
Genetic Programming for Evolving Similarity
Functions Tailored to Clustering Algorithms

Hayden Andersen∗, Andrew Lensen†, Bing Xue‡
School of Engineering and Computer Science, Victoria University of Wellington

PO Box 600, Wellington 6140, New Zealand
Email: ∗andershayd@ecs.vuw.ac.nz, †andrew.lensen@ecs.vuw.ac.nz, ‡bing.xue@ecs.vuw.ac.nz

Abstract—Clustering is the process of grouping related in-
stances of unlabelled data into distinct subsets called clusters.
While there are many different clustering methods available,
almost all of them use simple distance-based (dis)similarity
functions such as Euclidean Distance. However, these and most
other predefined dissimilarity functions can be rather inflexible
by considering each feature equally and not properly capturing
feature interactions in the data. Genetic Programming is an
evolutionary computation approach that evolves programs in
an iterative process that naturally lends itself to the evolu-
tion of functions. This paper introduces a novel framework
to automatically evolve dissimilarity measures for a provided
clustering dataset and algorithm. The results show that the
evolved functions create clusters exhibiting high measures of
cluster quality.

Index Terms—Clustering, Genetic Programming, Similarity
Function, Feature Selection

I. INTRODUCTION

Clustering is an unsupervised learning task [1] that has
the goal of grouping similar instances of unlabelled data into
distinct subsets known as clusters [2]. Nearly all clustering
algorithms employ some form of predefined dissimilarity
function to evaluate the difference between instances when
deciding if they should be grouped. One common category of
dissimilarity functions is distance functions, which calculate
dissimilarity based on how close two instances are in the
feature space. The most commonly used distance function
is Euclidean Distance [3], [4], which simply measures the
straight-line distance between two instances. However, this
comes with its own issues.

First, distance measures will treat all features as equally
important, when in reality some features can be much more
useful than others, and some can be virtually useless [5]. A
good example of this is a situation where you are clustering
different weather patterns — rainfall is essential as a feature,
while the day of the week is likely to not influence the patterns
themselves. These distance measures can also be inflexible, as
they use a predefined function to evaluate the distance between
instances. For more complex data, this can fail to properly
represent the relationships present, and a function to better
represent the complexity of the data is required.

Genetic Programming (GP) is an Evolutionary Computation
(EC) method that evolves solutions for the target problem,
usually in the form of a program tree [6]. These trees can
represent a function by taking the form of an expression tree,

with internal nodes representing numeric operations and leaf
nodes representing values in the data and constant values. GP
has been shown to be very successful in handling various
complex problems [7]. In particular, the flexible tree-based
representation provides GP with the advantage of evolving
various forms of functions without any predefined structure
of the function. GP has also been used for implicit or explicit
feature selection which can make the evolved function power-
ful by removing unnecessary components through using only
the selected features [8], but existing work focuses mainly on
supervised learning, with little work on unsupervised learning,
e.g. clustering.

This paper explores using GP to evolve new dissimilarity
functions for clustering problems, using the features of the two
instances being compared as inputs and producing an output
that represents how dissimilar the two instances are. This has
the potential to solve many of the issues encountered when
using a simple distance function. In the process of evolving
the trees, GP can automatically select relevant features and
utilise them in the trees, i.e. the dissimilarity functions in this
work. This provides a form of feature selection, as not all
features will be selected for use in the dissimilarity functions
(i.e. not all features will be used in the leaf nodes of the
evolved GP tree). This will have the effect of automatically
preventing useless features from being selected, and will allow
more relevant features to have a higher impact on the overall
dissimilarity through the use of constant values and positive
interactions between features to be utilised for improving the
overall performance. These tailored functions are expected to
allow clustering algorithms to create better clusters than simple
predefined functions.

Previous research [5] applied the concept of using GP
to evolve similarity functions for clustering algorithms util-
ising graph theory, achieving competitive results. However,
the method introduced heavily ties the GP process to the
graph representation of the clusters, which prevents it from
being able to train dissimilarity functions for other clustering
methods. In this work, we aim to significantly extend this
concept to provide a framework that can evolve high-quality
dissimilarity functions for any provided clustering algorithm,
with the following specific goals:
• propose a framework for evolving dissimilarity functions

for any clustering algorithm, with an improved terminal
set and fitness function;



• evaluate the proposed approach against a selection of
commonly used predefined functions on several datasets
of varying complexity; and

• visualise and analyse the evolved dissimilarity functions
to better understand why they can work well.

II. BACKGROUND

A. Clustering

Clustering is the most widely known problem in the unsu-
pervised learning domain [1]. At the highest level, it is the
process of segmenting a collection of instances into multiple
subsets known as clusters [1]. Versions of the clustering
problem exist where instances can belong to multiple clusters
at once [9], or hierarchies of clusters (clusters of clusters) can
be created [1]. This paper focuses on hard clustering, where
each individual belongs to at most one cluster.

There is a vast range of clustering methods, which can
broadly be split into several different categories [10]. In this
paper, we use a canonical method from each of the four main
categories:

1) k-means++ (partitional clustering): a cluster is defined
by its centre, according to the members of that clus-
ter. The clusters are randomly initialised, and then the
cluster centres are iteratively updated until the algorithm
converges [10]. An example of this is the k-means
algorithm [10]. In this work, we use the refined k-
means++ algorithm, which selects cluster centres such
that the initial clusters are well-spread [11].

2) Agglomerative clustering (hierarchical clustering): a hi-
erarchy of clusters is created by initially starting with
each instance in its own cluster, and then repetitively
merging these clusters until the required number of
clusters are formed [12].

3) HDBSCAN (density-based clustering): based on the
premise that a continual region of high density (many
instances) in the feature space represents a single cluster.
Hierarchical DBSCAN (HDBSCAN) is a state-of-the-
art extension of the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm [13]
that combines it with hierarchical clustering to extract
clusters based on their stability.

4) Graph-based clustering uses a graph theoretic approach
to represent clusters as a set of disjoint graphs, where the
nodes are instances, joined by edges. In this paper, each
instance (node) is connected to its k-nearest neighbours
based on a dissimilarity function.

B. Genetic Programming

Genetic programming (GP) is a form of evolutionary algo-
rithm (EA). GP starts from a population of randomly generated
programs made up of functions and terminals. Functions take
one or more inputs and return an output, and can be arith-
metic operations, programmatic operations, domain-specific
functions, etc. [14]. The terminal set can be any input values,
and usually contains information acquired from task-specific
inputs. A fitness measure is used to evaluate the fitness of

individual members of the population, and the fittest members
are selected to be passed on to the next generation. These
members then undergo reproduction and mutation to produce
the next generation of offspring. This continues until either
a certain number of generations have passed or some other
stopping criterion is reached.

A common use of GP is to represent numerical functions in
a tree-based representation, taking feature values as input and
producing a single numerical output calculated by the rules
defined in the tree [6].

C. Related Work

The Genetic Programming Graph-based Clustering (GPGC)
algorithm [15], [5] was the first method proposed to auto-
matically evolve similarity functions. GPGC is a graph-based
evolutionary clustering algorithm that evaluates a similarity
function using GP and then connects each instance to the most
similar other instance in the dataset. The fitness function used
in GPGC combines sparsity (intra-cluster distance), separation
(inter-cluster distance), and connectedness (a measure of how
well points are clustered with other nearby points) metrics
[15]. One important improvement made to GPGC was the
introduction of a multitree approach, where each GP individual
consisted of multiple smaller trees as opposed to a single larger
tree. This was found to significantly improve the performance
on a variety of datasets [5].

A similar piece of work to the idea presented in this paper
was recently published [16]. This paper evolved constructed
features for use in the clustering domain, working as a wrapper
method around the k-means++ algorithm. While the authors
achieved high-quality results, this method was never tested
on any algorithm other than k-means++, and so there is no
indication that it is a valid method to be applied to any
clustering algorithm.

There is very little other work in the literature on using
GP for clustering. One proposed method used multitree GP
to evolve a set of ”membership functions”, where each tree
corresponds to a specific cluster. Each instance was then placed
into the cluster for which there is the highest output from the
function tree that corresponds to that cluster [17]. A potential
issue with this method is that it is unlikely to scale well as
the number of clusters increases, as it necessitates evolving a
tree for every cluster.

A seminal work applying evolutionary computation to
the clustering domain is the Multiobjective Clustering with
Automatic K-determination (MOCK) algorithm. The MOCK
algorithm is split into two parts. First, a Pareto front of
clustering solutions is created, using measures of compactness
and connectedness as the two objectives. In the second part,
a single model is selected from the Pareto front based on
the shape of the front [18]. While MOCK bears similarity to
this paper in that EAs are applied to multiobjective clustering,
MOCK directly treats the clusters as the representation in the
algorithm. In contrast, this paper proposes the evolution of
a dissimilarity function, which is then used to create clusters
using a wrapper-style algorithm. The work by Handl et al. [18]



also introduced a simple algorithm for creating artificial clus-
tering datasets with ellipsoidal clusters and arbitrary cluster
orientations.

There has been some work done in evaluating the quality
of different dissimilarity functions in the clustering domain.
Balcan et al. [19] created a theoretical framework that can
be used to evaluate what properties of a similarity function
are required or important for clustering purposes. While this
paper provides useful theoretical underpinnings, there was no
practical evaluation to evidence that the theoretical concepts
are useful in practice. This paper aims to evolve functions
that have a strong performance in clustering — in theory, this
means that it should be able to learn the properties suggested
in this paper through the GP process.

III. PROPOSED METHOD

The main idea of the proposed method is to evolve a pop-
ulation of dissimilarity functions that can be used in place of
general distance metrics in pre-existing clustering algorithms.
The algorithms chosen were k-means++, HDBSCAN, graph
clustering, and agglomerative (single-link) clustering. This
range of algorithms gives at least one algorithm for each of
the main categories of clustering methods and allows for the
flexibility of the system to be rigorously tested.

A. GP Representation

In this work, we represent similarity functions as GP trees,
where the leaves are taken from the terminal set and internal
nodes are taken from the function set. A real example of a
high-quality evolved tree is shown in Figure 1. The trees are
evaluated recursively in a bottom-up manner, such that the
input of each function is the output of evaluating its children.
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Fig. 1. Sample GP representation of a similarity function
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Fig. 2. Example trees using naive terminal set

B. Terminal Set

Previous work [15], [5] used a terminal set that comprised
the features of each of the two instances. Mathematically, the
terminal set T was defined by Equation 1, where dim(I) is
the dimensionality (number of features) of the data and x and
y are the two instances being compared.

T = {xi|i ∈ {1, 2, .., dim(I)}} ∪ {yi|i ∈ {1, 2, .., dim(I)}}
(1)

There are several limitations to such an approach. Firstly,
with this terminal set, it is possible (and likely) for GP to
learn dissimilarity functions containing features of only one
of the points. This is nonsensical: if a tree, for example,
contains only the features of instance a, it would give the
same output regardless of the second instance, i.e. d(a, b) =
d(a, c)d(a, d), .... Another issue with this terminal set is that
it does not ensure that the evolved dissimilarities are symmet-
rical. For example, the simple similarity functions shown in
Figure 2 would result in a different similarity between A and
B than they would get from B and A.

Given these trees, imagine two instances with
five features, a = [−0.4,−0.1, 0.3, 0.8, 0.6] and
b = [−0.1, 0.8, 0.9, 0.7,−0.5]. Equations 2 and 3 show
the resulting dissimilarities calculated for these instances,
taken in both directions. As can be seen, the result is
completely different between the two directions.

d(a, b) = 0.3 + 0.7 = 1.1

d(b, a) = 0.9 + 0.8 = 1.7
(2)

d(a, b) =

{
0.3, if− 0.1 > 0

−0.5, otherwise
= −0.5

d(b, a) =

{
0.9, if 0.8 > 0

0.6, otherwise
= 0.9

(3)

To produce a better terminal set, we take into account
a property that is already known about the features — the
corresponding features between two data points are related, as
they represent the same aspect of the data. For example, in
the well-known Iris dataset, the petal length of one instance is
most easily compared to the petal length of another instance.
In fact, this is a property that is always assumed in existing
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Fig. 3. Example trees using improved terminal set

similarity functions (e.g. Euclidean distance), as they will
compare the same feature from each point. To encode this
information, the terminal set is taken as the absolute value of
the difference between each feature index on the two points.
Mathematically, the terminal set T is defined by Equation 4.

T = {|xi − yi||i ∈ {1, 2, .., dim(I)}} (4)

The use of absolute values in the definition of the terminal
set ensures that the symmetry is preserved in the resulting dis-
similarity functions. Figure 3 shows a similar tree to figure 2,
however, now the similarity will be symmetric between A and
B.

Using the same two example instances as earlier, a =
[−0.4,−0.1, 0.3, 0.8, 0.6] and b = [−0.1, 0.8, 0.9, 0.7,−0.5],
Equations 5 and 6 show the resulting dissimilarities calculated
for these instances. Now the symmetry property is preserved.

d(a, b) = |0.3− 0.9|+ |0.8− 0.7| = 0.6 + 0.1 = 0.7

d(b, a) = |0.9− 0.3|+ |0.7− 0.8| = 0.6 + 0.1 = 0.7
(5)

d(a, b) =

{
|0.3− 0.9|, if | − 0.1− 0.8| > 0

|0.6−−0.5|, otherwise

=

{
0.6, if 0.9 > 0

1.1, otherwise

= 0.6

d(b, a) =

{
|0.9− 0.3|, if |0.8−−0.1| > 0

| − 0.5− 0.6|, otherwise

=

{
0.6, if 0.9 > 0

1.1, otherwise

= 0.6

(6)

In addition to the derived terminals, a random floating-point
constant in the range [−1, 1] is added to the terminal set for
scaling purposes and to allow weighting of subtrees.

C. Function Set

The function set contains the standard arithmetic functions:
{+,−,×,÷}, where ÷ refers to protected division (x0 := 1),
as well as the max, min, if, and abs operators. All of these
functions except if and abs take two inputs and output a single
value based on the function, while abs only takes one input

and if takes three inputs. The if operator will output the second
input if the first is non-negative, or the third input if the first
input is negative. These operators are based on those used in
previous research [5].

D. Fitness Evaluation

The silhouette criterion [20] is used to measure the fitness
of GP individuals. The silhouette of a clustering solution is
a measure of how similar an instance is to instances of its
own cluster, compared to instances of other clusters [20].
While originally created as an aid for graphical representation
of clusters, it is a good general measure of the quality of
a clustering solution. The silhouette of an instance in the
solution is defined by Equation 7, where ai is the average
distance from instance i to all other instances in the same
cluster and bi is the minimum of the average distances from
instance i to all instances in any other cluster. The definitions
of ai and bi are given by Equations 8 and 9 respectively
where Ci is the cluster containing instance i and d(i, j) is
the Euclidean distance from instance i to instance j [20].

Equation 8 gives a measure of how similar an instance is to
instances of its own cluster and Equation 9 gives a measure
of how similar an instance is to instances of other clusters.
Equation 7 then takes the difference between these values.

si =
bi − ai

max(ai, bi)
(7)

ai =
1

|Ci| − 1

∑
j∈Ci,i6=j

d(i, j) (8)

bi = min
k 6=i

1

Ck

∑
j∈Ck

d(i, j) (9)

The fitness of the individuals is calculated as a wrapper
around the supplied clustering algorithm. The evolved GP
tree is supplied as a dissimilarity function to the clustering
algorithm to create clusters. Once the clusters are generated,
the silhouette measure of each instance in the dataset is
calculated, and from these, the mean silhouette is calculated.
This is shown in Equation 10, where si refers to the silhouette
of instance i, calculated according to Equation 7.

f =
1

|I|

|I|∑
i=1

si (10)

This is then returned as the overall fitness of the GP indi-
vidual. With this fitness function, the larger the fitness value,
the better an individual, i.e. the fitness function (Equation 10)
is a maximisation function.

E. Overall Algorithm

A diagram of the overall algorithm is shown in Figure 4.
First, a random population of trees is generated using the
Ramped-Half-and-Half approach. Then, every individual in the
population is evaluated according to the fitness function shown
by Equation 10. A chosen number of the best solutions are put



aside for elitism. Then, the selection operator is performed to
select good individuals, which are then used by the genetic
operators, i.e. mutation and crossover, to generate offspring
to form the child population. Finally, the child population is
appended to the best solutions that were put aside to form the
new population in the next generation. This process continues
until a preset number of generations have passed, at which
point the individual with the best fitness is returned.

Initialise GP process

Evolutionary Loop

For each individual

Use individual as 
provided dissimilarity 
function to clustering 

algorithm

Evaluate fitness as 
average silhouette of 

clusters

Update population 
(selection, crossover, 

mutation)

Output individual with 
best fitness

Apply elitism

Append elitism and 
new population

Every 
Individual 
evaluated

Looped for G 
generations

Fig. 4. The proposed method

IV. EXPERIMENT DESIGN

The proposed method was implemented using DEAP [21],
an evolutionary computation framework that is lightweight and
easily extensible. The library was modified to add elitism [22],
so that a given number of high performing individuals in the
population kept to the next generation.

All algorithms used except for the graph clustering algo-
rithm were implemented using the PyClustering library [23].
The naı̈ve graph clustering was implemented by hand as
no existing libraries handled the process of building cluster
graphs.

A. Parameter Settings

Table I shows the parameter settings chosen for the GP
process. These are standard GP parameters [22] except for
the population size, which is kept slightly lower to reduce the
computation time. As part of preliminary testing a number of
different maximum tree depths were explored, and a maximum
depth of 7 was found to give the best trade off between
performance and computation time.

B. Datasets

The datasets used in this paper are sourced from two
different pieces of work. These are all artificial datasets, as
these allow the performance of different algorithms to be
compared to known ground truths. This approach is common
in the clustering literature. Some of the clustering literature
has used classification datasets, with the class labels removed
from the clustering process. However, research has shown that
this can result in misleading results, as there is no guarantee

TABLE I
PARAMETERS SETTINGS USED FOR GP

Parameter Value

Population 256
Tournament Size 7
Elitism 10
Generations 100
Crossover Probability 80%
Mutation Probability 20%
Population Initialisation Half and Half
Crossover One Point
Mutation Random Subtree Replacement
Max Tree Depth 7

TABLE II
DATASETS USED FOR EVALUATION

HAWKS MOCK

Dimensions 10 20 50 100
Clusters 10 20 10 10
Instances 1000 1000 2698 2892

in classification tasks that classes correspond one-to-one to
well-formed clusters [24].

The first set of datasets are those used in [16]. These are
generated using HAWKS [25], which uses genetic algorithms
to generate datasets with clusters of dynamic shapes and sizes,
targeting a given silhouette score. Each one of these datasets
consists of 1000 points, with varying numbers of dimensions
and clusters. Each cluster is hyper-spherical in shape, and as
the dimensionality of these datasets increases, they get easier
to correctly cluster.

The second set of datasets were generated using the well-
known generators used in the MOCK paper [18]. These
datasets are used as they create clusters that are not completely
hyper-spherical, and instead are ellipsoidal in shape. This
represents a difficult clustering challenge [26].

Table II shows the four datasets used in this paper.

C. Adjusted Rand Index

The Adjusted Rand Index (ARI) is an evaluation metric
that compares a given set of clusters produced by a clustering
method to provided ’gold standard’ clusters [27]. This provides
an overall measure of similarity between the clusters produced
and the gold standard clusters.

The ARI is based on the Rand Index, which is an evaluation
metric that compares the similarity between the two cluster
groups without correcting for chance. If a true positive (TP)
is taken to mean the case where two instances are in the same
cluster in both groups and a true negative (TN) is taken to
mean the case where two instances are in different clusters in
both groups, then Equation 11 shows the calculation of the
Rand Index [28].

RI =
TP + TN

TP + TN + FP + FN
(11)

The ARI is a modification on the Rand index to account for
random chance in pairings.



Given a clustering X and gold standard Y, a contingency
table [nij ] is first built where each nij is equal to the number
of instances in common between cluster Xi and cluster Yj .
Once this has been built, the sum of each row and column is
computed as ai and bj . With n as the total number of instances,
the ARI is calculated according to Equation 12.

ARI =

∑
ij

(
nij

2

)
− [
∑

i

(
ai

2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [
∑

i

(
ai

2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai

2

)∑
j

(
bj
2

)
]/
(
n
2

)
(12)

D. Evaluation Approach

Each pair of algorithm and dissimilarity measure is run
30 times on each dataset, with a different seed each time.
To evaluate the performance of the dissimilarity evolution
process with predefined dissimilarity functions for each of the
clustering methods, both the ARI and silhouette are reported.
The ARI is used to give a clear indication of the performance
of the method according to the ground truth clusters, and the
silhouette is reported to ensure the GP process is producing
results with high enough fitness.

V. RESULTS

The results gathered across the datasets are shown in
Tables III and IV, where the ARI and silhouette are the means
across the 30 runs. The best ARI and average silhouette for
each clustering algorithm are shown in bold.

VI. DISCUSSIONS AND ANALYSIS

From the results, there is a clear benefit to evolving sim-
ilarity functions on different clustering algorithms. For the
lower dimensional datasets, the evolved function outperforms
all predefined similarity functions for k-means++. While it
doesn’t quite reach the ARIs obtained by the predefined
functions for the remaining algorithms, the average silhouette
score produced for each algorithm is either approximately the
same as or better than when using predefined dissimilarity
functions.

At higher dimensionality, the ARI achieved by GP is often
lower than when using other dissimilarity measures. However,
the silhouette on the majority of methods is generally higher
than when using any of the pre-defined functions. As the
silhouette metric is what the GP algorithm uses to measure
fitness, this signifies that GP can optimise effectively, but that
silhouette is not always a good measure of cluster quality (that
is, there is a low correlation between silhouette and ARI).
For example, on datasets with non-hyper-spherical clusters,
the silhouette cannot measure cluster quality as accurately.
The silhouette can be seen as a combined measure of both
similarity and separability of clusters — in the future, it
may be fruitful to split these metrics into separate objectives
and evaluate the clusters using evolutionary multiobjective
optimisation.

TABLE III
MEAN ARI AND SILHOUETTE OBTAINED BY DIFFERENT DISSIMILARITY

MEASURES ACROSS THE DATASETS

10d-10c dataset

Measure K-means++ HDBSCAN Agglom. Graph

GP ARI 0.8952 0.9315 0.9523 0.9035
SIL 0.7489 0.8206 0.7519 0.7923

Euclidean ARI 0.8402 0.9413 0.8616 0.9437
SIL 0.605 0.809 0.428 0.807

Cosine ARI 0.8348 0.6965 0.01493 0.7812
SIL 0.556 0.803 -0.428 0.705

Manhattan ARI 0.8370 0.9432 0.8973 0.9437
SIL 0.6069 0.808 0.484 0.807

Checbyshev ARI 0.8306 0.9076 0.7821 0.9437
SIL 0.585 0.820 0.304 0.807

20d-20c dataset

Measure K-means++ HDBSCAN Agglom. Graph

GP ARI 0.9682 0.9914 0.4855 0.9351
SIL 0.7377 0.7858 0.1392 0.7519

Euclidean ARI 0.8854 1.0 1.0 1.0
SIL 0.613 0.783 0.783 0.783

Cosine ARI 0.9587 0.8748 0.6175 0.6143
SIL 0.700 0.833 0.299 0.401

Manhattan ARI 0.8859 1.0 1.0 1.0
SIL 0.613 0.783 0.783 0.783

Checbyshev ARI 0.8824 0.9778 0.9624 1.0
SIL 0.600 0.782 0.552 0.783

50d-10c dataset

Measure K-means++ HDBSCAN Agglom. Graph

GP ARI 0.2040 0.0003 0.0901 0.0021
SIL 0.5983 0.6559 0.3988 0.5870

Euclidean ARI 0.3958 0.5886 0.4455 0.9985
SIL 0.5671 0.4521 0.4807 0.4255

Cosine ARI 0.7186 0.5415 0.1458 0.0000
SIL 0.3227 0.6989 -0.3388 NA

Manhattan ARI 0.4039 0.5976 0.2675 1.0000
SIL 0.5683 0.3631 0.4511 0.4425

Chebyshev ARI 0.4604 0.4407 0.3659 0.5044
SIL 0.5170 0.4612 0.2912 -0.0313

100-10c dataset

Measure K-means++ HDBSCAN Agglom. Graph

GP ARI 0.2439 0.0005 0.0817 0.0011
SIL 0.6100 0.6768 0.4137 0.6508

Euclidean ARI 0.4769 0.8668 0.2043 0.9869
SIL 0.5904 0.4450 0.3012 0.5807

Cosine ARI 0.8162 0.8133 0.3072 0.8428
SIL 0.3765 0.5465 -0.1896 0.4004

Manhattan ARI 0.4703 0.8652 0.2013 1.0000
SIL 0.5862 0.4536 0.3006 0.5731

Chebyshev ARI 0.5221 0.7777 0.1787 0.6539
SIL 0.6070 0.4336 0.2923 0.3414



TABLE IV
MEAN ARI AND SILHOUETTE ON THE 100-10C DATASET

100-10c dataset

Measure K-means++ HDBSCAN Agglom. Graph

GP ARI 0.2439 0.0005 0.0817 0.0011
SIL 0.6100 0.6768 0.4137 0.6508

Euclidean ARI 0.4769 0.8668 0.2043 0.9869
SIL 0.5904 0.4450 0.3012 0.5807

Cosine ARI 0.8162 0.8133 0.3072 0.8428
SIL 0.3765 0.5465 -0.1896 0.4004

Manhattan ARI 0.4703 0.8652 0.2013 1.0000
SIL 0.5862 0.4536 0.3006 0.5731

Chebyshev ARI 0.5221 0.7777 0.1787 0.6539
SIL 0.6070 0.4336 0.2923 0.3414
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Fig. 5. Best dissimilarity function for 20d-20c dataset

A. Further Analysis

Figure 5 shows the best tree evolved for the k-means++
algorithm on the 20d-20c dataset. Notably, this tree contains
very few constant values. This suggests that the dissimilarity
functions are stronger when only considering the features
without weighing or offsetting them. The tree also has a wide
range of features, instead of using the same feature many times
as leaves of the tree.

VII. FUTURE DIRECTIONS

One major finding of this work was the performance benefit
of ensuring symmetry in the evolved dissimilarity functions. It
follows that evolving functions that meet the other properties
of a distance metric would further improve performance on
clustering algorithms that depend on them. We consider each
of these properties in turn:

1) Non-Negativity: It is possible to evolve a tree that will
result in negative dissimilarities if a subtraction function
is used and the value to the right of the function is larger.
Figure 6 shows an example dissimilarity tree that will
sometimes result in a positive and sometimes result in
a negative value, depending on the two points. In this

subtract

|x4-y4| |x2-y2|

add

|x2-y2| 0.45

np_if

subtract 0.9 0.1

|x1-y1| 0.35

Fig. 6. Three sample trees that break the non-negativity, identity, and triangle
inequality properties respectively

tree, if the distance between the second feature on the
two instances is larger than the distance between the
fourth feature on the two instances then the resulting
dissimilarity will be negative.

2) Identity: It is possible to evolve a tree where the
dissimilarity from a point to itself will not be 0. This
happens in the case where a constant is carried up to the
top level of the function evaluation in the tree. Figure
6 shows an example dissimilarity tree that will always
break the identity property. If the two instances being
compared are the same then the distance between x2 and
y2 will be 0. This means that the resulting dissimilarity
will be 0.45 when the instances are the same.
This way of breaking the property, however, is not
an issue for most clustering algorithms as all possible
dissimilarities will be shifted by the same amount. This,
in essence, means that it can be treated as a constant
offset and ignored.

3) Symmetry: This property is correctly preserved by the
evolved functions. As the terminal set is taken as the
absolute difference between the two points, the terminal
set from A to B and the terminal set from B to A will
be the same.

4) Triangle Inequality: It is possible to evolve a tree
for which the triangle inequality will not hold if the
logical operators such as if, min, and max are used. For
example, Figure 6 presents a very simple tree for which
the triangle inequality will not hold due to the presence
of the if operator. As an example, take 3 instances a,
b, and c where the values for the first feature are 0.1,
0.4, and 0.5 respectively. Remembering that the triangle
inequality requires that d(a, c) ≤ d(a, b) + d(b, c), we
can see that this does not hold as 0.9 > 0.1 + 0.1.

We expect that future work addressing each of these prop-
erties will further improve the feasibility of evolving dissimi-
larity functions with GP.

VIII. CONCLUSIONS

This work presents a novel GP-based framework that can
evolve dissimilarity functions for a variety of different clus-
tering algorithms. This can address the main drawbacks of
existing dissimilarity functions. Experimental results show that
the evolved dissimilarity functions can create clusters that
demonstrate higher measures of clustering quality than clusters



created using predefined dissimilarity functions, particularly
on lower-dimensional datasets.

This is one of the few works on evolving dissimilarity
functions in clustering. As discussed in Section VII, several
directions should be further explored. We will refine this
approach further to better satisfy the properties of a distance
metric. We also plan to adapt the fitness function to be less
dependent on the datasets satisfying the assumptions of the
Silhouette metric.
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