purchased [kWh] 

Total net electricity exchange costs [$] 

Total renewable energy curtailed [kWh] 

Grid outage survivability [%] 

Battery bank autonomy [h] 

CPU usage time [s] 

a The net present cost is the negative of the n

net present cost indicates that the projected re

the total expected costs. Refer to Section 4.5.

outcome. 
b The levelised cost of energy (LCOE) is defin

divided by the total discounted electrical pow

equals the total renewable energy generated un

Refer to Section 4.5.4 for a more detailed discu

12 
The comparative results presented in Table 4 , as well as Figs. 12–

4 are collectively revealing in several ways. First, while HOMER Pro

elected a battery-less MG configuration as the optimum solution, the

roposed meta-heuristic model determined the optimal size of the Li-ion

attery bank to be 41 kWh. However, the sum of the sizes of the local re-

ewable energy generation technologies in the cost-optimal equipment

apacity combination has remained unchanged. The reason for this is

hat the sum of the optimal sizes of the solar PV panels and WTs is

ound to be the maximum permissible amount that meets the existing

nstalled transformer’s capacity constraint in both cases. That is, given

he intra-day volatility in the New Zealand Wholesale Electricity Market

hat ranges from 6% to 28%, both the solution algorithms agree that it is

ost-optimal to build the largest possible renewable energy generation

apacity, provided that the upstream grid acts as an infinite bus absorb-

ng any injected power subject to the transformer capacity. Collectively,

he optimally selected and sized renewable energy assets (for minimum

ife-cycle cost) by the meta-heuristic-based model indicated an increase

f approximately 18% in the total net present value of the project. The

ey insight arising from this observation is that the meta-heuristic-based

olution algorithm explores the solution space more effectively than the

eemingly exact mathematical solution algorithms – which require high-

rder linear approximations of the objective function in MG planning

pplications. 

Second, while the solution optimised by the meta-heuristic-based

lgorithm did not choose to use the energy arbitrage strategy in its

lassic definition of ‘charge cheaply, discharge discreetly’, the compar-

tive year-round profiles for the energy exchanged with the grid (see

igs. 13 and 14 ), as well as the summary statistics of the optimal bat-

ery charging/discharging strategies adopted at the corresponding time-

teps in the Lévy-flight MFOA-optimised solution (see Fig. 12 ), indi-

ate that the solution algorithm has implemented an intelligent energy

rading scheme – as part of the optimum solution. Specifically, the LP

ptimisation-based day-ahead energy dispatch strategy integrated into

he proposed model decided to supply part of the demand by import-

ng from the utility grid during off-peak periods when wholesale prices

re lower; the excess on-site renewable energy generation is stored to

e discharged later for on-site use when wholesale prices are higher.

n this way, the arbitrage economics of energy storage are valued in-
d homer pro results. 

Optimisation method 

Proposed model HOMER Pro 

− 50,332 − 42,646 

[kWh] 2,458,206 2,407,175 

− 0.020 − 0.018 

17.5 7.5 

30 40 

41 0 

9 15 

123,012 95,763 

− 1,404,360 − 1,120,469 

− 173,344 − 138,409 

0 19,620 

100% 100% 

14 0 

122,517 2,409 

et present value; that is, a negative total 

venues generated by the project exceed 

4 for a more detailed discussion on this 

ed as the total net present cost of the MG 

er load served including exports, which 

der the assumptions made in this paper. 

ssion on this outcome. 
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Fig. 12. Summary statistics for the energy content of the battery bank over the year [kWh]. 

Fig. 13. Monthly mean profile for the energy imported from the grid: (a) proposed model; (b) HOMER Pro. 

13 
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Fig. 14. Monthly mean profile for the energy exported to the grid: (a) proposed model; (b) HOMER Pro. 
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irectly. In contrast, the rule-based Greedy energy dispatch algorithm 

5 

84] has failed to make effective use of the storage capacity as a hedge

gainst the daily volatility in wholesale electricity market prices; this is

he main underlying reason for the selected battery-less MG configura-

ion by HOMER Pro. 

Third, the presence of the battery bank in the optimal solution set

ielded by the Lévy-flight MFOA-based solution algorithm provides di-

ect benefits in terms of energy resilience. Specifically, the MG resilience

o grid outages and on-site renewable power disruption was quanti-

ed using two indices, namely: the grid outage survivability (the ra-

io of the battery bank capacity to the annual mean ‘net’ power load)

100] , and the battery bank autonomy hour (i.e., the ratio of the battery

ank capacity to the annual mean power load) [101] . Both the meth-

ds yielded a grid outage survivability of 100%, meaning that both the

attery-less and battery-integrated optimised systems are able to sus-

ain electrical loads for the site during indefinite grid outages. While

he two systems have the same resilience benefit in terms of an out-

ge on the grid, the cost-minimal system determined by the Lévy-flight

FOA-based solution algorithm is, additionally, able to sustain electri-
5 Under the Greedy energy scheduling approach, any excess local renewable 

ower generation is used to charge the dedicated battery bank before being 

xported, whereas any on-site resource deficiency is met by releasing the energy 

n store before purchasing from the wholesale market. 

f  

P  

t  

t  

n  

14 
al loads for 14 hours of a more severe outage that disrupts access to the

lectricity generated from the on-site renewable resources and the grid

using solely the battery backup power) – with a higher total net present

orth. Moreover, the inclusion of the battery bank has led to a signifi-

ant reduction in the curtailment of non-dispatchable power (solar PV

nd wind). Specifically, while the total excess renewable energy cur-

ailed in the HOMER Pro-optimised system is found to be 19,620 kWh

over the project life-cycle), no curtailment occurs in the system opti-

ised by the proposed model. The curtailment reduction is explained by

he ability of the battery-backed system to store the excess renewable

ower beyond the capacity of the existing installed transformer. 

Fourth, the model has yielded a more well-balanced mix of the can-

idate renewable energy generation technologies. Specifically, while

he optimal generation capacity mix is found to be 84% wind and

6% solar PV by HOMER Pro, the optimum capacity mix determined

y the proposed model is 63% wind and 37% solar PV. In large part,

his is achieved by the forward-looking characteristic of the intelligent

ay-ahead scheduling design, which leverages battery storage to cost-

ptimally address the future non-dispatchable renewable energy short-

alls. In contrast, the rule-based energy dispatch strategy used in HOMER

ro is to sequentially determine the energy schedules at each time step

hat is linked to other time steps merely through the energy content of

he battery bank. Crucially, the look-ahead energy scheduling provisions

ested within the proposed capacity planning framework have enabled
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Table 5 

Parameter settings for the meta-heuristics under evaluation. 

Algorithm Parameter settings Reference 

GA Mutation rate = 0.05, crossover probability = 0.1, mutation probability = 0.9 [28] 

PSO Acceleration coefficients = 2, inertia weight = 0.7 [27] 

Hybrid GA-PSO Mutation rate = 0.05, crossover probability = 0.1, mutation probability = 0.9, Acceleration coefficients = 2, inertia weight = 0.7 [29] 

MFOA 𝑏 = 1 [56] 

Lévy-flight MF OA 𝑏 = 1, 𝛽 = 1.5 [70] 

HS Harmony memory accepting rate = 0.85 [30] 

SA Initial acceptance probability = 0.4, cooling ratio = 0.95, size factor = 16, imbalance factor = 0.05 [31] 

ABC Number of onlooker beers = 25, number of employed bees = 25 [32] 

ACO Archive size = 50, locality of search = 0.1, convergence speed = 0.85 [33] 

ALO Self-adaptive adjustment of a single control parameter [34] 

Table 6 

Summary statistics for the efficiency comparison of the selected meta-heuristics in terms of the MG whole-life cost. 

Algorithm Best 𝑊 𝐿 𝐶 𝑀 𝐺 Score Worst 𝑊 𝐿 𝐶 𝑀 𝐺 Score Mean 𝑊 𝐿 𝐶 𝑀 𝐺 Score Median 𝑊 𝐿 𝐶 𝑀 𝐺 Score SD of 𝑊 𝐿 𝐶 𝑀 𝐺 Score Mean score Rank 

Lévy-flight MF OA − 50,332 1 − 49,716 1 − 50,040 1 − 49,999 1 175.52 1 1 1 

MFOA − 47,244 2 − 46,014 2 − 46,652 2 − 46,718 2 337.76 6 2.8 2 

GA − 46,715 4 − 45,388 3 − 45,741 4 − 45,648 4 339.24 7 4.4 3 

Hybrid GA-PSO − 46,413 5 − 45,219 4 − 45,894 3 − 45,944 3 355.38 8 4.6 4 

PSO − 46,907 3 − 45,118 5 − 45,684 5 − 45,585 5 459.74 9 5.4 5 

ALO − 46,114 6 − 44,011 7 − 44,316 7 − 44,273 8 244.01 3 6.2 6 

HS − 44,710 9 − 44,019 6 − 44,297 8 − 44,276 7 188.50 2 6.4 7 

SA − 44,917 8 − 43,880 9 − 44,419 6 − 44,426 6 295.00 4 6.6 8 

ABC − 45,009 7 − 43,918 8 − 44,253 9 − 44,195 9 305.98 5 7.6 9 

ACO − 44,588 10 − 42,870 10 − 43,977 10 − 44,076 10 485.57 10 10 10 

∗ Bold indicates the least-cost MG whole-life cost solution obtained across the examined meta-heuristics over 30 independent simulation runs. 
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he MG to effectively harness the wind-solar complementary seasonal

nd diurnal cycles with an attendant reduction in excess renewable en-

rgy curtailment of 100%, although minimising the renewable energy

urtailment was not an optimisation criterion. 

Fifth, the ability of the model to search for better results comes

t the cost of higher computational requirements. Specifically, a stan-

ard desktop computer was able to solve the problem at hand using

he HOMER Pro software and the proposed model coded in MATLAB re-

pectively in 2,409 and 122,517 seconds of computational time. Most of

he CPU usage time when simulating the proposed modelling framework

as in calculating the year-long energy schedules (solving the day-ahead

nergy dispatch problem) for each of the meta-heuristic individuals at

ach iteration, taking a total of 98,550 seconds of computational time.

he remainder of the CPU usage time (23,967 s) was in updating the po-

itions of moths with respect to flames over the course of iterations. Due

o the linearity of the day-ahead energy scheduling problem, a standard

esktop computer – with an Intel Core i7 3.20 GHz processor and 16

B RAM – was able to solve the day-ahead dispatch problem in around

.4 seconds of computational time (on average), yielding a year-long,

aily-basis scheduling optimisation running time of 1,971 s for each

oth (search agent). 

To further validate the robustness and technical feasibility of the

ost-optimal system determined by the proposed Lévy-flight MFOA-

ased integrated investment and operational planning optimisation ap-

roach, a further HOMER model instance was solved using the soft-

are’s conventional ‘grid search’ optimisation tool [99] . 6 To this end,

he set of the decision variable values used by the grid search algorithm

o locate the optimal system was defined with reference to the optimal

oint yielded by the proposed model. More specifically, the list of sys-

em component sizes that HOMER considered for the model validation
6 The HOMER Pro software has two optimisation algorithms: (1) a conven- 

ional ‘grid search’ algorithm, which simulates all the feasible combinations of 

he component sizes defined by the ‘search space’, and (2) a trademarked pro- 

rietary derivative-free optimisation algorithm, the ‘HOMER Optimizer’, which 

oes not require the user to specify all possible options for searching. Unless 

therwise noted, the HOMER Pro modelling results presented in this paper rep- 

esent the results generated by the HOMER Optimizer. 

t  

t  

s  

f  

n  

b

15 
as populated with sizes ranging from 5 units smaller to 5 units greater

han the corresponding equipment capacity values returned by the pro-

osed model, with one-unit increments in variables. The HOMER model

as then solved for the minimum total discounted system cost. The op-

imal system design calculated by the grid search algorithm – which is

 full-factorial design approach – was found to be exactly the same as

hat returned by the proposed model, which corroborated the validity of

he model. Nevertheless, the resulting total net present value of the MG

as found to be ~4% lower than the value generated by the proposed

odel due to higher net electricity imports. This indicates the efficacy

f the operational planning optimisation framework nested within the

roposed model, which produces optimal power trading strategies given

he forecasts of load, renewable generation, and wholesale prices. 

.2. Benchmarking the Lévy-flight MFOA 

In order to verify the superiority of the Lévy-flight MFOA to the basic

FOA, as well as a set of well-established and state-of-the-art meta-

euristics in the MG design optimisation literature – the GA, the PSO,

he hybrid GA-PSO, the HS, the SA, the ABC, the ACO, and the ALO –

 comprehensive statistical analysis is conducted on their comparative

fficiencies when applied to the test-case MG investment planning and

apacity optimisation problem at hand. 

Table 5 lists the developer-suggested values for the specific control

arameters of the meta-heuristics under analysis. For the sake of a fair

omparison, the number of dedicated search agents (population size)

nd the maximum number of iterations were respectively assumed to

e 50 and 200 for all the selected algorithms. 

Table 6 summarises the descriptive statistics for the performance of

he meta-heuristics under analysis and ranks their efficiencies based on

he test-case MG whole-life cost results obtained over 30 independent

imulation runs – necessary to reach the statistical precision required

or the efficiency comparison of meta-heuristics given their approximate

ature. 7 Note that computational complexity was not factored into the
7 Given the statistical insignificance of the equipment sizing results optimised 

y the studied meta-heuristics in that no salient differences in terms of MG con- 
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Table 7 

Optimal combination of the MG investment planning decision variables obtained using various 

meta-heuristics. 

Algorithm 

PV size 

[kW] 

WT size 

[kW] 

Battery size 

[kWh] 

Inverter size 

[kW] 

Total net electricity 

exchange costs [$] 

Lévy-flight MF OA 17.5 30 41 9 − 173,344 

MFOA 17.5 30 44 12 − 175,919 

GA 17.5 30 48 12 − 177,354 

Hybrid GA-PSO 17.5 30 48 12 − 176,960 

PSO 17.5 30 48 12 − 187,899 

ALO 12.5 35 50 15 − 311,679 

HS 7.5 40 51 15 − 315,899 

SA 7.5 40 51 15 − 316,099 

ABC 7.5 40 51 15 − 318,064 

ACO 2.5 45 52 15 − 319,735 

∗ Bold indicates the least-cost mix of the decision variables obtained across the examined meta- 

heuristics over 30 independent simulation runs. 
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omparative analysis because none of the algorithms reached the phys-

cal limits to how much computation can be executed during the plan-

ing phase of MGs in real-world settings. The developed meta-heuristic

fficiency comparison framework involves two stages: First, the meta-

euristics are scored locally with respect to each criterion (according to

he calculated descriptive statistics). The scores for the selected criteria

re then averaged in the second stage to yield the final rank order of the

nalysed meta-heuristics. The summary statistics for the comparative ef-

ciency of the examined meta-heuristics are revealing in the following

ays: 

• Based on the descriptive statistics, the following overall efficiency

ranking can be produced in the context of optimal MG sizing: the

Lévy-flight MFOA > the MFOA > the GA > the HGA-PSO > the PSO

> the ALO > the HS > the SA > the ABC > the ACO. While the ex-

amined meta-heuristics have yielded somewhat different rankings

across different indicators, the Lévy-flight MFOA has consistently

ranked first in terms of all of the individual indicators. This statisti-

cally robust evidence indicates that the Lévy-flight MFOA is an ideal

choice for meta-heuristic-based MG capacity planning optimisation.
• Integrating Lévy flights into the search process of the MFOA is able

to improve the trade-off between the exploration and exploitation

phases, which results in more effective long-range jumps around the

global search space and an efficient local search near the global op-

tima. Accordingly, the quality of the solution optimised by the Lévy-

flight MFOA is higher than that of the original MFOA by a signifi-

cant ~6.5% in the best run, and by as much as ~7.3%, on average.

This suggests that approximately two-thirds of the expected cost sav-

ings (~11.5% in the best run), when measured against the solution

optimised by the HOMER Pro software, are attributable to the mod-

elling feature of optimising the strategic MG investment planning

and the day-ahead energy scheduling problems in an integrated way.
• The comparative statistical results are consistent with previous find-

ings in the literature on the outperformance of the original MFOA

to the well-established and state-of-the-art meta-heuristics in eco-

nomic MG planning applications [53 –55] . Moreover, the GA, the

hybrid GA-PSO, and the PSO are ranked 3 to 5, respectively, which

explains their popularity in the mainstream MG capacity planning

optimisation literature [4 –10] . 
• A comparison of the solutions optimised by the Lévy-flight MFOA

and the ACO in their best performance trials indicates that failure to

employ a fitting optimisation algorithm, while optimally designing a

MG system using meta-heuristics, could potentially result in an over-

estimation of its lifetime cost by at least ~13%. This translates into
guration were observed in light of the single cost-minimisation objective con- 

idered, it was decided to limit the statistical analyses to the resulting total 

iscounted system costs. 

 

 

 

 

 

16 
an extra cost of ~$6k for the case under study over its lifetime. How-

ever, this may not imply a significant saving from a practical point

of view, which is due to the relatively small scale of the case study.

That is, the outperformance of the Lévy-flight MFOA over the in-

vestigated meta-heuristics is more substantial when applied to more

structurally complex MGs of utility-scale. 
• The root-mean-square error of the population of the MG whole-life

costs returned by the proposed Lévy-flight MFOA-optimised model

over the 30 trials with respect to its best performance was found to

be negligible (~0.4%). This indicates the robustness of the proposed

model to the random initialisation process, which, in turn, suggests

the adequacy of a single run of the algorithm. 

Moreover, Table 7 provides a breakdown of the optimal combination

f the decision variables optimised by the selected meta-heuristics in

heir best runs. The table is revealing in several important ways: 

• The Lévy-flight MFOA, the basic MFOA, the GA, the PSO, and the

hybrid GA-PSO agree on the optimal combination of the sizes of the

solar PV and WT generation systems. That is, the difference in the

efficiency of these algorithms arises from a difference in the opti-

mised sizes of the battery bank and the multi-mode inverter, which

consequently alter the energy trading capacity of the MG with the

utility grid. More specifically, in all of these cases, the obtained re-

ductions in the total net electricity exchange costs were not sufficient

to offset the increased costs associated with the respective increased

sizes of the battery and inverter. Further analyses revealed that the

reductions in the total net electricity exchange costs – the sum of

the hourly grid import costs minus hourly grid export revenues over

the project life-cycle – are, in large part, attributable to reductions

in grid import costs, rather than increases in grid export revenues.

This observation can be explained by the unaltered sizes of the dis-

tributed generation technologies; the larger battery bank capacity

allows storing extra energy for later use, which can be translated

into less imports during higher-priced peak periods. 
• The GA, the PSO, and the hybrid GA-PSO yield exactly the same set of

cost-optimal sizes for the technologies considered in the candidate

pool; the difference in the MG life-cycle costs estimated by these

algorithms is solely associated with the expected total net energy

purchased with direct influence on the total net electricity exchange

costs. Similar observations held true for the ABC, the SA, and the HS

algorithms. It is also worth noting that no meta-heuristic yielded a

battery-less MG configuration in the optimised mix of technologies. 
• All the examined meta-heuristic optimisation algorithms agree that

the optimal total renewable energy generation capacity is equal to

the active power rating of the existing installed transformer at the

site. However, four different combinations of the sizes of the solar

PV and WT plants (with different battery storage and inverter capaci-

ties) were observed across the best solutions returned by the selected
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Fig. 15. Convergence patterns of the selected meta-heuristics in their best runs. 
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meta-heuristic optimisers. The more the combinations of the sizes of

the two generation technologies deviate from the point with 17.5 kW

solar PV and 30 kW WT, the worse the MG whole-life cost solution.

Additionally, Fig. 15 shows the convergence process of the selected

ptimisers in their best trials. The figure demonstrates the adequacy of

he selected values for the stopping criteria, whilst additionally indi-

ating the comparatively fast convergence of the Lévy-flight MFOA and

he basic MFOA in terms of the number of iterations. Recall that the

mposed adaptive stopping criterion – which terminates the search pro-

edure after 50 successive calls with no improvement in the best solution

addresses both the early stopping and late stopping issues. 

As its superiority to the other meta-heuristics studied is shown to be

tatistically valid, the modelling results presented hereafter are based on

he best-performing trial of the Lévy-flight MFOA (with the correspond-

ng whole-life cost and values of the decision variables highlighted in

old in Tables 6 and 7 ). 

.3. Energy balance analysis 

This section presents a monthly resolved overview of the balance

f energy generation/imports and consumption/exports/dissipation, as

ell as two indicative hourly-basis, one-day energy balance analyses. 8 

he analyses were made based on the least-cost energy mix solution es-

imated by the best run of the proposed Lévy-flight MFOA-based solu-

ion approach integrating the day-ahead scheduling design framework.

ig. 16 summarises the monthly energy generation/imports and con-

umption/exports/dissipation over the representative year. The result-

ng values are based on a one-year operational period with hourly

ntervals under the energy reliability and resilience constraints of

𝑃 𝑆 𝑃 

𝑚𝑎𝑥 = 0 and 𝑆 𝑆 𝑅 

𝑚𝑖𝑛 = 80 %, respectively. 

As Fig. 16 shows, the ratio of monthly resolved solar PV-to-wind gen-

ration data undergoes statistically significant changes throughout the

ear. Specifically, the ratio is highest during the summer period between

ecember and February (at around 42%, on average) and lowest during
8 Note that given the considered 100% energy dispatch reliability constraint 

nd the zero curtailed electricity achieved, the total energy supplied by the re- 

ewable energy resources is equal to the sum of the total energy demand on the 

ystem, the total net energy exported to the upstream grid, the total net battery 

harging power, and the total power loss due to conversion – on any given time 

cale. 

t  

i  

w

a

17 
he winter period between June and August (at around 18%, on aver-

ge). The yearly breakdown of the on-site renewable power generation

ndicates around 20,382 kWh (~21%) of solar PV energy generation

nd 78,891 kWh (~79%) of wind energy generation per year, on av-

rage. The self-sufficiency ratio of the optimal system was found to be

0% (i.e., the minimum allowed value), which indicates that 20% of the

otal yearly load demand on the MG is met through imports. 

On the other hand, as planned, a substantial fraction of the year-

ound electricity generated by renewables (~71%) is sold back to the

rid as ‘net excess generation’, followed by the local energy consumption

~23%). The remainder of the year-round renewable energy generation,

otalling 5,957 kWh (~6%), is lost during the power and energy conver-

ion processes, with the breakdown of the contributors as follows: trans-

ormer, ~48%; hybrid inverter, ~33%; and the battery bank, ~19%. 9 

Additionally, Fig. 16 gives further credence to the observation that

he battery bank contributes significantly to cost reduction and effi-

iency improvement. Notably, further analyses identified that a signifi-

ant ~76% of the total annual load demand is managed by the battery

ank – as measured by the yearly average ratio of battery discharging

ower to power load. As it can be inferred from a comparison of the

ctual battery capacity used over different seasons in Fig. 16 , much of

he battery bank-integrated system’s success is due to its ability to flat-

en the net demand in peak winter season, leading to a full (available)

esource adequacy credit by protecting the MG from higher wholesale

arket prices. 

To further validate the reliable operation of the Lévy-flight

FOA-optimised MG system that benefits from the day-ahead linear-

rogramming-based scheduling framework, Fig. 17 provides represen-

ative hourly-basis, one-day energy balance analyses for the minimum

nd maximum ‘net’ system demand days, namely February 3rd and July

7th, respectively. See the Supplementary Material accompanying the

aper for raw data (Additional File 1: Tables S1 and S2). 

As Fig. 17 shows, during the first 5 hours of the minimum net system

emand day (light load hours), the on-site renewable power generation

s entirely stored in the battery bank, while the load demand is met solely

hrough low-cost grid imports. This observation can be explained by the

ntelligent scheduling design’s foresight to realise that there will be a
9 The efficiency of the existing installed transformer and multi-mode inverter 

ere respectively assumed to be 94% (round-trip) and 96%, while the charging 

nd discharging efficiencies of the battery packs were assumed to be 92%. 



S. Mohseni, A.C. Brent, D. Burmester et al. Energy and AI 3 (2021) 100047 

Fig. 16. Monthly energy balance analysis of the MG over the baseline operating year. A positive (negative) value represents the inflow (outflow) of energy to (from) 

the busbars of the MG system. 

Fig. 17. Hourly-basis, one-day operating anal- 

ysis of the MG system: (a) the minimum net sys- 

tem demand day; (b) the maximum net system 

demand day. Note the change in scale in the 

dependent axes. 
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ignificant rise in the wholesale electricity market price during the day-

pecific morning peak period in terms of ‘net’ demand (5 a.m. through

 a.m.), where the cost-optimal operational strategy is to sell the entire

enewable power generation back into the grid and meet the local load

otally by discharging the storage system. Then, from hour 10 a.m. to

 p.m., any excess renewable energy is optimally decomposed into the

attery charging power (to gradually replenish its energy content for
18 
he upcoming evening peak period) and grid exports, whilst adhering to

he battery charge power capacity and the existing installed transformer

apacity. This is because the look-ahead energy dispatch strategy is able

o predict that both the demand and wholesale prices will significantly

ise at around 3 p.m. Then, during the day-specific evening peak hours

3 p.m. to 8 p.m.), the on-site non-dispatchable renewable power gen-

ration is entirely exported to the upstream grid, while releasing the
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10 For example, under the ‘Home Harvest’ programme of the Flick Electric CO 

in New Zealand. For more details, see: https://www.flickelectric.co.nz/home- 

harvest [Accessed: 11-Nov.-2020]. 
nergy in store meets the power loads (note the equality of the battery

ischarging power and load power). Finally, notwithstanding the fact

hat the operational scheduling design lacks any foresight of demand,

eneration, and wholesale prices beyond the current 24-h scheduling

orizon, the battery bank is interestingly charged jointly by the excess

enewable energy generation and grid imports during the late evening

eriod (9 p.m. to 11 p.m.). The reason behind importing electricity from

he grid to more sharply charge the battery bank during the last hours of

he 24-h scheduling horizon is to cost-optimally relax the terminal con-

traint on the battery energy content at the end of the one-year analysis

eriod (see Eq. (10) ). Recall that the battery bank cannot be simultane-

usly charged and discharged, and power imports and exports cannot

ccur at the same time. 

In contrary to the early morning hours of the minimum net system

emand day (where grid imports meet the demand while the entire re-

ewable power generation is directed to charging the battery bank),

uring the first 5 hours of the maximum net system demand day, the

oad demand is served solely by the wind power, the excess of which

harges the battery bank in addition to grid imports (to reach a bat-

ery SOC of ~100%). There are at least three reasons for the observed

ifference in the operational strategy (increased grid imports during the

arly morning hours) compared to the minimum net system demand day

or the relevant period, namely: (1) lower wholesale prices, (2) higher

ower loads in the upcoming morning peak period, and (3) lower on-site

enewable generation during the day due to minimal solar radiation in

he wintertime. Accordingly, the cost-optimal schedule in the morning

eak period is to meet the power loads by an optimal mix of renewable

eneration and battery discharging power from hour 5 a.m. to 7 a.m. to

e able to make the most profit possible from grid exports in the next two

igher-priced hours of the day-specific morning peak period (8 a.m. and

 a.m.) where loads are served solely by the battery discharging power.

hen, likewise to the corresponding shoulder-peak hours of the mini-

um net system demand day, any excess renewable energy generation

s optimally allocated to grid exports and battery charging. The goal

s to reach a battery SOC level at the end of the shoulder-peak period

3 p.m.) that is sufficient to meet the loads solely by drawing energy

rom the battery bank during the higher-priced day-specific evening

eak hours (4 p.m. to 6 p.m.), while the battery charging rate depends

n the hourly forecasts of wholesale prices. Also, during the relatively

ower-priced evening peak hours (7 p.m. and 8 p.m.), the power loads

re satisfied by an optimal mix of battery discharging power and on-site

enewable power generation, the remainder of which is exported to the

rid. Finally, with the depletion of the battery bank, from hour 9 p.m.

o midnight, the battery bank is charged from grid imports and excess

ind power simultaneously. It should also be noted that the load de-

and served directly by the utility grid amounts to zero in the entire

aximum net system demand day. 

As the above discussion on the daily energy management of the cost-

ptimal MG design indicates, the battery energy storage system plays a

ey economic role in the operation of the grid-connected MG system by

n indirect arbitrage shifting renewable energy output – battery charg-

ng during less valuable and costly times of day by excess renewable

ower and grid imports, respectively, and battery discharging to serve

he local demand during more remunerative times of day (with respect

o the wholesale electricity market prices), enabling increased energy

xports. 

.4. Cash flow analysis 

The optimal total net present cost of the system is found to be

 $50,332, which is composed of the equipment-related and power

xchange-related cost components, which are found to be $123,012 and

 $173,344, respectively. That is, energy trading with the grid is highly

rofitable, making an estimated $2,517 of yearly profit. Note that the

rofits are derived, in large part, from selling the excess wind power,

s the WT generation system capacity is optimised to be significantly
19 
arger than what is required to cost-effectively meet the local demand.

his can be justified by the calculated payback period of the turbines

approximately 6.5 years), which is considerably lower than their ex-

ected lifetimes (20 years) when used solely for grid export purposes.

owever, it should be noted that it is assumed that network constraints

o not block the acquisition of resources into the wholesale market,

hilst additionally network charges and service fees collected by the

RMP were not taken into account. 

The equipment-related financial component can be further broken

own into the following subcomponents: total capital cost, $109,172;

otal replacement cost, $28,875; total O&M cost, $6,621, and total sal-

age value, − $21,656. Fig. 18 provides a further breakdown of the MG’s

otal net present worth by the underlying equipment-related financial

ubcomponents. As it can be seen from the figure, the PV generation

ystem, WTs, battery packs, and inverters comprise about 18%, 34%,

4%, and 14% of the total equipment-related net present cost of the MG

ystem, respectively. 

Moreover, Fig. 19 provides an overview of the cumulative discounted

ash flow analysis over the MG life-cycle period. As the figure shows, a

elatively significant capital outlay is expected, in addition to the bat-

ery and inverter replacement costs in Year 15 of the project, as well

s annual O&M and grid import costs. On the other hand, the sources

f cash inflow include the power sold to the customers (at a flat rate

f $0.23/kWh, in compliance with the most recent average domestic

lectricity price at the studied site [102] ) and the power exported back

o the grid (traded at the dynamic forecasts of spot electricity market

rices shown in Fig. 10 (e)). Recall that it is assumed that a retail in-

ermediary provides access to the wholesale electricity market. 10 The

gure also indicates that the entire $123,012 investment, if realised,

ould be recouped within around 10 years. 

.5. Capital budgeting analysis 

To aid the associated capital planning decision-making process, this

ection provides a cost-benefit analysis using three key financial ap-

raisal metrics in the MG investment planning context, namely: the

evelised cost of energy (LCOE), the modified internal rate of return

MIRR), and the discounted profitability index (DPI). 

.5.1. Levelised cost of energy 

The LCOE of an energy system is defined as the discounted total

ifetime costs it incurs divided by its discounted total lifetime energy

utputs. For a grid-connected solar PV/WT MG system planned to serve

he local demand with 100% reliability over its life-cycle, the LCOE can

e mathematically formulated as [103] : 

𝐶 𝑂𝐸 = 

∑
𝑐∈𝐶 𝑁 𝑃 𝐶 𝑐 + 𝑁 𝑃 𝐶 𝑡𝑟,𝑛𝑒𝑡 ∑𝑃 𝐿 

𝑛 =1 

∑8760 
𝑡 =1 ( 𝑃 𝑃 𝑉 ( 𝑡 ) + 𝑃 𝑊 𝑇 ( 𝑡 ) ) 

( 1+ 𝑖𝑟 ) 𝑛 

. (39)

.5.2. Modified internal rate of return 

While the normal internal rate of return (IRR) indicator is widely

dopted in the MG planning literature to measure the profitability of

 project, it has a fundamental shortcoming: it (impractically) assumes

he reinvestment to take place at the IRR, which could lead to overly op-

imistic projections and, consequently, capital budgeting mistakes. Fur-

hermore, the IRR indicator is not applicable to the projects where the

ntermediate cash flows are not going to be reinvested. However, the

IRR provides project managers with direct control over the assumed

einvestment rate from future cash flows [104 , 105] . In this light, the

IRR can be adapted for application in the context of MG planning as

https://www.flickelectric.co.nz/home-harvest


S. Mohseni, A.C. Brent, D. Burmester et al. Energy and AI 3 (2021) 100047 

Fig. 18. Breakdown of the MG lifetime cost by 

the equipment-related cost subcomponents. 

Fig. 19. Discounted break-even analysis over the life-cycle of the project. 
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ollows [106] : 

IRR = PL −1 

√ √ √ √ √ √ 

∑PL 
𝑛 =1 𝑅 ( 𝑛 ) × ( 1 + RR ) PL − 𝑛 

||||∑PL 
𝑛 =1 

WL 𝐶 ann ( 𝑛 ) 
( 1+ ir ) 𝑛 −1 

||||
− 1 , (40) 

here 𝑅 ( 𝑛 ) is the total revenue generated by providing energy ser-

ices and power exports in year 𝑛 , 𝑊 𝐿 𝐶 𝑎𝑛𝑛 ( 𝑛 ) denotes the annualised

 𝐿 𝐶 𝑀 𝐺 

, which can be calculated by multiplying the whole-life cost

f the system by the relevant capital recovery factor (see Eq. (5) ), and

𝑅 represents the reinvestment rate, which is assumed to be 0% in this

aper. 

.5.3. Discounted profitability index 

The profitability index (PI), alternatively referred to as value invest-

ent ratio or profit investment ratio, measures the present value of fu-

ure cash flows relative to the capital investment. The DPI is a modified

ariant of the PI, which factors in the time value of money. Accordingly,

he DPI of the modelled MG system can be determined by the following

quation [107 , 108] : 

𝑃 𝐼 = 

|||𝑃 𝑉 ( 𝑇 𝑅𝐶 + 𝑇 𝑂&𝑀 − 𝑇 𝑆 𝑉 ) + 𝑇 𝑁 𝑃 𝐶 𝑡𝑟,𝑛𝑒𝑡 

)|||
𝑇 𝐶 𝐶 

, (41)

here 𝑇 𝐶 𝐶 denotes the total capital cost of the MG assets, 𝑇 𝑅𝐶,

 𝑂&𝑀 , and 𝑇 𝑆 𝑉 represent the total discounted replacement cost, O&M
20 
ost, and salvage value of the energy infrastructure, 𝑇 𝑁 𝑃 𝐶 𝑡𝑟,𝑛𝑒𝑡 identi-

es the total net present cost associated with power trading with the grid

ver the MG lifetime, with 𝑃 𝑉 ( ⋅) denoting the present value function. 

Any DPI value lower than 1.0 is undesirable, as it indicates that the

resent value of the project is lower than the capital outlay. As the value

f DPI increases above 1.0, the financial attractiveness of the proposed

esign does so as well [109] . 

.5.4. Resulting capital budgeting metrics 

The LCOE, MIRR, and DPI of the investment proposal were respec-

ively found to be − $0.02/kWh, 5.4%, and 1.43. The resulting metrics

or the cost-optimal conceptual MG configuration were compared to

hose obtained for a baseline case scenario. The base case scenario rep-

esents the site’s existing electricity supply system. Currently, the site

as an installed solar PV capacity of 11.4 kW p ; the current practice is to

eed any excess renewable power back into the grid during the day (at

he existing feed-in-tariff rate of $0.08/kWh) and to import electricity

rom the grid at night when the solar system does not generate. The elec-

ricity is purchased at the retailer-determined flat-rate electricity tariff

f $0.23/kWh. Table 8 compares the resulting capital budgeting met-

ics for the two scenarios. Specifically, the resulting indicators for the

roposed MG configuration represent the system optimised by the pro-

osed Lévy-flight MFOA-based MG sizing model with an integrated LP-

ased operational strategy. Furthermore, the capital budgeting metrics

or the fixed-sized PV-only system were calculated by operating the sys-

em based on the optimisation-based forward-looking operational strat-
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Table 8 

Comparative summary of the capital budgeting analysis for the proposed and existing electricity 

supply systems. 

System 

Capital budgeting metric 

LCOE a MIRR DPI 

PV-only system (including solar inverters) $0.39/kWh 2.2% 1.09 b 

Proposed PV/WT/battery MG − $0.02/kWh ( − 105%) 5.4% ( + 145%) 1.43 ( + 31%) 

a Mathematically, the LCOE becomes negative when the present worth of the net cash flows in Years 

1 and later of the project are more positive than the Year 0 cost is negative – or, put differently, when 

the projected total out-year benefits (generated from grid exports, local power sales, and equipment 

salvage value) are higher than the sum of the costs of initial investment, equipment replacement, 

system O&M, and grid imports. 
b Since making the considered site highly energy self-sufficient did not form part of the PV-only 

scheme’s objective, the net cash flows associated with the energy exchanged with the grid included 

only the savings from not having to buy electricity from the grid during daytime and any income 

generated from grid exports – both of which were treated as cash inflows. That is, the costs of power 

imports were excluded from the calculation of the relevant metrics for the sake of a fair comparison. 

Fig. 20. Sensitivity analysis with respect to the minimum allowed self-sufficiency ratio: (a) the MG whole-life cost; (b) the optimal self-sufficiency ratio. 
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gy for a representative year (over a moving 24-hour time window), and

hen computing a series of annual net financial flows adjusted for the

iscount rate. Note that the percentages in the table refer to the devi-

tion of the obtained budgeting metrics for the proposed system from

hose obtained for the PV-only scenario. It should also be noted that to

evel the playing field, the solar PV-only scenario was assumed to begin

peration at the same time as the proposed MG system and the same

rands of solar PV panels and inverters were considered. 

The comparative capital budgeting analysis of the existing and pro-

osed electricity supply systems based on the selected financial appraisal

etrics reveals that the proposed community MG project is a low-risk,

igh-return investment opportunity suitable for community ownership.

ore specifically, the comparably low MIRR value calculated for the PV-

nly investment scenario and the corresponding value of the DPI that

s only slightly above one collectively reveal that the current practice

oes not yield an adequate return on investment. Additionally, if the

osts associated with grid imports were factored into the capital bud-

eting analysis for the PV-only system, the total costs would outweigh

he benefits and the project would be expected to result in a net loss. By

ontrast, the resulting metrics for the conceptual MG indicate that the

roject proposal is able to readily attract third-party investment from

nergy service companies, or any other private investor while guaran-

eeing a steady revenue stream. 

.6. Sensitivity analysis: economics of self-sufficiency 

A sensitivity analysis is provided in this section to understand the ro-

ustness of the whole-life cost of the system to changes in the minimum

llowed self-sufficiency ratio, which is treated as a bounded constraint.

o this end, the optimisation process was repeated for multiple values of

he minimum self-sufficiency ratio ranging from 0% to 100% in intervals

f 10%, totalling 11 optimisation cases. Fig. 20 depicts the sensitivity of
21 
he total discounted system costs and the optimal system self-sufficiency

ith respect to changes in the value of the imposed minimum allowed

elf-sufficiency ratio constraint. The following key observations can be

ade from the figure: 

• Imposing different values for the minimum allowed self-sufficiency

ratio does not significantly alter the MG whole-life cost results. The

percentage error between the MG net present worth solutions under

0% and 100% minimum allowed self-sufficiency ratio constraints is

as low as 14% (equating to ~$8k). Interestingly, further analyses in-

dicated that the changes in the size of the battery bank and the total

power exchanged with the grid were the only contributors to the dif-

ferences observed in the total discounted system costs. More specif-

ically, in both scenarios, the optimal mix of the non-dispatchable

power generation components were found to include 17.5 kW of so-

lar PV arrays and 30 kW of WTs. Furthermore, the optimal capacity

of the battery bank was found to be 38 kWh and 43 kWh respectively

in the lower and upper extreme cases. 
• Solving the model instances with the minimum allowed self-

sufficiency ratio values ranging from 0% to 60% yields the same

least-cost solution. The underlying reason for this is that the opti-

mal solution returns an actual self-sufficiency ratio of approximately

62% in the case with 𝑆 𝑆 𝑅 

𝑚𝑖𝑛 = 0%, where practically no minimum

self-sufficiency constraint is active. 
• The resulting MG whole-life costs obtained for the cases in between

the cases with 𝑆 𝑆 𝑅 

𝑚𝑖𝑛 = 60% and 𝑆 𝑆 𝑅 

𝑚𝑖𝑛 = 100% suggest that

there are important dynamics that are taking place with the cor-

responding constraint. Specifically, the optimal value of the self-

sufficiency ratio of the system was found to be 70% and 80% in

the cases with 𝑆 𝑆 𝑅 

𝑚𝑖𝑛 = 70% and 𝑆 𝑆 𝑅 

𝑚𝑖𝑛 = 80%. A comparison

of the MG net present values obtained under the above two scenar-

ios indicates a linear cost increase to meet the prescribed minimum
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self-sufficiency ratios – which can be referred to as a “relative cost

of self-sufficiency ”. However, the actual self-sufficiency ratio of the

case with the imposed constraint of 𝑆 𝑆 𝑅 

𝑚𝑖𝑛 = 90% was found to

be 100%. This can be explained by the fact that the problem is opti-

mised over a discrete search space in that the step size for the battery

bank capacity is 1 kWh. Accordingly, a redundant 0.7 kWh battery

capacity increment that is unnecessary for meeting the 90% self-

sufficiency target – but unavoidable due to the limited resolution of

the battery size step length – makes the 100% self-sufficiency sce-

nario the cost-optimal choice. 

. Conclusions and future work 

This paper has presented a novel Lévy-flight MFOA-based so-

ution approach to determining the cost-minimal future genera-

ion/storage/conversion technology mix for a given electrical demand,

hilst additionally optimising the operational strategy of the system us-

ng a LP-based technique over a 24-h moving horizon. The model ad-

resses key methodological gaps in the meta-heuristic-based MG capac-

ty planning approaches present in the literature, as well as renewable

nergy system modelling software tools available commercially – that

eek to derive a simplified closed-form solution to the energy planning

ptimisation problem. The application of the model to the numerical

est case of a rural subdivision in New Zealand that has a connection

o the main grid, and the comparison of the optimisation results of the

évy-flight MFOA with those of the most widely-used and most promis-

ng meta-heuristics in the literature, as well as the industry-leading MG

odelling software, HOMER Pro, led to several key observations and,

n turn, generated novel methodological insights, namely: 

• Significant differences between the cost-optimal solutions produced

by the proposed meta-heuristic-based model and the HOMER Pro

software were observed both in terms of system architecture and

total discounted system costs. Specifically, a ~18% underestimation

of the total net present worth of the project by HOMER Pro was

shown. This challenges the accuracy of the optimisation algorithms

embedded in the existing MG sizing tools. 
• In contrast to the HOMER Pro model, the energy infrastructure mix

optimised by the proposed model includes a stationary Li-ion bat-

tery bank, which significantly contributes to cost reduction and ef-

ficiency. This is mainly driven by optimising the MG dispatch over

a moving 24-hour horizon – a feature that is not found in the main-

stream software packages tailored to MG capacity planning. 
• While all the tested meta-heuristics yielded the same optimal sys-

tem configuration, the Lévy-flight MFOA was able to find a solution

set (including the sizes of the components and the total power ex-

changed with the utility grid) that returns a comparably lower total

discounted system cost. Specifically, it indicated the problem’s op-

timal net present worth to be higher than those estimated by the

original MFOA, the PSO, the GA, the hybrid GA-PSO, the ALO, the

ABC, the SA, the HS, and the ACO – in their corresponding best runs

throughout 30 trials – by at least 6.5%, 7.3%, 7.7%, 8.4%, 9.1%,

11.8%, 12.1%, 12.6%, and 12.9%, respectively. Further compara-

tive analyses revealed that much of the differences in the modelling

solutions was attributable to the estimated potential for energy ex-

change with the upstream grid. 
• When nested within the meta-heuristic design optimisation of MGs,

the day-ahead operational planning optimisation is able to produce

cost-savings of at least 11.5% through adding strategic foresight to

the integrated energy planning decision-making process in terms of

future wholesale prices, load demand, and renewable generation. 
• Solving the MG sizing problem using meta-heuristics is computa-

tionally demanding as it involves determining the year-long, hourly-

basis energy balance of the infrastructure mix selected by each of

the hundreds of the meta-heuristic of interest’s search agents. How-
22 
ever, since the MG investment planning is a one-time optimisation

exercise, the running time limits are exceptionally high within the

renewable energy system optimisation context. 

The econometric and case study analyses evidenced the effective-

ess of the proposed Lévy-flight MFOA-optimised integrated operational

nd investment planning approach in producing significant percentage

oints of cost-savings at a residential subdivision scale. However, the

ctual differences between the net present values returned by the pro-

osed model and the HOMER Pro software and, more debatably, be-

ween the results yielded by the model instances optimised by different

eta-heuristic optimisation algorithms, were not as marked; at around

9,000 (at most) due to the size of the case study. This implies that

he superiority of the proposed MG capacity planning modelling frame-

ork is more pronounced for larger-scale systems. Further work should,

herefore, quantify the effectiveness of the devised model for the co-

ptimisation of the design and operation of MGs when applied to large-

cale community projects. 

Furthermore, in-depth energy management analyses for the mini-

um and maximum net system demand days have substantiated the

easibility and stability of the resulting MG designs. Capital budgeting

nalyses have also demonstrated the economic superiority of the project

roposal to the studied site’s existing solar PV/grid electricity supply

ystem. In terms of economics, it has additionally been found that it is

ot infeasible for the inhabitants to have the financial clout to be able

o own the conceptual system outright, though it also can be readily fi-

anced through third-party ownership options (such as power purchase

nd lease agreements) – as it represents an attractive investment oppor-

unity. Moreover, a sensitivity analysis of the MG whole-life cost with

espect to the minimum self-sufficiency ratio failed to identify any sub-

tantial impact of the self-sufficiency constraint on the total discounted

ystem costs: Forcing a minimum self-sufficiency ratio of 100% increases

he MG lifetime costs by only 14% compared to the case where no self-

ufficiency constraint is imposed. The reason lies in the surpassed grid

arity, which has significantly contributed to increasing the adequacy

argins of the simulated system. However, the costs associated with

he transformer capacity, network charges, and service fees collected

y the third-party aggregator (enabling access to the wholesale market)

ere not factored into the techno-economic analysis – and the grid ex-

hanges were bounded by the site’s existing installed transformer capac-

ty. That is, exploring the grid parity of the system while incorporating

uch sources of additional cost represents another interesting area for

uture research. 

In addition, the solutions estimated by the selected meta-heuristics

re ranked from a pure cost optimisation perspective. That is, the find-

ngs on the rank order of the examined meta-heuristics might not be

eneralisable to their multi-objective variants. Accordingly, research is

eeded to explore the efficiency of the multi-objective variants of the se-

ected algorithms when applied to multi-criteria renewable energy sys-

em planning optimisation. In this light, one interesting objective that

ould be maximised in conjunction with minimising the system whole-

ife cost is the battery bank autonomy – as an energy resilience criterion.

Moreover, in this paper, all parametric inputs are assumed deter-

inistic, which presents another limitation to the model in terms of

andling the model-inherent parametric uncertainties. Future work will

dd a probabilistic uncertainty quantification dimension to the model

o better reflect reality and support decision-making during the energy

nfrastructure planning process. 
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ppendix A. Loss of power supply probability 

The loss of power supply probability is an indicator of the reliability

f power supply, which is defined as the sum of the shortages of power

eneration capacity divided by the total power demand on the system

ver the operation analysis period, which can be expressed as follows

74] : 

𝑃 𝑆 𝑃 = 

∑𝑇 

𝑡 =1 ( 𝐿𝑃 𝑆 ( 𝑡 ) × Δ𝑡 ) ∑𝑇 

𝑡 =1 ( 𝑃 𝑑 𝑒𝑚 ( 𝑡 ) × Δ𝑡 ) 
, (A.1)

here 𝐿𝑃 𝑆( 𝑡 ) is the loss of power supply at time-step 𝑡 when demand

utstrips supply, as defined in Eq. ( A . 2 ) , 𝑃 𝑑 𝑒𝑚 ( 𝑡 ) is the load power de-

and at time-step 𝑡 , Δ𝑡 is the duration of each time-step, and 𝑇 is the

ength of the operating horizon. 

PS ( 𝑡 ) = 

{ 

𝑃 dem 

( 𝑡 ) − 𝑃 sup ( 𝑡 ) if 𝑃 dem 

( 𝑡 ) > 𝑃 sup ( 𝑡 ) , 
0 othe rwise , 

(A.2) 

here 𝑃 𝑠𝑢𝑝 ( 𝑡 ) denotes the total power supplied by the on-site distributed

nergy resources (i.e., the generation and storage equipment) at time-

tep 𝑡 of the system operation over the operating horizon 𝑇 . 

In the grid-connected renewable energy system context, 𝑃 𝑠𝑢𝑝 includes

he power imported from the upstream grid, in addition to the power

enerated by the on-site distributed energy resources. It is also worth

oting that in the context of long-term renewable energy system invest-

ent planning, 𝑇 is often set to 8,760 hours (i.e., a one-year simulation

tudy) and the duration of each time-step is often taken equal to 1 hour.
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