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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A market-driven model is devised for 
long-term projections of incentive- 
aware loads. 

• Responsive loads are integrated through 
dedicated aggregators for improved 
accuracy. 

• A level playing field is provided for fuel 
cell electric vehicle-to-grid technology. 

• An energy filter-based approach is 
employed to allocate various storage 
technologies. 

• The model’s potential in cutting a test 
micro-grid’s lifetime costs by 21% is 
shown.  
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A B S T R A C T   

While industrial demand response programmes have long been valued to support the power grid, recent advances 
in information and communications technology have enabled new opportunities to leverage the potential of 
responsive loads in less energy-dense end-use sectors. This brings to light the importance of accurately projecting 
flexible demand-side resources in the long-term investment planning process of micro-grids. This paper in-
troduces a customer comfort-aware, demand response-integrated long-term micro-grid planning optimisation 
model. The model (1) draws on non-cooperative game theory and the Stackelberg leadership principles to un-
derstand and reflect the strategic behaviour of energy utilities, demand response aggregators, and end- 
consumers, (2) produces optimal trade-offs between power imported from the main grid and available de-
mand response resources, (3) determines the cost-optimal resource allocation for energy infrastructure, including 
multiple energy storage systems, and (4) provides a level playing field for emerging technologies, such as power- 
to-gas and vehicle-to-grid interventions. The multi-energy-storage-technology test-case was effectively applied to 
achieve 100%-renewable energy generation for the town of Ohakune, New Zealand. Numerical simulation results 
suggest that the proposed incentive-compatible demand-side management market-clearing mechanism is able to 
estimate the cost-optimal solution for the provision of renewable energy during the planning phase. The cost- 
optimal system saves ~21% (equating to around US$5.5 m) compared to a business-as-usual approach, where 
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the participation of end-users in demand response programmes is projected by running uniform price demand 
response auctions. The most salient distinction of the proposed two-stage (wholesale and retail) demand-side 
management market model is the continual process of trading, with incentive prices unique to each transaction.  

Nomenclature 

Indices and sets 
c ∈ C = {PV,WT,MH,T,E,FC,HT,BP,B,SC,S,FCEV2G} micro-grid 

components, the optimal size of which is under 
investigation: photovoltaic panels (PV), wind turbines 
(WT), micro-hydro turbines (MH), transformer (T), 
electrolyser (E), fuel cell (FC), hydrogen tank (HT), 
biopower plant (BP), battery bank (B), super-capacitor 
bank (SC), hydrogen station (S), and fuel cell electric 
vehicle-to-grid unit (FCEV2G) 

d ∈ D = {1,2,⋯,365} day of the year-round micro-grid operation 
D* = {d*

1,d*
2,⋯,d*

K} set of best-response load reductions contributed 
by all the customers 

Dj,*
LA = {dk,j,*,d− k,j,*} set of best-response strategies of all the 

customers signed up with the j-th aggregator 
es ∈ ES = {B,SC,HT,FCEV} energy storage media: battery bank (B), 

super-capacitor bank (SC), hydrogen tank (HT), and 
aggregated fuel cell electric vehicles’ tanks (FCEV)

I*
LA = {I1,*

LA , I
2,*
LA , I

3,*
LA , I

4,*
LA , I

5,*
LA } set of best-response incentive payments 

of aggregators 
j ∈ J responsive load aggregators 
k ∈ NJ customers enrolled with aggregator j 
K set of all the micro-grid’s customers 
p ∈ Pd⊂T day-specific peak consumption hour 
t ∈ T = {1,2,⋯,8760} time-step of the year-round micro-grid 

operation 

Parameters 
ck,j

1 discomfort tolerance coefficient of customer k of 
aggregator j [$/kWh2] 

ck,j
2 discomfort tolerance coefficient of customer k of 

aggregator j [$/kWh] 
C900, C115, C33 nameplate capacities of inverters [kW] 
CV gross calorific value of biomass feedstock [kWh/kg] 
δj load type-dependent demand response procurement factor; 

sectoral elasticity of customer-supplied demand response 
capacity 

Δt time-step length [h] 
dk,j

cr (t), dk,j
ncr(t) critical/non-critical portion of the load power 

demanded by the k-th customer subscribed to aggregator j 
at time-step t [kWh] 

dk,j
full(t) full load power demanded by the k-th customer subscribed 

to aggregator j at time-step t [kWh] 
disk,j,min, disk,j,max lower/upper limit of the discomfort cost imposed 

on the k-th customer of aggregator j [$] 
DF derating factor of the PV module [%] 
ξCO2 social cost of CO2 emissions [$/tCO2] 
ηes round-trip efficiency of storage medium es [%] 
ηFCEV2G efficiency of the operation of the fuel cell electric vehicles 

in the vehicle-to-grid mode [%] 
ηPV , ηMH, ηBP, ηT , ηI, ηSC, ηB, ηE, ηHT , ηFC, ηS efficiency of the PV plant/ 

micro-hydro plant/biopower plant/transformer/inverter/ 
super-capacitor/battery/electrolyser/hydrogen tank/fuel 
cell/hydrogen station [%] 

ηPV,DC/DC, ηMH,AC/DC, ηBP,AC/DC PV plant’s DC/DC converter efficiency, 
micro-hydro power plant’s AC/DC converter efficiency, 

biopower plant’s AC/DC converter efficiency [%] 
ECO2 CO2 emission factor of the biopower plant [kg-CO2/kg- 

feedstock] 
Ees,min, Ees,max lower/upper capacity limit of storage medium es 

[kWh] 
F(t) river streamflow rate at time-step t [m3/s] 
g acceleration of gravity [m/s2] 
h wind turbine hub height [m] 
hg micro-hydro turbine gross head [m] 
href reference height of wind speed records [m/s] 
HHVH2 higher heating value of hydrogen [kWh/kg] 
iMGO step size for the micro-grid operator-determined incentive 

[$/kWh] 
IG(t) global solar irradiance on the horizontal surface at time- 

step t [kW/m2] 
Ij,min
LA , Ij,max

LA lower/upper limit of the incentives determined by 
aggregator j [$/kWh] 

Imin
MGO, Imax

MGO lower/upper limit of the micro-grid operator-offered 
incentives [$/kWh] 

Iref reference solar irradiance [kW/m2] 
Itermax maximum number of iterations 
K DC gain of the transfer function 
Kp PV module’s temperature coefficient [%/◦C] 
LPSPmax

e , LPSPmax
H2

maximum allowable loss of power supply 
probability in supplying electricity/hydrogen [%] 

MBD(t) biomass feedstock mass consumption rate at time-step t 
[kg/h] 

Nj
cust number of customers enrolled with aggregator j 

Nmax
c upper limit of the size (capacity/quantity) of component c 

NSA number of search agents of the optimisation algorithm 
NMOT nominal PV module operating temperature [◦C] 
ρ water density [kg/m3] 
Pch,max

es , Pdch,max
es upper limit of the charging/discharging rate of 

storage medium es [kW] 
Pch,min

es , Pdch,min
es lower limit of the charging/discharging rate of 

storage medium es [kW] 
Pmax

FCEV2G(t) maximum V2G power at time-step t [kW] 
PFC,r,PE,r rated capacity of each fuel cell/electrolyser stack [kW] 
PL(t) load power demand at time-step t [kW] 
PL,max maximum electrical load on the micro-grid [kW] 
PMH,r, PBP,r rated capacity of each micro-hydro turbine/biopower 

plant [kW] 
PPV(t), PWT(t), PMH(t), PBP(t) power output from the PV/wind 

turbine/micro-hydro/biopower plant at time-step t [kW] 
PPV,r rated capacity of the PV module under standard test 

conditions [kW] 
PS(t) hydrogen power demand of the station at time-step t [kW] 
penconst penalty term added to the life-cycle cost function where 

constraints are not met [$] 
πex, πim(t) per-unit income from electrical energy exports [$/kWh], 

per-unit cost of electrical energy imports at time-step t 
[$/kWh] 

πFCEV2G per-unit premium tariff rate for V2G power [$/kWh] 
Q quality factor of the low-pass energy filter 
tup minimum up-time of the electrolyser, fuel cell, and 

biopower plant [h] 
Ta(t) ambient temperature at time-step t [◦C] 
Tm(t) PV module temperature at time-step t [◦C] 

S. Mohseni et al.                                                                                                                                                                                                                                



Applied Energy 287 (2021) 116563

3

1. Introduction 

One of the principal advantages of making the electricity grid 
“smart” is that it enables consumers to proactively engage in electricity 
markets and benefit from demand-side management (DSM) schemes 

designed and incentivised by utilities to curtail/interrupt or shift a 
proportion of electricity demand, and thereby flatten the load power 
profile–and improve the load factor. While demand response (DR) pro-
grammes have been in use to improve the energy efficiency of industrial 
consumers for years, the expansion of the concept to include less energy- 

TSTC PV module temperature under standard test conditions 
[◦C] 

Vh normalised wind speed profile to the wind turbine hub 
height [m/s] 

Vref reference wind speed profile [m/s] 
ω0 cut-off frequency [dB] 
γ wind shear exponent 

Variables 
costem(t) total penalties imposed for emissions at time-step t [$] 
costFCEV2G(t) cost associated with the FCEV2G operations at time- 

step t [$] 
costim(t) cost of electricity import at time-step t [$] 
dk,j(t) load reduction contributed by the k-th customer of 

aggregator j at time-step t [kWh] 
dk,j,*(t) best-response strategy taken by the k-th customer 

subscribed to the j-th aggregator for load reduction at time- 
step t [kWh] 

Ddef (t) capacity deficit to meet the loads at time-step t [kWh] 
Dj

LA(t) load reduction contributed by aggregator j at time-step t 
[kWh] 

disk,j
(t) discomfort cost imposed on the k-th customer subscribed to 

aggregator j at time-step t [$] 
Ees(t) energy content of storage medium es at time-step t [kWh] 
ESC(t), EB(t), EHT(t) energy content of the super-capacitor/battery 

bank/hydrogen tank at time-step t [kWh] 
Ij
LA(t) incentive payment offered by aggregator j for load 

reduction at time-step t [$/kWh] 
Ij,*
LA(t) best-response incentive payment for load reduction offered 

by aggregator j at time-step t [$/kWh] 
IMGO(t) rate of micro-grid operator-posted incentive payments for 

load reduction at time-step t [$/kWh] 
I*
MGO(t) globally-optimum incentive payment for load reduction 

offered by the MG operator at time-step t [$/kWh] 
incomeex(t) income from electricity export at time-step t [$] 
LPSPe, LPSPH2 loss of power supply probability in supplying 

electricity/hydrogen [%] 
mHT(t) mass of hydrogen stored in the tank at time-step t [kg] 
NB optimal capacity of the overall battery bank [kWh] 
NFCEV2G optimal capacity of the fuel cell electric vehicle-to-grid 

system [kW] 
NHT optimal capacity of the hydrogen tank [kg] 
NI optimal capacity of the electrical loads’ overall power 

inversion system [kW] 
NPV , NWT, NMH, NBP, NE, NFC, NSC optimal quantity of PV modules/ 

wind turbines/micro-hydro turbines/biopower units/ 
electrolyser stacks/fuel cell stacks/super-capacitor 
modules 

NS optimal capacity of the hydrogen refuelling station [kg-H2/ 
h] 

NT optimal capacity of the transformer [kVA] 
N900, N115, N33 optimal quantity of 900-kW/115-kW/33-kW 

inverters 
N1600, N400, N100 optimal quantity of 1600-kWh/400-kWh/100- 

kWh battery packs 
NPCc net present cost of component c [$] 
NPCI net present cost of the inverter [$] 

OCMG(t) operational cost of offsetting power deficit at time-step t 
[$] 

OC*
MG(t) globally-optimum operational cost of the micro-grid to 

address the shortage of power generation capacity at time- 
step t [$] 

Pch(t), Pdch(t) total charging/discharging power of the hybrid 
battery/super-capacitor storage system at time-step t [kW] 

Pch,HF2, Pdch,HF2 charging/discharging power of the super-capacitor 
bank [kW] 

Pch,LF2, Pdch,LF2 charging/discharging power of the battery bank 
[kW] 

PE(t) power consumed by the electrolyser at time-step t [kW] 
PE− HT(t) hydrogen power directed from the electrolyser to the 

hydrogen tank at time-step t [kW] 
Pch

es (t), Pdch
es (t) charging/discharging rate of energy storage medium 

es at time-step t [kW] 
PFC(t) power generated by the fuel cell at time-step t [kW] 
PFCEV2G(t) aggregated vehicle-to-grid power provided by fuel cell 

electric vehicles at time-step t [kW] 
PHT− FC(t) hydrogen power directed from the hydrogen tank to the 

fuel cell at time-step t [kW] 
PHT− S(t) hydrogen power directed from the hydrogen tank to the 

station at time-step t [kW] 
Pim(t), Pex(t) imported/exported electricity at time-step t [kW] 
PSH(t), PEX(t) shortage/excess of renewable power generation at 

time-step t [kW] 
PSH− LF1(t), PSH− HF1(t) low-/high-frequency component of the 

renewable power shortage signal at the first low-pass filter 
output at time-step t [kW] 

PSH− LF2(t), PSH− HF2(t) low-/high-frequency component of the 
renewable power shortage signal at the second low-pass 
filter output at time-step t [kW] 

PEX− LF1(t), PEX− HF1(t) low-/high-frequency component of the 
renewable power excess signal at the first low-pass filter 
output at time-step t [kW] 

PEX− LF2(t), PEX− HF2(t) low-/high-frequency component of the 
renewable power excess signal at the second low-pass filter 
output at time-step t [kW] 

Prj
LA(t) profit gained by aggregator j at time-step t [$] 

QL(t), QH2 (t) unmet electrical/hydrogen load demand at time-step t 
[kW] 

Uk,j(t) utility of the customer k serviced by aggregator j at time- 
step t [$] 

Functions 
H(s) low-pass energy filter transfer function 
NPV
20− yr

(z) net present value of cost component z over the 20-year life 

of the project [$] 
NPCc
20− yr 

net present cost of micro-grid component c over the 20- 

year life of the project [$] 
NPCI
20− yr 

net present cost of the overall power inverter over the 20- 

year life of the project [$] 
OCMG hourly operational cost function of the micro-grid [$] 
⌊⋅⌋ floor function 
⌈⋅⌉ ceiling function  
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dense demand sectors, namely the residential, agricultural, and com-
mercial sectors, as well as electrified transport, is enabled by recent 
advancements in information and communications technology (ICT), 
which have substantially contributed to the development of advanced 
metering infrastructure [1,2]. Recent studies have revealed that the 
consideration of DSM strategies in the optimum investment planning 
phase of renewable and sustainable energy systems (RSESs) for domestic 
applications can offer cost savings of about 15% to nearly 35% 
(depending on the participation rate of end-users in the DR pro-
grammes), whilst preserving consumer comfort standards [3,4,5]. That 
is, the proper integration of DR programmes into RSESs would result in a 
win–win–win situation–the third winner being the environment, as they 
will accelerate the transition to a low-carbon energy economy and a 
world run on green energy. 

1.1. Long-term, demand response-integrated micro-grid infrastructure 
planning background 

A reformed formulation of the micro-grid (MG) equipment capacity- 
planning problem is required to make effective use of the economic 
opportunities offered by DSM processes to support decision-making in 
developing cost-effective RSESs [6]. A solution to the optimal DR- 
integrated MG design problem identifies the least-cost combination of 
the size of the components of the system over a decades-long–often 
spanning 20–30 years–investment planning horizon to meet the pro-
jected demand for energy, while leveraging the potential of responsive 
loads [7,8]. 

Recent review studies have focused on discussing methods and 
trends for harvesting the potential of the demand-side flexibility to 
contribute significantly to energy affordability in energy networks with 
a high penetration of distributed renewables. Gelazanskas and Gamage 
[9], Haider et al. [10], Esther and Kumar [11], Wang et al. [12], Robert 
et al. [13], as well as, more recently, Jordehi [14] have scrutinised 
various approaches to implementing DR arrangements, while optimally 
designing RSESs, with a particular focus on residential DR resources. 
Moreover, various types of DSM strategies have been incorporated in the 
formulation of the MG capacity-optimisation models. This implies that 
DR programmes are well-analysed for the planning of RSESs, a state-
ment that has likewise been made in the context of different DSM 
business models in electricity markets [15,16], as well as for the optimal 
operational scheduling (energy management) of RSESs [12]. 

There have also been attempts to exploit other types of DR structures 
for the optimal capacity planning of RSESs. For instance, Kahrobaee 
et al. [17] devised a particle swarm optimisation (PSO)-based planning 
model for a smart home nano-grid that utilises the real-time pricing 
(RTP) scheme, which allows for leveraging the historical records of the 
price elasticity of demand for personalised dynamic pricing. In another 
instance, Yu et al. [18] proposed a robust flexible-programming 
approach for the integration of renewables into a municipal energy 
system, which runs a critical peak pricing (CPP) rate structure. More-
over, Varasteh et al. [19] employ a hybrid direct load control-time-of- 
use (DLC-ToU) DR framework to drive down the whole-life cost of a 
grid-tied combined heat and power (CHP) MG. 

In addition, some studies have explored the potential of vehicle-to- 
grid (V2G) technologies and electric vehicle (EV) charging/discharg-
ing coordination through DSM mechanisms in driving economic sus-
tainability improvement for renewable energy development projects. 
For instance, Cardoso et al. [20] have proposed a DLC decision model for 
the aggregated energy scheduling of EVs and demonstrated its distinc-
tive contribution to reducing the lifetime cost of a multiple energy 
carrier MG, while considering the uncertainty associated with the EV 
driving schedules. In another instance, Hosseinnia et al. [21] have 
provided further evidence of the utility and economic benefits of EV fleet 
trip level energy management and V2G connectivity in the context of 
sustainable energy system design and planning. Moghaddas-Tafreshi 
et al. [22] have also underlined the potential of optimal charging/ 

discharging scheduling of plug-in hybrid EVs in improving the profit-
ability of an energy hub and reaping cost-savings for vehicle owners, 
while addressing the uncertainty associated with the power consump-
tion of vehicles during trips. Table 1 summarises the most rigorous 
studies carried out to date on the integration of demand-side resources 
(for the strategic planning of energy demand) in the long-term capacity 
optimisation models of RSESs (listed in ascending order of publication 
date), whilst additionally situating this study in the context of the 
existing literature. 

1.2. Demand response-integrated life-cycle planning of micro-grids: 
knowledge gaps and proposition 

As Table 1 indicates, there is a growing body of literature lending 
support to the integration of DSM frameworks into the design phase of 
RSESs. However, as far as can be ascertained, no single study has eval-
uated the attitude of neither end-users nor electricity providers in 
relation to adopting these practices during the optimal design and 
planning process of RSESs. Accordingly, oversimplified assumptions 
have commonly been made in the literature regarding the available 
capacity of responsive loads, which have substantially reduced the ac-
curacy of projections. That is, many hypotheses regarding the degree of 
end-users’ participation in the DR schemes are not well-grounded. To 
aid the associated asset-allocation decision-making procedure, a long- 
term, DR-integrated MG investment planning approach needs to 
model the involvement of aggregator-mediated customers in the DR 
programmes in a systematic, market-driven approach. The market- 
driven approach needs to capture the dynamic nature of strategic in-
teractions between rational, utility-maximising active economic agents 
in an aggregator-mediated DSM market. More specifically, the approach 
needs to identify the reaction and commitment of different classes of 
customers mediated by third-party demand response aggregators 
(DRAs), when exposed to variations in the economic incentives for load 
curtailment/shifting. In this context, the DRAs round up parcels of 
interruptible loads to enable them to reach the sufficient scale required 
for selling services to the system operator(s) [43,44,45]. In addition, 
more work is needed to evaluate the effect of different levels of 
discomfort experienced by different customer classes on the economic 
feasibility of renewable energy projects as the characterisation of 
aggregator-mediated customer comfort constraints during the planning 
phases of RSESs is less well explored. To assist decision-makers in 
designing cost-optimal sustainable energy systems consistent with the 
expectations of their customers, it is critically important to devise ac-
curate models aimed at reflecting user values and preferences (which 
furnish the basis for service flexibility) in the design of MG projects. This 
brings to light the need for an investment decision-making framework 
that accommodates end-users’ preferences (which could be derived from 
their energy service needs and the relative values they place on them) 
within the long-term MG capital-investment plans. 

1.3. Objective 

The main objective of the paper is to demonstrate the potential of 
aggregator-mediated, incentive-based, market-driven DSM programmes 
tailored to small- to medium-scale end-consumers in improving the 
economic viability of community-scale MG systems. Accordingly, the 
paper expands the boundaries of knowledge and understanding of the 
positive impacts of altering energy consumption behaviour of different 
types of electrical loads–through effective incentive-based DR pro-
grammes–on the cost-optimal design of MGs. Also, a secondary objective 
of the paper is to ascertain the technological competence and cost- 
competitiveness of utilising hydrogen as an energy vector in 
community-scale MGs for niche applications–inter-seasonal energy 
storage to meet seasonal demand, and hydrogen mobility to decarbonise 
the transport sector. 

More specifically, the paper contributes to the trend of the 
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Table 1 
Summary of the studies on the provision of the DSM procurements in the long-term investment planning of the RSESs.  

Reference Test-case system 
configuration 

DSM 
scheme 

Flexible loads V2G 
capabilities 

DR-inherent 
uncertainties 

Multi-temporal 
reserve 
procurement 

Aggregator-mediated 
customer comfort 
characterisation 

Modelling 
approach 

Objective(s) Solution 
algorithm 

Case study area 

Martins and 
Borges, 2011  
[23] 

A typical active 
distribution grid with 
a high share of 
renewables 

ICSs Unspecified × × × × Stochastic LCCM GA A typical 
distribution 
network in 
Brazil 

Kahrobaee et al., 
2013 [17] 

A grid-connected WT/ 
BESS nano-grid 

RTP SRAs × × × × Stochastic LCCM PSO A typical house 
in the U.S. 

Cardoso et al., 
2014 [20] 

A grid-connected PV/ 
ST/ICE/MT/GT/FC/ 
BESS/AC MG 

DLC EV-charging √ × × × Stochastic LCCM DER-CAM 
tool 

San Francisco, 
CA, U.S. 

Zhu et al., 2015  
[24] 

An off-grid PV/WT/ 
BESS/DG MG 

DLC HVAC × × × × Deterministic LCCM NP Shanghai, China 

Atia and Yamada, 
2016 [25] 

A grid-tied PV/WT/ 
BESS MG 

DLC SRAs and EV-charging × × × × Stochastic LCCM MILP Okinawa, Japan 

Pazouki and 
Haghifam, 2016  
[26] 

A WT/MCHP/boiler/ 
BESS/TESS energy 
hub 

DLC Unspecified × × × × Stochastic LCCM MILP Unspecified 

Schachter et al., 
2016 [27] 

A typical smart 
distribution grid with 
deep renewable 
penetration 

DLC Unspecified × √ × × Stochastic LCCM SDM Unspecified 

Yu et al., 2017  
[18] 

A WT/PV/BP/coal/ 
gas municipal energy 
system 

CPP Unspecified × × × × Stochastic LCCM RFP Qingdao, China 

Chauhan and 
Saini, 2017 [28] 

A stand-alone PV/ 
WT/BESS/DG/BP/ 
MHPP MG 

DLC Smart appliances of 
the residential, 
commercial, 
agricultural, and 
community sectors 

× × × × Deterministic LCCM DHS Chamoli, India 

Nojavan et al., 
2017 [29] 

The standard IEEE 33- 
bus distribution 
network 

ToU Unspecified × × × × Stochastic LCCM and 
reliability 
maximisation 

MINLP Unspecified 

Amrollahi and 
Bathaee, 2017  
[30] 

A grid-connected PV/ 
WT/BESS 

DLC Unspecified × × × × Deterministic LCCM MILP An unnamed 
forestry camp, 
northwest of 
Iran 

Chen et al., 2018  
[31] 

A grid-tied PV/WT/ 
BESS MG 

DLC SRAs and HVAC × × × × Stochastic LCCM and 
reliability 
maximisation 

MILP Unspecified 

Zheng et al., 2018  
[32] 

A grid-tied PV/BP/ 
boiler MG 

ToU Unspecified × × × × Stochastic LCCM LP Davis, CA, U.S. 

Xiao et al., 2018  
[33] 

A modified IEEE 33- 
bus distribution 
network with deep 
penetration of 
renewables 

Hybrid 
DLC- 
ICSs 

Unspecified thermal 
and electrical loads 

× × × × Stochastic LCCM MBGO Unspecified 

Husein and Chung, 
2018 [34] 

An on-grid PV/WT/ 
MHPP/GPP/BP MG 

ToU Unspecified × √ × × Stochastic LCCM ESM Seoul, South 
Korea 

Gazijahani and 
Salehi, 2018  
[35] 

A modified IEEE 33- 
bus distribution 
network with high 
penetration of 
renewables 

CPP Unspecified √ × × × Deterministic LCCM RMILP Unspecified 

(continued on next page) 
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Table 1 (continued ) 

Reference Test-case system 
configuration 

DSM 
scheme 

Flexible loads V2G 
capabilities 

DR-inherent 
uncertainties 

Multi-temporal 
reserve 
procurement 

Aggregator-mediated 
customer comfort 
characterisation 

Modelling 
approach 

Objective(s) Solution 
algorithm 

Case study area 

Amir et al., 2018  
[36] 

A grid-connected PV/ 
BESS/boiler/TESS/ 
MCHP MG 

ToU Unspecified × × × × Deterministic LCCM GA Unspecified 

Mohseni et al., 
2018 [37] 

An off-grid PV/WT/ 
battery MG 

DLC EV-charging × × × × Deterministic LCCM GA Kish Island, Iran 

Nazari and 
Keypour, 2019  
[38] 

An on-grid PV/WT/ 
BESS/MT MG 

DLC SRAs, PWS, and HVAC × × × × Stochastic LCCM MILP Unspecified 

Prathapaneni and 
Detroja, 2019  
[39] 

A stand-alone PV/ 
BESS/DG MG 

DLC EV-charging and PWS × × × × Stochastic LCCM MINLP Hyderabad, 
India 

Hosseinnia et al., 
2019 [21] 

An on-grid PV/WT/ 
BESS/boiler/MCHP/ 
TESS MG 

ToU SRAs √ × × × Stochastic LCCM and 
GHGEM 

TSA Unspecified 

Bhamidi and 
Sivasubramani, 
2019 [40] 

A grid-connected PV/ 
WT/BESS/MT/DG MG 

ToU SRAs and EV-charging × × × × Deterministic LCCM and 
GHGEM 

NSGA-II San Angelo, TX, 
U.S. 

Varasteh et al., 
2019 [19] 

A multi-carrier PV/ 
WT/CCHP/boiler/ 
BESS MG 

Hybrid 
DLC- 
ToU 

SRAs × × × × Deterministic LCCM MINLP Unspecified 

Mohseni et al., 
2019 [41] 

A grid-independent 
PV/WT/BESS MG 

DLC SRAs and EV-charging × × × × Deterministic LCCM MFOA Hengam Island, 
Iran 

Amir and Azimian, 
2020 [8] 

A grid-connected PV/ 
MCHP/BESS/TESS 
multiple energy 
carrier MG 

Hybrid 
DLC- 
ToU 

Unspecified × × × × Stochastic LCCM GA-MINLP Unspecified 

Salyani et al., 2020 
[42] 

The standard IEEE 33- 
bus distribution 
network 

RTP EV-charging √ √ × × Stochastic LCCM and 
GHGEM 

MINLP Unspecified 

This study A grid-tied PV/WT/ 
MHPP/BP/FC/BESS/ 
SC MG 

ICSs SRAs and FCEVs √ √ √ √ Deterministic LCCM MFOA Ohakune, New 
Zealand 

Key: AC = Absorption Chiller, BESS = Battery Energy Storage System, BP = Biopower Plant, CA = California state, CPP = Critical Peak Pricing, CCHP = Combined Cooling, Heating, and Power, DER-CAM = Distributed 
Energy Resources-Customer Adoption Model, DG = Diesel Generator, DHS = Discrete Harmony Search, DLC = Direct Load Control, ESM = Enumeration Search Method, EV = Electric Vehicle, FC = Fuel Cell, FCEV = Fuel 
Cell Electric Vehicle, GA = Genetic Algorithm, GHGEM = Greenhouse Gas Emissions Minimisation, GPP = Geothermal Power Plant, GT = Gas Turbine, HVAC = Heating, Ventilation, and Air Conditioning, ICE = Internal 
Combustion Engine, ICSs = Interruptible/Curtailable Services, LCCM = Life-Cycle Cost Minimisation, LP = Linear Programming, MBGO = Metamodel-Based Global Optimisation, MCHP = Micro-Combined Heat and 
Power, MG = Micro-Grid, MHPP = Micro-Hydro Power Plant, MILP = Mixed-Integer Linear Programming, MINLP = Mixed-Integer Nonlinear Programming, MFOA = Moth-Flame Optimisation Algorithm, MT = Micro- 
Turbine, NP = Nonlinear Programming, NSGA-II = Non-dominated Sorting Genetic Algorithm II, PSO = Particle Swarm Optimisation, PV = Photovoltaic, PWS = Pumped Water Storage, RFP = Robust Flexible Pro-
gramming, RMILP = Robust MILP, RTP = Real-Time Pricing, SC = Super-Capacitor, SDM = Supply-Demand Matching, SRAs = Smart Residential Appliances, ST = Solar Thermal, TESS = Thermal Energy Storage System, 
ToU = Time-of-Use, TSA = Tabu Search Algorithm, TX = Texas state, WT = Wind Turbine. 
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conservation of energy through procuring DSM provisions for the stra-
tegic decision-making related to the optimal mix of distributed energy 
resources (DERs) to be integrated into RSESs–which is discussed in the 
literature review in Section 1.1. Accordingly, this study puts forward a 
novel long-term, comfort-preserving MG equipment capacity-planning 
decision-making framework that offers a new solution to fill the litera-
ture voids identified in Section 1.2. Notably, this paper makes the 
following key contributions: 

• The strategic interactions between the MG operator (utility), mo-
nopoly DRAs, and end-consumers are characterised using an equi-
table market model for DR aggregation in community-scale 
renewable energy projects using tools borrowed from non- 
cooperative game theory [46] and the endogenous Stackelberg 
leader–follower relationships1 [47]. The proposed DSM market 
model is designed on the basis of interruptible DR programmes and 
accounts for the elasticity of customer-supplied DR capacity (load 
type-dependent DR procurement factor).  

• The proposed DSM market design is integrated into a standard model 
of long-term, meta-heuristic-based capacity planning of grid- 
connected MGs to elucidate the contributions of more accurate DR 
resource projections in improving the economic viability of MG 
development projects.  

• A novel hydrogen-based MG system is conceptualised, which is the 
first to capture the potential of the fuel cell electric vehicles in 
vehicle-to-grid operation (FCEV2G) technology in improving the 
dispatchability of 100%-renewable MG systems and, in turn, 
ensuring the economic sustainability of strategic MG investment 
planning decisions.  

• The application of the energy filter-based approach to scheduling 
energy storage infrastructure is expanded to multiple energy storage 
technologies, namely: hydrogen storage, vanadium redox flow bat-
teries, and super-capacitors (SCs). This provides a platform to more 
efficiently address the intermittency of renewables by economically 
dispatching different backup systems running at various temporal 
resolutions, namely: seasonal, inter- and intra-day, and transient. 

1.4. Structure of paper 

The rest of this paper is organised as follows. Section 2 mathemati-
cally defines the conceptualised stand-alone, multi-energy-storage- 
technology MG architecture employed as a test-case to evaluate the 
utility and effectiveness of the proposed two-stage market-driven DSM 
business model. The proposed interruptible DR scheduling framework is 
presented in Section 3. Section 4 integrates the proposed DSM frame-
work into a standard meta-heuristic-based MG capacity planning model. 
A case study analysis is carried out in Section 5. Finally, conclusions are 
made in Section 6. 

A schematic outline of the paper, which illustrates the steps followed 
in this study and their interconnectedness, is set out in Fig. 1. 

2. Test-case micro-grid system 

The conceptualised grid-connected, DC-coupled, multiple energy 
carrier MG test-case system (see Fig. 2) is envisioned to supply green 
power and transportation fuel to communities residing in the vicinity of, 
or within relatively short distances from, the main power grids. Also, it 
serves five different categories of energy demand: (1) residential, (2) 
agricultural, (3) commercial, and (4) industrial load power demands, as 
well as (5) the demand for hydrogen (through dedicated hydrogen 
refuelling infrastructure) from fuel cell electric vehicles (FCEVs). The 

test-case is used to verify the effectiveness of the proposed DR-integrated 
energy planning optimisation model. 

2.1. Micro-grid equipment 

For the purposes of this study, the leading brands of equipment in 
New Zealand’s renewable energy asset market were chosen based on the 
first author’s judgement of prevalence. The following sub-sections 
mathematically model the system equipment. 

2.1.1. Photovoltaic plant 
Canadian Solar’s CS6K-280P poly-crystalline photovoltaic (PV) 

modules [48], which have a nominal power of 280 W are employed in 
this study for PV power generation. The power output from the PV plant 
at each time-step, PPV(t) [kW], can be estimated as follows [25,49,50]: 

Tm(t) = Ta(t) + IG(t) ×
NMOT − 20

0.8
, (1)  

PPV(t) = NPV × PPV,r × ηPV,DC/DC × DF ×
IG(t)
ISTC

×

(

1 −
Kp

100
× (Tm(t)

− TSTC )

)

, (2)  

where NPV is the optimum quantity of the modules; PPV,r is the rated 
capacity of the module under the standard test conditions (STC); 
ηPV,DC/DC is the PV plant’s DC/DC converter efficiency; Kp is the tem-
perature coefficient of the module; Tm, Ta, and TSTC respectively repre-
sent the PV module temperature, ambient temperature, and the module 
temperature at the STC; IG and ISTC respectively denote the global solar 
irradiance on the horizontal surface and the solar irradiance at the STC; 
and NMOT and DF respectively stand for the nominal module operating 
temperature and derating factor. The tilt angle is assumed as 30◦ and the 
Meteonorm software [51] is used to normalise the values of IG to this tilt 
angle. Also, the numeric values 20 and 0.8 respectively represent the 
ambient temperature [◦C] and solar irradiance [kW/m2] at which the 
NMOT is defined. 

2.1.2. Wind plant 
The wind turbine (WT) ECO 48/750, which has a rated power of 750 

kW is considered for wind power generation [52]. The turbine’s 
manufacturer-provided characteristic power-wind speed curve is shown 
in Fig. 3. The wind plant’s output power at each time-step, PWT(t) [kW], 
can be obtained by multiplying the optimal quantity of the WTs, NWT, by 
each turbine’s output power estimated from the power curve presented 
in Fig. 3. Also, since the power curve of the WT is characterised for its 
hub height wind speed, Eq. (3) can be used to normalise the wind speed 
data measured at other heights to the turbine’s hub height [53]. 

Vh = Vref×(
h

href
)

γ
, (3)  

where Vref denotes the reference wind speed collected at the height of 
href and γ ∈ [0.1, 0.25] is the wind shear exponent, which varies with 
respect to the terrain [54]. 

2.1.3. Micro-hydro plant 
Suneco Hydro’s XJ50-100SCTF6-Z 100-kW micro-hydro turbines are 

selected to be integrated into the run-of-the-river plant as part of the MG 
system [55]. The power output from the plant at each time-step [kW] 
can be estimated from Eq. (4) [56,57]. 

PMH(t) =
NMH × ηMH,AC/DC × ηMH × ρ × g × hg × F(t)

1000
, (4)  

where NMH denotes the optimum quantity of turbines, ηMH is the total 
efficiency of the plant (including the turbine, generator, and water 

1 In game theory, a Stackelberg duopoly is a non-symmetric, strategic, 
sequential game with one party, or a group of parties, taking over the leading 
position and the other(s) acting as follower(s). 
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wheel efficiency), ηMH,AC/DC is the efficiency of the plant’s AC/DC con-
verter, ρ represents the density of water, g is the acceleration due to 
gravity, hg is the gross head (which is defined as the difference between 
the head race and tail race levels when water is not flowing), F(t) is the 
flow rate at time-step t [m3/s], while the numeric value of 1000 converts 
the unit of measurement from Wh to kWh. 

2.1.4. Biomass plant 
The integrated biomass gasifier-generator system PP30 Cogen-CS 

manufactured by All Power Labs [58] is utilised in this study. The 
plant, the flow diagram of which is shown in Fig. 4, is a commercially 
available, off-the-shelf component with an electrical rated power of 25 
kW. The power output from the biomass plant at each time-step [kW] 
can be calculated from Eq. (5) [59]. 

PBP(t) = NBP × ηBP,AC/DC × ηBP × CV × MBP(t), (5)  

where NBP represents the optimal quantity of the considered biopower 

units, ηBP,AC/DC is the efficiency of the plant’s AC/DC converter, ηBP is the 
overall bio-electricity generation efficiency of the system, CV stands for 
the gross calorific value of the biomass feedstock, and MBP(t) denotes the 
feedstock mass consumption rate at time-step t [kg/h].2 

Furthermore, the system is characterised with a carbon emission 
factor of 1.53 kg-CO2 per kg of feedstock used [60]. Accordingly, the 
social cost of the carbon emissions needs to be factored into the decision- 
making–for an eco-design of the MG system. The following equation can 
be used to calculate the life-cycle penalty imposed on the MG for CO2 
emissions: 

Fig. 1. Overview of the section-wise modelling procedure employed in this paper for the aggregator-mediated, market-driven integration of flexible demand re-
sources in the long-term planning of MGs. 

2 Note that the rated powers of micro-hydro turbines and biopower plants, 
are incorporated into the model and the decision-making process in an indirect 
manner using the power rating-dependent parameters–hg in the case of micro- 
hydro turbines, and MBP in the case of biopower units–as well as specifically 
developed terminal constraints (refer to Section 4.2.6 for more details). 
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costem =
ξCO2

1000
× ECO2 ×

∑T

t=1
MBP(t), (6)  

where ξCO2 [$/tCO2] denotes the social cost of CO2 emissions used as a 
reference to account for life-cycle GHG impacts of the biopower plant in 
the model, and ECO2 represents the CO2 emission factor of the plant [kg- 
CO2/kg-feedstock]. 

2.1.5. Upstream power grid 
The MG system is tied to the upstream electricity network through a 

dedicated bidirectional MV/LV transformer, the optimal capacity of 
which is under investigation. The cost imposed by purchasing electricity 
from the grid at each time-step could be represented by Eq. (7), while the 
income generated by the MG’s electricity exports is obtained from Eq. 
(8) [61]. 

costim(t) = πim(t) × Pim(t) × Δt, (7)  

incomeex(t) = πex × Pex(t) × Δt, (8)  

where πim(t) represents the (time-varying) wholesale electricity market 
price at time-step t [$/kWh], πex is the utility grid’s single-tier (flat) buy- 
back rate [$/kWh], Pim(t) is the amount of power imported from the 
utility grid at time-step t, Pex(t) is the amount of power exported to the 

Fig. 2. Micro-grid system architecture and streams of energy driven by renewables and the upstream grid.  

Fig. 3. Power curve of the ECO 48/750. Data Source: [52].  

Fig. 4. Schematic diagram of the considered integrated biomass gasifier- 
generator system. Source: [60]. 
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main grid at time-step t, and Δt represents the length of each time-step. 
The power exchange is expected to adhere to the following con-

straints: 

Pim(t)/ηT ≤ NT , (9)  

Pex(t)/ηT ≤ NT , (10)  

where ηT denotes the transformer’s efficiency and NT represents the 
rated capacity of the transformer, which is to be optimised. 

The generic solid-state transformer, designed by Qin and Kimball 
[62], is used in this study. The size of the transformer is characterised by 
the apparent power [kVA] and, as a simplifying assumption, the power 
factor is assumed to be 0.95. 

2.1.6. Power conversion apparatuses 
As shown in Fig. 2, the MG system is equipped with several con-

verters to serve the purpose of coupling the equipment to a common DC 
busbar. For electrical loads, Leonics’ GTP-519-S 900-kW, GTP-506 115- 
kW, and GTP-501 33-kW inverters are considered in this study [63]. To 
calculate the size of the electrical loads’ inverters, first, the following 
equation is used to determine the nominal power of the overall power 
inversion system: 

NI =
PL,max

ηI
, (11)  

where PL,max represents the demanded annual peak electrical loads and 
ηI identifies the power inversion equipment’s efficiency. 

Then, NI is rounded up to the next integer and the number of each 
inverter model is identified by the following equations, which give 
priority to higher-rated inverters as they carry a lower per-unit cost: 

N900 =

⌊
NI

C900

⌋

, (12)  

N115 =

⌊
NI − (N900C900)

C115

⌋

, (13)  

N33 =

⌈
NI − (N900C900)− (N115C115)

C33

⌉

, (14)  

where N900, N115, and N33 respectively denote the quantity of the 900- 
kW, 115-kW, and 33-kW inverters, while C900, C115, and C33 indicate 
their respective rated capacities. 

2.1.7. Internal backup energy storage 
The proposed system leverages the temporal characteristics of 

various DERs providing backup power, or energy storage. To this end, 
this study expands on the idea proposed by Akram et al. [64] that low- 
pass energy filters could be used to calculate the share of each energy 
storage medium in supplying load power demand on a representative 
MG. Accordingly, the power mismatch signal is first broken down into 
the low- and high-frequency components using a low-pass filter with a 
transfer function given in Eq. (15). 

H(s) =
Kω2

0

s2 + (ω0/Q)s+ω2
0
, (15)  

where ω0 denotes the cut-off frequency, K represents the DC gain, and 
Q = 1/2ξ identifies the quality with ξ indicating the damping factor. 

Then, the low-frequency signal is directed to the hydrogen system 
(including the electrolyser, hydrogen tank, and the fuel cell), while the 
high-frequency signal is transferred to the hybrid battery-SC system. 
Subsequently, another low-pass filter with a lower cut-off frequency 
identifies the contribution of the battery and SC banks in serving loads or 
storing surplus power. 

The technical rationale underlying this power allocation approach is 

the longer cycle life, higher round-trip efficiency, and more rapid 
response capability of SCs (batteries) to balance out generation-demand 
mismatches than batteries (the hydrogen system). That is, the shortest 
and longest periods of surplus or shortage of electricity are addressed 
using the SC bank and hydrogen system, respectively, while the battery 
bank bridges the gap between these two storage media.3 

2.1.7.1. Super-capacitor bank. Eaton’s 48-V, 166-F XLR-48R6167-R SC 
modules [65], which are of the type electrochemical double-layer 
capacitor (EDLC), are used to address short-term renewable power and 
load demand mismatches–and improve the MG’s dynamic response and 
overall efficiency. The SC bank’s energy content at each hour of the MG 
operation can be calculated as follows: 

ESC(t) = ESC(t − 1)+
(

Pch,HF2 −

(
Pdch,HF2

ηSC

))

× Δt, (16)  

where ηSC represents the SC’s round-trip efficiency, while Pch,HF2 and 
Pdch,HF2 are the high-frequency components of the outputs of the second- 
stage filtered charging and discharging signals, respectively. 

2.1.7.2. Battery bank. CellCube’s vanadium redox flow-based battery 
bank [66] is used in the conceptualised MG. Likewise to the inverter 
system, three different battery product models are selected and the same 
procedure is followed to apportioning the total optimal size of the bat-
tery bank to different model types, following the same logic. The battery 
product models are: FB 10–100 (100 kWh), FB 200–400 (400 kWh), and 
FB 400–1600 (1600 kWh). The battery bank’s energy content at each 
hour can be obtained as follows: 

EB(t) = EB(t − 1)+
(

Pch,LF2 −

(
Pdch,LF2

ηB

))

× Δt, (17)  

where ηB is the battery bank’s round-trip efficiency, while Pch,LF2 and 
Pdch,LF2 denote the low-frequency components of the outputs of the 
second-stage filtered charging and discharging signals, respectively. 

2.1.7.3. Hydrogen storage. The hydrogen-based storage system mainly 
includes polymer electrolyte membrane (PEM) electrolyser stacks, a 
medium-pressure (20 bar) hydrogen reservoir, and stationary PEM fuel 
cell stacks. H-TEC Systems’ S 30/50 5-kW electrolyser stacks [67], a 
generic hydrogen reservoir (which needs to be customised), and Bal-
lard’s FCgen-1020ACS 3.3-kW fuel cell stacks [68] are used as part of the 
hydrogen storage system. The hydrogen power directed from the elec-
trolyser outlet to the reservoir at time-step t can be obtained as follows: 

PE− HT(t) = PE(t) × ηE, (18)  

where PE is the electrolyser’s consumed power, which is controlled by 
the low-frequency component of the output of the first-stage filtered 
charging signal, while ηE denotes the electrolyser’s efficiency. 

The mass of hydrogen, mHT [kg], stored in the reservoir at each time- 
step can be calculated as follows: 

EHT(t) = EHT(t − 1)+
(

PE− HT(t) −
(PHT − FC(t) + PHT − S(t))

ηHT

)

× Δt, (19)  

mHT(t) =
EHT(t)
HHVH2

, (20)  

where EHT represents the reservoir’s energy level, PE− HT is the directed 

3 Note that the backup power allocation strategy employed in this study is 
tailored towards long-term capacity planning, at which stage long-term fore-
casted data are available. A forward-looking predictive modelling approach 
(using a critic network, for example) is indispensable for the real-time operation 
phase. 

S. Mohseni et al.                                                                                                                                                                                                                                



Applied Energy 287 (2021) 116563

11

hydrogen power from the electrolyser to the reservoir, PHT− FC and PHT− S 
respectively denote the hydrogen power consumption of the fuel cell and 
the FCEV parking lot, ηHT represents the tank’s round-trip efficiency, and 
HHVH2 stands for the higher heating value of hydrogen. 

The electric power output from the high-energy-density fuel cell at 
time-step t, which is controlled by the low-frequency component of the 
output of the first-stage filtered discharging signal, can be obtained 
using Eq. (21). 

PFC(t) = PHT − FC(t) × ηFC, (21)  

where PHT− FC represents the fuel cell’s consumed hydrogen power and 
ηFC denotes its electrical efficiency, which is defined as the ratio between 
the electricity generated and the hydrogen consumed. 

2.1.8. Fuel cell electric vehicle parking lot 
The hydrogen refuelling infrastructure of the parking lot mainly 

consists of a medium-pressure (20/350 bar) compressor, a buffer stor-
age, a cryogenic pump, as well as a vaporiser, a refrigeration unit, and 
some dispensers to deliver gaseous hydrogen fuel to FCEVs [69]. The 
refuelling infrastructure is modelled by its overall efficiency, which is 
denoted by ηS. To this end, the Pure Energy Centre’s customised 
hydrogen refilling station [70] is considered for integration into the 
proposed MG. 

2.1.8.1. Selected fuel cell electric vehicles. A fleet of ultra-light-duty 
personal passenger vehicles is planned for integration into the envi-
sioned system through the coordinated use of the refuelling infrastruc-
ture. Accordingly, vehicles are assumed to be refuelled on a first-come/ 
first-served basis using the multi-server Erlang-C queuing model [71], 
where C identifies the optimal number of dispensers. Also, FCEVs are 
assumed to be of the model Riversimple Rasa. 

2.1.8.2. Fuel cell electric vehicles in vehicle-to-grid operation. To provide a 
platform for exploiting the V2G capabilities of the FCEVs, the FCEV2G 
setup designed in [72] is used in this study. The setup enables the 
conversion of the DC power of the vehicle’s fuel cell engine into AC that 
can be directed to the input port of the electrical loads’ inverter after 
frequency synchronisation, with an overall efficiency of ηFCEV2G. 
Accordingly, modulation of the power output from each FCEV, the 
owner of which aspires to participate in the V2G operations, can be 
made from 0 to 8.5 kW DC–in compliance with the nominal capacity of 
Rasa’s built-in fuel cell. This means the costs arising from payments 
made to FCEV owners to provide V2G power at each time-step–under a 
feed-in-tariff style programme–can be calculated by the following 
equation: 

costFCEV2G(t) = πFCEV2G × ηFCEV2G × PFCEV2G(t) × Δt, (22)  

where πFCEV2G represents the per-unit premium tariff rate for V2G power 
[$/kWh] and PFCEV2G(t) denotes the amount of V2G power used for 
operational scheduling at time-step t. 

For the sake of simplification, it was assumed that at each time-step 
of the MG operation, the maximum amount of available V2G power that 
can be provided by the station at each time-step, Pmax

FCEV2G(t), equals 25% 
of the load reduction potential of the station at that time-step. 

2.1.9. Data: Selected product models 
The values of the underlying system scalars, defined above, are 

presented in Table 2. Also, the techno-economic specifications of the MG 
equipment, namely the capital, replacement, and operation and main-
tenance (O&M) costs, as well as the estimated service life and efficiency 
of the equipment are summarised in Table 3. 

2.2. Operational strategy 

A rule-based, hourly-basis, cycle-charging operational strategy is 

adopted in this study for the dispatch of energy within the MG system, 
which is illustrated by the flowchart in Fig. 5. In the devised energy 
scheduling plan, (1) energy storage devices and FCEVs are recharged/ 
refilled using only the surplus non-dispatchable renewable power, (2) 
non-dispatchable renewable power and electrical loads are partitioned 
into the ultra-high, high, and low-frequency components and then 
stored/supplied within/using the SC bank, battery bank, and the 
hydrogen tank/fuel cell, respectively, (3) the dispatchable biopower 
plant can only be operated during the time-slots stamped as peak hours 
to partially or wholly offset the lack of sufficient fuel cell power,4 (4) the 
upstream grid serves as the ultimate guarantor of the perfect satisfaction 
of the electric load demand, and (5) the FCEV2G capability is considered 
as a resource to compensate for at least part of the electricity left un-
served by the fuel cell and the biopower plant, or the shortage of battery 
and SC capacity to meet the load power demand. To this end, morning 
and evening peak demand were assumed to occur between the hours of 6 
a.m. to 10 a.m. and 5 p.m. to 9 p.m., respectively–in compliance with 
historical records of electricity consumption in New Zealand. 

Moreover, the key assumptions made in conceptualising the pro-
posed MG system and conducting the life-cycle analysis are listed in 
Supplementary Material (Additional File 1: Key assumptions underlying 
the conceptualised micro-grid model). 

3. Aggregator-mediated, incentive-based demand-side 
management market design 

This section presents a mathematical formulation of a two-stage, 
aggregator-mediated, incentive-based DSM market model specifically 
developed for integration into standard MG capacity planning ap-
proaches. Building on the interruptible load programmes, the model is 
designed specifically to improve the accuracy of projections of the small- 
to medium-scale DR resource availability across different end-use sec-
tors–residential, commercial, industrial, agricultural, and electrified 
transportation. More specifically, it characterises the interactions be-
tween a MG operator, DRAs, and end-consumers. To this end, the model 
consistently treats these three sets of actors as rational, utility- 

Table 2 
Data values and sources for the proposed micro-grid system scalars.  

Scalar Value Source Scalar Value Source 

CV  5.07 kWh/kg [73] Kp  − 0.40%/◦C [48] 
Δt  1 h (this 

paper) 
NMOT  43 ◦C [48] 

ηPV,DC/DC  95% [34] ρ  1000 kg/m3 −

ηMH,AC/DC, 
ηBP,AC/DC  

95% [34] PBP,r  25 kW [58] 

DF  85% [74] πex  $0.05/kWh [75] 
ECO2  1.53 kg-CO2/ 

kg-feedstock 
[60] πFCEV2G  $0.05/kWh (this 

paper) 
g  9.81 m/s2 − PL,max  7.31 MW (this 

paper) 
h  55 m [52] PMH,r  100 kW [55] 
hg  10 m [55] PPV,r  0.28 kW [48] 
href  10 m [76] TSTC  25 ◦C [78] 
HHVH2  39.7 kWh/kg [77] γ  0.15 [79] 
ISTC  1 kW/m2 [78] ξCO2  $42/tCO2, 

$50/tCO2* 
[80]  

* A central value of $42/tCO2 is applied for the first 10-year planning horizon 
(covering the years 2020 to 2030), which rises to $50/tCO2 for the second half of 
the projected lifespan of the project in accordance with the Obama adminis-
tration’s central estimates [80]. 

4 This assumption can be explained by the relatively long cold start-up time of 
the biopower plant (i.e. ~10–15 min) and the inefficiency of leaving the bio-
power plant on standby at all times. 
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maximising (self-interested), active economic agents. The proposed 
market design provides a forum for these economic agents to negotiate 
on how to mutually optimise their objective functions in non- 
cooperative (strategic) game settings under the Stackelberg competi-
tion. It also identifies the minimum operational MG costs based on 
hourly priced DR products and the wholesale power price. In this way, 
the model enables all the active agents within the MG to be involved in 
co-designing a business model for more independent energy procure-
ment. Fig. 6 displays a schematic of the overall structure of the model 
with the sequence of incentive price/DR supply communications be-
tween the market participants overlaid [96]. 

As Fig. 6 shows, the market-based, aggregator-mediated DSM strat-
egy is modelled as an interactive hierarchical decision-making process, 

which consists of two levels of leader–follower relationships, namely 
between the MG operator and the DRAs (wholesale DSM market), and 
between the DRAs and their customers (retail DSM market). Although 
the DSM market participants are hierarchically related with respect to 
DR service, each has an independent viewpoint on the problem, which is 
modelled by specific objective functions in the following sub-sections. 

3.1. Micro-grid operator 

It is assumed that the conceptualised MG, laid out in Section 2, runs 
on an energy-as-a-service business model in that not only does a third- 
party (private company) own the MG, but it also provides an over-
arching framework for energy management (through effective incentive 

Table 3 
Data values and sources for techno-economic specifications of the conceptualised system’s components.  

Component Manufacturer 
part number 

Nameplate 
rating 

Capital cost* Replacement 
cost†

Operation and 
maintenance 
cost†

Expected 
service life 

Nominal efficiency Source 

Per unit Per standard 
unit of 
generation/ 
storage/ 
conversion 
capacity 

Notation Value 
[%] 

PV module CS6K-280P 280 W $210/ 
unit 

$750/kW $200/unit $1/unit/year 25 years ηPV  17.11 [48] 

Wind turbine ECO 48/750 750 kW $1.096 
m/unit 

$1.46 k/kW $0.822 m/ 
unit 

$21 k/unit/ 
year 

20 years N/A‡ N/A‡ [52] 

Micro-hydro 
turbine 

XJ50-100SCTF6- 
Z 

100 kW $56 k/ 
unit 

$560/kW $17 k/unit $2 k/unit/year 25 years ηMH  78 [55] 

Biopower 
unit§

PP30 Cogen-CS 25 kW $32 k/ 
unit 

$1.28 k/kW $23 k/unit $0.01/unit/ 
hour 

10 k hours ηBP  23 [58] 

Transformer Generic − − $65/kVA $55/kVA $2/kVA/year 30 years ηT  93 [62,81] 
Inverter GTP-501 33 kW $12 k/ 

unit 
$364/kW $12 k/unit $85/unit/year 15 years ηI  96 [63] 

GTP-506 115 kW $38 k/ 
unit 

$330/kW $38 k/unit $250/unit/ 
year     

GTP-519-S 900 kW $270 k/ 
unit 

$300/kW $270 k/unit $1.9 k/unit/ 
year     

Super- 
capacitor 
module 

XLR-48R6167-R 166F, 48 V 
≡ 0.054 
kWh 

$1.3 k/ 
unit 

$24.1 k/kWh $1.3 k/unit $13/unit/year 1 m cycles ηSC  97 [65] 

Battery pack FB 10–100 100 kWh $110 k/ 
unit 

$1.1 k/kWh $110 k/unit $220/unit/ 
year 

20 years 
with 
unlimited 
cycles 

ηB  80 [66,82] 

FB 200–400 400 kWh $400 k/ 
unit 

$1 k/kWh $400 k/unit $840/unit/ 
year     

FB 400–1600 1600 kWh $1.442 
m/unit 

$901/kWh $1.442 m/ 
unit 

$4 k/unit/year     

Electrolyser 
stack 

S 30/50 5 kW $6 k/ 
unit 

$1.2 k/kW $6 k/unit $120/unit/ 
year 

20 years ηE  75 [67] 

Hydrogen 
tank 

Generic − − $500/kg $500/kg $1/kg/year 20 years ηHT  95 [83] 

Fuel cell 
stack 

FCgen-1020ACS 3.3 kW $5 k/ 
unit 

$1.52 k/kW $5 k/unit $0.02/unit/ 
hour 

10 k hours ηFC  40 [68] 

Hydrogen 
station 

Generic (Pure 
Energy Centre) 

− − $10 k/(kg-H2/h) $5 k/(kg-H2/ 
h) 

$350/(kg-H2/ 
h)/year 

20 years ηS  95 [69,70,84] 

Generic (The 
Energy 
Technology 
Section, TU 
Delft)¶| 

− − $155/kW $95/kW $32/kW/year 20 years ηFCEV2G  44# [85,86,87,88]  

¶ In view of the assumption that the DC power provided by the FCEVs is fed into the electrical loads’ inverter, the costs associated with the FCEV2G technology only 
include the costs of modifying the vehicles with a V2G DC outlet plug. 

* All of the reported capital costs represent the actual cost of buying the selected components in New Zealand’s energy asset market as of October 2019–which were 
adjusted to 2019 U.S. dollars. In October 2019, US$1 = NZ$1.56. 

† All of the replacement and O&M costs were calibrated in accordance with the component-specific ratios of capital to replacement and O&M costs reported in 
[82,83,89,90,91,92,93,94,95]. 

‡ Not applicable as the wind turbine efficiency is reflected in its power curve shown in Fig. 3. 
§ To value the positive impact of the biopower plant on the internal dispatchability of the MG, the total discounted cost of pellet feedstock was considered to be an 

exogenous variable, which is determined outside the model based on the imposed emission credits (see Eq. (6)) with respect to the total discounted energy output of the 
plant (see Eq. (5)). 

# The V2G infrastructure’s efficiency in this paper represents a tank-to-DC-bus efficiency (units converted based on the higher heating value of hydrogen). 
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arrangements reflective of wholesale market prices) tailored to the 
needs of the MG. 

Specifically, on a 24-h day-ahead basis, the MG operator predicts the 
net energy deficit of the MG, which needs to be procured by a combi-
nation of imported power and customer-supplied DR units. Accordingly, 
it sends an incentive payment signal to the aggregators to induce lower 
energy use at times of high wholesale power prices, when the total 
power output from the renewable power generation technologies is low, 
or during periods when reserve shortfalls arise. Equation (23) expresses 
the objective function of the MG operator, which needs to be minimised 
for each critical hour of the next day (t ∈ Pd⊂T = {1,2,⋯,8760}) subject 
to the constraints in Eqs. (24) and (25): 

OCMG(t) = costim(t)+ IMGO(t) ×
∑

j∈J
Dj

LA(t)∀t, (23)  

Imin
MGO ≤ IMGO(t) ≤ Imax

MGO∀t, (24)  

Ddef (t) = Pim(t)+
∑

j∈J
Dj

LA(t)∀t, (25)  

where OCMG is the MG’s operational cost defined based on the cost of the 
imported power, costim, and the total incentive payments for load 

Fig. 5. Flowchart of the MG’s energy management scheme, consisting of a set of pre-defined control logics.  

Fig. 6. General architecture of the proposed two-stage, aggregator-mediated, 
incentive-based DSM market design. 
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reduction, 
∑

j∈JD
j
LA; IMGO is the MG operator-posted incentive price 

signal to the wholesale DSM market, with superscripts min and max 
representing its lower and upper limits, respectively; Ddef denotes the net 
energy deficit of the system; and Dj

LA is the total load reduction procured 
by DRA j ∈ J. 

3.2. Demand response aggregators 

The DRAs serve as a go-between, interfacing with the smaller DR 
providers and the broader MG system operator so as to maintain the 
visibility of the small-scale DR products. The independence of the DRAs 
is fully preserved in the proposed model as they are precluded from 
ownership of the energy infrastructure. Precisely, third-party aggre-
gators enlist end-consumers to take part in interruptible load pro-
grammes. To this end, they take a percentage of the MG operator-offered 
incentive as compensation, passing the rest on to their customers. More 
specifically, the DRAs aim to maximise the objective (profit) function in 
Eq. (26) subject to the constraints in Eqs. (27) and (28) [97]: 

Prj
LA(t) =

(
IMGO(t) − Ij

LA(t)
)
× Dj

LA(t)∀j, t, (26)  

Ij,min
LA ≤ Ij

LA(t) ≤ Ij,max
LA ∀j, t, (27)  

Dj
LA(t) =

∑

k∈NJ

dk,j(t)∀j, t, (28)  

where Ij
LA is the incentive rate posted by the j-th aggregator to the retail 

DSM market; dk,j denotes the capacity of DR product supplied by 
customer k subscribed to aggregator j; NJ is the set of customers serviced 
by aggregator j, which is a proper subset of set of all the customers 
within the MG system’s operational territory, K; and Ij,min

LA and Ij,max
LA 

respectively represent the lower and upper bounds of the incentive 
payments offered by aggregator j. 

3.3. End-consumers 

End-consumers, who are activated by third-party DRAs, have the 

opportunity to take full advantage of their flexibility potential, whilst 
adhering to a set of discomfort cost constraints. To this end, the end- 
consumers determine the optimum supply of their DR resources with 
respect to the DRA-offered incentive prices by maximising the utility 
function expressed in Eq. (29) subject to Eqs. (30) and (31). 

Uk,j(t) = dk,j(t) × Ij
LA(t) − disk,j(t)∀k, t, (29)  

0 ≤ dk,j(t) ≤ dk,j
ncr(t)∀k, t, (30)  

dk,j
full(t) = dk,j

cr (t) + dk,j
ncr(t)∀k, t, (31)  

where disk,j denotes the cost of discomfort (inconvenience) associated 
with load reductions as a measure of the value of electricity, which can 
be obtained from Eq. (32)5 [98,99], and must lie within a certain range, 
as constrained by Eq. (33); dk,j

full is the full (original) load demanded by 

customer k of aggregator j; dk,j
cr is the critical portion of the original load, 

any shedding of which results in impaired reliability; and dk,j
ncr is the non- 

critical (dispatchable) demand, which can be interrupted by making 
effective incentive payments to customers for curtailing load. 

disk,j = ck,j
1 (dk,j)

2
+ ck,j

2 (1− δj)dk,j
∀k, t, (32)  

disk,j,min ≤ disk,j ≤ disk,j,max∀k, t, (33)  

where ck,j
1 and ck,j

2 are positive individual-level parameters specified by 
end-consumers that characterise their sensitivity to load reductions, for 
customers indifferent to incentive payment, ck,j

1 ,ck,j
2 →∞; 0 ≤ δj ≤ 1 is the 

sector-level elasticity of customer-supplied DR capacity, for a hypo-
thetical completely inelastic customer category, δj→0; while disk,j,min and 
disk,j,max respectively denote the minimum and maximum allowable 

Fig. 7. Sequence diagram of implementing the proposed DSM model in the context of the conceptualised MG system.  

5 The customer discomfort cost function can be viewed as the second-order 
best-fit equation to individual-level, user-specified data points representing 
ordered pairs of DR capacity supply and the associated discomfort cost 
incurred. 
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limits for customer-specific discomfort costs. 
Incorporating the term ( − ck,j

2 δjdk,j) in Eq. (32) ensures that the 
market equilibrium of the two-stage aggregator-mediated DSM game is 
aware of the marginal values the end-users across different sectors place 
on an uninterrupted power supply–that is, the value to consumers of the 
last (incremental) unit of DR capacity supply. It should be noted that this 
analysis does not account for the supply elasticity of inframarginal DR 
capacity. 

3.4. Solution algorithm 

To solve the proposed two-stage, aggregator-mediated, incentive- 
based DSM market model, a distributed algorithm approach, which 
dynamically updates the MG operator-offered incentive price, is 
implemented. The idea is to update the MG operator-posted incentive 
from Imin

MGO to Imax
MGO with an increment size of iMGO and determine the 

hourly operational cost of the MG as a function of the wholesale power 
price and contributed load reductions. The model is solved repeatedly 
for different values of the MG operator-offered incentive prices until no 
further improvement (reduction) in the MG operational cost occurs 
(terminating condition). Algorithm 1 presents the distributed algorithm 
developed to quantify the optimal trade-off between the imported power 
and dispatched load reduction during the critical hours of MG operation 
in terms of on-site resource adequacy. The superscript “*” in the algo-
rithm denotes the global optimality. 

Algorithm 1. (Proposed distributed algorithm to produce the optimal day- 
ahead trade-offs between imported power and exploited DR resources dur-
ing the critical peak hours of MG operation)  

1: Initialise: I*MGO = 0 and OC*
MG(t) = costim(Ddef )

2: for IMGO ranging from Imin
MGO to Imax

MGO at steps of iMGO do 
3: Submit the incentive price signal IMGO to the wholesale DSM market 
4: for each DRA j ∈ J do 
5: Determine the best-strategy incentive rate to be offered to the end-users, Ij,*LA, by 
setting the first-order derivative of the DRA’s profit function in Eq. (26), in which 
dk,j is substituted with the best-response strategy of the corresponding customers 
derived by setting the first-order derivative of their utility functions in Eq. (29) 
equal to zero 
6: Send the incentive price signal Ij,*LA to the corresponding customers 
7: for each customer k ∈ NJ do 
8: Derive the customer’s best-response strategy by setting the first-order derivative 
of its utility function given in Eq. (29) equal to zero 
9: Calculate the best-response load reduction with respect to the financial incentive 
offered by the DRA it has subscribed to, using the customer-specific best-response 
strategy profile derived above 
10: Send the amount of load curtailment contributed by the customer to the 
corresponding DRA 
11: end for 
12: Aggregate the load reductions supplied by the end-users 
13: Send the total load reduction procured by the DRA to the MG operator 
14: end for 
15: Update the hourly operating cost of the MG as: 

OCMG = costim
(

Ddef −
∑

j∈JD
j
LA

)
+ IMGO ×

∑
j∈JD

j
LA 

16: if (OCMG < OC*
MG) then 

17: Update the optimal MG operator-posted incentive and the MG’s operating cost 
as: I*MGO = IMGO and OC*

MG = OCMG 

18: end if 
19: end for 
20: Return the set (I*MGO, I

j,*
LA,dk,j,*) as the unique, globally-optimum equilibrium 

solution for each hour of the coming day   

Algorithm 1 determines the unique, pure-strategy Nash equilibrium 
of the game, which identifies the best-response strategies of the DRAs 
and end-consumers by setting the first-order derivatives of their objec-
tive functions equal to zero. To prove that doing so maximises the cus-
tomers’ utility functions and the aggregators’ profit functions (and 
yields the unique, globally-optimum solutions), one must show the 
concavity or convexity of these payoff functions. 

Taking the second-order derivative of Uk,j given in Eq. (29) with 
respect to the customer-supplied DR capacity yields: 

∂Uk,j

∂dk,j = Ij
LA −

(
2ck,j

1 dk,j+ck,j
2
(
1 − δj

) )
, (34)  

∂2Uk,j

∂(dk,j)
2 = − 2ck,j

1 . (35) 

Substituting the best-response strategies of end-consumers–obtained 
by setting the first-order derivative of their utility function, derived in 
Eq. (34), equal to zero–into the profit function of the DRAs given in Eq. 
(26), yields: 

Prj
LA =

(
IMGO − Ij

LA
)
×
∑

k∈NJ

Ij
LA− ck,j

2
(
1 − δj

)

2ck,j
1

= −
(
Ij

LA
)2∑

k∈NJ

1
2ck,j

1
+ Ij

LA(
∑

k∈NJ

ck,j
2
(
1 − δj

)

2ck,j
1

+
∑

k∈NJ

IMGO

2ck,j
1
)+ IMGO

∑

k∈NJ

− ck,j
2
(
1 − δj

)

2ck,j
1

. (36) 

Then, the second-order derivative of Prj
LA, re-written in Eq. (36), with 

respect to the aggregator-offered incentive payments can be obtained as 
follows: 

∂Prj
LA

∂Ij
LA

= − Ij
LA

∑

k∈NJ

1
ck,j

1
+(
∑

k∈NJ

ck,j
2
(
1 − δj

)

2ck,j
1

+
∑

k∈NJ

IMGO

2ck,j
1
), (37)  

∂2Prj
LA

∂(Ij
LA)

2 = −
∑

k∈NJ

1
ck,j

1
. (38) 

Given the positive value of ck,j
1 , the second-order derivatives of Prj

LA 

and Uk,j are strictly negative. This implies that Prj
LA and Uk,j are strictly 

concave over the feasible regions of Ij
LA and dk,j, respectively. Accord-

ingly, this proves that setting the first-order derivatives of the aggre-
gators’ and end-consumers’ objective functions equal to zero is 
guaranteed to yield the unique, globally-optimum solutions. 

3.5. Communication sequence 

Furthermore, to help visualise the sequence of actions and reactions 
required to execute the proposed interruptible DR market design, the 
application-driven sequence diagram of Algorithm 1 is presented in 
Fig. 7 for the conceptualised MG, laid out in Section 2. As illustrated in 
the figure, the process starts by communicating the day-ahead state 
estimates of non-controllable renewables and energy reserves from one 
utility-owned entity, the MG asset manager, to another utility-owned 
entity, the MG operator. After receiving a response to its enquiry 
regarding the availability of biomass resources from the MG asset 
manager, the MG operator sends financial incentive signals to the DR 
aggregators and asks about the amount of available interruptible loads 
at each hour of the upcoming day. To this end, a two-stage iterative 
Stackelberg incentive price game is run in accordance with Algorithm 1, 
which enables decentralised decision-making. Specifically, at the top 
level (wholesale market), the MG operator is the leader and the DRAs are 
the followers. The DRAs are, at the same time, the leading players at the 
bottom level (retail market), where end-consumers serve as final fol-
lowers. Note that the MG operator calls a DR event and sends the 
incentive price signals to the aggregators for the time-steps at which a 
net energy deficit is predicted. 

The proposed DR scheduling framework, shown in Fig. 7, forms part 
of the input to the hourly energy management strategy of the proposed 
equipment capacity-planning method, the flowchart of which is pro-
vided in Fig. 5. That is, the energy demand data input to the flowchart is 
aware of the interruptible demand resources–or, better put, both the 
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power and hydrogen demand on the system are scaled-down (modified) 
through running the proposed DR scheduling framework for the specific 
peak hours of each day of the representative year before being fed to the 
hourly operational scheduling strategy outlined in Fig. 5. The process 
continues by transmitting the aggregator’s incentives for load reduction 
to their corresponding customers, and completes by clearing the DSM 
markets respectively at the local (retail) and wholesale levels. As 
mentioned above, this procedure is repeated for each hour of a repre-
sentative hourly-basis, one-year operational timeframe. To this end, the 
year-long demand profiles are decomposed into daily profiles so as to be 
used in the day-ahead DR management plan of the MG (see Fig. 7), the 
DR-adjusted values of which are then used in the course of the hourly 
energy management of the system (see Fig. 5). 

4. Micro-grid capacity-optimisation model 

This section explains the deterministically estimated life-cycle cost of 
the conceptualised MG system before describing how the proposed non- 
cooperative game-theoretic DR management scheme is integrated into 
the MG sizing model. The MG capacity-optimisation model consists of 
three key elements: (1) the net present cost (NPC) and net present value 
(NPV) methods utilised to formulate the total discounted system cost 
function, (2) the loss of power supply probability (LPSP) technique to 
quantify the reliability of the system in servicing the electrical and 
hydrogen load demands, and (3) the moth-flame optimisation algorithm 
(MFOA) [100] as a single-objective meta-heuristic optimisation algo-
rithm to find the globally optimum solution to the problem by mini-
mising the life-cycle cost of the MG, whilst adhering to the technical, 
reliability, and systemic constraints (see Supplementary Material 
(Additional File 2: Techniques used in the micro-grid capacity-optimi-
sation model) for details). The superiority of the single-objective MFOA 
to the well-established meta-heuristics in the MG investment planning 
literature–for instance, the genetic algorithm (GA) [101] and the PSO 
[102]–as well as to a wide variety of state-of-the-art meta-heuristics in 
terms of nearing the globally optimum solution is supported in previous 
studies [41,84,103,104,105]. 

4.1. Objective function 

A static analysis of expected future cash flows for the underlying 
project lays the basis for the mathematical formulation of the objective 
function. The whole-life cost of the MG based on the NPC and NPV 
calculations, which is to be minimised, can be expressed as follows: 

minWLC =(
∑

c∈C
NPCc)+NPCI +NPV

(
∑8760

t=1
OCMG(t)

)

+NPV

(
∑8760

t=1
costem(t)

)

+NPV

(
∑8760

t=1
costFCEV2G(t)

)

− NPV

(
∑8760

t=1
incomeex(t)

)

+ penconst,

(39)  

Where NPCc represents the NPC of the components, the optimal size of 
which is under investigation and are indexed by c ∈ C = {PV,WT,MH,T,
E, FC,HT,BP,B, SC, S, FCEV2G}; NPCI denotes the NPC incurred by the 
inverter; OCMG is the operational cost of the MG to serve the unmet 
loads, either by paying incentives for load reduction or purchasing 
power from the upstream grid, as defined in Eq. (7); costem is the cost 
imposed on the system for buying emission credits on account for 
running the biopower plant, as given in Eq. (6); costFCEV2G denotes the 
cost resulting from the provision of FCEV2G services, as expressed in Eq. 
(22); incomeex is the income generated by selling the surplus power to 
the main grid, as expressed in Eq. (8); while the term penconst enforces the 
solutions to meet the constraints set out in Section 4.2. 

In this context, the useful life of the project was considered to be 20 
years and the real interest rate was set to 3.7%. The real interest rate was 

projected by taking the mean of the historical records in New Zealand 
over a 10-year period, between 2010 and 2019 [106]. 

4.2. Problem constraints 

The objective function presented above is subject to various sets of 
constraints along the following lines. 

4.2.1. System reliability 
The LPSP reliability metric is employed to characterise the system 

performance over its projected 20-year life span. To this end, two 
separate LPSP indices are used to evaluate the reliability of electricity 
and hydrogen supply, which are constrained by Eqs. (40) and (41), 
respectively. 

LPSPe ≤ LPSPmax
e , (40)  

LPSPH2 ≤ LPSPmax
H2

, (41)  

where LPSPmax
e and LPSPmax

H2 
denote the imposed upper bounds on LPSPe 

and LPSPH2 , respectively. 

4.2.2. System-wide power balance 
According to Eq. (42), at each time-step of the system operation, the 

sum of all of the internally generated energy components, energy re-
leases from the storage media, energy imports from the main grid, and 
any unmet load must be equal to the sum of the total energy consumed 
within the MG (to serve the loads or to charge the energy storage de-
vices) and any power sold to the upstream grid. 

PPV (t) +PWT(t) +PMH(t)+PBP(t) + Pdch(t) + PFC(t) + Pim(t) +PFCEV2G(t)

+
QL(t)

ηI
+

QH2 (t)
ηS

= Pch(t)+PE(t)+Pex(t) +
PL(t)

ηI
+

PS(t)
ηS

∀t,

(42)  

where QL(t) and QH2 (t) respectively represent the unmet electrical and 
hydrogen demands at time-step t, which are used in the LPSP 
calculations. 

4.2.3. Demand response scheduling 
As mentioned previously, under equilibrium conditions of the pro-

posed two-stage, aggregator-mediated, market-driven DR arrangement, 
the constraints in Eqs. (24), (25), (27), (28), (30), (31), (33) must be 
relaxed. 

4.2.4. Energy storage systems and fuel cell electric vehicles 
The optimisation of the MG equipment capacity must additionally 

adhere to some constraints in terms of charge/discharge rate limits of 
the energy storage media and FCEVs, bounding the state of charge/ 
hydrogen of the storage systems and vehicles, as well as the state of 
energy reserves in the first and last operating hours, which could be 
expressed mathematically as: 

Ees,min ≤ Ees(t) ≤ Ees,max∀t, es, (43)  

Pch,min
es ≤ Pch

es (t) ≤ Pch,max
es ∀t, es, (44)  

Pdch,min
es ≤ Pdch

es (t) ≤ Pdch,max
es ∀t, es, (45)  

Ees− {FCEV}(0) = 0.5 × Ees− {FCEV},max∀es, (46)  

Ees− {FCEV}(8760) ≥ Ees− {FCEV}(0)∀es, (47)  

where Ees(t) is the energy content of the energy storage technology es ∈
ES = {B, SC,HT, FCEV} at time-step t; Ees,min and Ees,max respectively 
denote the minimum and maximum allowable energy content of energy 
storage technology es; Pch

es (t) and Pdch
es (t) respectively represent the 
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charging and discharging rates of storage technology es at time-step t; 
Pch,max

es and Pdch,max
es are the maximum charging and discharging rates of 

storage technology es, respectively; and Pch,min
es and Pdch,min

es are the min-
imum charging and discharging rates of storage technology es, respec-
tively. 

The maximum allowable energy content of the battery bank, SC 
bank, and hydrogen tank are defined by their optimised capacity at each 
iteration of the optimisation process, whereas the maximum total energy 
content of the releasable hydrogen stored in the FCEVs’ tanks 
(max(Pmax

FCEV2G(t)Δt) where t ∈ T) is limited by the maximum (optimal) 

capacity of the FCEV2G setup (as part of the hydrogen station) in 
addition to the stored hydrogen in the vehicles’ tanks at time-step t. That 
is, the variables Ees,max, es ∈ ES are treated as endogenous variables in the 
model. Also, the same principle holds for the variables Pch,max

es and 
Pdch,max

es . 
Moreover, in the interest of preventing the performance degrada-

tion–and mitigating the energy losses–during the start-up and shut- 
down cycles of the electrolyser, fuel cell, and biopower plant, a spe-
cific constraint preserves the durability of their operation. To this end, 
when the electrolyser, fuel cell, and biopower plant are started up, they 
are constrained to continue to run for at least tup time-steps–as a mini-
mum up-time constraint–at operating points equal to, or greater than the 
initially adjusted operating points. Accordingly, the power output from 
the fuel cell and biopower plant are treated as negative loads in the 
course of the MG operation on the extra hours mentioned above, whilst 
also being allowed to take higher operating point values where appro-
priate. 

In addition, to avoid severe pressure drops in the hydrogen tank, 
complete releases of hydrogen are prevented by enforcing EHT,max not to 
fall short of 5% of the optimised capacity of the tank. Also, to ensure that 
the design pressure of the tank is not exceeded, the upper limit on the 
energy content of the tank is set as 95% of its optimum capacity [107]. 

4.2.5. Energy exchange 
The MG’s transactions of energy with the upstream power network is 

constrained by Eqs. (9) and (10) to adhere to the optimal size of the 
transformer connecting the MG system with the upstream grid at the 
point of common coupling (PCC). 

4.2.6. Decision variables 
Specific upper bounds are set for maximum values the non-negative 

design variables can take, as represented in Eq. (48). These bounds are 
adjusted commensurate with the practical feasibility of implementing 
the conceptualised MG system in the considered area. For example, land 
limitations, characteristics of the catchment sites, available biomass as a 
feedstock, and acceptable emissions limits (from the biopower plant) 
could constrain the feasible solution space. 

Nc ≤ Nmax
c ∀c, (48)  

where subscript c ∈ C indicates the MG components, the optimal size of 
which is under investigation, while the superscript max denotes the 
maximum permissible value of the optimum quantity/capacity of the 
equipment (Nc).6 

4.3. Meta-heuristic optimisation algorithm 

Mathematically, the underlying MG capacity-planning model is a 
nonlinear, non-convex, non-deterministic polynomial time-hard (NP- 
hard) decision problem at its core, as indicated by Chen et al. [108]. 
Consequently, it cannot be solved exactly or by enumerating the entire 

search space explicitly or implicitly, but meta-heuristic techniques could 
be used effectively to solve the problem. 

As noted earlier, the MFOA is employed to optimise a solution to the 
formulated MG capacity-optimisation problem on account of its well- 
proven superior performance to a wide range of both the well- 
established and state-of-the-art meta-heuristics in the MG planning 
context. Furthermore, owing to the mixed-discrete-continuous structure 
of the formulated problem, the technique proposed by Chowdhury et al. 
[109] is employed to modify the original continuous MFOA to make it 
applicable to the problem at hand. Moreover, the control parameters of 
the algorithm were adjusted as suggested by its developer [100], while 
the number of search agents, NSA, and the maximum number of itera-
tions, Itermax, were set based on the findings of Khan and Singh [110] on 
the appropriate values to ensure the convergence of a broad spectrum of 
meta-heuristic optimisation algorithms–including both the well- 
established and state-of-the-art meta-heuristics–in the context of MG 
design optimisation and capacity planning. 

4.4. Data: Adjusted demand-response integrated micro-grid equipment 
capacity planning model parameters 

Table 4 lists the chosen data values for the parameters used to build 
the proposed DR-integrated MG equipment capacity-planning model. 

4.5. Overview of the proposed solution algorithm 

The flowchart of the proposed MG equipment capacity-planning 
model, which uses the proposed two-stage, aggregator-mediated 
market-driven DR model to realistically project the customer engage-
ment in incentive-based DR programmes–based on an economically 
stable allocation of the profits generated from interruptible load pro-
grammes between the sole energy service provider, DSM aggregators, 
and end-users–is presented in Fig. 8. As can be seen from the figure, the 
solution algorithm integrates the proposed DR provision framework (the 
yellow block) and applies the developed rule-based hourly-basis oper-
ational scheduling strategy (the light coral block), while taking an 
iterative approach to optimise the discounted MG investment cost with 
which to determine the respective size of the equipment (the blue 
blocks). 

Table 4 
Data values for the demand response-integrated micro-grid equipment capacity 
planning model parameters.  

Scalar Value Scalar Value 

Ees,max  (endogenous variable) Nmax
FCEV2G  5,000 kW 

Ees− {HT},min  0 kWh* Nmax
HT  50,000 kg 

EHT,min  (endogenous variable) Nmax
MH  30 

iMGO  $0.02/kWh Nmax
PV  20,000 

Imin
MGO  $0.02/kWh NSA  100 

Imax
MGO  $0.32/kWh Nmax

S  100 kg-H2/h 

Ij,min
LA  

$(0.02− ε†)/kWh  Nmax
SC  10,000 

Ij,max
LA  

$(0.32− ε†)/kWh  Nmax
T  8,000 kVA 

Itermax  500 Nmax
WT  15 

LPSPmax
e  0% Pch,max

es  (endogenous variable) 

LPSPmax
H2  

5% Pch,min
es  ε† kW  

Nmax
B  20,000 kWh Pdch,max

es  (endogenous variable) 

Nmax
BP  50 Pdch,min

es  ε† kW  

Nmax
E  1,000 penconst  (1/ε†)  

Nmax
FC  2,000 tup  3 h  

* Note that the depth of discharge capability of the vanadium redox flow 
battery is 100% and the total energy content of the FCEVs’ tanks is assumed to be 
aware of the specific level of hydrogen expected (desired) by each FCEV owner 
at the scheduled departure time. 

† The symbol ε denotes a small positive infinitesimal quantity. 

6 The maximum permissible values of the design variables are aware of the 
rated powers of the corresponding components. 
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Fig. 8. Flowchart of the proposed non-cooperative game-theoretic DR-integrated approach for the optimal capacity planning of MGs.  

Fig. 9. Diagrammatic representation of the step-wise procedure for implementing the proposed optimal MG planning framework.  
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Furthermore, the step-wise representation of the integrated simula-
tion platform to optimally design the conceptualised MG, while man-
aging the DR resources using the proposed DR scheduling approach is 
summarised in Fig. 9. After the procurement and pre-processing of the 
input data, the model is built up in a multi-layered structure, which 
consists of (from bottom to top): (1) a rule-based hourly energy sched-
uling strategy, (2) a two-stage, aggregator-mediated, DSM market 
design to arrange the delivery of the DR resources on a day-ahead basis, 
(3) various constraints the objective function is subjected to, and (4) the 
derived fitness function representing the whole-life cost of the system, 
which is to be optimised using the MFOA. 

5. Case study 

To confirm the proposition put forward in Section 1 on the effec-
tiveness of integrating the proposed DR management framework into 
the standard meta-heuristic-based MG capacity planning approach, as 
well as the viability of the conceptual test-case MG system, laid out in 
Section 2, this section presents the results of the case study analysis 
conducted for the town of Ohakune, New Zealand. To this end, first, the 
validity of the model is confirmed through a direct comparison of the 
extreme-case model results with those of a business-as-usual (BAU), non- 
game-theoretic interruptible DR scheduling framework. Then, the eco-
nomic viability of integrating the developed DSM strategies into the 

long-term MG investment decision-making processes is benchmarked 
against two cases where: (1) the DSM market is cleared without 
employing ideas from non-cooperative game theory for interactive 
decision-making regarding the practical capacity of DR resources, and 
(2) no provision is made to employ the responsive loads as a backup 
resource in the proposed MG system. Finally, a financial appraisal 
assessment demonstrates the economic sustainability of the proposed 
renewable energy project. Numerical simulations were carried out using 
the MATLAB software (version 9.5, R2018b) [111]. 

5.1. Case study site: The town of Ohakune, New Zealand 

The notional MG system proposed in this study is envisioned to 
decarbonise the energy economy of the town of Ohakune, which is sit-
uated in the central part of the North Island of New Zealand–latitude 
39.4180◦S, longitude 175.3985◦E [112]. 

The forecasted hourly-basis, year-long climatic input data streams, 
are presented as monthly mean 24-h profiles in 3D plots in Fig. 10 [76]. 
Also, the forecasted monthly averaged profile for biomass availability is 
shown in Fig. 11, assuming that the amount of monthly available 
biomass is evenly distributed over the days of the months [113,114]. 

The forecasted one-year load power demand on the system, which is 
represented as a monthly mean 24-h profile for greater clarity, is shown 
in a 3D plot in Fig. 12 (a) [115,116]. Also, the forecasted monthly mean 

Fig. 10. CliFlo-compliant forecasted meteorological input data (at an hourly resolution) for Ohakune, New Zealand: (a) solar irradiance; (b) ambient temperature; (c) 
wind speed; and (d) streamflow. 
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24-h profile for the hydrogen demand of the refuelling sta-
tion–considering the seasonal variation in demands for transportation 
fuel as suggested in [117]–is shown in a 3D plot in Fig. 12 (b). 

The forecasted hourly-basis, year-long wholesale electricity price 
input data stream, πim(t), obtained using the weighted rolling average 
method, is shown as a monthly averaged daily profile in Fig. 13 [118]. 

More details of the case study site and the complete details on how 
the forecasted one-year profiles for climatological, load demand, and 
wholesale electricity price data are derived, can be found in Supple-
mentary Material (Additional File 3: Case study details). 

Table 5 presents the data values and sources for all parameters of the 
proposed two-stage, aggregator-mediated, incentive-based DSM frame-
work. In addition to the values of the model parameters defined in 
Section 3, Table 5 presents the number of customers signed up with each 
aggregator, which is denoted by Nj

cust . 
Moreover, given the New Zealand government’s aspirations of 

electrifying transport to help meet its target of net-zero greenhouse gas 
emissions by 2050, as well as the recent government-funded ‘Warmer 
Kiwi Homes’ programme offering up to 90% heat pump grants to low- 
income home owners, the penetration levels of light-duty FCEVs and 
heat pumps were assumed to be 40% and 60%, respectively at the time 
of commitment. Accordingly, smart charging of FCEVs and control of 
heat pump demand is of utmost importance to smooth and manage the 
overall load during peak periods. 

5.2. Validation of the proposed demand-side management market 

To validate the effectiveness of the proposed two-stage aggregator- 
mediated DSM market model, two instances of day-ahead energy man-
agement analysis are conducted and the obtained results are compared 
with the case where the aggregator-mediated interruptible/curtailable 
DR resources are scheduled in a BAU way. Accordingly, the non-market- 
driven (BAU) procurement of aggregator-activated interruptible/cur-
tailable responsive loads excludes the ability to adaptively update the 
incentives offered by the MG operator, based on which the aggregators 
post their incentives to the retail DSM market, and subsequently the end- 
consumers select their participation rate in load reduction programmes. 
More specifically, the MG operator offers a fixed, day-specific rate of 
incentive to the aggregators, who also offer fixed levels of incentives to 
their customers–for load reduction during the peak hours of electricity 
consumption. Subsequently, the end-users and aggregators respond to 
the aggregator-determined and MG operator-offered incentive rates, 
respectively. In this way, the retail and wholesale DSM markets are 
sequentially cleared for the day-specific incentives by stacking the cus-
tomers’ and aggregators’ bids, low to high, and allocating demand 
reduction schedules to the customers and aggregators in the merit order 
irrespective of whether the power shortage is addressed with the best 
compromise between load reduction and imported electricity for each 
hourly period. Expectedly, as there exists no mechanism to update the 

Fig. 11. Monthly mean profile for the estimated total biomass available per 
month at the site: Ohakune, New Zealand. 

Fig. 12. Forecasted monthly mean 24-h profiles for the energy demand of the town Ohakune: (a) load power demand; and (b) hydrogen demand.  

Fig. 13. Forecasted monthly mean 24-h profile for the wholesale power price.  
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initial strategy of the MG operator, the efficiency of such a framework is 
particularly sensitive to the choice of the MG operator-offered incentive 
rate. Hence, the model response is determined for various day-specific 
MG operator-offered incentive rates. Accordingly, Table 6 summarises 
the results obtained by simulating the above-described BAU interrupt-
ible DR mechanism when applied to the DR provision problem at hand in 
two extreme scenarios with the MG operator-offered incentive payment 
ranging from $0.02/kWh to $0.32/kWh in intervals of $0.02/kWh. 
Specifically, the two days that represent the most intense peak and 
trough on the year-round, mean daily load profile (consisting of the 
mean of the load power demand forecasts for 24 equidistant times in the 
course of each continuous 24-hour period of the representative year), 

namely July 21st and February 14th, were chosen for scenario analysis. 
The table, furthermore, presents the results of the suggested market- 
driven interruptible DR model for the extreme days considered. 

The following observations can be made from a comparative analysis 
of the proposed model and BAU model results presented in Table 6:  

1. The systematic updating of the MG operator-offered incentive for 
load reduction–for the time-steps at which the system is predicted to 
be under stress–using an aggregator-mediated, market-driven DSM 
market model, can play a pivotal role in unlocking the full potential 
of demand-side resources by finding the economically efficient DR 
allocation solutions. In other words, the lack of a systematic 

Table 5 
Data values and assumption sources for the two-stage, aggregator-mediated, incentive-based demand-side management framework.  

Parameter  Aggregator  

Residential Commercial Industrial Agricultural FCEV-refuelling 

δj*  Value 0.48 0.51 0.57 0.63 0.76 
Source [119] [119] [119] [119] [120] 

ck,j
1 [$/kWh2]  Range [1.08 × 10-3, 1.15 × 10-3] [1.04 × 10-3, 1.07 × 10-3] [0.99 × 10-3, 1.03 × 10-3] [0.95 × 10-3, 0.98 × 10-3] [0.91 × 10-3, 0.94 × 10-3] 

Source† [121,122] [121,122] [121,122] [121,122] [121,122] 
ck,j

2 [$/kWh]  Range [11.49 × 10-3, 11.70 × 10-3] [11.31 × 10-3, 11.48 × 10-3] [11.71 × 10-3, 11.86 × 10-3] [11.25 × 10-3, 11.30 × 10-3] [11.40 × 10-3, 11.57 × 10-3] 
Source† [121,122] [121,122] [121,122] [121,122] [121,122] 

dk,j
full [kWh]  Range [8, 30] [20, 100] [100, 200] [30, 65] [5, 30] 

Source (this paper) (this paper) (this paper) (this paper) (this paper) 
dk,j

ncr [kWh]  Range [2.5, 16.5] [5, 60] [20, 84] [10, 46.2] [4, 25.5] 
Source (this paper) (this paper) (this paper) (this paper) (this paper) 

Nj
cust  Value(s) 250 65 10 55 {1, 2, …, 150}‡

Source (this paper) (this paper) (this paper) (this paper) (this paper)  

* The load type-dependent DR procurement factor (sectoral elasticity of customer-supplied DR capacity) for the residential, commercial, industrial, and agricultural 
loads (normalised to the range [0, 1]) were adjusted in proportion with the weighted average values of unserved energy for various durations of interruption in a New 
Zealand context [119], while this factor for the FCEV-refuelling load was adjusted based on the plug-in EVs’ value of lost load reported in [120]. 

† The range of values the discomfort tolerance coefficients of customers can take were arbitrarily selected. The chosen values were guided by those used in [121,122] 
for the customer outage cost function coefficients for the relevant customer categories. Additionally, the range of sector-wide customer discomfort tolerance co-
efficients was normalised with respect to the corresponding load type-dependent DR procurement factor (in an inversely proportional manner). 

‡ Since the number of FCEVs that utilise the filling station’s equipment varies with the time of day, it was modelled as a range of possible scenarios, i.e. the number of 
vehicles. 

Table 6 
Comparative analysis of the proposed and BAU realisations of the interruptible DR programme on the extreme days: February 14th and July 21st.  

MG operator-offered 
incentive* (IMGO)

[$/kWh]  

Total daily incentive 
payment to the aggregators 
(IpMGO(

∑
p∈Pd

∑
j∈JD

j,p
LA))

[$/d]  

Total daily incentive 
payment to the customers 
(
∑

p∈Pd

∑
j∈JI

j,p
LADj,p

LA) [$/d]  

Total daily load reduction 
procured by the customers 
(
∑

p∈Pd

∑
j∈J
∑

k∈NJ
dk,j,p)

[kWh/d]  

Total daily cost of 
electricity imports 
(
∑

p∈Pd
costpim) [$/d]  

Total daily operational cost of 
the MG 
(
∑

p∈Pd
OCp

MG)
∑

p∈Pd
OCp

MG)

[$/d]  

Feb. 14th Jul. 21st Feb. 14th Jul. 21st Feb. 14th Jul. 21st Feb. 14th Jul. 21st Feb. 14th Jul. 21st Feb. 14th Jul. 21st 

Business-as-usual interruptible DR scheduling approach 
0.02 0.02 10.5 43.3 3.9 15.6 525.0 2165.0 870.8 1997.7 881.3 2041.0 
0.04 0.04 22.5 102.1 9.2 41.9 562.5 2552.5 863.2 1916.1 885.7 2018.2 
0.06 0.06 44.8 162.8 18.8 70.0 746.7 2713.3 824.3 1882.4 869.1 2045.2 
0.08 0.08 81.7 390.4 35.9 171.8 1021.3 4880.0 766.6 1427.4 848.3 1817.8 
0.1 0.1 180.9 528.5 83.2 232.5 1809.0 5285.0 601.2 1342.3 782.1 1870.8 
0.12 0.12 217.1 634.2 91.8 310.8 1809.0 5285.0 601.2 1342.3 818.3 1976.5 
0.14 0.14 264.7 787.8 105.9 409.7 1890.7 5627.1 584.1 1270.5 848.8 2058.3 
0.16 0.16 302.5 900.3 115.8 459.2 1890.7 5627.1 584.1 1270.5 886.6 2170.8 
0.18 0.18 377.3 1013.7 188.7 547.4 2096.1 5631.7 540.9 1269.5 918.2 2283.2 
0.2 0.2 421.5 1341.0 219.2 643.7 2107.5 6705.0 538.5 1044.1 960.0 2385.1 
0.22 0.22 486.0 1611.0 233.3 757.2 2209.1 7322.7 517.3 914.4 1003.3 2525.4 
0.24 0.24 551.8 2093.1 253.8 879.1 2299.2 8721.3 498.3 620.7 1050.1 2713.8 
0.26 0.26 708.6 2593.3 311.8 959.5 2725.4 9974.2 408.9 357.6 1117.5 2950.9 
0.28 0.28 1040.2 2906.8 436.9 1133.6 3714.9 10381.4 201.2 272.1 1241.4 3178.9 
0.3 0.3 1401.8 3503.2 560.7 1191.1 4672.7 11677.3 0 0 1401.8 3503.2 
0.32 0.32 1495.2 3736.7 586.2 1195.7 4672.7 11677.3 0 0 1495.2 3736.7 
Proposed market-driven interruptible DR scheduling approach 
0.17 0.15 566.3 1327.8 230.7 488.6 3253.8 8155.2 50.8 76.9 617.1 1404.7 

Values in bold indicate the total daily operational cost of the MG in the best performance of the BAU interruptible DR management framework. 
* Given the variability of the best-strategy incentive offered by the MG operator at different peak hours of the day in the proposed market-driven model, the mean 

daily value of the optimal incentive rate offered by the MG operator (Ip,*
MGO) is presented for the proposed model. 
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framework to enable the DR programme administrator to vary the 
rate of incentive payment to increase or decrease the supply of DR 
capacity, either results in an overpayment for access to the DR re-
sources, or leads to the under-trading of the responsive loads. More 
specifically, the proposed model has outperformed the BAU model by 
at least ~21.1% (equating to a saving of $165) and ~22.7% 
(equating to a saving of $413.1) in terms of the daily operational cost 
of the MG (

∑
p∈Pd

OCp
MG) respectively for the February 14th and July 

21st scenarios.  
2. The BAU realisation of the interruptible DR programme has failed to 

exploit the full potential of the demand-side flexibility resources 
available. The most crucial factor underpinning this under- 
utilisation of the responsive loads in this model is the lack of inter-
action between the MG operator and responsive load aggregators, as 
well as between aggregators and end-consumers to dynamically re- 
render the incentives for load reduction at different times of the 
day. This is evident from Table 6, where increasing the MG operator- 
posted incentive rate from $0.1/kWh to $0.12/kWh, and also from 
$0.14/kWh to $0.16/kWh, has only led to an increase in the total 
daily payment to the aggregators despite no increase in the net load 
reduction in both the scenarios considered.  

3. In contrast to the proposed model where the daily operational cost of 
the system strictly decreases as the MG operator-offered incentive 
rate increases up to a saturation point, the BAU model’s response to 
variations in the MG operator-offered incentive rate does not tend to 
follow a particular pattern. For example, increasing the MG operator- 
offered incentive rate from $0.02/kWh to $0.04/kWh in the case of 
July 21st has resulted in a reduction of the daily operational cost of 
the MG by ~1.1%, then increasing the incentive rate from $0.04/ 
kWh to $0.06/kWh has increased the daily operational cost of the 
MG by ~1.3%, and then increasing the incentive rate from $0.06/ 
kWh to $0.08/kWh has substantially driven down the daily opera-
tional cost of the MG system–to the globally optimal level. Much of 
the reason for such an erratic behaviour of the BAU model lies in the 
fact that the participation of the aggregators depends on meeting 
certain threshold levels of profits. Put differently, increasing the rate 
of incentive payments leads to a worthless overpayment unless it 
triggers the participation of a further MG customer, provided that a 
lower incentive rate than the per-unit cost of electricity import is 

deemed sufficient by the customer. However, the interactive DSM 
market-clearing mechanism embedded in the proposed DSM market 
model–implemented using the proposed interactive value iteration 
solution approach (refer to Algorithm 1)–has addressed such a source 
of unreliability. 

To evaluate the weather-sensitivity of each model, the analysis is 
expanded to include all the days in which the interruptible DR pro-
gramme is executed. Table 7 summarises the descriptive statistics for the 
DR scheduling variables during the hours of peak demand for which a 
net energy deficit is predicted. Note the change in temporal resolutions 
of the dependent variables compared to Table 6. Specifically, the results 
are presented for the morning peak (MP) and evening peak (EP) hours 
across the seasons to provide insight into the temporal distribution of 
utilising the DR resources. 

The table is revealing in the following ways:  

1. The DR events occur more frequently in autumn (734 times) and 
winter (832 times) than in spring (388 times) and summer (284 
times). A comparison of the total number of DR event observations 
during the morning and evening peak periods across different sea-
sons offers the following insights: (i) two distinctive daily periods of 
positive net load demand–the total electric demand on the system 
minus local generation–can be identified for autumn and winter; 
while (ii) the net load demand in spring and summer is characterised 
by one period, namely the MP. This change in the capacity deficit 
pattern is mainly driven by weather conditions; the warmer months 
reduce the necessity of utilising electric space heating systems. Other 
seasonal covariates, including daylight saving and longer daylight 
hours in spring and summer, which lead to both lower lighting use 
and higher solar PV generation in the early evening, also contribute 
to this variation, albeit to a lesser degree.  

2. Although the number of DR events that occurred during the MP 
period is lower than the corresponding EP period in the colder 
months, the average hourly load reduction procured is nearly the 
same for the morning and evening peak periods in autumn and 
winter. This implies that the profile of the net load demand has a 
shorter, sharper peak in the morning, but a longer, flatter peak in the 
evening in autumn and winter. This is not only due to the 

Table 7 
Summary statistics for the DR scheduling variables.  

Variable  Spring Summer Autumn Winter  

MP EP MP EP MP EP MP EP 

MG operator-offered incentive [$/kWh] Avg. 0.159 0.202 0.140 0.168 0.120 0.097 0.128 0.183 
Med. 0.160 0.200 0.140 0.173 0.120 0.097 0.120 0.189 
SD 0.031 0.034 0.026 0.027 0.015 0.038 0.039 0.029 
Obs. 291 97 208 76 344 390 400 432 

Incentive payment to the aggregators [$/h] Avg. 49.004 111.484 26.866 62.378 48.504 63.166 77.043 147.260 
Med. 47.409 101.634 26.492 61.087 48.996 64.636 78.349 147.850 
SD 11.852 26.799 4.103 5.268 1.665 5.667 6.336 8.320 
Obs. 291 97 208 76 344 390 400 432 

Incentive payment to the customers [$/h] Avg. 20.092 51.281 12.105 29.448 22.627 28.039 30.510 67.382 
Med. 20.115 52.360 10.606 29.282 20.901 27.432 29.660 67.446 
SD 5.570 5.954 6.314 2.940 6.307 3.483 4.240 4.252 
Obs. 291 97 208 76 344 390 400 432 

Load reduction procured by the customers [kWh] Avg. 308.201 551.901 191.900 371.298 604.200 651.196 801.898 804.699 
Med. 311.051 553.074 192.312 371.649 603.094 651.628 804.004 805.741 
SD 9.814 11.053 5.593 11.579 6.587 11.687 9.678 6.922 
Obs. 291 97 208 76 344 390 400 432 

Cost of electricity imports [$/h] Avg. 8.611 15.237 3.985 7.907 5.531 8.402 9.004 17.516 
Med. 9.044 15.780 4.238 7.974 5.406 7.941 8.172 17.049 
SD 3.531 2.020 0.881 0.187 1.087 1.873 2.556 4.937 
Obs. 291 97 208 76 344 390 400 432 

Total operational cost of the MG [$/h] Avg. 57.615 126.721 30.851 70.285 54.035 71.568 86.047 164.776 
Med. 56.453 117.414 30.730 69.061 54.402 72.577 86.521 164.899 
SD 2.618 7.981 2.771 3.217 2.410 3.651 4.206 9.325 
Obs. 291 97 208 76 344 390 400 432  
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coincidence of the residential load with the start of the business day, 
but also the fact that non-dispatchable renewable power generation 
from wind and hydro resources is considerably less during the 
autumn and winter MP period than the corresponding EP period (see 
Fig. 10). Crucially, the proposed non-cooperative game-theoretic DR 
scheduling model has yielded reductions in load demand of, on 
average, ~24% and ~22% respectively during the winter morning 
and evening peak periods. This equates to an average hourly energy 
reduction of ~802 kWh in the MP and ~805 kWh in the EP. In 
summer, this percentage decreases to ~13% (192 kWh) in the MP, 
and ~15% (371 kWh) in the EP period.  

3. Defining the data skewness as (mean–median) / standard deviation, 
it can be shown that the skewness values of the ‘cost of electricity 
imports’ and the ‘incentive payments made by the utility to the 
aggregators’ datasets have opposite signs at all the eight quarterly 
time intervals. For example, the skewness values of the above-
mentioned datasets for the winter MP period are 0.326 and − 0.206, 
respectively. Accordingly, the mean of the former dataset is greater 
than its median (i.e., the dataset distribution is positively skewed), 
whereas the mean of the latter dataset is less than its median (i.e., 
negatively skewed). This suggests that the optimal trade-off between 
imported power and utilised DR capacity tends to follow an 
approximately consistent pattern during each period of peak elec-
tricity use. This finding corroborates the robustness and validity of 
the proposed non-cooperative game-theoretic DSM approach in 
producing the best compromise between the imported power and 
elicited DR capacity. 

Moreover, Table 8 provides a statistical evaluation of the efficacy of 
the proposed market-based integration (MBI) of responsive loads using 
non-cooperative game theory as compared to the BAU model in the four 
seasons. Note that, for reasons of space, the modelling results are not 
broken down into the morning and evening peak periods. 

From Table 8, emerge a number of key statistically valid evidence to 
support the superiority of the proposed game-theoretic DR scheduling 
model to the BAU interruptible programmes:  

1. The proposed aggregator-mediated, market-based DR programme is 
able to unlock new sources of economic value that are inaccessible by 
the BAU-DR scheduling approach. This has resulted in a ~17% 
(equating to ~$39 k) reduction in the operational cost of the MG in 
the baseline year. In large part, this is because the proposed model 
ensures a level playing field for all the DR providers and equitably 
allocates the benefits of third-party DR aggregation, whilst addi-
tionally providing a platform for the MG operator, DRAs, and end- 
consumers to mutually optimise their portfolios and determine the 
lowest operational costs.  

2. A comparison of the seasonal performance of the proposed model 
and the BAU approach reveals that, on average, the DR resources are 
under-utilised in autumn and winter, whilst additionally the DR 
providers are over-compensated in spring and summer in the BAU 
approach. More specifically, in contrary to the obtained results from 
the proposed model, where the distributions of the ‘incentive pay-
ments to the aggregators’ and the ‘cost of electricity imports’ data are 
oppositely skewed, they have similar skewness patterns in the BAU 
approach. The BAU approach’s results indicate that both of the 
above-mentioned distributions are skewed to the left (i.e., most of 
the observations lie to the right of the mean) in spring and summer, 
whereas they are both positively-skewed (i.e., most of the observa-
tions lie to the left of the mean) in autumn and winter. A major 
explanation for this is the BAU interruptible service approach’s 
incapability to provide a more-targeted, non-prespecified incentive 
price signal that fluctuates hourly reflecting changes in the wholesale 
prices of electricity.  

3. While the percentage of incentive payments to the customers to the 
incentive prices received by the aggregators remains nearly the same 
across the seasons in the proposed game-theoretic modelling results 
(within the range of approximately 43–46%), the percentage varies 
significantly from season to season if the problem is solved in a BAU 
way. In particular, the BAU modelling results yield the highest utility 
margin for the customers (with the customers’ share of the utility 
incentives of ~53%) during the winter months (June to August) 
when their use of electricity for heating contributes to high network 
loads. On the other hand, the per-unit profit of the DRAs is largest 
during the summer months (December to February) when electric 

Table 8 
Comparative statistical analysis of the proposed and BAU-DR scheduling models.  

Variable  Spring Summer Autumn Winter  

BAU* MBI BAU* MBI BAU* MBI BAU* MBI 

MG operator-offered incentive [$/kWh] Avg. 0.147 0.170 0.112 0.148 0.051 0.109 0.073 0.155 
Med. 0.152 0.159 0.108 0.146 0.045 0.110 0.074 0.156 
SD 0.017 0.033 0.017 0.029 0.025 0.031 0.030 0.028 
Obs. 388 388 284 284 734 734 832 832 

Incentive payment to the aggregators [$/h] Avg. 16.821 64.624 9.725 36.369 13.342 55.595 35.537 111.054 
Med. 16.874 55.729 9.777 29.113 12.242 51.287 33.964 87.232 
SD 1.670 31.920 0.863 5.482 4.387 8.279 5.125 35.922 
Obs. 388 388 284 284 734 734 832 832 

Incentive payment to the customers [$/h] Avg. 6.390 27.889 3.112 16.746 6.538 25.245 18.835 48.370 
Med. 6.454 23.463 3.223 13.639 6.458 25.131 17.657 36.607 
SD 0.574 14.624 0.279 9.624 1.837 5.914 10.386 18.948 
Obs. 388 388 284 284 734 734 832 832 

Load reduction procured by the customers [kWh] Avg. 104.263 369.126 80.929 239.908 240.608 629.171 465.260 803.352 
Med. 104.979 314.339 81.951 194.866 238.388 512.418 463.248 714.444 
SD 7.450 106.143 4.920 79.940 14.018 123.846 16.353 101.754 
Obs. 388 388 284 284 734 734 832 832 

Cost of electricity imports [$/h] Avg. 76.462 10.268 41.742 5.034 61.044 6.919 113.148 13.127 
Med. 76.845 10.633 42.059 5.074 31.421 6.948 55.583 13.392 
SD 1.902 4.274 2.314 0.148 6.255 2.935 5.206 3.129 
Obs. 388 388 284 284 734 734 832 832 

Total operational cost of the MG [$/h] Avg. 93.283 74.892 51.467 41.404 74.386 62.515 148.685 124.181 
Med. 93.836 58.145 52.657 33.028 72.784 57.739 146.465 94.166 
SD 1.766 30.248 3.311 17.753 7.011 9.224 7.104 40.021 
Obs. 388 388 284 284 734 734 832 832  

* The BAU results represent the business-as-usual model’s best performance out of different daily utility-offered incentives ranging from $0.02/kWh to $0.32/kWh in 
intervals of $0.02/kWh. 
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heating cannot provide DR, which reduces the customers’ share of 
revenues to as low as ~32%. This indicates the BAU approach’s 
failure to provide a fair division of the utility-offered financial in-
centives between the DRAs and their corresponding customers, 
which results in the overall DR underperformance. 

As these observations are shown to remain valid for the year-round 
operation of the system, their positive impact on the lifetime cost and 
cost-effectiveness of the conceptualised system is discussed in the next 
sub-section. 

5.3. Optimal equipment capacity-planning results 

To evaluate the effectiveness of the proposed DR scheduling frame-
work in reducing the whole-life cost of MGs, the equipment capacity- 
planning of the conceptualised MG was carried out under three cases: 
(1) taking a BAU (static) interruptible load approach to managing the 
smaller DR resources (as detailed in Section 5.2), (2) using the proposed 
market-based (dynamic) integration of the aggregator-mediated inter-
ruptible responsive loads (presented in Section 3), and (3) not imple-
menting any DSM strategies. Tables 9 and 10 present the MG investment 
planning model results under the above-mentioned three cases, which 
are respectively denoted by ‘BAU-DR’, ‘MBI-DR’, and ‘NO-DR’. Specif-
ically, Table 9 details a breakdown of the optimised cost components 
included in the life-cycle analysis of the MG system (see Eq. (39)), while 
Table 10 provides the optimum size of the MG equipment, which are the 
main decision variables of the optimisation problem. Note that the 
optimisation model results are adjusted for the value of biomass feed-
stock. To this end, the total cost associated with the pelletisation of 
blended biomass feedstocks–agricultural and woody biomass–was 
considered to be $72/tonne of pellets [123]. The case study site’s nat-
ural endowment of forest biomass together with its temperate climate 
that is ideally suited to the agricultural activities, narrows, to a 
considerable extent, the feedstock supply uncertainty bounds. This 
provides strong support for taking an exogenous approach to account for 
the biomass feedstock costs–in the post-optimisation phase. 

It is also noteworthy that the results reported in the tables represent 
the best-case performance of the MFOA out of 30 independent trials. 
Moreover, to demonstrate the adequacy of the maximum number of it-
erations, and the number of search agents considered, the convergence 
curves of the MFOA in its best and worst overall performances for each 
of the above-mentioned cases are shown in Fig. 14. 

The comparative results presented in Table 9 reveal that the pro-
posed market-based modelling of the interruptible DSM processes in the 

planning phase of the conceptualised MG reduces the estimated whole- 
life cost of the system by at least 21% and up to a maximum of 32% (with 
an incentive resolution of $0.02/kWh), as compared to the BAU inter-
ruptible DR-integrated and non-DR-integrated MG planning cases, 
respectively. 

Table 9 
Breakdown of the total discounted system cost under different DR provision strategies.  

Cost component Cost subcomponent Simulation case 

MBI-DR BAU- 
DR 

NO-DR 

Total discounted equipment-related costs ((
∑

c∈CNPCc
20− yr

) + NPCI
20− yr

) [$]   18.25 m 21.88 m 25.62 m 

Total discounted MG operational costs (NPV(
20− yr

∑8760
t=1 OCMG(t))) Total discounted incentive payment to the aggregators 

(NPV
20− yr

(
∑8760

t=1 IMGO(t)
∑

j∈JD
j
LA(t))) [$]  

3.99 m 3.48 m −

Total discounted cost of electricity imports (NPV
20− yr

(
∑8760

t=1 costim(t))) [$]  0.46 m 2.76 m 7.46 m 

Total discounted FCEV2G electricity provision costs 
(NPV(
20− yr

∑8760
t=1 πFCEV2GPFCEV2G(t))) [$]   

0.42 m 0.49 m 0.50 m 

Total discounted operating costs of the biopower plant Total discounted emission credits (NPV
20− yr

(
∑8760

t=1 costem(t))) [$]  0.52 m 0.57 m 0.62 m 

Total discounted biomass feedstock costs* (NPV
20− yr

(72 ×
∑8760

t=1 MBP(t)))

[$]  

0.49 m 0.54 m 0.58 m 

Total discounted income derived from electricity exports 
(− NPV

20− yr
(
∑8760

t=1 incomeex(t))) [$]   
− 2.41 
m 

− 2.42 
m 

− 2.97 
m 

Whole-life cost of the system (WLC) [$]   21.72 m 27.3 m 31.81 m  

* The total cost of the biomass feedstock is not systematically affected by changes in the endogenous variables of the model in this study. That is, the total cost 
imposed by the biomass feedstock was calculated outside the optimisation model and the results were then corrected accordingly. 

Table 10 
Size of the MG equipment in the cost-minimal solution under different DR 
provision strategies.  

Component  Simulation case 

MBI-DR BAU-DR NO-DR 

PV plant NPV [no.]  3,594 3,690 4,742 
STDEC* [%] 3.54 3.04 3.33 

Wind plant NWT [no.]  4 5 6 
STDEC* [%] 24.11 26.35 26.73 

Micro-hydro power plant NMH [no.]  6 6 6 
STDEC* [%] 1.91 1.59 1.36 

Biopower plant NBP [no.]  4 4 7 
STDEC* [%] 0.77 0.64 0.96 

Transformer NT [kVA]  310 320 329 
STDEC* [%] 0.11 0.10 0.08 

Hydrogen tank NHT [kg]  6,079 7,904 9,168 
STDEC* [%] 16.93 18.11 18.16 

Electrolyser NE [no.]  122 144 157 
STDEC* [%] 4.14 4.08 3.80 

Fuel cell NFC [no.]  238 378 440 
STDEC* [%] 6.75 8.58 8.66 

Battery bank N1600 [no.]  2 2 2 
N400 [no.]  0 1 2 
N100 [no.]  2 0 3 
STDEC* [%] 17.49 15.06 16.00 

Super-capacitor bank NSC [no.]  1,982 2,090 2,136 
STDEC* [%] 14.53 12.61 11.01 

FCEV2G setup NFCEV2G [kW]  504 573 608 
STDEC* [%] 0.57 0.53 0.49 

Hydrogen station NS [kg-H2/h]  6.14 7.94 9.15 
STDEC* [%] 0.42 0.45 0.45 

Inverter N900 [no.]  5 6 7 
N115 [no.]  2 3 5 
N33 [no.]  1 3 1 
STDEC* [%] 8.73 8.86 8.97  

* STDEC stands for the share of the total discounted equipment-related costs, 
which can be expressed explicitly in mathematical terms as ((

∑
c∈CNPCc

20− yr
) +

NPCI
20− yr

). 
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Furthermore, the results summarised in Tables 9 and 10 are indica-
tive of the high efficiency of the proposed model for the aggregator- 
activated, responsive load-aware MG capacity design in the following 
ways:  

1. While the total discounted equipment-related costs in the BAU case 
are higher by ~20% than the MBI case, the total discounted income 
derived from electricity exports has remained at nearly the same 
level. This is because the majority of this extra cost is spent on the 
backup power equipment, the energy output of which, according to 
the MG’s hourly operational strategy in Fig. 5, cannot be sold to the 
main grid–for energy efficiency considerations. To examine the 
robustness of this assumption, a further unreported model was run in 
both the MBI and BAU simulation cases, where the backup power 
was allowed to be sold into the utility grid, while maintaining the 
rest of the model unchanged. A comparative analysis of the results of 
the two models for the investigated test-case is presented in Sup-
plementary Material (Additional File 4: Table S1). The results show 
that the relative difference of the total discounted equipment-related 
costs in the MBI and BAU cases reduces to ~15%, from ~20% for the 
base-case model, when the sale of backup power into the grid is not 
prohibited. The key factor underpinning this change is that the un-
reported optimisation model that supports the sale of backup power 
to the main grid finds the opportunity to arbitrage intertemporal 
differences in wholesale prices and buy-back rates. The unreported 
model, therefore, increases the proportion of total nominal storage to 
generation capacity in the optimal equipment capacity configuration 
as compared to the base-case model. More specifically, the propor-
tion of the share of the total back-up components’ capacity to the 
share of the total primary generation components’ capacity in the 
system’s whole-life cost increases from 1.97 and 1.85 to 3.51 and 
3.22 in the MBI and BAU model realisations, respectively, at rela-
tively modest extra total equipment-related costs–that is, ~9% and 
~5%, respectively. This, however, increases the MG’s total net in-
come from the exchange of energy with the utility grid by ~76% and 
~429%, respectively, in the aforementioned two cases. As a conse-
quence, the MG’s whole-life cost reduces by ~3% and ~5%, 
respectively, in the two cases mentioned above–but at the cost of 
higher total energy dissipated as a result of increased energy con-
version rocesses.  

2. The total discounted income derived from electricity exports in the 
non-DR-integrated case is higher by ~23% in comparison with the 
base case, which is mainly due to the increased excess of renewable 
energy generation in low-demand periods. Note that the export of 
energy is seen merely as a means to avoid spillage of non- 

dispatchable renewable energy, and the low export tariff makes it 
irrational for the solution algorithm to optimise the capacity of the 
MG equipment for energy export purposes. It should not be over-
looked, however, that energy export made a fair contribution to the 
cost-efficiency of the proposed MG system in all of the cases studied. 
It is also important to note that the solution algorithm, in the MBI 
case, has almost always avoided buying and storing electricity from 
the upstream grid at times of low demand, but the surplus renewable 
energy is sold to the grid at these times due to: (1) the higher level of 
feed-in-tariff than the system’s levelised cost of energy (LCOE) at 
most of the off-peak times of the year, and (2) the fact that the battery 
and SC banks soon reach their maximum capacity limits when the 
MG system is lightly loaded. This is while the total discounted cost of 
electricity imports occupies ~10% and ~24% of the total discounted 
system costs in the BAU DR-integrated and non-DR-integrated cases, 
respectively.  

3. In all of the investigated cases, the optimised size of the electrolyser 
unit is considerably lower compared to those in established size 
combinations–of electrolyser to hydrogen reservoir to fuel cell–in the 
literature (see, for example, [124,125,126]). This is due to the spe-
cific conditions of the case study site, where load demand is subject 
to a high degree of seasonality. Accordingly, an electrolyser of lower 
capacity is sufficient for the purpose–since the hydrogen tank can be 
filled gradually during the low season, from October through June. 
That is also why the optimum capacity of the electrolyser experi-
enced the least changes among the backup power equipment in the 
three scenarios investigated.  

4. As planned, the fuel cell generation using the stored hydrogen has 
accounted for seasonal load levelling. The optimal capacity of the 
fuel cell is more highly impacted by the proposed interruptible DR 
implementation as compared to the battery and SC banks. This 
observation implies that peak load shaving–fulfilled by exploiting 
the responsive loads–has had a substantial role in smoothing out the 
seasonal variation in load demand, and, in turn, improving the load 
factor of the annual load power demand profile. In other words, 
much of the suggested DR scheduling strategy’s positive impact on 
the cost-efficiency of the conceptualised MG is derived from its 
implementation in the winter high season. This also explains the 
marked increase in the size of the WT, hydrogen tank, fuel cell, and 
the electrical loads’ inverter–as the main drivers of increasing the 
equipment-related costs–when the DR is implemented in a BAU 
manner, or, more significantly, when no DR scheduling process is 
implemented. To provide a clearer picture of the impact of the pro-
posed DSM model on the load power demand data fed into the 
optimal capacity planning algorithm, the monthly mean 24-h 

Fig. 14. Convergence process of the MFOA in its best and worst runs throughout 30 simulation cases.  
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electricity consumption profile is presented in Fig. 15 for the simu-
lation cases under study. According to the figure, realising the pro-
posed DSM model under the BAU and MBI cases shaves ~24% and 
~38% off the maximum peak power demand compared to the NO- 
DR case, respectively. This, consequently, increases the load factor 
from 0.25 in the NO-DR case to 0.31 and 0.35 in the BAU and MBI 
simulation cases, respectively.  

5. The relatively low share of biomass in the optimised energy resource 
mix, in spite of its vast potential in the site under study (see Fig. 11), 
is revealing in two ways: (1) the solution algorithm has succeeded in 
restricting the bioenergy use to a sustainable level by imposing an 
emission penalty and, more importantly, (2) it gives credence to the 
idea that biomass resources need to be deployed in a way that con-
tributes primarily to energy security–in favour of a deep green 
approach to renewable energy system planning [127]. More specif-
ically, the biopower plant in the conceptualised MG plays a critical 
role in improving the system’s self-sufficiency, as it is the only dis-
patchable power generation unit in the system. 

5.3.1. Financial appraisal 
To demonstrate the financial sustainability of the long-term invest-

ment proposal, this sub-section compares the LCOE of the MG with the 
existing retail electricity prices at the site, as well as the LCOE reported 
in the literature for the most similar projects. More specifically, the 
project was benchmarked against the studies in the literature that met 
the following three criteria: (1) a self-sufficiency ratio of at least 85% if 
the system is grid-connected, (2) powered by 100% renewable energy, 
and (3) tailored to the electrification of small- to medium-scale 
communities. 

The LCOE, in the MG context, represents the average revenue per 
unit of energy generated that would be required to recoup the lifetime 
costs of the system. Accordingly, the LCOE [$/kWh] of the MG under 
study can be calculated as follows [128]: 

LCOE =
WLC

∑PL
n=1

(
∑8760

t=1
PL(t)+

∑8760
t=1

PS(t))Δt
(1+ir)n

, (49)  

where PL represents the project lifetime [years], ir denotes the real in-
terest rate per annum [%], and the terms 

∑8760
t=1 PL(t) and 

∑8760
t=1 PS(t)

respectively denote the total annual electric and hydrogen power de-
mand on the MG, which are discounted to reflect the NPV of future 

energy flows. 
By solving Eq. (49), the LCOE of the proposed MG is found to be 

$0.08/kWh, while the most recent yearly average retail price of elec-
tricity is as high as $0.22/kWh at the studied site. That is, implementing 
the proposed MG system is expected to realise savings of at least 64% in 
the community’s energy costs if financed as a community-owned 
renewable energy project. Note that the MG’s LCOE is calculated for 
the case where the aggregator-mediated demand-side flexibility re-
sources are scheduled using the proposed non-cooperative game-theo-
retic DSM framework–and the whole-life cost of the MG is $21.72 m. 
Table 11 benchmarks the conceptualised system in terms of the LCOE 
with the most similar projects in the literature. 

As can be seen from Table 11, the LCOE of the simulated MG is highly 
competitive with that of the best value reported in the recent literature 
for a community-scale, 100%-renewable electrification project. Add to 
this the fact that a carbon-free, hydrogen-based, light-duty trans-
portation fleet is integrated into the proposed MG, making it one of the 
first of its kind. This provides additional support for the economic sus-
tainability of the conceptualised community energy system. 

Based on the above premises, the modelled MG provides an evidence 
base to inform the energy sector and climate change policy, infrastruc-
ture providers, and the wider modelling community of both the tech-
nical feasibility and economic viability of leveraging the potential 
synergies in the integration of energy networks for electricity, heating, 
and transport to realise economy-wide deep decarbonisation. 

6. Conclusions 

The projections on the uptake of demand response programmes used 
in the long-term capital infrastructure planning of sustainable energy 
systems are substantially influenced by the biases and preferences of 
end-consumers, which can be modelled in terms of the elasticity of the 
customer supply of demand response capacity. This study, one of the 
first to provide an understanding of end-consumer behavioural traits in 
long-term demand-side management schemes, developed a comfort- 
aware, demand response-integrated optimisation model for equipment 
capacity-planning of renewable energy systems. To this end, the study 
developed a two-stage, aggregator-mediated, non-cooperative game- 
theoretic demand-side management market design to improve the ac-
curacy of the long-term forecasts of end-users’ participation in 
incentive-directed demand response programmes. The proposed model 
provides an effective framework for improving the accuracy of 

Fig. 15. Comparison of the monthly mean daily profile for load power demand in different simulation cases.  
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investment assessments made for demand response-aided energy sys-
tems by adopting the endogenous Stackelberg leader–follower re-
lationships in two stages, namely: first, for interactions between the 
micro-grid operator and responsive load aggregators, and second, for 
aggregator-customer exchanges. Moreover, the devised model success-
fully generalised the long-term, community-level renewable energy 
system design problem in the following four areas:  

1. It guaranteed a level playing field for a variety of clean energy 
technologies–in the interest of energy diversification–where the use 
of biomass resources is limited to a sustainable level by imposing a 
new constraint term. 

2. It implemented the potential of cross-vector integration (in partic-
ular, power-to-gas technology) in conjunction with the value of fuel 
cell electric vehicles in vehicle-to-grid operation to improve the 
flexibility of energy systems with deep penetration of renewables.  

3. It allowed for a meta-heuristic solution algorithm based on the moth- 
flame optimisation algorithm to find the cost-optimal mix of micro- 
grid assets, whilst facilitating long-term decision-making on the de-
livery of aggregator-mediated incentive-responsive loads using a 
realistic example. The use of a case study illustrated the application 
of the model in the town of Ohakune, New Zealand, demonstrating 
that many of the challenges for integrating a 100%-renewable energy 
system can be surmounted.  

4. The suggested solution algorithm was also shown to be efficient in 
nearing the formulated problem’s globally optimum solution. In 
addition, a comparative analysis of the proposed market-driven and 
business-as-usual realisations of the interruptible load programme 
verified the validity of the proposed modelling framework as a de-
cision support tool for utilities to make reliable forecasts about the 
engagement of different classes of end-consumers in demand 
response programmes. This is particularly important when designing 
greenfield renewable energy systems, or as micro-grids are used to 
increase the penetration of responsive loads. 

The numeric results obtained from the model’s application to the 
test-case system of Ohakune have revealed two novel insights:  

1. The use of the proposed two-stage demand-side management market 
design for the projection of flexible demand resources brings higher- 
order information about micro-grid operator-aggregators-customers 
interactions into the analysis, which can be leveraged towards 
improving the economic viability of renewable energy systems. 
Notably, as compared to the case where demand-side resources are 
managed using a business-as-usual interruptible load approach, the 

model results have indicated that a cost saving of at least 21% 
(equating to approximately $5.5 m) can be generated for the simu-
lated micro-grid in Ohakune, while imposing the same discomfort 
cost on end-users.  

2. The large-scale supply of demand-side flexibility resources, enabled 
by demand response aggregators, has great potential in reducing the 
estimated life-cycle cost of sustainable energy systems. Specifically, 
the evidence from this study demonstrates that assisting the con-
ceptualised micro-grid with incentive-driven, market-directed 
demand-side management processes reduces the total discounted 
system costs by circa 32% (equating to around $10 m in this case 
study). In this light, a thorough analysis of the value of lost load to 
the target customers–in the interest of improving the accuracy of the 
forecasted willingness of the end-users to deliver their demand 
response resources–is of paramount importance in the design phase 
of all-renewable micro-grids. This is especially true for the devel-
opment of first-access energy systems in remote areas where the 
values of unserved energy are expected to be lower than those esti-
mated for urban and industrial customers. 

In conclusion, this paper has shown that capturing the flexible de-
mand potential of small- to medium-scale customers during the planning 
phases of a hydrogen-based grid-connected micro-grid system can pave 
the way toward achieving greater energy independence, energy de-
mocracy, and energy security in rural and semi-urban areas in a cost- 
effective and environmentally efficient way. 
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Table 11 
Comparative evaluation of the proposed MG’s LCOE against those of the comparable schemes.  

Reference Renewable energy system architecture Case study site(s) Climatic conditions Unsubsidised LCOE 
[$/kWh]*, †

Hosseinalizadeh et al., 
2016 [129] 

An on-grid PV/WT/BESS/FC MG Four villages in Iran, namely Moaleman, 
Ghadamgah, Marvdasht, and Nikouyeh 

Diverse climatic 
conditions 

0.54–1.60 

Shang et al., 2016 [130] An insular PV/WT/BESS/DG MG An unnamed island near Singapore Tropical/equatorial 0.14 
Chauhan and Saini, 2017  

[28] 
A stand-alone PV/WT/BESS/DG/BP/ 
MHPP MG 

Chamoli district, Uttarakhand state, India Warm temperate 0.07–0.10 

Fu et al., 2018 [131] Stand-alone solar PV systems U.S.-wide Diverse climatic 
conditions 

0.13–0.16 

Li, 2019 [132] A grid-independent PV/BESS/FC MG A community centre in Kunming, China Humid subtropical 1.55 
Rezk et al., 2019 [133] A grid-independent PV/FC hybrid 

renewable energy system 
The city of Minya, Egypt Mediterranean 0.06 

This study A grid-tied PV/WT/MHPP/BP/FC/ 
BESS/SC MG 

The town of Ohakune, New Zealand Temperate 0.08 

Key: BESS = Battery Energy Storage System, BP = Biopower Plant, DG = Diesel Generator, FC = Fuel Cell, LCOE = Levelised Cost of Energy, MG = Micro-Grid, MHPP 
= Micro-Hydro Power Plant, PV = Photovoltaic, SC = Super-Capacitor, WT = Wind turbine. 

† Where appropriate, the LCOE values were adjusted to 2019 U.S. dollars. 
* For cases where different configurations of the proposed system are investigated, or the conceptualised system is optimised under different climatic conditions, or 

the optimisation process is carried out in a multi-objective search space or in a stochastic way, the value of LCOE is reported as a range, rather than a certain value. 
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[83] Duman AC, Güler Ö. Techno-economic analysis of off-grid PV/wind/fuel cell 
hybrid system combinations with a comparison of regularly and seasonally 
occupied households. Sustain Cities Soc 2018;42:107–26. https://doi.org/ 
10.1016/j.scs.2018.06.029. 

[84] Mohseni S, Brent AC. Economic viability assessment of sustainable hydrogen 
production, storage, and utilisation technologies integrated into on- and off-grid 
micro-grids: a performance comparison of different meta-heuristics. Int J 
Hydrogen Energy 2019. https://doi.org/10.1016/j.ijhydene.2019.11.079. 

[85] Oldenbroek V, Smink G, Salet T, van Wijk AJM. Fuel cell electric vehicle as a 
power plant: Techno-economic scenario analysis of a renewable integrated 
transportation and energy system for smart cities in two climates. Appl Sci 2020; 
10(1):143. https://doi.org/10.3390/app10010143. 

[86] Oldenbroek V, Hamoen V, Alva S, Robledo CB, Verhoef LA, van Wijk AJM. Fuel 
cell electric vehicle-to-grid: experimental feasibility and operational performance 
as balancing power plant. Fuel Cells 2018;18(5):649–62. https://doi.org/ 
10.1002/fuce.201700192. 

[87] Farahani SS, van der Veen R, Oldenbroek V, Alavi F, Lee EHP, van de Wouw N, 
et al. A hydrogen-based integrated energy and transport system: the design and 
analysis of the car as power plant concept. IEEE Trans Syst Man Cybern Mag 
2019;5(1):37–50. https://doi.org/10.1109/MSMC.2018.2873408. 

[88] Steward DM. Critical Elements of Vehicle-to-Grid (V2G) Economics. No. NREL/ 
TP-5400-69017, Golden, CO, USA: National Renewable Energy Lab (NREL); 
2017. 

[89] Soshinskaya M, Crijns-Graus WHJ, van der Meer J, Guerrero JM. Application of a 
microgrid with renewables for a water treatment plant. Appl Energy 2014;134: 
20–34. https://doi.org/10.1016/j.apenergy.2014.07.097. 

[90] Khan MRB, Jidin R, Pasupuleti J, Shaaya SA. Optimal combinations of PV, wind, 
micro-hydro and diesel systems for a seasonal load demand. In: Proceedings of 
the 2014 IEEE International Conference on Power and Energy (PECon), Kuching, 
Malaysia, 1–3 Dec. 2014, pp. 171–76. https://doi.org/10.1109/PECON.201 
4.7062435. 

[91] Chauhan A, Saini RP. Techno-economic optimization based approach for energy 
management of a stand-alone integrated renewable energy system for remote 
areas of India. Energy 2016;94:138–56. https://doi.org/10.1016/j. 
energy.2015.10.136. 

[92] Naderi M, Bahramara S, Khayat Y, Bevrani H. Optimal planning in a developing 
industrial microgrid with sensitive loads. Energy Rep 2017;3:124–34. https://doi. 
org/10.1016/j.egyr.2017.08.004. 

[93] Mohseni S, Moghaddas-Tafreshi SM. Development of a multi-agent system for 
optimal sizing of a commercial complex microgrid. arXiv preprint, arXiv: 
1811.12553; 2018. 

[94] Mohseni S, Moghaddas-Tafreshi SM. A multi-agent approach to optimal sizing of 
a combined heating and power microgrid. arXiv preprint, arXiv:1812.11076; 
2018. 

[95] Mohseni S, Brent AC, Burmester D. Community resilience-oriented optimal micro- 
grid capacity expansion planning: The case of Totarabank eco-village, New 
Zealand. Energies 13 (15):3970. https://doi.org/10.3390/en13153970. 

[96] Mohseni S, Brent AC, Kelly S. A hierarchical, market-based, non-cooperative 
game-theoretic approach to projecting flexible demand-side resources: towards 
more realistic demand response-integrated, long-term energy planning models. 

S. Mohseni et al.                                                                                                                                                                                                                                

https://energy.mit.edu/wp-content/uploads/2016/01/CEEPR_WP_2016-001.pdf
https://www.productivity.govt.nz/assets/Documents/3374eca8c4/Transitioning-to-zero-net-emissions-by-2050.pdf
https://www.productivity.govt.nz/assets/Documents/3374eca8c4/Transitioning-to-zero-net-emissions-by-2050.pdf
https://doi.org/10.1016/j.apenergy.2019.04.035
https://doi.org/10.2307/1969529
https://doi.org/10.2307/1969529
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0235
https://www.collectiu-solar.cat/pdf/2-Panel-Canadian_Solar-Datasheet-CS6K.pdf
https://www.collectiu-solar.cat/pdf/2-Panel-Canadian_Solar-Datasheet-CS6K.pdf
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0245
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0245
https://doi.org/10.1016/j.solener.2019.07.008
https://en.wind-turbine-models.com/turbines/791-ecot-cnia-eco-48-750%23datasheet/
https://en.wind-turbine-models.com/turbines/791-ecot-cnia-eco-48-750%23datasheet/
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0265
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0265
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0265
https://doi.org/10.1260/0309524043028145
https://doi.org/10.1260/0309524043028145
https://www.micro-hydro-power.com/100kw-hydro-turbine-generator/
https://www.micro-hydro-power.com/100kw-hydro-turbine-generator/
https://doi.org/10.1016/j.enconman.2016.01.011
https://academicjournals.org/journal/IJWREE/article-full-text-pdf/3424C7E1713
https://academicjournals.org/journal/IJWREE/article-full-text-pdf/3424C7E1713
http://www.allpowerlabs.com/wp-content/uploads/2019/07/PP30-vs-PP20-Spec-Sheet-Public-2019-Rev-03-current-July-2019.pdf
http://www.allpowerlabs.com/wp-content/uploads/2019/07/PP30-vs-PP20-Spec-Sheet-Public-2019-Rev-03-current-July-2019.pdf
http://www.allpowerlabs.com/wp-content/uploads/2019/07/PP30-vs-PP20-Spec-Sheet-Public-2019-Rev-03-current-July-2019.pdf
https://doi.org/10.1016/j.enconman.2016.09.046
https://doi.org/10.1016/j.enconman.2016.09.046
https://doi.org/10.1016/j.atmosenv.2018.12.024
https://doi.org/10.1016/j.atmosenv.2018.12.024
https://doi.org/10.1016/j.applthermaleng.2019.02.113
https://doi.org/10.1109/TIE.2012.2204710
https://doi.org/10.1109/TIE.2012.2204710
http://www.leonics.com/product/renewable/inverter/dl/GTP-500-156.pdf
https://doi.org/10.1109/ACCESS.2017.2767618
https://datasheet.octopart.com/XLR-48R6167-R-Eaton-datasheet-130052459.pdf
https://datasheet.octopart.com/XLR-48R6167-R-Eaton-datasheet-130052459.pdf
https://static1.squarespace.com/static/5b1198ada2772c6585959926/t/5b57363f88251b71261fc4a1/1532442177499/CellCube%2b-%2bUse%2bYour%2bOwn%2bPower%2bGrid.pdf
https://static1.squarespace.com/static/5b1198ada2772c6585959926/t/5b57363f88251b71261fc4a1/1532442177499/CellCube%2b-%2bUse%2bYour%2bOwn%2bPower%2bGrid.pdf
https://static1.squarespace.com/static/5b1198ada2772c6585959926/t/5b57363f88251b71261fc4a1/1532442177499/CellCube%2b-%2bUse%2bYour%2bOwn%2bPower%2bGrid.pdf
https://www.h-tec-systems.com/fileadmin/Content/PDFs/19022019/H-TEC_SYSTEMS_Datenblatt_Stacks_SE30_30_EN.PDF
https://www.h-tec-systems.com/fileadmin/Content/PDFs/19022019/H-TEC_SYSTEMS_Datenblatt_Stacks_SE30_30_EN.PDF
https://www.h-tec-systems.com/fileadmin/Content/PDFs/19022019/H-TEC_SYSTEMS_Datenblatt_Stacks_SE30_30_EN.PDF
https://www.ballard.com/docs/default-source/spec-sheets/fcgen-1020-acs-v2.pdf%3fsfvrsn%3dc3ebc380_4
https://www.ballard.com/docs/default-source/spec-sheets/fcgen-1020-acs-v2.pdf%3fsfvrsn%3dc3ebc380_4
https://pureenergycentre.com/hydrogen-fueling-station/
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0355
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0355
https://doi.org/10.1016/j.apenergy.2018.02.038
https://doi.org/10.1016/j.apenergy.2018.02.038
https://doi.org/10.3390/su11133592
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0370
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0370
https://www.mysolarquotes.co.nz/about-solar-power/residential/solar-power-buy-back-rates-nz/
https://www.mysolarquotes.co.nz/about-solar-power/residential/solar-power-buy-back-rates-nz/
https://www.mysolarquotes.co.nz/about-solar-power/residential/solar-power-buy-back-rates-nz/
http://cliflo.niwa.co.nz/
https://doi.org/10.1109/PESC.2004.1355416
https://www.engineeringtoolbox.com/wind-shear-d_1215.html/
https://www.engineeringtoolbox.com/wind-shear-d_1215.html/
https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf
https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf
https://doi.org/10.1016/j.energy.2015.11.068
https://doi.org/10.1016/j.energy.2016.09.119
https://doi.org/10.1016/j.energy.2016.09.119
https://doi.org/10.1016/j.scs.2018.06.029
https://doi.org/10.1016/j.scs.2018.06.029
https://doi.org/10.1016/j.ijhydene.2019.11.079
https://doi.org/10.3390/app10010143
https://doi.org/10.1002/fuce.201700192
https://doi.org/10.1002/fuce.201700192
https://doi.org/10.1109/MSMC.2018.2873408
https://doi.org/10.1016/j.apenergy.2014.07.097
https://doi.org/10.1109/PECON.2014.7062435
https://doi.org/10.1109/PECON.2014.7062435
https://doi.org/10.1016/j.energy.2015.10.136
https://doi.org/10.1016/j.energy.2015.10.136
https://doi.org/10.1016/j.egyr.2017.08.004
https://doi.org/10.1016/j.egyr.2017.08.004
https://doi.org/10.3390/en13153970


Applied Energy 287 (2021) 116563

30

In: Proceedings of the 2020 17th International Conference on the European 
Energy Market (EEM), Stockholm, Sweden, 16–18 Sep. 2020, pp. 1–6. https:// 
doi.org/10.1109/EEM49802.2020.9221977. 

[97] Yu M, Hong SH. Incentive-based demand response considering hierarchical 
electricity market: a Stackelberg game approach. Appl Energy 2017;203:267–79. 
https://doi.org/10.1016/j.apenergy.2017.06.010. 

[98] Fahrioglu M, Alvarado L. Designing incentive compatible contracts for effective 
demand management. IEEE Trans Power Syst 2000;15(4):1255–60. https://doi. 
org/10.1109/59.898098. 

[99] Fahrioglu M, Alvarado L. Using utility information to calibrate customer demand 
management behavior models. IEEE Trans Power Syst 2001;16(2):317–22. 
https://doi.org/10.1109/59.918305. 

[100] Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic 
paradigm. Knowledge-Based Syst 2015;89:228–49. https://doi.org/10.1016/j. 
knosys.2015.07.006. 

[101] Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach Learn 
1988;3:95–9. https://doi.org/10.1023/A:1022602019183. 

[102] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the 1995 
International Conference on Neural Networks, Perth, WA, Australia, 27 Nov.–1 
Dec. 1995, p. 1942–48. https://doi.org/10.1109/ICNN.1995.488968. 

[103] Mohseni S, Brent AC, Burmester D. A comparison of metaheuristics for the 
optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid. 
Appl Energy 2020;259:114224. https://doi.org/10.1016/j. 
apenergy.2019.114224. 

[104] Mohseni S, Brent AC, Burmester D. A sustainable energy investment planning 
model based on the micro-grid concept using recent metaheuristic optimization 
algorithms. In: Proceedings of the 2019 IEEE Congress on Evolutionary 
Computation (CEC), Wellington, New Zealand, 10–13 Jun. 2019, pp. 219–26. 
https://doi.org/10.1109/CEC.2019.8790007. 

[105] Mohseni S, Brent AC, Burmester D, Chatterjee A. Stochastic optimal sizing of 
micro-grids using the moth-flame optimization algorithm. In: Proceedings of the 
2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 
4–8 Aug. 2019, pp. 1–5. https://doi.org/10.1109/PESGM40551.2019.8973570. 

[106] Trading Economics. New Zealand − Real Interest Rate. [Online]. Available: htt 
ps://tradingeconomics.com/new-zealand/real-interest-rate-percent-wb-data.ht 
ml/ [Retrieved: 5-Feb.-2020]. 

[107] Hübert T, Boon-Brett L, Buttner W. Sensors for safety and process control in 
hydrogen technologies. CRC Press; 2016. 

[108] Chen Q, Xia M, Zhou Y, Cai H, Wu J, Zhang H. Optimal planning for partially self- 
sufficient microgrid with limited annual electricity exchange with distribution 
grid. IEEE Access 2019;7:123505–20. https://doi.org/10.1109/ 
ACCESS.2019.2936762. 

[109] Chowdhury S, Zhang J, Messac A. Avoiding premature convergence in a mixed- 
discrete particle swarm optimization (MDPSO) algorithm. In: Proceedings of the 
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials 
Conference, Honolulu, Hawaii, USA, 23–26 Apr. 2012, p. 1678. https://doi.org/ 
10.2514/6.2012-1678. 

[110] Khan B, Singh P. Selecting a meta-heuristic technique for smart micro-grid 
optimization problem: a comprehensive analysis. IEEE Access 2017;5:13951–77. 
https://doi.org/10.1109/ACCESS.2017.2728683. 

[111] MATLAB. Natick, MA: The MathWorks Inc; 2018. R2018b, Version 9.5. 
[112] Anonymous. Ohakune Useful Information; 2011. [Online]. Available: http:// 

www.visitohakune.co.nz/page/ohakune-useful-information/12/ [Accessed: 4- 
Mar.-2020]. 

[113] Environmental Protection Authority. Summary and Analysis – Carrots and 
Parsnips. No. APP201045, 2012. Available: https://www.epa.govt.nz/assets/F 
ileAPI/hsno-ar/APP201045/fb604d3064/APP201045-Summary-and-Ana 
lysis-Carrot-and-Parsnip.pdf [Accessed: 4-Mar.-2020]. 

[114] Hall P, Jack M. Bioenergy options for New Zealand − Analysis of large-scale 
bioenergy from forestry. No. 1124-2019-3124, Scion − Next Generation 
Biomaterials, 2009. Available: https://niwa.co.nz/sites/niwa.co.nz/files/impor 
ted/__data/assets/pdf_file/0007/95668/Large-scale-forestry-for-bioenergy.pdf 
[Accessed: 4-Mar.-2020]. 

[115] [dataset] Anderson B, Eyers D, Ford R, Ocampo DG, Peniamina R, Stephenson J, 
et al. New Zealand GREEN Grid Household Electricity Demand Study 2014–2018. 
Colchester, Essex: UK Data Service. https://doi.org/10.5255/UKDA-SN-853334. 

[116] Anderson J. Pulling the plug on network congestion. [B.A. dissertation]. Dunedin, 
New Zealand: Department of Economics, University of Otago; 2009. 

[117] Tayan O, Alginahi YM, Kabir MN, Al Binali AM. Analysis of a transportation 
system with correlated network intersections: a case study for a central urban city 
with high seasonal fluctuation trends. IEEE Access 2017;5:7619–35. https://doi. 
org/10.1109/ACCESS.2017.2695159. 

[118] The Electricity Market Information: The New Zealand Electricity Authority’s 
wholesale database. [Online]. Available: https://www.emi.ea.govt.nz/Wholesale 
/Reports/ [Retrieved: 12-Feb.-2020]. 

[119] Concept Economics Pty Ltd. Investigation of the value of unserved energy − Stage 
1. No. ABN 73 129 990 530, Prepared for Electricity Commission; 2008. 
Available: https://www.researchgate.net/profile/Deb_Chattopadhyay/publicati 
on/322255908_Investigation_of_the_Value_of_Unserved_Energy/links/5a4e8 
ff5458515e71b085a3f/Investigation-of-the-Value-of-Unserved-Energy.pdf 
[Accessed: 19-Dec.-2020]. 

[120] Xi X, Sioshansi R. Using price-based signals to control plug-in electric vehicle fleet 
charging. IEEE Trans Smart Grid 2014;5(3):1451–64. https://doi.org/10.1109/ 
TSG.2014.2301931. 

[121] Nwulu NI, Xia X. Multi-objective dynamic economic emission dispatch of electric 
power generation integrated with game theory based demand response programs. 
Energy Convers Manag 2015;89:963–74. https://doi.org/10.1016/j. 
enconman.2014.11.001. 

[122] Nwulu NI, Xia X. Implementing a model predictive control strategy on the 
dynamic economic emission dispatch problem with game theory based demand 
response programs. Energy 2015;91:404–19. https://doi.org/10.1016/j. 
energy.2015.08.042. 

[123] Mani S, Sokhansanj S, Bi X, Turhollow A. Economics of producing fuel pellets 
from biomass. Appl Eng Agric 2006;22(3):421–6. https://doi.org/10.13031/2 
013.20447. 

[124] Baghaee HR, Mirsalim M, Gharehpetian GB. Multi-objective optimal power 
management and sizing of a reliable wind/PV microgrid with hydrogen energy 
storage using MOPSO. J Intell Fuzzy Syst 2017;32(3):1753–73. https://doi.org/ 
10.3233/JIFS-152372. 

[125] Li B, Roche R, Paire D, Miraoui A. Sizing of a stand-alone microgrid considering 
electric power, cooling/heating, hydrogen loads and hydrogen storage 
degradation. Appl Energy 2017;205:1244–59. https://doi.org/10.1016/j. 
apenergy.2017.08.142. 

[126] Mukherjee U, Maroufmashat A, Ranisau J, Barbouti M, Trainor A, Juthani N, et al. 
Techno-economic, environmental, and safety assessment of hydrogen powered 
community microgrids; case study in Canada. Int J Hydrogen Energy 2017;42 
(20):14333–49. https://doi.org/10.1016/j.ijhydene.2017.03.083. 

[127] Kampman B, Bergsma G, Schepers B, Croezen H, Fritsche UR, Henneberg K, et al. 
BUBE: better use of biomass for energy - background report to the position paper 
of IEA RETD and IEA bioenergy. IEA RETD and IEA Bioenergy. No. 10.3844.56; 
2010. Available: https://www.ieabioenergy.com/wp-content/uploads/2013/1 
0/Better-Use-of-Biomass-for-Energy-Background-Report.pdf [Accessed: 4-Mar.- 
2020]. 

[128] Lai CS, Locatelli G, Pimm A, Wu X, Lai LL. A review on long-term electrical power 
system modeling with energy storage. J Cleaner Prod 2021;280:124298. https:// 
doi.org/10.1016/j.jclepro.2020.124298. 

[129] Hosseinalizadeh R, Shakouri GH, Amalnick MS, Taghipour P. Economic sizing of a 
hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by 
an optimization-simulation model: Case study of Iran. Renew Sustain Energy Rev 
2016;54:139–50. https://doi.org/10.1016/j.rser.2015.09.046. 

[130] Shang C, Srinivasan D, Reindl T. An improved particle swarm optimisation 
algorithm applied to battery sizing for stand-alone hybrid power systems. Int J 
Electr Power Energy Syst 2016;74:104–17. https://doi.org/10.1016/j. 
ijepes.2015.07.009. 

[131] Fu R, Feldman DJ, Margolis RM. US solar photovoltaic system cost benchmark: 
Q1 2018. No. NREL/TP-6A20-72399. Golden, CO, USA: National Renewable 
Energy Lab (NREL); 2018. 

[132] Li C. Techno-economic study of off-grid hybrid photovoltaic/battery and 
photovoltaic/battery/fuel cell power systems in Kunming, China. Energy Sources 
Part A Recover Util Environ Eff 2019;41(13):1588–604. https://doi.org/10.1080/ 
15567036.2018.1549134. 

[133] Rezk H, Sayed ET, Al-Dhaifallah M, Obaid M, El-Sayed AHM, Abdelkareem MA, 
et al. Fuel cell as an effective energy storage in reverse osmosis desalination plant 
powered by photovoltaic system. Energy 2019;175:423–33. https://doi.org/ 
10.1016/j.energy.2019.02.167. 

S. Mohseni et al.                                                                                                                                                                                                                                

https://doi.org/10.1109/EEM49802.2020.9221977
https://doi.org/10.1109/EEM49802.2020.9221977
https://doi.org/10.1016/j.apenergy.2017.06.010
https://doi.org/10.1109/59.898098
https://doi.org/10.1109/59.898098
https://doi.org/10.1109/59.918305
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.apenergy.2019.114224
https://doi.org/10.1016/j.apenergy.2019.114224
https://doi.org/10.1109/CEC.2019.8790007
https://doi.org/10.1109/PESGM40551.2019.8973570
https://tradingeconomics.com/new-zealand/real-interest-rate-percent-wb-data.html/
https://tradingeconomics.com/new-zealand/real-interest-rate-percent-wb-data.html/
https://tradingeconomics.com/new-zealand/real-interest-rate-percent-wb-data.html/
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0535
http://refhub.elsevier.com/S0306-2619(21)00110-0/h0535
https://doi.org/10.1109/ACCESS.2019.2936762
https://doi.org/10.1109/ACCESS.2019.2936762
https://doi.org/10.2514/6.2012-1678
https://doi.org/10.2514/6.2012-1678
https://doi.org/10.1109/ACCESS.2017.2728683
http://www.visitohakune.co.nz/page/ohakune-useful-information/12/
http://www.visitohakune.co.nz/page/ohakune-useful-information/12/
https://www.epa.govt.nz/assets/FileAPI/hsno-ar/APP201045/fb604d3064/APP201045-Summary-and-Analysis-Carrot-and-Parsnip.pdf
https://www.epa.govt.nz/assets/FileAPI/hsno-ar/APP201045/fb604d3064/APP201045-Summary-and-Analysis-Carrot-and-Parsnip.pdf
https://www.epa.govt.nz/assets/FileAPI/hsno-ar/APP201045/fb604d3064/APP201045-Summary-and-Analysis-Carrot-and-Parsnip.pdf
https://niwa.co.nz/sites/niwa.co.nz/files/imported/__data/assets/pdf_file/0007/95668/Large-scale-forestry-for-bioenergy.pdf
https://niwa.co.nz/sites/niwa.co.nz/files/imported/__data/assets/pdf_file/0007/95668/Large-scale-forestry-for-bioenergy.pdf
https://doi.org/10.5255/UKDA-SN-853334
https://doi.org/10.1109/ACCESS.2017.2695159
https://doi.org/10.1109/ACCESS.2017.2695159
https://www.emi.ea.govt.nz/Wholesale/Reports/
https://www.emi.ea.govt.nz/Wholesale/Reports/
https://www.researchgate.net/profile/Deb_Chattopadhyay/publication/322255908_Investigation_of_the_Value_of_Unserved_Energy/links/5a4e8ff5458515e71b085a3f/Investigation-of-the-Value-of-Unserved-Energy.pdf
https://www.researchgate.net/profile/Deb_Chattopadhyay/publication/322255908_Investigation_of_the_Value_of_Unserved_Energy/links/5a4e8ff5458515e71b085a3f/Investigation-of-the-Value-of-Unserved-Energy.pdf
https://www.researchgate.net/profile/Deb_Chattopadhyay/publication/322255908_Investigation_of_the_Value_of_Unserved_Energy/links/5a4e8ff5458515e71b085a3f/Investigation-of-the-Value-of-Unserved-Energy.pdf
https://doi.org/10.1109/TSG.2014.2301931
https://doi.org/10.1109/TSG.2014.2301931
https://doi.org/10.1016/j.enconman.2014.11.001
https://doi.org/10.1016/j.enconman.2014.11.001
https://doi.org/10.1016/j.energy.2015.08.042
https://doi.org/10.1016/j.energy.2015.08.042
https://doi.org/10.13031/2013.20447
https://doi.org/10.13031/2013.20447
https://doi.org/10.3233/JIFS-152372
https://doi.org/10.3233/JIFS-152372
https://doi.org/10.1016/j.apenergy.2017.08.142
https://doi.org/10.1016/j.apenergy.2017.08.142
https://doi.org/10.1016/j.ijhydene.2017.03.083
https://www.ieabioenergy.com/wp-content/uploads/2013/10/Better-Use-of-Biomass-for-Energy-Background-Report.pdf
https://www.ieabioenergy.com/wp-content/uploads/2013/10/Better-Use-of-Biomass-for-Energy-Background-Report.pdf
https://doi.org/10.1016/j.jclepro.2020.124298
https://doi.org/10.1016/j.jclepro.2020.124298
https://doi.org/10.1016/j.rser.2015.09.046
https://doi.org/10.1016/j.ijepes.2015.07.009
https://doi.org/10.1016/j.ijepes.2015.07.009
https://doi.org/10.1080/15567036.2018.1549134
https://doi.org/10.1080/15567036.2018.1549134
https://doi.org/10.1016/j.energy.2019.02.167
https://doi.org/10.1016/j.energy.2019.02.167

	Strategic design optimisation of multi-energy-storage-technology micro-grids considering a two-stage game-theoretic market  ...
	1 Introduction
	1.1 Long-term, demand response-integrated micro-grid infrastructure planning background
	1.2 Demand response-integrated life-cycle planning of micro-grids: knowledge gaps and proposition
	1.3 Objective
	1.4 Structure of paper

	2 Test-case micro-grid system
	2.1 Micro-grid equipment
	2.1.1 Photovoltaic plant
	2.1.2 Wind plant
	2.1.3 Micro-hydro plant
	2.1.4 Biomass plant
	2.1.5 Upstream power grid
	2.1.6 Power conversion apparatuses
	2.1.7 Internal backup energy storage
	2.1.7.1 Super-capacitor bank
	2.1.7.2 Battery bank
	2.1.7.3 Hydrogen storage

	2.1.8 Fuel cell electric vehicle parking lot
	2.1.8.1 Selected fuel cell electric vehicles
	2.1.8.2 Fuel cell electric vehicles in vehicle-to-grid operation

	2.1.9 Data: Selected product models

	2.2 Operational strategy

	3 Aggregator-mediated, incentive-based demand-side management market design
	3.1 Micro-grid operator
	3.2 Demand response aggregators
	3.3 End-consumers
	3.4 Solution algorithm
	3.5 Communication sequence

	4 Micro-grid capacity-optimisation model
	4.1 Objective function
	4.2 Problem constraints
	4.2.1 System reliability
	4.2.2 System-wide power balance
	4.2.3 Demand response scheduling
	4.2.4 Energy storage systems and fuel cell electric vehicles
	4.2.5 Energy exchange
	4.2.6 Decision variables

	4.3 Meta-heuristic optimisation algorithm
	4.4 Data: Adjusted demand-response integrated micro-grid equipment capacity planning model parameters
	4.5 Overview of the proposed solution algorithm

	5 Case study
	5.1 Case study site: The town of Ohakune, New Zealand
	5.2 Validation of the proposed demand-side management market
	5.3 Optimal equipment capacity-planning results
	5.3.1 Financial appraisal


	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary material
	References


