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Abstract

Spatial and spatio-temporal phenomena are commonly modelled as Gaus-
sian processes via the geostatistical model (Gelfand & Banerjee, 2017). In
the geostatistical model the spatial dependence structure is modelled us-
ing covariance functions. Most commonly, the covariance functions im-
pose an assumption of spatial stationarity on the process. That means
the covariance between observations at particular locations depends only
on the distance between the locations (Banerjee et al., 2014). It has been
widely recognized that most, if not all, processes manifest spatially non-
stationary covariance structure Sampson (2014). If the study domain is
small in area or there is not enough data to justify more complicated non-
stationary approaches, then stationarity may be assumed for the sake of
mathematical convenience (Fouedjio, 2017). However, relationships be-
tween variables can vary significantly over space, and a ‘global’ estimate
of the relationships may obscure interesting geographical phenomena (Bruns-
don et al., 1996; Fouedjio, 2017; Sampson & Guttorp, 1992).

In this thesis, we considered three non-parametric approaches to flexibly
account for non-stationarity in both spatial and spatio-temporal processes.
First, we proposed partitioning the spatial domain into sub-regions using
the K-means clustering algorithm based on a set of appropriate geographic
features. This allowed for fitting separate stationary covariance functions
to the smaller sub-regions to account for local differences in covariance
across the study region. Secondly, we extended the concept of covari-
ance network regression to model the covariance matrix of both spatial
and spatio-temporal processes. The resulting covariance estimates were
found to be more flexible in accounting for spatial autocorrelation than



standard stationary approaches. The third approach involved geographic
random forest methodology using a neighbourhood structure for each lo-
cation constructed through clustering. We found that clustering based on
geographic measures such as longitude and latitude ensured that obser-
vations that were too far away to have any influence on the observations
near the locations where a local random forest was fitted were not selected
to form the neighbourhood.
In addition to developing flexible methods to account for non-stationarity,
we developed a pivotal discrepancy measure approach for goodness-of-fit
testing of spatio-temporal geostatistical models. We found that partition-
ing the pivotal discrepancy measures increased the power of the test.
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Chapter 1

Introduction

The last few decades have seen increasingly rapid advances in the field of
spatial and spatio-temporal statistics. The procedure for describing spatial
variation has evolved from what was once considered ad hoc to that, which
is based on models (Gelfand & Banerjee, 2017). The application of spatial
and spatio-temporal statistical methods is diverse. It has use in climatol-
ogy, ecological and environmental sciences, the health sector, real estate
marketing, demography, and mining.

Spatial data are often described as one of three types: areal, point pattern,
or point referenced. Areal (or lattice) data describe measurements that
have been observed for a finite number of areal units with well-defined
boundaries (Banerjee et al., 2014). The data are summaries defined on a
regular or irregular lattice. An example of areal data over a regular lattice
are agricultural field trials where the plots cultivated are arranged regu-
larly. More commonly, however, areal data are arranged over irregular
lattices such as regional boundaries in a country or other geographical ar-
eas. A visualisation of areal data is given in Figure 1.1. Here, the estimated
percentage of the population of New Zealand that have type 1 and 2 dia-
betes is projected on a 2-dimensional map of the country. The percentages
are averaged over each District Health Board (DHB) region with a single
value representing the entire areal unit. From the diagram, we can infer

1
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that the percentage of type 1 and 2 diabetes is higher for DHB regions in
the north compared to the south. Models for areal data are typically seen

Figure 1.1: Estimated percentage of New Zealand population that has type
1 and 2 diabetes by district health board area using data from the New
Zealand Society for the Study of Diabetes as at 31 December 2013 (Parlia-
mentary Library, NZ, 2014).

as being too restrictive in the range of spatial dependence they can suc-
cessfully model, but offer the advantage of being more computationally
efficient (White & Ghosh, 2009). The most common model fit to areal data
is the conditional autoregressive (CAR) model, which makes the assump-
tion that neighbouring areal units are more likely to be correlated than
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non-neighbouring areal units.

Another type of spatial data are point pattern data. Point pattern data de-
scribe the situation where the locations of random events are considered
random (Banerjee et al., 2014). Of interest is the location and pattern of ob-
servations, and not the value of the observation itself. Figure 1.2 provides
an illustration of how to visualise point pattern data. The ‘quakes’ dataset
in R gives the locations of shallow earthquakes across New Zealand and
the Pacific. These are plotted on a map and allow informal inferences to
be made about the pattern of occurrence. From the plot, a clear pattern
emerges that correlates to the Ring of Fire where a series of volcanic erup-
tions and earthquakes frequently occur. Although the magnitude of the
earthquake is reported as well, from a point pattern perspective it is not
needed. Point pattern data are often modelled using Poisson processes.

The third type of spatial data are point referenced data. In this thesis, we
focused on spatial and spatio-temporal methods for point referenced data.
This type of data (often referred to as geostatistical data) describe measure-
ments that have been observed at a particular fixed location. Formally,
Y (s) is a random vector at a location s ∈ Rr, where s varies continuously
over D, a fixed subset of Rr that contains an r-dimensional rectangle of
positive volume (Banerjee et al., 2014). Point referenced data can be visu-
alised on a 2-dimensional or 3-dimensional map. Figure 1.3 displays me-
dian nitrate levels in groundwater across New Zealand from 1995 to 2006.
This plot allows us to notice clusters of observations with relatively similar
values, which is a sign of spatial autocorrelation. We describe this concept
in the next section. Another example of point referenced data is given by
Figure 1.4. It shows the catch weight in kilograms per square kilometre
of the fish species hoki caught in 1255 trawls of the sub-Antarctic region.
We describe the hoki data in more detail in Section 2.7.2. The advantage
of working with point referenced data is that it provides the most infor-
mation of the three spatial data types. Not only does this type of data
contain an observable value, it also gives the exact location. Models for
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Figure 1.2: The Pacific experiences large numbers of small earthquakes,
in well-defined belts stretching across the Pacific Islands to New Zealand.
This pattern is part of the ‘Ring of Fire’, the almost continuous belt of vol-
canoes and earthquakes rimming the Pacific Ocean.
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Figure 1.3: Median nitrate levels in groundwater, 1995 – 2006. Map show-
ing all New Zealand monitoring wells colour-coded according to the ni-
trate category they fall into (3 categories covering the range 0 to >11.3
mg/L). Regions with a significant proportion of wells that have median
nitrate exceeding 5.65 mg/L (i.e. half the New Zealand Drinking Water
Standard) are Waikato, Manawatu, Wairarapa, Taranaki, Canterbury and
Southland (Ministry for the Environment & Statistics New Zealand, 2007).
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Figure 1.4: Map of 1255 trawls where hoki was caught in the sub-Antarctic
region. The size of a point is representative of the catch weight in kg,
whereas, the colour is representative of the year (Morris, 2017).
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point referenced data can be computationally intensive (Gelfand & Baner-
jee, 2017; White & Ghosh, 2009; Cameletti et al., 2013), however, they offer
more flexibility in capturing the spatial dependence when a large number
of observations are measured at different sites (White & Ghosh, 2009).

There are several main objectives for modelling point referenced data. Re-
searchers might be interested in: identifying and estimating the effects of
predictors of a point referenced variable, describing and accounting for
the covariance structure of a point referenced variable, or predicting and
interpolating point referenced variables at locations not sampled. Because
of the nature of spatial data, care needs to be taken to account for spatial
dependence, spatial autocorrelation, and other spatial phenomena when
modelling point referenced data. We introduce these concepts in the fol-
lowing sections.

1.1 Autocorrelation

An important concept to consider when fitting models to spatial data is
that of Autocorrelation. Autocorrelation was defined by Yule (1921) as the
dependence of successive observations of a single variable. An assump-
tion of independence between observations is often made when construct-
ing a model. When autocorrelation exists within data, care must be taken
to account for such dependencies. There are different types of autocorre-
lation, with the most common being temporal and spatial autocorrelation.

Temporal autocorrelation is the correlation between a set of observations
of a single variable observed at different time points. A simple way to
account for this type of autocorrelation is to assume that observations that
were observed closer in time are more correlated than those separated by a
large time distance. There are many models that can account for temporal
autocorrelation, with one being the autoregressive (AR) model.

Spatial autocorrelation is the correlation between a set of observations of
a single variable observed at different locations or in different areas. The
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most prominent law in geography is Tobler’s first law, and states that “ev-
erything is related to everything else, but near things are more related than
distant things” (Tobler, 1970). It means that characteristics of phenomena
at one location on Earth tend to be similar to those at nearby locations.
Throughout this thesis, we will see how this concept can be incorporated
into models to account for spatial autocorrelation.

A model that does not appropriately consider spatial autocorrelation is
misspecified and failure to account for it can result in biased predictions
and inflated errors. Proper specification requires that any spatial associ-
ation is accounted for within the model properly (Elhorst et al., 2010). In
this thesis, we we propose several modelling approaches that allow and
account for spatial autocorrelation within point referenced data.

1.2 Non-stationarity

Another important concept that needs to be considered when modelling
spatial data is non-stationarity. We describe this concept in greater detail
in Chapter 2. Fundamentally, models for spatial data take into account
Tobler’s first law of geography (Tobler, 1970), which states that “every-
thing is related to everything else, but near things are more related than
distant things.” For point referenced data, this is often carried out by fit-
ting a model defined by a particular covariance structure. The covariance
structure is commonly estimated assuming that the covariance between
any pair of point referenced observations, separated by a distance d, is the
same, regardless of the location, and this is known as stationarity. How-
ever, it is more likely for the covariance structure to vary with spatial loca-
tion, and this is known as non-stationarity.

In this thesis, we proposed several original methodologies to take into ac-
count the concepts of spatial autocorrelation and non-stationarity. The fol-
lowing sections detail the aim and outline of this thesis.



1.3. AIM OF THESIS 9

1.3 Aim of thesis

The main aim of this thesis was to develop a range of new methodolo-
gies that account for non-stationarity in spatial and spatio-temporal point
referenced data. We developed three distinct methodologies, each with
a non-parametric component. We first contributed to the literature on
geostatistical models, with a partitioning approach based on the K-means
clustering algorithm. The intention was to partition the spatial domain
of point referenced data and assume stationarity within the sub-regions.
We then contributed to the geostatistical modelling literature an approach
based on covariance regression network models. By applying a technique
used in the network analysis literature, we proposed a more flexible co-
variance function based on regression of the covariance matrix using an
network structure estimated from the locations of the point referenced
data. We then took a non-parametric, machine learning approach, and
proposed a modification of geographic random forests that involved con-
structing a neighbourhood structure based on K-means clustering. We
made a further contribution by developing geographic random forest ap-
proach for spatio-temporal point referenced data.

A secondary aim of this thesis was to develop a goodness-of-fit test for
Bayesian spatial and spatio-temporal geostatistical models. The literature
on goodness-of-fit tests for geostatistical models is surprisingly sparse,
and we made a contribution to it in the form of pivotal discrepancy mea-
sures. We now outline the layout of this thesis.

1.4 Outline of thesis

This thesis is organized into seven chapters, with the main contributions
detailed in Chapters 3, 4, 5, and 6.

In Chapter 2, we introduced several key concepts and methodologies that
are central to this thesis. The chapter includes topics on stochastic pro-
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cesses, stationarity, detecting spatial autocorrelation and non-stationarity,
the geostatistical model, Bayesian methods, and model assessment tools.
In addition, we introduced two datasets that were used as case studies in
the main chapters. The first set of data detail information from monitoring
stations placed at 40 fixed locations throughout New Zealand that mea-
sured the concentration of particulate matter in 2013. The second set of
data contains information from research trawl surveys of the sub-Antarctic
region that were carried out by the National Institute of Water and Atmo-
spheric Research (NIWA) for the Ministry for Primary Industries, New
Zealand (MPI), from 1991 to 1993, and 2000 to 2008.
In Chapter 3, we presented a geostatistical model for spatial and spatio-
temporal point referenced data that used partitioning via the K-means
algorithm to account for non-stationarity. This was followed by Chap-
ter 4, in which we presented a covarianace regression network modelling
approach for spatial and spatio-temporal point referenced data. We then
presented a non-parametric geographic random forest approach for mak-
ing predictions from spatial and spatio-temporal point referenced data in
Chapter 5. Following in Chapter 6, we presented a pivotal discrepancy
measure for goodness-of-fit testing of geostatistical models fitted to spatio-
temporal data in a Bayesian context.
In Chapters 3 to 6, we presented a series of simulation studies that were
conducted to evaluate the performance of our proposed methodologies.
Further, the methods were applied to the particulate matter data and hoki
data to test their viability in reality.
We concluded the thesis in Chapter 7, with a discussion of the proposed
methodologies, their limitations, and future research considerations.



Chapter 2

Preliminary methodology

In this chapter, we introduced key methodology used and referenced to
in this thesis. We begin with a section dedicated to stochastic processes
within the spatial statistics context. This is followed by sections that out-
line procedures for detecting spatial autocorrelation and non-stationarity.
We then introduced the geostatistical model and the Bayesian framework.
A short introduction is given to model comparison and assessment tools.
We conclude the chapter with descriptions of two sets of data that we used
in case studies throughout the thesis.

2.1 Spatial and spatio-temporal stochastic processes

Within the point referenced data setting, modelling is carried out by spec-
ifying random surfaces over R2. One way to do this is to model the sur-
face as a realization of a stochastic process (Gelfand & Schliep, 2016). In
this section, we introduced stochastic processes, particularly spatial and
spatio-temporal stochastic processes, for modelling point referenced data.

11
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2.1.1 Definition

A collection of point referenced observations from a potentially infinite
number of measurements is a realization of a stochastic process. A stochas-
tic process is a collection of random variables, Y (s;ω) ≡ {Y (s;ω) : s ∈
D;ω ∈ Ω}, on some probability space (Ω, F, P ) indexed by a variable
s ∈ D where D is a fixed subset of Rd with positive d-dimensional volume
(Cressie, 1993; Billingsley, 2013). The realization of the process {y(s) : s ∈
D} would correspond to a particular value of ω, say ω0. For this thesis,
we suppress the dependence of Y (.) on ω ∈ Ω, and define the stochastic
process as,

Y (s) ≡ {y(s) : s ∈ D}. (2.1)

The stochastic process is called a time series when s represents continu-
ous or discrete indices in time, t. When s represents spatial locations that
are (usually) fixed over a continuous d-dimensional set (D ⊆ Rd), where
d = 2 or d = 3, then the process is considered spatial stochastic (Cressie,
1993). Furthermore, Y (s, t) ≡ {y(s, t) : (s, t) ∈ D} is called a spatio-
temporal stochastic process when (s, t) represent spatial locations at time
t fixed over a continuous d-dimensional set (D ⊆ Rd−1 × R) (Cameletti
et al., 2013). Then (Y (s1, t), ..., Y (sn, t))

′ is a random vector, whose mul-
tivariate distribution reflects the spatial dependencies in the variable of
interest.
The expectation of mean function, µ(.), of a stochastic process is defined
by,

µ(s) = E(Y (s)), (2.2)

and the covariance function, C(., .), of a stochastic process is defined for
any pair (si, sj),

C(si, sj) = Cov(Y (si), Y (sj))

= E
(
(Y (si)− µ(si))(Y (sj)− µ(sj))

)
,

(2.3)

(Paciorek, 2003).
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Stochastic processes are often defined by their finite-dimensional distribu-
tions (Cressie, 1993). A Gaussian process is a stochastic process whose fi-
nite dimensional distributions are multivariate normal, and are completely
specified by their mean and covariance functions, just as multivariate Gaus-
sian distributions are specified by their mean vector and covariance matrix
(Paciorek, 2003). The covariance function for a Gaussian process must be
positive definite, in order to satisfy that the finite dimensional distribu-
tions are consistent (Stein, 2012). A covariance function is positive definite
if it satisfies,

n∑
i=1

n∑
j=1

aiajC(si, sj) ≥ 0, (2.4)

for every n, every collection {s1, ..., sn}, and any vector of real numbers a.

Gaussian processes are widely used in modelling spatial and spatio-temporal
data (Paciorek, 2003). In most applications, an assumption of stationarity
is made on the covariance function for simplicity. We define stationarity
in the following section.

2.1.2 Stationarity

One of the main assumptions made when modelling a spatial or spatio-
temporal process is that the process is stationary. A stochastic process is
called strictly stationary if the finite dimensional joint distributions are in-
variant under translation of the spatial coordinates. In other words,

Pr(Y (s1 + h) < y1, ..., Y (sn + h) < yn) = Pr(Y (s1) < y1, ..., Y (sn) < yn),

(2.5)
for all vectors h ∈ Rd (Cressie, 1993; Gelfand et al., 2010; Schabenberger
& Gotway, 2017). This type of stationarity is a strong condition. For most
spatial statistical methods it is satisfactory to have stationarity conditions
based on moments of the joint distributions rather than the distributions
themselves.
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Second-order stationarity is assumed so that the data are considered rep-
resentative of a complete sampling of a single realization. Formally, and
in general, the stochastic process, Y (.), that satisfies

E
(
Y (s)

)
= µ,∀s ∈ D, (2.6)

and

Cov
(
Y (si), Y (sj)

)
= C(si − sj),∀si, sj ∈ D, (2.7)

is defined to be second-order stationary, where C is the covariance func-
tion. The mean of a second-order stationary spatial process is constant and
the covariance between elements of Y (s) is a function only on their spa-
tial separation (represented by h, named the lag vector) and illustrates the
lack of importance of absolute coordinates.
The covariance function of a second-order stationary spatial stochastic
process has several nice properties that are listed below (Schabenberger
& Gotway, 2017):

1. C(0) ≥ 0;

2. C(h) = C(−h), i.e., C is an even function;

3. C(0) ≥ |C(h)|;

4. C(h) = Cov
(
Y (s), Y (s+ h)

)
= Cov

(
Y (0), Y (h)

)
;

5. IfCj(h) are valid covariance functions, j = 1, ..., k, then
∑k

j=1 bjCj(h)

is a valid covariance function, if bj ≥ 0 ∀j;

6. If Cj(h) are valid covariance functions, j = 1, ..., k, then
∏k

j=1 Cj(h)

is a valid covariance function;

7. IfCj(h) are valid covariance functions, j = 1, ..., k, then
∑k

j=1 bjCj(h)

is a valid covariance function in Rd, then it is also a valid covariance
function in Rp, p < d.
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Properties 5 – 7 require that the covariance function of a stationary pro-
cess be valid. A covariance function C(h) = C(si − sj) of a second-order
stationary spatial stochastic process is considered valid if it is a symmetric
and positive definite function that satisfies Equation 2.4 for every n, every
collection {s1, ..., sn}, and any vector of real numbers a.

2.1.3 Non-stationarity

The assumption of stationarity is an exception, rather than a generality
(Fouedjio, 2017). When modelling some phenomena, particularly envi-
ronmental, the stationarity assumption may not be suitable (Blangiardo &
Cameletti, 2015), (Sampson & Guttorp, 1992). That is, the covariance struc-
ture between observations across the domain might not be constant, since
geographic variables might influence the spatial dependence structure. In
these cases, it would be more suitable to consider non-stationary spatial
and spatio-temporal methods.
The spatial and spatio-temporal modelling literature is rich with mod-
elling approaches that involve estimating an explicit non-stationary co-
variance function. A non-stationary covariance function varies over the
spatial and/or spatio-temporal domain. Paciorek & Schervish (2006) pro-
posed a class of non-stationary covariance functions that can be constructed
from a stationary covariance function. In this thesis, we considered non-
parametric solutions to account for non-stationarity that do not require an
explicit non-stationary covariance function. We present these in the chap-
ters that follow.

2.2 Detecting spatial autocorrelation

2.2.1 Visualizing spatial autocorrelation

We can visualize spatial autocorrelation in a point referenced dependent
variable by plotting it against the geographic coordinates at which the ob-
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servations were made. To obtain a smoother surface, the observations can
be interpolated using. for example, Akima interpolation (Akima, 1978).
This plot is called a surface plot, and is used to identify clusters or patches
of values that are similar. Clustering of similar values gives an indica-
tion of positive spatial autocorrelation, while values that change sharply
within small local radii give an indication of negative spatial autocorrela-
tion.
In addition to visualizing spatial autocorrelation, we can measure it for-
mally using Moran’s I.

2.2.2 Moran’s I

A common way to measure spatial autocorrelation globally is to use Moran’s
I (Moran, 1950). Moran’s I is an adaptation of the popular Pearson product
moment correlation coefficient that allows us to measure spatial autocor-
relation for a univariate series (Moran, 1950). The statistic is,

I =
n

S0

∑n
i=1

∑n
j=1wij(xi − x̄)(xj − x̄)∑n

i=1(xi − x̄)2
, (2.8)

where n is the number of observations, wij is the weight between obser-
vations i and j, and S0 is the sum of all the weights. The choice of weight
function between observations is important, and should take into account
how close two observations are in space. By Tobler’s first law (Tobler,
1970), observations that are closer in space are expected to have similar
observed values, and are given a larger weight compared to observations
that are further apart. A function of the inverse of the distance between ob-
servation locations is a popular choice for the weights. Other weight func-
tions have been used in the literature, for example wij = exp(−dij

d̄
), which

specifies quasi-global correlation between points derived from maximum
entropy models (Chen, 2012).
Moran’s I takes values between -1 and 1. If I is positive, then there is pos-
itive spatial autocorrelation within the sample, whereas, if it is negative,
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then there is negative spatial autocorrelation. If I is equal to its expected
value, then there is no spatial autocorrelation within the sample.
A test is defined for whether significant spatial autocorrelation exists by
testing the null hypothesis that there is no spatial autocorrelation (ie. Iobs =

E(I)), against an alternative hypothesis that there is (or the one-sided hy-
potheses that there is positive spatial autocorrelation or negative spatial
autocorrelation). Standardizing I by its expected value and standard er-
ror, produces a convenient test statistic,

zI =
I − E(I)√

Var(I)
, (2.9)

where zI is the test statistic with standard Normal distribution, E(I) is
the expected value of Moran’s I, and

√
Var(I) is the standard error. The

expected value of Moran’s I is defined as,

E(I) =
−1

n− 1
, (2.10)

where, n is the number of observations (Moran, 1950). The standard error
for Moran’s I is

√
E(I2)− E(I)2, and can be calculated analytically, or by

bootstrapping.
The next section introduces tools for identifying non-stationarity in point
referenced data.

2.3 Detecting Non-stationarity

2.3.1 Empirical covariance function

An empirical covariance function can be used to informally establish if
an observed spatial process is stationary or non-stationary (Gelfand et al.,
2010). The motivation behind this is that if the empirical covariance func-
tions look different between different sub-regions of the data, then this
provides evidence for non-stationarity. This involves assigning each pair
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of observations to a distance class based on the distance between the lo-
cations of each pair of observations. An arbitrary number of classes, K,
is chosen. The correlation between pairs of observations is plotted by the
distance classes and any differences in the characteristics of the empirical
covariance functions over distance can be observed for different classes.
The empirical covariance function is evaluated for each distance class k
by,

Ĉ(hk) =
1

Nk

∑
(si,sj)∈N(hk)

(Y (si)− Ȳ )(Y (sj)− Ȳ ), (2.11)

where hk is the lag (distance between the locations of observations i and j
in distance class k), Nk is the number of pairs of observations in distance
class k, (si and sj) is a pair of locations for observations i and j in k, and
Y and Ȳ are the observed and average observations. By plotting the em-
pirical covariance function against hk, we can get an informal perspective
of the true covariance functions as distance between locations increase,
across the whole study region. Non-stationarity is alluded to if the covari-
ance functions look different between sub-regions.
A more formal way of identifying non-stationarity was proposed by Bruns-
don et al. (1996), and we present it next.

2.3.2 Geographically weighted regression

The geographically weighted regression (GWR) model extends the tradi-
tional framework for regression by allowing local parameters to be esti-
mated rather than global ones. The parameters are assumed to be func-
tions of the locations on which the observations are obtained. The model
for a simple regression is re-written as,

yi =

p∑
k=0

βikxik + εi, i = 1, 2, ..., n, (2.12)

where βik is the value of the kth parameter at location i, and xik is the value
of kth covariate measured at location i. This model recognizes that spatial
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variations in relationships might exist and provides an easy way to mea-
sure them. The calibration of Equation 2.12 implicitly assumes that data
observed close to location i have more influence in the estimation of the
βik’s than data located further from i. Essentially, the equation measures
the relationships inherent in the model around each location i. Hence the
parameters are estimated by weighted least squares. An observation is
weighted in accordance with its proximity to location i, so that the weight-
ing of an observation is no longer constant in the calibration but varies
with i. That is,

β̂(i) = (XTW (i)X)−1XTW (i)Y , (2.13)

whereX is an n× p+ 1 design matrix of covariates, andW (i) is a weight
matrix, with zero as the off-diagonal elements and whose diagonal entries
denote the geographical weighting of each of the n observed data for re-
gression point i.

There are a range of choices for the spatial weight matrix W (i). When
the diagonal entries are all equal to 1, then we arrive at the ordinary least
squares framework. A weight function that combats the discontinuities of
weights is,

wij = exp(−θd2
ij), (2.14)

where wij is the weight between a specific point in space j at which data
are observed and any point in space i at which parameters are estimated.

Here, dij is the distance between i and j, and
√

θ
2

is called the bandwidth.
If i and j both happen to be a point in space at which data are observed,
the weighting at that point will be 1, and the weighting of other data will
decrease according to a Gaussian curve as the distance between points
increases.

We then calibrate the spatial weight matrix (ie. choose θ). The most conve-
nient way to do so is to use generalized cross validation (Brunsdon et al.,
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1996). This involves minimizing,

GCV =
n

(n− tr(H))2

n∑
i=1

(yi − ŷ(θ))2, (2.15)

whereH = X(XTW (i)X)−1XTW (i), is the hat matrix, and ŷ(θ) = Xβ̂.
The variability of the local estimates can be used to examine the legitimacy
of making a stationarity assumption. For a given independent variable k,
at a given location i, suppose that β̂ik is the GWR estimate of βik. If a value
of this estimate is taken for each regression point (say n), then an estimate
of variability in the parameter is given by the standard deviation of the n
parameter estimates. By comparing this observed measure of variability
to a distribution of variability measures under a null hypothesis of station-
arity, a p-value can be obtained that describes the probability of observing
such a variation in local parameter estimates from a stationary process.
Algorithm 1 outlines the procedure used to calculate the p-values for the
test.

Algorithm 1 Test for spatial non-stationarity

1: Find the optimal value for θ by minimizing Equation 2.15
2: Fit the GWR model using the optimal value of θ.
3: Calculate the observed standard deviation of each n estimates of each

regression parameter.
4: Reshuffle the locations and assign them to the dependent and inde-

pendent variables.
5: Refit the GWR model using the optimal value of θ found before, and

calculate the standard deviations
6: Repeat (4) and (5) 1000 times to obtain a bootstrap sample of the null

distribution.
7: Calculate the p-value by finding the proportion of bootstrapped stan-

dard deviations that are greater than the observe standard deviations.

We present the geostatistical model in the next section.
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2.4 Geostatistical model

In Chapter’s 3 and 4, we are interested in modelling the covariance struc-
ture of observed univariate spatial and spatio-temporal processes, {y(s) :

s ∈ Rd}, and {y(s, t) : (s, t) ∈ Rd × R}, respectively. A popular and
well discussed kind of model, due to its flexibility in modelling the effect
of relevant covariates as well as time and space dependence, is defined
in several papers, in particular, Cameletti et al. (2011) and Sahu & Bakar
(2012). The model is often referred to as a geostatistical model, and we
used this term throughout the thesis. We defined the model separately for
both spatial and spatio-temporal processes.

2.4.1 Geostatistical model for a spatial process

We assume that y(si), measured at location si where i = 1, ..., n, can be
modelled by a Gaussian process, with measurement equation,

y(si) = µ(si) + ζ(si) + ε(si), (2.16)

where µ(si) = x(si)β and x(si) = (1, x1(si), ..., xp(si)) denotes the (p + 1)-
dimensional vector of covariates for location si, and β = (β0, β1, ..., βp)

′ is
the coefficient vector. Furthermore, the measurement error (nugget effect),
ε(si), is modelled independently as a white noise process, N(0, τ 2). Lastly,
the spatial error, ζ(si), is modelled by a zero-mean Gaussian distribution.
It is characterized fully by the spatial covariance function,

Cov(ζ(si), ζ(sj)) = σ2R(si, sj;φ), (2.17)

for i 6= j, and where σ2 is the spatial variance parameter and R(.) is a
correlation function that depends on parameter vector φ, such that the re-
sulting correlation matrix, R is positive definite. We make no assumption
of spatial stationarity or isotropy, as evidenced by the spatial covariance
function in Equation 2.17.
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By collecting all the observations measured in a vector denoted by y =

(y(s1), ..., y(sn))′, we can write,

y = µ+ ζ + ε, (2.18)

where µ = Xβ, X = (x(s1)′, ...,x(sn)′)′, the measurement error follows
ε ∼ MVN(0, τ 2In), the spatial process follows ζ ∼ MVN(0, σ2R), and In
is the identity matrix with dimension n.
Furthermore, let θ = (β′, σ2, τ 2,φ′)′ denote the vector of parameters. It
is then implied that, from Equation 2.18, the marginal distribution of y
(given the parameters), is,

y|θ ∼MVN
(
µ, σ2R+ τ 2In

)
. (2.19)

We used and modified Equation 2.18 in Chapter’s 3 and 4 to model various
sets of simulated and real data to analyze our proposed methodologies.

2.4.2 Geostatistical model for a spatio-temporal process

The geostatistical model for a spatial process can be extended to incorpo-
rate temporal dependence. We assume that y(si, t), measured at location
si where i = 1, ..., n and time t = 1, ..., T , can be modelled by a Gaussian
process, with measurement equation,

y(si, t) = µ(si, t) + Z(si, t) + ε(si, t), (2.20)

where µ(si, t) = x(si, t)β and x(si, t) = (1, x1(si, t), ..., xp(si, t)) denotes
the (p + 1)-dimensional vector of covariates for location si at time t, and
β = (β0, β1, ..., βp)

′ is the coefficient vector. Furthermore, the measurement
error (nugget effect), ε(si, t), is modelled independently as a white noise
process, N(0, τ 2). Lastly, Z(si, t) is a realization of a spatio-temporal pro-
cess and is modelled by a Gaussian process that changes in time with first
order autoregressive dynamics, and coefficient ρ, given by,

Z(si, t) = ρZ(si, t− 1) + ζ(si, t), t = 2, ..., T. (2.21)
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where |ρ| < 1, and Z(si, 1) is such that,

Z(si, 1) ∼ N
(

0, σ2R(si, sj;φ)

1− ρ2

)
. (2.22)

Further, ζ(si, t) is modelled by a zero-mean Gaussian distribution, in which
we assume temporal independence. It is characterized fully by the spatio-
temporal covariance function,

Cov(ζ(si, t), ζ(sj, t
∗)) =

0 if t 6= t∗

σ2R(si, sj;φ) if t = t∗,
(2.23)

for i 6= j, and where σ2 is the spatial variance parameter and R(.) is a cor-
relation function that depends on parameter vector φ, such that the result-
ing correlation matrix, R is positive definite. In this thesis, we implicitly
make the assumption that the overall spatial covariance structure of the
data process is constant over time. Also note that we make no assumption
of spatial stationarity or isotropy, as evidenced by the spatial covariance
function in Equation 2.23.

By collecting all the observations measured at time t in a vector denoted
by yt = (y(s1, t), ..., y(sn, t))

′, we can write

yt = µt +Zt + εt, εt ∼MVN(0, τ 2In), (2.24)

for t = 1, ..., T , where µt = Xtβ, Xt = (x(s1, t)
′, ...,x(sn, t)

′)′, and In is the
identity matrix with dimension n. As before, the spatio-temporal process
is decomposed into spatial and temporal terms,

Zt = ρZt−1,+ζt, ζt ∼MVN(0, σ2R) (2.25)

for t = 1, ..., T .

Also let θ = (β, σ2
ε , ρ, σ

2, τ 2,φ)′ denote the vector of parameters. It is then
implied that

yt|Zt,θ ∼MVN(µt +Zt, τ
2In), (2.26)
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for t = 1, ..., T , and

Zt|Zt−1,θ ∼MVN(ρZt−1, σ
2R), (2.27)

for t = 2, ..., T , and the Z1 comes from the stationary distribution of the
AR(1) process,

Z1|θ ∼MVN
(
0,

σ2

1− ρ2
R
)
. (2.28)

It is then implied that, from Equations 2.26 – 2.28, the marginal distribu-
tion of yt (given the parameters), is,

yt|θ ∼MVN
(
µt,

σ2

1− ρ2
R+ τ 2In

)
. (2.29)

We also used and modified Equation 2.24 in Chapter’s 3 and 4 to model
various sets of simulated and real data in order to analyze our proposed
methodologies.

2.4.3 Covariance functions

There are many types of valid covariance functions, and they have been
used in a variety of applications (Banerjee et al., 2014). One of the most
common stationary covariance functions used to model spatial and spatio-
temporal data is the Matèrn function,

Cov(Y (si), Y (sj)) = C(d) =
σ2

Γ(ν)2ν−1
(ψd)νKν(ψd), (2.30)

for ψ > 0 and ν > 0, where Γ(ν) is the standard gamma function and Kν

is the modified Bessel function of the second kind with order ν (Matérn,
1960; Cressie, 1993). The parameter ψ controls smoothness of the rate
of decay of the correlation as the distance between locations d increases
and the parameter ν controls smoothness of the random field. When the
smoothness parameter ν is set to specific values, closed form expressions
can be obtained for the covariance function. For example, when ν = 1

2
, the
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Matèrn covariance function has closed form,

C(d) = σ2 exp

(
− d
ψ

)
, (2.31)

also known as the exponential covariance function. We used Equation 2.31
in various ways in Chapter’s 3, 4, 5, and 6.

2.4.4 Cholesky factorization

In this thesis, we perform several simulation experiments to evaluate the
viability of our proposed methodologies. In order to simulate a vector
of spatial point reference observations, we use Cholesky factorization to
draw from a Gaussian process, specifically the geostatistical models de-
fined by Equations 2.18 and 2.24, with a specified mean vector and covari-
ance matrix. Rue & Held (2005) provided simple algorithms for such com-
putations, which have been built and implemented in various software,
including R.
In general, we can decompose a matrix V into a lower triangular matrix
and its transpose,

V = LLT , (2.32)

whereL is the lower triangular matrix. The lower triangular matrix retains
the band structure from the orignal matrix, which allows computations
to be carried out on L. This has been shown to increase computational
efficiency. We define the Cholesky factorization algorithm of Rue & Held
(2005) below, that we used to sample from a Gaussian process with a mean
µ and covariance matrix Σ.
The following section is dedicated to Bayesian methods.

2.5 Bayesian methods

The geostatistical models described in Section 2.4 are examples of hierar-
chical models. The benefit of specifying a model with a hierarchical struc-



26 CHAPTER 2. PRELIMINARY METHODOLOGY

Algorithm 2 Sampling from a Gaussian process, x ∼ N(µ,Σ)

1: Compute the Cholesky factorization, Σ = LLT

2: Sample z ∼ N(0, I)

3: Solve LTv = z

4: Compute x = µ+ v

5: Return x

ture is in the ability to explicitly incorporate different variance components
of the response. For example, in Equation 2.18, we see that the variance of
the dependent variable y is decomposed into two components, one for the
spatial process, and one for the measurement process. Bayesian methods
can be used to estimate hierarchical models and allow for easier compu-
tation of parameter estimates, compared to maximum likelihood estima-
tion. Further, Bayesian hierarchical models have been used to estimate the
parameters of geostatistical models in the literature (Gelfand & Banerjee,
2017). As such, we decided to use the Bayesian approach in this thesis.
We use the next section to lay the groundwork for the Bayesian approach.

2.5.1 Bayesian estimation

Let y be a vector of observations from some distribution depending on
fixed potential predictors x and unknown parameters θ. We first start
with a joint probability model for y, x, and θ, given by,

π(y,x,θ) = f(y|x,θ)π(θ|x), (2.33)

where we refer to f(y|x,θ) as the data likelihood and π(θ|x) as the prior
distribution.
By simply conditioning the joint distribution of unknown parameters on
the observed data y, we arrive at an expression for the posterior density
of the parameters:

π(θ|y,x) =
π(y,x,θ)

π(y,x)
=
f(y|x,θ)π(θ|x)

π(y,x)
, (2.34)
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where π(y,x) =
∫
π(y|x,θ)π(θ|x)dθ is the marginal distribution of the

data, which does not depend on any parameters. As such, we can rewrite
the posterior density in its most recognizable form:

π(θ|y,x) ∝ f(y|x,θ)π(θ|x). (2.35)

Equations 2.34 and 2.35 provide the theoretical framework for Bayesian
statistics (Gelman et al., 2014). From here, we can build hierarchical mod-
els.

2.5.2 Bayesian hierarchical model

It is common practice to cast univariate geostatistical models as hierar-
chical models (Mukhopadhyay & Sahu, 2018; Gelfand & Banerjee, 2017;
Banerjee et al., 2014; Cameletti et al., 2013; White & Ghosh, 2009). This
lends itself nicely to the Bayesian methodology, which we adopt in this
thesis. This offers the advantage for full and exact inference and proper
assessment of uncertainty.

From equation 2.35, a Bayesian hierarchical model (BHM) for the geosta-
tistical models in Section 2.4 can be built. Let y = (y(s1), ..., y(sn))T be
a point referenced response variable where y(si) was observed at loca-
tion si. From Equation 2.18, we can obtain the likelihood function for y,
f(y|ζ,θ,x) by conditioning on the spatial process ζ, the parameter vec-
tor θ, and the predictors, x. The value ζ(si) is regarded as a random
draw from a population distribution governed by some parameter vector
θ, such that π(ζ|θ) =

∏n
i=1 π(ζ(si)|θ). Therefore, our BHM has the form:

π(ζ,θ|y,x) ∝ f(y|ζ,θ,x)π(ζ|θ,x)π(θ|x). (2.36)

The posterior distributions for the parameters of a BHM are needed in or-
der to perform Bayesian inference. From equation 2.36, three components
are required to compute the posterior density.
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2.5.3 Computational software

In this thesis we use the program NIMBLE, a system for building and
sharing analysis methods for statistical models, especially for hierarchical
models and computationally-intensive methods (NIMBLE Development
Team, 2017). The program is built in R, but runs the models and algo-
rithms using C++ to increase computational efficiency. The benefit of using
NIMBLE is that we can implement Markov chain Monte-Carlo (MCMC)
sampling schemes to sample from the posterior distributions of the pa-
rameters. This is necessary because the full conditional distributions for
each parameter are non-standard and do not have closed forms for esti-
mation.

2.5.4 Model diagnostics

Trace plots

Trace plots display the parameter value at each iteration of sampling and
are useful for visually assessing the convergence of the simulated draws
to a posterior distribution. They allow us to check whether any values are
rejected repeatedly causing the chain to become stuck on a single value
(poor mixing). When poor mixing occurs, a particular value may be over-
represented in the posterior sample.

In addition to monitoring chain mixing, trace plots allow us to check if
any patterns are present. Clear patterns in a trace plot indicate that the
algorithm may not have converged. In addition, if we use multiple chains
and observe that they traverse different parts of the parameter space, then
this is also indicative of non-convergence. To rectify these problems, we
can increase the number of iterations.
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Posterior density plots

Density plots of the posterior parameters are also useful for visualizing the
quality of the posterior draws. The shapes of the densities are dependent
on the distributions involved in the construction of the posteriors. How-
ever, if large and erratic peaks are observed in the density plots, then this
indicates a lack of convergence to a single target distribution.

Autocorrelation plots

When consecutive values in a Markov chain are highly correlated, then
traversing the sample space will be slow, leading to issues such as poor
mixing. This is because the proposal parameters are more likely to be
close to the current state. A plot of the autocorrelation for each parameter
chain can be used to assess whether the correlation between successive
draws will cause issues. If high correlation is detected, then thinning the
sample (taking every kth draw) will make the values less dependent (Link
& Eaton, 2012).

Potential scale reduction factor

The potential scale reduction factor (PSRF), R̂, is used to monitor conver-
gence of a posterior distribution for a parameter, θ, to a stationary distri-
bution. It is an estimate of the factor, by which the scale of the current
distribution for a parameter might be reduced if simulations were contin-
ued in the limit n→∞.
To compute R̂ for a posterior simulation of θ, we must first estimate the
marginal posterior variance, Var(θ|y). This can be done by a weighted
average of within-chain variance, and between-chain variance. Let θij rep-
resent the posterior draw for iteration i = 1, ..., n from chain j = 1, ...,m.
Then the between-chain variance is defined as,

B =
n

m− 1

m∑
j=1

(θ̄.j − θ̄..)2, (2.37)
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where,

θ̄.j =
1

n

n∑
i=1

θij, and θ̄.. =
1

m

m∑
j=1

θ̄.j, (2.38)

and the within-chain variance is defined as,

W =
1

m

m∑
j=1

s2
j , (2.39)

where,

s2
j =

1

n− 1

n∑
i=1

(θij − θ̄.j)2. (2.40)

The marginal posterior variance is given by,

V̂ar(θ|y) =
n− 1

n
W +

1

n
B. (2.41)

Then, the PSRF is given by,

R̂ =

√
̂Var(θ|y)

W
. (2.42)

This expression converges toward 1 as n tends to∞. As a result, if a pa-
rameter chain has a PSRF of 1 (or close to 1), then it can be assumed that
the chain has converged to the target distribution.

2.5.5 Posterior prediction

We use the posterior predictive distribution to obtain a distribution of fit-
ted values, ŷ = (ŷ1, ..., ŷn)T . The posterior predictive distribution is given
by,

f(ŷ|y) =

∫
f(ŷ|y,θ)f(θ|y)dθ, (2.43)

where f(ŷ|y,θ) is a normal distribution arising from the joint multivari-
ate normal distribution of ŷ and the original data y. We can readily ob-
tain estimates of the posterior predictive distribution. Suppose we draw
a posterior draw θ(1), ...,θ(L) from the posterior distribution f(θ|y). Then
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we use composition sampling to draw ŷ, one for each θ(l), that is, ŷ(l) ∼
f(ŷ|y,θ(l)). The resulting collection {ŷ(1), ŷ(2), ..., ŷ(L)} is a sample from
the posterior predictive density (Gelfand & Banerjee, 2017).

2.6 Model comparison and assessment

2.6.1 Predictive accuracy

In this thesis, we placed particular emphasis on assessing a (Bayesian)
models ability to make accurate predictions. In this section, we introduce
the concept of predictive accuracy. We then list several measures of pre-
dictive accuracy that we use to compare the models fitted in this thesis.

Once a model has been fit, it is necessary to measure the model’s predictive
accuracy. Predictive accuracy allows for assessment of a model’s goodness
of fit, and can be used in the process of model comparison and selection
Vehtari & Gelman (2014). We can measure a model’s predictive accuracy
in different ways, which are each tailored toward the model application.
In this thesis, we measure predictive accuracy using two methods.

The first measure that we calculate is the root mean square error (RMSE).
Under the Bayesian context, we compute the RMSE for a particular draw
from the posterior distribution, θ(l), as

RMSE(l) =

(
1

n

n∑
i=1

(
yi − ŷ(l)

i

)2
) 1

2

, (2.44)

where ŷ(l) = (ŷ
(l)
1 , ..., ŷ

(l)
n )T for l = 1, ..., L.

In addititon to RMSE, we compute the mean absolute error (MAE), a more
natural measure of average error magnitude (Willmott & Matsuura, 2005).
For a particular draw from the posterior distribution, θ(l)

MAE(l) =
1

n

n∑
i=1

abs
(
yi − ŷi(θ(l))

)
. (2.45)
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2.6.2 Average estimation error of the covariance matrix

The covariance matrix plays a central role in this thesis. In addition to pre-
dictive accuracy, we also evaluate a models ability to accurately estimate
the covariance matrix. The average estimation error of the covariance ma-
trix is given by,

COV = log

(
1

L

L∑
l=1

n−
1
2 ||Σ̂(θ(l))−Σ||F

)
, (2.46)

(Lan et al., 2018).

2.6.3 Residual spatial autocorrelation

The last measure that we used to evaluate a proposed model is Moran’s
I on the residuals. By calculating Moran’s I on the residuals, we obtain a
measure of the amount of spatial autocorrelation that is not accounted for
by the model. Moran’s I on the residuals is calculated in the same way as in
Section 2.2.2, except that the observed values are replace by the posterior
distributions of each residual. That is,

I(l) =
n

S0

∑n
i=1

∑n
j=1 w

(l)
ij (r

(l)
i − ¯r(l))(r

(l)
j − ¯r(l))∑n

i=1(r
(l)
i − ¯r(l))2

, (2.47)

where I(l) is the value of Moran’s I on the residuals calculated from the lth
draw of the posterior residuals,

r
(l)
i = yi − ŷ(l)

i . (2.48)

We now introduce the two datasets that we apply our methods to through-
out this thesis.
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2.7 Datasets

2.7.1 New Zealand particulate matter

Air pollution has been shown to have negative effects on human health,
including premature mortality, as well as lung and heart problems. A
review also found that particulate matter (PM10 and PM2.5, Figure 2.1)
causes lung cancer (Loomis et al., 2013).

Figure 2.1: Illustration that puts the size of PM10 and fine particulate mat-
ter, PM2.5, into perspective. The image was obtained from US Environ-
mental Protection Agency (2018).

In 2012, air pollution from human made PM10 in New Zealand was as-
sociated with an estimated 1000 premature deaths, 520 extra hospital ad-
missions for cardiovascular and respiratory diseases, and 1.35 million re-
stricted activity days (when symptoms would prevent an individual from
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performing their usual daily activities) (Ministry for the Environment &
Statistics New Zealand, 2015). The greatest contributor to human-made
PM10 in New Zealand is burning wood and coal for home heating, with
an annual contribution of 57.5%, rising to 79.2% in winter (Ministry for the
Environment & Statistics New Zealand, 2015). New Zealand’s ‘resource
management regulations’ (Ministry for the Environment & Statistics New
Zealand, 2007) state that the concentration of PM10 cannot surpass 50
micrograms per metre cubed (expressed as a 24 hour mean). Currently,
New Zealand does not have any standards on annual mean PM10, but the
World Health Organization’s (WHO, 2006) guidline is 20 micrograms per
metre cubed. PM10 concentrations above this threshold are considered
harmful to human health. Under the resource management act (1991), re-
gional councils and unitary authorities are responsible for managing air
quality. Subsequently, monitoring stations have been placed at 40 fixed lo-
cations throughout New Zealand where pollution levels are highest. An-
nual average PM10 concentrations from these monitoring stations were
obtained from the Ministry for the Environment data service (Ministry for
the Environment, 2015) for the year 2013.

Figure 2.2 shows the distribution of the monitoring stations. In addition,
the colour gradient displays the concentration of PM10, with blue corre-
sponding to a lower annual concentration in 2013 and red correspond-
ing to a higher annual concentration in 2013. We can see that monitoring
stations in the South Island of New Zealand recorded higher concentra-
tions of PM10 than stations in the North Island. The lowest recorded an-
nual concentration of PM10 was observed at a monitoring station in the
Wellington region.

The level of ambient PM10 depends on how much pollution is being pro-
duced as well as other factors like the weather and local geography. For
example, windy conditions help to move pollution away. However, fea-
tures such as valleys can cause pollution to linger. Temperature inversions
that occur during cold, calm conditions can trap in pollutants, causing
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Figure 2.2: Annual average particulate matter (PM10) concentration for
2013 observed at monitoring stations in New Zealand. Red represents
higher levels of PM10 concentration and blue represents lower levels of
PM10 concentration.
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levels to be high. Years where there have been a lot of temperature in-
versions often have worse air quality, and produced more PM10 in colder
years. To account for covariate effects, monthly average temperature (in
◦C) and wind speed (m/s) measurements were obtained from the NIWA
Climate Database. These values were measured at 2089 stations through-
out New Zealand. Monthly averages were obtained from these locations
and converted into annual averages inline with the temporal scale of the
PM10 measurements. The covariates were available at different locations
from the PM10 values, the so-called “change of support problem” (Baner-
jee et al., 2014). An estimate of the covariate value was obtained at each
PM10 location by first creating a grid of 1◦ × 1◦ (approximately 111 km
× 111 km) cells over New Zealand. The covariate value assigned to each
PM10 monitoring station was then the average of all values in the same
grid cell as the monitoring station.

In this thesis, we fitted several models to the 2013 PM10 point referenced
data to illustrate our proposed methodologies in Chapters 3, 4, and 5. The
PM10 data was suitable to test our methods because the data exhibited
features like significant spatial autocorrelation and non-stationarity. Ev-
idence of spatial autocorrelation can be gleaned from Figure 2.2, where
clusters of higher values are seen in the south and clusters of lower val-
ues can be seen in the north. Furthermore, Moran’s I confirms the pres-
ence of significant spatial autocorrelation. Moran’s I was calculated to be
M = 0.3577, with a corresponding p-value for the two-sided test of sig-
nificant spatial autocorrelation of 3.23 × 10−8. In addition to spatial au-
tocorrelation, there is evidence for non-stationarity in the PM10 data. We
found evidence for non-stationarity when we performed the test for non-
stationarity that was described in Section 2.3.2. We calculated a p-value of
p = 0.03, suggesting significant non-stationarity.
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2.7.2 Sub-Antarctic hoki

Research trawl surveys of the sub-Antarctic region were carried out by
the National Institute of Water and Atmospheric Research (NIWA) for the
Ministry of Primary Industries, New Zealand (MPI). The dataset is a time
series that has been accumulated from the summers of 1991 to 1993, and
then again from 2000 to 2008 (Bagley et al., 2013). It contains point refer-
enced data on catch weight for multiple species in the sub-Antarctic. The
purpose of the surveys was primarily to estimate abundance of a partic-
ular fish species, Macruronus novaezelandiae, commonly known as hoki.
For this reason, we focused on the positive catch weight data for hoki in
this thesis.
The data were stratified using a 2-phase adaptive survey method pro-
posed in Francis (1984), with the intention to reduce variation in biomass
estimates. Figure 1.4 illustrates the stratification and shows the observed
hoki catch weight in kilograms and location for each of the 1255 trawls.
In addition, the year of the trawl is indicated by the colour, with red rep-
resenting the earlier years, and pink indicating more recent trawls. From
the graphic, we can glance that trawls near Puysegur Bank measured the
largest catch weights for hoki.
For our applications, we focused on the trawls that occurred between 2000
to 2008, in order to have a consistent annual time series. We fitted several
models to the data to illustrate our proposed methodologies in Chapters
4, 5, and 6. For Chapters 4 and 6, the models required that measurements
be observed at the same locations across time. The hoki dataset does not
meet this criteria. In order to obtain repeated measurements at the same
locations annually, catch weight locations within a stratum were gridded.
The strata were gridded in such a way that within each grid there was at
least one catch weight observation per year. The median longitude and
latitude of all observations within a grid was taken as the grid center, g.
The 38 grid centers are shown in Figure 2.3.
It should be noted that not all strata were used in the grid construction. For
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Figure 2.3: Map of 38 grid centers that summarise the trawls where hoki
was caught in the sub-Antarctic region.
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strata 25 – 28, there were years that trawls did not occur, and were there-
fore excluded from the final dataset. The weighted mean of hoki catch
weight observations within a grid was assigned as the catch weight for
the entire grid. The mean was weighted by distance from the grid cen-
ter, with catch weight observations closer to the grid center given more
weight. A weighted mean is used to allow observations located closer
to the grid center to contribute more to the grid mean than those further
away. In addition, the weighted mean depth of each trawl within a grid
was assigned as the depth for the entire grid in the same fashion.
Once again, the hoki data was suitable to test our methods because the
data exhibited significant spatial autocorrelation and non-stationarity. We
produced interpolated surface plots of the hoki catch weight (in log scale)
for each year and these are displayed in Figure 2.4. From the plots, we
observed evidence for spatial autocorrelation within each year in the form
of clusters of high and low catch weights across the sub-Antarctic region.
Furthermore, Moran’s I confirmed the presence of significant spatial au-
tocorrelation for the years 2000, and 2003 – 2006 (see Table 2.1). Non-
stationarity was also detected for the years 2000 – 2005, and 2007, con-
firmed by the p-values for the test of non-stationarity, given in Table 2.1.
We now move on to the main Chapters of this thesis, in which we intro-
duce new methodologies.
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Figure 2.4: Surface plots for Akima interpolated hoki catch weight across
the sub-Antarctic region for each year.
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Table 2.1: Statistics and p-values for the tests of spatial autocorrelation and
non-stationarity for each year of the hoki catch weight data.

Spatial Autocorrelation Non-stationarity
Year Moran’s I p-value p-value
2000 0.0721 1.208× 10−5 0.04

2001 0.00858 0.363 0.02

2002 0.00164 0.541 0.09

2003 0.197 < 2.2× 10−16 0.025

2004 0.0679 1.298× 10−8 0

2005 0.0893 2.463× 10−4 0.07

2006 0.108 8.527× 10−7 0.125

2007 −0.00302 0.444 0.065

2008 −0.00374 0.726 0.195
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Chapter 3

Partitioned geostatistical models
for spatial and spatio-temporal
data

Spatial and spatio-temporal phenomena are commonly modelled as Gaus-
sian processes. One such construction is the geostatistical model defined
by Equation 2.18 in Section 2. The geostatistical model has the benefit of
modelling the spatial dependence structure using covariance functions.
The most commonly used covariance functions impose an assumption of
spatial stationarity on the process. That means the covariance between
observations at particular locations depends only on the distance between
the locations (Banerjee et al., 2014). It has been widely recognized that
most processes manifest a spatially non-stationary covariance structure
(Sampson, 2014). If the study domain is small in area or there is not
enough data to justify more complicated non-stationary approaches, then
stationarity may be assumed for the sake of mathematical convenience
(Fouedjio, 2017). However, relationships between variables can vary sig-
nificantly over space, and a ‘global’ estimate of the relationships may ob-
scure interesting geographical phenomena (Brunsdon et al., 1996; Foued-
jio, 2017; Sampson & Guttorp, 1992). In Section 1.2 we described why it

43
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is important to carefully consider non-stationarity when estimating and
making predictions from a modelled spatial or spatio-temporal process.

Literature on the geostatistical model for spatial and spatio-temporal pro-
cesses suggests that non-stationarity can be considered in two ways. One
approach involves using a covariance function that explicitly accounts for
non-stationarity. This approach was investigated in (Paciorek & Schervish,
2006; Paciorek et al., 2013). The other approach uses non-parametric meth-
ods. A range of techniques have been described in the literature, such as
partitioning, kernel smoothing, process convolution, and spatial deforma-
tion Sampson (2014); Fouedjio (2017). In this chapter, we focused on parti-
tioning the spatial domain into heterogeneous sub-regions, within which
stationarity is assumed.

We begin this chapter with a review on the literature around partition-
ing spatial and spatio-temporal data. We highlight the successes and lim-
itations of several partitioning strategies applied to spatial and spatio-
temporal data. In Section 3.2 we formally introduced the partitioned geo-
statistical model of Heaton et al. (2017) for spatial data. We contributed
an extension of the partitioned geostatistical model to the spatio-temporal
case. This is followed by Section 3.3, where we contributed a partition-
ing strategy that uses the K-means algorithm to partition the locations
based on geographic features such as Euclidean distance. In Section 3.4.1
we outlined a simulation study that compared K-means partitioned geo-
statistical models fitted to two simulated spatial datasets, one generated
with a stationary covariance structure, and the other generated with a non-
stationary structure. The simulation was repeated for the spatio-temporal
case in Section 3.4.2. A case study was carried out in Section 3.5. We fitted
the proposed K-means partitioned geostatistical models to New Zealand
particulate matter data. We concluded the chapter with comments and
reflections in Section 3.6.
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3.1 Literature review

One of the most widely used assumption in spatial and spatio-temporal
statistics is that of (second-order) stationarity. In Chapter 2, we introduced
the concept of stationarity in the context of Gaussian processes. The as-
sumption of stationarity implies that the data are representative of a com-
plete sampling of a single realization (Cressie, 1993). In other words, the
mean of a stationary spatial or spatio-temporal process is constant (over
space) and the covariance between elements of a dependent variable is a
function only on their spatial separation. The assumption of stationarity is
a popular one to make because a range of simple and easily interpretable
covariance functions are available (Banerjee et al., 2014).

In reality, however, stationarity might not always be appropriately as-
sumed. There are situations when stationarity can be assumed because
the study domain is too small, the amount of data is too small to justify
more complex models, or there are no other suitable alternatives (Foued-
jio, 2017). However, covariance between observations over space and/or
time are likely to change across space. While stationarity has its advan-
tages, the limitations to the assumption are not ignorable. Using station-
ary modelling approaches when local influences or localized effects, such
as topographic features, exist within the study domain can lead to less
accurate prediction and an incorrect assessment of the prediction error
(Fouedjio, 2017).

It has been recognized that most, if not all, spatial and spatio-temporal
processes manifest spatially non-stationary covariance structure (Samp-
son, 2014). This is so, because these processes depend on underlying la-
tent processes that change over space, such as topographic structure or
geographic features (Fouedjio, 2017). As a result, the covariance of the ob-
served process will be different depending on location. Fitting a global
covariance function to model the spatial or spatio-temporal process that
assumes stationarity would therefore be inappropriate.
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One approach to overcome the issue of non-stationarity is through the
method of partitioning (Fouedjio, 2017). This involves partitioning the
spatial domain into sub-regions using an appropriate partitioning strat-
egy. The motivation for partitioning is two-fold. Firstly, the size of the sub-
regions are smaller than the entire study region, and become small enough
to assume that the process is stationary within a region. Secondly, using an
appropriate partitioning strategy would allow conditioning the observed
process on an appropriate geographic feature or proxy. This would allow
to account for a possible cause of the non-stationarity (Fouedjio, 2017). For
both reasons, fitting region specific stationary covariance functions would
become valid.

Partitioning of spatial processes has been examined and implemented in
geostatistical literature. One strategy for partitioning involves forming
sub-regions along natural boundaries where the covariance between ob-
servations is thought to, or known to change. An example of this type of
partitioning is given in McBratney et al. (1991). It was stated that when
mapping soil attributes, it is important to consider spatial heterogeneity
across the study region. As such, they proposed partitioning the study
area, where the content of soil surface was measured, into two regions
based on topography. They fitted intrinsic random functions of order k
within each region, and produced a predicted map of the soil attribute
using kriging.

Another example is given in Atkinson & LLoyd (2007). They applied
a partitioning model to elevation data from the Ordnance Survey Great
Britain region ST92SW, to the east of Shaftesbury. The region of inter-
est was partitioned via a traditional image-processing algorithm. The ap-
proach employed was a centroid-linkage region growing partitioning al-
gorithm (Haralick & Shapiro, 1985). Different covariance structures were
allowed to be fitted to each sub-region. The aim was to show how the
covariance structure changes over the entire study region.

Gosoniu et al. (2009) modelled spatial heterogeneity in malaria prevalence
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data in West Africa using a geostatistical model. In order to account for
any changes in covariance across the study region, they used a fixed Bayesian
partitioning method based on agro-ecological zones. The study region was
split into four sub-regions with each sub-region corresponding to a dif-
ferent ecological zone. Stationary exponential covariance functions were
fitted within each sub-region. Furthermore, the spatial covariance param-
eters varied by region.
These partitioning strategies, while easy to implement, could be consid-
ered subjective in that it is up to the researcher to make a decision on how
to partition the observations. A data driven method was presented in Kim
et al. (2005). Kim et al. (2005) proposed a Bayesian partition model that
accounted for sharp transitions in covariance structure. The study region
was partitioned using Voronoi tessellation (Green & Sibson, 1978). This
was done so that within each sub-region the covariance structure could be
assumed stationary. Between sub-regions, independence was assumed.
In order to smooth the predicted spatial process at region boundaries,
Bayesian model averaging was implemented. Kim et al. (2005) performed
a range of simulation experiments to test their partitioning methodology,
in which they found that partitioning by Voronoi tessellation allowed their
model to infer the correct number of partitions used to generate the data.
They also found that by partitioning, they avoided the computational is-
sue of inverting large covariance matrices. In addition, they applied their
model to soil permeability of the Schneider Buda oil field in Wood County,
Texas, United States and found sufficient evidence against a model with no
partition structure.
Another example was presented in Heaton et al. (2017). (Heaton et al.,
2017) employed a spatially clustered Gaussian process model, in which
the study region was partitioned into disjoint sets through a dissimilarity
measure,

dij =
|y(si)− y(sj)|
||si − sj||

, (3.1)

where y(si) is a response observed at location si, and ||si − sj|| is the
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Euclidean distance between locations si and sj . This dissimilarity met-
ric is motivated by spatial finite differences, which is an estimate of the
directional derivative as described in Banerjee et al. (2003a) and Banerjee
& Gelfand (2006). This dissimilarity metric tends to cluster observations
based on the change in the spatial surface. In other words, the dissimi-
larity dij will be large when the covariance structure changes rapidly in
the sj − si direction from si, leading to y(si) and y(si) being assigned to
different clusters. Cluster boundaries will be placed along directions of a
large derivative. These large observed rates of change are natural regional
boundaries because they represent areas where assumptions of isotropy
and stationarity may not hold. However, this led to unclear geographic
partitioning, where there was no way to clearly separate the partitions
geographically. According to Heaton et al. (2017), the partitions should
theoretically be stationary.

We proposed a simple method for modelling spatial processes without as-
suming global stationarity using partitioning. Partitioning offers flexibil-
ity in that we can reduce the largest distance between locations of obser-
vations, as well as easily incorporate geographic features or proxies into
the partitioning function. Stationarity of the covariance structure can then
be assumed for each sub-region because the area will be smaller, and by
taking account of the topography through a covariate, removes that as
factor causing non-stationarity. The partitioning method we proposed in-
volves partitioning the observed process using K-means clustering, then
fitting simple covariance function models to the observations in each par-
tition. Furthermore, we explored the possibility that the covariance func-
tion need not be the same for all sub-regions. In this thesis we assumed
conditional independence between sub-regions, however, we believe this
assumption may be relaxed.
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3.2 Partitioned geostatistical model

In this section, we introduced the partitioned covariance model frame-
work of Heaton et al. (2017) for spatial processes. We then proposed an
extension of this framework to the spatio-temporal case. In both cases, the
framework assumes that the processes are Gaussian. We begin with the
partitioned covariance model for spatial processes.

Heaton et al. (2017) presented a partitioned form of the geostatistical model
described by Equation 2.18. Let (y(s1), ..., y(sn))′ be a vector of point ref-
erenced response variables observed at locations s1, ..., sn within spatial
domain S ∈ R2. Then let {si}Ni=1 be the collection of locations and parti-
tion them into K distinct sub-regions, S1, ...,SK , such that

⋃K
k=1 Sk = S,

and Sk1
⋂
Sk2 = ∅ for all k1 6= k2, according to an appropriate partitioning

strategy. We denote yk = {y(si ∈ Sk)} as the vector of observations that
belong to region Sk and denote nk as the number of observations in re-
gion k, where n =

∑K
k=1 nk. Then, by assuming conditional independence

between the regions, we have for k = 1, ..., K,

yk = Xkβk + ζk + εk, (3.2)

where Xk = (1nk
,x1k, ...,xPk) is the nk × (P + 1) design matrix of co-

variates, xpk, with corresponding, sub-region specific coefficients, βk =

(β0k, ..., βPk)
′, ζk is the spatial error term assumed to follow,

ζk ∼ N(0, σ2
kRk(φk)), (3.3)

with sub-region specific covariance matrix depending on covariance pa-
rameters φk, and εk is the measurement error term, assumed to follow
εk ∼ N(0, τ 2

kInk
), with sub-region specific nugget variance τ 2

k . By collect-
ing the observations from each sub-region, y = (y′1, ...,y

′
K)′, we write from

Equation 3.2,

y ∼ N(Xβ,Σ + T), (3.4)



50 CHAPTER 3. PARTITIONED GEOSTATISTICAL MODELS

whereX is a block-diagonal design matrix withXk on the main diagonal,
β = (β′1, ...,β

′
K)′, and Σ and T are block-diagonal with main diagonal ma-

trices σ2
kRk(φk) and τ 2

kInk
, respectively.

We note that in many applications, the coefficients {β}Kk=1 are assumed
equal across regions, which represent the global effect of covariates on the
response. However, assuming common coefficients rules out the possibil-
ity of local rather than global covariate effects.

We extended the partitioning framework of Heaton et al. (2017) to the
spatio-temporal case. We assumed that temporal autocorrelation was sat-
isfactorily accounted for by a first-order autoregressive process, such was
the case in Equations 2.24 to 2.25. In this thesis, we made the assumption
of no space-time interaction, and we focused on partitioning only over
space.
Let (yt(s1), ..., yt(sn))′ be a vector of point referenced response variables
observed at locations s1, ..., sn at discrete time points t = 1, ..., T , within
spatial domain S ∈ R2, and within temporal domain T ∈ R. Then let
{si}ni=1 be the collection of locations and partition them into K distinct
sub-regions, S1, ...,SK , such that

⋃K
k=1 Sk = S, and Sk1

⋂
Sk2 = ∅ for

all k1 6= k2, according to an appropriate partitioning strategy. We de-
note ykt = {yt(si ∈ Sk)} as the vector of observations that belong to re-
gion Sk and denote nk as the number of observations in region k, where
n =

∑K
k=1 nk. Then, by assuming conditional independence between the

regions, we have for k = 1, ..., K,

ykt = Xktβk +Zkt + εkt, (3.5)

whereXkt = (1nk
,x1kt, ...,xPkt) is the nk× (P + 1) design matrix of covari-

ates, xpkt, at time t, with corresponding, sub-region specific coefficients,
βk = (β0k, ..., βPk)

′, Zkt is the spatio-temporal process, with first-order au-
toregressive dynamics, Zkt = ρZkt−1 + ζk, with Zk1 ∼ N(0,

σ2
k

1−ρ2R(φk)),
and ζkt ∼ N(0, σ2

kRk(φk)), with sub-region specific covariance matrix de-
pending on covariance parameters φk, and εk is the measurement error
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term, assumed to follow εk ∼ N(0, τ 2
kInk

), with sub-region specific nugget
variance τ 2

k . By collecting the observations from each sub-region, and each
time point, y = (y′11, ...,y

′
K1, ...,y

′
KT )′, we write from Equation 3.5,

y ∼ N(Xβ,Σ + T), (3.6)

whereX is a block-diagonal design matrix withXk on the main diagonal,
β = (β′1, ...,β

′
K)′, and Σ and T are block-diagonal with main diagonal ma-

trices σ2
kRk(φk) and τ 2

kInk
, respectively.

We now present our proposed strategy for partitioning the study region.

3.3 Partitioning using the K-means algorithm

We assumed that the covariance structure is governed by location only
or other geographical covariates that have spatial distributions. We used
the K-means clustering algorithm to create sub-regions based on location
or geographic covariates. By incorporating geographic covariates, we are
able to account for non-stationarity explicitly.
K-means clustering is considered one of the simplest and most popular
partitioning algorithms (Jain, 2010). The K-means algorithm was indepen-
dently developed in different scientific fields by Steinhaus (1956), Lloyd
(1982), Ball & Hall (1965), and MacQueen et al. (1967). As such, it has a
rich and diverse history. Although K-means clustering was first proposed
over 60 years ago, it is still one of the most widely used algorithms for clus-
tering (Jain, 2010), due to its ease of implementation, simplicity, efficiency,
and empirical success.
K-means clustering is an unsupervised learning algorithm, since there is
no training or test set of observations to check whether the clustering as-
signments were correct. The number of partitions can be chosen arbitrarily
based on whether or not you know how many clusters there should be, or
it can be chosen using an explorative approach.
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The K-means algorithm is presented in Algorithm 3. Let δi be an appropri-
ate feature (e.g. longitude, latitude) vector associated with the observation
at location si. Then let γ1, ...,γK be the centroids, where γk is the cen-
troid of locations closest to cluster k. For partitioning a spatial or spatio-
temporal process, we propose setting δi = si.

Algorithm 3 K-Means Algorithm

1: Randomly select initial partition centroids, γ1, ...,γK ∈ Rd, where γk is
a d-dimensional centroid vector for partition k..

2: Repeat until cluster assignments no longer change:

• for i = 1, ..., N , set

ci := arg mink(||δi − γk||)
2, for ci ∈ {1, ..., K}

where δi is the feature vector for observation i.

• for each k = 1, ..., K, set

γk :=

∑N
i=1 1{ci=k}δi∑N
i=1 1{ci=k}

.

We now present a simulation experiment that evaluates our proposed K-
means partitioned geostatistical modelling framework on stationary and
non-stationary simulated data.

3.4 Simulation

In this section, we evaluated performance of the proposed K-means par-
titioned geostatistical models. Performance was evaluated on two sets of
simulated data; a set that exhibited stationarity in the covariance between
observations, and a set that exhibited non-stationarity. The aim of the sim-
ulation experiment was to assess performance of these models in their
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abilities to accurately predict, and account for spatial autocorrelation, in
the values of a dependent variable. In particular, we used four measures
of accuracy and a measure of residual spatial autocorrelation over a set of
different scenarios. The measures of accuracy that we considered in each
scenario were the root mean square error (RMSE, Equation 2.44) between
observed and predicted values of the dependent variable, the mean abso-
lute error (MAE, Equation 2.45) between observed and predicted values of
the dependent variable, and the average estimation error of the covariance
in logarithmic scale (COV, Equation 2.46). The measure of residual spatial
autocorrelation that was calculated in each scenario was Moran’s I, calcu-
lated from the residuals (Equation 2.47). Furthermore, we performed the
experiments separately for the spatial case and the spatio-temporal case.
For both cases, the models were determined by varying the number of
partitions, K, as well as considering region specific and global coefficients
and covariance parameters. Where possible, we used the same parameter
values for each simulation out of preference. We fitted Matèrn covariance
functions, with smoothness parameter ν = 1

2
. We repeated each simula-

tion 30 times to ensure that any patterns observed were not due to chance.
The following sections outline the experimental designs and the simula-
tion procedure.

3.4.1 Spatial simulation

A simulation experiment was conducted to evaluate the performance of
K-means partitioned geostatistical models. The performance was evalu-
ated on two sets of simulated data; one with a stationary spatial structure,
and another with a non-stationary spatial structure. We repeated the sim-
ulation 30 times, for each set of data.

We randomly generated N = 200 longitude (slong) and latitude (slat) values
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from a unit square,

slong ∼ U(0, 1),

slat ∼ U(0, 1).

Two datasets were considered for the simulation experiment. The first
dataset, was one with a stationary spatial structure. We simulated a co-
variate, XS , using the following equation to ensure that it was spatially
correlated,

XS =
slong

2
+
slat

2
+ ε, ε ∼ N(0, 0.5).

A dependent variable with stationary spatial structure, y, was simulated
from,

y = Xβ + ζ + ε, (3.7)

(Cameletti et al., 2011), whereXβ is the linear combination of an intercept
and the covariate, ε are the errors for the measurement process, and ζ are
the errors for the spatial process, that induced spatial autocorrelation in y.
Explicitly, the dependent variable was drawn from,

y ∼ N(Xβ, τ 2I + Σ), (3.8)

where Σ was the spatial covariance matrix based on an Exponential co-
variance function,

Σ = σ2 exp

(
−d
ψ

)
, (3.9)

where d is a matrix with elements, dij , the Euclidean distance between lo-
cation i and j. Here, the parameters θ = (β, ψ, τ 2, σ2)′, were chosen to
reflect a possible reality, for example, the temperature (in degrees Celsius)
of a set of locations in a particular region at a particular time. We arbitrar-
ily set β = (2, 1)′, to represent the spatially varying mean in the context of
the temperature example. This would produce a process where the aver-
age temperature across the region is two degrees Celsius and varies by a
location dependent covariate XS . We chose τ 2 = 0.1 and σ2 = 1 to ensure
that the variability of the measurement process was less than that of the
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spatial process in order to enhance the presence of spatial autocorrelation
within y. Finally, we set ψ = 0.5 to induce spatial autocorrelation. When
choosing the parameter values, there was some degree of trial and error to
ensure that the resulting data exhibited significant spatial autocorrelation,
and stationarity. The stationary spatial structured data was sampled using
Cholesky factorization (Algorithm 2, Rue & Held (2005)).

Figure 3.1 displays interpolated surface plots of XS and y for one repeti-
tion of the simulation, and were produced to show the spatial autocorre-
lation within each of the variables. We see that y exhibits spatial autocor-
relation, with clusters of higher values observed at the bottom left region
as well as on the right. Clusters of lower values are observed at the top
left of the plot. Moran’s I was calculated to confirm the presence of spatial
autocorrelation in the simulated y values. We calculated I = 0.132, with
a p-value for the two-sided test for presence of spatial autocorrelation of
p < 2.2 × 10−16, confirming the presence of significant spatial autocor-
relation within the dependent variable. Similar observations were made
when the simulation was repeated. We performed a test for the presence
of non-stationarity using geographically weighted regression (Algorithm
1). We calculated p-values for the two-sided test for the presence of non-
stationarity of p = 0.015 for the intercept, and p = 0.99 for the covariate,
which suggests that there is no evidence for non-stationarity within the
simulated data. This confirmed that the simulated dependent variable has
a stationary spatial structure. Once again, similar observations were made
when the simulation was repeated.

A dependent variable with non-stationary spatial structure, y, was also
simulated from Equations 3.7 and 3.9. In order to induce non-stationarity,
we simulated a covariance matrix by partitioning the data into K = 3 sub-
sets using the K-means algorithm (Algorithm 3) on the locations. We then
simulated a covariate separately for each data subset. This was done, in
addition to the partitioned covariance matrix, to induce non-stationarity
within the dependent variable. The following equations were used to sim-
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Figure 3.1: Interpolated surface plots of the covariate, top, and the simu-
lated dependent variable, bottom, for one repeat of the simulation. Spatial
autocorrelation is exhibited in the covariate as expected. Spatial autocor-
relation is also evidenced for y. There are clusters of high and low values
throughout the surface plot for y.
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ulate the covariate, XNS ,

XNS ∼ N(bk, gk), (3.10)

where b = (5,−2, 0)′, and g = (0.5, 0.2, 0.7)′, and k = 1, 2, 3 represents the
data subset. We then calculated a covariance matrix for each data subset,
according to,

(Σ)ij∈k = σ2
k exp

(
−dij∈k
ψk

)
, (3.11)

where dij∈k is the Euclidean distance between location i and j, in par-
tition k = 1, 2, 3. Like the stationary simulation, the parameters θ =

(β,ψ, τ 2,σ2)′, were chosen to reflect the temperature (in degrees Celsius)
of a set of locations in a particular region at a particular time. Once again,
we set β = (2, 1)′ to represent the spatially varying mean, which would
produce a process where the average temperature across the region is two
degrees Celsius and varies by a location dependent variable XNS . We set
τ 2 = (0.1, 0.07, 0.04)′ and σ2 = (1, 0.7, 0.4)′ to ensure that the variabil-
ity of the measurement process was less than that of the spatial process
and to enhance the presence of spatial autocorrelation within y. Finally,
ψ = (0.7, 0.4, 0.1)′ to induce spatial autocorrelation. The parameter val-
ues for τ 2, σ2, and ψ were chosen arbitrarily and to ensure that the result-
ing data exhibited significant spatial autocorrelation, and non-stationarity.
Different values where chosen for the parameters associated with each
sub-region to induce non-stationarity. The non-stationary spatial struc-
tured data was sampled using Cholesky factorization (Algorithm 2, Rue
& Held (2005)).
Figure 3.2 displays interpolated surface plots of XNS and y for one repe-
tition of the simulation, and were produced to show the spatial autocor-
relation within each of the variables. Moran’s I was calculated to confirm
the presence of spatial autocorrelation in the simulated y values. We cal-
culated I = 0.279, with a p-value for the two-sided test for presence of
spatial autocorrelation of p < 2.2 × 10−16, confirming the presence of sig-
nificant spatial autocorrelation within the dependent variable. Similar ob-
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Figure 3.2: Interpolated surface plots of the covariate, top, and the simu-
lated dependent variable, bottom, for one repeat of the simulation. Spatial
autocorrelation is exhibited in the covariate as expected. Spatial autocor-
relation is also evidenced for y. There are clusters of high and low values
throughout the surface plot for y.

servations were made when the simulation was repeated. We performed
a test for the presence of non-stationarity using geographically weighted
regression (Algorithm 1). We calculated p-values for the two-sided test
for the presence of non-stationarity of p = 0 for both the intercept and
the covariate, which confirmed that the covariance of the dependent vari-
able changes over space. Therefore, the simulated dependent variable was
found to have a non-stationary spatial structure. Once again, similar ob-
servations were made when the simulation was repeated.

We wish to compare our proposed K-means partitioned geostatistical model
over values ofK ranging fromK = 1 toK = 5, in order to account for spa-
tial autocorrelation in, and make accurate predictions from, non-stationary
spatially structured data. We note that when K = 1, the model becomes
the standard, non-partitioned geostatistical model with stationary covari-
ance function. In addition, we wish to determine the effect of including
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region specific coefficients and covariance parameters on the measures of
predictive accuracy and residual spatial autocorrelation. Therefore, we fit-
ted nine models to each of the simulated sets of data. Model details are
given in Table 3.1

Table 3.1: Details of the nine models fitted to both the stationary and non-
stationary simulated data, for each repetition of the simulation.

Model Equation K Parameters
1 y = Xβ + ζ + ε 1 β0, β1, ψ, σ

2, τ 2

2 – 5 yk = Xkβ + ζk + εk 2− 5 β0, β1, ψ, σ
2, τ 2

6 – 9 yk = Xkβk + ζk + εk 2− 5 β0,β1,ψ,σ
2, τ 2

We first fitted Model 1, a standard, non-partitioned, geostatistical model
with stationary Matèrn covariance function, to both sets of simulated data.
Model 1 was defined by Equations 3.7 to 3.9, the same model used to sim-
ulate the stationary dataset. The parameters θ = (β, ψ, σ2, τ 2)′ were as-
sumed a priori independent, and were assigned the non-informative prior
distributions,

β0, β1 ∼ N(0, 10), ψ ∼ IG(3, 1), σ2 ∼ IG(3, 1), τ 2 ∼ IG(3, 1).

We then fitted Models 2 – 5 to both sets of simulated data. Models 2 – 5
were defined by our proposed K-means partitioned geostatistical model,
Equations 3.2 and 3.4, where K = 2, ..., 5, respectively. Partitioning was
performed using the K-means algorithm (Algorithm 3), based on the lon-
gitude and latitude of each locations. We assumed global model coeffi-
cients and covariance parameters for Models 2 – 5. For each model, the pa-
rameters θ = (β, ψ, σ2, τ 2)′ were assumed a priori independent, and were
assigned the non-informative prior distributions,

β0, β1 ∼ N(0, 10), ψ ∼ IG(3, 1), σ2 ∼ IG(3, 1) τ 2 ∼ IG(3, 1),

for K = 2, ..., 5.
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Finally, we fitted Models 6 – 9 to both sets of simulated data. Models 6 –
9 were once again defined by our proposed K-means partitioned geosta-
tistical model, Equations 3.5 to 3.6, where K = 2, ..., 5, respectively. Parti-
tioning was again performed using the K-means algorithm (Algorithm 3),
based on the longitude and latitude of each location. We assumed that the
model coefficients and covariance parameters were sub-region specific for
Models 6 – 9. For each model, the parameters θ = (β,ψ,σ2, τ 2)′ were as-
sumed a priori independent, and were assigned the non-informative prior
distributions,

β01, ...,β0K , β11, ..., β1K ∼ N(0, 10), ψ1, ..., ψK ∼ IG(3, 1),

σ2
1, ..., σ

2
K ∼ IG(3, 1) τ 2

1 , ..., τ
2
K ∼ IG(3, 1),

for K = 2, ..., 5.
We used MCMC to fit the models to both simulated sets of data and for
each repetition. For each fitted model, two chains, each 100000 iterations,
were generated of the parameter vector θ for each dataset. We observed
the chains converging to stationary distributions slowly and so 90000 (90%)
of the iterations were discarded as warm-up. We thinned each chain by 5,
to minimize autocorrelation in the posterior samples affording posterior
draws of size 4000. Trace plots, density curves, and autocorrelation plots
were checked to determine that the posterior samples converged to sta-
tionary distributions. For conciseness, we provided in Figures A.1 and
A.2, diagnostic plots for Model 7 fitted to the first repetition of stationary
and non-stationary simulated spatial data only. In addition to diagnostic
plots, we calculated the potential scale reduction factor, R̂, for each param-
eter, and these are displayed for each model fitted to the first repetition of
stationary and non-stationary simulated spatial data in Tables A.1 – A.4.
For each model fitted to each set of data, the diagnostic plots showed suffi-
cient evidence of convergence to stationary distributions, and appropriate
exploration and mixing of the posterior distributions. Furthermore, R̂ was
found to be close to 1 for each parameter, indicating convergence (Brooks
& Gelman, 1998).
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We computed the posterior predictive distribution (Equation 2.43) for each
model and obtained posterior distributions of fitted values. The posterior
distributions of fitted values were used to calculate posterior distributions
for RMSE, MAE, and Moran’s I on the residuals, for each model fitted to
each dataset. We also calculated the posterior average estimation error of
the covariance in logarithmic scale, COV.

Table 3.2 displays the medians of the posterior distributions for RMSE,
MAE, COV, and Moran’s I for Models 1 – 9, averaged over each repetition
of the simulated stationary spatial data and Figure 3.3 displays the medi-
ans of the posterior distributions for RMSE, MAE, COV, and Moran’s I for
Models 1 – 9, averaged over each repetition. Table 3.3 displays the medi-
ans of the posterior distributions for RMSE, MAE, COV, and Moran’s I for
Models 1 – 9 averaged over each repetition of the simulated non-stationary
dataset and Figure 3.4 displays the medians of the posterior distributions
for RMSE, MAE, COV, and Moran’s I for Models 1 – 9, averaged over each
repetition.

Table 3.2: Medians of the posterior distributions of RMSE, MAE, COV, and
residual Moran’s I for Models 1 – 9 averaged over each repetition of the
simulated stationary spatial data.

Model RMSE MAE COV Moran’s I
1 1.580 1.195 1.318 0.042
2 1.536 1.151 1.699 0.055
3 1.525 1.137 1.745 0.092
4 1.514 1.124 1.765 0.100
5 1.498 1.119 1.780 0.109
6 1.505 1.181 2.127 0.235
7 1.583 1.252 2.103 0.357
8 1.594 1.261 2.048 0.403
9 1.606 1.264 2.045 0.430
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According to Table 3.2, we observed small differences in posterior me-
dian RMSE and MAE between each model, for each repetition. In general,
Models 2 – 5 all had smaller posterior median RMSE and MAE compared
to Model 1, the model used to generate the stationary data, and an ex-
isting methodology. This suggests that the models that partitioned the
study region and assumed global parameters for the covariates and covari-
ance matrix for each region were more accurate in prediction compared to
an existing geostatistical methodology. Furthermore, and in general, the
higher the number of partitions, the more accurate in prediction the mod-
els became. This trend was not observed for the models that assumed local
effects of the covariates for each region. For Models 7 – 9, the predictive
accuracy in terms of posterior median RMSE and MAE were markedly
worse than that of Models 1 – 5. These results were further reflected in
Figure 3.3. However, for Model 6, which partitioned the spatial domain
into two regions and assumed local effects of the covariates for each re-
gion, the posterior median RMSE and MAE was lower than that of Model
1, and comparable to that of Models 2 – 5. This implies that allowing the
covariate effects for both regions to differ in Model 6 improves predic-
tive accuracy as well as not allowing them to differ. We also observed a
somewhat decreasing trend in the amount of spread within the posterior
distributions of RMSE and MAE for Models 1 – 5.

The posterior COV for Model 1 fitted to the stationary simulated data was
the smallest of those for Models 1 – 9, for each repetition. This indicated
that the parameters of the covariance function used to generate the data
were estimated accurately. The posterior COV increased when the number
of partitions increased, for both sets of models that treated the coefficients
as global and local.

We observed an increasing trend in Moran’s I, when the number of parti-
tions increased. Furthermore, Moran’s I was higher when the model as-
sumed local parameters for each sub-region compared to global parame-
ters. This trend was observed in all 30 simulations. It suggests that Models
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1 – 5 were able to account for more spatial autocorrelation than Models 6
– 9.

We observed different results (Table 3.3) when the models were fitted to
the non-stationary data. Figure 3.4 showed that the posterior median
RMSE and MAE, averaged over each simulation, was lowest for Models 2
– 5, and 7. Model 7 represents the model that was used to generate the non-
stationary data, where three partitions were used to split the domain and
local parameters were estimated in each sub-region. Models 2 – 5 used two
to five partitions, respectively, and assumed global coefficients for each
sub-region. Each other model exhibited higher posterior median RMSE
and MAE. This suggests that when spatial data exhibits non-stationarity,
we can obtain better predictive accuracy (in terms of RMSE and MAE)
when we partition the domain using the K-means algorithm, and estimate
global parameters in each sub-region, or when we correctly specify the
covariance matrix.

When compared to Model 1, which represents a traditional Matèrn co-
variance model, we observed lower posterior median RMSE and MAE for
Models 2 – 5 ,and 7, averaged over each simulation. This suggests that fit-
ting a model with a partitioned covariance structure that assumed global
coefficients for each sub-region provides better predictive accuracy than a
traditional methodology.

When the data had a non-stationary spatial structure, partitioning did not
improve the accuracy of the estimation of the covariance matrix compared
to the existing geostatistical methodology. The posterior COV for Model
1 fitted to the non-stationary simulated data was the smallest, suggesting
that using a traditional geostatistical model that assumed global stationar-
ity produced the most accurate covariance matrix.

We observed the same increasing trend in Moran’s I, when the number of
partitions increased, as we did with the stationary case. Moran’s I was
higher when the model assumed local parameters for each sub-region
compared to global parameters. This trend was observed in all 30 sim-
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Figure 3.3: Medians of the posterior distributions for RMSE, MAE, COV,
and Moran’s I for each model fitted to the stationary spatial data and av-
eraged over each simulation repetition, where each model has different
degrees of partitioning. Model 1 has no partitioning, Models 2 and 6 have
two partitions, Models 3 and 7 have three partitions, Models 4 and 8 have
four partitions, and Models 5 and 9 have five partitions. Further, Models
2 – 5 assume equal parameters across each sub-region, and Models 6 – 9
assume local parameters within each sub-region
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Table 3.3: Medians of the posterior distributions of RMSE, MAE, COV, and
residual Moran’s I for Models 1 – 9 averaged over each repetition of the
simulated non-stationary spatial data.

Model RMSE MAE COV Moran’s I
1 1.309 1.011 1.184 0.031
2 1.281 0.988 1.359 0.073
3 1.271 0.987 1.392 0.106
4 1.257 0.960 1.423 0.105
5 1.254 0.961 1.429 0.119
6 1.298 1.022 1.491 0.248
7 1.279 0.992 1.507 0.381
8 1.343 1.066 1.554 0.443
9 1.361 1.072 1.601 0.477

ulations and it suggests that Models 1 – 5 were able to account for more
spatial autocorrelation than Models 6 – 9. Model 1, the traditional Matèrn
covariance model accounted for the spatial autocorrelation the best.

3.4.2 Spatio-temporal simulation

A simulation experiment was conducted to evaluate the performance of
our proposed K-means partitioned Matèrn covariance function model on
spatio-temporal data with a non-stationary spatial structure. We also com-
pared our models to that of a traditional Matèrn covariance function model.
The performance was evaluated on two sets of simulated data; one with
a stationary spatial structure, and another with a non-stationary spatial
structure. For both datasets, we induced spatial and temporal autocorre-
lation in a dependent variable, and assumed that there was no interaction
between space and time. We repeated the simulation 30 times, for each set
of data.

As with the spatial simulation, we randomly generatedN = 200 longitude
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Figure 3.4: Medians of the posterior distributions for RMSE, MAE, COV,
and Moran’s I for each model fitted to the non-stationary spatial data and
averaged over each simulation repetition, where each model has different
degrees of partitioning. Model 1 has no partitioning, Models 2 and 6 have
two partitions, Models 3 and 7 have three partitions, Models 4 and 8 have
four partitions, and Models 5 and 9 have five partitions. Further, Models
2 – 5 assume equal parameters across each sub-region, and Models 6 – 9
assume local parameters within each sub-region
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(slong) and latitude (slat) values from a unit square,

slong ∼ U(0, 1),

slat ∼ U(0, 1).

We simulated a covariate, XS , for T = 5 time points, using the following
equation to ensure that it was spatially correlated,

XS =
slong

2
+
slat

2
+ ε, ε ∼ N(0, 0.5).

A dependent variable with stationary spatio-temporal structure, yt for
each time point t = 1, ..., 5, was simulated from,

yt = Xtβ + ζt + εt, (3.12)

(Cameletti et al., 2011), whereXtβ is the linear combination of an intercept
and the covariate at time t, εt are the errors for the measurement process,
at time t and ζt are the errors for the spatio-temporal process at time t,
that induce spatial and temporal autocorrelation in yt. We modelled the
spatio-temporal process as,

ζt = ρζt−1 + ωt, (3.13)

where ρ is a temporal correlation coefficient. Explicitly, the dependent
variable was drawn from,

yt ∼ N(Xtβ, τ
2I + Σt), (3.14)

where Σt is the spatio-temporal covariance matrix based on Exponential
covariance function,

Σt =
σ2

1− ρ2
exp

(
−d
ψ

)
, (3.15)

where d is a matrix with elements, dij , the Euclidean distance between lo-
cation i and j. Staying in line with the spatial simulation experiments, the
parameters for this spatio-temporal simulation θ = (β, ρ, ψ, τ 2, σ2)′, were
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chosen to reflect a reality, such as the temperature (in degrees Celsius) of a
set locations in a particular region at a particular time. We set β = (2, 1)′ to
represent the spatially varying mean in the temperature example. Doing
this would produce a process where the average temperature across the
region is two degrees Celsius and varies by a location dependent variable
XS . We selected τ 2 = 0.1 and σ2 = 1 to ensure that the measurement pro-
cess had less variability than the spatial process and to enhance the pres-
ence of spatial autocorrelation within yt. The temporal autocorrelation pa-
rameter was set to ρ = 0.7 to induce moderate temporal autocorrelation,
and we chose ψ = 0.5 to induce spatial autocorrelation. When choosing
specific covariance parameter values, there was some degree of trial and
error to ensure that the resulting data exhibited significant spatial auto-
correlation, and stationarity. The stationary spatial structured data was
sampled using Cholesky factorisation (Algorithm 2, Rue & Held (2005)).

Figure 3.5 displays interpolated surface plots of XS and yt for t = 1 and
for one repetition of the simulation, and were produced to show the spa-
tial autocorrelation within each of the variables. For each time point t, we
see that yt exhibits spatial autocorrelation, with clusters of higher values
observed at the upper right region and middle left region, while clusters of
lower values were observed at the bottom right region. Moran’s I was cal-
culated to confirm the presence of spatial autocorrelation in the simulated
yt values for each t. We calculated It=1 = 0.125, It=2 = 0.123, It=3 = 0.147,
It=4 = 0.138, and It=5 = 0.116, with p-values for the two-sided test for
presence of spatial autocorrelation of p < 1 × 10−15 for each t, which con-
firmed the presence of significant spatial autocorrelation within the depen-
dent variable. Similar observations were made when the simulation was
repeated. We also performed a test for the presence of non-stationarity
using geographically weighted regression (Algorithm 1). All calculated
p-values for the two-sided test for the presence of non-stationarity using
the covariate were greater than 0.1, which suggested that there was no ev-
idence for non-stationarity within the simulated data. This confirmed that
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Figure 3.5: Interpolated surface plots of the covariate, left, and the simu-
lated dependent variable, right, for t = 1. Spatial autocorrelation is exhib-
ited in the covariate as expected. Spatial autocorrelation is also evidenced
for y1. There are clusters of high and low values throughout the surface
plot for y1.

the simulated dependent variable had a stationary spatial structure. Once
again, similar observations were made when the simulation was repeated.
A dependent spatio-temporal variable with non-stationary spatial struc-
ture, yt, was also simulated from Equations 3.12 and 3.15. In order to
induce non-stationarity within the dependent variable, we simulated a
spatial covariance matrix by partitioning the data into K = 3 subsets us-
ing the K-means algorithm (Algorithm 3) on the locations, independent of
time. We then simulated a covariate separately for each data subset. This
was done, in addition to the partitioned covariance matrix, to induce non-
stationarity within the dependent variable. The following equations were
used to simulate the covariate, XNS ,

XNS ∼ N(bk, gk), (3.16)

where b = (5,−2, 0)′, and g = (0.5, 0.2, 0.7)′, and k = 1, 2, 3 represent the
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data subset. We then calculated a spatial covariance matrix for each data
subset, independent of time,

(Σt)ij∈k =
σ2
k

1− ρ2
exp

(
−dij∈k
ψk

)
, (3.17)

where dij∈k is the Euclidean distance between location i and j, in parti-
tion k = 1, 2, 3. The parameters for this simulation, θ = (β,ψ, ρ, τ 2,σ2)′,
were chosen to reflect the same reality as the stationary spatio-temporal
simulation. Once again, we set β = (2, 1)′ to represent the spatially vary-
ing mean, which would produce a process where, for example, the av-
erage temperature across the region is two degrees Celsius and varies
by a location dependent variable XNS . We chose τ 2 = (0.1, 0.07, 0.04)′

and σ2 = (1, 0.7, 0.4)′ to ensure that the measurement process had less
variability than the spatial process and to enhance the presence of spa-
tial autocorrelation within yt. The temporal autocorrelation parameter
was set to ρ = 0.7 to induce moderate temporal autocorrelation, and we
chose ψ = (0.7, 0.4, 1)′ to induce spatial autocorrelation. When choosing
τ 2,σ2, and ψ, there was some degree of trial and error and to ensure that
the resulting data exhibited significant spatial autocorrelation and non-
stationarity. The non-stationary spatial structured data was sampled using
Cholesky factorisation (Algorithm, 2 Rue & Held (2005)).
Figure 3.6 displays interpolated surface plots of XNS and yt for t = 1 for
one repetition of the simulation, and were produced to show the spatial
autocorrelation within each of the variables. For each time point t, we
see that the dependent variable exhibits spatial autocorrelation, with clus-
ters of higher values observed on the left and right regions and clusters
of lower values observed in the middle region. Moran’s I was calculated
to confirm the presence of spatial autocorrelation in the simulated yt val-
ues for each t. We calculated It=1 = 0.0288, It=2 = 0.139, It=3 = 0.197,
It=4 = 0.174, and It=5 = 0.0958, with p-values for the two-sided test for
presence of spatial autocorrelation of p < 0.05 for each t, which confirmed
the presence of significant spatial autocorrelation within the dependent
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Figure 3.6: Interpolated surface plots of the covariate, top, and the simu-
lated dependent variable, bottom. Spatial autocorrelation is exhibited in
the covariate as expected. Spatial autocorrelation is also evidenced for y.
There is a general upward diagonal trend, with higher values observed at
the top right of the plot, and lower values observed at the bottom left of
the plot.

variable Similar observations were made when the simulation was re-
peated. We performed a test for the presence of non-stationarity using ge-
ographically weighted regression (Algorithm 1), which found that all cal-
culated p-values for the two-sided test for the presence of non-stationarity
using the covariate were approximately equal to 0, which suggested that
there was evidence for significant non-stationarity within the simulated
data. This confirmed that the simulated dependent variable had a non-
stationary spatial structure. The same results were found when the simu-
lation was repeated.

Like the spatial simulation, we wish to compare our proposed K-means
partitioned geostatistical model over values of K ranging from K = 1 to
K = 5, in order to account for spatial autocorrelation in, and make accu-
rate predictions from, non-stationary spatio-temporally structured data.
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Again, we note that when K = 1, the model becomes the standard, non-
partitioned geostatistical model with stationary covariance function. In
addition, we wish to determine the effect of including local parameters in
the model on the measures of predictive accuracy and residual spatial au-
tocorrelation. As with the spatial simulation, we fitted nine models to each
of the simulated sets of spatio-temporal data. The models are detailed in
Table 3.4.

Table 3.4: Details of the nine models fitted to both the stationary and non-
stationary simulated data.

Model Equation K Parameters
1 yt = Xtβ +Zt + εt 1 β0, β1, ψ, ρ, σ

2, τ 2

2 – 5 ykt = Xktβ +Zkt + εkt 2− 5 β0, β1, ψ, ρ, σ
2, τ 2

6 – 9 ykt = Xktβk +Zkt + εkt 2− 5 β0,β1,ψ, ρ,σ
2, τ 2

We first fitted Model 1, the spatio-temporal equivalent to the first model
fitted in the spatial simulation. This model is a non-partitioned geostatis-
tical model with stationary Matèrn covariance function model, and was
fitted to both sets of simulated data. Model 1 is defined by Equations
3.12 to 3.15, the same model used to simulate the dataset. The parameters
θ = (β, ψ, ρ, τ 2, σ2)′ were assumed a priori independent, and were assigned
the non-informative prior distributions,

β0, β1 ∼ N(0, 10), ψ ∼ IG(3, 1), ρ ∼ U(−1, 1), σ2 ∼ IG(3, 1), τ 2 ∼ IG(3, 1).

Next, we fitted Models 2 – 5 to both sets of simulated data. Models 2 – 5
were defined by our proposed K-means partitioned geostatistical model
for spatio-temporal data, given by Equations 3.5 and 3.6, where K =

2, ..., 5, respectively. Partitioning was performed using the K-means algo-
rithm, given by Algorithm 3, based on the longitude and latitude for each
location. We assumed global model coefficients and covariance parame-
ters for Models 2 – 5, inline with the spatial simulation. For each model,
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the parameters θ = (β, ψ, ρ, τ 2, σ2)′ were assumed a priori independent,
and were assigned the non-informative prior distributions,

β0, β1 ∼ N(0, 10), ψ ∼ IG(3, 1), ρ ∼ U(−1, 1), σ2 ∼ IG(3, 1), τ 2 ∼ IG(3, 1).

Finally, we fitted Models 6 – 9 to both sets of simulated data. Models 6 –
9 were defined in the same way as Models 2 – 5, with the exception that
all model parameters except the temporal correlation coefficient, ρ, were
assumed to be sub-region specific,. For each model, the parameters θ =

(β,ψ, ρ,σ2, τ 2)′were assumed a priori independent, and were assigned the
non-informative prior distributions,

β01, ..., β0K , β11, ..., β1K ∼ N(0, 10), ψ1, ..., ψK ∼ IG(3, 1),

ρ ∼ U(−1, 1), σ2
1, ..., σ

2
K ∼ IG(3, 1), τ 2

1 , ..., τ
2
K ∼ IG(3, 1).

We used MCMC to fit the models to both simulated sets of data and for
each repetition. For each fitted model, two chains, each 100000 iterations,
were generated of the parameter vector θ for each dataset. We observed
the chains converging to stationary distributions slowly and so 90000 (90%)
of the iterations were discarded as warm-up. We thinned each chain by 5,
to minimize autocorrelation in the posterior samples affording posterior
draws of size 4000. Trace plots, density curves, and autocorrelation plots
were checked to determine that the posterior samples converged to sta-
tionary distributions. For conciseness, we provided in Figures A.3 and
A.4, diagnostic plots for Model 7 fitted to the first repetition of stationary
and non-stationary simulated spatial data only. In addition to diagnostic
plots, we calculated the potential scale reduction factor, R̂, for each param-
eter, and these are displayed for each model fitted to the first repetition of
stationary and non-stationary simulated spatial data in Tables A.5 – A.8.
For most models fitted to each set of data, the diagnostic plots showed
sufficient evidence of convergence to stationary distributions, and appro-
priate exploration and mixing of the posterior distributions. Furthermore,
R̂ was found to be close to 1 for most parameters, indicating convergence
(Brooks & Gelman, 1998).
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We computed the posterior predictive distribution (Equation 2.43) for each
model and obtained posterior distributions of fitted values. The posterior
distributions of fitted values were used to calculate posterior distributions
for RMSE, MAE, and Moran’s I on the residuals, for each model fitted
to each dataset. In addition, we calculated the posterior average estima-
tion error of the covariance in logarithmic scale, COV. Figure 3.7 and Ta-
ble 3.5 display the medians of the posterior distributions for RMSE, MAE,
COV, and Moran’s I for Models 1 – 9 for the stationary spatio-temporal
dataset. Figure 3.8 and Table 3.6 display the medians of the posterior dis-
tributions for RMSE, MAE, COV, and Moran’s I for Models 1 – 9 for the
non-stationary spatio-temporal dataset.

From Table 3.5 and Figure 3.7, we observed that, on average, Model’s 4
and 5 had the lowest median posterior RMSE and MAE when fitted to
the stationary spatio-temporal data. This indicated that these models pro-
vided the best predictive accuracy of all nine models fitted to the data. This
is despite the fact that Model 1 had a larger median posterior RMSE and
MAE and represented a standard Matèrn covariance model and was the
data generation model. Models 4 and 5 were models that partitioned the
domain into four and five sub-regions, respectively, and assumed global
coefficients in each.

In general, the four models that assumed local coefficients, Models 6 – 9,
had higher posterior median RMSE and MAE averaged over each repe-
tition. This indicates that when the simulated data is stationary, a model
that assumes global coefficients has better predictive accuracy than a model
that assumes local coefficients for each partitioned sub-region.

The posterior COV for Model 1 fitted to the stationary data was the highest
out of all nine models, averaged over each partition. This was unexpected,
since Model 1 fitted a correctly specified covariance matrix to the data. All
partition models fitted to the stationary data had relatively equal average
posterior COV, indicating that the covariance matrix was more accurately
estimated when we partitioned the spatial domain, regardless of assuming
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Table 3.5: Medians of the posterior distributions of RMSE, MAE, COV,
and residual Moran’s I for Models 1 – 9 fitted to the first repetition of the
simulated stationary spatio-temporal data.

Model RMSE MAE COV Moran’s I
t = 1 t = 2 t = 3 t = 4 t = 5

1 2.360 1.974 2.707 0.199 0.227 0.244 0.235 0.297
2 2.447 2.015 2.041 0.180 0.189 0.201 0.185 0.213
3 2.450 2.016 1.870 0.186 0.200 0.208 0.204 0.226
4 2.270 1.851 1.703 0.169 0.184 0.193 0.186 0.213
5 2.220 1.804 1.725 0.193 0.200 0.207 0.201 0.224
6 2.551 2.120 2.011 0.194 0.195 0.208 0.196 0.232
7 2.477 2.050 1.822 0.175 0.185 0.194 0.196 0.208
8 2.596 2.153 1.965 0.209 0.211 0.224 0.224 0.248
9 2.711 2.247 2.012 0.204 0.209 0.215 0.212 0.231

global or local parameters in each sub-region.

In general, we observed larger median Moran’s I values for the partitioned
models that assumed local parameters than the partitioned models that
assumed global parameters, for each t and averaged over each repetition.
This suggests that when partitioned models that assume global param-
eters for each sub-region are fitted to stationary data, they are better at
accounting for spatial autocorrelation than when local parameters were
assumed. For most values of t, the median Moran’s I for Model 1 (the
traditional Matèrn model) fitted to the stationary data was the largest, av-
eraged over each repetition. This suggests that fitting the models with a
partitioned spatio-temporal covariance structure accounts for spatial au-
tocorrelation the better than this existing methodology.

Unlike the spatial simulation, we observed similar results when we fit-
ted the models to the non-stationary data. From Table 3.6 and Figure
3.8, we observed that, on average, Model’s 1 and 5 had the lowest me-
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Figure 3.7: Medians of the posterior distributions for RMSE, MAE, COV,
and Moran’s I for each model fitted to the stationary spatio-temporal data,
where each model has different degrees of partitioning. Model 1 has no
partitioning, Models 2 and 6 have two partitions, Models 3 and 7 have
three partitions, Models 4 and 8 have four partitions, and Models 5 and
9 have five partitions. Further, Models 2 – 5 assume equal parameters
across each sub-region, and Models 6 – 9 assume local parameters within
each sub-region
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dian posterior RMSE and MAE when fitted to the non-stationary spatio-
temporal data. This indicated that these models provided the best predic-
tive accuracy of all nine models fitted to the data. This was unusual, since
Model 7 was used to generate the non-stationary data. In this case, Model
7 afforded relatively large median posterior RMSE and MAE, indicating
worse predictive accuracy.

Table 3.6: Medians of the posterior distributions of RMSE, MAE, COV,
and residual Moran’s I for Models 1 – 9 fitted to the first repetition of the
simulated non-stationary spatio-temporal data.

Model RMSE MAE COV Moran’s I
t = 1 t = 2 t = 3 t = 4 t = 5

1 1.954 1.601 3.423 0.172 0.176 0.098 0.086 0.171
2 2.145 1.721 2.331 0.143 0.139 0.117 0.109 0.142
3 2.205 1.770 2.442 0.144 0.147 0.131 0.125 0.150
4 2.067 1.658 2.089 0.143 0.148 0.117 0.113 0.144
5 1.877 1.502 1.713 0.107 0.121 0.084 0.078 0.113
6 2.158 1.736 2.652 0.164 0.152 0.142 0.133 0.165
7 2.039 1.652 1.772 0.182 0.177 0.146 0.141 0.179
8 2.039 1.621 2.223 0.159 0.175 0.147 0.133 0.154
9 1.969 1.573 1.957 0.154 0.164 0.136 0.125 0.153

The posterior COV for Model 5 and was the lowest, averaged over each
repetition of the simulation. This indicated that when the number of parti-
tions used was five, and the parameters were assumed global within each
sub-region, the covariance matrix was estimated accurately. The posterior
COV for Model 7 was also lower than that of the other models, which is
not surprising since Model 7 represents the data generating model. The
posterior COV for Model 1, which represents the standard Matèrn model
fitted to the non-stationary data was the highest out of all nine models,
averaged over each partition. This was expected in this simulation ex-
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periment, since Model 1 does not correctly account for non-stationarity
in the covariance matrix. Further, it suggests that partitioning the covari-
ance matrix can produce more accurate estimates of the covariance matrix
when data has non-stationary spatial structure.

We observed unusual patterns in median Moran’s I values. In general, me-
dian posterior Moran’s I on the residuals were higher for the partitioned
models that assumed local parameters than the partitioned models that
assumed global parameters, for each t and averaged over each repetition.
This suggests that when partitioned models that assume global param-
eters for each sub-region are fitted to stationary data, they are better at
accounting for spatial autocorrelation than when local parameters were
assumed. For most values of t, the median Moran’s I for Models 1, 2, and
5 fitted to the stationary data was the lowest, averaged over each repeti-
tion.

3.5 Case study

We performed an exploratory case study, in which we fitted several K-
means partitioned geostatistical models to the 2013 New Zealand partic-
ulate matter (PM10) concentration data described in Section 2.7.1. The
aim was to find the best model to predict PM10 concentration across New
Zealand, in terms of predictive accuracy measures RMSE, and MAE, as
well as in terms of the accuracy of estimation of the covariance matrix,
while also accounting for spatial autocorrelation and non-stationarity. When
a best model was chosen, we used it to produce an interpolated predic-
tive map for particulate matter concentration, using covariate observa-
tions where monitoring stations were not placed. Limited covariates were
available to estimate the models, with only temperature (in °C) and wind
speed (in m/s) considered. Temporal variation was not considered for this
case study.

Mean PM10 concentration was observed at 40 locations across New Zealand
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Figure 3.8: Medians of the posterior distributions for RMSE, MAE, COV,
and Moran’s I for each model fitted to the non-stationary spatio-temporal
data, where each model has different degrees of partitioning. Model 1
has no partitioning, Models 2 and 6 have two partitions, Models 3 and 7
have three partitions, Models 4 and 8 have four partitions, and Models 5
and 9 have five partitions. Further, Models 2 – 5 assume equal parameters
across each sub-region, and Models 6 – 9 assume local parameters within
each sub-region
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for the year 2013, denoted by y = (y(s1), ..., y(sn))′, shown in Figure 2.2.
Significant spatial autocorrelation was identified across the study region,
as evidenced by this figure. This was confirmed by Moran’s I, which was
calculated as I = 0.3577 with a corresponding p-value for the two-sided
test for the presence of spatial autocorrelation of 3.23×10−8. Furthermore,
significant non-statitonarity was identified. A p-value for the two-sided
test for non-stationarity was calculated to be 0.03. This provided motiva-
tion for a partitioned geostatistical model.
The partitioned geostatistical model described by Equations 3.2 and 3.4
was fitted to the natural log of the New Zealand PM10 concentrations.
We partitioned the spatial domain into K distinct sub-regions using the
K-means algorithm defined in Algorithm 3. We determined the models
by varying K, ranging from K = 1 to K = 3, to ensure that there was
a reasonable number of observations within each partition. In addition,
we fitted the model assuming global coefficients as well as region specific
coefficients. We summarised the models fitted to the data in Table 3.7.

Table 3.7: Details of the five models fitted to the New Zealand particulate
matter data.

Model Equation K Parameters
1 y = Xβ + ζ + ε 1 β0, β1, β2, ψ, σ

2, τ 2

2, 3 yk = Xkβ + ζk + εk 2, 3 β0, β1, β3ψ, σ
2, τ 2

4, 5 yk = Xkβk + ζk + εk 2, 3 β0,β1,β2,ψ,σ
2, τ 2

By assuming conditional independence between the regions, the model
equation for y is given by,

log yk = Xkβk + ζk + εk, (3.18)

where Xk = (1nk
,x1k,x2k) is the nk × 3 design matrix of covariates, with

x1k being the temperature observed at locations in partition k, and x2k

being the wind speed observed at locations in partition k. Here, βk are
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the corresponding coefficients, with βk = β = (β0, β1, β2)′ for Models 1
– 3, and βk = (β0k, β1k, β2k)

′ for Models 4 and 5, for k = 1, ..., K, K ∈
{1, 2, 3}. Furthermore, ζk is the spatial error term, assumed to follow
ζk ∼ N(0, σ2

kRk(φk)), with region specific covariance matrix, depending
on covariance function parameters φk. Finally, εk is the measurement er-
ror term, assumed to follow εk ∼ N(0, τ 2

kInk
), with region specific nugget

variance τ 2
k .

We chose to model the covariance matrix of using the Matèrn covariance
function with smoothness parameter ν = 0.5, which has an exponential
closed form,

σ2
kRk(φk) = σ2

k exp

(
− dk
ψk

)
, (3.19)

where dk is the matrix of Euclidean distances between pairs of observa-
tions in region k, and ψk is the strength of spatial correlation. We now
describe each model in more detail.

3.5.1 Models

Model 1

Model 1 is given by Equation 3.18 when K = 1. In other words, it is the
standard non-partitioned geostatistical model. The model assumed that
the PM10 data was stationary and estimated a single covariance function
for the entire study region. The data likelihood is given by,

f(y|θ,X) ∝ |σ2R(ψ) + τ 2I|−
1
2

× exp

{
− 1

2
(log y −Xβ)′(σ2R(ψ) + τ 2I)−1(log y −Xβ)

}
,

(3.20)

where θ = (β, σ2, τ 2, ψ)′ andR(ψ) is defined by Equation 3.19 with ψk = ψ.
The parameters θ were assumed a priori independent, and were assigned
the non-informative prior distributions,

β0, β1, β2 ∼ N(0, 10), ψ ∼ IG(2, 1), σ2 ∼ IG(2, 1), τ 2 ∼ IG(2, 1).
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This afforded the posterior distribution,

f(θ|y,X) ∝ |σ2R(ψ) + τ 2I|−
1
2

× exp

{
− 1

2
(log y −Xβ)′(σ2R(ψ) + τ 2I)−1(log y −Xβ)

}
× exp

(
− 1

2
(β′(10I3)−1β)

)
× (σ2)−3 exp

(
− 1

σ2

)
× (τ 2)−3 exp

(
− 1

τ 2

)
× (ψ2)−3 exp

(
− 1

ψ2

)
.

(3.21)

Models 2 and 3

Models 2 and 3 are given by Equation 3.18 whenK = 2 andK = 3, respec-
tively, and assumed that the covariate coefficients were equal within each
partition while the covariance parameters were not. The data likelihoods
for both models are given by,

f(y|θ,X) ∝ |Σ + T|−
1
2

× exp

{
− 1

2
(log y −Xβ)′(Σ + T)−1(log y −Xβ)

}
,

(3.22)

where θ = (β,σ2, τ 2,ψ)′, and Σ and T are block-diagonal matrices with
main diagonal matrices σ2

kR(ψk) and τ 2
kInk

, respectively, and k = 1, ..., K,
withK = 2 for Model 2, andK = 3 for Model 3.The parameters θ were as-
sumed a priori independent, and were assigned the non-informative prior
distributions,

β
iid∼ N(0, 10), ψ

iid∼ IG(2, 1), σ2 iid∼ IG(2, 1), τ 2 iid∼ IG(2, 1).
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This afforded the posterior distribution given by,

f(θ|y,X) ∝ |Σ + T|−
1
2

× exp

{
− 1

2
(log y −Xβ)′(Σ + T)−1(log y −Xβ)

}
× exp

(
− 1

2
(β′(10I3)−1β)

)
×

K∏
k=1

(σ2
k)
−3 exp

(
− 1

σ2
k

)

×
K∏
k=1

(τ 2
k )−3 exp

(
− 1

τ 2
k

)
×

K∏
k=1

(ψ2
k)
−3 exp

(
− 1

ψ2
k

)
.

(3.23)

Models 4 and 5

Models 4 and 5 are given by Equation 3.18 when K = 2 and K = 3, re-
spectively, and assume that the model parameters are not equal within
each partition. The data likelihoods for both models are given by,

f(y|θ,X) ∝ |Σ + T|−
1
2

× exp

{
− 1

2
(log y −Xβ)′(Σ + T)−1(log y −Xβ)

}
,

(3.24)

where θ = (β,σ2, τ 2,ψ)′, and Σ and T are block-diagonal matrices with
main diagonal matrices σ2

kR(ψk) and τ 2
kInk

, respectively, and k = 1, ..., K,
withK = 2 for Model 2, andK = 3 for Model 3.The parameters θ were as-
sumed a priori independent, and were assigned the non-informative prior
distributions,

β
iid∼ N(0, 10), ψ

iid∼ IG(2, 1), σ2 iid∼ IG(2, 1), τ 2 iid∼ IG(2, 1).
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This afforded the posterior distribution given by,

f(θ|y,X) ∝ |Σ + T|−
1
2

× exp

{
− 1

2
(log y −Xβ)′(Σ + T)−1(log y −Xβ)

}
× exp

(
− 1

2
(β′(10I3)−1β)

)
×

K∏
k=1

(σ2
k)
−3 exp

(
− 1

σ2
k

)

×
K∏
k=1

(τ 2
k )−3 exp

(
− 1

τ 2
k

)
×

K∏
k=1

(ψ2
k)
−3 exp

(
− 1

ψ2
k

)
.

(3.25)

3.5.2 Results

We calculated the mean posterior RMSE and MAE for each model using
Equations 2.44 and 2.45, respectively. We display these values in Figure
3.9 and in Table 3.8. Model 4, the model that used two partitions and
assumed local parameters within each sub-region was the best, having the
lowest mean RMSE and mean MAE of all models fitted, while also having
the lowest Moran’s I. This suggests that Model 4 had the best predictive
accuracy and accounted for spatial autocorrelation the most.

Table 3.8: Posterior means for RMSE, MAE, and Moran’s I for each model
fitted to the New Zealand particulate matter data.

Model RMSE MAE Moran’s I
1 0.902 0.754 0.342
2 1.163 0.973 0.261
3 1.207 0.998 0.279
4 0.655 0.528 0.160
5 0.745 0.598 0.182

In addition, we calculated summary statistics of the model coefficients and
display these in Tables 3.9 and 3.10. In general, the estimates for the parti-
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Figure 3.9: Means of the posterior distributions for RMSE, MAE, and
Moran’s I for each model fitted to the New Zealand particulate matter
data, where each model has different degrees of partitioning. Model 1 has
no partitioning, Models 2 and 4 have two partitions, and Models 3 and
5 have three partitions. Further, Models 2 and 3 assumed equal parame-
ters across each sub-region, and Models 4 and 5 assumed local parameters
within each sub-region
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tioned models were more precise than that of the non-partitioned model.
For example, the mean function parameters β0, β1, and β2 have narrower
highest posterior density (HPD) intervals for Models 2 – 5, compared to
Model 1. Of all models, Model 4 has the most precise mean function pa-
rameters. This indicates that partitioning is important, and that allowing
parameters between partitions to be different gives the best result.
We calculated predicted PM10 concentration using the posterior predic-
tive distribution (Equation 2.43) of Model 4. Predictions were obtained
using annual mean temperature and wind speed observations from 347
monitoring stations across New Zealand in 2013. The stations were not at
the same locations that PM10 was observed. Figure 3.10 displays the in-
terpolated surface plot of the posterior predicted annual PM10 concentra-
tion across New Zealand in 2013 using Model 4. We observed lower pre-
dicted concentrations of PM10 on the mountainous regions of the South
Island and North Island. The highest predicted PM10 concentration was
observed in the Canterbury region.

3.6 Conclusion

The K-means partitioned geostatistical models that we proposed provided
a relatively flexible and fast way to account for non-stationarity while still
allowing the use of simple stationary covariance functions. This was high-
lighted in the simulation studies, particularly in the spatial case. In the
spatial simulation, the K-means partitioned geostatistical models (Models
2 – 9) generally provided better predictive accuracy (in terms of RMSE and
MAE) when fitted to either stationary or non-stationary point referenced
data.
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Table 3.9: Posterior summary statistics for the mean function coefficients.

Model Median 95% HPD Interval
Model 1 β0 0.2163 (-0.4301, 0.8314)

β1 0.1581 (0.0241, 0.2563)
β2 -0.0504 (-0.1701, 0.0669)

Model 2 β0 0.3764 (-0.2563, 0.9455)
β1 0.1667 (0.1213, 0.2124)
β2 -0.0009 (-0.6030, 0.6400)

Model 3 β0 0.3056 (-0.3451, 0.9438)
β1 0.1724 (0.1251, 0.2223)
β2 0.0072 (-0.6205, 0.6359)

Model 4 β01 0.0979 (-0.5096, 0.7644)
β11 0.1935 (0.0849, 0.3065)
β21 0.1545 (-0.2535, 0.5354)
β02 0.0914 (-0.5053, 0.6908)
β12 0.1750 (0.1236, 0.2372)
β22 -0.0056 (-0.1500, 0.1724)

Model 5 β01 0.0241 (-0.6187, 0.6007)
β11 0.2442 (0.0797, 0.4087)
β21 0.0705 (-0.4313, 0.5955)
β02 0.0418 (-0.5648, 0.6197)
β12 0.2532 (0.1566, 0.3395)
β22 -0.1718 (-0.4078, 0.0834)
β03 0.0923 (-0.5674, 0.6617)
β13 0.1618 (0.0902, 0.2348)
β23 0.0608 (-0.2019, 0.3582)



88 CHAPTER 3. PARTITIONED GEOSTATISTICAL MODELS

−48

−44

−40

−36

170 175
Longitude

La
tit

ud
e

5

10

15

20

25

PM10

Figure 3.10: Interpolated surface plot for the posterior predicted annual
particulate matter concentration in New Zealand for 2013 using Model 4.
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Table 3.10: Posterior summary statistics for the covariance function pa-
rameters.

Model Median 95% HPD Interval
Model 1 ψ 1391.1 (53.997, 22528.2)

σ2 0.0809 (0.0482, 0.1282)
τ 2 0.3819 (0.0887, 1.430)

Model 2 ψ1 0.6243 (0.0837, 4.533)
ψ2 0.6547 (0.0922, 5.126)
σ2

1 0.3044 (0.1003, 0.6575)
σ2

2 0.1644 (0.0756, 0.3115)
τ 2

1 0.3022 (0.0991, 0.6932)
τ 2

2 0.1639 (0.0741, 0.3090)
Model 3 ψ1 0.6880 (0.0870, 48.50)

ψ2 0.6179 (0.0970, 3.442)
ψ3 0.6319 (0.1046, 3.497)
σ2

1 0.4341 (0.1042, 1.237)
σ2

2 0.2451 (0.0849, 0.5180)
σ2

3 0.1892 (0.0822, 0.3692)
τ 2

1 0.4368 (0.1195, 1.239)
τ 2

2 0.2392 (0.0879, 0.4939)
τ 2

3 0.1925 (0.0868, 0.3934)
Model 4 ψ1 0.5944 (0.0977, 2.588)

ψ2 0.6285 (0.1026, 4.490)
σ2

1 0.2178 (0.0869, 0.4563)
σ2

2 0.1616 (0.0745, 0.3050)
τ 2

1 0.2134 (0.0882, 0.4485)
τ 2

2 0.1611 (0.0782, 0.3057)
Model 5 ψ1 0.5919 (0.1067, 2.832)

ψ2 0.6056 (0.0923, 3.189)
ψ3 0.5912 (0.1058, 2.834)
σ2

1 0.3198 (0.1029, 0.8193)
σ2

2 0.2249 (0.0867, 0.4838)
σ2

3 0.1918 (0.0874, 0.3867)
τ 2

1 0.3291 (0.0933, 0.8471)
τ 2

2 0.2289 (0.0848, 0.4856)
τ 2

3 0.1909 (0.0854, 0.3850)
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Chapter 4

Covariance regression network
models for spatial and
spatio-temporal data

The estimation of the covariance matrix Σ of a response vector Y is one
of the key components for spatial and spatio-temporal data analysis and
prediction. In Chapter 3 we showed that partitioned geostatistical models
were able to handle non-stationarity by estimating stationary covariance
functions for each sub-region.

When a parametric covariance function is fitted it is assumed that the co-
variance structure can be fully expressed using the parameters. So far we
have reviewed covariance functions that depend only on the distance be-
tween observations. A more flexible approach may needed. A less re-
strictive approach to estimating the covariance matrix may be offered by
covariance regression models.

Covariance regression involves modelling the covariance matrix of a uni-
variate response vector as a linear combination of symmetric matrices (Liu
et al., 2020; Lan et al., 2018; Zou et al., 2017). By incorporating features of
the data through these symmetric matrices, a model is able to describe the
covariance structure in a more flexible way, without imposing strict co-

91
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variance functions on the data that depend only on spatial lag. A common
approach is to use an adjacency matrix to take into account the network
structure determined by connections between nodes of the data, which
allows for the evaluation of the network effect on the covariance matrix.
This approach has seen application to social networks (Liu et al., 2020; Lan
et al., 2018). So far the approach has not been applied to spatial or spatio-
temporal contexts.

In this chapter, we made several contributions to the covariance regres-
sion literature. First, we proposed an extension of the covariance regres-
sion network modelling framework to spatial modelling. The extension
involved eliciting a strategy to estimate a network structure from the lo-
cations of an observed univariate spatial process, when the structure is
unknown. We also proposed the extension to the spatio-temporal case.
Both contributions were made within the Bayesian framework. Finally,
we proposed a Bayesian model averaging approach (Hoeting et al., 1999)
to improve predictive accuracy.

Chapter 4 begins with a concise literature review that highlights where the
covariance regression approach is useful. A section is dedicated to defin-
ing the covariance regression model in a general context. This is followed
by sections that introduce the spatial and spatio-temporal covariance re-
gression network model, and the technique for estimating the network
structure for both contexts. Simulation studies were performed for both
the spatial and spatio-temporal cases, and we compared the covariance
regression network models to a traditional Matèrn covariance function
model. We followed the simulation with two case studies to illustrate the
usefulness of our proposed models. We concluded the chapter with com-
ments on the results.
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4.1 Literature review

Covariance regression is the name given to a class of models that employ a
regression framework to model the covariance matrix Σ of a response vec-
tor Y = (Y1, ..., Yn)′ as a linear combination of known symmetric matrices.
The model for Y takes the form,

Y = µ+ ε, ε ∼ N(0,Σ), (4.1)

where µ is the mean vector and is modelled in the typical way as a lin-
ear combination of parameters, β = (β0, ..., βp)

′, and p covariates, X =

(1x1, ...,xp),
µ = Xβ. (4.2)

The covariance matrix takes the form of a linear combination of parame-
ters, γ = (γ1, ..., γr)

′, and r known symmetric matrices,B0, ...,Br,

Σ =
r∑

k=0

γkBk. (4.3)

The matrices B0, ...,Br are assumed to be linearly independent, and it is
assumed that at least one set of parameters γ results in Σ positive definite.
Covariance regression was described in Anderson et al. (1973), where esti-
mation procedures were detailed for several cases of the mean vector and
covariance matrix being known or unknown. The estimation procedure
for the covariance matrix involved maximum likelihood estimation. In
addition, asymptotic efficiency of the estimators was discussed. Later, in
Szatrowski (1980) and Zwiernik et al. (2014), properties of the covariance
estimates under the linear structure were examined.
In many applications, covariates have been shown to not only affect the
mean vector, but also play an important role when determining the co-
variance matrix of a process (Schmidt et al., 2011). The covariates that
affect the covariance matrix may not necessarily be the same as the co-
variates that contribute to the linear combination for the mean vector. As
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such, we defined the r covariates assumed to have an effect on the covari-
ance matrix as w1, ...,wr, where wk = (wk1, ..., wkn)′ is an n-dimensional
observed covariate vector with each wki corresponding to an observed re-
sponse yi, for k = 1, ..., r. Covariance regression was the focus of Zou et al.
(2017), in which, the explicit regression relationship between the covari-
ance matrix Σ and the covariates, wk was explored. In the article, Zou
et al. (2017) proposed a methodology that allowed the covariate informa-
tion to be represented as symmetric matrices and explicitly linked to the
covariance matrix through Equation 4.3. The methodology comes from
adapting the concept of pairwise comparisons (Johnson & Wichern, 1992),
which considers measures of similarity or distance of covariate values be-
tween pairs of subjects i to build the symmetric matrices. In other words,

Σ =
r∑

k=0

γkBk =
r∑

k=0

γkW (wk), (4.4)

where W (wk) = (δ(wki, wkj))n×n is a matrix with elements that measure
the similarity (or distance), δ, of covariatewk between each pair of subjects
i and j.

A particular measure of similarity between covariates that was investi-
gated in Lan et al. (2018) was the adjacency matrix. This was motivated
by the practical example of a mobile network. In that case, the response
variable was the logarithm of monthly call duration measured in log min-
utes, and they proposed a regression framework to model the covariance
matrix as a function of the adjacency matrix of the mobile network. This
leads to the so called covariance regression network (CRN) framework.

4.2 Covariance regression network model

We now explicitly introduce the covariance regression network (CRN) model
proposed in Lan et al. (2018). Consider a network of nodes, i = 1, ..., n, and
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letA = (aij)n×n denote the adjacency matrix. We define,

aij =


1 if i, j connected,

0 if i, j not connected and i 6= j,

0 if i 6= j.

(4.5)

The adjacency matrix A identifies the pairwise connections that exist be-
tween nodes. This gives the structure of the network. Let also Ak =

(a
(k)
ij )n×n be the matrix where a(k)

ij represents the number of paths of length
k from node i to node j. That is to say Ak identifies all pairwise connec-
tions separated by paths of length k. For completeness, we defineA0 = In,
the n-dimensional identity matrix.
We provided an example of a network of five nodes in Figure 4.1. In this
example, we define the matrices,A,A2, andA3 as,

A =


0 1 0 0 0

1 0 1 1 0

0 1 0 1 0

0 1 1 0 1

0 0 0 1 0

 ,A
2 =


1 0 1 1 0

0 3 1 1 1

1 1 2 1 1

1 1 1 3 0

0 1 1 0 1

 ,A
3 =


0 3 1 1 1

3 2 4 5 1

1 4 2 4 1

1 5 4 3 3

1 1 1 3 0

 .

We now introduce the model that connects the network structure informa-
tion to the covariance matrix. Let y = (y1, ..., yn)′ be a univariate response
vector, where yi is an observed response associated with node i. The model
for y is simply,

y = µ+ ε, ε ∼ N(0,Σ), (4.6)

where µ is the mean vector and can be modelled in the typical way, as
a linear combination of covariates and parameters, Xβ. Here, Σ is the
covariance matrix, and is modelled as a linear combination of parameters,
γ = (γ1, ..., γr)

′, and adjacency matrices (Lan et al., 2018),

Σ =
r∑

k=0

γkA
k. (4.7)
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Figure 4.1: Network with five connected nodes.
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The parameters γ describe the strength of influence that the connected
points have on the covariance. For example, a larger value for γ3 implies
that the contribution of A3 on the covariance matrix is bigger, and sug-
gests that points that are implicitly connected via paths of length 3 have an
important effect on the covariance. The model assumes that the network
structure is known or correctly specified. We now propose our extension
of the CRN model to spatial data.

4.3 Spatial covariance regression network model

for point reference data

In the spatial setting, we replaced the network of n nodes in Section 4.2
with a network of n fixed locations, denoted by i = 1, ..., n. The CRN
model described by Equations 4.6 and 4.7 require that the network struc-
ture is known. However, we typically do not know the network structure
of spatial data, which is to say we do not know how the observations at
each location are connected. For spatial data, we propose the definition of
connection: any two point locations separated by a distance that is less than a
bandwidth parameter, d, are connected. We propose that the network struc-
ture can be approximated using the location data, by estimating the adja-
cency matrix.

The network structure of a set of n fixed locations can be approximated by
estimating an adjacency matrix, A = (aij)n×n, using a distance function.
There are many different distance functions to choose from and in this
thesis, we estimate the adjacency matrix with the distance function,

aij =

1 if dij < d

0 otherwise,
(4.8)

and aii = 0, where dij is the Euclidean distance between locations i and j,
and d is the bandwidth parameter. We propose that d can be determined
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in a similar way to how the range parameter of a variogram is chosen. For
instance, d can be chosen as the threshold distance that the researcher be-
lieves above which pairs of points are likely to be uncorrelated. Therefore,
the approximated network structure is based on Tobler’s law, in that lo-
cations that are closer to each other are more likely to be connected than
those further apart.

In order to remove some of the subjectivity surrounding the determina-
tion of the bandwidth, d, we propose using Bayesian model averaging
(Hoeting et al., 1999) over a range of CRN models the network structure is
approximated by adjacency matrices using different bandwidths in Equa-
tion 4.8. In doing so, we average over many candidate models, which
removes some of the uncertainty around choosing a correctly specified
network structure.

4.3.1 Bayesian model averaging

In this thesis, we followed the Bayesian model averaging procedure of
Fragoso et al. (2018). Let each candidate model in consideration be de-
noted by Mh, for h = 1, ..., H , which represent a set of probability dis-
tributions encompassing the likelihood function f(Y |θh,Mh) of the ob-
served data Y in terms of model specific parameter vector θh and a set
of prior probability densities, π(θh|Mh). Recall that given a model under
the Bayesian framework, we obtain the posterior distribution using Bayes’
theorem, and this is given by Equation 2.34 in Section 2. The denominator
of the posterior distribution is referred to as the model’s marginal likeli-
hood or model evidence, denoted by,

π(Y |Mh) =

∫
f(Y |θh,Mh)π(θh|Mh)dθh. (4.9)

Bayesian model averaging then adds another layer by assuming a prior
distribution, π(Mh) over the set of considered candidate models describing
the prior uncertainty over each model’s capability to accurately describe
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the data. The posterior model probabilities given the observed data are
given by,

π(Mh|Y ) =
π(Y |Mh)π(Mh)∑H

m=1 π(Y |Mm)π(Mm)
, (4.10)

which represents the support for each considered candidate model by the
observed data. Using the posterior model probabilities, we can construct
a marginal posterior distribution for the predicted value, Ŷ across all con-
sidered models,

π(Ŷ |Y ) =
H∑
h=1

π(Ŷ |Y ,Mh)π(Mh|Y ), (4.11)

which is an average of all posterior distributions weighted by each poste-
rior model probability.

4.4 Spatio-temporal covariance regression network

model for point reference data

We propose that a CRN model can be fitted to point reference data in a
spatio-temporal context. In the spatio-temporal setting, we replaced the
network of n nodes in Section 4.2 with a network of n fixed locations, de-
noted by i = 1, ..., n. At each location, a response is observed at T time
points. For the purpose of this thesis, we assume the locations remain
constant over time. The model for yt is given by,

yt = µt + εt, εt ∼ N(0,Σt), (4.12)

where µt is the mean vector and can be modelled in the typical way, as
a linear combination of covariates and parameters, Xtβ. Here, Σt is the
covariance matrix, and is modelled as a linear combination of parameters,
γt = (γ1t, ..., γrt)

′, and adjacency matrices,

Σt =
r∑

k=0

γktA
k, for t = 1, ..., T. (4.13)
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We assumed the network structure does not change over time.

The CRN model described by Equations 4.12 and 4.13 requires that the
network structure is known or correctly specified. However, we typically
do not know the network structure of spatial data, which is to say we
do not know how the observations at each location are connected. We
approximate the network structure in the same way as the spatial case by
estimating the adjacency matrix, using Equation 4.8, and determining d

by prior knowledge or fitting a range of models using different values of
d and performing Bayesian model averaging.

We now perform several simulation experiments to evaluate the predictive
accuracy of the CRN model on simulated spatial and spatio-temporal data.

4.5 Simulation

We evaluated the performance of CRN models within a Bayesian frame-
work on simulated spatial and spatio-temporal data. We fitted several
models that were determined by assuming the network structure was un-
known and estimated using an adjacency matrix determined by Equation
4.8. The aim of the simulation experiment was to investigate the perfor-
mance of CRN models in terms of ability to accurately predict, and account
for autocorrelation, in the values of a dependent variable. Furthermore,
we compared these abilities to a traditional Matèrn covariance model and
a CRN model defined by a correctly specified network structure. For the
comparisons, we computed three measures of accuracy and a measure of
residual spatial autocorrelation over the set of models. The measures of
accuracy that were used are the root mean square error (RMSE, Equation
2.44), the mean absolute error (MAE, Equation 2.45), and the average esti-
mation error for the covariance matrix (COV, Equation 2.46). The measure
of residual spatial autocorrelation that was used is Moran’s I (Equation
2.8), calculated on the residuals. We performed the simulation experi-
ments separately for the spatial case and the spatio-temporal case.
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4.5.1 Spatial simulation

A simulation experiment was conducted to evaluate the performance of
CRN models with estimated network structures on simulated data with a
spatial structure.

We randomly generated p = 200 longitude (slong) and latitude (slat) values
from a unit square,

slong = U(0, 1),

slat = U(0, 1).

We then simulated a network structure taking in to account Tobler’s Law
(Tobler, 1970), by connecting each pair of locations that were separated by
a Euclidean distance of bandwidth d or smaller. The value of dwas chosen
such that the resulting network structure had a network density of 5%,
where, we define network density, ND as,

ND =
Number of connections

n(n− 1)/2
. (4.14)

In this way, the bandwidth was calculated to be d = 0.2023. The network
structure was represented by an adjacency matrix given by,

A = (aij)200×200, (4.15)

where aij was calculated using Equation 4.8. A dependent variable, y, was
then simulated from the model,

y = β01 + ε, (4.16)

where 1 is a 200×1 vector of 1’s, β0 is the intercept, and ε are the errors for
the spatial process that introduced spatial autocorrelation to y. Explicitly,
the dependent variable was drawn from,

y ∼ N(β01,Σ), (4.17)
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where Σ is the covariance matrix modelled by the CRN model,

Σ = γ0I200 + γ1A+ γ2A
2. (4.18)

Here, γ0 represents the variance of the measurement errors, while γ1A +

γ2A
2 represents the purely spatial covariance matrix. The model assumed

that only connections between locations of path lengths 1 and 2 contribute
to the covariance matrix. This was inline with the simulation studies of
Zou et al. (2017), Lan et al. (2018), and Liu et al. (2020). The parameters
β0, γ0, γ1, and γ2 were chosen specifically to focus on estimation of the
covariance matrix parameters. We set β0 = 0, γ0 = 1, γ1 = 0.5, and γ2 =

0.2, inline with Lan et al. (2018) who provided a demonstrated example.
The parameters were chosen such that γ0 > γ1 > γ2, which produced a
covariance matrix that was positive definite. The data were sampled using
Cholesky factorization for a Gaussian process (Algorithm 2, Rue & Held
(2005)). We generated 30 sets of simulated data and fitted the models to
each set in order to stabilize the variation due to generating the data.

Figure 4.2 displays the interpolated surface plot of y for one set of simu-
lated data. It provided evidence for the presence of spatial autocorrelation
within the dependent variable. We observed clusters of higher values at
the lower right region and upper region, as well as clusters of lower val-
ues observed at the upper left and lower right regions of the plot. Moran’s
I was calculated to confirm the presence of spatial autoccorelation in the
simulated y values. We calculated I = 0.13, with a p=value for the two-
sided test for presence of spatial autocorrelation less than 2.2× 10−16, con-
firming the presence of significant spatial autocorrelation within the de-
pendent variable. Similar findings were obtained for the 29 other sets of
simulated data.

We fitted several CRN models to the simulated spatial data sets. We fit-
ted Model 1, a CRN model that used the same known network structure
used to simulate the data, where the bandwidth d was chosen such that
the resulting network had a density of 5%. Models 2 – 10, fitted next, were
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Figure 4.2: Interpolated surface plots of the simulated dependent variable.
Spatial autocorrelation is exhibited for y. There are clusters of higher val-
ues near the bottom left, center, and top right, and clusters of lower values
displayed at the top left, bottom, and far right.
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a set of CRN models that assumed the network structure of the data was
unknown and estimated by the adjacency matrix using Equation 4.8. The
models were determined by changing the bandwidth, d, such that the ap-
proximating networks had densities of 1% – 4% and 6% – 10% for Models 2
– 10, respectively. For each model, the covariance matrix was estimated us-
ing Equation 4.18. In addition to fitting CRN models, we also fitted Model
11, a traditional exponential Matèrn covariance model, defined by Equa-
tion 2.31 from Chapter 2. For each model, we produced posterior distribu-
tions of predicted values, ŷ, which were used to calculate the measures of
predicted accuracy and residual spatial autocorrelation. We also produced
two further posterior distributions of predicted values by Bayesian model
averaging over Models 1 – 10 and over Models 2 – 10, using Equations 4.10
and 4.11. For simplicity, we denoted these sets of predicted values BMA 1
and BMA 2. The set BMA 1 made intuitive sense since it represented the
posterior distribution of predicted values weighted by the posterior model
probability for each candidate CRN model fitted to the data. However, it
was likely that Model 1 would perform well because the network struc-
ture was correctly specified. This would result in a large posterior model
probability for Model 1 and would lend to a large contribution from Model
1 to the set of predicted values. However, in reality, it is unlikely that the
true network structure will be known or easily defined. Therefore, we pro-
duced a second set of Bayesian model averaged predicted values, BMA 2,
averaged over the models where the network structure was misspecified.
A description of each model and set of predicted values is given in Table
4.1. We described each model in more detail in the following sections.
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Table 4.1: Description of Models 1 – 11, BMA 1, and BMA 2 used to obtain
the 13 sets of predictions.

Prediction set Method Network structure Network density
1 Model 1 Correctly specified 5%

2 Model 2 Misspecified 1%

3 Model 3 Misspecified 2%

4 Model 4 Misspecified 3%

5 Model 5 Misspecified 4%

6 Model 6 Misspecified 6%

7 Model 7 Misspecified 7%

8 Model 8 Misspecified 8%

9 Model 9 Misspecified 9%

10 Model 10 Misspecified 10%

Prediction set Method Covariance structure
11 Model 11 Exponential

Prediction set Method Averaged over
12 BMA 1 Models 1 – 10
13 BMA 2 Models 2 – 10

Model 1

We first fitted Model 1, a CRN model (Lan et al., 2018; Liu et al., 2020)
where the network structure of the data was assumed to be known and
correctly specified. The network structure of the data was the same as the
one used to generate the simulated data. The bandwidth d was such that
the network had a density of 5%. The model is described by Equations
4.16 – 4.18. The data likelihood is given as,

f(y|β0,γ,A) = (2π)−
200
2 |Σ|−

1
2 exp

{
− 1

2
(y − β01)′Σ−1(y − β01)

}
, (4.19)
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where Σ = γ0I200 + γ1A + γ2A
2, and A is same adjacency matrix used to

simulate the data, defined by Equation 4.15, where d = 0.2023.

Model 2 – 10

Models 2 – 10 were fitted next and are CRN models (Lan et al., 2018; Liu
et al., 2020) where the network structure of the data was assumed to be un-
known. We estimated the network structure using the adjacency matrix,
determined by changing the bandwidth d, such that the approximating
networks had densities of 1% – 4% and 6% – 10% for Models 2 – 10, re-
spectively. The models are described by Equations 4.16 – 4.18 and the data
likelihoods are given by,

f(y|β0,γ,A) = (2π)−
200
2 |Σ|−

1
2 exp

{
− 1

2
(y − β01)′Σ−1(y − β01)

}
, (4.20)

where Σ = β0I200 + β1A+ β2A
2.

Model 11

Model 11 was then fitted and is a traditional Matèrn covariance model
with smoothness parameter ν = 0.5, corresponding to the exponential
covariance model. The measurement equation for y under Model 11 is
given by Equation 2.19, where the covariance matrix is C = Σ + T, where
Σ = σ2R and T = τ 2I200. Model 11 assumed a covariance function for the
spatial process, Σ, that depended on pairwise distances between locations.
The function is defined by,

Σ = σ2 exp(−D/ψ), (4.21)

where D is a 200× 200 matrix of pairwise distances between locations, σ2

is the spatial process variance, and ψ is the spatial correlation strength pa-
rameter that measures the strength of correlation between two locations.
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The data likelihood is given by,

f(y|β0, σ
2τ 2, ψ,D) = (2π)−

200
2 |C|−

1
2 exp

{
− 1

2
(y − β01)′C−1(y − β01)

}
.

(4.22)

BMA 1 and BMA 2

BMA 1 and BMA 2 represent the posterior distributions of predicted val-
ues that were calculated using Bayesian model averaging over Models 1
– 10 and over Models 2 – 10, respectively. For each set, we used the R
package bridgesampling, which calculates the model evidence for each
Model using Equation 4.9. We then compute the posterior model probabil-
ities for Models 1 – 10 and Models 2 – 10, separately, using Equation 4.10.
The posterior model probabilities were used to calculate the weighted av-
erage posterior predictions, given by Equation 4.11.
We used MCMC to fit the models to both simulated sets of data and for
each repetition. For each model we assigned a vague prior to the intercept
β0,

β0 ∼ N(0, 1000).

CRN models have not been estimated using the Bayesian framework so
far. For Models 1 – 10, it was essential that the posterior distributions for
γ were such that the covariance matrix was positive definite. We believed
that the choice of prior distribution for γ could have large implications
on the positive definiteness of the estimated covariance matrix. We ex-
plored combinations of values for γ that would result in a positive defi-
nite covariance matrix. We chose to assign the following uniform priors to
γ to minimise the number of resulting posterior covariance matrices that
would not be positive definite:

γ0 ∼ U(0, 5),

γ1 ∼ U(0, 2),

γ2 ∼ U(0, 1).
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The posterior distribution for Models 1 – 10 is,

f(β0,γ|y,A) ∝ |Σ|−
1
2 exp

{
− 1

2
(y − β01)′Σ−1(y − β01)

}
exp

{
− 1

2

β2
0

1000

}
,

(4.23)
where Σ = γ0I200 + γ1A+ γ2A

2.
For Model 11, we assigned vague priors to the covariance parameters, σ2,
τ 2, and ψ,

σ2 ∼ IG(2, 1),

τ 2 ∼ IG(2, 1),

ψ ∼ IG(2, 1).

The posterior distribution for Model 11 is,

f(β0, σ
2, τ 2, ψ|y,D) ∝ |C|−

1
2 exp

{
− 1

2
(y − β01)′C−1(y − β01)

}
exp

{
− 1

2

β2
0

1000

}
(σ2)−3 exp

(
− 1

σ2

)
(τ 2)−3 exp

(
− 1

τ 2

)
(ψ)−3 exp

(
− 1

ψ

)
,

(4.24)

where C = Σ + T = σ2 exp(−D/ψ) + τ 2I200.
For each repetition of the simulation, each model was run for two chains,
each with 7500 iterations. The chains converged to stationary distributions
slowly and so 6750 (90%) of the iterations were discarded as warm-up. We
thinned each chain by 2, to minimize autocorrelation in the posterior sam-
ples affording posterior draws of size 750. Trace plots, density curves,
and autocorrelation plots were checked to determine that the posterior
samples converged to stationary distributions. For conciseness, diagnos-
tic plots were given for Model 1 only, in Figure B.1. In addition, we cal-
culated the potential scale reduction factor, R̂, for each parameter, given
in Table B.1. Furthermore, the convergence diagnostics were reported for
the first repetition of the simulation only. We noted similar convergence
for each repetition. For each model fitted to each set of data, the diag-
nostic plots showed sufficient evidence of convergence to stationary dis-
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Figure 4.3: Medians of the posterior distributions for RMSE, MAE, COV,
and Moran’s I, summarised over the 30 sets of simulated spatial data.

tributions, and appropriate exploration and mixing of the posterior distri-
butions. Furthermore, R̂ was found to be close to 1 for each parameter,
indicating convergence (Brooks & Gelman, 1998).

Figure 4.3 displays the medians of the posterior distributions for RMSE
(Equation 2.44), MAE (Equation 2.45), and Moran’s I (Equation 2.8), sum-
marised by the median over the 30 sets of simulated data. In addition, the



110 CHAPTER 4. COVARIANCE REGRESSION NETWORK MODELS

average estimated error in log scale for the covariance matrix, (COV, Equa-
tion 2.46) is displayed for each model. Table 4.2 collects these measures.

Table 4.2: Medians of the posterior distributions for RMSE, MAE, COV,
and Moran’s I, summarised over the 30 sets of simulated spatial data.

Method Predictive accuracy Autocorrelation
for prediction RMSE MAE COV Moran’s I
Model 1 2.470 1.964 1.832 0.156
Model 2 2.556 2.024 2.986 0.136
Model 3 2.517 1.998 1.233 0.139
Model 4 2.489 1.967 1.463 0.150
Model 5 2.551 2.025 1.918 0.169
Model 6 2.508 1.986 2.246 0.161
Model 7 2.539 2.014 2.279 0.161
Model 8 2.569 2.036 2.340 0.161
Model 9 2.622 2.080 2.320 0.165
Model 10 2.914 2.327 2.019 0.187
Model 11 2.511 2.065 2.019 -0.047
BMA 1 2.551 2.025 1.788 0.169
BMA 2 2.465 1.960 2.248 0.156

The CRN model with the lowest posterior median RMSE and posterior
median MAE was Model 1, averaged over the 30 repetitions of simulated
spatial data. This suggests that Model 1, a model that correctly specified
the covariance matrix provided the best predictive accuracy. This result
was not surprising, since we expected Model 1, the data generating model,
to outperform each model.
When we assumed that the network structure was unknown, we esti-
mated it using the adjacency matrix and a bandwidth, d determined by
network density. Models 2 – 10 therefore represented CRN models where
the network structure was estimated with increasing connectivity. We
found that for Models 2 – 10, where the network structures were estimated
with densities 1% – 4%, and, 6% – 10% there was an increasing trend in
posterior median RMSE and MAE, with the model that resulted in the
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highest posterior median RMSE and MAE being Model 10. This suggests
that increasing the number of connections of path lengths 1 and 2 reduces
the predictive accuracy.

When we compared the posterior median RMSE and MAE of Models 1
– 10 with that of the Matèrn covariance model (Model 11), we saw that
Model 1 provided better predictive accuracy than the traditional model.
Further, Models 4 and 6 had comparable posterior median RMSE and
MAE to that of Model 11. This shows that covariance regression network
modelling is a viable methodology for predicting spatial data.

When we took the average predicted values from Models 1 – 10 weighted
by each models posterior model probability (BMA 1), we found the poste-
rior median RMSE and MAE were higher than that of Models 3 – 6. Model
1 was found to have the largest posterior model probability and so Model 1
contributed the most to BMA 1. This suggests that averaging over a range
of CRN models with different estimated network structures (including the
true network structure), we obtain similar predictive accuracy compared
to the individual CRN models but worse predictive accuracy than that of
the Matèrn model. Averaging over only those CRN models where the true
network structure was not included (BMA 2), we found the lowest values
for posterior median RMSE and MAE, compared to all other CRN models
and BMA 1. This suggests that CRN models have potential to be used to
make accurate predictions for spatial point reference data.

Moran’s I was calculated for each set of posterior residuals for each model,
using Equation 2.47 and the posterior median Moran’s I across each set
of simulated data was plotted in Figure 4.3. We found that each model
was not able to account for spatial autocorrelation within the simulated
data. For each model, the posterior median of Moran’s I the same or larger
than Moran’s I for the simulated data, which was M = 0.13. Between
Models 1 – 10, we found a generally increasing trend in posterior median
Moran’s I. This suggests that as the estimated network structures connec-
tivity increased, the amount of residual spatial autocorrelation increased.
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This seemed counter-intuitive, perhaps pertaining to variation among the
simulate data sets. Both BMA 1 and BMA 2 produced relatively similar
Moran’s I values to that of Models 6 and 5, respectively. This suggests that
when we average over a range of CRN models with different estimated
network structures (including the known network structure) residual spa-
tial autocorrelation is averaged over that of the models, but not reduced
over all. Model 11, the Matèrn covariance model gave a Moran’s I value
of I = −0.0773. While this value is closer to 0 than that of Models 1 – 10,
and BMA 1 and 2, it is negative. This is due to incorrectly specifying the
covariance matrix.
Another measure of accuracy is that given by the average estimated error
(COV) between the model covariance matrix and the true covariance ma-
trix. The posterior median COV is displayed in Figure 4.3 for each model.
Of the ten individual CRN models, Models 1 – 10, Model 2 had the lowest
posterior median COV, which suggests that the posterior distribution of
covariance matrices for Model 2 were the closest in Frobenius Norm to the
true covariance matrix. As the estimated network structures became more
connected in terms of network density, we observed a general increasing
trend in the posterior median COV. When we weighted the posterior dis-
tributions of the covariance matrix from Models 1 – 10, we found a similar
posterior median COV for BMA 1 compared to Model 5. This was ex-
pected, since Model 1 had the largest weight in the model averaged BMA
1. The posterior median COV BMA 2 was lowere than that of BMA 1, but
higher than that of Model 1. This indicated that the model averaging was
able to produce posterior distributions for the covariance matrix close to
the true covariance matrix.

4.5.2 Spatio-temporal simulation

In addition to the spatial simulation, a simulation experiment was con-
ducted to evaluate the performance of the CRN models with estimated



4.5. SIMULATION 113

network structures on simulated data with a spatio-temporal structure.
We used the same randomly generated n = 200 longitude (slong) and lati-
tude (slat) values from the spatial simulation study. The network structure
for the data was also the same. The network structure was represented
by an adjacency matrix given by Equation 4.15 where aij was calculated
using Equation 4.8. We assumed that the network structure for the spatio-
temporal data remained constant across time.
A dependent variable, yt, was then simulated for T = 2 time points, from
the model,

yt = β0t1 + εt, (4.25)

where 1 is a 200 × 1 vector of 1’s, β0t is the temporally varying mean at
time t, and εt are the errors at time t for the spatio-temporal process, and
t = 1, 2. Explicitly, the dependent variable was drawn from,

yt ∼ N(β0t1,Σt), (4.26)

where Σt is the covariance matrix at time t. We assumed that the covari-
ance matrix was dependent on time to induce spatio-temporal autocorre-
lation. The covariance matrix at time t was modelled by the CRN model,

Σt = γ0tI200 + γ1tA+ γ2tA
2. (4.27)

Here, γ0t represents the measurement variance at time t, while γ1tA +

γ2tA
2 represents the spatio-temporal covariance matrix at time t (Lan et al.,

2018). Like the spatial simulation, the model assumed that only connec-
tions between locations of path lengths 1 and 2 contributed to the covari-
ance matrix. This was inline with the spatial simulation studies of Zou
et al. (2017), Lan et al. (2018), and Liu et al. (2020). The parameters β01, β02,
γ01, γ02, γ11, γ12, γ21, and γ22 were chosen specifically to focus on estima-
tion of the covariance matrix parameters. In order to induce a temporal
trend in the dependent variable, we chose different values for β0t for each
t. We set β01 = 1 and β02 = 0.5. In addition, we induced spatio-temporal
autocorrelation by choosing different values for γ0t, γ1t, and γ2t, for each t.
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We set γ01 = 2, γ11 = 1, γ21 = 0.5, in line with the demonstrated example
in Lan et al. (2018) and arbitrarily set γ02 = 1, γ12 = 0.5, and γ22 = 0.25.
The covariance parameters were chosen such that γ0t > γ1t > γ2t, which
produced a covariance matrix that was positive definite. The data was
sampled using Cholesky factorization for a Gaussian process (Algorithm
2, Rue & Held (2005)). Once again, we generated 30 sets of simulated data
and fitted the models to each set in order to stabilize the variation due to
generating the data.

Figure 4.4 displays interpolated surface plots of y1andy2 for one set of sim-
ulated data. They provided evidence for the presence of spatio-temporal
autocorrelation within the dependent variable. Spatio-temporal autocor-
relation was exhibited for y1 and y′2. For y1, there were clusters of higher
values near the top right, bottom right, and center, and clusters of lower
values displayed at the top, and bottom left. For y2, the spatial pattern
of values changed from that of y1, indicating spatio-temporal autocorrela-
tion. For y2, there was a larger cluster of low values at the bottom left com-
pared to y1, and higher values to the right, and top of the plot. Moran’s
I was calculated to confirm the presence of spatial autocorrelation in the
simulated yt values for each t. Table 4.3 displays Moran’s I and p-values
for the two-sided test for the presence of spatial autocorrelation in yt for
each time point t for the first set of simulated data. We confirmed the pres-
ence of significant spatial autocorrelation within the dependent variable,
for each time point, since the p-values were sufficiently small (less than
1%). Similar results were obtained for the four other sets of simulated
data.

Table 4.3: Moran’s I and p-values for the two-sided test for the presence of
spatial autocorrelation.

Time, t Moran’s I, Mt p-value
1 0.1106 6.33× 10−10

2 0.1085 1.02× 10−9
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Figure 4.4: Interpolated surface plots of the simulated dependent variable.
Spatio-temporal autocorrelation is exhibited for (y1,y2)′. For y1, there are
clusters of higher values near the top right, bottom right, and center, and
clusters of lower values displayed at the top, and bottom left. For y2, the
pattern of values changes from that of y1, indicating spatio-temporal au-
tocorrelation. For y2, there is a larger cluster of low values at the bottom
left compared to y1, and higher values to the right, and top of the plot.

We fitted several CRN models to the simulated spatio-temporal data. Firstly,
Model 1 is a CRN model that modelled the covariance matrix using the
true network structure, obtained with a bandwidth d such that the net-
work density is 5%. Models 2 – 10 were fitted next. They are a set of CRN
models that assumed the network structure of the data was unknown and
estimated by the adjacency matrix using Equation 4.8. Like the spatial
simulation models, these models were determined by changing the band-
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width, d, such that the approximating networks had densities of 1% – 4 %
and 6% – 10% for Models 2 – 10 respectively. We estimated the covariance
matrix for each model using Equation 4.27. Like the spatial simulation
study, we also fitted a traditional exponential Matèrn covariance model,
Model 11, in addition to fitting CRN models. For each spatio-temporal
model, we produced posterior distributions of predicted values, y, in or-
der to calculate the measures of predicted accuracy and residual spatial
autocorrelation. We also produced two further prosterior distributions of
predicted values by Bayesian model averaging over Models 1 – 10 and
over Models 2 – 10, following Section 4.5.1. We denoted these sets as BMA
1 and BMA 2. A description of each model and set of predicted values is
given in Table 4.4. We describe each model in more detail in the following
sections.

Model 1

Model 1, a CRN model (Lan et al., 2018; Liu et al., 2020), was fitted where
the network structure of the data was assumed to be known and correctly
specified. The network structure of the data was the same as the one used
to generate the simulate data. The bandwidth d was such that the network
had a density of 5%. The model is, described by Equations 4.25 – 4.27. The
data likelihood is given as,

f(y|β0,γ,A) =
2∏
t=1

(2π)−
200
2 |Σt|−

1
2 exp

{
− 1

2
(yt − β0t1)′Σ−1

t (yt − β0t1)

}
,

(4.28)
where y = (y1,y2)′, β0 = (β01, β02)′, γ = (γ01, γ11, γ21, γ02, γ12, γ22)′, and
Σt = γ0tI200 +γ1tA+γ2tA

2, for t = 1, 2, andA is the same adjacency matrix
used to simulate the data, defined by Equation 4.8, where d = 0.2023.
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Table 4.4: Description of Models 1 – 11, BMA 1, and BMA 2 used to obtain
the 13 sets of predictions of the spatio-temporal data.

Prediction set Method Network structure Network density
1 Model 1 Correctly specified 5%

2 Model 2 Misspecified 1%

3 Model 3 Misspecified 2%

4 Model 4 Misspecified 3%

5 Model 5 Misspecified 4%

6 Model 6 Misspecified 6%

7 Model 7 Misspecified 7%

8 Model 8 Misspecified 8%

9 Model 9 Misspecified 9%

10 Model 10 Misspecified 10%

Prediction set Method Covariance structure
11 Model 11 Exponential

Prediction set Method Averaged over
12 BMA 1 Models 1 – 10
13 BMA 2 Models 2 – 10

Model 2 – 10

Models 2 – 10 were fitted next and are CRN models (Lan et al., 2018; Liu
et al., 2020) where the network structure if the data was assumed to be
unknown. We estimated the network structure using the adjacency matrix
in the same way as Models 2 – 10 for the spatial simulation. The models
are described by Equations 4.25 – 4.27 and the data likelihoods are given
by,

f(y|β0,γ,A) =
2∏
t=1

(2π)−
200
2 |Σt|−

1
2 exp

{
− 1

2
(yt − β0t1)′Σ−1

t (yt − β0t1)

}
,

(4.29)
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where y = (y1,y2)′, β0 = (β01, β02)′, γ = (γ01, γ11, γ21, γ02, γ12, γ22)′, and
Σt = γ0tI200 + γ1tA+ γ2tA

2, for t = 1, 2.

Model 11

Model 11 was also fitted and is a traditional Matèrn covariance model with
smoothness parameter ν = 0.5, assuming temporal independence in the
covariance matrix. The measurement equation for yt under Model 11 is
given by Equation 2.29, where the covariance matrix for each t is described
as Ct = Σt + T, where Σ = σ2

1−ρ2R and T = τ 2I200. Model 11 assumed a
temporally independent covariance function for the spatial process that
depended on pairwise distances between locations. The function is de-
fined by,

Σt = σ2 exp(−D/ψ), (4.30)

where D is the same 200 × 200 matrix of pairwise distances between lo-
cations described in the spatial simulation, and is the same for t = 1 and
t = 2. The parameter σ2 is the spatial process variance and ψ is the spatial
correlation strength parameter that measures the strength of correlation
between two locations. The data likelihood is given by,

f(y|β0, σ
2τ 2, ψ,D) =

2∏
t=1

(2π)−
200
2 |Ct|−

1
2 exp

{
− 1

2
(y−β0t1)′C−1

t (y−β0t1)

}
.

(4.31)

BMA 1 and BMA 2

Like the spatial simulation, BMA 1 and BMA 2 represent the posterior dis-
tributions of predicted values that were calculated using Bayesian model
averaging over Models 1 – 10 and over Models 2 – 10, respectively. For
each set, we used the R package bridgesampling, which calculates the
model evidence for each Model using Equation 4.9. We then compute the
posterior model probabilities for Models 1 – 10 and Models 2 – 10, sepa-
rately, using Equation 4.10. The posterior model probabilities were used
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to calculate the weighted average posterior predictions, given by Equation
4.11.
We used MCMC to fit the models to each repetition of simulated data. For
each model we assigned a vague prior to the intercept β0t, for each t,

β0t ∼ N(0, 1000).

For Models 1 – 10, we chose to assign the uniform priors to γ for the same
reasons outlined in the spatial simulation. We assigned the following uni-
form priors, for each t, to minimise the impact of resulting posterior co-
variance matrices that would not be positive definite:

γ0t ∼ U(0, 5),

γ1t ∼ U(0, 2),

γ2t ∼ U(0, 1).

The posterior distribution for Models 1 – 10 is,

f(β0,γ|y,A) ∝
2∏
t=1

|Σt|−
1
2 exp

{
−1

2
(yt−β0t1)′Σ−1

t (yt−β0t1)

}
exp

{
−1

2

β2
0t

1000

}
,

(4.32)
where Σt = γ0tI200 + γ1tA+ γ2tA

2.
For Model 11, we also assigned vague priors to the covariance parameters,
the same as in the spatial simulation, σ2, τ 2, and ψ,

σ2 ∼ IG(2, 1),

τ 2 ∼ IG(2, 1),

ψ ∼ IG(2, 1).

The posterior distribution for Model 11 is,

f(β0, σ
2, τ 2, ψ|y,D) ∝

2∏
t=1

[
|Ct|−

1
2 exp

{
− 1

2
(yt − β0t1)′C−1

t (yt − β0t1)

}
exp

{
− 1

2

β2
0t

1000

}]
(σ2)−3 exp

(
− 1

σ2

)
(τ 2)−3 exp

(
− 1

τ 2

)
(ψ)−3 exp

(
− 1

ψ

)
,

(4.33)
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where Ct = Σt + T = σ2 exp(−D/ψ) + τ 2I200.

For the spatio-temporal simulation, each model was run for two chains
of 7500 iterations. As with the spatial simulation study, we observed the
chains converging to stationary distributions slowly and so 6750 (90%)
of the iterations were discarded as warm-up. We thinned each chain by
2, to minimize autocorrelation in the posterior samples affording poste-
rior draws of size 750. Trace plots, density curves, and autocorrelation
plots were checked to determine that the posterior samples converged to
stationary distributions. For conciseness, diagnostic plots were given for
Model 1 only, in Figure B.2. In addition, we calculated the potential scale
reduction factor, R̂, for each parameter, given in Table B.2. Furthermore,
the convergence diagnostics were reported for the first repetition of the
simulation only. We noted similar convergence for each repetition. For
each model fitted to each set of data, the diagnostic plots showed suffi-
cient evidence of convergence to stationary distributions, and appropriate
exploration and mixing of the posterior distributions. Furthermore, R̂ was
found to be close to 1 for each parameter, indicating convergence (Brooks
& Gelman, 1998).

Figure 4.5 and Table 4.5 display the posterior median RMSE (Equation
2.44), posterior median MAE (Equation 2.45), and posterior median Moran’s
I (Equation 2.8). In addition, the average estimated error in log scale for
the covariance matrix, (COV, Equation 2.46) is displayed for each model,
averaged over time. When we compared the CRN models, Models 1 –
10, we found that Models 2 – 10 had relatively similar posterior median
RMSE and posterior median MAE. Further, the posterior median RMSE
and MAE were smaller for Models 2 – 10 than for Model 1. We found this
unusual, since Model 1 was the only model that used the correct network
structure to generate the spatio-temporal data. This may be due to random
chance in the simulation procedure.

When we compared the posterior median RMSE and MAE of Models 1 –
10 with that of the traditional Matèrn covariance model (Model 11), we



4.5. SIMULATION 121

●

● ● ● ●

● ●

●

●

●

●

●

●
2

3

4

R
M

S
E

●

●

●
● ●

●
●

●

●

●

●

●

●

1.5

2.0

2.5

3.0

3.5

M
A

E

●

●

●

●

●
●

●

●

●

●

●

●

●

2.5

3.0

3.5

C
O

V

●

●

●

●

●

●
●

●

●

●

●

●

●

0.10

0.14

0.18

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 BMA 1 BMA 2
 

M
or

an
's

 I

●

● ● ● ●

● ●

●

●

●

●

●

●
2

3

4

R
M

S
E

●

●

●
● ●

●
●

●

●

●

●

●

●

1.5

2.0

2.5

3.0

3.5

M
A

E

●

●

●

●

●
●

●

●

●

●

●

●

●

2.5

3.0

3.5

C
O

V

●

●

●

●

●

●
●

●

●

●

●

●

●

0.10

0.14

0.18

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 BMA 1 BMA 2
 

M
or

an
's

 I

Figure 4.5: Medians of the posterior distributions for RMSE, MAE, COV,
and Moran’s I, summarised over the 30 sets of simulated spatio-temporal
data.
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Table 4.5: Medians of the posterior distributions for RMSE, MAE, COV,
and Moran’s I, summarised over the 30 sets of simulated spatio-temporal
data.

Method Predictive accuracy Autocorrelation
for prediction RMSE MAE COV Moran’s I
Model 1 4.022 3.282 2.132 0.189
Model 2 3.718 3.077 3.278 0.083
Model 3 3.752 3.168 3.099 0.117
Model 4 3.759 3.113 2.859 0.133
Model 5 3.774 3.127 2.462 0.153
Model 6 3.948 3.269 2.414 0.181
Model 7 3.950 3.311 2.805 0.184
Model 8 4.129 3.428 3.166 0.188
Model 9 4.348 3.598 3.428 0.196
Model 10 4.531 3.727 3.902 0.210
Model 11 1.905 1.566 2.768 0.072
BMA 1 4.022 3.282 2.573 0.189
BMA 2 3.774 3.127 3.348 0.164

observed some differences. For Models 2 – 10, the posterior median RMSE
and MAE were larger than that of Model 11, suggesting that the CRN
models were less accurate in terms of prediction. When we took the aver-
age posterior predicted values from Models 1 – 10 weighted by each mod-
els posterior model probability (BMA 1), we found the posterior median
RMSE and MAE were much smaller than that from any other model. This
suggests that averaging over a range of CRN models with different esti-
mated network structures provides better predictive accuracy, compared
to the individual CRN models and the Matèrn model. A similar result was
seen when we averaged over Models 2 – 10 (BMA 2).

To assess each model’s ability to account for spatial autocorrelation, we
calculated Moran’s I for each set of posterior residuals, using Equation
2.47. These were plotted in Figure 4.5, averaged over each time point t.
Similar to the result of the spatial simulation study, we found that each
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model was not able to account for spatial autocorrelation within the sim-
ulated data, with the exception of Models 2 – 4 and Model 11. For the
majority of models, the posterior median of Moran’s I was the same or
larger than Moran’s I for the simulated data, which was I = 0.1106 and
I = 0.1085 for t = 1 and t = 2, respectively. Both BMA 1 and BMA 2
produced similar values for median Moran’s I, and indicated that aver-
aging over the models did not help account for more spatial autocorrela-
tion. It was interesting to note that the value of Moran’s I from fitting the
Matèrn model was similar to the CRN models. This might indicate that
the amount of spatial autocorrelation in the simulated data was too small
for the models to account for.

We also measured accuracy of the models using COV. The posterior me-
dian COV is also displayed in Figure 4.5 for each model. Model 1 had,
unsurprisingly, the lowest posterior median COV compared to all other
models and sets of predicted values. We see a similar trend as in the spa-
tial case, that as the estimated network structures moved closer in terms
of network density to the true structure, the smaller the posterior median
COV became. Model 11 had the highest posterior median COV of all
models, highlighting that misspecification of the covariance matrix. BMA
1 and BMA 2 produced median posterior COV values similar to that of
Model 1, and Models 5 – 7, respectively, showing that averaging can im-
prove the accuracy of estimating the covariance matrix.

Moran’s I was calculated for each set of posterior residuals for each model,
and the absolute value for the posterior median Moran’s I was plotted in
Figure 4.5. We found that each model was able to account for some spatial
autocorrelation within the simulated data. For each model, the absolute
values of Moran’s I were much smaller than Moran’s I for the simulated
data, which had values of 0.1106, and 0.1085 for t = 1 and t = 2, respec-
tively. Across Models 1 – 10, we found a generally increasing trend in ab-
solute posterior median Moran’s I with increasing network density. This
suggests that as the estimated network structures connectivity increased,
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the amount of residual spatial autocorrelation increased. A similar trend
was observed for the spatial simulation. This may be a reflection that
these models were not able to capture the spatial autocorrelation because
of model misspecification. Both Models 11 and 12, which were models
averaged over Models 1 – 10 and Models 2 – 10 respectively produced
Moran’s I values that were similar to that of Models 6 – 10. This suggests
that the individual CRN models were capable of accounting for spatial
autocorrelation.

Another measure of accuracy is that given by the average estimated error
(COV) between the model covariance matrix and the true covariance ma-
trix. The posterior median COV is displayed in Figure 4.5 for each model.
Of the six individual CRN models, Models 1 – 10, Model 1 had the lowest
posterior median COV, which suggests that the posterior distribution of
covariance matrices for Model 1 were the closest in Frobenius Norm to the
true covariance matrix. As the network density of the estimated network
structures increased, we observed a decreasing trend in the posterior me-
dian COV for Models 2 – 5, followed by a slight increasing trend for Mod-
els 6 – 10. This suggests that as the network structure approaches the true
structure used to generate the data, the model covariance matrix becomes
closer to the true covariance matrix. When we weighted the posterior dis-
tributions of the covariance matrix from Models 1 – 10, we observed a
relatively low posterior median COV for Model 11 compared to Models 2
– 10. This was expected, since Model 1 contributed almost 40% to Model
11. The posterior median COV for Model 12 was higher than both that of
Model 1 and Model 11, suggesting that the true network structure plays
an important role in the accuracy of the model covariance matrix.
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4.6 Case studies

4.6.1 New Zealand particulate matter

We performed a case study, in which we fitted several CRN models to the
New Zealand particulate matter (PM10) concentration data described in
Section 2.7.1. The aim was to find the best model to predict PM10 concen-
tration across New Zealand, in terms of predictive accuracy RMSE, and
MAE, while also accounting for spatial autocorrelation. Once a suitable
model is chosen, we use it to produce an interpolated predictive map for
particulate matter concentration, using covariate observations where par-
ticulate matter was not observed. Limited covariates were available to es-
timate the models, with only temperature (in °C) and wind speed (in m/s)
considered. Temporal variation was not considered for this case study.

Mean PM10 recorded for the year 2013 were observed at 40 locations across
New Zealand, denoted by y = (y(s1), ..., y(s40))′ (see Figure 2.2). Signifi-
cant spatial autocorrelation was identified across the study region, as evi-
denced by the clusters of monitoring stations in the South Island of New
Zealand that recorded higher concentrations of PM10 than stations in the
North Island. This was confirmed by Moran’s I, which was calculated as
I = 0.3577 with a corresponding p-value for the two-sided test for pres-
ence of spatial autocorrelation of 3.23× 10−8.

We fitted ten CRN models on the PM10 data. Each model was determined
by,

y = Xβ + ε, (4.34)

where X is a 40× 3 design matrix of temperature and wind speed values
observed at each location. The errors are modelled by a Gaussian process
ε ∼ N(0,Σ). Since the network structure of the monitoring stations that
PM10 was observed was unknown, we estimated it using the adjacency
matrix. For each model, we assumed that only connections between loca-
tions of path lengths 1 and 2 contributed to the covariance matrix. That is,
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the covariance matrix was modelled by,

Σ = γ0I40 + γ1A+ γ2A
2, (4.35)

and we estimated the adjacency matrix, A, using Equation 4.8 where the
bandwidth, d, determined each of the ten models. The values of d were
chosen such that each adjacency matrix resulted in a network structure
with density from 1% – 10% using Equation 4.14.
For each model, we computed posterior distributions of predicted values,
ŷ, in order to calculate RMSE, MAE, Moran’s I, and to choose a best model.
We also produced a set of posterior predicted values by Bayesian model
averaging over each of the ten models, using Equations 4.10 and 4.11.
Each Model assumed a data likelihood given by,

f(y|β,γ,A,X) = (2π)−
40
2 |Σ|−

1
2 exp

{
− 1

2
(y−Xβ)′Σ−1(y−Xβ)

}
, (4.36)

where Σ is given by Equation 4.35. We assigned a vague prior to the β
parameters,

β ∼ N(0, 1000I40), (4.37)

and vague uniform priors to γ,

γ0, γ1, γ2 ∼ U(0, 1000). (4.38)

Therefore, the posterior distribution is,

f(β,γ|y,A,X) ∝ |Σ|−
1
2 exp

{
−1

2
(y−Xβ)′Σ−1(y−Xβ)

}
exp

{
−1

2

β′β

1000

}
.

(4.39)
We used MCMC to fit each model. Each model was run for two chains,
each with 150000 iterations. To allow the chains to converge to station-
ary distributions we discarded 135000 iterations as warm-up. We thinned
each chain by 3, to minimize autocorrelation in the posterior samples,
affording posterior draws of size 30000. Trace plots, density plots, and
autocorrelation plots were checked to determine that the posterior draws
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converged to stationary distributions. For conciseness, we present the di-
agnostic plots for Model 1 only, in Figure B.3. In addition to the plots, we
calculated the potential scale reduction factor, R̂, for each parameter, given
in Table B.3. For each model fitted to each set of data, the diagnostic plots
showed sufficient evidence of convergence to stationary distributions, and
appropriate mixing of posterior distributions. Furthermore, R̂ was calcu-
lated to be close to 1 for each parameter indicating convergence (Brooks &
Gelman, 1998).

Figure 4.6 and Table 4.6 display the means of the posterior distributions for
RMSE (Equation 2.44), MAE (Equation 2.45), and Moran’s I (Equation 2.8).
The model with the lowest posterior mean RMSE and MAE was Model 1.
This model was based on a network structure with a relatively low number
of connections between locations. When the number of connections in the
network increased, we observed that the posterior mean RMSE increased
and plateaued, with the exception of Model 9. This suggests that, gener-
ally, as the number of connections between PM10 monitoring stations net-
work increased, the less accurate the models become. This might indicate
that allowing observations separated by large distances to co-vary is inap-
propriate. When we averaged the posterior predicted values for Models 1
– 10, weighted by their posterior model probabilities, we observed mean
RMSE and MAE that were similar to Model 9. This was because the set of
posterior predicted values, BMA 1, were contributed to most by Model 9,
which had a posterior model probability of 0.897 (Table 4.6).

Moran’s I was calculated for each set of posterior residuals for each model,
using Equation 2.47 and the posterior mean Moran’s I was given in Table
4.6 and plotted in Figure 4.6. For each model fitted, we observed Moran’s
I lower than that of the raw data. This suggests that each model, based on
estimating the network structure of the monitoring stations, was able to
account for spatial autocorrelation. Spatial autocorrelation was accounted
for most by Model 1, with Moran’s I calculated as I = 0.108.

We chose Model 1 as the best model, based on posterior mean RMSE,
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Figure 4.6: Means of the posterior distributions for RMSE, MAE, and
Moran’s I from models fitted to the PM10 concentration data.
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Table 4.6: Means of the posterior distributions for RMSE, MAE, and
Moran’s I from models fitted to the PM10 concentration data.

Method Predictive accuracy Autocorrelation Model probability
for prediction RMSE MAE Moran’s I
Model 1 2.745 2.332 0.108 0.000
Model 2 2.862 2.432 0.135 0.000
Model 3 2.866 2.429 0.158 0.000
Model 4 2.822 2.406 0.125 0.000
Model 5 2.951 2.530 0.137 0.007
Model 6 2.882 2.471 0.124 0.004
Model 7 2.832 2.416 0.133 0.061
Model 8 2.861 2.448 0.130 0.031
Model 9 2.738 2.331 0.120 0.897
Model 10 2.809 2.403 0.126 0.000
BMA 1 2.737 2.334 0.116

MAE, and Moran’s I. In order to construct an interpolated surface map
of PM10, we used temperature and wind speed observations from 347 lo-
cations across New Zealand in 2013 to calculate predicted values at new
locations from Model 1. A map of the locations is shown in Figure 5.10.
To compute the predicted values, we estimated the network structure of
the new stations using the adjacency matrix and a bandwidth, d, such that
the resulting network had a density of 1%. The predicted values were ob-
tained through Bayesian kriging, given by Equation 2.43.

Figure 4.7 displays the interolated surface map of PM10 across New Zealand,
using the CRN model with an estimated network structure with network
density of 1%. We observed higher concentrations of PM10 in the northern
part of the country, compared to lower values in the southern part. This
finding does not agree with the observed PM10 concentrations used to fit
the model, and suggests that CRN model may be overfitted. Furthermore,
we doubt the appropriateness of estimating a different network structure
for the new locations.

We now present the results from an application of the spatio-temporal
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Figure 4.7: Interpolated surface plot of PM10 concentration generated
from the posterior predicted values obtained by fitting Model 1 to the tem-
perature and wind speed data.
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CRN model to hoki catch weight data from the sub-Antarctic.

4.6.2 Sub-Antarctic hoki

In addition the New Zealand particulate matter case study, we performed
a case study, in which we fitted several CRN models to the gridded sub-
Antarctic hoki catch weight data described in Section 2.7.2. The aim was to
find the best model to predict hoki catch weight across the sub-Antarctic
region, in terms of predictive accuracy measures, RMSE and MAE, while
also accounting for spatial autocorrelation.
Observed hoki catch weight in kilograms was recorded for 814 trawls
taken throughout the sub-Antarctic region, for the years 2000 – 2008 (see
Figure 1.4). The number of observations within each year changed, and
the locations of the trawls were different each year. However, the CRN
models that we developed in this thesis for point reference spatio-temporal
data can only be applied to data that were observed at the same locations
throughout time. Due to this fact, we gridded the hoki data according to
the procedure detailed in Section 2.7.2, and fit the models to the mean hoki
catch weight within the 38 grids, for years 2000 – 2008.
We fitted ten CRN models to the hoki data. Each model was determined
by,

yt = Xtβ + εt, (4.40)

for t = 1, ..., 9 where Xt is a 38 × 2 design matrix of depth values ob-
served at each grid center. The errors are modelled by a Gaussian process,
εt ∼ N(0,Σt). Since the network structure of the grid centers associated
with observed hoki catch weight was unknown, we estimated it using the
adjacency matrix. For each model, we assumed that only connections be-
tween locations of path lengths 1 and 2 contributed to the covariance ma-
trix. Further, we assumed that the network structure did not change over
time. The covariance matrix was modelled by,

Σt = γ0tI38 + γ1tA+ γ2tA
2, (4.41)
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and we estimated the adjacency matrix, A, using Equation 4.8 where the
bandwidth determined each of the ten models. The values of d were cho-
sen such that the adjacency matrix resulted in a network structure with
densities ranging from 1% to 10%, using Equation 4.14.
We computed the posterior distributions of the parameters using MCMC.
Each model assumed a data likelihood given by,

f(y|β,γ,A,X) =
9∏
t=1

(2π)−
38
2 |Σt|−

1
2 exp

{
− 1

2
(yt −Xtβ)′Σ−1

t (yt −Xtβ)

}
,

(4.42)
where Σt is given by Equation 4.41. We assigned a vague prior to the β
parameters,

β0t, β1t ∼ N(0, 1000I38), (4.43)

and vague uniform priors to γ,

γ0t, γ1t, γ2t ∼ U(0, 1000). (4.44)

Therefore, the posterior distribution is,

f(β,γ|y,A,X) ∝
9∏
t=1

|Σt|−
1
2 exp

{
−1

2
(yt−Xtβ)′Σ−1

t (yt−Xtβ)

}
exp

{
−1

2

β′β

1000

}
.

(4.45)
Each model was run for two chains, each with 75000 iterations. To allow
the chains to converge to stationary distributions, we discarded 67500 iter-
ations as warm-up. We thinned each chain by 2, to minimize autocorrela-
tion in the posterior samples, affording posterior draws of size 7500. Trace
plots, density plots, and autocorrelation plots were checked to determine
that the posterior draws converged to stationary distributions. For con-
ciseness, we present the diagnostic plots for Model 1 only, in Figures B.4
– B.7. In addition to the plots, we calculated the potential scale reduction
factor, R̂, for each parameter, given in Tables B.4 – B.7. For each model
fitted to each set of data, the diagnostic plots showed sufficient evidence
of convergence to stationary distributions, and appropriate mixing of pos-
terior distributions.
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For each model, we computed the posterior distributions of predicted val-
ues, ŷ, using Bayesian kriging (Equation 2.43). For Models 4 and 7, we
were not able to compute the posterior distributions of predicted values,
because the posterior distributions for the γ parameters afforded covari-
ance matrices that were not positive definite. As a result, we excluded
these models from comparison.

We used the predicted values to calculate RMSE, MAE, and Moran’s I. We
also produced a set of posterior predicted values by Bayesian model av-
eraging over each of the eight models with calculated predicted values,
using Equations 4.10 and 4.11. Figure 4.8 and Table 4.7 display the means
of the posterior distributions for RMSE, MAE, and Moran’s I on the resid-
uals, averaged over time. There is a clear trend in the mean RMSE and
MAE with increasing connectivity of the estimated network structure. As
the bandwidth increased to allow more connections in the estimated net-
work structure, the higher the mean RMSE and MAE for each model. This
suggests that allowing observations separated by larger distances to co-
vary does not improve predictive accuracy. Averaging over all models
weighted by posterior model probability, we improve the predictive accu-
racy, seen as a decrease in mean RMSE and MAE.

Model 1 was able to account for the most spatial autocorrelation, reflected
in having mean Moran’s I closest to 0. As connectivity increased, so did
the mean Moran’s I. This suggests that allowing observations separated
by larger distances to co-vary does not necessarily account for spatial au-
tocorrelation. Further, averaging over all models did not improve Moran’s
I on the residuals.

Model 1 appeared to perform the best in terms of predictive accuracy and
accounting for spatial autocorrelation. This suggests that the covariance
matrix was not as important in improving accuracy and accounting for
spatial autocorrelation as the temporally dependent mean function was.
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Figure 4.8: Means of the posterior distributions for RMSE, MAE, and
Moran’s I from models fitted to the hoki catch weight data.
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Table 4.7: Means of the posterior distributions for RMSE, MAE, and
Moran’s I from models fitted to the hoki catch weight data.

Method Predictive accuracy Autocorrelation Model probability
for prediction RMSE MAE Moran’s I
Model 1 2.266 1.843 -0.005 0.001
Model 2 2.345 1.908 0.019 0.000
Model 3 2.432 1.989 0.045 0.285
Model 5 2.530 2.069 0.057 0.000
Model 6 2.605 2.136 0.063 0.000
Model 8 2.841 2.356 0.100 0.000
Model 9 2.947 2.456 0.114 0.714
Model 10 3.003 2.503 0.106 0.000
BMA 1 2.503 2.106 0.096

4.7 Conclusion

Covariance regression network (CRN) models were proposed for spatial
and spatio-temporal point referenced data in this chapter. They were shown
to provide more flexibility in modelling the covariance function of spatial
and spatio-temporal processes. The best results in terms of predictive ac-
curacy measures, RMSE and MAE, were obtained when we performed
Bayesian model averaging over the CRN models that were based on dif-
ferent estimates of the network structure.
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Chapter 5

Geographic random forest for
spatial and spatio-temporal data

The 21st century has seen an increasing interest in the use of computation-
ally intensive and primarily data driven algorithms. These techniques,
known collectively as machine learning, have seen growth in many direc-
tions with wide ranging application in data mining, pattern recognition,
regression, and classification problems (Hengl 2018). Machine learning
has always been concerned with the understanding and uncovering of
complex relationships in data. Not only is there a need to produce accu-
rate predictions, but also the ability to recover knowledge in an intelligible
way.

In the field of spatial and spatio-temporal statistics, spatial prediction is a
key goal. That is, the prediction of the occurrence, value, and/or state of
geographically varying phenomena. As seen in previous chapters of this
thesis, common methods for spatial prediction involve model-based ap-
proaches, such as linear regression, kriging, or a combination of the two.
However, model-based methods make strong assumptions about the data
generation model and sampling method, which may not always be ap-
propriate. Some of the assumptions that are most frequently made are
that: the residuals are normally distributed; the residuals are stationary;

137
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the response variable is linearly related to predictors; and, that the model
is correct. Furthermore, model-based approaches can be computationally
intensive, usually requiring inversion of a covariance matrix. This issue
worsens as the number of locations and time points increases.

Machine learning algorithms (MLAs) are non-parametric. They make no
assumption about an underlying generative model. Further, there is less
focus on inferring data generation processes. Instead, the focus is on de-
veloping a procedure for accurate predictions. MLAs have a benefit over
parametric models in that they are able to handle high dimensional and
highly correlated data (Schratz et al., 2019), as well as make no assump-
tions about sampling (Hengl et al., 2018). However, MLA’s are considered
a “black box” methodology, in that there is reduced interpretability. De-
spite this, there is increasing interest in using MLAs in the field of spatial
and spatio-temporal statistics.

Throughout the machine learning literature, tree-based methods stand as
one of the most effective and useful techniques that can produce both re-
liable and interpretable results, on mostly any kind of data (Loupe, 2014).
The success of tree-based methods is defined by several properties. They
are non-parametric and can model arbitrarily complex relationships be-
tween inputs and outputs, without any a priori assumption; handle het-
erogeneous data (ordered or categorical variables, or a mixture of both);
can intrinsically implement feature selection, making them robust to irrel-
evant or noisy variables to some extent; are robust to outliers or errors in
labels; and, they are easily interpretable.

The most popular tree-based MLA is random forest (RF) proposed by
Breiman (2001). The popularity of RF is reflected by the 55232 citations
of Breiman’s paper as of February 2020. The application of RF to spatial,
and spatio-temporal data is becoming more frequent (Georganos et al.,
2019). However, RF is not a spatial technique, and as a result, does not
explicitly take into account any spatial autocorrelation within the variable
of interest.
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There have been many attempts to incorporate spatial autocorrelation into
MLAs, for the purpose of spatial prediction. In this chapter, we explore a
variety of MLAs and their application to spatial prediction. We review
RF approaches in particular, and see how the traditional RF methodology
has been modified to combat the issue of unaccounted spatial autocorrela-
tion. Section 5.1 provides a literature review that details the successes and
shortcomings of several MLAs applied to spatial data. In Section 5.2 we
take a deeper look at RF and provide examples from the literature of its
application to spatial and spatio-temporal data. In Section 5.3, we intro-
duce the geographic RF methodology proposed by Georganos et al. (2019).
Two subsections are dedicated to the development of a cluster based tech-
nique and to the extension of the geographic RF to spatio-temporal data.
In Section 5.4, we propose a geographic random forest methodology that
uses a neighbourhood structure for each location based on a clustering al-
gorithm. Clustering based on geographic measures such as longitude and
latitude would ensure that observations that may be too far away to have
any influence on the observations near the locations where a local RF is fit
are not selected to form the neighbourhood. In Section 5.5, we propose an
extension of geographic random forest to model spatio-temporal data in
order to allow prediction of a dependent variable that has been observed at
fixed locations at fixed time points. Section 5.6 outlines a simulation study
that compares the geographic RF methodology for different settings. The
methods are applied to two datasets in Section 5.7 and concluding remarks
are made in Section 5.8.

5.1 Literature review

The term data mining is often associated with MLA. Data mining is the
practice of examining large pre-existing databases in order to generate
new information, whereas MLAs are automatic and learn from the data,
in addition to embodying the same principles as data mining. Within the
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data mining field, it has been stressed that the presence of spatial auto-
correlation within data requires an appropriate treatment to deal with its
effects. LeSage & Pace (2001) have shown that the inclusion of spatial au-
tocorrelation of the dependent variable in a data mining application pro-
vided an improvement in fit. A reason for this might be that spatially
autocorrelated data violate common assumptions of model-based meth-
ods, such as independence (Legendre, 1993). Furthermore, it allows us to
capture complex phenomena within data, such as non-stationarity.

Several studies have examined the effect of spatial autocorrelation in a
data mining setting. These studies involved the use of MLAs, and at-
tempted to account for the inherent spatial autocorrelation for a range of
uses, such as spatial clustering, classification, regression, and relational
data mining.

A foundation for incorporating spatial autocorrelation into data mining
methodology was laid by Huang et al. (2004). They proposed and empir-
ically validated a data mining method for predicting the colocation pat-
terns of geographic objects at particular locations. The method was based
on logistic regression and Bayesian classification that explicitly takes spa-
tial dimension into account.

In the realm of spatial clustering and classification, Scrucca et al. (2005)
proposed a clustering procedure for identifying spatial clusters based on
the contiguity structure of objects and their attribute information. This
was implemented using K-means clustering to incorporate spatial struc-
ture through measures of spatial autocorrelation, such as Moran’s I and
Geary’s C.

In predictive data mining, Li & Claramunt (2006) used “Spatial entropy”
to capture autocorrelation in order to adapt classification trees for han-
dling geographical data. Also in predictive data mining, Bel et al. (2009)
modified Breiman’s classification trees to take into account the irregularity
of sampling by weighting the data according to their spatial pattern. This
was carried out by using Voronoi tessellation.
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In the spatio-temporal classification literature, Zhang et al. (2003) used a
spatial autocorrelation-based search tree to solve the problems of correlation-
based similarity range queries that are used to identify pairs of poten-
tially interacting elements from the cross product of two spatial time series
datasets. The algorithm divided a collection of time series into hierarchies
based on spatial autocorrelation to facilitate similarity queries and joins.
Further, Zhang et al. (2003) proposed processing strategies for correlation-
based similarity range queries and similarity joins using the proposed spa-
tial autocorrelation-based search trees.

Stojanova et al. (2011) proposed an MLA that explicitly considered spa-
tial autocorrelation when building the algorithm. The method was based
on predictive clustering trees (PCTs) and was able to combine the possi-
bility of capturing global and local effects at different levels of the tree.
PCTs combine elements from both prediction and clustering. It is a form
of supervised learning, with a predictive algorithm assigned to each clus-
ter. The main assumption made was that if there was high spatial auto-
correlation between observations in the dataset, then not only would the
observations have similar target values but they would also likely be in
the same spatial neighbourhood. PCTs were shown to offer a unique op-
portunity to increase the accuracy of the predictive algorithms without
performing spatial partitioning that could lead to losing generality of the
induced models.

Random forest (RF, Breiman (2001)) is an MLA also based on decision
trees. It has been demonstrated to be a promising technique for spatial
prediction within data mining (Nussbaum et al., 2018; Prasad et al., 2006;
Hengl et al., 2015, 2018). However, the spatial locations of the observa-
tions are ignored by the algorithm and hence, spatial autocorrelation is
not taken into account.

The modelling of covariates and spatial autocorrelation jointly using MLAs
is a relatively sparse area of research (Hengl et al., 2018). Hengl et al. (2015)
compared random forest and linear regression models on soil fertility in
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Africa. A 5-fold cross validation demonstrated that the random forest al-
gorithm consistently outperformed the linear regression algorithm by pro-
ducing more accurate predictions resulting in lower RMSE. However, it
was shown that the RF was sensitive to artifacts in the input data. Further-
more, the algorithms did not account for spatial autocorrelation, leading
to spatially autocorrelated residuals.

Requia et al. (2019) compared three approaches for fitting models to PM2.5
concentrations from Eastern Massachusetts in the United States. The ap-
proaches tried were ordinary krigging, a hybrid methodology (geograph-
ical interpolation and land use regression), and RF. While it was found
that the hybrid method that combined kriging with land use regression
performed better than the ordinary kriging model in terms of capturing
spatial variation (by accounting for spatial autocorrelation), the RF algo-
rithm found a substantial improvement in terms of R2, and RMSE. Requia
et al. (2019) attributed this to the kriging and regression models’ limited
capacity to account for the complex relationship between variables since
independence of observations, the predictor distributions, and collinearity
can significantly impact these methods, while the RF approach finds the
importance of those features trivial. The increase in performance between
the hybrid method and the random forest method is shown as a consid-
erable increase in the explained concentration variance for all PM2.5 com-
ponents.

Prasad et al. (2006) compared four MLAs in the context of tree species dis-
tribution modelling under future climate impacts. They sought to com-
pare RF to regression tree analysis Lewis (2000), bootstrap aggregated
(bagged) trees, and multivariate adaptive regression splines (MARS). In
essence, bagged trees is an ensemble method built up from multiple re-
gression trees, while RF is an adaptation of bagged trees. The MARS
method is different, in that it is not built from regression trees. It was
found that bagged trees and RF had a distinct advantage over MARS and
regression tree analysis in predictive mapping. They were found to be
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more effective than single regression tree outputs, because they produced
more accurate predictions. RF was demonstrated to be superior for this
type of application because it provided a smoother response surface in that
the tree importance values (IVs) graded smoothly from lower to higher
values and there was no jumping of classes. Furthermore, Prasad et al.
(2006) did consider not accounting for spatial autocorrelation.

In Hengl et al. (2018), RF was fit to daily precipitation measurements from
Boulder, Colorado, a spatio-temporal data set. Distance in the time do-
main was represented by cumulative days since 1970 and day of the year,
to capture long term trends and seasonality effects respectively. In addi-
tion to the two time variables included as features in the RF, elevation
maps, and long term precipitation maps, were included as geographic
measures. It was found that the most important variables for predicting
daily precipitation were both time covariates. Hengl et al. (2018) compared
their RF output to that from a traditional geostatistical kriging model, ap-
plied to the same data. Both approaches gave comparable results in terms
of prediction accuracy, however, it was stated that the RF method was able
to reflect more closely influence of relief and impact of individual stations
on predictions, and map prediction errors with higher contrast.

We wish to investigate RF approaches in greater depth. In particular, ap-
proaches that also explicitly account for spatial autocorrelation. Further-
more, we identify a gap in the MLA literature in the form of a lack of
RF methods for spatio-temporal data that account for spatial and tempo-
ral autocorrelation. In the next section, we define the RF algorithm, first
proposed by Breiman (2001). We review the current state of the literature
surrounding RF and pay particular attention to those that attempt to in-
corporate spatial autocorrelation.
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5.2 Random forest

Random forest (RF, Breiman (2001); Prasad et al. (2006); Biau & Scornet
(2016)) is a supervised MLA that is an extension of bootstrap aggregated
(bagged) trees. It was developed in order to improve on the over fitting
that resulted from using a single classification and regression tree (CART)
to make predictions. Given a training data set, a random subset is sampled
with replacement, and is used to construct a decision tree based on a sub-
set of explanatory variables. The remaining portion of training cases are
put through the tree and are classified. Any cases that were misclassified
are then used to grow the tree further, and the process is repeated. Once
all cases are accurately classified, the tree is complete.

Of the training set, approximately one third is kept out of the construction
of the tree, and denoted as the out of bag (OOB) data. At each decision
node within each tree, a random selection of features are selected. This
was shown to improve on the issue of bias (Breiman, 2001). The OOB data
is used to get a classification error rate as trees are added to the forest
and to measure input variable (feature) importance. In the end, a sample
can be classified or predicted using the majority vote (classification) or the
average prediction (regression), respectively, over all trees in the forest,
similar to the bagging concept.

A variety of studies have demonstrated that it is one of the best MLAs
currently available (Cutler et al., 2007; Boulesteix et al., 2012; Fox et al.,
2017). However, RF is considered a non-spatial approach to spatial pre-
diction. The locations that were sampled and the general sampling pat-
tern are ignored during the estimation of the MLA parameters. This can
potentially lead to less than optimal predictions and systematic under- and
over-prediction. These problems are further purported when spatial auto-
correlation within the response variable is high (Hengl et al., 2018).

Hengl et al. (2018) provided a possible solution to the problem of apply-
ing RF to data of a spatial nature. They suggested that the solution lies
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within preparing geographical measures of proximity and connectivity be-
tween observations. A list of these geographical measures were provided
and include: geographical coordinates such as longitude and latitude; Eu-
clidean distance to reference points, such as distance to the center or edge
of the study region; Euclidean distance to sampling locations, such as dis-
tances from observation locations or other distance measures; downslope
distances; resistance distances, such as distances of the cumulative effort
derived using terrain ruggedness and/or natural obstacles. We refer to
the approach of incorporating geographical measures as features in RF as
spatial RF.

Hengl et al. (2018) compared the performance of a “state-of-the-art” geo-
statistical model-based approach to their spatial RF approach, which in-
cluded geographical measures, implemented through the ranger R pack-
age. The comparison was carried out on the Meuse dataset, available
through the sp R package. Particular focus was placed on mapping zinc
(Zn) concentration. An assumption was made that concentration of met-
als in soil (such as Zn) is controlled by river flooding as sediments are
carried upstream. Geographical buffer distance was included as the only
geographical covariate. The overall pattern of the spatial map by model-
based and spatial RF approach were similar. Smoothing was more promi-
nent in the case of the spatial RF approach, and was concluded to be a
result of the averaging of trees in the random forest. The overall corre-
lation between the model-based and spatial RF maps was high (r=0.97).
Cross validation was used to assess model performance and it showed
that the model-based approach was more accurate in terms of R2 than the
spatial RF approach. There was no remaining spatial autocorrelation in
the residuals in both cases, and it was concluded that both methods had
fully accounted for the spatial structure in the data.

When more geographical covariates were included, a reduction in MSE
was observed. In addition, a small difference in spatial patterns were ob-
served between this model and the model with one geographical covari-
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ate. Hengl et al. (2018) concluded that geographic buffer distance was the
covariate most important for mapping Zn concentration.

MLAs such as random forest have been shown to increase the accuracy of
predictions when compared to other MLAs and model-based methods. In
addition, their non-parametric nature means no assumption on the nature
of sampling or the structure of the data need be imposed. The spatial RF
methodology of Hengl et al. (2018) that involved incorporating geographic
measures as features displayed promising results. Predictions from the
spatial RF were accurate predictions and analysis of the residuals showed
that autocorrelation had been taken into account. However, there may
be reservation. Including geographic measures as explanatory variables
in RF algorithm may not necessarily capture complex spatial phenomena
such as non-stationarity. We wish to explore another avenue for account-
ing for spatial autocorrelation when using an RF approach, that is also able
to capture variations in spatial autocorrelation throughout the study area.
Georganos et al. (2019) presented a novel geographical implementation of
RF, so-called geographical random forest (geoRF) for both prediction and
exploration to model population as a function of remote sensing covari-
ates.

5.3 Geographical random forest

Georganos et al. (2019) presented a novel geographical implementation of
RF, so-called geographical random forest (geoRF) for the purposes of both
prediction, and exploration. The objective of their study was to model
population as a function of remote sensing covariates. The methodology
can be described as a disaggregation of RF into geographical space in the
form of local sub models. The motivation behind this was loosely based
on the model-based concept of spatial varying coefficient models, other-
wise known as geographic weighted regression (GWR,Fotheringham et al.
(2003)). In essence, for each location i, a local RF is computed but only in-
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cluding n number of nearby observations. This would lead to the calcula-
tion of an RF for each training data point, each with its own performance,
predictive power, and feature importance (Georganos et al., 2019).

The area that the local sub model operates within is called the neighbour-
hood, or kernel. The maximum distance between a data point and its ker-
nel is called the bandwidth (Brunsdon et al., 1998). Georganos et al. (2019)
considered one of two main types of kernel, ‘adaptive’, and ‘fixed’ (Kalo-
girou, 2016). An adaptive bandwidth defines a kernel by the n nearest
neighbours, while a fixed bandwidth defines a kernel by a circle whose
radius is the bandwidth (Brunsdon et al., 1998; Fotheringham et al., 2003).

Figure 5.1 presents an illustration of the observations that are selected to
be part of the neighbourhood of two locations (the crosses in bold) when a
fixed bandwidth is used, and when an adaptive bandwidth is used. When
an adaptive bandwidth of n = 2 is used, we see that the two nearest ob-
servations to each of the locations in bold are selected to form the neigh-
bourhood of their respective local RF. For each location, three observations
would be used. The neighbourhood of the leftmost location in bold dis-
plays more sparsity than that of the rightmost location in bold. In other-
words, the observations are closer on average in the rightmost location in
bolds neighbourhood than those in the leftmost location in bold. When
the bandwidth is fixed at distance d, we see that observations within the
green circles of radius d around the locations in bold are selected to form
the neighbourhood of their respective local RF. Because the density of loca-
tions changes across the study region (which is likely in reality), there are
different numbers of observations selected to form the neighbourhoods
for each location. In general, the more dense the observations are around
a location, the more observations are selected to form the neighbourhood
and vice versa. Georganos et al. (2019) chose to use the adaptive kernel
because of its apparent advantage when sampling density differs across
space. However, a disadvantage might be that some observations may be
selected to form the neighbourhood when they are too far away to have
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Fixed kernel bandwidth = d
Adaptive kernel bandwidth = 3

Figure 5.1: Illustration showing the neighbourhoods around two locations
using an adaptive bandwidth, and a fixed bandwidth to define the neigh-
bourhood. An adaptive bandwidth selects the nearest n (in this example,
3) observations to each location, shown in yellow circles. A fixed band-
width selects all the observations within a circle (green) of radius d. Each
method results in a different number of observations being selected to
build the local random forests.

any influence on the observations near the location where the RF is built.
We attempt to address this issue later in the next section.

In order to generate predicted values, the predictions from the global for-
est and local forests are combined using a weight parameter, a, according
to,

ŷ = aŷl + (1− a)ŷg (5.1)
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where ŷ is the vector of predicted values, ŷg is the vector of predicted val-
ues from the global forest, and ŷl is the vector of predicted values from the
local forests. Georganos et al. (2019) claim that fusing the predictions al-
lows for an extraction of the locally heterogenous signal from the local sub
model, which contributes low bias, and merges it to that of a global model
that uses more data, and hence contributes a low variance. The weight pa-
rameter, a, is user defined between 0 and 1. A weight parameter of a = 0

corresponds to zero contribution from the local sub models, and only the
global model being used to compute the predictions. This is essentially
no different from fitting an RF to the entire data. A weight parameter of
a = 1 corresponds to only contribution from the local sub models. For
predicting on new spatial locations, the closest available local sub model
was used.

In order to evaluate the algorithm, the root mean squared error (RMSE),
mean absolute error (MAE), and Moran’s I were calculated. The first two
quantities measured the accuracy of prediction of the algorithm compared
to the test data set, while Moran’s I was used to ascertain whether autocor-
relation still exists within the residuals. Georganos et al. (2019) compared
MAE, RMSE and Moran’s I for a variety of geoRFs applied to a popula-
tion census dataset at the neighbourhood scale in Dakar, Senegal using
land cover (LC) classification products to train the models. Here, LC is
the observed physical cover on the Earth’s surface. Four geoRF designs
were constructed. The first included all LC classes and geographical coor-
dinates as explanatory factors and was referred to as LC XY. The second
included all LC classes as explanatory factors, referred to as LC . The third
included three types of built-up LC classes and geographical coordinates
as explanatory factors, 3BU XY. Finally, the fourth included three types of
built-up LC classes as input, 3BU . Each geoRF design was defined by
an adaptive kernel, constructed using different bandwidths ranging from
100 to 1100. Three weight parameters were also chosen to be compared,
a = 0.25, a = 0.5, and, a = 0.75. A traditional RF was also fit for compar-
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ison. A pattern was identified in the distribution of RMSE and MAE as
a function of the bandwidth and weight parameter specified, irrespective
of the geoRF model used. It was found in all four modelling designs that
weighting the local models too heavily (when a = 0.75) was not optimal
in terms of accuracy. In most cases, it was stated that a global RF model
would perform similarly or better. However, when the weighting toward
the local models were decreased (a = 0.5, and a = 0.25), the GRF was found
to produce better predictions for some cases (when the bandwidth ranged
between 100 and 400). The method found to work the best according to
RMSE and MAE was that of 3BUXY geoRF, with weight parameter of 0.25,
and a bandwidth of 400, with its global counterpart underperforming.

We wish to investigate the impact of fixed and adaptive kernels in addi-
tion to bandwidth and local weighting effects on the measures of model
accuracy (RMSE, MAE). Furthermore, we wish to investigate how much
residual spatial autocorrelation is left over after fitting the random forest.

5.4 Cluster approach

The choice of neighbourhood structure (adaptive vs. fixed) and band-
width could be considered arbitrary. To find the optimal bandwidth, we
have seen in Georganos et al. (2019) that multiple geoRFs need to be con-
structed on the data. A neighbourhood structure could potentially be built
more objectively by using a clustering algorithm. Clustering observations
based on location or other spatially correlated covariates could allow for
smaller groups of observations that have similar spatial autocorrelation
structure. We believe that using clusters would be advantageous when
non-stationarity is present within the data. Figure 5.2 gives an illustration
of the neighbourhoods for two locations selected using clustering.

We propose a geographic random forest methodology that uses a neigh-
bourhood structure for each location based on a clustering algorithm. A
training data set is clustered based on geographic measures, such as longi-
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tude and latitude. This would ensure that observations that may be too far
away to have any influence on the observations near the locations where
a local RF is fit are not selected to form the neighbourhood. An RF is
then fit to each location using all the observations belonging to the clus-
ter that the location belongs to. A global RF is constructed as is the case
in Georganos et al. (2019). Identically, to obtain the predicted values of
a response variable for new locations, the covariates are run through the
local RF that correspond to the locations closest to them. The covariates
are also run through the global RF and the final predictions are computed
as a weighted average of the local forests and global forest.
We propose the use of the K-means clustering algorithm Steinhaus (1956);
MacQueen et al. (1967) to cluster the observations based on a geographic
distance measure. The number of clusters was selected, using the “elbow”
method Marutho et al. (2018). Clustering in this way, the neighbourhoods
for each local random forest might include observations from locations
different from those selected using an adaptive or fixed bandwidth. As
such, we believe clustering would provide a more flexible and objective
way of selecting neighbourhoods for the local random forests. Further,
if clustered using an appropriate distance measure, more spatial features
may potentially be incorporated into the local RF at each location. This
would not only account for spatial autocorrelation, but would also take
into account the existence of non-stationarity.

5.5 Geographical random forest for spatio-temporal

data

Geographic random forest has not yet been extended to model spatio-
temporal data. We present this extension to allow prediction and explo-
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Cluster 1
Cluster 2

Figure 5.2: Illustration showing the neighbourhoods around two locations
(crosses in bold) using the cluster method to define the neighbourhood. A
clustering approach selects all observations that have been clustered with
each location (blue and orange).
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ration of a dependent variable that has been observed at fixed locations
at fixed time points, where the locations do not necessarily need to be the
same over time. As with the spatial case introduced by Georganos et al.
(2019), the methodology can be described as a disaggregation of RF into
geographical space and time in the form of local sub models.

The simplest approach for modelling spatio-temporal data using geoRFs
would be to assume time independence. Under the assumption of time
independence, for each time t we compute a local RF for each location i,
including observations that are within the neighbourhood of i. The neigh-
bourhood for each location i at each time t can be defined by fixed or adap-
tive bandwidths, introduced in Section 5.3. In order to generate predicted
values, the predictions from the global forest and local forests are com-
bined in the same way as the spatial case, using Equation 5.1.

However, it is unlikely for spatio-temporal data to be temporally indepen-
dent. Ideally, the geoRF methodology should explicitly take into account
temporal autocorrelation, as it does spatial autocorrelation, in order to im-
prove predictive accuracy. In order to explicitly account for temporal au-
tocorrelation in the geoRF methodology, we propose that the neighbour-
hood for each location i at time t includes observations from previous time
points, according to an autoregressive bandwidth. We define autoregres-
sive fixed bandwidth as follows.

Suppose we have an observation at location i and at time t. A neighbour-
hood for this observation is defined by an autoregressive fixed bandwidth,
where locations are selected to be included in the neighbourhood if they
are within a circle of radius d at time t. In addition, locations from previous
time points are included in the neighbourhood if they are within a circle of
decreasing radius, where the radius shrinks the further back in time it was
observed. In other words, locations are included in the neighbourhood of
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the observation if they are within a circle of radius,

d at time t,

dρ at time t+ 1,

dρ2 at time t+ 2,

...

dρT−1 at time T,

where ρ is a temporal correlation strength parameter. An example of this
neighbourhood for an observation at time t = 1 is illustrated in the left
plot of Figure 5.3.

We also define an autoregressive adaptive bandwidth neighbourhood as
one where observations are selected to be included in the neighbourhood
of an observation, yt(si), observed at location i, and at time t, when they
are the nearest n observations at time t, or the nearest nρ observations
at time t + 1, or the nearest nρ2 observations at time t + 2, and so on,
where ρ is a temporal correlation strength parameter. An example of this
neighbourhood for an observation at time t = 1 is illustrated in the right
plot of Figure 5.3.

Similarly, we define an autoregressive adaptive bandwidth as follows.
Suppose we have an observation at location i and at time t. A neigh-
bourhood for this observation is defined by an autoregressive adaptive
bandwidth, where the nearest n locations are selected to be included in the
neighbourhood at time t. In addition, the nearestm locations at a previous
time point are included in the neighbourhood, where m < n, m decreases
the further back in time it was observed. In other words, locations are
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included in the neighbourhood of the observation if they the nearest,

n at time t,

nρ at time t+ 1,

nρ2 at time t+ 2,

...

nρT−1 at time T,

where ρ is a temporal correlation strength parameter. An example of this
neighbourhood for an observation at time t = 1 is illustrated in the right
plot of Figure 5.3.
We also extend our proposed cluster approach to the spatio-temporal case.
Temporal autocorrelation was difficult to account for when constructing
neighbourhoods using the clustered approach. Therefore, we made the
assumption of time-independence for the clustering case only. An illustra-
tion of the neighbourhood is given in Figure 5.4
We now perform several simulation experiments to evaluate the predictive
accuracy of geoRFs on simulated spatial and spatio-temporal data, using
different neighbourhoods.

5.6 Simulation

In this section, we evaluate the performance of RF and several geoRFs on
simulated data using different kernel structures. The aim of the simula-
tion experiment is to assess the performance of these approaches in their
abilities to accurately predict, and account for autocorrelation, in the val-
ues of a dependent variable at new locations, based on a training dataset.
In particular, we use two measures of accuracy and a measure of resid-
ual spatial autocorrelation over a set of different scenarios. The measures
of accuracy that are to be calculated in each scenario are the root mean
square error (RMSE), and the mean absolute error (MAE). The measure of
residual spatial autocorrelation that is to be calculated in each scenario is
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t = T

t = 3

t = 2

t = 1

Cluster 1
Cluster 2

Figure 5.4: Illustration showing the neighbourhoods around two locations
at time t = 1, using two different methods to define the neighbourhood.
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Moran’s I, calculated from the residuals. Furthermore, we perform the ex-
periments separately for the spatial case, and the spatio-temporal case. For
both cases, the models were determined by varying the neighbourhood
structure (fixed, adaptive, or clustered), the bandwidth, and the weight
parameter. In the spatio-temporal case, a temporal correlation parameter
was also varied. The following sections outline the experimental designs,
as well as the simulation procedure.

5.6.1 Spatial simulation

A simulation experiment was conducted to evaluate the performance of
RF and geoRFs on simulated data with a spatial structure. The data was
generated with motivation from an air pollution context, where a number
of stations that measured the concentration of some pollutant were imag-
ined.
We randomly generated N = 615 longitude (slong) and latitude (slat) values
from a unit square,

slong ∼ U(0, 1),

slat ∼ U(0, 1).

We then simulated five covariates, ensuring that some were spatially cor-
related and some were not. The inclusion of spatially correlated covari-
ates as features in RF was shown to reduce the amount of residual spatial
autocorrelation (Hengl et al., 2018). In the context of the air pollution ex-
ample, we imagined observing the spatially correlated variables, temper-
ature, windspeed, rainfall, and proximity to a pollutant source. We also
imagined observing the spatially uncorrelated variable elevation. The fol-
lowing equations were used to generate these covariates:

elevation : X1 ∼ U(0, 20),

temperature : X2 = 10 + 2slong + 10slat + ε, ε ∼ N(0, 1.5),

windspeed : X3 = 6slong + 2slat + ε, ε ∼ N(0, 1),
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rainfall : X4 = slong + slat + |ε|, ε ∼ N(0, 0.5),

proximity : X5 =
√

(slong − 0.5)2 + (slat − 0.5)2.

A dependent variable, y, was then simulated from the model,

y = Xβ + ζ + ε, (5.2)

whereXβ is the linear combination of an intercept and the five covariates,
ε are the errors for the measurement process, and ζ are the errors for the
spatial process, that introduced spatial autocorrelation to y. Explicitly, the
dependent variable was drawn from,

y ∼ N(Xβ, τ 2I + Σ), (5.3)

where, and Σ was the exponential covariance matrix,

(Σ)ij = σ2 exp

(
−dij
ψ

)
, (5.4)

where dij is the Euclidean distance between location i and j. Here, the
parameters β, τ 2, σ2, ψ, were all chosen to reflect a possible reality. We
set β = (1, 1, 1, 1, 1, 1)′ so that each covariate had an equal effect on the
simulated dependent variable, τ 2 = 0.1 to reduce the influence of the mea-
surement process, σ2 = 1 to enhance the presence of spatial autocorrela-
tion within y, and ψ = 0.1 to induce spatial autocorrelation. We decided
that σ2 > τ 2 so that the variability of the measurement process was less
than that of the spatial process. The data were sampled using Cholesky
factorisation (Algorithm 2, Rue & Held (2005)).
Figure 5.5 displays interpolated surface plots of the five covariates and
y that were produced to show the spatial autocorrelation within each of
the variables. We see that the dependent variable visually exhibits spatial
autocorrelation, with clusters of values that were observed at the upper
right region higher compared to those that were observed at the lower left
region. Moran’s I was calculated to confirm the presence of spatial auto-
correlation in the simulated y values. We calculated I = 0.1303, with a
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Figure 5.5: Interpolated surface plots of the five randomly generated co-
variates, and the simulated dependent variable. For X2 to X5 spatial au-
tocorrelation is exhibited as expected. Spatial autocorrelation is also evi-
denced for y. There is a general upward diagonal trend, with higher values
displayed at the top right, and lower values displayed at the bottom left.

p-value for the two-sided test for presence of spatial autocorrelation less
than 2.2 × 10−16, confirming the presence of significant spatial autocorre-
lation within the dependent variable.

We wish to compare geoRF methods that use a fixed neighbourhood struc-
ture, adaptive neighbourhood structure, and clustered neighbourhood struc-
ture. For each method, the models were determined by varying the band-
width, and the weight parameter. The experimental design for the meth-
ods are given in Table 5.1.

A 10-fold cross validation was performed, where a training set of 500 ob-
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Table 5.1: Experimental design for the spatial simulation study.

Kernel Bandwidth, b Weight parameter, a Total
Adaptive 100, 200, 300, 400 0, 0.25, 0.5, 0.75, 1 4× 5 = 20

Fixed 0.2, 0.35, 0.5, 0.65 0, 0.25, 0.5, 0.75, 1 4× 5 = 20

Cluster 2, 3, 4, 5 0, 0.25, 0.5, 0.75, 1 4× 5 = 20

Total 60 models

servations was randomly sampled from the 615 simulated observations,
without replacement, 10 times. Each time, the remaining 115 observations
were put aside as the test set. We fit the 60 models to each of the training
sets to train the models, and the test sets were used to compute predictions
at new locations and to calculate the RMSE, MAE, and Moran’s I on the
residuals. The mean RMSE, and mean MAE were computed to compare
the performance of each model.

Figure 5.6 displays the mean RMSE, mean MAE, and mean Moran’s I cal-
culated over each test set, for each model. When an adaptive kernel (left
three plots in Figure 5.6) was used to select the observations to be included
in the neighbourhood of each local RF for each location in the training set,
the weight parameter that resulted in the lowest mean RMSE and low-
est mean MAE was a = 0, for all bandwidths tried. A weight parameter
of a = 0 corresponds to the traditional RF approach. As the weight pa-
rameter increased towards 1, the mean RMSE and mean MAE generally
increased. Furthermore, as the bandwidth was increased to include more
observations in each local RF, the mean RMSE and mean MAE increased
less with increasing a. This is because when more observations are in-
cluded in the local RF for each observation, the more accurate the predic-
tions become. There appeared to be little to no change in mean RMSE and
mean MAE as a was increased when the adaptive bandwidth was 300 or
greater. Overall, the traditional RF produced the most accurate predictions
on new data, according to RMSE and MAE for the adaptive kernel.
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Figure 5.6: Mean measures of accuracy and spatial autocorrelation for
each approach. On the left, an adaptive kernel approach was used for the
geoRF, with bandwidths 100, 200, 300, and 400 tried. In the middle, a fixed
kernel approach was used for the geoRF, with bandwidths 0.4, 0.6, 0.8, and
1 tried. On the right, our clustering approach was used for the geoRF, with
2, 3, 4, and 5 clusters tried. The weighting parameter is displayed on the
x-axis.
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Including predictions calculated from local RF on each observation did
not appear to increase the predictive accuracy for new data, irrespective
of bandwidth and weight parameter when an adaptive kernel was used.
However, when the weight parameter increased from a = 0 to a = 1

the mean absolute value of Moran’s I decreased. The weight parameter
that resulted in the lowest mean absolute value for Moran’s I was a = 1

for all bandwidths tried. Furthermore, as the bandwidth was decreased
to include less observations in each local RF, the mean absolute value of
Moran’s I decreased more with increasing a. Including more predictions
from local RF on each observation decreases the amount of residual spatial
autocorrelation. This suggests that the local RF at each location were able
to take into account the spatial autocorrelation within the data.

When a fixed kernel (middle three plots in Figure 5.6) was used to select
the observations to be included to be included in the neighbourhood of
each local RF for each location in the training set, the weight parameter
that resulted in the lowest mean RMSE and mean MAE was a = 0 for
all bandwidths tried, corresponding to the traditional RF approach. This
was the same trend observed in the adaptive kernel case. As the weight
parameter increased towards 1, the mean RMSE and mean MAE increased
for most bandwidths tried. In general, as the fixed bandwidth increased to
cover more locations and include them in the local RF for each observation,
the more accurate the predictions become. There appeared to be little to
no change in mean RMSE as a was increased when the fixed bandwidth
was 065. Further, there appeared to be little to no change in mean MAE as
a increased when the fixed bandwidth was 0.8. Overall, the traditional RF
produced the most accurate predictions on new data, according to RMSE
and MAE for the fixed kernel.

Once again, including predictions calculated from local RF on each obser-
vation did not appear to increase the predictive accuracy for new data,
irrespective of bandwidth and weight parameter when a fixed kernel was
used. However, when the weight parameter increased from a = 0 to a = 1



164 CHAPTER 5. GEOGRAPHIC RANDOM FOREST

the mean absolute value of Moran’s I decreased. The weight parameter
that resulted in the lowest mean absolute value for Moran’s I was a = 1

for all bandwidths tried. Furthermore, as the bandwidth was decreased
to cover less locations and therefore less observations in each local RF, the
mean absolute value of Moran’s I decreased more with increasing a. In-
cluding more predictions from local RF on each observation decreases the
amount of residual spatial autocorrelation. This suggests that the local RF
at each location were able to take into account the spatial autocorrelation
within the data.

When a clustering approach was taken to selecting observations to be in-
cluded in the neighbourhood of each local RF for each cluster in the train-
ing set, the weight parameter that resulted in the lowest mean RMSE and
lowest mean MAE was a = 0 for every scenario with a different number of
clusters tried. Once again, this corresponds to the traditional RF approach,
and was the same trend observed for both the adaptive and fixed kernel
cases. As the weight parameter increased towards 1, the mean RMSE and
mean MAE increased for each scenario with a different number of clus-
ters tried. In general, as the number of clusters increased, the number of
observations within each cluster, and hence, within the neighbourhood of
the local RFs, decreased. This meant that we observed less accurate pre-
dictions as the number of clusters increased. Overall, the traditional RF
produced the most accurate predictions on new data, according to RMSE
and MAE for the fixed kernel.

Once more, including predictions calculated from local RFs on each cluster
did not appear to increase the predictive accuracy for new data, irrespec-
tive of the number of clusters and weight parameter. However, when the
weight parameter increased from a = 0 to a = 1 the mean absolute value
of Moran’s I decreased. The weight parameter that resulted in the lowest
mean absolute value for Moran’s I was a = 1 for all numbers of clusters
tried. Furthermore, as the number of clusters was increased, the mean
absolute value of Moran’s I decreased more with increasing a. Including
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predictions from local RFs from more clusters decreases the amount of
residual spatial autocorrelation. This suggests that the local RF for each
cluster were able to take into account the spatial autocorrelation within
the data.

5.6.2 Spatio-temporal simulation

We generalized the geoRF approach above to the spatio-temporal case. We
assumed that both spatial and temporal autocorrelation existed within a
continuous response variable observed at fixed locations in (2D) space and
time, and that the locations did not change over time. Further, we assumed
that there was no interaction between space and time.
A simulation experiment was conducted to evaluate the performance of
RF and geoRFs on simulated data with a spatio-temporal structure. The
data was generated with motivation from an air pollution context, where
a number of stations that measured the concentration of some pollutant
over time were imagined. Similar to the spatial simulation, we randomly
generated N = 313 longitude (slong) and latitude (slat) values from a unit
square,

slong ∼ U(0, 1),

slat ∼ U(0, 1).

We then simulated five covariates for T = 5 time points, ensuring that
some were spatially correlated and some were not. In the context of the air
pollution example, we imagined observing the spatially correlated vari-
ables, temperature, windspeed, rainfall, proximity to a pollutant source.
We also imagined observing the spatially uncorrelated variable elevation.
The following equations were used to generate these covariates:

elevation : X1t ∼ U(0, 20),

temperature : X2t = 10 + 2slong + 10slat + ε, ε ∼ N(0, 1.5),
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Table 5.2: 10-fold cross validated RMSE, MAE, and MI for the spatial sim-
ulation

Kernel b a RMSE MAE MI
Adaptive 100 0 2.48 1.95 0.036
Adaptive 100 0.25 2.56 2.03 0.019
Adaptive 100 0.5 2.68 2.15 0.006
Adaptive 100 0.75 2.83 2.30 -0.003
Adaptive 100 1 3.00 2.45 -0.008
Adaptive 200 0 2.48 1.95 0.039
Adaptive 200 0.25 2.51 1.98 0.027
Adaptive 200 0.5 2.55 2.02 0.017
Adaptive 200 0.75 2.61 2.08 0.009
Adaptive 200 1 2.68 2.15 0.003
Adaptive 300 0 2.45 1.93 0.040
Adaptive 300 0.25 2.47 1.95 0.031
Adaptive 300 0.5 2.50 1.98 0.024
Adaptive 300 0.75 2.54 2.02 0.017
Adaptive 300 1 2.58 2.06 0.011
Adaptive 400 0 2.48 1.95 0.037
Adaptive 400 0.25 2.48 1.96 0.034
Adaptive 400 0.5 2.50 1.97 0.032
Adaptive 400 0.75 2.51 1.99 0.030
Adaptive 400 1 2.53 2.01 0.028

Cluster 2 0 2.49 1.97 0.039
Cluster 2 0.25 2.52 2.00 0.032
Cluster 2 0.5 2.57 2.04 0.027
Cluster 2 0.75 2.64 2.10 0.022
Cluster 2 1 2.71 2.16 0.018
Cluster 3 0 2.48 1.94 0.035
Cluster 3 0.25 2.53 2.01 0.026
Cluster 3 0.5 2.62 2.10 0.019
Cluster 3 0.75 2.73 2.20 0.014
Cluster 3 1 2.87 2.33 0.011

Kernel b a RMSE MAE MI
Fixed 0.4 0 2.46 1.93 0.038
Fixed 0.4 0.25 2.65 2.10 0.017
Fixed 0.4 0.5 2.90 2.32 0.003
Fixed 0.4 0.75 3.20 2.57 -0.003
Fixed 0.4 1 3.53 2.86 -0.005
Fixed 0.6 0 2.45 1.93 0.040
Fixed 0.6 0.25 2.52 1.99 0.024
Fixed 0.6 0.5 2.61 2.07 0.012
Fixed 0.6 0.75 2.72 2.17 0.003
Fixed 0.6 1 2.87 2.28 -0.002
Fixed 0.8 0 2.46 1.94 0.040
Fixed 0.8 0.25 2.48 1.96 0.029
Fixed 0.8 0.5 2.52 2.00 0.020
Fixed 0.8 0.75 2.57 2.05 0.012
Fixed 0.8 1 2.63 2.10 0.006
Fixed 1 0 2.47 1.94 0.040
Fixed 1 0.25 2.47 1.95 0.032
Fixed 1 0 .5 2.48 1.96 0.025
Fixed 1 0.75 2.50 1.98 0.019
Fixed 1 1 2.53 2. 01 0.014

Cluster 4 0 2.48 1.94 0.37
Cluster 4 0.25 2.60 2.05 0.025
Cluster 4 0.5 2.75 2.18 0.016
Cluster 4 0.75 2.94 2.33 0.010
Cluster 4 1 3.15 2.50 0.007
Cluster 5 0 2.47 1.94 0.039
Cluster 5 0.25 2.60 2.06 0.023
Cluster 5 0.5 2.77 2.22 0.012
Cluster 5 0.75 2.99 2.40 0.005
Cluster 5 1 3.25 2.61 0.002
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Figure 5.7: Interpolated surface plots of the five randomly generated co-
variates for time point t = 1, and the simulated dependent variable. For
X2 to X5 spatial autocorrelation is exhibited as expected. Spatial autocor-
relation is also evidenced for y. There is a general upward diagonal trend,
with higher values displayed at the top right, and lower values displayed
at the bottom left. Similar patterns were observed for t = 2, 3, 4, 5.

windspeed : X3t = 6slong + 2slat + ε, ε ∼ N(0, 1),

rainfall : X4t = slong + slat + |ε|, ε ∼ N(0, 0.5),

proximity : X5t =
√

(slong − 0.5)2 + (slat − 0.5)2.

A dependent variable, yt, was then simulated from the model,

yt = Xtβ + ζt + εt, (5.5)

whereXtβ is the linear combination of an intercept and the five covariates
observed at time t, εt are the errors for the measurement process observed
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at time t, and ζt are the errors for the spatial process observed at time t, that
introduced spatial autocorrelation to yt. Explicitly, the dependent variable
was drawn from,

yt ∼ N(Xtβ, τ
2I + Σ), (5.6)

where, and Σ was the exponential covariance matrix,

(Σ)ij = σ2 exp

(
−dij
ψ

)
, (5.7)

where dij is the Euclidean distance between location i and j. Here, the
parameters β, τ 2, σ2, ψ, were all chosen to reflect a possible reality. We
set β = (1, 1, 1, 1, 1, 1)′, so that each covariate had an equal effect on the
simulated dependent variable, τ 2 = 0.1 to reduce the influence of the mea-
surement process, σ2 = 1 to enhance the presence of spatial autocorrela-
tion within yt, and ψ = 0.1 to induce spatial autocorrelation. We decided
that σ2 > τ 2 so that the variability of the measurement process was less
than that of the spatial process. The data was sampled using Cholesky
factorisation (Algorithm 2, Rue & Held (2005)).
Figure 5.7 displays interpolated surface plots of the five covariates and
the dependent variable for t = 1 that were produced to show the spatial
autocorrelation within each of the variables. We see that the dependent
variable visually exhibits spatial autocorrelation, with clusters of values
that were observed at the upper right region higher compared to those
that were observed at the lower left region. This trend was observed for
the rest of the time points, t = 2, 3, 4, 5. Moran’s I was calculated to confirm
the presence of spatial autocorrelation in the simulated yt values for each
t. We calculated It=1 = 0.1436, It=2 = 0.1462, It=3 = 0.1279, It=4 = 0.1176,

and It=5 = 0.1120, all with corresponding p-values for the two-sided tests
for presence of spatial autocorrelation less than 2.2 × 10−16, confirming
the presence of significant spatial autocorrelation within the dependent
variable.
We wish to compare geoRF methods that use a fixed neighbourhood struc-
ture, adaptive neighbourhood structure, and clustered neighbourhood struc-
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Table 5.3: Experimental design for the spatio-temporal simulation study.

Kernel Bandwidth, Weight Temporal Total
b parameter, a correlation, ρ

Adaptive 30, 60, 90, 120 0, 0.5, 1 0, 0.33, 0.67, 1 4× 3× 4 = 48

Fixed 0.2, 0.35, 0.5, 0.65 0, 0.5, 1 0, 0.33, 0.67, 1 4× 3× 4 = 48

Cluster 2, 3, 4, 5 0, 0.5, 1 NA 4× 3 = 12

Total 108 models

ture. For each method, the models were determined by varying the band-
width, the weight parameter, and the correlation parameter, ρ. The exper-
imental design for the methods are given in Table 5.1.

For each model, all covariates were included and eligible to be selected
as features in the construction of the forests. Furthermore, the variable
“time” (taking values t = 1, ..., 5) was included, because it was found to be
the most important factor for prediction according to the spatio-temporal
RF of Hengl et al. (2018). Furthermore, since time was considered impor-
tant, the number of features to be selected at each split was chosen to be
4, rather than the default, to ensure that time is almost always chosen as a
feature.

A 10-fold cross validation was performed, where a training set of 250 ob-
servations was randomly sampled from the 313 simulated observations,
without replacement, 10 times. Each time, the remaining 63 observations
were put aside as the test set. We fit the 108 models to each of the training
sets to train the models, and the test sets were used to compute predictions
at new locations and to calculate the RMSE, MAE, and Moran’s I on the
residuals. The mean RMSE, and mean MAE were computed to compare
the performance of each model.

Figure 5.8 displays the mean RMSE and mean MAE, and mean Moran’s
I for time t = 1, each calculated over all test sets, for each model. When
an adaptive kernel (left three plots in Figure 5.8) was used to select the
observations to be included in the neighbourhood of each local RF for
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each observation in the training set, the weight parameter that resulted
in the lowest mean RMSE and lowest mean MAE was a = 0, for all band-
widths and temporal correlation parameters tried. A weight parameter of
a = 0 corresponds to the traditional RF approach, that includes all obser-
vations, over all time points. As the weight parameter increased towards
1, the mean RMSE and mean MAE generally increased. Furthermore, as
the bandwidth was increased to include more observations in each local
RF, the mean RMSE and mean MAE increased more slowly with increas-
ing a. This is because when more observations were included in the local
RF for each observation, the more accurate the predictions become. Fur-
thermore, when the temporal correlation parameter was increased from 0
to 1, mean RMSE and mean MAE increased for all bandwidths tried, and
for all weight parameters tried. This was due to the fact that increasing the
temporal correlation parameter again causes more observations to be in-
cluded in the neighbourhood of each observation and therefore each local
RF produces more accurate predictions. Overall, the traditional RF pro-
duced the most accurate predictions on new data, according to RMSE and
MAE for the adaptive kernel.

Including predictions calculated from local RF on each observation did
not appear to increase the predictive accuracy for new data, irrespective
of bandwidth and correlation parameter when an adaptive kernel was
used. However, when the weight parameter increased from a = 0 to
a = 1 the mean absolute value of Moran’s I when t = 1 decreased overall.
The weight parameter that resulted in the lowest mean absolute value for
Moran’s I was a = 1 for all bandwidths and correlation parameters tried.
The weight parameter a = 0.5 displayed similar results. Furthermore, as
the bandwidth was decreased to include less observations in each local
RF, the mean absolute value of Moran’s I decreased. This suggests that the
local RF at each location were able to take into account the spatial autocor-
relation within the data.

When a fixed kernel (middle three plots in Figure 5.8) was used to select
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the observations to be included to be included in the neighbourhood of
each local RF for each observation in the training set, the weight param-
eter that resulted in the lowest mean RMSE and lowest mean MAE was
a = 0 for all bandwidths and temporal correlation parameters tried. This
corresponds to the traditional RF approach, that includes all observations
over all time points. This was the same trend observed in the adaptive ker-
nel case. As the weight parameter increased towards 1, the mean RMSE
and mean MAE generally increased. Furthermore, as the fixed bandwidth
was increased to cover and include more observations in the local RF for
each observation, the more accurate the predictions became. Further still,
when the correlation parameter was increased from 0 to 1, mean RMSE
and mean MAE increased for all bandwidths tried, and for all weight pa-
rameters tried. This was again due to the fact that increasing the tempo-
ral correlation parameter caused more observations to be included in the
neighbourhood of each observation and therefore each local RF produced
more accurate predictions. Overall, the traditional RF produced the most
accurate predictions on new data, according to RMSE and MAE for the
fixed kernel.

Once again, including predictions calculated from local RF on each obser-
vation did not appear to increase the predictive accuracy for new data,
irrespective of bandwidth and correlation parameter when a fixed kernel
was used. However, when the weight parameter increased from a = 0 to
a = 1 the mean absolute value of Moran’s I when t = 1 decreased overall.
The weight parameter that resulted in the lowest mean absolute value for
Moran’s I was a = 1 for all bandwidths and correlation parameters tried.
The weight parameter a = 0.5 displayed similar results. Furthermore, as
the bandwidth was decreased to include less observations in each local RF,
the mean absolute value of Moran’s I decreased. This suggested that the
local RF at each location were able to take into account the spatial autocor-
relation within the data.

When a clustering approach was taken to selecting observations to be in-
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cluded in the neighbourhood of each local RF for each cluster in the train-
ing set, the weight parameter that resulted in the lowest mean RMSE and
lowest mean MAE was a = 0 for every scenario with a different number of
clusters tried. Once again, this corresponds to the traditional RF approach,
and was the same trend observed for both the adaptive and fixed kernel
cases. As the weight parameter increased towards 1, the mean RMSE and
mean MAE increased for each scenario with a different number of clus-
ters tried. In general, as the number of clusters increased, the number of
observations within each cluster, and hence, within the neighbourhood of
the local RFs, decreased. This meant that we observed less accurate pre-
dictions in general as the number of clusters increased. However, when
the number of clusters was small, the mean RMSE and mean MAE did not
increase by very much when the weight parameter was increased. Over-
all, the traditional RF produced the most accurate predictions on new data,
according to RMSE and MAE for the fixed kernel.
Once more, including predictions calculated from local RFs on each cluster
did not appear to increase the predictive accuracy for new data, irrespec-
tive of the number of clusters and weight parameter. However, when the
weight parameter increased from a = 0 to a = 1 the mean absolute value
of Moran’s I decreased. The weight parameter that resulted in the lowest
mean absolute value for Moran’s I was a = 1 for all numbers of clusters
tried. Furthermore, as the number of clusters was increased, the mean
absolute value of Moran’s I decreased more with increasing a. Including
predictions from local RFs from more clusters decreases the amount of
residual spatial autocorrelation. This suggests that the local RF for each
cluster were able to take into account the spatial autocorrelation within
the data.

5.6.3 Summary

The clustering geoRF method did not produce as or more accurate pre-
dictions compared to the traditional RF, in both the spatial and spatio-
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Table 5.4: 10-fold cross validated RMSE, MAE for the spatio-temporal sim-
ulation

Kernel b ρ a RMSE MAE
Adaptive 20 0 0 1.91 1.52
Adaptive 20 0.33 0 1.92 1.53
Adaptive 20 0.67 0 1.92 1.53
Adaptive 20 1 0 1.92 1.53
Adaptive 20 0 0.5 2.32 1.79
Adaptive 20 0.33 0.5 2.24 1.73
Adaptive 20 0.67 0.5 2.14 1.66
Adaptive 20 1 0.5 2.11 1.63
Adaptive 20 0 1 3.15 2.41
Adaptive 20 0.33 1 2.94 2.27
Adaptive 20 0.67 1 2.70 2.06
Adaptive 20 1 1 2.57 1.96
Adaptive 40 0 0 1.92 1.53
Adaptive 40 0.33 0 1.92 1.53
Adaptive 40 0.67 0 1.91 1.52
Adaptive 40 1 0 1.91 1.52
Adaptive 40 0 0.5 2.06 1.63
Adaptive 40 0.33 0.5 2.00 1.58
Adaptive 40 0.67 0.5 1.98 1.57
Adaptive 40 1 0.5 1.98 1.56
Adaptive 40 0 1 2.47 1.92
Adaptive 40 0.33 1 2.27 1.77
Adaptive 40 0.67 1 2.20 1.73
Adaptive 40 1 1 2.17 1.70

Kernel b ρ a RMSE MAE
Adaptive 60 0 0 1.92 1.53
Adaptive 60 0.33 0 1.92 1.53
Adaptive 60 0.67 0 1.91 1.52
Adaptive 60 1 0 1.91 1.52
Adaptive 60 0 0.5 2.03 1.62
Adaptive 60 0.33 0.5 1.99 1.58
Adaptive 60 0.67 0.5 1.98 1.57
Adaptive 60 1 0.5 1.98 1.56
Adaptive 60 0 1 2.38 1.88
Adaptive 60 0.33 1 2.21 1.74
Adaptive 60 0.67 1 2.20 1.73
Adaptive 60 1 1 2.17 1.70
Adaptive 80 0 0 1.92 1.53
Adaptive 80 0.33 0 1.92 1.53
Adaptive 80 0.67 0 1.91 1.52
Adaptive 80 1 0 1.92 1.53
Adaptive 80 0 0.5 2.03 1.62
Adaptive 80 0.33 0.5 1.99 1.58
Adaptive 80 0.67 0.5 1.98 1.57
Adaptive 80 1 0.5 1.98 1.57
Adaptive 80 0 1 2.38 1.88
Adaptive 80 0.33 1 2.21 1.74
Adaptive 80 0.67 1 2.15 1.71
Adaptive 80 1 1 2.14 1.68
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Table 5.5: 10-fold cross validated RMSE, and MAE for the spatio-temporal
simulation

Kernel b ρ a RMSE MAE
Fixed 0.2 0 0 1.91 1.52
Fixed 0.2 0.33 0 1.92 1.53
Fixed 0.2 0.67 0 1.92 1.53
Fixed 0.2 1 0 1.93 1.53
Fixed 0.2 0 0.5 2.74 2.09
Fixed 0.2 0.33 0.5 2.69 2.06
Fixed 0.2 0.67 0.5 2.55 1.96
Fixed 0.2 1 0.5 2.36 1.82
Fixed 0.2 0 1 4.26 3.19
Fixed 0.2 0.33 1 4.15 3.11
Fixed 0.2 0.67 1 3.81 2.85
Fixed 0.2 1 1 3.36 2.51
Fixed 0.35 0 0 1.91 1.52
Fixed 0.35 0.33 0 1.92 1.53
Fixed 0.35 0.67 0 1.92 1.53
Fixed 0.35 1 0 1.91 1.52
Fixed 0.35 0 0.5 2.22 1.73
Fixed 0.35 0.33 0.5 2.18 1.70
Fixed 0.35 0.67 0.5 2.12 1.65
Fixed 0.35 1 0.5 2.04 1.59
Fixed 0.35 0 1 2.91 2.21
Fixed 0.35 0.33 1 2.81 2.13
Fixed 0.35 0.67 1 2.61 1.98
Fixed 0.35 1 1 2.39 1.81

Kernel b ρ a RMSE MAE
Fixed 0.5 0 0 1.92 1.53
Fixed 0.5 0.33 0 1.92 1.53
Fixed 0.5 0.67 0 1.91 1.53
Fixed 0.5 1 0 1.92 1.53
Fixed 0.5 0 0.5 2.07 1.63
Fixed 0.5 0.33 0.5 2.03 1.59
Fixed 0.5 0.67 0.5 1.98 1.57
Fixed 0.5 1 0.5 1.98 1.56
Fixed 0.5 0 1 2.50 1.97
Fixed 0.5 0.33 1 2.39 1.85
Fixed 0.5 0.67 1 2.24 1.75
Fixed 0.5 1 1 2.17 1.69
Fixed 0.65 0 0 1.92 1.53
Fixed 0.65 0.33 0 1.92 1.53
Fixed 0.65 0.67 0 1.92 1.53
Fixed 0.65 1 0 1.92 1.53
Fixed 0.65 0 0.5 2.06 1.63
Fixed 0.65 0.33 0.5 2.03 1.60
Fixed 0.65 0.67 0.5 1.97 1.56
Fixed 0.65 1 0.5 1.98 1.57
Fixed 0.65 0 1 2.45 1.91
Fixed 0.65 0.33 1 2.34 1.83
Fixed 0.65 0.67 1 2.17 1.71
Fixed 0.65 1 1 2.15 1.69

Table 5.6: 10-fold cross validated RMSE, MAE for the spatio-temporal sim-
ulation

Kernel k a RMSE MAE
Cluster 2 0 1.91 1.52
Cluster 2 0.5 2.03 1.60
Cluster 2 1 2.30 1.79
Cluster 3 0 1.92 1.53
Cluster 3 0.5 2.03 1.59
Cluster 3 1 2.43 1.90

Kernel k a RMSE MAE
Cluster 4 0 1.92 1.53
Cluster 4 0.5 2.18 1.71
Cluster 4 1 2.73 2.10
Cluster 5 0 1.92 1.52
Cluster 5 0.5 2.17 1.70
Cluster 5 1 2.77 2.14
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temporal simulation studies, with any weight parameter greater than 0,
and for any number of clusters. This was thought to be because the clus-
ter approach selected similar, if not the same, locations to be include in
the neighbourhoods for each observation as the adaptive bandwidth ap-
proach. Essentially, the cluster approach meant that locations were in-
cluded in the neighbourhood of an observation if they were close to the
cluster center for the cluster that the observation belonged to. As the num-
ber of clusters increased, fewer locations were included in the neighbour-
hoods for each observation, and the observations were closer to their clus-
ter centers. Therefore, selecting locations based on clusters essentially be-
came selecting the nearest n observations. The cluster method did account
for more spatial autocorrelation than the traditional RF, as evidenced by a
decrease in Moran’s I on the residuals.

From the spatial simulation study, we have observed a trade off between
accuracy and accounting for spatial autocorrelation. It was shown in Fig-
ure 5.6 that increasing the bandwidth in the adaptive and fixed models
increased the accuracy more as the weight parameter increased. How-
ever, this in-turn increased the amount of residual spatial autocorrelation.
A “best model” would be one that is as accurate as possible at making
predictions on new data while still accounting for spatial autocorrelation.
In the spatial simulation, when an adaptive bandwidth of 300, or a fixed
bandwidth of 0.65 was used, we saw very little increase in mean RMSE
and mean MAE when the weight parameter was increased from 0 to 1,
compared to other models of smaller bandwidths. However, we saw a
striking decrease in the amount of residual spatial autocorrelation when
the same bandwidths were used. A similar trend was also observed for
the cluster models. When the number of clusters used was 2, there was
little increase in mean RMSE and mean MAE compared to models that
used a larger number of clusters to form the neighbourhoods when the
weight parameter was increased from 0 to 1. Again, we observed a corre-
sponding decrease in the amount of residual spatial autocorrelation. We
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therefore concluded that the best models were the ones with an adaptive
bandwidth of 300, a fixed bandwidth of 0.65, and two clusters, when the
weight parameter was set to 1. Their accuracy were on par with the tradi-
tional RFs but accounted for more spatial autocorrelation.

From the spatio-temporal simulation study, we also observed a trade off
between accuracy and accounting for spatial autocorrelation. It was shown
in Figure 5.8 that increasing the bandwidth in the adaptive and fixed mod-
els increased the accuracy more as the weight parameter increased. Fur-
ther, increasing the temporal correlation parameter also increased the ac-
curacy more as the weight parameter increased. However, this in-turn
increased the amount of residual spatial autocorrelation. Like the spatial
case, a “best model” would be one that is as accurate as possible at making
predictions on new data while still accounting for spatial autocorrelation.
In the spatio-temporal simulation, when an adaptive bandwidth of 120, or
a fixed bandwidth of 0.65 was used, we saw very little increase in mean
RMSE and mean MAE when the weight parameter was increased from 0
to 1, compared to other models of smaller bandwidths. However, we saw
a striking decrease in the amount of residual spatial autocorrelation when
the same bandwidths were used. A similar trend was also observed for
the cluster models. When the number of clusters used was 2, there was
little increase in mean RMSE and mean MAE compared to models that
used a larger number of clusters to form the neighbourhoods when the
weight parameter was increased from 0 to 1. Again, we observed a corre-
sponding decrease in the amount of residual spatial autocorrelation. We
therefore concluded that the best models were the ones with an adaptive
bandwidth of 120, a fixed bandwidth of 0.65, and two clusters, when the
weight parameter was set to 1, and when the correlation parameter was set
to 1. Their accuracy were on par with the traditional RFs but accounted
for more spatial autocorrelation.

In these simulation experiments, we compared geoRFs using two sets of
simulated data, one for the spatial case, and one for the spatio-temporal
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case. In each setting, the data were sampled using Gaussian processes
with exponential covariance functions to induce spatial variation. Further
research is required in order to study the application of geoRF methods
using simulated data generated from different covariance functions. We
hypothesize that geoRF would be able to account for spatial autocorrela-
tion, regardless of the spatial structure of the data.

Due to computational limitations and time restraints, the spatial simula-
tion study was performed using a training data set withN = 500 locations,
and the spatio-temporal simulation study was performed using a training
data set with N = 250 locations and T = 5 time points. Ideally, more loca-
tions and time points would have been better. However, the spatial sim-
ulation was performed using less locations, and provided a similar trend
compared to the N = 500 case (albeit the predictions were less accurate).
We conclude that, although it would have been better to perform simu-
lations with N = 10, 000 locations and T = 100 time points, the studies
performed are adequate in comparing the geoRF methodologies for this
thesis.

We now present the application of the geoRF methodology to two real
data sets. We first present the results from computing spatial geoRFs on
New Zealand particulate matter data for the year 2013, in order to predict
particulate matter concentration at unobserved locations. We then present
the results from computing spatio-temporal geoRFs on sub-Antarctic hoki
catch weight data for the years 2000 – 2008, in order to produce a predic-
tion map for each year.
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5.7 Case studies

5.7.1 New Zealand particulate matter

We performed a case study, in which we computed RF and geoRF on the
New Zealand particulate matter (PM10) concentration data described in
Section 2.7.1. The aim was to find the best forest to predict PM10 con-
centration across New Zealand, in terms of predictive accuracy RMSE,
and MAE, while also accounting for spatial autocorrelation. Once a suit-
able forest is chosen, we use it to produce an interpolated predictive map
for particulate matter concentration, using covariate observations where
particulate matter was not observed. Limited covariates were available
to compute the RF and geoRFs, with only temperature (in °C) and wind
speed (in m/s) considered. Temporal variation was not considered for this
case study.

Mean PM10 recorded for the year 2013 were observed at 40 locations across
New Zealand (see Figure 2.2). Significant spatial autocorrelation was iden-
tified across the study region. This was confirmed by Moran’s I, which was
calculated as I = 0.3577 with a corresponding p-vale for the two-sided test
for presence of spatial autocorrelation of 3.23× 10−8.

We computed 45 geoRFs on the PM10 data. The models were determined
by varying the neighbourhood structure (fixed, adaptive, or clustered),
the bandwidth, and the weight parameter. For the geoRFs that used an
adaptive bandwidth to define the neighbourhood, bandwidths of 2, 5, and
8 were tried. The bandwidths used here were relatively small compared
to those tried in the simulation study. This reflects that the number of
observations in the PM10 data is much smaller. For the geoRFs that used a
fixed bandwidth to define the neighbourhood, bandwidths of 15, 60, and
150 km were tried. These bandwidths correspond to the 5th-, 10th-, and
20th-percentiles of all pairwise distances between locations in the PM10
data. Finally, for the geoRFs that used K-means clustering to define the
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Table 5.7: Experimental design for fitting geoRF to the New Zealand par-
ticulate matter case study.

Kernel Bandwidth, b Weight parameter, a Total
Adaptive 2, 5, 8 0, 0.25, 0.5, 0.75, 1 3× 5 = 15

Fixed 15, 60, 150 0, 0.25, 0.5, 0.75, 1 3× 5 = 15

Cluster 2, 3, 4 0, 0.25, 0.5, 0.75, 1 3× 5 = 15

Total 45 models

neighbourhood, we tried 2, 3, and 4 clusters. The experimental design for
the methods are given in Table 5.7.

A 10-fold cross validation was performed. Ten training sets of 32 data
observations were randomly sampled from the 40 total, without replace-
ment. For each iteration, the remaining 8 data observations were put aside
at the test set. We fitted the 45 models to each of the training sets to train
the models, and the test sets were used to compute predictions at differ-
ent locations and to calculate RMSE, MAE, and Moran’s I on the residuals.
The mean RMSE, and mean MAE were computed and compared to assess
the performance of each model.

Figure 5.9 shows the mean RMSE, mean MAE, and mean Moran’s I cal-
culated over each test set for each model. We observed a different trend
to what was evidenced in the spatial simulation study. When an adaptive
kernel (left three plots in Figure 5.9) was used to select the observations to
be included in the neighbourhood of each local RF for each location in the
training set, we observed a generally decreasing trend in mean RMSE and
mean MAE, as the weight parameter increased from a = 0 to a = 1. This
trend was observed for each bandwidth tried. This suggests that when
more observations were included in the local RF for each observation, the
more accurate the predictions become. Further, the geoRF produced more
accurate predictions on new data than the traditional RF (when a = 0),
which opposes what we concluded in the simulation study. This may be
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due to that fact that when distance between pairs of observations increases
in the PM10 data, the less appropriate it is to include them in the predic-
tion process.

In addition to increasing the predictive accuracy for new data, they also
accounted for spatial autocorrelation better as the weight parameter in-
creased. A mean Moran’s I that is negative and/or far from zero suggests
that the model does not properly accounting for spatial autocorrelation.
We observed negative mean Moran’s I for each model where an adaptive
bandwidth was used, for each bandwidth and for each weighting param-
eter tried. This suggests that spatial autocorrelation may not have been
properly accounted for. However, as the weighting parameter increased,
we observed a generally increasing trend in mean Moran’s I, with the
largest observed for the model with a bandwidth of 5 and weight parame-
ter of 1. It appears that when we included more predictions from the local
RF on each observation, more spatial autocorrelation was accounted for.
We concluded the same trend in the simulation study.

When a fixed kernel was used to select the observations to be included in
the neighbourhood of each local RF for each location in the training set,
we observed relatively no trend in mean RMSE and mean MAE when the
weight parameter was increased, for all bandwidths tried. Once again, this
trend was different to what was evidenced in the spatial simulation study.
Furthermore, mean RMSE and mean MAE were higher than geoRFs that
were computed using adaptive or clustered approaches. This suggests
that using a fixed bandwidth in this setting did not increase the predictive
accuracy. In addition, mean Moran’s I was negative for all fixed band-
widths tried, and did not increase much when the weight parameter in-
creased, suggesting spatial autocorrelation was accounted for poorly.

When a clustering approach was taken to selecting observations to be in-
cluded in the neighbourhood of each local RF for each cluster in the train-
ing set, we observed a similar trend in mean RMSE and mean MAE as
the weight parameter increased to that of the adaptive case. We observed



182 CHAPTER 5. GEOGRAPHIC RANDOM FOREST

a generally decreasing trend in mean RMSE and mean MAE, when the
weight parameter increased. Further, we observed that when the number
of clusters was 2, the mean RMSE and mean MAE decreased more so as
the weight parameter increased. This suggests that when more observa-
tions were included in the local RF for each observation, the more accurate
the predictions become.

In addition to increasing the predictive accuracy for new data, the geoRFs
using a clustered approach also accounted for spatial autocorrelation bet-
ter as the weight parameter increased. We observed negative mean Moran’s
I for each model where clustering was used. This again suggests that spa-
tial autocorrelation may not have been properly accounted for. However,
as the weighting parameter increased, we observed a generally increasing
trend in mean Moran’s I. It appears that when we included more predic-
tions from the local RF on each observation, more spatial autocorrelation
was accounted for. We concluded the same trend in the simulation study.

The forest that gave the lowest mean RMSE and mean MAE was the one
that used a clustered neighbourhood structure, with K = 2, and had a
weight parameter of a = 1. Mean RMSE and MAE were calculated to
be 2.60 and 2.05, respectively, and mean Moran’s I was calculated to be
I = −0.0863. Moran’s I calculated on the residuals indicated that this
model accounted for spatial autocorrelation reasonably well. We choose
this model as the best to compute predictions for new data.

In order to construct an interpolated surface map of PM10, we will use
temperature and wind speed observations from 347 locations across New
Zealand in 2013 to calculate predicted values from a geoRF. A map of the
locations is shown in Figure 5.10. To compute the predicted values, we
refit the geoRF using all 40 data observations, with a clustered neighbour-
hood where K = 2. We used a weighting parameter of a = 1, which
meant predictions were calculated using only the local sub models of ob-
servations within their corresponding cluster. Figure 5.11 displays the in-
terolated surface map of PM10 across New Zealand, using the geoRF with
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Figure 5.9: Mean measures of accuracy and spatial autocorrelation for
each approach. On the left, an adaptive kernel approach was used for
the geoRF, with bandwidths 3, 5, and 8 tried. In the middle, a fixed kernel
approach was used for the geoRF, with bandwidths 15, 60, and 150 km
tried. On the right, our clustering approach was used for the geoRF, with
2, 3, and 4 clusters tried. The weighting parameter is displayed on the
x-axis.
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Figure 5.10: Locations of the stations that recorded temperature and wind
speed across New Zealand.
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Figure 5.11: Surface plot for the predicted annual PM10 concentration in
New Zealand for 2013.

a K = 2 clustered neighbourhood and weight parameter of a = 1. We ob-
serve higher concentrations of PM10 in the southern part of the country,
compared to lower values in the northern part. The case study validates
the usefulness of the clustered geoRF technique for spatial data.
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Table 5.8: Number of observations, nt of hoki catch weight and the training
(ut) and test (vt) set sizes, for each year. The ratio of training data to test
data was approximately 4:1.

Year nt ut vt

2000 100 80 20
2001 100 80 20
2002 98 78 20
2003 77 61 16
2004 85 57 17
2005 88 70 18
2006 88 70 18
2007 88 70 18
2008 90 72 18

5.7.2 Sub-Antarctic hoki

We performed a case study, in which we computed RF and geoRF on the
sub-Antarctic hoki catch weight data described in Section 2.7.2. The aim
was to find the best forest to predict hoki catch weight across the sub-
Antarctic region, in terms of predictive accuracy RMSE, and MAE, while
also accounting for temporal and spatial autocorrelation. Limited covari-
ates were available to compute the RF and geoRFs, with only depth (in m),
stratum, and year considered.

Observed hoki catch weight in kilograms was recorded for 814 trawls
taken throughout the sub-Antarctic region, for the years 2000 – 2008 (see
Figure 1.4). The number of observations within each year changed, and
the locations of the trawls were different each year. Table 5.8 gives the
number of observations within each year of the hoki data.

Significant spatial autocorrelation was identified across the study region
for most years, as evidenced by the interpolated surface plots in Figure
2.2. This was confirmed by Moran’s I, which was calculated for each year.
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Table 5.9: Moran’s I and p-values for the two-sided test for presence of spa-
tial autocorrelation for hoki catch weight observed over the sub-Antarctic
region for the years 2000 – 2008.

Year I P-value
2000 0.0727 1.55× 10−6

2001 0.1866 0.143

2002 −6.078× 10−4 0.615

2003 0.1932 < 2.2× 10−16

2004 0.0681 5.19× 10−9

2005 0.0946 3.59× 10−5

2006 0.1132 6.85× 10−8

2007 −4.561× 10−3 0.537

2008 5.790× 10−3 0.442

Table 5.9 gives the Moran’s I and corresponding p-values for the two-sided
test for presence of spatial autocorrelation.

We computed geoRFs on the hoki data as a proof of concept for the geoRF
methodology applied to spatio-temporal data. Unlike the PM10 case study
or the simulation studies, models were determined by varying the neigh-
bourhood structure (fixed, adaptive, or clustered), and the weight param-
eter only. The bandwidth and temporal correlation parameters were speci-
fied a priori to focus on effect that changing the neighbourhood and weight
parameter has on predictive accuracy, only. For the geoRFs that used an
adaptive bandwidth to define the neighbourhood, a bandwidths of 50 was
used. This was thought to ensure that a reasonable number of observa-
tions be included in the local sub models. For the geoRFs that used a fixed
bandwidth to define the neighbourhood, a bandwidths of 200 km was
used. This corresponded to the 25th-percentile of all pairwise distances
between locations in the hoki data. Finally, for the geoRFs that used K-
means clustering to define the neighbourhood, we used 10 clusters. The
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Table 5.10: Experimental design for fitting geoRF to the sub-Antarctic hoki
case study.

Kernel Bandwidth, Weight Temporal Total
b parameter, a correlation, ρ

Adaptive 50 0, 0.5, 1 0.7 1× 3× 1 = 3

Fixed 200 0, 0.5, 1 0.7 1× 3× 1 = 3

Cluster 10 0, 0.5, 1 NA 1× 3 = 3

Total 9 models

experimental design for the methods are given in Table 5.10.

A 10-fold cross validation was performed. Training sets were randomly
sampled from within the set of hoki data for each year, without replace-
ment. For each year, the remaining data observations were put aside at
the test set. This was repeated ten times. We fitted the 9 models to each
of the training sets to train the models, and the test sets were used to com-
pute predictions at different locations and to calculate RMSE, MAE, and
Moran’s I on the residuals. The mean RMSE, and mean MAE were com-
puted and compared to assess the performance of each model.

Figure 5.12 displays the mean RMSE and mean MAE calculated over each
test set, for each model. When an adaptive kernel was used to select the
observations to be included in the neighbourhood of each local RF for each
observation in the training set, we observed that the geoRF resulting in the
lowest mean RMSE and mean MAE was that when a weighting parameter
of a = 0.5 was used. This suggests that when we compute the predictions
weighting the global and local random forests equally, we improve the
predictive accuracy on new data. The same trend was observed for the
fixed kernel approach. When a clustered approach was taken, the tradi-
tional RF methodology (when a = 0 resulted in the lowest mean RMSE
and mean MAE.

Figure 5.13 displays the mean Moran’s I calculated from the residuals over
each test set, for each model, and for each year. We observe erratic trends
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Figure 5.12: Mean measures of accuracy for each approach. The weighting
parameter is displayed on the x-axis.

in the mean Moran’s I across both kernels, and weighting parameters. We
conclude that spatial autocorrelation was accounted for in some years, and
in others, was not accounted for properly. We hypothesize that this is due
to the misspecification of temporal autocorrelation in the geoRF, and might
be solved by exploring different correlation parameters.
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Figure 5.13: Mean measures of spatial autocorrelation for each approach,
for each year. The weighting parameter is displayed on the x-axis.
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5.8 Conclusion

In this chapter, we proposed an extension of the geographic random for-
est methodology to incorporate neighbourhood structures that were con-
structed via K-means clustering. Further, we extended the methodology
to spatio-temporal point referenced data. The geographic random forest
method has the benefit over parametric modelling approaches because of
the lack of needing to provide a covariance structure. However, we did
not find improvements in predictive accuracy when K-means clustering
was used to define the neighbourhood structure.
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Chapter 6

Pivotal discrepancy measures for
Bayesian modelling of
spatio-temporal data

As we have seen throughout this thesis, the literature that surrounds the
subject of spatial and spatio-temporal statistics is predominantly concerned
with parametric inference for the covariance structure. Within geostatis-
tics (where data are observed at specific locations in time), a great deal
of attention has been paid to proposing and describing new spatial and
spatio-temporal models, studying their characteristics, and developing es-
timation methods from within both frequentist and Bayesian frameworks.

Markedly less attention has been paid to developing goodness-of-fit tests
that identify model misspecification or allow for selection of a “best” model.
Model misspecification in the context of parametric covariance models
for spatio-temporal processes means models that have an incorrect mean
function or covariance structure. At present, there is no generalized formal
theory for assessing goodness-of-fit for spatio-temporal models that are
defined using parametric covariance functions. Instead, there is a range
of criteria and tests that have been used when fitting a spatio-temporal
covariance model to data.

193
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Literature has seen the use of Akaike information criterion, AIC (Akaike
(1973)), and Bayesian information criterion, BIC (Schwarz et al. (1978)),
which are popular model selection tools for a wide range of frequentist
and Bayesian statistical applications and models. Huang et al. (2007) pro-
posed model comparison for space-time models using these criteria, and
investigated their usefulness through simulation and an application to
surface shortwave radiation budget analysis. Another criterion, deviance
information criterion, DIC (Spiegelhalter et al. (2002)), is used by Pollice
(2011) to compare multivariate receptor models for identifying the spatial
locations of major PM10 pollution sources. To compare predictive capa-
bilities, mean squared and root mean squared prediction errors at fixed
times can be calculated and this is illustrated in Huang et al. (2007). Fur-
ther, Sahu & Bakar (2012) applied the predictive model choice criterion
(PMCC), which included a term for model complexity. In more recent
times, we have seen the proposal and use of widely applicable information
criterion, WAIC, Watanabe (2010), an information criterion constructed in
the same vain as DIC, but fully Bayesian. Vehtari & Gelman (2014) and
Vehtari et al. (2017) adopted WAIC as a method for approximating leave-
one-out cross validation for model goodness-of-fit.

These model selection/goodness-of-fit criterion are inappropriate for some
spatio-temporal models. AIC, BIC, DIC, and WAIC all require that the
joint data likelihood be calculated as the product of the marginal data
likelihoods. However, this assumption breaks the spatial and temporal
dependence structure at the lower levels of the hierarchical model.

A promising methodology for assessing goodness-of-fit for Gaussian ran-
dom fields (GRFs) in the Bayesian framework is that of pivotal discrep-
ancy measures, introduced in Johnson (2007) and further investigated in
Jun et al. (2014). The approach can be used for GRFs with stationary and
nonstationary covariances and to data observed at regular or irregularly
spaced locations. In this paper, we extend the approach described in Jun
et al. (2014) for assessing goodness-of-fit of Bayesian spatio-temporal mod-
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els using pivotal discrepancy measures. Jun et al. (2014) proposed the
method of partitioning the data to increase the power to detect model mis-
specification, assuming equal partition sizes. In this chapter we make a
contribution and extend the Jun et al. (2014) approach to partitions of un-
equal sizes and the use of K-means partitioning as a method for inducing
homogeneity within partitions, when there are no preset spatial bound-
aries.
Chapter 6 is divided in to the following sections. We first present the piv-
otal discrepancy measure for a spatio-temporal model evaluated at a sam-
ple from the posterior parameter distribution. Further, we present the piv-
otal discrepancy measure for subset data of unequal size. This is followed
by a section that is dedicated to investigation of the usefulness of the test
using a simulation study. Following, is an application and evaluation of
spatio-temporal models to hoki catch weight data.

6.1 Pivotal discrepancy measure

Assume that a spatio-temporal geostatistical model (Equation 2.24) is fit-
ted to y = {y1, ...,yT}. Then, let θ̃(l) represent the lth draw of the param-
eter vector θ from the posterior distribution π(θ|y). We can construct a
pivotal quantity,

S(yt, θ̃
(l)) = (yt − µ(l)

t )′
( σ2(l)

1− ρ(l)2
R(l) + τ 2(l)In

)−1

(yt − µ(l)
t ) ∼ χ2

n, (6.1)

for t = 1, ..., T , l = 1, ..., L, and L is the total number of posterior draws.
Then S(yt, θ̃

(l)) is χ2-distributed on n degrees of freedom Johnson (2007).
Jun et al. (2014) highlighted two complications that arise when the spa-
tial equivalent of Equation 6.1 is used in a Bayesian goodness-of-fit test
for spatial models, which also arise for the spatio-temporal case. The first
complication is that a test based on the test statistic in Equation 6.1 typi-
cally provides little power to detect model misspecification when it is ap-
plied globally to the entire data vector. Jun et al. (2014) illustrated this
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through an example where a simple Bayesian linear regression is fitted to
a fictional dataset that exhibited larger variability at the extreme values
of a covariate, and smaller variability around the mean of the covariate.
Their test based on the spatial equivalent of the test statistic in Equation
6.1 was unable to detect departure of the model from the data. This was
due to the cancellation of the large and small contributions from the resid-
uals when the statistic S(yt, θ̃

(l)) was applied to the entire data set. Jun
et al. (2014) proposed a partitioning strategy, where the chi-squared diag-
nostic was constructed using residuals from distinct regions of the spa-
tial domain. Use of the partitioning strategy allowed the lack of fit of the
model to the data in each partition to be correctly detected and overall,
the goodness-of-fit test failed. Partitioning of the data was further moti-
vated in a simulation test and applications to Colorado precipitation data
and total column ozone data. We propose an extension of their strategy in
Section 6.1.1.

The second complication is how to combine the pivotal discrepancy mea-
sures based on many posterior draws and a partitioned dataset when con-
ducting a goodness-of-fit test. A single posterior draw, θ̃(l), from the pos-
terior distribution based on a non-partitioned dataset gives the statistic
S(yt, θ̃

(l)) ∼ χ2
n. Each posterior draw gives a different value of the test

statistic and these values will be correlated. Jun et al. (2014) proposed di-
agnostics based on bounds on the distribution of order statistics proposed
by Caraux & Gascuel (1992); Rychlik (1992) to carry out a goodness-of-fit
test that makes use of the multiple correlated statistics obtained from the
posterior draws. We adopt that approach in this article.

6.1.1 Partitioning the observed locations into K subsets (not

necessarily of equal size)

Jun et al. (2014) proposed partitioning the set of observed locations into K
subsets of size w and showed that partitioning the observation vector into
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regions of high and low variability allowed the test to detect model mis-
specification. They suggest partitioning based on either prior knowledge
regarding regions of likely homogeneity, or according to well defined spa-
tial boundaries. Applying Equation 6.1 to the partitioned spatio-temporal
data gives:

Sj(ytj, θ̃
(l)) = (ytj−µ(l)

tj )′
( σ2(l)

1− ρ(l)2
R

(l)
j +τ 2(l)Iwj

)−1

(ytj−µ(l)
tj ) ∼ χ2

w, (6.2)

for t = 1, ..., T , j = 1, ..., K, and l = 1, ..., L, where ytj , µtj , and Rj de-
note the parts of Equation 2.29 corresponding to subset j, and w is the
number of observed locations in each subset. When the subsets vary in
size we no longer have identical distributions for the pivotal statistics and
Sj(ytj, θ̃

(l)) ∼ χ2
wj

, where wj is the number of samples in subset j.
We agree that partitioning is necessary to improve the performance of the
goodness-of-fit test. However, we allow the subsets to vary in size and
we adopt the K-means clustering algorithm (Algorithm 3) to partition the
spatial domain into regions of likely homogeneity.

6.1.2 Nominal distribution of the ordered pivotal statistics

The screening diagnostics we use are based on bounds of order statistics
given in Proposition 3 in Caraux & Gascuel (1992). These bounds are ap-
plied to non-identically distributed dependent variables and we thus gen-
eralise the diagnostics proposed by Jun et al. (2014).
LetX(1), ..., X(N) denote a set of order statistics from a dependent sample of
N random variables with non-identical distribution functions, FX1 , ..., FXN

.
Also, let Fxr:N denote the distribution function for the rth-order statistic
out of a sample of N dependent draws from FX1 , ..., FXN

. Then,

sup

(
0, 1−

∑N
j=1

(
1− FXj

(x)
)

N − r + 1

)
≤ FXr:N

(x) ≤ inf

(∑N
j=1 FXj

(x)

r
, 1

)
. (6.3)

We partition the spatial domain into K groups of potentially unequal size,
wj, j = 1, . . . , K. The pivotal statistic Sj(ytj, θ̃(l)) is calculated for each par-
tition, j = 1, . . . , L, time point t = 1, . . . , T and posterior draw l = 1, . . . , L.
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This results in a total of KTL dependent test statistics {Sj(ytj, θ̃(l)) : j =

1, ..., K; t = 1, ..., T, l = 1, ..., L}, with respective density function χ2
wj

. We
denote the rth-order statistic from this set by S(r), where r = 1, ..., KTL,
and let Fr denote the distribution function of the χ2

wj
distribution. It fol-

lows from above that,

P (S(r) < t) ≤ inf

(
1,

∑KTL
r=1 Fr(t)

r

)
,

P (S(r) > t) ≤ inf

(
1,

∑KTL
r=1

(
1− Fr(t)

)
KTL− r + 1

)
.

6.1.3 Pivotal discrepancy measure goodness-of-fit test for

Bayesian inference

We propose the following procedure for testing goodness-of-fit for Gaus-
sian spatio-temporal models:

1. Partition the set of observed locations into K subsets, Qj of size wj ,
where j = 1, ..., K, using K-means clustering. For each t = 1, ..., T ,
let ytj ,Xtj , andRj denote the parts of Equation 2.29 that correspond
to subset Qj .

2. Generate posterior samples for θ, θ(1), ...,θ(L), based on the complete
observed data (y1, ...,yT ).

3. For every sampled parameter vector θ(l), and each data subset ytj ,
for every t, calculate the pivotal statistic in Equation 6.2.

4. Collect allKTL statistics in an ordered set {Sj(ytj,θ(l)) : j = 1, ..., K, t =

1, ..., T, l = 1, ..., L}, and denote the rth-order statistic from this set by
S∗(r).

5. Perform the two-sided goodness-of-fit test of significance level α by
specifying integers m and u such that 1 ≤ m < u ≤ KTL, and deter-
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mining tm and tu such that,([∑KTL
k=1 Fk(tm)

m

]
− α

2

)2

, (6.4)

and ([
1−

∑KTL
k=1

(
1− Fk(tu)

)
KTL− u+ 1

]
− α

2

)2

, (6.5)

are minimized. If either S∗(m) < tm or S∗(u) > tu, then the assumed
model can be rejected in a two-sided test of size α.

Jun et al. (2014) recommend thatm and u be selected such thatm = rmKTL

and u = ruKTL, where 0 < rm < ru < 1, for example rm = 0.1 and
ru = 0.9.

6.2 Simulation

A simulation experiment was performed to assess the ability of the goodness-
of-fit test to detect misspecification of the covariance structure of a model.
A total of 30 pairs of longitude and latitude values, s = (s1, s2), were sam-
pled randomly from one of three subsets within the unit square. Within
the first subset, S1, five locations were generated uniformly from the lower
left [0, 0.2] × [0, 0.2] portion of the unit square. In the second subset, S2,
ten locations were uniformly sampled from the lower right [0.8, 1] × [0,
0.2] portion of the unit square. Finally, in subset S3, fifteen locations were
uniformly sampled from the entire unit square. The motivation is that the
fit of a covariance model can be best tested by comparing its fit in distinct
regions (where its local smoothness properties can be evaluated), with its
fit to point distributed throughout the domain (where its global features
can be evaluated) as mentioned in Jun et al. (2014). Subsets S1 and S2

provided clusters of locations that allow for the assessment of local model
fit, whereas subset S3 provides motivation for assessing global model fit.
Figure 6.1 shows the simulated locations and the corresponding subsets.
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Three datasets were simulated using the spatio-temporal process defined
in Section 2.4.2. The mean process, µt, was set to zero, to allow for de-
tection of model misspecification through the covariance structure only.
Observed data {yt}were simulated for t = 1, ..., 5 time units.

Three variants of the Matèrn correlation function with closed form expres-
sions were used to construct the covariance matrix σ2R. The first variant,

(R)ij = exp

(
−||si − sj||

φ

)
, (6.6)

is the closed form of the Matèrn correlation function, where the smooth-
ness parameter, ν, is set to 0.5 and is also known as the exponential corre-
lation function. The second variant,

(R)ij = exp

[
−
(
||si − sj||

ψ

)2]
, (6.7)

is the closed form of the Matèrn correlation function, where the smooth-
ness parameter, ν → ∞, and is known as the Gaussian correlation func-
tion. The third variant,

(R)ij = s2is2j exp

(
−||si − sj ||

φ

)
, (6.8)

is a non-stationary form of the exponential correlation function given by
Equation 6.6, that allows the correlation between observations separated
by a distance d to scale by their latitudes, s2.

The following parameters were chosen to simulate the data {yt}. The
measurement variance (nugget variance), τ 2 = 0.0001 , and the spatio-
temporal variance σ2 = 1. We chose σ2 > τ 2 to focus on identifying incor-
rect spatio-temporal covariance structure. Further, we set ρ = 0.7 to induce
a moderately positive temporal autocorrelation that might be observed in
reality. Finally, we set φ = 0.2 in Equations 6.6 and 6.8, and ψ = 0.8 in
Equation 6.7 to induce spatial autocorrelation. The specific values were
chosen because they produced data that exhibited spatial autocorrelation.
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We fitted the spatio-temporal geostatistical model given in Section 2.4.2
with the covariance function in Equation 6.6 to each of the three datasets.
We excluded covariates, with only a single intercept term included in the
mean function, such that µt = 130β, where 130 is a vector of 1’s. The pa-
rameters θ = (β, τ 2, σ2, φ, ρ)′ were assumed a priori independent, and were
assigned the non-informative prior distributions,

β ∼ N(0, 100), τ 2 ∼ IG(2, 1), σ2 ∼ IG(2, 1), φ ∼ U(0.001, 2), ρ ∼ U(−1, 1).

Markov chain Monte Carlo (MCMC) was used to fit the model to the data
and this was done through R using the package NIMBLE (NIMBLE Devel-
opment Team (2017)). Two chains, each 100000 iterations, were generated
of the parameter vector θ = (β, ρ, φ, σ2, τ 2)′ for each dataset. The first 90000

iterations from each chain were discarded as warm-up, and the remaining
draws were combined, resulting in a posterior sample of size L = 20000.
For each fitted model, pivotal quantities for every posterior sample were
calculated inline with equation 6.2. We considered three cases of parti-
tioning to assess the impact it has on testing goodness-of-fit. In the first
case, the locations were not partitioned into subsets. Pivotal quantities for
each fitted model S(yt, θ̃

(l)) for t = 1, ..., 5 and l = 1, ..., 20000 were cal-
culated, combined and ordered. For the second case, the locations were
partitioned into K = 3 subsets of w = 10. Pivotal quantities for each fitted
model S(ytj, θ̃

(l)) for t = 1, ..., 5, j = 1, 2, 3, and l = 1, ..., 20000 were calcu-
lated, combined and ordered. Finally, the locations were partitioned into
the subset S1, S2, and S3, that were used to simulate the locations. Pivotal
quantities for each fitted model S(ytj, θ̃

(l)) for t = 1, ..., 5, j = 1, 2, 3, and
l = 1, ..., 20000 were calculated, combined and ordered.
Table 6.2 gives the 10th and 90th percentiles of the aggregated (over time,
and subset) ordered pivotal discrepancy measures for the model applied
to each of the three data sets, in each of the three cases of subsetting. In
order to confirm that the model provided a good fit, the quantities need to
be within the interval given by the critical values that are calculated from
the nominal χ2 distributions assumed when they were calculated.
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Table 6.1: Summary statistics for the model fitted to each simulated data
set.

Dataset 1
True Median (95% CI)

β 0 -0.01656 (-0.2026, 0.1802)
φ 0.2 0.2025 (0.1108, 0.3555)
ρ 0.7 0.8370 (0.7451, 0.9115)
σ2 1 0.6512 (0.4125, 1.020)
τ 2 0.0001 0.1362 (0.07338, 0.2186)

Dataset 2
β 0 -0.006492 (-0.2075, 0.1981)
φ 0.8 1.857 (1.517, 2.000)
ρ 0.7 0.6470 (0.5042, 0.7795)
σ2 1 0.4947 (0.3449, 0.6768)
τ 2 0.0001 0.03150 (0.02274, 0.04160)

Dataset 3
β 0 -0.01282 (-0.1984, 0.1651)
φ 0.2 0.3853 (0.1542, 0.8944)
ρ 0.7 0.6048 (0.3959, 0.7860)
σ2 1 0.2532 (0.1219, 0.4708)
τ 2 0.0001 0.06681 (0.04268, 0.09825)
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Table 6.2: The 10th and 90th percentiles of ordered pivotal discrepancy
measures for the model applied to each of the three datasets. These are
compared to the nominal 10th and 90th percentiles: 12.76 and 56.33 for the
non-subset data; 1.827 and 27.11 for the even subset data; 0.4894 and 31.71
for the uneven subset data.

Nominal Dataset 1 Dataset 2 Dataset 3

percentiles

No subset (12.76, 56.33) (18.77, 42.21) (15.33, 27.77) (15.65, 35.04)

Even subset (1.827, 27.11) (3.945, 22.71) (5.222, 40.04) (0.4609, 12.54)

Uneven subset (0.4894, 31.71) (0.9661, 31.50) (2.038, 60.47) (0.1575, 19.65)

In the first case, when no the locations were not partitioned in order to
calculate the pivotal quantities, it was found that the 10th and 90th per-
centiles of ordered pivotal discrepancy quantities were within the cor-
responding nominal percentiles of (12.76, 56.33). This suggests that the
model provided a good fit to each of the three simulated data sets. In
the second case, when the locations were partitioned into 3 even sub-
sets to calculate the pivotal quantities, it was found that the 10th and
90th percentiles of the aggregated ordered pivotal discrepancy quantities
were within the corresponding nominal percentiles of (1.827 and 27.11)
when the model was applied to data set 1. However, the 10th and 90th
percentiles of the aggregated ordered pivotal discrepancy quantities were
outside the nominal percentiles when the model was applied to data sets
2 and 3. This suggests that the model provides a good fit only to data set
1. A similar result was observed for the final case, with the locations be-
ing partitioned into three uneven subsets. It was found that the 10th and
90th percentiles of the aggregated ordered pivotal discrepancy quantities
were within the corresponding nominal percentiles of (0.4894 and 31.71)
when the model was applied to data set 1. However, the 10th and 90th
percentiles of the aggregated ordered pivotal discrepancy quantities were
outside the nominal percentiles when the model was applied to data sets
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2 and 3. This suggests that the model provides a good fit only to data set
1.

We would have expected that the model only provide a good fit to data
set 1, because the model used to generate that data set is the same as the
one being fitted. This is correctly executed in the two cases of partitioning.
In the first case, the model provided a good fit to each data set, because a
lack of partitioning caused a decrease in power to detect the differences.
This is highlighted in Figures 6.2 – 6.4. In those Figures, the pivotal dis-
crepancy quantities from each model applied to each data set in each case
of partitioning are plotted as a density, and are overlaid with the nominal
densities. We see for each data set that when no partitioning occurs, there
is sufficient overlap of the pivotal quantities observed and the nominal
densities to suggest the model provides a good fit. This is also the case for
the partitioning scenarios for data set 1, but not the case for data sets 2 and
3.

6.3 Case study

6.3.1 Hoki catch data from sub-Antarctic survey

We performed a case study, in which we fitted several models to the grid-
ded sub-Antarctic hoki catch weight data described in Section 2.7.2. The
aim was to use partitioned and pivotal discrepancy measures to assess
goodness-of-fit of each model.

Observed hoki catch weight in kilograms was recorded for 814 trawls
taken throughout the sub-Antarctic region, for the years 2000 – 2008 (see
Figure 1.4). The number of observations within each year changed, and
the locations of the trawls were different each year. However, the CRN
models that we developed in this thesis for point reference spatio-temporal
data can only be applied to data that were observed at the same locations
throughout time. Due to this fact, we gridded the hoki data according to
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Figure 6.2: PDM density for data set 1
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Figure 6.3: PDM density for data set 2
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Figure 6.4: PDM density for data set 3
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the procedure detailed in Section 2.7.2, and fit the models to the mean hoki
catch weight within the 38 grids, for years 2000 – 2008.
Three models were fitted to the gridded hoki catch weight data of the form
given in Equations 2.26 – 2.28. We let yt = (y(g1, t), ..., y(g38, t))

′ where
y(gi, t) denoted the log-transformed weighted mean catch weight of hoki
in grid gi for year t, and n = 38. The marginal distribution of yt given the
parameters is,

yt|θ ∼MVN
(
µt,

σ2

1− ρ2
R+ τ 2In

)
,

where µt = 138β for each model. The three models are distinguished by
the correlation structure assumed for R. For model M1, we let the spatial
correlation matrix, R, be defined by the exponential correlation function,
given by Equation 6.6. For model M2, we let the spatial let the spatial cor-
relation matrix, R, be defined by the Gaussian correlation function, given
by Equation 6.7. For model M3, the spatial correlation matrix,R is defined
by the more general Matèrn correlation function,

(R)ij =
1

Γ(ν)2ν−1

(√
8ν

ψ
||si − sj||

)ν
Kν

(√
8ν

φ
||si − sj||

)
.

For each model, the parameters were assumed a priori independent, and
were assigned the non-informative prior distributions,

β ∼ N(0, 100), τ 2 ∼ IG(2, 1), σ2 ∼ IG(2, 1), φ ∼ U(0.001, 2), ρ ∼ U(−1, 1).

Further, for model M3, the smoothness parameter ν was assumed a priori
independent of the other parameters and was assigned the non-informative
prior distribution, ν ∼ U(0.01, 10).
MCMC was used to fit the three models to the gridded hoki data and
this was done through R using the package NIMBLE (NIMBLE Develop-
ment Team (2017)). Two chains, each 1000000 iterations, were generated
of the parameter vector θ = (β, ρ, φ, σ2, τ 2)′ for models M1 and M2, and
θ = (β, ρ, φ, σ2, τ 2, ν)′ for model M3. The first 900000 iterations from each
chain were discarded as warm-up, and the remaining draws were com-
bined, resulting in a posterior sample of size L = 200000. Table 6.3 gives
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Table 6.3: Summary statistics for the models fitted to the hoki data.

Model 1 Model 2 Model 3
Median (95% CI) Median (95% CI) Median (95% CI)

β 0.01688 (-0.1793, 0.2083) 0.01815 (-0.1796, 0.2134) 0.01666 (-0.1867, 0.2085)
ν 0.5156 (0.2943, 0.8179)
φ 849.1 (584.3, 1000) 261.8 (209.4, 312.9) 828.9 (494.3, 1000)
ρ 0.9675 (0.9381, 0.9879) 0.9899 (0.9776, 0.9978) 0.9687 (0.9347, 0.9913)
τ2 0.7939 (0.6585, 0.9365) 0.8755 (0.7371, 1.031) 0.7943 (0.6594, 0.9415)
σ2 0.3106 (0.1470, 0.5463) 0.2408 (0.1287, 0.3944) 0.3082 (0.1435, 0.5365)

Table 6.4: The 10th and 90th percentiles of ordered pivotal discrepancy
measures for each model applied to the hoki catch weight data. These are
compared to the nominal 10th and 90th percentiles, 0.133 and 28.6 respec-
tively.

nominal percentiles Model 1 Model 2 Model 3

(0.133, 28.6) (5.30, 15.8) (2.90, 13.3) (5.10, 16.0)

the summary statistics for the posterior parameter distributions computed
for each model. There appears to be agreement between the three models
on the values of most of the parameters. For model M3, the smoothness
parameter ν needed for the Matèrn correlation structure has a posterior
median of 0.5156, which means it is close to being estimated as an expo-
nential correlation structure.

For each fitted model, pivotal quantities for every posterior sample were
calculated inline with equation 6.2. The grid locations were partitioned
into five subsets using the K-means clustering algorithm. The optimal
number of subsets to use in the K-means algorithm was found using the
elbow method Kodinariya & Makwana (2013). Pivotal quantities for each
fitted model S(ytj, θ̃

(l)) for t = 1, ..., 5, j = 1, ..., 5, and l = 1, ..., 200000 were
calculated, combined and ordered.

The nominal 10th and 90th percentiles were calculated according to Equa-
tions 6.4 and 6.5. They were found to be 0.133 and 28.6 respectively. The
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Figure 6.5: Posterior densities for each parameter for each of the three
models (top), density of observed ordered PDMs and their nominal distri-
butions for each of the three models (bottom).
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10th and 90th percentiles of the ordered pivotal discrepancy measures for
models M1, M2 and M3 are given in Table 6.4. It was found that for each
model, the 10th percentile was higher than that of the nominal distribu-
tion and the 90th percentile was lower than that of the nominal distribu-
tion. As a result, it can be said that each model provided a good fit the
gridded hoki data. This is reflected in Figure 6. Figure 6 shows the pos-
terior densities for each parameter for each of the three models, as well
as the density of the ordered pivotal discrepancy measures. The latter are
overlaid with their nominal distributions density. The posterior densities
for each parameter are similar, with model M2 having the most different
posterior parameter densities. It can be seen that the posterior densities
for β, ρ, τ 2, and σ2 are similar in shape, and overlap between models. For
the parameter φ, there is a difference between models M1 and M3, and
M2. We conclude that Models M1 and M3 are very similar models, and
that all three models are providing a similar fit to the data, with the only
differences being due to the correlation structure parameters. Looking at
the densities of the observed pivotal discrepancy measures for each model,
the conclusion that each model provides a good fit is motivated. There is
sufficient overlap of the pivotal discrepancy measure densities and their
nominal densities such that the test cannot detect a difference.

6.4 Conclusion

In this chapter, we showed that partitioning was necessary when calculat-
ing pivotal discrepancy measures for goodness-of-fit. Further, the number
of observations within a partition need not be constant. We found that the
goodness-of-fit test based on pivotal discrepancy measures was unable to
correctly identify an incorrect model misspecification when there was no
partitioning. When the number of observations within a partition was
not constant, the distribution of the ordered pivotal discrepancy measures
were wider, making it more difficult to reject the null hypothesis that the
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model provided a good fit, and therefore results in a decrease in power.
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Chapter 7

Discussion & concluding remarks

The aim of this research was to develop a range of new methodologies
that are capable of accounting for non-stationarity in spatial and spatio-
temporal point referenced data. Further, we sought to compare these method-
ologies to existing ones, in their abilities to make accurate predictions, as
well as account for spatial autocorrelation. In this thesis, we contributed
three distinct methodologies. In Chapter 3, we proposed partitioned geo-
statistical models for both spatial and spatio-temporal point referenced
data, using the K-means clustering algorithm. In Chapter 4, we proposed
covariance regression network models for spatial and spatio-temporal point
referenced data. In Chapter 5, we proposed a geographic random for-
est approach that involved the construction of a neighbourhood structure
based on the K-means clustering algorithm. We developed the geographic
random forest in both a spatial and spatio-temporal context. Finally, in
Chapter 6, we proposed an extension of the pivotal discrepancy measure
methodology for Bayesian goodness-of-fit to the spatio-temporal geosta-
tistical model case.

In this chapter, we provide a discussion of the main results from each chap-
ter of this thesis. We then provide a section that compares and contrasts
the results from the three methodologies applied to the New Zealand par-
ticulate matter data set described in Chapter 2. In addition, we make com-
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ments on future areas of research.

7.1 Partitioned geostatistical models

The K-means partitioned geostatistical models that we proposed in Chap-
ter 3 provide a relatively easy and quick method for accounting for non-
stationarity while still allowing the use of simple stationary covariance
functions. This was highlighted in the simulation studies, particularly in
the spatial case. In the spatial simulation, the K-means partitioned geo-
statistical models (Models 2 – 9) generally provided better predictive ac-
curacy (in terms of RMSE and MAE) when fitted to either stationary or
non-stationary point referenced data.

When the simulated data had a stationary spatial structure, we saw lower
RMSE and MAE when we assumed global parameters within each sub-
region compared to when we assumed local parameters. Furthermore, as
the number of partitions increased, RMSE and MAE tended to decrease.
This suggested that when we increased the number of partitions and im-
posed the same covariance structure on each sub-region, then predictive
accuracy is improved. However, this was not the case when the param-
eters were assumed different within each sub-region. Compared to the
Matèrn geostatistical model (Model 1), the partitioned models that as-
sumed global coefficients (Models 2 – 5) provided better predictive ac-
curacy in terms of RMSE and MAE, when data has a stationary spatial
structure.

When the simulated data had a non-stationary spatial structure, we again
saw better predictive accuracy when we assumed global parameters within
each sub-region. However, when we fitted the model used to generate the
data (Model 7), which assumed local parameters, we saw just as good pre-
dictive accuracy. Once more, the partitioned models that assumed global
coefficients (Models 2 – 5), and Model 7, which correctly specified the spa-
tial structure of the simulated data, provided better predictive accuracy in
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terms of RMSE and MAE, when data has a non-stationary spatial struc-
ture.

For both sets of simulated spatial data, the models that assumed local
parameters within each sub-region accounted for less spatial autocorre-
lation compared to the models that assumed global paramters. This was
reflected by the values of Moran’s I calculated on the residuals, and sug-
gests that when using partitioned geostatistical models there might be a
trade-off between predictive accuracy and accounting for spatial autocor-
relation.

The results of the spatial simulation were reinforced when we fitted par-
titioned geostatistical models to the New Zealand particulate matter data
observed in 2013. We found that when we partitioned the particulate mat-
ter monitoring stations into two or three sub-regions and and fitted mod-
els that assumed local parameters within each sub-region (Models 4 and
5), we found better predictive accuracy. Unlike the simulation results, we
also found that these models were able to account for the most spatial au-
tocorrelation out of the five that we fitted. These results show that there
is great potential for fitting K-means partitioned geostatistical models to
spatial point referenced data.

Results for the stationary spatio-temporal simulation somewhat deviated
from that of the stationary spatial simulation. We found that Model 5
provided the best predictive accuracy, which was based on five partitions
and assumed global coefficients within each sub-region. This model per-
formed better, in terms of predictive accuracy, than the traditional Matèrn
geostatistical model, which was also the model that generated the data.
However, this might be due to the lack of convergence for some of the
parameter posterior distributions. Unfortunately, due to computational
restrictions, we were not able to run the model for a larger number of
iterations. A similar set of results were observed for the non-stationary
spatio-temporal simulation.

While these results show potential for the partitioned geostatistical model,
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we believe there is room for future considerations. Firstly, a repeat of the
simulation study using different covariance structures to simulate the data
could be performed. This would allow for an investigation into the ef-
fect that different covariance structures have on partitioned geostatistical
model fitting, in terms of predictive accuracy and spatial autocorrelation.
Furthermore, we would run the models for longer, using a larger number
of iterations in the simulations and case studies. This would lessen the in-
fluence of posterior distributions that had not fully converged, which was
the case in the spatio-temporal simulation and case studies.

In addition, we would consider different partitioning algorithms, includ-
ing those that might account for non-stationarity in different ways. One
issue with the K-means approach to partitioning involves the choice of
selecting K, the number of partitions. We propose that Bayesian model
averaging could be used to eliminate the subjectivity of selecting K.

Another consideration is that of observations located at the boundaries of
the partitions. The models that we fitted assumed that each sub-region
was independent of each other. This meant that two observations that
were separated by a short distance, but assigned to different sub-regions
by the K-means algorithm, were assumed to be uncorrelated. In reality,
this is unlikely to be the case. In future, we would like to explore the
possibility of allowing boundary effects.

We might also develop a model that allows for modelling spatio-temporal
data that is misaligned across the time. The models that we described in
Chapter 3 assumed that the locations at which observations were made
do not change over time. A better modelling framework would allow for
spatio-temporal data that has been observed at locations that change over
time. The sub-Antarctic hoki dataset described in Chapter 2 is an example
of this type of spatio-temporal data. We attempted a case study on the
gridded hoki data, but found that partitioning the data meant that there
were too few observations within each sub-region. As a result, we did not
fit partitioned geostatistical models to that data.
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7.2 Covariance regression network models

Covariance regression network (CRN) models were proposed for spatial
and spatio-temporal point referenced data in Chapter 4. They were shown
to provide more flexibility in modelling the covariance function of spatial
and spatio-temporal processes. The best results in terms of predictive ac-
curacy measures, RMSE and MAE, were obtained when we performed
Bayesian model averaging over the CRN models that were based on dif-
ferent estimates of the network structure.

Once again, however, we found a trade-off between predictive accuracy
and accounting for spatial autocorrelation. In general, we observed an
increasing trend in Moran’s I as the network structure grew to include
more locations.

A disadvantage to modelling the covariance function of spatial and spatio-
temporal processes using covariance regression network models is that
the network structure of the point referenced is almost always unknown.
Within the field of network analysis, from which CRN models were con-
ceived, the network structure of locations is known. For spatial point refer-
enced data, the network structure is latent and needs to be estimated. We
estimated the network structure using the adjacency matrix constructed
via a distance function. Future considerations for CRN models applied to
spatial data might include other ways of estimating the network structure.

Another issue that was encountered when fitting CRN models was that
of the positive definiteness condition for the covariance matrix. Lan et al.
(2018) imposed constraints on the range of values for the regression coeffi-
cients so that when they were estimated (in a frequentist sense), the result-
ing covariance matrix would be positive definite. We used the Bayesian
framework to estimate the regression coefficients and as such, did not im-
pose constraints. This lead to issues with some draws from the posterior
distributions of the regression coefficients leading to estimates of the co-
variance matrix that were not positive definite. In future, we would con-



220 CHAPTER 7. DISCUSSION & CONCLUDING REMARKS

sider imposing constraints in the form of prior distributions on the regres-
sion coefficients.
The CRN models that we fitted to spatio-temporal point referenced data
assumed that the neighbourhood structure did not change over time. To
add another layer of flexibility to this methodology, we would consider
allowing the network structure to change over time, to allow for capturing
spatio-temporal autocorrelation.

7.3 Geographic random forest

In Chapter 5, we proposed an extension of the geographic random for-
est methodology to incorporate neighbourhood structures that were con-
structed via K-means clustering. Further, we extended the methodology
to the spatio-temporal realm. The benefit to using geographic random for-
est over the previous two methodologies that we proposed, is the lack of
needing to provide a covariance structure. We did not find improvements
in predictive accuracy when K-means clustering was used to define the
neighbourhood structure.
In future, we would look at developing better ways of defining a neigh-
bourhood structure for spatial and spatio-temporal data. Furthermore, we
would look at different ways of defining the structure over time.

7.4 Comparison of methodologies

In Chapter’s 3, 4, and 5, we fitted our proposed methodologies and a tra-
ditional Matèrn covariance model to the New Zealand particulate matter
dataset. This allows us to compare the best performing models (in terms
of predictive accuracy) within each proposed methodology and to a tradi-
tional method. Table 7.1 displays the median posterior RMSE, MAE, and
Moran’s I (calculated on the residuals) for the traditional Matèrn covari-
ance model, fitted in Chapter 3, and for the best performing models in
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Chapter’s 3, 4, and 5. The best performing model in Chapter 3 was the
K-means partitioned covariance model with two partitions and assum-
ing local coefficients for each sub-region. The best performing model in
Chapter 4 was the Bayesian model averaged covariance regression net-
work model. The best performing model in Chapter 5 was the geographic
random forest using a clustering approach.

In table 7.1, we see that the model fitted in Chapter 3, a K-means par-
titioned covariance model using two partitions and assuming local co-
efficients for each sub-region performed the best of all three proposed
methodologies in terms of predictive accuracy. Further, it performed bet-
ter than the traditional Matèrn covariance model in terms of predictive
accuracy. However, this model did not account for spatial autocorrelation
the best. The model that accounted for spatial autocorrelation the best was
that of the geographic random forest, because it had the smallest median
posterior Moran’s I, calculated on the residuals. Each proposed method-
ology was able to account for more spatial autocorrelation than the tradi-
tional Matèrn model.

Table 7.1: Median posterior RMSE, MAE, and Moran’s I (calculated on the
residuals) for the traditional Matèrn model, and the best performing (in
terms of predictive accuracy) models of Chapter 3, 4, and 5, fitted to the
New Zealand particulate matter dataset. The traditional Matèrn model
was fitted in Chapter 3.

RMSE MAE Moran’s I
Traditional 0.902 0.754 0.342
Partitioned 0.655 0.528 0.160
Covariance regression 2.737 2.334 0.116
Geographic random forest 2.600 2.050 0.096
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7.5 Pivotal discrepancy measures

From the simulation study, it is clear that partitioning is necessary, and fur-
thermore, that the number of observations within a partition need not be
constant. We found that the goodness-of-fit test based on pivotal discrep-
ancy measures was unable to correctly identify an incorrect model mis-
specification when there was no partitioning. Further, when the number
of observations within a partition was not constant, the distribution of the
ordered pivotal discrepancy measures were wider, making it more diffi-
cult to reject the null hypothesis that the model provided a good fit, and
therefore results in an increase in power.
The choice of how to partition the data should be considered carefully. In
the simulation study in this paper, the subsets were chosen sensibly, in that
we partitioned the observations according to the subsets that were used to
generate the data. In reality, this will not necessarily be known, and an
objective method should be developed. In the case study, we showed that
using the K-means clustering algorithm is a suitable approach to partition-
ing.
A final consideration is that of how to select the best model from compet-
ing models fit to the same data. The goodness-of-fit test based on pivotal
discrepancy measures currently offers no way to select the best model, in-
stead opting for a decision based test only. Jun et al. (2014) and Johnson
(2007) talk briefly on calculating bounds on Bayesian p-values that may
offer an appropriate route to model selection.
In conclusion, we have developed a general goodness-of-fit test for Bayesian
spatio-temporal models using partitioning and pivotal discrepancy mea-
sures. It has seen success in simulation as well as application to New
Zealand hoki data.
This thesis investigated and developed a range of non-parametric tech-
niques to flexibly model spatial and spatio-temporal point referenced data,
while accounting for non-stationarity.



Appendix A

Convergence diagnostics for
Chapter 3

For conciseness, diagnostic plots for convergence are only supplied for one
model applied to stationary and non-stationary data for one repetition of
the simulation. The remaining plots can be found at https://github.
com/morrislind/PhD2020.
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Table A.1: Potential scale reduction factor calculated for each parameter
for Models 1 – 5 fitted to the first repetition of simulated spatial stationary
data.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
β0 1.000 1.041 1.010 1.004 1.011
β1 1.007 0.995 0.996 0.998 0.997
ψ 0.998 1.131 1.004 1.097 0.996
σ2 0.996 1.040 1.004 0.997 1.000
τ 2 1.004 1.005 0.995 1.030 1.022



225

0.5
1.0
1.5
2.0

β 1
1

0.50
0.75
1.00
1.25
1.50
1.75

β 2
1

0.5
1.0
1.5
2.0

β 1
2

0.50
0.75
1.00
1.25
1.50

β 2
2

0.5
1.0
1.5
2.0

β 1
3

0.5

1.0

β 2
3

0

1

2

ψ
1

0.5
1.0
1.5
2.0

ψ
2

0
1
2
3
4

ψ
3

0.2
0.4
0.6

τ 12

0.25
0.50
0.75

τ 22

0.1
0.2
0.3
0.4

τ 32

0.0
0.5
1.0
1.5
2.0

σ 12

1
2
3

σ 22

0.0
0.5
1.0
1.5
2.0
2.5

1500 1600 1700 1800 1900 2000

σ 32

β
11

β
12

β
13

β
21

β
22

β
23

0.5 1.0 1.5 2.0 2.5

0.00.51.01.52.02.5

0.00.51.01.52.02.5

0.00.51.01.52.02.5

0.00.51.01.52.02.5

0.00.51.01.52.02.5

0.00.51.01.52.02.5

β

de
ns

ity

ψ
1

ψ
2

ψ
3

0 2 4

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

ψ

de
ns

ity

σ
1 2

σ
2 2

σ
3 2

0 2 4 6

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

σ2

de
ns

ity

τ
1 2

τ
2 2

τ
3 2

0.25 0.50 0.75

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

τ2

de
ns

ity

0.00

0.25

0.50

0.75

1.00

ac
f

β11

0.00

0.25

0.50

0.75

1.00

ac
f

β21

0.00

0.25

0.50

0.75

1.00

ac
f

β12

0.00

0.25

0.50

0.75

1.00

ac
f

β22

0.00

0.25

0.50

0.75

1.00

ac
f

β13

0.00

0.25

0.50

0.75

1.00

ac
f

β23

0.00

0.25

0.50

0.75

1.00

ac
f

ψ1

0.00

0.25

0.50

0.75

1.00

ac
f

ψ2

0.00

0.25

0.50

0.75

1.00

ac
f

ψ3

0.00

0.25

0.50

0.75

1.00

ac
f

τ1
2

0.00

0.25

0.50

0.75

1.00

ac
f

τ2
2

0.00

0.25

0.50

0.75

1.00

ac
f

τ3
2

0.00

0.25

0.50

0.75

1.00

ac
f

σ1
2

0.00

0.25

0.50

0.75

1.00

ac
f

σ2
2

0.00

0.25

0.50

0.75

1.00

ac
f

σ3
2

0.5
1.0
1.5
2.0

β 1
1

0.50
0.75
1.00
1.25
1.50
1.75

β 2
1

0.5
1.0
1.5
2.0

β 1
2

0.50
0.75
1.00
1.25
1.50

β 2
2

0.5
1.0
1.5
2.0

β 1
3

0.5

1.0

β 2
3

0

1

2

ψ
1

0.5
1.0
1.5
2.0

ψ
2

0
1
2
3
4

ψ
3

0.2
0.4
0.6

τ 12

0.25
0.50
0.75

τ 22

0.1
0.2
0.3
0.4

τ 32

0.0
0.5
1.0
1.5
2.0

σ 12

1
2
3

σ 22

0.0
0.5
1.0
1.5
2.0
2.5

1500 1600 1700 1800 1900 2000

σ 32

β
11

β
12

β
13

β
21

β
22

β
23

0.5 1.0 1.5 2.0 2.5

0.00.51.01.52.02.5

0.00.51.01.52.02.5

0.00.51.01.52.02.5

0.00.51.01.52.02.5

0.00.51.01.52.02.5

0.00.51.01.52.02.5

β

de
ns

ity

ψ
1

ψ
2

ψ
3

0 2 4

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

ψ

de
ns

ity

σ
1 2

σ
2 2

σ
3 2

0 2 4 6

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

σ2

de
ns

ity

τ
1 2

τ
2 2

τ
3 2

0.25 0.50 0.75

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

τ2

de
ns

ity

0.00

0.25

0.50

0.75

1.00

ac
f

β11

0.00

0.25

0.50

0.75

1.00

ac
f

β21

0.00

0.25

0.50

0.75

1.00

ac
f

β12

0.00

0.25

0.50

0.75

1.00

ac
f

β22

0.00

0.25

0.50

0.75

1.00

ac
f

β13

0.00

0.25

0.50

0.75

1.00

ac
f

β23

0.00

0.25

0.50

0.75

1.00

ac
f

ψ1

0.00

0.25

0.50

0.75

1.00

ac
f

ψ2

0.00

0.25

0.50

0.75

1.00

ac
f

ψ3

0.00

0.25

0.50

0.75

1.00

ac
f

τ1
2

0.00

0.25

0.50

0.75

1.00

ac
f

τ2
2

0.00

0.25

0.50

0.75

1.00

ac
f

τ3
2

0.00

0.25

0.50

0.75

1.00

ac
f

σ1
2

0.00

0.25

0.50

0.75

1.00

ac
f

σ2
2

0.00

0.25

0.50

0.75

1.00

ac
f

σ3
2

Figure A.1: Convergence diagnostic plots for Model 7 fitted to the first set
of stationary spatial simulated data. Convergence to stationary posterior
distributions is satisfied.
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Table A.2: Potential scale reduction factor calculated for each parameter
for Models 6 – 9 fitted to the first repetition of simulated spatial stationary
data.

Parameter Model 6 Model 7 Model 8 Model 9
β01 0.995 1.018 0.995 0.997
β11 1 0.998 1.004 0.998
β02 1.033 1.002 1.022 1.012
β12 0.998 1.078 0.995 1.01
β03 1.008 0.996 1.008
β13 0.996 0.996 0.995
β04 0.995 1.011
β14 0.995 1.001
β05 1.006
β15 1.046
ψ1 0.998 1.014 1.007 1.141
ψ2 0.995 1.022 1.012 1.022
ψ3 1.215 0.995 1.018
ψ4 1.026 1.031
ψ5 1.056
σ2

1 0.995 0.995 1.004 0.995
σ2

2 1.023 1.003 1.003 0.996
σ2

3 1.064 1.043 1.02
σ2

4 0.999 1.008
σ2

5 1.049
τ 2

1 0.996 0.997 0.996 1.004
τ 2

2 1.002 0.995 1.039 1.007
τ 2

3 1.008 1.04 1.052
τ 2

4 1.022 0.998
τ 2

5 0.996
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Figure A.2: Convergence diagnostic plots for Model 7 fitted to the first
set of non-stationary spatial simulated data. Convergence to stationary
posterior distributions is satisfied.
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Table A.3: Potential scale reduction factor calculated for each parameter
for Models 1 – 5 fitted to the first repetition of simulated spatial non-
stationary data.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
β0 1.014 1.030 0.995 1.013 0.998
β1 1.000 1.048 1.000 1.005 1.008
ψ 1.020 0.995 1.116 1.017 1.015
σ2 0.996 1.016 1.037 1.009 0.999
τ 2 1.003 1.038 0.995 1.087 0.995
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Table A.4: Potential scale reduction factor calculated for each parameter
for Models 6 – 9 fitted to the first repetition of simulated spatialnon- sta-
tionary data.

Parameter Model 6 Model 7 Model 8 Model 9
β01 0.998 1.024 1.009 0.996
β11 1.015 1.031 0.996 0.998
β02 1.014 0.995 0.995 1.019
β12 1.000 0.997 0.995 1.021
β03 1.006 0.995 1.005
β13 0.995 1.004 0.997
β04 0.996 1.017
β14 0.998 0.996
β05 1.091
β15 1.080
ψ1 0.999 1.032 1.003 0.997
ψ2 1.001 1.027 0.996 1.003
ψ3 1.045 0.998 0.997
ψ4 1.111 1.067
ψ5 1.003
σ2

1 0.996 0.995 0.998 1.004
σ2

2 1.002 0.995 1.003 0.997
σ2

3 0.995 1.002 0.995
σ2

4 0.998 1.001
σ2

5 0.995
τ 2

1 1.074 1.038 0.996 1.008
τ 2

2 1.008 0.998 0.996 0.997
τ 2

3 0.995 0.996 1.105
τ 2

4 1.023 1.061
τ 2

5 1.008
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Figure A.3: Convergence diagnostic plots for Model 7 fitted to the first set
of stationary spatio-temporal simulated data. There is indication that not
all parameters converged to stationary posterior distributions.
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Table A.5: Potential scale reduction factor calculated for each parameter
for Models 1 – 5 fitted to the first repetition of simulated spatio-temporal
stationary data.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
β0 4.531 4.464 1.513 1.061 37.636
β1 1.082 0.997 0.997 0.998 1.105
ψ 0.999 1.013 0.995 1.350 1.660
ρ 1.216 1.001 1.012 1.004 1.431
σ2 1.077 1.030 0.994 1.146 1.206
τ 2 1.054 1.074 0.993 1.167 1.049
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Table A.6: Potential scale reduction factor calculated for each parameter
for Models 6 – 9 fitted to the first repetition of simulated spatio-temporal
stationary data.

Parameter Model 6 Model 7 Model 8 Model 9
β01 2.961 1.178 0.995 1.106
β11 1.231 0.993 1.002 1.002
β02 12.612 0.993 2.675 3.557
β12 1.063 0.997 1.042 0.999
β03 3.444 2.496 1.191
β13 1.087 1.408 1.004
β04 2.653 1.237
β14 1.003 0.995
β05 0.994
β15 1.016
ψ1 2.778 1.214 1.578 0.994
ψ2 1.217 1.047 1.046 0.997
ψ3 1.195 1.015 1.005
ψ4 1.024 1.413
ψ5 0.995
ρ 1.047 1.078 1.434 0.994
σ2

1 1.053 0.993 1.087 1.010
σ2

2 1.427 1.141 1.187 1.049
σ2

3 1.053 1.007 0.998
σ2

4 1.029 0.994
σ2

5 0.993
τ 2

1 2.324 1.267 1.059 0.994
τ 2

2 1.086 1.083 1.172 1.051
τ 2

3 1.100 1.005 1.081
τ 2

4 1.100 1.225
τ 2

5 0.998
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Figure A.4: Convergence diagnostic plots for Model 7 fitted to the first set
of non-stationary spatio-temporal simulated data. There is indication that
not all parameters converged to stationary posterior distributions.
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Table A.7: Potential scale reduction factor calculated for each parameter
for Models 1 – 5 fitted to the first repetition of simulated spatio-temporal
non-stationary data.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
β0 4.531 4.464 1.513 1.061 37.636
β1 1.082 0.997 0.997 0.998 1.105
ψ 0.999 1.013 0.995 1.350 1.660
ρ 1.216 1.001 1.012 1.004 1.431
σ2 1.077 1.030 0.994 1.146 1.206
τ 2 1.054 1.074 0.993 1.167 1.049
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Table A.8: Potential scale reduction factor calculated for each parameter
for Models 6 – 9 fitted to the first repetition of simulated spatio-temporal
non-stationary data.

Parameter Model 6 Model 7 Model 8 Model 9
β01 2.961 1.178 0.995 1.106
β11 1.231 0.993 1.002 1.002
β02 12.612 0.993 2.675 3.557
β12 1.063 0.997 1.042 0.999
β03 3.444 2.496 1.191
β13 1.087 1.408 1.004
β04 2.653 1.237
β14 1.003 0.995
β05 0.994
β15 1.016
ψ1 2.778 1.214 1.578 0.994
ψ2 1.217 1.047 1.046 0.997
ψ3 1.195 1.015 1.005
ψ4 1.024 1.413
ψ5 0.995
ρ 1.047 1.078 1.434 0.994
σ2

1 1.053 0.993 1.087 1.010
σ2

2 1.427 1.141 1.187 1.049
σ2

3 1.053 1.007 0.998
σ2

4 1.029 0.994
σ2

5 0.993
τ 2

1 2.324 1.267 1.059 0.994
τ 2

2 1.086 1.083 1.172 1.051
τ 2

3 1.100 1.005 1.081
τ 2

4 1.100 1.225
τ 2

5 0.998
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Appendix B

Convergence diagnostics for
Chapter 4

For conciseness, diagnostic plots for convergence are only supplied for
one model fitted in each simulation. The remaining plots can be found at
https://github.com/morrislind/PhD2020.
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Table B.1: Potential scale reduction factor calculated for each parameter of
the CRN Models 1 – 10 and Matèrn Model 11 fitted to the first repetition
of simulated spatial data.

Model β γ0 γ1 γ2

1 0.998 0.997 0.999 1.004
2 1.009 1.081 1.063 1.043
3 1.008 0.997 1.038 1.001
4 1.007 1.092 1.082 1.000
5 1.004 1.014 1.000 1.003
6 1.075 1.094 1.027 0.998
7 1.178 1.053 0.998 0.999
8 0.997 1.004 1.031 0.998
9 1.061 1.047 1.080 0.998
10 0.998 1.018 1.044 0.999
Model β ψ σ2 τ 2

11 0.998 1.191 1.000 1.218
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Table B.2: Potential scale reduction factor calculated for each parameter of
the CRN Models 1 – 10 and Matèrn Model 11 fitted to the first repetition
of simulated spatio-temporal data.

Model β01 β02 γ01 γ02 γ11 γ12 γ21 γ22

1 1.000 1.067 1.000 1.090 1.018 1.029 1.000 1.053
2 1.103 1.005 1.002 1.003 1.092 0.997 1.013 1.024
3 0.997 1.018 1.003 1.009 1.012 1.004 1.011 1.001
4 1.000 1.040 1.014 1.023 1.008 1.032 0.999 1.079
5 0.999 1.043 1.035 0.998 1.050 1.091 0.997 1.054
6 1.042 1.013 1.012 1.046 1.001 1.052 0.997 1.021
7 1.015 1.026 1.063 1.064 1.024 1.003 0.999 1.019
8 1.039 0.997 1.066 1.085 1.013 1.127 1.010 1.013
9 1.042 1.182 1.221 1.163 1.052 1.021 1.016 0.998
10 1.147 1.022 1.064 1.015 0.998 0.998 0.999 0.999
Model β01 β02 ψ ρ σ2 τ 2

11 1.033 0.999 0.997 1.022 1.110 1.011
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Table B.3: Potential scale reduction factor calculated for each parameter of
Models 1 – 10 fitted to the NZ PM10 concentration data.

Model β0 β1 β2 γ0 γ1 γ2

1 1.000 1.001 1.001 1.023 1.000 1.007
2 1.000 1.010 1.007 1.017 1.101 1.134
3 1.001 1.006 1.003 1.022 1.036 1.031
4 1.000 1.000 1.000 1.001 1.021 1.061
5 1.006 1.007 1.000 1.380 1.580 1.364
6 1.000 1.004 1.000 1.053 1.050 1.021
7 1.001 1.003 1.001 1.097 1.046 1.017
8 1.001 1.010 1.000 1.014 1.120 1.157
9 1.001 1.012 1.001 1.089 1.125 1.128
10 1.027 1.211 1.795 1.397 1.344 1.238
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Table B.4: Potential scale reduction factor calculated for the β parameters
for Models 1 – 5 fitted to the hoki catch weight data.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
β01 1.000 1.001 1.000 1.000 1.000
β11 1.000 1.000 1.000 1.005 1.001
β02 1.000 1.002 1.000 1.002 1.000
β12 1.000 1.000 1.001 1.001 1.000
β03 1.002 1.000 1.000 1.000 1.001
β13 1.002 1.001 1.001 1.000 1.001
β04 1.000 1.000 1.000 1.004 1.000
β14 1.000 1.002 1.000 1.000 1.003
β05 1.001 1.000 1.001 1.000 1.001
β15 1.039 1.002 1.006 1.000 1.000
β06 1.000 1.000 1.000 1.000 1.001
β16 1.001 1.000 1.003 1.000 1.002
β07 1.000 1.000 1.005 1.000 1.000
β17 1.002 1.000 1.000 1.000 1.001
β08 1.001 1.000 1.003 1.002 1.004
β18 1.001 1.000 1.000 1.001 1.000
β09 1.002 1.000 1.003 1.000 1.001
β19 1.001 1.000 1.006 1.004 1.002
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Figure B.1: Convergence diagnostic plots for Model 1 fitted to the first
repetition of simulated spatial data. There is indication that all parameters
converged to stationary posterior distributions.



243

2
3
4

γ 1

1.0

1.5

2.0

γ 2

0.00
0.25
0.50
0.75
1.00

γ 1
1

0.00
0.25
0.50
0.75
1.00

γ 1
2

0.1
0.2
0.3
0.4

γ 2
1

0.1
0.2
0.3
0.4

γ 2
2

−0.2−0.10.00.10.20.3

250 275 300 325 350 375

β 2

−0.2−0.10.00.10.20.3

250 275 300 325 350 375
Iteration

β 2

0.00

0.25

0.50

0.75

1 2 3 4
γ1

de
ns

ity

0.0

0.5

1.0

1.0 1.5 2.0 2.5
γ2

de
ns

ity

0.0

0.5

1.0

1.5

0.0 0.4 0.8 1.2
γ11

de
ns

ity

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
γ12

de
ns

ity

0

1

2

3

4

5

0.0 0.2 0.4 0.6
γ21

de
ns

ity
0

1

2

3

4

0.2 0.4 0.6
γ22

de
ns

ity

0

1

2

3

4

−0.2 0.0 0.2
β1

de
ns

ity

0

1

2

3

4

−0.2 0.0 0.2
β2

de
ns

ity

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ1

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ2

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ11

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ12

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ21

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ22

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

β1

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

β2

2
3
4

γ 1

1.0

1.5

2.0

γ 2

0.00
0.25
0.50
0.75
1.00

γ 1
1

0.00
0.25
0.50
0.75
1.00

γ 1
2

0.1
0.2
0.3
0.4

γ 2
1

0.1
0.2
0.3
0.4

γ 2
2

−0.2−0.10.00.10.20.3

250 275 300 325 350 375

β 2

−0.2−0.10.00.10.20.3

250 275 300 325 350 375
Iteration

β 2

0.00

0.25

0.50

0.75

1 2 3 4
γ1

de
ns

ity

0.0

0.5

1.0

1.0 1.5 2.0 2.5
γ2

de
ns

ity

0.0

0.5

1.0

1.5

0.0 0.4 0.8 1.2
γ11

de
ns

ity

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
γ12

de
ns

ity

0

1

2

3

4

5

0.0 0.2 0.4 0.6
γ21

de
ns

ity
0

1

2

3

4

0.2 0.4 0.6
γ22

de
ns

ity

0

1

2

3

4

−0.2 0.0 0.2
β1

de
ns

ity

0

1

2

3

4

−0.2 0.0 0.2
β2

de
ns

ity

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ1

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ2

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ11

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ12

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ21

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

γ22

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

β1

0.00

0.25

0.50

0.75

1.00

0 10 20
lag

ac
f

β2

Figure B.2: Convergence diagnostic plots for Model 1 fitted to the first
repetition of simulated spatio-temporal data. There is indication that all
parameters converged to stationary posterior distributions.
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Figure B.3: Convergence diagnostic plots for Model 1 fitted to the NZ
PM10 concentration data. There is indication that all parameters con-
verged to stationary posterior distributions.
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Figure B.4: Trace plots for Model 1 fitted to the hoki catch weight data.
There is indication that all parameters converged to stationary posterior
distributions.
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Figure B.5: Density plots for Model 1 fitted to the hoki catch weight data.
There is indication that all parameters converged to stationary posterior
distributions.
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Figure B.6: Autocorrelation function plots for the β parameters of Model
1 fitted to the hoki catch weight data.
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Figure B.7: Autocorrelation function plots for the γ parameters of Model 1
fitted to the hoki catch weight data.
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Table B.5: Potential scale reduction factor calculated for the γ parameters
for Models 1 – 5 fitted to the hoki catch weight data.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
γ01 1.004 1.000 1.000 1.000 1.002
γ11 1.000 1.000 1.000 1.002 1.000
γ21 1.005 1.008 1.005 1.000 1.005
γ02 1.001 1.001 1.000 1.004 1.008
γ12 1.000 1.001 1.002 1.000 1.004
γ22 1.000 1.001 1.000 1.001 1.003
γ03 1.002 1.000 1.003 1.000 1.001
γ13 1.000 1.000 1.000 1.001 1.000
γ23 1.000 1.000 1.000 1.005 1.000
γ04 1.003 1.006 1.020 1.002 1.004
γ14 1.000 1.006 1.000 1.002 1.000
γ24 1.000 1.002 1.002 1.001 1.003
γ05 1.058 1.000 1.000 1.002 1.000
γ15 1.002 1.002 1.001 1.002 1.000
γ25 1.027 1.000 1.004 1.004 1.000
γ06 1.000 1.003 1.003 1.000 1.005
γ16 1.000 1.007 1.001 1.002 1.003
γ26 1.000 1.000 1.002 1.001 1.001
γ07 1.000 1.013 1.002 1.020 1.003
γ17 1.000 1.001 1.007 1.037 1.000
γ27 1.000 1.006 1.004 1.004 1.007
γ08 1.003 1.000 1.006 1.003 1.000
γ18 1.006 1.000 1.000 1.000 1.000
γ28 1.012 1.000 1.009 1.005 1.001
γ09 1.000 1.001 1.000 1.000 1.002
γ19 1.001 1.000 1.000 1.000 1.003
γ29 1.001 1.000 1.000 1.000 1.001
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Table B.6: Potential scale reduction factor calculated for the β parameters
for Models 6 – 10 fitted to the hoki catch weight data. It appears that
the parameters β07 and β17 for Model 7 have not converged to stationary
distributions.

Parameter Model 6 Model 7 Model 8 Model 9 Model 10
β01 1.001 1.000 1.000 1.000 1.003
β11 1.001 1.001 1.002 1.000 1.000
β02 1.000 1.001 1.004 1.001 1.000
β12 1.000 1.001 1.002 1.000 1.001
β03 1.000 1.000 1.000 1.001 1.002
β13 1.000 1.008 1.006 1.003 1.000
β04 1.001 1.000 1.000 1.000 1.000
β14 1.003 1.000 1.006 1.001 1.001
β05 1.002 1.000 1.000 1.008 1.000
β15 1.003 1.002 1.000 1.006 1.000
β06 1.001 1.001 1.003 1.003 1.000
β16 1.004 1.000 1.000 1.038 1.000
β07 1.000 1.198 1.000 1.001 1.000
β17 1.001 2.957 1.002 1.000 1.008
β08 1.000 1.001 1.001 1.000 1.000
β18 1.000 1.008 1.000 1.000 1.001
β09 1.000 1.006 1.001 1.001 1.001
β19 1.000 1.000 1.006 1.002 1.000
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Table B.7: Potential scale reduction factor calculated for the γ parameters
for Models 6 – 10 fitted to the hoki catch weight data. It appears that γ17

and γ27 for Model 7 have not converged to stationary distributions.

Parameter Model 6 Model 7 Model 8 Model 9 Model 10
γ01 1.000 1.006 1.000 1.002 1.000
γ11 1.001 1.001 1.011 1.003 1.000
γ21 1.007 1.006 1.005 1.001 1.000
γ02 1.000 1.001 1.002 1.000 1.000
γ12 1.001 1.001 1.001 1.000 1.008
γ22 1.000 1.003 1.006 1.001 1.001
γ03 1.002 1.009 1.000 1.000 1.000
γ13 1.004 1.000 1.002 1.001 1.000
γ23 1.000 1.004 1.005 1.003 1.000
γ04 1.006 1.001 1.007 1.000 1.000
γ14 1.014 1.003 1.006 1.003 1.001
γ24 1.002 1.001 1.000 1.000 1.000
γ05 1.000 1.000 1.000 1.011 1.004
γ15 1.003 1.004 1.000 1.000 1.000
γ25 1.001 1.002 1.000 1.006 1.001
γ06 1.000 1.022 1.000 1.013 1.005
γ16 1.002 1.019 1.000 1.046 1.003
γ26 1.003 1.002 1.000 1.020 1.003
γ07 1.009 1.004 1.004 1.003 1.001
γ17 1.006 387.931 1.000 1.001 1.007
γ27 1.000 70.092 1.000 1.001 1.015
γ08 1.000 1.000 1.002 1.001 1.000
γ18 1.003 1.008 1.000 1.002 1.000
γ28 1.001 1.003 1.000 1.001 1.000
γ09 1.003 1.000 1.000 1.000 1.000
γ19 1.000 1.006 1.005 1.000 1.000
γ29 1.000 1.002 1.018 1.002 1.001
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