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Abstract 

Aggregator-activated demand response (DR) is widely recognised as a viable means for increasing the flexibility 
of renewable and sustainable energy systems (RSESs) necessary to accommodate a high penetration of variable 
renewables. To this end, by acting as DR aggregators and offering energy trading capabilities to smaller customers, 
energy retailers unlock additional sources of demand-side flexibility to ensure the cost-optimal operation of 
RSESs. Accordingly, a growing body of literature has highlighted the ways in which non-cooperative game theory 
could be used to reduce the gaps between modelled and real-world results for aggregator-mediated DR schemes. 
This paper aims to contribute to the trends of giving a realistic grounding to research on distributed DR-integrated 
energy scheduling by using insights from non-cooperative game theory to determine: (1) the optimal trade-off 
between importing electricity and utilising DR capacity in grid-tied RSESs, (2) the impact of the price elasticity 
of DR supply of different customer classes – especially, new sources of electricity demand, such as e-mobility – 
on the system-level dispatch of DR resources, and (3) the financial implications of harnessing the flexibility 
potential of a large number of end-consumers across different sectors. Accordingly, the principal goal of the paper 
is to develop an operational planning optimisation model that can be directly applied to real-world aggregator-
mediated, market-based demand-side flexibility provisioning domains. To this end, this paper presents the first 
DR elasticity-aware, non-cooperative game-theoretic DR scheduling model that: (1) yields the best compromise 
solution between imported power and dispatched DR resources from the utility’s perspective, (2) characterises 
the utility-aggregator-customer interactions during the market-based DR trade process with several customer 
categories involved, and (3) disaggregates the total sectoral load on the system to individual end-consumers, which 
has potential implications for pre-feasibility and business case assessments. The application of the model to a 
conceptual micro-grid for the town of Ohakune, in New Zealand, demonstrates its effectiveness in reducing the 
daily system operational cost by ~66% and ~47% on a representative summer and winter day, respectively. 
Importantly, the paper provides statistically significant evidence supporting that activating the flexibility potential 
of small- to medium-scale end-consumers through specifically defined third-party aggregators in a market-based 
approach – that is aware of strategic interactions among instrumentally rational economic agents involved in the 
dispatch and delivery of DR resources – plays a significant role in the cost-optimal transition to 100%-renewable 
electricity generation systems within the smart grid paradigm.  

Keywords: Micro-grid; Demand response; Energy management; Non-cooperative game theory; Stackelberg 
leadership 

 

Nomenclature  
Acronyms 𝑑!"

#,%(𝑡), 𝑑&!"
#,% (𝑡) critical/non-critical portion of the 

𝑘-th customer of the 𝑗-th 
aggregator’s original demand in 
time 𝑡 [kWh] 

DERs distributed energy resources 𝑑'())
#,% (𝑡) original demand of the 𝑘-th 

customer signed up to aggregator 𝑗 
in time 𝑡 [kWh] 

DR demand response 𝑑&!"
#,% , 𝑑&!"

#,%  lower/upper bound of the non-
critical portion of the customer-
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specific load demands of the 𝑗-th 
aggregator [kWh] 

DRA demand response aggregator 𝐷*+'(𝑡) onsite power generation capacity 
deficit to meet load demand in time 
𝑡 [kWh] 

DSM demand-side management 𝑑𝑖𝑠#,%,,-&,
𝑑𝑖𝑠#,%,,./ 

lower/upper bound of the 
discomfort cost experienced by the 
𝑘-th customer of aggregator 𝑗 [$] 

EV electric vehicle 𝑖012 Step length of the MG operator-
offered incentive price [$/kWh] 

EaaS energy-as-a-service 𝐼34
%,,-&,	𝐼34

%,,./ lower/upper bound of the incentive 
price offered by aggregator 𝑗 
[$/kWh] 

MG micro-grid 𝐼012,-& ,	𝐼012,./ lower/upper bound of the MG 
operator-determined incentive 
price [$/kWh] 

MH micro-hydro 𝑁!(56
%  number of end-consumers 

subscribed to aggregator 𝑗 
NIWA New Zealand’s National 

Institute of Water and 
Atmospheric Research 

𝜋-,(𝑡) wholesale electricity price in time 𝑡 
[$/kWh] 

PV photovoltaic 𝑃𝑎𝑟,./
%  maximum participation rate of end-

consumers enrolled with 
aggregator 𝑗 [%] 

RESs renewable energy sources Variables  
RSESs renewable and sustainable 

energy systems 
𝑑#,%(𝑡) DR supplied by end-customer 𝑘 of 

aggregator 𝑗 in time 𝑡	[kWh] 
WT wind turbine 𝑑#,%,∗(𝑡)	 pure-strategy load reduction of 

end-consumer 𝑘 signed up to 
aggregator 𝑗	in time 𝑡 [kWh] 

Sets and indices  𝐷34
% (𝑡) total DR supplied by aggregator 𝑗 

in time 𝑡 [kWh] 
𝑑8#,%,∗
= {𝑑9,%,∗, 𝑑:,%,∗, … , 𝑑#89,%,∗, 

𝑑#;9,%,∗, … , 𝑑<!,%,∗} 

set of DR supplied by the 
customers subscribed to 
aggregator 𝑗 except the 𝑘-th 
customer [kWh] 

𝐷34
%,∗(𝑡) pure-strategy total DR supplied by 

aggregator 𝑗 in time 𝑡 [kWh] 

𝐷∗ = {𝑑9∗, 𝑑:∗ , … , 𝑑=∗ } set of pure-strategy customer-
supplied DR [kWh] 

𝑑𝑖𝑠#,%(𝑡) discomfort cost imposed on end-
consumer 𝑘 signed up to 
aggregator 𝑗 in time 𝑡 [$] 

𝐷34
%,∗ = {𝑑#,%,∗, 𝑑8#,%,∗} set of pure-strategy customer-

supplied DR associated with 
the 𝑗-th aggregator [kWh] 

𝐼34
% (𝑡) incentive price posted by 

aggregator 𝑗 for load reduction in 
time 𝑡 [$/kWh] 

𝐼34∗

= {𝐼34
9,∗, 𝐼34

:,∗, 𝐼34
>,∗, 𝐼34

?,∗, 𝐼34
@,∗} 

set of pure-strategy 
aggregator-posted incentive 
payments [$/kWh]  

𝐼34
%,∗(𝑡) pure-strategy incentive price 

posted by aggregator 𝑗 in time 𝑡 
[$/kWh] 

𝐾 customers within the MG’s 
territory 

𝐼012(𝑡)	 incentive price posted by the MG 
operator for load reduction in time 
𝑡 [$/kWh] 

𝑗 ∈ 𝐽 demand response aggregators 𝐼012∗ (𝑡) pure-strategy incentive price 
posted by the MG operator for load 
reduction in time 𝑡 [$/kWh] 

𝑘 ∈ 𝑁A customers subscribed to 
aggregator 𝑗 

𝑂𝐶01(𝑡) operational cost of addressing the 
net energy deficit of the MG in 
time 𝑡 [$] 

Parameters  𝑂𝐶01∗ (𝑡) pure-strategy operational cost of 
addressing the net energy deficit of 
the MG in time 𝑡 [$] 

𝑐9
#,%,	𝑐:

#,% Customer-specific discomfort 
factors 

𝑃-,(𝑡) imported electricity by the MG in 
time 𝑡 [kWh] 

δ% Sectoral elasticity of DR 
supply 

𝑃𝑟34
% (𝑡) profit of aggregator 𝑗 in time 𝑡 [$] 



3 
 

𝑐𝑜𝑠𝑡-,(𝑡) cost of importing electricity in 
time 𝑡 [$]  

𝑈#,%(𝑡) utility of end-consumer 𝑘 enrolled 
with aggregator 𝑗 in time 𝑡 [$] 

    
 

 

 

1. Introduction 

Smart electrification with renewables is set to play a pivotal role in accelerating the transition to the low-carbon 
economy [1]. However, renewable energy sources (RESs) are collectively plagued by unpredictability and 
variability of supply [2], [3]. This is especially problematic during daily peak times when demand is highest [4]. 
On the other hand, the increased electrification of end-uses – such as transport, space heating, and water heating 
– is a key contributor to rising these peaks, which results in the need for over-capacity of renewable supplies 
and/or (capital-intensive) storage devices, as well as additional transmission and distribution network capacity 
[5]. 

Accordingly, a key challenge in realising cost-effective electric power systems with high penetrations of non-
dispatchable (variable) RESs is the temporal discrepancy between renewable power generation and peak power 
demand [6]. Addressing this challenge in grid-connected renewable and sustainable energy systems (RSESs) 
requires an optimal trade-off between imported power demand from the upstream grid and reduced peak demand 
through demand-side management (DSM) strategies for cost-optimal operations [7]. In this light, utilising the 
flexibility potential of small- to medium-scale customers – as part of the goal of tapping all available sources of 
demand-side flexibility – is of utmost importance to reduce the cost of integrating high shares of renewables and 
the need to invest in network capacity reinforcement, especially under future scenarios of end-use sector coupling 
[8]. 

The recent emergence of advanced control methods, founded on two-way communications for smart grid 
applications, has facilitated the coordination of small- to medium-scale demand response (DR) resources – 
previously invisible to grid operators – through a new family of load-serving entities, called DR aggregators 
(DRAs). The DRAs act as intermediaries between utilities and retail consumers by aggregating loads of the same 
class and packaging the total DR bids for submission in ancillary services markets [9]. In this context, the large-
scale deployment of retail DSM services is recognised as one of the critical enablers of the low-carbon economy 
[10].  

To this end, it is commonly accepted that [11]: (1) open aggregator-mediated DSM marketplaces improve 
customer engagement due to the additional flexibility provided to the subscribers, while supporting the minimum 
expected utilities by end-consumers, and (2) the wholesale electricity prices need to be valued as a primary means 
of signalling the worth of load reduction to the utility when developing load shifting and/or curtailment strategies.  

In general, DR programmes can be classified into two main categories: price- and incentive-based. Price-based 
DR involves time-variant pricing schemes to reflect the value of electricity in different time periods. On the other 
hand, in incentive-based DR schemes, customers are offered incentive payments to reduce their energy use in case 
of grid reliability problems or high wholesale prices [12], [13]. The interruptible/curtailable services, which fall 
in the category of incentive-based programmes, are selected in this study for the modelling of aggregator-mediated 
DR events, which provides for voluntary customer enrolments and responses. That is, customers are given the 
discretion to select their level of participation in any DR event. 

Additionally, DR programmes can be implemented over a broad range of timescales, from 15 minutes (real-time 
operation) to several years (system planning) ahead of schedule [13]. Among these timescales, the day-ahead 
energy management analysis is considered in this paper as it has a considerable potential to benefit from market-
based DR programmes. This represents a unique scheduling horizon due to the availability of high-quality 
weather-dependent renewable power generation forecasts.  

1.1. Incorporating strategic interactions into demand response scheduling models 

To reduce the gaps between modelled and real-world results for aggregator-mediated DR schemes, it is necessary 
to characterise the economic interactions between the utility, DRAs, and end-consumers. To this end, the 
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simplifying assumptions commonly applied in designing aggregator-mediated DR programmes, which are not 
justified in many cases, need to be avoided [14]. More specifically, a realistic grounding needs to be given to 
research on aggregator-mediated DR procurement to improve the quality and accuracy of the day-ahead DR 
supply capacity forecasts. Accordingly, to be able to directly apply the aggregator-mediated DR frameworks to 
real-world problems, it is crucial to model the involved active economic agents – the utility, DRAs, and end-
consumers – as rational, self-interested agents who make decentralised and utility-maximising decisions. Under 
this assumption, the problem of aggregator-mediated DR planning falls in the realm of algorithmic game theory 
[15] and, more particularly, algorithmic mechanism design [16]. Mechanism design models the interaction of 
individuals using tools borrowed from game theory, where the institutions governing interactions are modelled as 
mechanisms, in strategic settings, where players act rationally [17]. The overall aim of mechanism design within 
the context of this study is to derive an economically stable allocation of DR resources in that a truthful preference 
report is the best strategy for every active economic agent involved. 

On the other hand, market-driven incentive-based DR resources are often procured through “ascending bid” 
auctions in that the incentive price is successively increased in rounds until the level of procured DR units 
minimises the system operational cost [18]. This characteristic can be modelled by the Stackelberg leadership 
model [19], which is a model of imperfect competition founded on sequential non-cooperative games [20], in 
which the market leader moves first and then the followers move sequentially. Accordingly, the aggregator-
mediated DR procurement game can be modelled as a two-stage feedback game in which the utility and DRAs 
form a Stackelberg problem in the first stage, while the DRAs and end-consumers form another Stackelberg 
problem in the second stage. More specifically, the DRAs serve as the followers of the utility in wholesale DSM 
market and, at the same time, the leaders of the sector-specific retail DSM markets, where end-consumers act as 
followers [21]. 

1.2. Game-theoretic models applied to demand-side management studies 

Several review studies have emphasised the important role that the characterisation of the strategic rationality of 
economic agents involved in the delivery of DR resources can play in making simulation more perceptually 
representative of real-world scenarios [22], [23], [24]. To this end, as discussed in the previous sub-section, non-
cooperative game theory [20] has been recognised as a standard analytical tool to understand the strategic 
economic behaviour of rational entities that interact through efficient and stable markets for the activation of 
smaller DR units – and make predictable and reproducible choices [25]. 

The Stackelberg, non-cooperative game-theoretic DR scheduling problems in the literature can be classified 
broadly into three groups, which focus on: 

• Deriving a strategic bidding strategy for the aggregators of the storage capacity to participate in the 
wholesale DSM market; 

• Characterising the direct interactions between large-scale customers and the utilities in the wholesale 
DSM market; and 

• Modelling the utility-aggregator-customer interactions across both the wholesale and retail DSM 
markets. 

The first of the three strands of the literature focuses on determining the optimal bidding strategy for community-
scale energy storage aggregators in day-ahead DR markets – to provide flexibility services to the grid – using 
insights from Stackelberg, non-cooperative game theory. Reihani et al. [26] were among the first to design a 
Stackelberg, non-cooperative game-theoretic DR market framework for energy storage aggregators to sell a joint 
capacity of smaller DR units to the utility, whilst accounting for the incentive price elasticity of aggregator-
mediated DR capacity. Following their seminal study, several other studies have developed conceptual models of 
Stackelberg competition among DRAs to sell energy stored in energy storage devices of their customers based on 
non-cooperative game theory in a market-driven context. For instance, Motalleb and Ghorbani [27] have 
developed a game-theoretic DR market design with incomplete information. Specifically, the DRAs adaptively 
bid on the market using a Bayesian approach to maximise their expected payoffs, while the DR market is cleared 
according to the Nash equilibrium of the DRAs’ strategies. The authors have gone further in [28] and proposed a 
real-time DR market design, which uses a repeated game-theoretic framework with incomplete-information to 
find the market equilibrium in a competitive environment, where the DRAs aim to maximise their payoffs from 
selling aggregated DR products, namely: the energy stored in residential batteries. Similarly, Liu et al. [29] have 
formalised a Bayesian strategic game approach to optimally leverage the demand-side flexibility potential in 
multi-community local areas, whilst dealing with incomplete information about the exact forms of aggregate 
discomfort functions the representatives of the communities (who serve as load aggregators) are seeking to 
minimise. 
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In another instance, Sharifi et al. [30] have developed a single-leader, multi-follower Stackelberg strategic bidding 
model to assist the associated DRA decision-making process in building the optimal aggregate demand bidding 
curve for submission to the day-ahead electricity market. Based on the numeric simulation results, the authors 
have shown the effectiveness of the model in increasing the profit of a representative DRA who participates in 
the day-ahead electricity market by as much as 6.4%. Similarly, Shafiekhani et al. [31] have devised a bi-level, 
Stackelberg, multi-criteria approach considering profit and emissions objectives to support the optimal bidding 
strategy of a virtual power plant that aggregates a set of small-scale interruptible loads and distributed energy 
resources (DERs) for participation in pool-based day-ahead and real-time electricity markets. Moghimi and 
Barforoushi [32] have also put forward a mixed-integer linear programming formulation to determine the optimal 
pool strategy of a price-maker distribution company integrating smaller DR products based on a real-time pricing 
scheme, whilst sequentially coordinating the wholesale and retail markets. Furthermore, Rayati et al. [33] have 
formalised a non-cooperative game-theoretic framework to adequately model the strategic interactions of DRAs, 
who constitute a balancing group within the context of European electricity markets, where the balancing group 
representative is responsible for the net imbalances of the associated portfolio of generation and/or demand. 
Moreover, Dadashi et al. [34] have formulated a bi-level, stochastic game-theoretic model to solve the short-term 
decision-making problem on the optimal volumes of energy imports for each hour of the next day in the presence 
of a single DRA. Based on the numerical simulation results, they have demonstrated the effectiveness of their 
framework in yielding an equilibrium DR dispatch solution, where the profits of the utility and the DRA are 
increased by ~6% and ~70%, respectively, compared to a business-as-usual approach. Salyani et al. [35] have also 
utilised non-cooperative game theory to characterise the interactions between a distribution company and electric 
vehicle (EV) stations that provide coordinated charging/discharging services. By integrating the proposed DR 
dispatch game into a standard, exact mathematical optimisation-based energy planning model, and applying it to 
the IEEE 33-bus distribution test system, they have highlighted the significant role of game-theoretic DR 
scheduling in minimising reality gaps.  

Fernandez et al. [36] have also proposed a game-theoretic DSM framework, where end-consumers share their 
private information with a central control agent who aggregates the scheduling preferences of the end-consumers 
and bids into the wholesale market. Based on the real-world simulation results obtained from the application of 
their proposed framework to the energy management problem of a neighbourhood in Sydney, Australia, the 
authors have demonstrated the effectiveness of their framework in reducing the daily peak-to-average ratio by 
~9% on a representative winter day. Similarly, Abapour et al. [11] have formulated a non-cooperative game-
theoretic modelling framework for DRAs in DSM markets. Based on the numeric simulation results obtained by 
applying their proposed model to a real test-case, the authors have demonstrated that characterising the associated 
behavioural traits in the supply of aggregated DR is able to increase the profit gained by the distribution system 
operator by up to a maximum of 7%. The authors go further in [37] and adopt a Bayesian approach to handling 
incomplete information of the players about the future moves of their opponents, which improves the accuracy of 
market equilibrium points predicted by non-cooperative game-theoretic models. In another instance, Fan et al. 
[38] have put forward a bargaining-based cooperative energy trading mechanism for a distribution company and 
DRAs. Based on the numeric test-case results, the authors have demonstrated the efficacy of their Nash 
bargaining-based method in reducing the daily peak-to-average ratio of load profile by up to a maximum of around 
9%. Song et al. [39] have also studied the optimal day-ahead bidding strategies of DRAs, whilst additionally using 
fuzzy membership functions to address the uncertainty associated with the heterogeneous willingness of end-users 
to participate in DR activities. By applying the model to a community housing complex, comprising 3,000 
residential dwellings, they have shown the effectiveness of the model in increasing the DRAs’ profits by up to 
~71%. Moreover, Chen et al. [40] have proposed an iterative distributed algorithm to address the strategic 
interactions between a distribution system operator and several DRAs in its service territory, formulated as a non-
cooperative game-theoretic DR dispatch problem, and demonstrated a relative error of less than 3% compared to 
counterpart analytically-derived solutions. The main advantages of the iterative distributed algorithm over closed-
form solutions are: (i) revealing only necessary information about the customers’ incentive-directed load 
interruption decisions (driven by the customers’ marginal utilities of supplying DR capacities) while preserving 
privacy, and (ii) handling high-degree non-linearities often present in the players’ payoff functions without the 
need for making several simplifying assumptions that potentially impair the solution quality. 

The second strand of the literature focuses on characterising the interactions between larger industrial and 
commercial customers and utilities in DR programmes, which have been operating for many years, using 
Stackelberg game-theoretic frameworks. For instance, Nwulu and Xia [41] have proposed a game-theoretic DR 
programme, which determines the optimal hourly incentive rate to be offered to large-scale end-consumers, who 
have signed up for load curtailment services, by maximising the utility’s payoff function. Based on the numeric 
simulation results, the authors have shown that their proposed model is able to reduce the total load demand over 
a 24-h timeframe by up to ~17%. The authors have also improved their proposed model in [42] by adding a closed-
loop model predictive controller and demonstrated its effectiveness in eliciting a further load reduction and 
improving the utility’s total daily payoff.  
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Although the ideas that fall under this strand of the literature are most meaningful when dealing with large-scale 
customers, there are some instances that model the interactions between smaller customers and utilities without 
aggregator mediation. For instance, Fan [43] has formulated a game-theoretic framework to characterise the 
interactions between a utility and EV owners, who aim to cost-optimally charge the batteries in their EVs. Also, 
Chai et al. [44] have put forward a non-cooperative game-theoretic DSM market model for the interactions of 
multiple utility companies and multiple end-consumers. Based on the results obtained from an illustrative test-
case, the authors have demonstrated that their proposed model is able to improve the social welfare index by up 
to ~6% for a 24-hour day-ahead timeframe. Furthermore, Tang et al. [45] have developed a game-theoretic model 
to address the strategic interactions between a utility grid and several building complexes who opt to supply their 
DR flexibility products. The authors have demonstrated the efficacy of their proposed model in reducing the 
buildings’ energy bills by up to a maximum of 8.3%, whilst additionally reducing the fluctuations in forecasted 
demand by about 40%.  

In another instance, Guo et al. [46] have proposed a non-cooperative game-theoretic approach with two-sided 
incomplete information for clearing the spot electricity markets where specific mechanisms allow for DR 
capacities to be bid into them. By applying the model to a hypothetical case example, the authors have 
demonstrated the superiority of their proposed model to the business-as-usual approaches in terms of maximising 
social welfare. In a marked departure from the existing literature, Guo et al. [47] go further and apply their 
proposed method to DR-integrated block bidding markets, where the total electricity demand is divided into 
multiple blocks and the auction is processed block by block, each with an individual market-clearing price, in 
contrast to the traditional hourly pricing model. Similarly, Golmohamadi et al. [48] have formulated a multi-agent-
based scheduling framework for trading residential and industrial flexibility procured through DRAs in electricity 
markets. Moreover, Pal et al. [49] have developed a strategic Stackelberg game-theoretic framework that produces 
the unique, pure-strategy Nash equilibrium of the DR scheduling game played between the distribution system 
operator and a set of residential end-users. The numeric simulation results have demonstrated the utility of the 
proposed model in reducing the peak-to-average ratio by a significant 31.4%, while supporting a fair allocation 
of benefits – derived from the utilisation of DR flexibility resources – among the participants. Also, Tavakkoli et 
al. [50] have formalised a single-leader-multi-follower non-cooperative game to minimise system-wide supply-
demand mismatches, whilst simultaneously maximising customer utilities for delivering the flexibility capacities 
of their heating, ventilation, and air conditioning (HVAC) systems. Based on the numerical simulation results 
obtained from the application of the proposed method to an incentive-based curtailable load programme in a 
residential area of 70 houses (as followers), they have demonstrated its efficacy in mitigating supply-demand 
mismatches by up to a significant ~43%. 

While the first and second strands of the literature characterise the interactions between utilities and DRAs, or 
between utilities and individual end-users, the third strand of the literature expands the boundaries of non-
cooperative game-theoretic DR market and enables a more integrative approach to DSM planning. In particular, 
this strand of the literature seeks to address how to achieve economically stable and efficient divisions of the 
surplus created by load curtailments based on non-cooperative game theory. In this context, the standard approach 
is to develop a two-stage (dual-loop) DR market design in that the utility and DRAs compete in the top-level 
(wholesale) DSM market, where the utility offers load reduction incentive prices to the DRAs, who offer a 
percentage of the utility-offered incentive rates to their end-consumers in the bottom-level (retail) DSM market. 
For instance, Yu and Hong [21] have formulated a two-loop Stackelberg game for an incentive-based, market-
driven, aggregator-mediated scheduling of interruptible DR resources. Based on the numeric simulation results, 
the authors have confirmed the superiority of their proposed model in terms of reducing the hourly operational 
cost of a distribution grid by circa 47%, as compared to the case where generation capacity deficits are addressed 
purely by onsite diesel generators. The authors have additionally applied their model to another test-case including 
medium-scale industrial customers and reaffirmed their findings. Notably, they have shown the ability of their 
proposed model in reducing the hourly operational cost of a typical distribution network including medium-sized 
industrial customers by up to around 63%.  

In another instance, Ren et al. [51] have proposed an optimal Stackelberg energy scheduling framework 
specifically tailored to the coordination of the interactions between the distribution network, EV aggregators (that 
combine the participating individual interruptible EV charging loads), and EV owners. The modelling framework 
accounts for the individual objectives of the three sets of the involved players, and is shown to be able to yield a 
participation rate of 99% in EV load management programs. Şengör et al. [52] go further by characterising the 
uncertainties associated with the EV charging behaviours, while optimising the strategic bidding strategy of an 
aggregator participating in day-ahead and secondary control reserve markets. Zhong et al. [53] have also put 
forward a coupon incentive-based DR scheme, where third-party load-serving entities participate in the wholesale 
DSM market and offer a flat incentive rate to the small-scale customers subscribed to them. Accordingly, they 
have proposed an algorithm to find the optimum coupon incentive price with respect to different wholesale market 
conditions. Also, Sobhani et al. [54] have modelled the interactions between several interconnected energy hubs 
– the operators of which essentially serve as DRAs – as a congestion game, whilst adhering to the associated 
coupling constraints. They have shown the existence and uniqueness of the pure-strategy Nash equilibrium of the 
developed non-cooperative game-theoretic model that is aware of the discomfort patterns of end-consumers, 
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whilst additionally producing the numerical Nash equilibrium solution of the game using a specifically developed 
distributed algorithm for real-world applications. 

Furthermore, Feng et al. [55] have proposed a bi-level Stackelberg non-cooperative game-theoretic model that is 
able to produce the Nash equilibrium of a transactive energy market where a set of independent DRAs compete 
to maximise their objective functions in the lower level. On the other hand, the upper level deals with updating a 
transactive incentive price signal sent to the DRAs in an iterative approach so as to cost-optimally meet the 
distribution system operator requirements, whilst maximising the social welfare with respect to the locational 
marginal price. Vuelvas et al. [56] have additionally analysed the incentive-compatibility of aggregator-mediated 
incentive-based DSM schemes. To this end, the authors have formulated a two-stage stochastic programming 
problem for the strategic interactions between DRAs and end-consumers and solved it using ideas from game 
theory. Moreover, Gazafroudi et al. [57] have provided evidence of the effectiveness of an ‘agent-based’ non-
cooperative game-theoretic approach to managing the smaller DR products, in terms of providing a sustainable 
platform for trading small- to medium-sized DR products under both individual rationality and collective 
rationality conditions in sequential games – which ensures the strategic stability of the equilibrium solution. Also, 
Li et al. [58] employ a Stackelberg, non-cooperative game-theoretic framework to optimally dispatch energy hubs 
equipped with multi-energy DR resources, where demand-side flexibility capacities elicited from electrical and 
thermal loads are separately aggregated.  

1.3. Day-ahead, aggregator-mediated demand response scheduling: Research gaps and questions 

The day-ahead, aggregator-mediated DR scheduling literature has convincingly shown the significance of 
characterising the strategic, interactive rationality of the players involved in exploiting the flexibility potential of 
smaller customers using Stackelberg, non-cooperative games in general. Yet, despite this achievement, there are 
still some previously unexplored considerations, which need to be factored into the analysis of aggregator-
mediated DR scheduling – to give a more realistic grounding to the research in this area. More specifically, three 
crucial aspects necessary to better reflect reality, while characterising the utility-aggregator-customer interactions, 
have not yet been addressed in the mainstream Stackelberg, non-cooperative game-theoretic DSM literature, 
namely: 

1. Lack of an optimal trade-off analysis from the utility’s perspective between importing power and 
exploiting DR resources: Although the potential benefits of characterising the strategic interactions 
between the utility, DRAs, and end-consumers has been demonstrated in several instances, no study, as 
far as can be ascertained, has developed a systematic framework to facilitate the decision-making process 
for utilities to find the best compromise between importing electricity and procuring load reductions. 
This raises the question to what extent producing such an optimal trade-off solution is able to reduce the 
operational cost of the utility, with the answer to this question implying potential consequences for 
renewable energy system design optimisation. 

2. Poor understanding of the incentive-price elasticity of customer-supplied DR capacity across different 
sectors: While nearly all the reviewed studies consider the discomfort cost imposed on end-consumers 
due to load reduction as a decision criterion, elasticity of supply of DR capacity is seldom accounted for 
in the DSM planning models. It is of paramount importance for the utility to understand how the 
willingness of customer-supplied DR capacity differs across different end-use categories – especially in 
the face of new sources of electricity demand, such as the electrification of the transport sector. The 
research question following from this gap is how an effective model can be designed to limit the use of 
DR resources from each sector to an economically viable level.  

3. Insufficiency of the number of considered end-consumers to be a suitable representative of real-world 
practice: Whilst considerable effort has been devoted to developing a range of non-cooperative game-
theoretic, aggregator-mediated DR interventions to reduce or shift energy use, the number of small-sized 
customer samples cannot be considered representative of a real distribution system. More specifically, 
the set of end-consumers in previous studies on the aggregator-mediated DSM has never, as far as can 
be ascertained, been comprised of more than a handful of customers. Hence, a research question arises 
as to how community-scale energy systems can benefit from such schemes. This is especially relevant 
when conducting pre-feasibility analyses of RSESs, where forecasts of the total load demand on the 
system are available, but there is no mechanism to allocate the total load to a certain number of end-
consumers. 

1.4. Objective 

The objective of the paper is to improve and expand the existing Stackelberg, non-cooperative game-theoretic, 
aggregator-mediated DR scheduling models, so that they can be more readily applied to the real energy 
management problems posed by utility companies, DRAs, and end-consumers alike. It contributes to the trend of 
broadening the DRA-mediated DSM problem to include the interactions between all the involved active economic 
agents in the game – the utility, DRAs, and end-consumers – evident in the literature review in sub-section 1.2. 
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Specifically, this paper presents a novel two-stage, day-ahead, market-driven, incentive-based, aggregator-
mediated Stackelberg, game-theoretic DSM model, featuring the following key contributions, each filling one of 
the three knowledge gaps identified in the previous section, namely:  

1. Founded on the interruptible/curtailable services, a robust bi-level decision support model is developed 
to assist the associated DR scheduling decision-making process for grid-tied RSESs. Notably, by 
producing the optimal trade-offs between importing power and employing DR flexibility resources for 
the hours of the next day for which a net energy deficit is predicted, the model is able to derive 
implications for the cost-optimal planning of RSESs. 

2. The load type-specific price elasticity of DR supply is effectively captured in the model, enabling it to 
more accurately forecast the participation rate of different customer classes, namely: residential, 
commercial, industrial, agricultural, and EV-charging loads. To this end, in addition to demonstrating 
the existence and uniqueness of a closed-form solution to the derived game-theoretic DSM problem, an 
iterative distributed algorithm is developed to approximate the Nash equilibrium point with minimum 
information exchange, with the aim of preserving the private preferences of players. 

3. The model incorporates a stochastic load disaggregation technique, which randomly breaks down the 
forecasted total sectoral electricity consumption into any specified number of end-users. This feature 
makes the model applicable to a wider range of settings, including pre-feasibility studies where no smart 
meter data are available. Accordingly, the application of the model to large numbers of end-consumers 
spread across a distribution network is able to improve the understanding of diverse sector-wide customer 
behaviours based on a broader set of end-consumers’ strategies and the corresponding payoff profiles. 

1.5. Paper structure 

The remainder of this paper is structured as follows. Section 2 states the problem and describes the overall 
architecture and underlying assumptions of the model before mathematically defining the proposed non-
cooperative game-theoretic, aggregator-mediated DSM model. The case study is detailed in Section 3 before the 
numerical simulation results are presented and discussed in Section 4. Finally, conclusions are made and areas of 
further work are identified in Section 5. 

2. Game-theoretic, market-driven, incentive-based demand response programme 

The optimal scheduling of flexible demand-side resources can be classified as a multi-decision-maker problem, 
which is not amenable to business-as-usual, centralised, non-behaviour-aware treatments if the behavioural risk 
factors affecting the supply of DR services are to be characterised - to improve the reliability and validity of DSM 
business models. 

2.1. Aggregator-mediated demand response procurement as a Stackelberg, non-cooperative game 

The Stackelberg, strategic (non-cooperative) game concept [59] can provide a systematic framework to unveil the 
hidden relationships between the targeted incentive-driven load reductions and what would be achieved in practice 
provided that there are no penalties for non-compliance with the grid operator orders - in an attempt to make 
explicit the assumptions underlying the core concepts of the discipline. Non-cooperative game theory centres on 
the study of independent, rational decision-making in circumstances of strategic interaction (conflict) to achieve 
the Nash equilibrium [60]. That is, it furnishes the opportunity to analyse the DR arrangements based on ordinal 
information, rather than conventional cardinal information. Compared to the cardinal analysis, the ordinal analysis 
of a decision-making process is less subjected to ‘knowledge’ uncertainty so long as the sequential order of the 
process remains unchanged [61]. The key components of an aggregator-mediated, incentive-based DSM 
programme include: (1) energy service providers, DRAs, and customers, (2) incentive plans, and (3) customer 
performance (participation rates). These respectively correspond to the core elements of a non-cooperative game: 
(1) players, (2) strategies, and (3) payoffs from potential consequences, where the set of consequences reflects the 
outcome of every possible combination of available strategies of players. Such resemblances of the DSM planning 
and the associated strategic game are illustrated in Fig. 1. 
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Fig. 1. One-to-one correspondence of an incentive-driven DR programme’s elements to the fundamentals of 
non-cooperative game theory. 

As discussed in Section 1, the Stackelberg competition [62] is a leadership model in finance, in which the leader 
entity moves first and then the follower entities move in sequence. From a game theory perspective, the players 
of such a game compete on quantity, and therefore it falls under the category of non-cooperative games. The core 
assumptions behind the Stackelberg competition models are as follows [63]: (1) the leader is aware ex-ante that 
the followers notice its moves; and (2) the followers have perfect information about, and react rationally to, 
changes in strategies taken by the leader. Along the same line as the Stackelberg competition model, the incentive-
based approaches of implementing DR programmes start by offering financial incentives to end-users in return 
for load reductions, where the incentive prices and customer participation rates are determined by the market 
mechanism of seeking to maximise profit (or utility). It is also worth pointing out that it is proven that a 
Stackelberg, strategic game can be solved to obtain the Nash equilibrium, given every follower plays its best-
response strategy to the leader’s best action [64]. As the foregoing discussion indicates, the market-oriented, 
incentive-driven DR plans can be analysed through the framework of a Stackelberg, non-cooperative game via 
strategic market interactions. 

2.2. Proposed Stackelberg, non-cooperative game framework to model interruptible demand response 

The interruptible load programme is employed in this study as the DR service provision framework due to its 
unique advantage in providing a cost-effective means of improving the system’s robustness against variability 
inherent in weather patterns. In this light, the proposed game-theoretic DR scheduling structure serves as a forum 
to implement the day-ahead interruptible load programme. The required quantity of interruptible loads at each 
time-step of the system operation is procured by the system operator in a day-ahead reserves market using a 
specifically developed procurement system that co-optimises the imported power from the national grid and the 
exploited capacity of DR resources. 

To this end, after introducing different players involved in the game, this sub-section mathematically models the 
proposed Stackelberg, strategic game framework to leverage the potential of flexible DR resources for the day-
ahead operational scheduling of micro-grids (MGs), which promotes fair competition among different parties 
involved in the provision of DSM services. It then verifies the existence and uniqueness of an analytical solution 
to the developed game. However, to preserve the privacy of players, an iterative distributed algorithm is presented 
to obtain the Nash equilibrium of the game before describing the sequence of operations carried out to implement 
the proposed game-theoretic framework. The sequence of operations details the process of information exchange 
between different entities involved in the game.  

The proposed game-theoretic formulation of the incentive-based DSM plans in this paper is specifically adapted 
for application to the day-ahead DR resource forecasting as part of the operational scheduling problem of MGs. 
The proposed framework also leverages the potential advantages of integrating flexible load aggregators into the 
DR market – with the twin goals of achieving scale as well as improving market competitiveness and liquidity. 
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2.2.1. Players of the game 

As shown in Fig. 2, the game is played with three distinct sets of players, namely: MG operator, responsive load 
aggregators, and different classes of end-consumers – residential, commercial, industrial, agricultural, and 
electrified transport. The MG operator is assumed to be an entity belonging to the utility providing electricity 
service to the considered case study area, which has full ownership of the MG assets and seeks to alleviate the 
load on the MG in predicted periods of peak energy use. As a principal element of the model, the day-ahead, 
hourly-basis forecasts of wholesale prices, load demand, and non-dispatchable renewable power generation 
capacity are assumed to be available based on the MG system state estimation studies. Responsive load 
aggregators act as intermediary agents between the utility and customers, as described in sub-section 1.2. Energy 
customers, which are placed at the lowest level of the proposed hierarchical architecture, modify their habitual 
energy consumption trends to take the best advantage of the financial incentives offered by the aggregator they 
have subscribed to. An overview of the proposed game-theoretic framework to schedule the incentive-driven DR 
resources through market interactions is shown in Fig. 2. Note that all the players were assumed to be rational, 
risk-neutral, utility-maximising, and myopic.1 

 
Fig. 2. Overview of the developed Stackelberg, strategic game framework to model the market-driven, 

incentive-based, aggregator-mediated demand response. 

2.2.1.1. Mathematical model of the utility 

In the face of an estimated internal power generation capacity deficit to meet the loads at the 𝑡-th time-step of 
operating the MG, 𝐷!"#(𝑡), the MG operator attempts to balance out supply and demand by purchasing power 
from the upstream grid and/or offering financial incentives for load reduction. Accordingly, the objective function 
of the operator is to minimise the hourly-basis operational cost of offsetting power deficit, as described by Eq. 
(1), while adhering to constraints in Eqs. (2)-(4). 

min𝑂𝐶$%(𝑡) = 𝑐𝑜𝑠𝑡&'(𝑡) + 𝐼$%((𝑡).1𝐷)*
+

+∈-

(𝑡)		∀𝑡,																																																(1) 

𝐼$%('&. ≤ 𝐼$%((𝑡) ≤ 𝐼$%('/0		∀𝑡,																																																																				(2) 

 
1 Myopic behaviour means that players do not examine how their bids might influence the bids of other players in future 
iterations [15]. 
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𝐷!"#(𝑡) = 𝑃&'(𝑡) +1𝐷)*
+ (𝑡)

+∈-

		∀𝑡,																																																													(3) 

𝑐𝑜𝑠𝑡&'(𝑡) = 𝜋&'(𝑡). 𝑃&'(𝑡)		∀𝑡,																																																															(4) 

where 𝐼$%((𝑡) represents the rate of incentive payment for load reduction offered by the utility in time 𝑡 of the 
day-ahead MG scheduling; 𝐼$%('&.  and 𝐼$%('/0 respectively represent the lower and upper bounds of 𝐼$%(; 𝐷)*

+  is the 
amount of load reduction contributed by the 𝑗-th aggregator, which is a member of the set of aggregators 
containing |𝐽| members; 𝑐𝑜𝑠𝑡&' is the cost of importing power from the national grid; 𝜋&'	is the wholesale power 
price; and 𝑃&' denotes the imported power. 

2.2.1.2. Mathematical model of the aggregators 

As mentioned earlier, responsive load aggregation agents join the flexible demand resources of the same type to 
make them tractable in the capacity market and make them become price-makers, not price-takers. In this context, 
each aggregator aims to maximise its net profit to be gained by paying less financial incentives to its subscribers 
than what it receives from the utility, which is expressed by Eq. (5) subject to Eqs. (6) and (7). 

max𝑃𝑟)*
+ (𝑡) = B𝐼$%((𝑡) − 𝐼)*

+ (𝑡)D . 𝐷)*
+ (𝑡)		∀𝑗, 𝑡,																																																(5) 

𝐼)*
+,'&. ≤ 𝐼)*

+ (𝑡) ≤ 𝐼)*
+,'/0		∀𝑗, 𝑡,																																																																			(6) 

𝐷)*
+ (𝑡) = 1 𝑑2,+

2∈3!

(𝑡)		∀𝑗, 𝑡,																																																																					(7) 

where 𝐼)*
+  is the incentive payment offered by the 𝑗-th aggregator, 𝑑2,+ is the amount of load reduction provided 

by the 𝑘-th customer serviced by the 𝑗-th aggregator, 𝑁- represents the set of customers who have subscribed to 
the 𝑗-th aggregator, while 𝐼)*

+,'&. and 𝐼)*
+,'/0 denote the lower and upper bounds of the incentive rates offered by 

the 𝑗-th aggregator, respectively. 

2.2.1.3. Mathematical model of the customers 

The main goal of the end-users of the MG system is to maximise their utility on the financial incentive programmes 
offered by their corresponding aggregators, whilst simultaneously keeping their comfort levels above certain 
thresholds, which is expressed by Eq. (8) subject to Eqs. (9) and (10). 

max𝑈2,+(𝑡) = 𝑑2,+(𝑡). 𝐼)*
+ (𝑡) − 𝑑𝑖𝑠2,+(𝑡)		∀𝑘, 𝑡,																																																							(8) 

0 ≤ 𝑑2,+(𝑡) ≤ 𝑑.45
2,+ (𝑡)		∀𝑘, 𝑡,																																																																								(9) 

𝑑#677
2,+ (𝑡) = 𝑑45

2,+(𝑡) + 𝑑.45
2,+ (𝑡)		∀𝑘, 𝑡,																																																																		(10) 

where the term (𝑑2,+(𝑡). 𝐼)*
+ (𝑡)) indicates the amount of financial incentive received by the 𝑘-th customer of the 

𝑗-th aggregator in return for experiencing the discomfort level to the value of 𝑑𝑖𝑠2,+, which is translated into cost 
by Eq. (11) [65], [66]; 𝑑#677

2,+  and 𝑑.45
2,+  respectively denote the original load demand and the non-critical portion of 

the original load demand; while 𝑑45
2,+ represents the critical portion of the original load demand, which cannot be 

interrupted under any circumstances. In this study, the administrative customer baselines are used to measure the 
amounts of load reduction, which are represented by 𝑑	2,+ in the model. 

𝑑𝑖𝑠2,+ = 𝑐9
2,+ . (𝑑2,+): + 𝑐:

2,+ . (1 − δ+). 𝑑2,+ 		∀𝑘, 𝑡,																																																			(11) 

where 𝑐9
2,+ and 𝑐:

2,+ are customer-specific (positive) coefficients, which reflect the customers’ attitude with regard 
to load interruption as a function of financial incentive offers, while δ+ is a load type-dependent factor, which 
represents the willingness of different categories of customers in contributing to load reduction with values in the 
range [0, 1]. 

As constrained by Eq. (12), the discomfort cost to end-users must always meet the customers’ expectations.  
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𝑑𝑖𝑠2,+,'&. ≤ 𝑑𝑖𝑠2,+ ≤ 𝑑𝑖𝑠2,+,'/0		∀𝑘, 𝑡,																																																								(12) 

where 𝑑𝑖𝑠2,+,'&. and 𝑑𝑖𝑠2,+,'/0 represent the minimum and maximum limits of discomfort cost experienced by 
each participant in the DR events, respectively. 

Furthermore, as could be expected, the greater the values of 𝑐9
2,+ and 𝑐:

2,+, the greater the discomfort cost of load 
interruption, whereas the greater the value of δ+, the greater the willingness of the customer of type 𝑗 to participate 
in the load reduction programmes. For the most willing customers to enrol in the DSM programmes, δ+ → 1, 
whereas for the least willing customers, δ+ → 0.  

2.2.1.3.1. Stochastic load disaggregation 

It is assumed that the total energy use forecasts are available for each energy consumption sector, which contains 
a certain number of end-users, over a 24-h day-ahead timeframe. However, the individual end-consumers’ hourly 
demand data are not available and need to be estimated by disaggregating the total sector-wise energy 
consumption data over each hour of the system’s operation. To this end, a stochastic algorithm is employed to 
determine the load share of each energy customer over each hour of the day-ahead energy consumption data 
stream. The stochastic algorithm is built on seven parameters, namely: the load-type dependent estimates of the 
DR supply elasticity, δ+; the customer-specific willingness to supply DR capacity, characterised by 𝑐9

2,+and 𝑐:
2,+; 

the full load demanded by each customer, 𝑑#677
2,+ , and its and non-critical portion, 𝑑.45

2,+ ; the maximum participation 
rate of different consumer categories in the incentive-directed DR programmes, 𝑃𝑎𝑟'/0

+ ; as well as the number of 
customers in each load type cluster, 𝑁46;<

+ = S𝑁-S. More specifically, the stochastic algorithm generates 𝑗 random 

𝑁46;<
+ -element vectors of reduced load values, T𝑑9,+ , 𝑑:,+ , … , 𝑑3"#$%

& ,+V, each with a fixed sum determined by the 
share of load category 𝑗 in the total load reduction, which is controlled by 𝛿+, while adhering to the constraint in 
Eq. (13) [67]. Also, it is noteworthy that the parameter 𝑃𝑎𝑟'/0

+  in the algorithm serves the purpose of defining the 
upper limit of 𝑑.45

2,+ , as expressed in Eq. (14). Furthermore, the randomly selected 𝑐9
2,+ and 𝑐:

2,+ values characterise 
the DR supply decisions of individual end-consumers with respect to the aggregator-offered incentive rates in the 
algorithm. 

𝑑.45
2,+ ≤ 𝑑2,+ ≤ 𝑑.45

2,+ ,																																																																						(13) 

𝑑.45
2,+ ≤ 𝑃𝑎𝑟'/0

+ × 𝑑#677
2,+ ,																																																																			(14) 

where 𝑑.45
2,+  and 𝑑.45

2,+  respectively denote the lower and upper bounds of the non-critical portion of the customer-
specific loads subscribed to the 𝑗-th aggregator. 

Fig. 3 shows a flowchart of the employed stochastic algorithm to synthetically disaggregate the total load reduction 
capacity procured by the proposed incentive-based DR programme into individual end-users who subscribe to the 
programme. First, the values of sectoral elasticities of customer-supplied DR capacities, δ+, sector-specific 
maximum participation rates, 𝑃𝑎𝑟'/0

+ , the number of customers in each load category, 𝑁46;<
+ , sector-wide lower 

bounds of the non-critical portions of full load demands (available load interruption capacities of end-users), 𝑑.45
2,+ , 

the DRA-offered incentive price for load reduction, 𝐼)*
+ , the forecasted share of each load category in the total 

load demand, the expected total sectoral load interruptions, as well as the sectoral ranges of discomfort factors 
and full loads, are loaded as input data. For each load category, the algorithm then synthesises 𝑁46;<

+ -element 
vectors of full load by normalising the uniformly-distributed random numbers generated in the interval (0, 1) using 
the MATLAB ‘rand’ function – which represent the original (non-reduced) loads of sector-wide customers – to 
fall within the pre-defined allowable range and scaling them so that their sum is equal to the total sectoral load 
demand forecasted. As the figure shows, if the associated condition is not met, the process of random full load 
generation for the sectoral customers is iterated until no synthesised load is outside the pre-defined range. After 
recording the synthesised full loads across all sectors, customer-specific discomfort factors are randomly 
generated and normalised to lie within the pre-specified ranges. Then, based on the generated discomfort factors, 
best-strategy load reductions of the participating end-users of each sector are derived. The calculated interruptible 
loads are then normalised to fit the customer-type-specific allowable range, and also scaled so that their sum is 
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equal to the total sectoral DR capacity procurement expected. At this stage, if the condition that, all the curtailable 
loads synthesised should lie within the allowable sectoral range, is not satisfied, the process of random 
interruptible load synthesis is repeated from the random customer-specific discomfort factor generation block. 
Also, given that the synthesised values of load reduction are first normalised to lie within the corresponding 
allowable range and then scaled to satisfy the expected total sectoral load curtailment, there exists the possibility 
that the discomfort factors that correspond to the corrected customer-supplied interruptible loads do not lie within 
the allowable range. Accordingly, another condition block checks if the aforementioned expression is false and, 
in that case, executes the random load reduction-related statements repeatedly until the specified condition result 
will be true. As one would expect, the stochastic algorithm’s probability of acceptance decreases as the 
dimensionality of the problem increases. This leads to either very long running times (due to the need for many 
iterations) or computational intractability of the overall simulation process for ultra-high-dimensional problems, 
which necessitate the use of heuristic and meta-heuristic optimisation-based algorithms – for the disaggregation 
of the total load forecasted, as well as the expected curtailable portion of it, into individual end-consumers across 
different sectors. However, given the relatively small scale of the case study considered in this paper (and hence, 
the relatively small number of sectoral end-consumers), the proposed stochastic algorithm was able to yield the 
disaggregated load reductions with a standard desktop computer in a few seconds of computational time.  

 

Fig. 3. Flowchart of the stochastic total customer-supplied DR capacity disaggregation algorithm. 



14 
 

It should be noted that the stochastic algorithm is implemented for each hour of the next day for which a net 
energy deficit is predicted and is embedded within the main distributed algorithm (Algorithm 1) developed to 
determine the unique, pure-strategy Nash equilibrium of the day-ahead, non-cooperative DR dispatch game (see 
sub-section 2.2.4). It is also noteworthy that the employed disaggregation mechanism is not required for model 
implementation in real-world practice, as it is used only as a means to synthetically generate individual-level 
energy demand and DR supply capacity. 

2.2.2. Mathematical formulation of the game 

As shown in Fig. 4, the proposed dual-loop framework, which establishes a two-level strategic, day-ahead DSM 
market game for decision-making regarding the optimal dispatch of flexible DR resources is driven by two 
separate types of financial incentive offers: (1) those provided by the utility (MG operator) at the top (wholesale) 
level, and (2) those proposed by load aggregators at the bottom (retail or downstream) level. The operator-
provided incentive rates would directly impact the aggregate load reduction provided by the aggregation agents 
and, by the same token, the aggregator-provided incentive rates have a direct influence on the participation of 
end-users in the interruptive load management programmes. Looking from the inside out, the financial incentives 
offered by the utility/aggregators evolve with reference to the aggregators’/customers’ responses to different 
levels of the offered incentive rates - and, in this sense, the devised framework is an intertwined system with a 
negative feedback loop. The DRAs in the proposed dual-loop, Stackelberg game-theoretic model, represented in 
Fig. 4, would have a twofold purpose: they act as the followers of the utility in the top-level loop, whilst, at the 
same time, leading the bottom-level loop, where end-users serve as final followers. 

 

Fig. 4. Two-loop structure of the proposed Stackelberg game-theoretic DR management framework. 

For the dual-loop, Stackelberg game-theoretic DR provision framework modelled above, a finite set of pure 
strategies (𝐼$%(∗ , 𝐼)*∗ , 𝐷∗) establish the pure-strategy Nash equilibrium of the game, if, and only if, the following 
inequality constraints are relaxed: 

𝑂𝐶$%(𝐼$%(∗ , 𝐼)*∗ , 𝐷∗) ≤ 𝑂𝐶$%(𝐼$%(, 𝐼)*∗ , 𝐷∗),																																																						(15) 

𝑃𝑟)*
+ Y𝐼$%(∗ , 𝐼)*

+,∗, 𝐷)*
+,∗Z ≥ 𝑃𝑟)*

+ Y𝐼$%(∗ , 𝐼)*
+ , 𝐷)*

+,∗Z				∀𝑗,																																														(16)    

𝑈2,+Y𝑑2,+,∗, 𝐼)*
+,∗Z ≥ 𝑈2,+Y𝑑2,+ , 𝑑>2,+,∗, 𝐼)*

+,∗Z    ∀𝑘,                                         (17) 

where 𝐼)*∗ = {𝐼)*
9,∗, 𝐼)*

:,∗, 𝐼)*
?,∗, 𝐼)*

@,∗, 𝐼)*
A,∗} represents the union of pure strategies taken by all aggregators; 𝐷∗ =

{𝑑9∗, 𝑑:∗ , … , 𝑑B∗ } denotes the union of pure strategies taken by the customers subscribed to each aggregator 𝑗 ∈ 𝐽, 
where 𝐾 is the number of all the customers of the MG;	𝑑2,+,∗ represents the pure strategy taken by the 𝑘-th 
customer subscribed to the 𝑗-th aggregator; 𝑑>2,+,∗ = {𝑑9,+,∗, 𝑑:,+,∗, … , 𝑑2>9,+,∗, 𝑑2C9,+,∗, … , 𝑑3&,+,∗} denotes the set 
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of pure strategies of all the customers of the 𝑗-th aggregator except its 𝑘-th customer; while 𝐷)*
+,∗ = {𝑑2,+,∗, 𝑑>2,+,∗} 

identifies the pure strategies of all the customers signed up to the 𝑗-th aggregator. 

The constraints in Eqs. (15)-(17) ensure that at the Nash equilibrium of the game, neither the MG’s operational 
cost, nor the aggregators’ profits, nor the customers’ utilities can be further improved by taking a different strategy. 
As the next sub-section demonstrates, the developed dual-loop, Stackelberg, strategic game has a unique, pure-
strategy Nash equilibrium solution, at which no player can improve its payoff without reducing the payoff to at 
least one other player. 

2.2.3. Existence and uniqueness of the Nash equilibrium 

In view of the hierarchical structure of the proposed game-theoretic model for the provision of DR resources, 
backward induction can be utilised to identify the Nash equilibrium point. To this end, first, the best-response 
strategies of the end-users to the aggregator-provided incentive prices have to be determined as part of the inner 
loop of the game. The second step is to determine the aggregators’ best strategies, while the last step is to examine 
the existence of the best strategy for the MG operator in the outer loop of the game, laid out in Fig. 4. The following 
theorem provides the necessary and sufficient conditions for the existence and uniqueness of a Nash equilibrium 
point for the devised game-theoretic model. 

Theorem 1. There exists a unique, pure-strategy Nash equilibrium solution to the devised dual-loop, Stackelberg, 
non-cooperative game-theoretic framework for implementing the proposed customer utility-preserving, system 
state-aware, incentive-based load demand interruption programme, at which no player can obtain a higher level 
of payoff by deviating from its best strategy. 

Proof. 

(1) Determine the best strategies of the end-users, 𝑑2,+,∗, in response to the incentive payments offered by their 
corresponding aggregators for load reduction, 𝐼)*

+ , by taking the first-order derivative of 𝑈2,+, given in Eq. (8), 
with respect to the amount of load reductions they provide, and then setting them equal to zero, as follows: 

𝜕𝑈2,+

𝜕𝑑2,+ = 𝐼)*
+ − B2𝑐9

2,+ . 𝑑2,++𝑐:
2,+ . Y1 − δ+ZD = 0,																																														(18) 

𝑑2,+,∗ =
𝐼)*
+ −𝑐:

2,+ . (1 − δ+)
2𝑐9

2,+ .																																																												(19) 

Then, the second-order derivative of 𝑈2,+ can be obtained as: 

𝜕:𝑈2,+

𝜕(𝑑2,+): = −2𝑐9
2,+ < 0.																																																																(20) 

Given the positive value of 𝑐9
2,+, the second-order derivative of 𝑈2,+ is strictly negative, which implies that 𝑈2,+ is 

strictly concave over the feasible region of 𝑑2,+. Hence, the best-response strategies of the end-users, derived in 
Eq. (19), are guaranteed to return the unique, globally-optimum solutions. 

(2) Identify the best strategies of the aggregators, 𝐼)*
+,∗, using the backward induction approach by substituting the 

best strategies of the end-users, given in Eq. (19), into Eq. (5), as follows: 

 

																						𝑃𝑟)*
+ = Y𝐼$%( − 𝐼)*

+ Z. 1
𝐼)*
+ −𝑐:

2,+ . Y1 − δ+Z
2𝑐9

2,+ = −Y𝐼)*
+ Z

:
. 1

1
2𝑐9

2,+
2∈3!

	
2∈3!

+ 𝐼)*
+ . (1

𝑐:
2,+ . Y1 − δ+Z
2𝑐9

2,+ + 1
𝐼$%(
2𝑐9

2,+) + 𝐼$%(. 1
−𝑐:

2,+ . Y1 − δ+Z
2𝑐9

2,+ .
2∈3!2∈3!2∈3!

																													(21) 

Taking the first-order derivate of 𝑃𝑟)*
+ , given in Eq. (21), with respect to the amount of financial incentives offered 

by the aggregators and then setting it equal to zero, the best strategies of the aggregators can be obtained as: 
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𝜕𝑃𝑟)*
+

𝜕𝐼)*
+ = −𝐼)*

+ 1
1
𝑐9
2,+

2∈3!

+ (1
𝑐:
2,+ . Y1 − δ+Z
2𝑐9

2,+ + 1
𝐼$%(
2𝑐9

2,+)
2∈3!2∈3!

= 0,																																		(22) 

𝐼)*
+,∗ =

(∑
𝑐:
2,+ . Y1 − δ+Z
2𝑐9

2,+ +∑ 𝐼$%(
2𝑐9

2,+)2∈3!2∈3!

∑ 1
𝑐9
2,+2∈3!

=
1
2 1 𝑐:

2,+ . Y1 − δ+Z +
1
2 𝐼$%(

2∈3!

.																								(23) 

It is worthwhile noting that the aggregators’ best strategies, derived in Eq. (23), are reflective of the elasticity of 
customer-supplied DR capacity, whilst additionally relying on the utility’s best strategy - a mechanism consistent 
with the fundamental purposes of the aggregators. 

Furthermore, the second-order derivative of 𝑃𝑟)*
+  can be obtained as: 

𝜕:𝑃𝑟)*
+

𝜕(𝐼)*
+ ):

= − 1
1
𝑐9
2,+

2∈3!

< 0.																																																													(24) 

Given the positive value of 𝑐9
2,+, the second-order derivative of 𝑃𝑟)*

+  is strictly negative, which implies that 𝑃𝑟)*
+  

is strictly concave over the feasible region of 𝐼)*
+ ; therefore, the best strategies of the aggregators, given in Eq. 

(23), are guaranteed to yield the globally-optimum solutions. 

(3) Verify the existence and uniqueness of the MG operator’s best strategy by the following steps: 

Substituting the best strategies of the aggregators, given in Eq. (23), into the best-response strategies of the 
customers, provided in Eq. (19), yields: 

	𝑑2,+,∗ =
(12∑ 𝑐:

2,+ . Y1 − δ+Z +
1
2 𝐼$%()2∈3! −𝑐:

2,+ . (1 − δ+)

2𝑐9
2,+  

																											= (
1

4𝑐9
2,+ . 1 𝑐:

2,+ . Y1 − δ+Z) +
1

4𝑐9
2,+ . 𝐼$%(

2∈3!

−
𝑐:
2,+ . Y1 − δ+Z
2𝑐9

2,+ .																								(25) 

Accordingly, the aggregated load reduction of each aggregator can be calculated as: 

 

	𝐷)*
+,∗ = 1 𝑑2,+,∗

2∈3!

= (
𝐼$%(
4 . 1

1
𝑐9
2,+

2∈3!

) + (
1
4 1

𝑐:
2,+ . Y1 − δ+Z

𝑐9
2,+ )

2∈3!

−
1
2 1

𝑐:
2,+ . Y1 − δ+Z

𝑐9
2,+ =

𝐼$%(
4 . 1

1
𝑐9
2,+

2∈3!

−
1
4 1

𝑐:
2,+ . Y1 − δ+Z

𝑐9
2,+

2∈3!

.
2∈3!

 
(26) 

Then, the total amount of load reduction provided by all the aggregators can be expressed as: 

1𝐷)*
+,∗ =1 1 𝑑2,+,∗

2∈3!+∈-+∈-

=
𝐼$%(
4 .1 1

1
𝑐9
2,+ −

1
4

2∈3!+∈-

1 1
𝑐:
2,+ . Y1 − δ+Z

𝑐9
2,+ .

2∈3!+∈-

																												(27) 

For the sake of simplicity, let 𝛼 = ∑ ∑ 9

4'
(,&2∈3!+∈- > 0 and 𝛽 = ∑ ∑ >4*

(,&.E9>F&G

4'
(,&2∈3!+∈- > 0. Accordingly, Eq. (27) 

can be simplified to the following equation: 

1𝐷)*
+,∗ =

𝐼$%(
4

+∈-

. 𝛼 +
1
4𝛽.																																																																	(28) 

Substituting Eqs. (3), (4), and (28) into the operational cost imposed on the utility to meet the onsite power 
generation capacity deficit, presented in Eq. (1), gives: 
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																					𝑂𝐶$% =	𝜋&'. 𝑃&' + 𝐼$%(. f
𝐼$%(
4 . 𝛼 +

1
4𝛽g

= 𝜋&'. h𝐷!"# − (1𝐷)*
+,∗)

+∈-

i+
𝛼
4 . 𝐼$%(

: +
𝛽
4 . 𝐼$%(

= 𝜋&'. f𝐷!"# − (
𝐼$%(
4 . 𝛼 +

1
4𝛽)g +

𝛼
4 . 𝐼$%(

: +
𝛽
4 . 𝐼$%(

=
𝛼
4 . 𝐼$%(

: + f
𝛽 − 𝜋&'. 𝛼

4 g . 𝐼$%( + 𝜋&'. 𝐷!"# −
𝜋&'. 𝛽
4 .								 

(29) 

The first- and second-order derivatives of the re-formulated operational cost of meeting the onsite power 
generation capacity deficit with respect to the utility-offered financial incentives can be obtained as follows: 

𝜕𝑂𝐶$%
𝜕𝐼$%(

=
𝛼
2 . 𝐼$%( + f

𝛽 − 𝜋&'. 𝛼
4 g,																																																										(30) 

𝜕:𝑂𝐶$%
𝜕(𝐼$%():

=
𝛼
2 > 0.																																																																					(31) 

Given the positive value of the second-order derivative of 𝑂𝐶$%, it can be deduced that it is a strictly convex 
function of 𝐼$%(. Setting the first-order derivative of 𝑂𝐶$%, given in Eq. (30), equal to zero, the globally-optimum 
and, at the same time, the unique best strategy of the MG operator can be determined as follows: 

𝐼$%(∗ =
𝜋&'. 𝛼 − 𝛽

2𝛼 .																																																																						(32) 

When the MG operator’s pure strategy is identified, it can be substituted into Eq. (23) to find the pure strategies 
of the aggregators. Consequently, the best-response strategy of each end-user can be calculated by substituting 
the unique, globally-optimum incentive rate offered by the aggregator it is enrolled with, expressed in Eq. (23), 
into Eq. (19). Finally, the vector of the identified best strategies (𝐼$%(∗ , 𝐼)*

+,∗, 𝑑2,+,∗) represents the pure-strategy 
Nash equilibrium of the devised dual-loop, Stackelberg game and, thus, the proof of Theorem 1 is complete. □ 

2.2.4. Distributed algorithm 

The pure-strategy Nash equilibrium of the dual-loop, Stackelberg, non-cooperative game, derived analytically in 
the previous sub-section, is subject to privacy criticisms; the derived backward induction-based optimal solution 
finds the pure strategy of the MG operator assuming that the utility has complete information about the game. 
However, this is not a commonplace, accepted practice. Not only might this result in destructive strategies from 
the utility that subvert, rather than uphold, the social welfare, it would also put the privacy of customers at risk. 
To address these shortcomings, a distributed algorithm is derived in this sub-section to iteratively approximate 
the Nash equilibrium solution to the devised game. Nevertheless, it is still assumed that aggregators are trusted 
agents of customers playing on the same side of the line at the top level (outer loop) of the proposed dual-loop 
game, shown in Fig. 4. Accordingly, the distributed algorithm, derived in Algorithm 1, serves as the ultimate 
framework to obtain the Nash equilibrium solution set of the game. The fundamental principle of the algorithm is 
to iteratively update the amount of incentive price offered by the utility - as the wholesale-market-maker - from 
𝐼$%('&.  to 𝐼$%('/0, and then determine the optimal incentive price offered by each aggregator and the participation rate 
(i.e. load demand reduction) of the customers enrolled with each aggregator using a distributed variant of the 
proposed analytical framework in the previous sub-section. More specifically, for each utility-offered incentive 
rate, the aggregators, first, send the incentive rate signals (calculated according to Eq. (23)) to their customers; the 
customers then determine their best-response strategies (using Eq. (19)) and submit their optimal load reductions 
to their corresponding aggregators; and finally, the flexible load aggregation agents accumulate the reduced 
demands (using Eq. (28)) and transmit it to the MG utility. At this point, the utility calculates the operational cost 
of addressing power deficiencies using Eq. (1) and keeps a log of the results (𝐼$%(∗ , 𝑂𝐶$%∗ ) in case it leads to a 
lower operational cost as compared to the last minimum value of 𝑂𝐶$% recorded. At each critical peak time-step 
of the day-ahead operation of the MG, the distributed algorithm is run iteratively until the constraints contained 
in Eqs. (15)-(17) are all relaxed and the termination condition of the algorithm is met, implying that the Nash 
equilibrium of the game is found. Such decentralisation of the decision-making platform ensures that all the 
economic actors have some clout in the game. 
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Note that as proved in the previous sub-section, 𝑂𝐶$% is strictly convex with respect to 𝐼$%(; hence, search space 
enumeration is guaranteed to find the optimum incentive price to be offered by the utility to the aggregators, 𝐼$%(∗ , 
and, accordingly, Algorithm 1 is guaranteed to converge to the unique Nash equilibrium solution set of the devised 
game (𝐼$%(∗ , 𝐼)*

+,∗, 𝑑2,+,∗). 

Algorithm 1. Proposed distributed algorithm to find the unique Nash equilibrium of the developed game. 

1:    The MG operator initialises 𝐼$%(∗ = 0 and 𝑂𝐶$%∗ = 𝑐𝑜𝑠𝑡&'Y𝐷!"#Z 
2:    for the utility-posted incentive rate of 𝐼$%( ranging from 𝐼$%('&.  to 𝐼$%('/0 at steps of 𝑖$%( do 
3:       Broadcast 𝐼$%( to all the flexible load aggregators 
4:       for each aggregator 𝑗 ∈ 𝐽 run the retail market and do 
5:          Calculate the best strategy incentive rate to be offered to the end-users, 𝐼)*

+,∗ (using Eq.  
             (23)) 
6:          Send the calculated incentive price signal to the customers registered to participate in  
             the load reduction programme 
             for each customer  𝑘 ∈ 𝑁- do 
7:             Determine the best-response strategy of the customer to the financial incentive rate 
                offered by the aggregator it is enrolled with, 𝑑2,+,∗ (using Eq. (19)) 
8:             Send the best-response strategy of each registered customer back to the 
                corresponding aggregator 
9:          end for 
10:     Aggregate the curtailable load resources provided by the end-users (using Eq. (28)) 
11:     Transmit the identified optimum value of the aggregated load reduction capacity back 
          to the MG operator 
12:     end for 
13:     Calculate the operational cost of the MG to balance out power deficit as: 

												𝑂𝐶$% = 𝜋&'. 𝑃&' h𝐷!"# −1𝐷)*
+

+∈-

i + 𝐼$%(.1𝐷)*
+

+∈-

(𝑡) 

14:     if (𝑂𝐶$% < 𝑂𝐶$%∗ ) then 
15:       Update the optimal values of the utility-offered incentive price and operational cost of  
            the MG as: 𝐼$%(∗ = 𝐼$%( and 𝑂𝐶$%∗ = 𝑂𝐶$% 
16:     end if 
17:   end for 
18:   Return the set of (𝐼$%(∗ , 𝐼)*

+,∗, 𝑑2,+,∗) as the pure-strategy Nash equilibrium of the game 
 

2.2.5. Sequence of operations 

Fig. 5 presents a sequence diagram of the proposed dual-loop, market-driven, incentive-based, aggregator 
mediated DR scheduling framework that uses the developed privacy-preserving distributed algorithm to yield the 
pure-strategy Nash equilibrium of the game. As the figure shows, first, the MG system operator requests the 
forecasted power output from renewable power generation assets from the MG asset manager. It then sends a 
signal to the DRAs that announces a DR event and triggers the proposed dual-loop DSM market framework to 
optimally schedule the power imports and system-level dispatch of DR resources. The dual-loop DSM market 
design is then run iteratively at increasing values of the utility-offered incentive price for load reduction to produce 
an optimal trade-off between imported power and procured DR units. After determining the cost-optimal solution, 
the MG operator announces the cleared utility-offered incentive price to the DRAs who, in turn, announce the 
cleared DRA-offered incentive price to their customers. This process is repeated for each critical peak time-step 
of the next day. Specifically, the critical peak time-steps are considered to be the time-steps of MG operation for 
which a net energy deficit (positive net load) is predicted, based on the next day’s total load and onsite renewable 
power generation forecasts.  
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As the above discussion suggests, the end-consumers and, in turn, the DRAs, only disclose the information that 
is really required by the MG operator to be able to find an optimal DR allocation. That is, the developed iterative 
auction protocol that clears the proposed game-theoretic DSM market design is able to reduce the amount of 
information exchanged – and all associated complexities – to the essential minimum, thus preserving the privacy 
of the players’ valuations. Indeed, the suggested iterative auctions are modelled by considering the DRAs and 
end-consumers as “black-boxes” that are represented by oracles, where the MG operator and DRAs repeatedly 
query these oracles, respectively. These oracles are shown to be incentive-compatible in sub-section 4.2, meaning 
that the design of the market is consistent with the factors that motivate the DRAs and end-consumers to truthfully 
participate in the DSM market. 

 
Fig. 5. Sequence diagram of the suggested distributed algorithm to solve the non-cooperative game of utility-

aggregator-customer interactions in the delivery of smaller DR products. 

3. Case study: Ohakune, New Zealand 

To demonstrate the effectiveness of the proposed non-cooperative game-theoretic approach to dispatching DR 
resources, a case study is carried out for the town of Ohakune, in New Zealand (latitude 39.4180°S, longitude 
175.3985°E). Located in the central part of the North Island of New Zealand, Ohakune is known as the ‘snow 
season’ capital of the North Island. Accordingly, the electrical load on the town’s distribution system is subject to 
a considerable degree of seasonality. The case study is run for a representative day (24 h at hourly intervals) of 
the winter and summer seasons, where the one-day total energy consumption is assumed to be highest and lowest, 
respectively.2 Note that demand for electricity in the town of Ohakune peaks in winter with the highest daily 
electricity consumption occurring during the evening peak period, between 5 p.m. to 10 p.m. [68]. 

3.1. Micro-grid configuration and business model 

A DC-linked, grid-tied MG system is modelled in accordance with Fig. 6, which is equipped with solar 
photovoltaic (PV), wind turbine (WT), and run-of-the-river micro-hydro (MH) power plants. It is assumed that 
the customers’ overall goal is to become only partially energy resilient, where the MG is able to provide a seamless 
transition to critical loads during outages. To this end, given that adding storage resources carries substantial 
additional capital investment to the 100%-renewable project [69], which is not necessary to meet the site’s energy 

 
2 For the purposes of this study, winter is defined between the 1st of June and the 31st of August, while summer is defined 
between the 1st of December and the 28th/29th of February. 
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resilience goals, any storage devices were excluded from the technology portfolio. Accordingly, any net energy 
deficits during normal grid-connected operations need to be addressed by an optimal combination of imported 
power and curtailed load. Such an optimal trade-off solution at critical peak time-steps can be produced by 
applying the proposed game-theoretic DR-integrated energy management framework. 

The grid-connected community MG, which is set to reduce the cost of energy and provide more reliable energy 
from RESs, is assumed to be financed by the energy-as-a-service (EaaS) business model. The EaaS business 
model provides a flexible ownership platform, which allows end-consumers, utilities, and other financing partners 
to strategically collaborate and capitalise on the system [70]. However, it was decided to make a simplification of 
the single ownership structure, where a third party (an energy service company) – with enough experience, 
knowledge and financial resources – designs, builds, operates, owns, and maintains the renewables-based MG to 
serve different electrical load classes and charges a fee in exchange for its service. The energy tariffs are assumed 
to be fixed and not reflective of wholesale electricity prices. However, the end-consumers are offered financial 
incentives for reducing their energy use during the critical peak time-steps – where the net load on the MG is 
positive and wholesale prices are high – in accordance with the proposed dual-loop aggregator-mediated DSM 
market design. It is also assumed that the optimum size of the MG equipment is available from prior techno-
economic feasibility and optimal capacity-planning studies. 

 

Fig. 6. Schematic of DC-linked community PV-WT-MH MG system, feeding residential, commercial, 
industrial, agricultural, and EV-charging loads. 

3.2. Input data 

This sub-section presents the input data supplied to the model. Table 1 presents the data values for the proposed 
non-cooperative game-theoretic DSM model scalars, namely: the step size of the iterative distributed algorithm, 
as well as the minimum and maximum bounds for the utility- and aggregator-offered incentive prices and the 
inconveniences experienced by the users.  

Table 1. Data values and the proposed game-theoretic DSM model scalars. 

Parameter Value Parameter Value 
𝑖012 $0.020/kWh 𝐼34

%,,./ $0.300/kWh 

𝐼012,-&  $0.020/kWh 𝑑𝑖𝑠#,%,,-& $0.001/kWh 
𝐼012,./ $0.320/kWh 𝑑𝑖𝑠#,%,,./ $0.280/kWh 

𝐼34
%,,-& $0.010/kWh   

 

3.2.1. Load demand data 

It is assumed that the total sectoral demand forecasts are available for each hourly time-step of the next day. To 
forecast the total sectoral loads on the MG (excluding the EV-charging demand) over a representative day (24 h) 
of the winter and summer seasons, first, mean yearly peak load demand was determined based on the historical 
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demand data [68]. The forecasted total peak demand was then broken down by the residential, commercial, 
industrial, and agricultural sectors in accordance with the New Zealand’s Ministry of Business, Innovation and 
Employment’s (MBIE’s) most recent energy statistics [71]. Then, the forecasted residential peak demand was 
used to derive daily residential load profiles based on the findings of the New Zealand GREEN Grid residential 
electricity demand study for the representative summer and winter days with lowest and highest one-day total 
demands, respectively [72]. Also, the season-wise typical daily consumption patterns of electricity in Ohakune, 
derived from real demand profiles (from substations), were used to shape the daily load profiles of the commercial, 
agricultural, and industrial sectors [68]. 

To derive the e-mobility load profile, the EU-funded Green eMotion project dataset [73] was used as a proxy for 
New Zealand uptake. Accordingly, the real-driving energy consumption of a typical A-segment, small-sized EV 
was considered to be 257 Wh/km, while accounting for the fact that the median winter energy consumption per 
km is higher than the median summer consumption by 40%. The scaled e-mobility energy consumption data were 
then put into a New Zealand context in accordance with the estimated total energy consumption and typical daily 
consumption pattern of a fleet of 45 Nissan Leafs monitored by the Flip the Fleet project in New Zealand [74]. 
Moreover, the amount of driving done per driver was assumed to be 29 km/day, in compliance with New Zealand’s 
household travel survey [75]. Fig. 7 shows the hourly total load demand on the MG for the two representative 
days of the summer and winter seasons. 

 

 

Fig. 7. Forecasted hourly total load power demand on the Ohakune’s distribution system for a representative day 
of: (a) summer; and (b) winter. 

This study is based on a synthesised district of 250 detached houses, a total of 65 small-to-medium commercial 
buildings, a total of 10 medium-scale industrial facilities, a total of 55 large-scale irrigation systems, as well as a 
fleet of 180 EVs – to transition the town’s light vehicle fleet to low-emissions.3 Accordingly, the forecasted sector-
wise total load demands are disaggregated into individual customers. To this end, the DR capacity of the electrical 

 
3 For the sake of simplification, the entire EV-charging load demand is assumed to be served through the dedicated EV 
charging station. 
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loads are specifically parametrised by 𝛿+, 𝑐9
2,+, 𝑐:

2,+, 𝑑#677
2,+ , 𝑑.45

2,+ , 𝑃𝑎𝑟'/0
+ , 𝑁46;<

+  and the disaggregation algorithm 
presented in sub-section 2.2.1.3 is employed. 

Data values for load type-specific and individual-level load demand parameters mentioned above were not readily 
available and had to be estimated based on the corresponding information available. The values of 𝛿+ for 
residential, commercial, industrial, and agricultural loads were set according to the mean of the corresponding 
values of lost load in a New Zealand context [76], while for the EV-charging loads, it was set based on the mean 
of the values of lost load for a fleet of plug-in EVs reported in [77]. The range of values the parameters 𝑐9

2,+ and 
𝑐:
2,+can take were chosen based on the values reported in [41], [42] for different load types, which were normalised 

to the load type-dependent DR procurement factors (𝛿+) in an inversely proportional manner. Furthermore, in view 
of the lack of reliable data for a New Zealand context, relevant data for eleven large U.S. utilities [78] were 
adopted to adjust the values of 𝑃𝑎𝑟'/0

+  for residential, commercial, industrial, and agricultural loads, while the 
value of this parameter was taken from [79] for EV-charging loads. Table 2 lists data values and sources for the 
proposed game-theoretic DR scheduling model parameters. 

Table 2. Data values and assumption sources for the DR capacity of different customer classes. 

Parameter  Aggregator 

Residential Commercial Industrial Agricultural EV-charging 

δ% Value 0.48 0.51 0.57 0.63 0.76 

Source [76] [76] [76] [76] [77] 

𝑐9
#,% Range [1.08´10-3, 

1.15´10-3] 
[1.04´10-3, 
1.07´10-3] 

[0.99´10-3, 
1.03´10-3] 

[0.95´10-3, 
0.98´10-3] 

[0.91´10-3, 
0.94´10-3] 

Source [41], [42] [41], [42] [41], [42] [41], [42] [41], [42] 

𝑐:
#,% Range [11.49´10-3, 

11.70´10-3] 
[11.31´10-3, 
11.48´10-3] 

[11.71´10-3, 
11.86´10-3] 

[11.25´10-3, 
11.30´10-3] 

[11.40´10-3, 
11.57´10-3] 

Source [41], [42] [41], [42] [41], [42] [41], [42] [41], [42] 

𝑑'())
#,%  

[kW] 
Range [8, 30] [20, 100] [100, 200] [30, 65] [5, 30] 

Source (this paper) (this paper) (this paper) (this paper) (this paper) 

𝑑&!"
#,%  

[kW] 
Range [2.5, 16.5] [5, 60] [20, 84] [10, 46.2] [4, 25.5] 

Source (this paper) (this paper) (this paper) (this paper) (this paper) 

𝑃𝑎𝑟,./
%  

[%] 
Value 55 60 42 71 85 

Source [78] [78] [78] [78] [79] 

𝑁!(56
%  Value(s) 250 65 10 55 180 

Source (this paper) (this paper) (this paper) (this paper) (this paper) 
 

3.2.2. Onsite generation data 

The optimum size of the solar PV, WT, and MH power plants were respectively assumed to be 1 MW, 6 MW, 
and 1.2 MW. To estimate the power output from these power plants for each hour of the representative days, first, 
the hourly solar irradiance, ambient temperature, wind speed, and river streamflow data were forecasted using the 
NIWA4 National Climate Database (CliFlo) [80]. To this end, the rolling average of solar irradiance, ambient 
temperature, wind speed, and river streamflow were calculated for each hour of the historical days on which the 
lowest and highest one-day total demands were occurred (over a 20-year period, between 1999 and 2018). The 
power outputs from the solar PV, WT, and MH generation systems were then determined based on the forecasted 
meteorological data using the formulas given in [81]. Fig. 8 displays the forecasted power outputs from the PV, 
WT, and MH power plants for the representative days of the summer and winter seasons.  

 
4 New Zealand’s National Institute of Water and Atmospheric Research. 
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Fig. 8. Power outputs from the PV, WT, and MH power plants for a representative day of: (a) summer; and (b) 
winter. 

3.2.3. Wholesale electricity price data 

Wholesale electricity market prices are provided in Fig. 9. The figure presents the rolling average of the electricity 
price for each hour of the historical days on which the lowest and highest one-day total demands were recorded, 
during the timeframe of 2008 to 2019. To this end, historical nodal electricity price data at the Ohakune’s grid 
exit point were retrieved from the New Zealand’s electricity market database [82]. Note that although wholesale 
electricity prices are high during the morning peak hours of the representative days, higher levels of total power 
generation from onsite DERs – and, particularly, WTs – offset, to a considerable extent, the need to implement a 
DR programme during these hours. Also note that given that hydropower is the dominant source of power 
generation in New Zealand’s energy mix, spot electricity prices are higher during the summer season in most 
regions of New Zealand, including Ohakune.5 

 

Fig. 9. Forecasted nodal wholesale electricity price data at the Ohakune’s grid exit point for a representative day 
of: (a) summer; and (b) winter. 

4. Results and discussion 

The results obtained by applying the proposed modelling framework to the test-case, laid out in Section 3, are 
analysed and validated in this section through scenario testing. To validate the feasibility and utility of the 
proposed dual-loop, Stackelberg, strategic game-theoretic DR scheduling framework in identifying the best 
compromise between the imported power and utilised DR capacity on the day-ahead timeframe, two scenarios are 
tested, with the typical summer and winter days discussed in Section 3. More specifically, the input data to the 
proposed model, namely the day-ahead meteorological, wholesale electricity price, and load demand data profiles, 
as well as the parameter settings associated with different customer classes, are the same as those presented in 
Section 3. Subsequently, the discomfort costs and revenues for end-consumers, the profits for the DRAs, and the 
utility for the MG operator are presented and analysed for the two scenarios. Specifically, the efficacy of the 

 
5 The reason for this is the more reliance on thermal electricity generation and natural gas-fired ‘peaker’ power plants during 
the dryer season. 



24 
 

proposed distributed algorithm to determine the unique, pure-strategy Nash equilibrium of the aggregator-
mediated DSM game is verified in sub-section 4.1; a financial balance assessment of the devised game structure 
is conducted in sub-section 4.2; and the incentive compatibility6 of the proposed DR scheduling design is 
demonstrated in sub-section 4.3. The code was developed and run in MATLAB (version 9.5, R2018b) [83].  

4.1. Scenario analysis 

The proposed game-theoretic DR scheduling framework is applied on a day-ahead basis and relies on the forecasts 
of non-dispatchable renewables, wholesale prices, and load demand, based on which financial incentives are 
posted to the wholesale DSM market by the MG operator for load reduction. Accordingly, to facilitate 
understanding of the model behaviour, the process of procuring DR provisions is illustrated by two typical 
scenarios for representative days of the summer and winter seasons, where the MG loading levels are lowest and 
highest, respectively. This is mainly because low-temperature heat is the main (~63%) use of household energy 
in New Zealand, providing space heat (~34%) and water heat (~29%) [84]. 

The convergence process of the proposed iterative distributed algorithm (described in sub-section 2.2.4) to the 
unique, pure-strategy Nash equilibrium of the devised DSM game is depicted in Fig. 10 for the hours of the two 
representative summer and winter days at which DR resources are elicited. Also, the contribution of load power 
demand reduction and imported electricity from the main grid at the hours of these two days where there is a 
shortfall in onsite power generation capacity to meet the load on the MG is detailed in Fig. 11. The figure also 
shows the sector-wise unreleased DR capacity to suggest the validity of the model results in terms of producing 
optimal trade-offs between importing electricity and harnessing the capacity of DR resources, whilst adhering to 
the quality of service desired by different customer classes. As can be seen in the figure, the highest daily rate of 
DR execution on the selected typical summer and winter days is expected to occur at 5 p.m. and 6 p.m., 
respectively, which can be characterised as the “daily most critical peak hour”. Moreover, to provide a more in-
depth understanding of the iterative incentive coordination mechanism, a breakdown of the optimised operational 
cost of the MG at the most critical peak hour of each representative day - to offset the anticipated power supply 
deficit (refer to Eq. (1)) - into incentive payments and cost of purchasing power from the main grid against various 
rates of utility-provided financial incentives, is summarised in Fig. 12. Furthermore, a closed-form solution of the 
optimal incentive rate from the utility’s perspective for the two daily most critical peak hours under discussion 
can be obtained using Eq. (32). Accordingly, the analytically calculated optimal incentive rates offered by the 
utility to the load aggregators at the considered hours are presented in Fig. 13. 

 

Fig. 10. Convergence process of the distributed algorithm developed to determine the unique, pure-strategy 
Nash equilibrium of the proposed game-theoretic DR framework on the representative days: (a) summer day; 

and (b) winter day. 

 
6 Put simply, a mechanism is said to be incentive-compatible (truthfully implementable) in the context of mechanism design, 
if every player can attain the best outcome possible by behaving in accordance with their true preferences [15]. 
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Fig. 11. Breakdown of the contribution of demand reduction and imported electricity from the main grid in the 
face of onsite generation capacity deficits on the representative days: (a) summer day; and (b) winter day. Note 

the change in scale in the dependent axes. 
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Fig. 12. Breakdown of the minimised day-ahead operational cost of the MG with respect to different utility-

posted incentive rates at the most critical peak hour of the representative days: (a) 5 p.m. summer day; and (b) 6 
p.m. winter day. Note the change in scale in the dependent axes. 

 

 
Fig. 13. Closed-form solution of the optimal utility-posted incentive rate at the two representative daily most 

critical peak time-steps. 



27 
 

Several key implications can be derived from the results presented in Figs. 10-13: 

1. The proposed dual-loop, Stackelberg, strategic game-theoretic framework can be viewed as a two-sided, 
zero-sum game with complete but imperfect information,7 which delivers tangible economic benefits to 
all the active economic agents involved in the game, namely: the utility, responsive load aggregators, 
and end-consumers. More specifically, the aggregate MG operational cost during the critical peak hours 
of the typical summer and winter days is reduced to $911.66 (~66%) and $2,124.16 (~47%), from 
2,692.25$ and $4,039.30, respectively, compared to the case with no DR procurements; determined in 
the first iteration of the distributed algorithm (see Fig. 10). 

2. The results presented in Fig. 12 indicate that there exists a knee point on the curve fitted to the hourly 
day-ahead operational costs of the system to address onsite generation capacity deficits. The more the 
solution deviates from this knee point (from either side), the worse the cost solution. However, a 
comparison of the impacts of the rightward and leftward deviations from the unique, pure-strategy Nash 
equilibrium of the game suggests that the overpayment to the aggregators has a more negative impact on 
the optimal trade-off cost solution than under-exploiting the DR resources. Also note that the above-
mentioned knee point is driven by the total amount of DR resources available, and the overall discomfort 
characteristics of the customers. 

3. A one-by-one comparison of the analytically-determined (closed-form), optimal utility-offered incentive 
prices with those obtained by the proposed distributed algorithm shows a discrepancy of less than 
$0.02/kWh, which equals the step size used to update the utility-offered financial incentives (𝑖$%(). Not 
only does this corroborate the validity and usefulness of the distributed algorithm, but it also indicates 
that the accuracy of the proposed distributed algorithm depends primarily on the selected step size. 

4.2. Incentive flow analysis 

This sub-section aims to provide details on the financial balance of the proposed incentive-directed, non-
cooperative game-theoretic DR management framework through illustrative examples. To this end, the hours at 
which the highest levels of DR resources were elicited in the two typical daily scenarios concerned, namely 5 p.m. 
summer day and 6 p.m. winter day, were selected for a comprehensive financial incentive flow analysis. 
Accordingly, Table 3 details the flow of financial incentives, from the utility to the aggregators and then to the 
end-consumers, together with their associated levels of demand reduction and discomfort cost. Note that all the 
information is extracted from the pure-strategy Nash equilibrium obtained by the proposed distributed algorithm. 

Table 3. Detailed results of the inflow and outflow of financial incentives for the two illustrative time-steps: 5 
p.m. summer day and 6 p.m. winter day. 

Player category Variable Energy-use sector* Scenario 
5 p.m. summer day 6 p.m. winter day 

The utility Total incentive 
payment of the utility 
to the aggregators [$] 

– 271.8 459.1 

Total load reduction 
expected by the 

utility [kWh] 

– 1,358.8 2,295.7 

     
Demand response 

aggregators 
Total incentive 
payment of the 
aggregator to its 

customers [$] 

R 55.6 88.5 
C 16.6 42.7 
I 15.5 18.7 
A 14.1 11.3 
E 8.9 7.7 

    
Total profit gained by 

the aggregator [$] 
R 75.3 129.9 
C 24.4 72.7 
I 20.9 45.8 
A 25.0 23.0 
E 15.5 18.8 

    

 
7 This assumes that each player knows who the other players are and what their strategy sets are, but does not generally know 
the exact form of the objective function they are trying to optimise - and thus how they will react in different situations. 
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Total load reduction 
procured by the 

aggregator [kWh] 

R 654.5 1,092.0 
C 205.0 577.1 
I 181.9 322.5 
A 195.6 171.6 
E 121.9 132.4 

     
End-consumers† Total utility of the 

customers [$] 
R 26.7 42.6 
C 8.5 21.7 
I 8.2 9.9 
A 8.9 7.1 
E 6.8 6.0 

    
Total discomfort cost 
of the customers [$] 

R 28.9 45.9 
C 8.1 20.9 
I 7.3 8.8 
A 5.2 4.2 
E 2.1 1.7 

* The letters ‘R’, ‘C’, ‘I’, ‘A’, and ‘E’ respectively stand for ‘Residential’, ‘Commercial, ‘Industrial’, ‘Agricultural’, and ‘E-mobility’.  
† Given the high number of customers considered in the case study (see Table 2), the reader is referred to Supplementary Material 
accompanying the paper (Additional File 1: Optimal demand response provision by customer) for a detailed breakdown of the customers’ 
individual incentive income, utility, discomfort cost, and contribution to load reduction. 

From Table 3, the following observations can be made for both the daily most critical peak time-steps analyses: 

1. According to the top-level transactions processed in the wholesale DSM market, the total incentives paid 
by the utility equals the sum of the financial incentives received by the aggregators.8 Accordingly, the 
total load reduction expected by the utility equals the aggregated load reduction packages delivered by 
the aggregators. 

2. Based on the bottom-level transactions made in the retail DSM market, the sum of the total utility of each 
category of end-consumers - generated by delivering their DR resources - and the total discomfort cost 
imposed on them, equals the total incentive payment made by their respective aggregator. Accordingly, 
the sum of load reductions contributed by each aggregator’s customers equals the respective aggregator’s 
contribution to the overall load reduction consistent with its commitment in the wholesale DSM market. 

The observations discussed above collectively confirm the balance of incentive inflows and outflows over the 
considered time-steps from the perspective of all the players of the game. 

Moreover, the per-unit profits obtained by load aggregators - defined as a ratio of total profit gained by each 
aggregator to the total load reduction it has procured at a given time-step [$/kWh] - by acting as energy brokers 
in the wholesale DSM market and, at the same time, leading the retail DSM market, indicate that the utility of a 
DRA is roughly correlated with the overall willingness of its consumers to participate in the DR programmes. The 
uniform incentive price settlement design considered in the two-stage DSM market is the underlying reason for 
this. 

4.3. Incentive compatibility assessment 

To verify that the proposed game-theoretic DSM approach is incentive-compatible (truthfully implementable) 
from the utility’s perspective, the consequences of the aggregators’ and end-consumers’ deviations from their best 
strategies are explored in this sub-section. To this end, the most critical peak hours of the representative days are 
again studied. The profits gained by the aggregators are calculated with respect to various levels of financial 
incentives offered to their customers, which are shown in Fig. 14. Also, the results of the sensitivity analysis of 
the utility of a randomly-selected end-consumer, from each category of loads, to variations in its load reduction 
supply capacity, are shown in Fig. 15. The values of the representative customers’ discomfort-related coefficients 
and DR capacities, as well as detailed results of the inflow and outflow of incentives for the two indicative time-
steps, are highlighted in grey in Supplementary Material accompanying the paper (Additional File 1: Optimal 
demand response provision by customer). 

 
8 Note that according to Eq. (5), the amount of financial incentive received by each DRA equals the sum of the profit it earns 
by playing the role of DR broker and the total amount of financial incentives it pays to its participating customers. 
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Fig. 14. Sensitivity of the aggregators’ profits to variations in their incentive payment rates to end-consumers at 
the most critical peak hour of the representative days: (a) 5 p.m. summer day; and (b) 6 p.m. winter day. Note 

the change in scale in the dependent axes. 
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Fig. 15. Sensitivity of the utility of a representative customer of each aggregator to variations in its load 
reduction supply capacity at the most critical peak hour of the representative days: (a) 5 p.m. summer day; and 

(b) 6 p.m. winter day. Note the change in scale in the dependent and independent axes. 

As shown in Fig. 14, any deviation of the aggregators from their best strategies at the Nash equilibrium point leads 
to a reduction in their profits; thus, none of the aggregators have any useful deviations. It should be noted that 
each aggregator’s profit can be expressed as a second-order polynomial function of the incentive rate it offers, by 
substituting the best-response strategies of its customers into its profit function (refer to Eq. (21)). The rationale 
behind this quadratic polynomial equation for an aggregator’s profit is straightforward. For any utility-posted 
incentive rate, increasing the aggregator-offered incentive rate increases customer engagement, which improves 
the aggregator’s profit. However, at a certain point - vertex of the associated parabola - this effect levels off and 
increasing the aggregator-offered incentive rate begins to show a reverse effect in which the gains from increased 
participation tends to drive the aggregator’s profit down - where the aggregator’s marginal revenue falls below 
its marginal cost - as a result of dealing with less-elastic customers and/or overcompensation of DR suppliers in 
the retail DSM market.  

Also, the prime reason why the optimal aggregator-offered incentive rate varies across different customer classes 
is that the model accommodates detailed customisation for the sector- and customer-specific DR supply elasticity 
(refer to Table 2), which generally assumes that the supply of DR capacity is more responsive for EV-charging 
customers, as well as for industrial and agricultural customers, than for residential and commercial customers.  

Furthermore, a comparison of the aggregators’ profit profiles for the considered two extreme time-steps, from Fig. 
14, reveals that each aggregator’s best-response incentive price strategy also varies over the course of time. To 
illustrate, while the best-response strategy of the aggregators for the time-step 6 p.m. winter day, shown in Fig. 
14(b), seems to be in inverse proportion to the DR supply elasticity of the considered customer sectors, no specific 
trend can be discerned for the relationship between the best-response strategy of the aggregators and the sectoral 
DR supply elasticity for the time-step 5 p.m. summer day, depicted in Fig. 14(a). The latter observation indicates 
the possibility of the involvement of additional factors in determining the aggregators’ best strategies, such as the 
stochasticity inherent in the employed load demand disaggregation algorithm and the randomness associated with 
the number of EVs that plug-in and initiate a standard charging event at each time-step, which remain to be 
characterised. In addition, the difference in the profit levels of different aggregators can be principally explained 
by the share of each sector in the total energy demand and its respective DR supply capacity. In this light, a key 
insight from Fig. 14 is that while the aggregators’ payoff varies as a function of the utility demand for DR capacity 
and the sector-wide share in the total energy consumption, the rank order of their profitability is subject to 
instability throughout time - excluding the residential and EV aggregators that most and least benefitted from 
economies of scale, respectively. Such instability results largely from the sector-specific seasonal and diurnal 
variations in load demand. Additionally, some of the aforementioned rank order instability may be attributed to 
the same sources of uncertainty as noted for the variability of each aggregator’s optimal incentive rate.  

Moreover, as demonstrated in Fig. 15, none of the representative customers has an incentive to deviate from its 
best-response strategy, as it results in reducing the utility it derives from load reduction. Recall that the customer 
discomfort cost, the lower and upper bounds of which are adjusted, is a function of the reduced load by the 
customer (see Eq. (11)), according to which the maximum load reduction that can be procured by each customer 
can be calculated. 

As demonstrated above, in either case, the proposed game-theoretic DR scheduling framework leads to truth-
revealing and deviation-proof solutions - in that there is no deviation by load aggregators or end-consumers. 
Moreover, the evidence from these analyses points towards the idea that the obtained optimal solution can be 
regarded as the fully-revealing rational expectations equilibrium of the game - in that none of the game’s players 
would change their actions even if they were aware of the outcomes of the game. 

It should also be emphasised that the sensitivity of the aggregators’ profits to variations in their posted incentive 
rate, and the sensitivity of the customers’ utilities to variations in their supplied load reduction, are mainly dictated 
by the adjusted values for the willingness of different load classes to engage in DR programmes. 

5. Conclusions and future work 

Small- to medium-scale end-users are opening up new opportunities for RSESs to accommodate high penetrations 
of non-dispatchable renewable electricity generation in terms of flexibility. Accordingly, DRAs are emerging in 
response to this trend, acting as intermediary between these smaller energy users and grid operators to unlock the 
potential of retail demand-side flexibility resources – and develop competitive, efficient, and reliable interruptible 
DR services at scale. This study designed the first price elasticity-aware, market-driven, incentive-based, 
aggregator-mediated DR scheduling model tailored to grid-connected RSESs. The model successfully generalised 
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the Stackelberg, non-cooperative game-theoretic, aggregator-mediated DR planning problem in the following 
three areas: 

1. The model quantified the optimal trade-off between electricity importing costs and incentive payments 
made to the DRAs by including the cost of importing electricity (as a function of the wholesale electricity 
price) and the cost of procuring DR flexibility products in the utility’s operational cost (payoff) function. 

2. The model incorporated the estimated elasticity of supply of DR capacity in different end-use sectors – 
residential, commercial, industrial, agricultural, and electrified transport – to improve the quality and 
accuracy of short-term forecasts on the participation rate of different customer classes. This enabled the 
model to identify the more profitable DRAs in a uniform price settlement system. 

3. The model included a large number of end-users in each sector, which allowed the analysis of a broad 
spectrum of strategy profiles and the corresponding payoffs in different end-use sectors. To this end, a 
stochastic total sectoral load disaggregation technique was employed, which had real-world implications 
for the pre-feasibility techno-economic assessment of RSESs. 

The paper analytically demonstrates the existence and uniqueness of a pure-strategy Nash equilibrium for the 
formulated aggregator-mediated, Stackelberg, non-cooperative game-theoretic DSM problem. It also develops a 
specific distributed algorithm to approximate the unique, pure-strategy Nash equilibrium point of the game based 
on the endogenous Stackelberg leader-follower relationship. The proposed distributed algorithm used an indirect 
way of sending information about the players’ valuation, namely an iterative auction. Notably, on both the 
wholesale and retail levels, the DSM auction protocol iteratively interacted with different DR providers and end-
consumers, eliciting sufficient information about their preferences to determine the optimal allocation of DR units. 
This adaptive process provides a platform to preserve the privacy of the DRAs and end-consumers. The distributed 
algorithm was also shown to perform well in converging to the approximate Nash equilibrium of the devised 
game, with the algorithm precision controlled by the iteration step length. 

A number of novel insights emerged from the modelling results of the numerical test-case MG of the town of 
Ohakune, in New Zealand: 

1. Producing the optimal trade-off between importing power and exploiting the flexibility potential of 
smaller DR products for the critical peak hours of system operation – for which a net energy deficit is 
predicted – is able to reduce the daily system operational cost by ~66% (equating to a saving of $912) 
and ~47% (equating to a saving of $2,124) on a representative summer and winter day, respectively. 

2. There is a saturation point for the use of DR resources, which varies with respect to the wholesale 
electricity price. The more the optimal trade-off cost solution deviates from this saturation point, the 
worse the hourly operational cost solution. Specifically, overpayment for DR products more negatively 
affects the trade-off operational cost solution than underutilisation of flexible DR resources. 

3. Likewise to the optimal utility-offered incentive price, the best-response-strategy aggregator-posted 
incentive price is time-step-specific, which occurs at different prices across different aggregators. 
Accordingly, the hourly rank order of the profitability of different aggregator classes varies mainly as a 
function of the share of each end-use sector in the total procured DR capacity, while the best-response 
aggregator-determined incentive rate varies with respect to the sectoral and customer-specific 
(individual-level) discomfort cost parameters (that define their strategic behaviours), in addition to the 
utility-posted incentive price in the wholesale DSM market.  

Future work could seek to improve the proposed model by including group strategy-proof mechanisms to ensure 
that both the wholesale and retail DSM markets are arbitrage-free and collusion-resistant, whilst additionally 
supporting a Pareto optimal and economically efficient allocation of demand-side resources. Another area for 
future research is to examine whether a discriminatory (pay-as-bid) design would be a superior strategy to the 
uniform price design strategy in terms of the optimal social welfare or, more specifically, to quantify the impact 
of the inframarginal DR capacity on the level of market-clearing prices – which can add an additional layer of 
insight into the specific characteristics of the aggregator-mediated DSM markets. 
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