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Summary. In this paper, we propose a log-linear model to assess the consistency of ego reports of
dyadic outcomes. We do so specifically in the context where males and females report on shared
events, and we demonstrate how inconsistencies can be assessed using a log-linear model that esti-
mates separate mixing totals for each set of reports. This modelling approach immediately allows us
to determine where inconsistencies in reports occur. To demonstrate how our method can be easily
implemented for survey data, we apply it to both the 1992 National Health and Social Life Survey and
2002 National Survey of Family Growth. Our analysis identifies inconsistencies in male and female
reports of concurrent partnerships and the number of biological children.

1. Introduction

Research centering on sex-specific fertility and sexual behaviour relies on the accuracy of male
and female reports. Unfortunately, it is well documented that discrepancies between male and
female reports are common in surveys that query males and females about fertility and sexual
partnerships. In this paper, we propose the use of log-linear models to reconcile ego reports of
dyadic outcomes.

In the case of fertility, male and female reports theoretically can be tested against birth reg-
istries, revealing if one sex is overreporting or underreporting births or if the differences are due
to sampling. While possible, this approach is almost never employed, especially for large surveys
where participant anonymity is ensured, and nearly all examinations of differences between male
and female reports assume that female reports are accurate. Under this condition, a number of
studies have suggested that male reports are of poorer quality than female reports with “multipart-
nered fertility” being most responsible for deficiencies in the number of births reported by males
(Garfinkel et al., 1998; Rendall et al., 1999; Guzzo and Furstenberg, 2007). This phenomenon en-
compasses children produced through nonmarital unions or previous marital relationships, which
account for an increasingly large percentage of all births with nonmarital fertility estimated to be
36% as of 2004 (Hamilton et al., 2005) and an estimated 8.5% of unmarried American males having
been divorced as of 2010 (U.S. Census Bureau, 2010).

Studies have shown deficiencies in the number of children from prior unions reported by males
in the 1980 Current Population Survey (United States Department of Commerce. Bureau of
the Census, 1984; Cherlin et al., 1983) and deficiencies in the number of children reported by
nonresident fathers in the 1987–1988 National Survey of Families and Households (Bumpass and
Sweet, 1997) and 1990 Survey of Income and Program Participation (U.S. Census, 2001; Seltzer and
Brandreth, 1994; Garfinkel et al., 1998; Sorensen, 1997). Rendall et al. (1999) demonstrated similar
results for the Panel Study of Income Dynamics (Hill, 1992) and the British Household Panel Survey
(Taylor et al., 2010) with estimated total births by fathers for children from nonmarital or previous
marital relationships being approximately one-third to one-half of that estimated from female
reports. These deficiencies were believed to be due in part to non-reporting of children (possibly
because some males were unaware that they had fathered children) as well as underrepresentation
of males relative to females for these groups. Later, Rendall et al. (2006) examined age-specific
reports by males in the 2002 National Survey of Family Growth (U.S. NCHS, 2002) and found
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underreporting of births to be most significant for males of younger ages (18–21) when assuming
that female reports accurately reflect population totals. They also showed greater underreporting
of births by black or African-American males than males as a whole.

When considering sexual partnerships, generally it is not possible to determine if one sex is
underreporting or overreporting, and reports can only be compared for consistency. It is well
documented that the number of lifetime female partners reported by males in surveys tends to
exceed the number of lifetime male partners reported by females (Johnson et al., 1992; Smith,
1992; Morris, 1993; Brown and Sinclair, 1999). Johnson et al. (1990), Wellings et al. (1990), and
Morris (1993) suggest that this discrepancy in reports is primarily driven by those reporting large
numbers of lifetime partners, with Morris recommending reducing the time frame in which people
are asked to report on sexual partnerships in order to reduce reporting bias for those with many
partners. The argument is that people have a much more accurate memory of the number of sexual
partnerships in which they are currently involved than the number of sexual partners they have had
in their lifetime. Laumann et al. (1994) and Lewontin (1995) provide another theory and suggest
that discrepancies in male and female reports are the result of a larger social influence in which
males feel compelled to inflate the number of sexual partners they have had, while females tend
to be more conservative in reporting their numbers of sexual partners. In contrast, Brown and
Sinclair (1999) argue that such blatant misreporting is not the cause for such discrepancies, but
instead a difference in how males and females produce their estimates is the culprit with females
tending to take the approach of enumerating their partnerships and males tending to make rough
estimates.

Before using survey data to address questions relating to sex-specific fertility or sexual be-
haviour, it is important to check such data for reliability by assessing the consistency of male and
female reports. While our focus is not on the causes of differences, the method that we propose
not only enables us to assess the consistency of male and female reports but also highlight where
differences lie. Current methods are largely descriptive in nature with inferential approaches still
being rather rudimentary.

In this paper, we propose using log-linear models to assess the consistency of male and female
reports. The approach we consider will be presented in the context of partnership totals, or
“mixing” totals, between males and females of different types, although we note that it can be
applied to a variety of situations where multiple contingency tables are to be checked for consistency.
This includes assessing the consistency of judges or raters, where cross-classified ratings for each
judge or rater constitute a contingency table, or consistency of contingency tables over time.
Our results are applied to log-linear models for mixing totals, where mixing totals are assumed
to follow a Poisson distribution. We explain how to incorporate sample weights in standard error
estimates for parameters and demonstrate our methodology on ongoing, or concurrent, partnership
totals derived from the 1992 National Health and Social Life Survey (Laumann et al., 1992, 1994),
showing inconsistencies between male and female reports in the reported number of partnerships
between white males and white females. We also consider an application to fertility reports using
the 2002 National Survey of Family Growth and show widespread inconsistencies in male and
female reports of children produced with partners born in specified ranges of years.

2. Sampling Methods in Surveys of Dyadic Outcomes

In this section, we review survey sampling approaches to collecting ego reports of dyadic outcomes,
doing so in the context of heterosexual partnerships. We refer to the two modes of the nodes asM
and F , although the approach applies to general two-mode networks. Suppose a population of size
P consists of M males (M) and F females (F). The sub-population of males can be partitioned
into I different types of sizes M1,M2, . . . ,MI , and the sub-population of females can be partitioned
into J different types of sizes F1, F2, . . . , FJ .

2.1. Dyad Census or Dyad Samples
If a census is carried out for all dyads consisting of a male and a female, partnership totals between
males and females of given types can be represented in a “mixing matrix” N = {N11, N12, . . . , NIJ}
given by the table to the left in Table 1, where Nij denotes the observed number of partnerships
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Table 1. Mixing matrix of observed partnership totals for a dyad census based on I levels of
M and J levels of F (left), and corresponding mixing matrix of expected partnership totals
(right).

F
1 2 · · · J

M

1 N11 N12 · · · N1J N1·
2 N21 N22 · · · N2J N2·
...

...
...

. . .
...

...
I NI1 NI2 · · · NIJ NI·

N·1 N·2 · · · N·J N··

F
1 2 · · · J

M

1 µ11 µ12 · · · µ1J µ1·
2 µ21 µ22 · · · µ2J µ2·
...

...
...

. . .
...

...
I µI1 µI2 · · · µIJ µI·

µ·1 µ·2 · · · µ·J µ··

Table 2. Mixing matrix for M and F for an egocentric census,
stratified on I types forM and J types for F .

M F
1 2 · · · I 1 2 · · · J

M

1 NM11 NM12 · · · NM1J
2 NM21 NM22 · · · NM2J
...

...
...

. . .
...

I NMI1 NMI2 · · · NMIJ

F

1 NF11 NF12 · · · NF1I
2 NF21 NF22 · · · NF2I
...

...
...

. . .
...

J NFJ1 NFJ2 · · · NFJI

between males of type i and females of type j. This mixing matrix is a two-way contingency table
for which dyads consisting of a male and a female contribute to a cell only if a partnership exists
between the two. Thus, it is a contingency table that conditions on the presence of a partnership
and for which males and females can potentially contribute multiple times if they have more than
one partner of the opposite sex. If the observed mixing totals are a realisation from some underlying
stochastic process, then corresponding to this mixing matrix of observed partnerships is a mixing
matrix of expected partnership totals µ = {µ11, µ12, . . . , µIJ}, represented by the table to the right
in Table 1.

A dyad census typically is not feasible except for very small populations, although dyad samples
have been used to assess the consistency of male and female reports on sexual behaviour (Kinsey
et al., 1948; Julian et al., 1992; Seal, 1997; Ochs and Binik, 1999). These consist of couple data,
so analysis is restricted to samples where a partnership is known to exist, and, because the focus
tends to be on sexual behaviour within the partnership, information about other sexual partners
is rarely included. Consequently, such data tends not to be useful in estimating partnership totals
for the population or subgroups in the population, so we turn our attention to more commonly
employed sampling mechanisms for estimating partnership activity levels and fertility rates. In
particular, we consider egocentric samples, where individuals are sampled and report information
about their partners.

2.2. Egocentric Census or Egocentric Samples
If an egocentric census is carried out, all males report their partnerships with females of the J
different types, and females do likewise for males of the I different types. This produces two separate
mixing matrices, NM =

{
NM11 , N

M
12 , . . . , N

M
IJ

}
and NF =

{
NF11, N

F
12, . . . , N

F
JI

}
, corresponding to

male reports and female reports, respectively. These mixing matrices can be represented as off-
diagonal regions of a larger mixing matrix, shown in Table 2. If there is no reporting error, these
regions of the larger mixing matrix are symmetric

(
NMij = NFji

)
, so inconsistencies in reporting can

easily be assessed by examining the symmetry of this larger mixing matrix. Again assuming that
the observed mixing totals were produced by some underlying stochastic process, let µMij denote
the expected number of partnerships between male of type i and females of type j, as derived from
male reports, and let µFji denote the expected number of partnerships between females of type j
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Table 3. An example sociomatrix of partnerships for males M and females F .
Egocentric samples are highlighted in black with grey denoting the intersection of
egocentric samples.

M F
1 2 3 · · · M − 1 M 1 2 3 · · · F − 1 F

M

1 1 1 0
· · ·

0 0
2 0 0 0 1 0
3 0 0 0 0 0
...

...
. . .

...
M − 1 0 0 0 · · · 0 1
M 0 0 1 0 0

F

1 1 0 0
· · ·

0 0
2 1 0 0 0 0
3 0 0 0 0 1
...

...
. . .

...
F − 1 0 1 0 · · · 0 0
F 0 0 0 1 0

and males of type i, as derived from female reports. The consistency of male and female reports
can then be assessed by comparing µMij and µFji.

Rarely would we expect that such a census of all members of a population could be carried out,
so we turn our attention to data obtained through egocentric samples. While mixing totals reported
by sampled males and females still take on the general form of Table 2, the population-level reports
NM and NF are replaced by their corresponding sample quantities nM =

{
nM11 , n

M
12 , . . . , n

M
IJ

}
and nF =

{
nF11, n

F
12, . . . , n

F
JI

}
, based on sample totals m = {m1,m2, . . . ,mI} for males and

f = {f1, f2, . . . , fJ} for females. Thus, models for expected mixing totals based on survey data
must incorporate the sex-specific mixing matrices nM and nF . With egocentric samples, part-
ners nominated by respondents are likely to fall outside the sample, so the observed mixing totals
reported by males need not match those given by females.

To make this clear, suppose the network of partnerships in the population is given by the
sociomatrix shown in Table 3. The egocentric sample is represented by the black rows and columns
of the sociomatrix, and partnerships between respondents in the egocentric sample fall in the grey
cells. Partnerships with people outside of the sample fall in the black cells. For samples that
are small relative to the population size, we would expect few (if any) partnerships to fall in the
intersection of sampled males and females and, consequently, would not expect the mixing matrices
corresponding to male and female reports to be replicates, even with no reporting error.

A sociomatrix of partnerships like that presented in Table 3 can be condensed into multi-way
contingency tables for males and females where each dimension of the table corresponds to each
of the possible types for the opposite sex and each of these dimensions is stratified by the possible
number of partnerships with this type. Such tables are able to account for the within-person
dependence of partners, but, as discussed later, are also sparse when used in the context of fertility
and sexual partnerships. Consequently, the standard approach has been to use mixing matrices of
the form shown in Table 2. Such an approach makes the simplifying assumption that partnerships
are independent and identically distributed for people of the same sex and type. This means that,
for all males of type i (whether they have multiple partners or not), each partner has the same
probability of being of type j. At the same time, for all males of type ` (whether they have multiple
partners or not), each partner has the same probability of being of type j, although this probability
need not be the same as that for males of type i.

3. Log-linear Models for Expected Mixing Totals for Egocentric Samples

The distribution of nM and nF will in part determine appropriate models for expected mixing
totals µM and µF . Following the generative process developed in Morris (1991), we assume that
the number of partnership opportunities for individuals is determined by a Poisson process, and
the conditional distribution of the number of partnerships given a specific number of opportuni-
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ties is binomial. Then the mixing totals can be shown to be distributed according to a Poisson
distribution, and it is natural to model expected mixing totals using a log-linear model.

We specifically consider models of the form

log
(
µM(S)

)
= Xλ

log
(
µF(S)

)
= Xλ+ γ

(1)

where µM(S) and µF(S) are IJ × 1 vectors representing expected mixing totals corresponding to
sample mixing totals nM and nF , X is an IJ × p design matrix, λ is a p × 1 vector, and γ is an
IJ × 1 vector. It should be clear that these separate models for the two mixing matrices can be
modelled simultaneously through

log
(
µ(S)

)
= X∗λ∗ (2)

where µ(S) =
(
µM(S), µF(S)

)
, λ∗ = (λ, γ), and X∗ is a 2IJ × (p+ IJ) matrix given by

X∗ =

[
X 0
X IIJ

]
(3)

where IIJ is the identity matrix of size IJ and 0 is a zero matrix.
The design matrix X can take on a variety of forms, but we will assume a saturated model using

dummy coding. Under such a specification and when considering reported partnerships between
males of type i and females of type j, (1) takes on the form

log
(
µ
M(S)
ij

)
= λ+ λMi + λFj + λMFij

log
(
µ
F(S)
ji

)
= λ+ λMi + λFj + λMFij + γij

(4)

subject to the constraints

λM1 = 0, λF1 = 0,
λMFi1 = 0, i = 1, . . . , I, λMF1j = 0, j = 1, . . . , J.

Under this parameterisation, the λ parameters are interpretable strictly in terms of male re-
ports, whereas the γ parameters are interpretable as comparisons of female reports with male
reports. Specifically, λ denotes the expected sample partnership total between males and fe-
males of type 1 according to male reports, first order effects

(
λM =

{
λM2 , λM3 , . . . , λMI

}
and

λF =
{
λF2 , λ

F
3 , . . . , λ

F
J

})
are interpretable as conditional log-odds within type 1 for each sex for

male reports only, and second order effects
(
λMF =

{
λMF22 , λMF23 , . . . , λMFIJ

})
are interpretable as

log-odds ratios and represent deviations from independence (again, specific to male reports). The
parameters γ = {γ1, γ2, . . . , γIJ} provide cell-specific comparisons of expected sample mixing to-
tals from female reports with the corresponding expected sample mixing totals from male reports
through

γij = log

(
µ
F(S)
ji

µ
M(S)
ij

)
.

Note that the saturated model we have proposed produces cell estimates no different than those
produced by a saturated model for a three-way table where the dimensions of the table correspond
to the sex of the respondent, the type of the respondent, and the type of the partner. In other
words, the model given by (4) produces expected mixing totals identical to those of the model
given by

logµ
(S)
ijk = λ+ λXi + λYj + λZk + λXYij + λXZik + λYZjk + λXYZijk ,

where µ
(S)
ijk denotes the expected sample total number of partnerships reported by people of sex i

and type j with partners of type k, X denotes the sex of the respondent, Y denotes the type for
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the respondent, and Z denotes the type for the partner. The benefit of the parameterisation that
we propose is that, when our models are represented in terms of expected (population) mixing
totals (instead of sample mixing totals), γ provides direct comparisons of corresponding male and
female reports for partnerships between males and females of specific types, so these parameters
indicate where the inconsistencies in male and female reports occur and the magnitudes of those
differences.

4. Incorporating Sample Weights

To show how this sample-level modelling approach relates to a population-level modelling approach
and generalise to sample designs other than simple random sampling, suppose that mi of the Mi

males of type i are sampled and fj of the Fj females of type j are sampled, producing a total sample

size of p =
∑I

i=1mi +
∑J

j=1 fj . Then corresponding to males 1, 2, . . . ,mi of type i are sample

weights wMi1 , w
M
i2 , . . . , w

M
imi

, where the sample weights are the inverse of the inclusion probabilities

πMi1 , π
M
i2 , . . . , π

M
imi

. Similarly, females 1, 2, . . . , fj have sample weights wFj1, w
F
j2, . . . , w

F
jfj

. These

sample weights are typically normalised to sum to the overall sample size p, so
∑I

i=1

∑mi

k=1 w
M
ik +∑J

j=1

∑fj
`=1 w

F
j` = p. How these sample weights are incorporated into analyses depends in part on

the sample design.

4.1. The Clogg and Eliason Approach
Historically, the standard approach for incorporating sample weights in log-linear models for con-
tingency tables has been that developed by Clogg and Eliason (1987), which takes the following
approach. Suppose each respondent reports one or fewer partnerships (i.e. contributes to no more
than one cell of the mixing matrix). Corresponding to mixing totals nMij and nFji are mean sample

weights wMij and wFji, respectively, where wMij is the mean of the sample weights of all males of type

i who report a female partner of type j, and wFji has a similar interpretation for females. Then

wMij
P
p gives the population-adjusted aggregate of the sample weights of all males of type i who

report partnerships with females of type j, and wFji
P
p gives the corresponding population-adjusted

aggregate of the sample weights of all females of type j who report partnerships with males of
type i. The expected (population) partnership totals µMij and µFji for male and female reports,
respectively, are then given by

E
[(
wMij

P
p

)
nMij

]
= µMij

E
[(
wFji

P
p

)
nFji

]
= µFji,

(5)

so wMij , wFji, and P
p are offsets. This means that the models given by (1), (2), and (4) can all be

represented as population-level models (i.e. in terms of µM, µF , and µ instead of µM(S), µF(S),
and µ(S)) by incorporating these offsets, allowing for interpretation of parameters at the population
level. Note that it can be easily shown that the scalar P

p only influences λ for the model given by

(4), so all first- and second-order effects remain unchanged, as does γ. This makes the inclusion of
P
p as an offset optional if interest lies solely in comparisons among cells of the mixing matrices.

Extending this to the case where respondents can potentially report multiple partnerships, we
recall the simplifying assumption that partnerships are independent and identically distributed for
people of the same sex and type. Then sampled male k of type i can contribute to the mixing
matrix multiple times, each time with a weight of wMik . This means that wMij and wFji are calculated
as the mean of the sample weights corresponding to the partnerships, not people, contributing to
a particular cell of the mixing matrix, and (5) still holds.

In general, the Clogg and Eliason approach produces unbiased estimates of expected mixing
totals but incorrect standard errors, as it treats wMij and wFji as fixed (hence, making them offsets)
when, in fact, they are random (Loughin and Bilder, 2011). Skinner and Vallet (2010) show that
using mean cell weights as offsets produces both correct estimates and correct standard errors only
when
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(a) all sample weights are the same (as in simple random sampling) or
(b) the sample weights are the same for a given cell of the mixing matrix (i.e. there is no within-

cell variability of sample weights) and this is true for each cell of the mixing matrix.

Under more complex sampling schemes, failure to account for the within-cell variability of sample
weights leads to underestimation of standard errors.

4.2. The Skinner and Vallet Approach
Suppose sampling is done with unequal probabilities (according to a Poisson sampling design),
and sample weights corresponding to at least one cell of the mixing matrices are not all constant.
Then the correct variance-covariance matrix can be obtained using linearisation. Consider the

model given by (2), which is simply a unified representation of (1), and let VCE

(
λ̂∗
)

denote the

variance-covariance matrix of λ̂∗ under the Clogg and Eliason approach. Skinner and Vallet (2010)

derive the (large-sample) variance-covariance matrix of λ̂∗ as

VSV

(
λ̂∗
)

= VCE

(
λ̂∗
)

+ VCE

(
λ̂∗
)(2IJ∑

i=1

µ
(S)
i c2iX

∗′
i X

∗
i

)
VCE

(
λ̂∗
)

(6)

where µ
(S)
i is the ith expected sample mixing total (corresponding to µ(S) =

(
µM(S), µF(S)

)
), c2i is

the squared coefficient of variation for the sample weights corresponding to the cell of the mixing
matrix for µi, and X∗i is the ith row of X∗ as given in (3). Since µ(S) is unknown, it is replaced
with the observed mixing totals n =

(
nM, nF

)
, and the square root of the diagonal of the resulting

matrix produces the correct standard errors.
If the sample design is more complex, such as a stratified, cluster, or multi-stage sample, Skinner

and Vallet advocate a pseudo-likelihood approach based on the census likelihood. In this approach,
mean cell weights are used to scale sample mixing totals to (or at least proportional to) population
size, and the population-level likelihood function (i.e. the model given by (2) but now modelling
µ, not µ(S)) is maximised for λ∗ according to these weighted sample totals. Correct standard
errors can then be obtained using the jackknife or bootstrap, both of which are dependent on the
particular sampling scheme.

5. Application: The 1992 National Health and Social Life Survey

As an application of the methods developed in this paper, we assess the reports of concurrent
sexual partnerships in the National Health and Social Life Survey (NHSLS), specifically examining
the consistency of males and females in terms of their reports of partnerships with people of
various ethnicities. The NHSLS is a cross-sectional survey of 3,432 males and females in the
United States ages 18 to 59 years, and we focus on the 1992 survey. Questions centered on sexual
behaviours and attitudes, and detailed information was collected in regard to sexual partnerships,
including demographic characteristics of partners (such as age and ethnicity) and when partnerships
began and ended. Concurrent partnerships were determined by those partnerships that had not
terminated at the date of the interview.

Sampling of individuals for this survey was done using a stratified, cluster sample with blacks/
African Americans and Hispanics overrepresented relative to the population as a whole (Laumann
et al., 1994, Appendix B). Variables that would enable us to replicate the design (such as geographic
cluster) were not available so as to preserve respondent anonymity, however, so we could not
incorporate the exact sample design in our calculations of parameter standard errors. As the next
best option, we instead treated partnership totals as being obtained through a Poisson sampling
design. For such a design, only the mixing matrices, mean cell weights, and corresponding within-
cell variances are needed to obtain correct standard errors using (6).

Of those who reported partners, one male failed to provide his ethnicity, one male and one
female did not report their ages, one male and two females failed to report the sex of partners,
fifty-four males and forty-seven females did not report the age of partners, and seven males and
twelve females failed to report the ethnicity of partners. In all cases, these observations were
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Fig. 1. Reported degree distributions and resulting degree distributions when eliminating reports with incom-
plete respondent or partner information or invalid ages for males (left) and females (right).
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Table 4. Mixing totals between white and black/African-American males and females, as reported by
males (left) and females (right).

Females
White Black

Males White 1,110 6
(Respondent) Black 26 246

Males
White Black

Females White 1,094 31
(Respondent) Black 4 306

removed, and remaining observations were post-stratified based on similarity of respondent and
nominated partner sex, respondent and nominated partner age (treated as a binary variable de-
noting whether or not the age was between 18 and 59), and respondent and nominated partner
ethnicity to that of removed observations. For instance, the one female who failed to report her
age was black/African American and reported a partnership with a black/African-American male
with unspecified age. Post-stratification in response to the removal of this observation was applied
to all other black/African-American females reporting partnerships with black/African-American
males. After post-stratification, one observation was removed because the respondent was outside
of the prescribed age range of the study, and an additional 164 observations were removed because
nominated partners fell outside of the prescribed age range. These exclusions were necessary to
better ensure a closed population, and the resulting reported and used degree distributions for
males and females are shown in Figure 1.

Due to sparse mixing matrices when considering all ethnicities recorded in the NHSLS, we
restricted our analysis to partnerships between ethnicities labeled as white and black/African-
American. Male and female reports of concurrent partnerships, stratified by these two ethnicities,
are presented in Table 4. For both male and female respondents, the overwhelming majority of
reported partnerships are with partners of the same ethnicity as the respondent. Mean sample
weights by cell corresponding to these partnership totals, along with corresponding within-cell
variances of sample weights, are presented in Table 5 and show higher mean sample weights (and
corresponding variances) for partnerships reported by white males and females than for partnerships
reported by their black/African-American counterparts. The higher mean sample weights are the
direct result of the overrepresentation of blacks/African Americans in the survey. Similarly, mean
sample weights (and corresponding variances) for white and black/African-American males are
higher than those of their female counterparts, indicative of oversampling of females. Recall that
these mean sample weights and corresponding variances are based on assigning an individual’s
sample weight to each partnership reported by that person.

Fitting a log-linear model of the form given by (4) and adjusting standard errors according to (6)
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Table 5. Male reports (left) and female reports (right) of mean sample weights (and corresponding variances)
corresponding to mixing totals between white and black/African-American males and females.

Females
White Black

Males White 1.235 (0.437) 1.293 (0.692)
(Respondent) Black 0.850 (0.241) 0.795 (0.247)

Males
White Black

Females White 1.022 (0.275) 0.935 (0.441)
(Respondent) Black 0.716 (0.020) 0.655 (0.188)

Table 6. Parameter estimates, standard errors, and p-values for the model
fitting separate mixing totals for male and female reports.

Parameter Estimate Std. Err. z-value p-value
Reference Category:
λ 7.223 0.034 212.179 < 0.001

Main Effects:
λMB −4.128 0.229 −18.028 < 0.001
λFB −5.175 0.487 −10.634 < 0.001

Interaction Effect:
λMF 7.355 0.542 13.572 < 0.001

Cell Mean Comparisons:
γWW

(
µFWW v. µMWW

)
−0.204 0.048 −4.246 < 0.001

γWB

(
µFWB v. µMBW

)
0.271 0.316 0.857 0.391

γBW

(
µFBW v. µMWB

)
−0.996 0.704 −1.415 0.157

γBB

(
µMBB v. µFBB

)
0.025 0.102 0.242 0.809

using R (R Core Team, 2013), we obtain the parameter estimates, standard errors, and p-values
given in Table 6. The main effect λMB provides a comparison of the expected reported number
of partnerships with white females by black/African-American males and the expected reported
number of partnerships with white females by white males, while λFB provides a comparison of the
expected reported number of partnerships with black/African-American females by white males and
the expected reported number of partnerships with white females by white males. In both cases,
we find strong evidence for higher numbers of partnerships between white males and white females
based on male reports. The parameter λMF provides a measure of the tendency for assortative
mixing as opposed to disassortative mixing within male reports. The highly significant positive
value of this interaction effect provides strong evidence of assortative mixing by ethnicity based on
male reports, consistent with what we see in the observed mixing matrix from male reports.

Primary interest lies in those parameters that provide a direct comparison of expected mixing
totals corresponding to male and female reports, and these are highlighted in grey. Based on
the Wald tests for these parameters presented in Table 6, we find clear inconsistencies in white
male and female reports of partnership totals with each other (p-value < 0.001) with white males
reporting an estimated 1.226 (1.116, 1.348) times as many partnerships with white females as what
white females report with white males. In spite of these inconsistencies in white male and female
reports of partnerships with each other, the results are largely in agreement with the theory of
Morris (1993) where we would expect male and female reports to be fairly consistent for concurrent
partnerships, as all other Wald tests fail to suggest significant differences in male and female reports
of partnership totals based on ethnicity.

6. Application: The 2002 National Survey of Family Growth

As a second application, we consider fertility reports by males and females in the 2002 National
Survey of Family Growth (NSFG). The NSFG is a cross-sectional survey that has included a total
of six cycles between 1973 and 2002 (before being conducted over five year spans since 2006).
Cycle 6 in 2002 was the first to include both men and women and consisted of 4,928 men and 7,643
women 15–44 years of age. Participants were queried about biological children, behaviours that
may impact on fertility, family structure, and a variety of demographic characteristics. Participants
also reported information on children and partners.

The actual design of the 2002 NSFG was quite involved. A national multi-stage cluster sample
was used to select households from which an individual was randomly selected with probability
related to sex, age, race and ethnicity, and household size. Complicating this was that the sample
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design was not effective in sampling Hispanic households (and, consequently, individuals), so a
second multi-stage cluster sample with some overlap in sampled primary sampling units was ob-
tained to produce greater Hispanic representation. (Full details of the sample design are provided
in Lepkowski et al. (2006).) As with the NHSLS, not all variables needed to replicate the sample
design were available, so we resorted to treating birth totals as being obtained through a Poisson
sampling design.

While both men and women were included in the survey, they were subjected to different
questionnaires. Men were asked about children in the context of current and previous wives or
partners, as this was believed to elicit the most accurate reporting of biological children (National
Center for Health Statistics, 2004). However, information was collected for only the current wife or
partner, three previous wives or partners, and first wife or partner for each man. Women, on the
other hand, were asked directly about their children, and information was collected about each of
these children as well as the fathers corresponding to them. This difference in questionnaires led
to complications with each sex. For men, the list of partners for whom they were queried did not
necessarily include all women with whom they had produced a child, so information was missing
for some children and their mothers. For women, on the other hand, information was collected for
each child, but the information collected for fathers lacked the level of detail that was achieved in
males’ reports about wives and partners.

Given the limited information on female partners, we considered the consistency of males and
females in terms of reported number of biological children produced with partners born between
certain years. In particular, we considered males born between 1957 and 1985 and females born
between 1957 and 1986 to ensure a closed population based on year of birth. While birth years of
respondents and birth years of mothers as reported by fathers were easily ascertained, the birth
years of fathers as reported by mothers required certain assumptions, as females did not report
birth years of the father but instead only the father’s age at the birth of the child. For a given
child, this meant that the birth year of the father could only be narrowed down to one of two years.
In addition to this uncertainty, there was no unique indicator for the father. Consequently, it is
possible that a woman reporting multiple children could have produced them with different fathers,
even if the birth years for the fathers were all the same. Taking into consideration these issues, we
first assumed that, for women reporting multiple children, if the possible birth years of the fathers
for successive children were within one year of each other, then these fathers were in fact the same
person. Second, while multiple children reported for the same father could sometimes eliminate
one of the two possible birth years, in some cases this simply made one of the two birth years more
probable based on the birth months of the children and the known age of the father when those
children were born. In these cases (and in all cases where only one child was reported), the birth
year of the father was imputed based on a Bernoulli distribution with probabilities corresponding
to the probability that the father was born in either of the two possible years.

Once birth years for the father were determined or imputed, mixing matrices could be con-
structed for both male and female reports of fertility. These matrices consisted of total numbers
of children produced by males and females born within the years under consideration for each sex
and for which birth year information could be ascertained for both the mother and the father. For
males, only 64.7% of the 1,731 males reporting having had any children provided complete birth
year information for the mothers of all of their children, and 71.6% of the 3,492 reported childbirths
contained complete information and could be used in our analysis. For females, 53.5% of the 5,033
females reporting having had any children provided complete information for the fathers of all of
their children, and 66.4% of the 13,593 reported childbirths contained complete information and
could be used. The actual number of cases used was less than this, however, due to restricting our
analyses to males born between 1957 and 1985 and females born between 1957 and 1986. For both
male and female reports, weights were post-stratified by respondent’s birth year to adjust for the
missingness of the partner’s birth year.

While we could have restricted our analyses to individuals for which complete information was
available for all children, we opted to use all reported births where complete information for the
father and mother was available. The resulting degree distributions (where we now use “degree”
to refer to the number of reported biological children) for males and females based on children for
whom complete parent birth year information is available shows a noticeable shift from reported
degree distributions in terms of number of biological children that respondents claimed. These
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Fig. 2. Reported degree distributions and resulting degree distributions when eliminating reports with incom-
plete child or partner information for males (left) and females (right).
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Table 7. Male reports (top) and female reports (bottom) of the num-
ber of children produced by males and females born between specified
years.

Females
1957–1966 1967–1976 1977–1986

Males
1957–1966 904 339 12

(Respondent)
1967–1976 89 747 106
1977–1985 2 25 120

Males
1957–1966 1967–1976 1977–1985

Females
1957–1966 2,571 238 3

(Respondent)
1967–1976 1,179 2,473 102
1977–1986 59 523 510

comparisons of the reported degree distributions and degree distributions from births used in
computing mixing totals from both male and female reports are presented in Figure 2. Since only
respondents who report children contribute to the mixing totals, only degrees of one or higher are of
interest, and, not surprisingly, we note that there is substantial missingness in partner information
for both males and females reporting large numbers of children.

We wanted to examine mixing based on birth year, but, due to sparse mixing matrices when
considered mixing based on individual birth years, we chose to group years into ten year blocks
for females and similar blocks for males (with the exception of the last block, which consisted
of nine years). This produced the mixing totals and corresponding mean sample weights and
variances given in Table 7 and Table 8, respectively. As we might expect, most births were reported
with partners within the same age category as the respondent, and partnerships outside of the
respondent’s age category typically involved a male who was older than the female. Also, the much
higher mean cell weights corresponding to the mixing matrix produced by male respondents is as
expected, given the oversampling of females relative to males.

Again fitting a model of the form given by (4) and using the Skinner and Vallet adjustment for
standard errors, we obtain the parameter estimates, standard errors, and p-values shown in Table 9.
The parameters of interest, again highlighted in grey, represent direct comparisons of corresponding
cells of the mixing matrix for male reports and the mixing matrix for female reports, and Wald tests
on these parameters provide strong evidence for incongruities in these reports, save for two cases
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Table 8. Mean sample weights and corresponding variances for male reports
(top) and female reports (bottom) of the number of children produced by males
and females born between specified years.

Females
1957–1966 1967–1976 1977–1986

Males
1957–1966 2.937 (9.793) 2.043 (2.864) 3.629 (17.888)

(Respondent)
1967–1976 2.377 (2.741) 2.351 (3.552) 2.590 (8.031)
1977–1985 2.139 (0) 1.951 (1.205) 2.326 (3.143)

Males
1957–1966 1967–1976 1977–1985

Females
1957–1966 1.629 (4.151) 1.187 (0.685) 0.817 (0.049)

(Respondent)
1967–1976 1.147 (0.679) 1.039 (0.619) 1.213 (1.555)
1977–1986 1.007 (0.764) 1.123 (0.872) 1.208 (0.680)

Table 9. Parameter estimates, standard errors, and p-values for the model fitting separate mixing totals for male and
female reports.

Parameter Estimate Std. Err. z-value p-value
Reference Category:
λ 7.884 0.033 236.905 < 0.001

Main Effects:
λM67−76 −2.530 0.111 −22.715 < 0.001
λM77−85 −6.431 0.708 −9.085 < 0.001
λF67−76 −1.344 0.064 −21.082 < 0.001
λF77−86 −4.110 0.308 −13.355 < 0.001

Interaction Effects:
λMF67−76,67−76 3.461 0.129 26.778 < 0.001
λMF67−76,77−86 4.371 0.340 12.858 < 0.001
λMF77−85,67−76 3.778 0.738 5.119 < 0.001
λMF77−85,77−86 8.288 0.777 10.673 < 0.001

Cell Mean Comparisons:
γ57−66,57−66

(
µF57−66,57−66 v. µM57−66,57−66

)
0.456 0.046 9.935 < 0.001

γ1957−1966,1967−1976

(
µF1967−1976,1957−1966 v. µM1957−1966,1967−1976

)
0.669 0.065 10.278 < 0.001

γ1957−1966,1977−1986

(
µF1977−1986,1957−1966 v. µM1957−1966,1977−1986

)
0.311 0.351 0.885 0.376

γ1967−1976,1957−1966

(
µF1957−1966,1967−1976 v. µM1967−1976,1957−1966

)
0.289 0.132 2.183 0.029

γ1967−1976,1967−1976

(
µF1967−1976,1967−1976 v. µM1967−1976,1967−1976

)
0.381 0.044 8.563 < 0.001

γ1967−1976,1977−1986

(
µF1977−1986,1967−1976 v. µM1967−1976,1977−1986

)
0.761 0.113 6.731 < 0.001

γ1977−1985,1957−1966

(
µF1957−1966,1977−1985 v. µM1977−1985,1957−1966

)
−0.557 0.926 −0.602 0.547

γ1977−1985,1967−1976

(
µF1967−1976,1977−1985 v. µM1977−1985,1967−1976

)
0.930 0.246 3.776 < 0.001

γ1977−1985,1977−1986

(
µF1977−1986,1977−1985 v. µM1977−1985,1977−1986

)
0.792 0.106 7.467 < 0.001

(reports of children produced by males born 1957–1966 and females born 1977–1986, and males
born 1977–1985 and females born 1957–1966, both of which correspond to cells with low counts
in both mixing matrices). In all cases where Wald tests are significant, parameter estimates are
positive, corresponding to females reporting significantly higher numbers of children. This appears
to be in line with what we might expect, given the observed differences between males and females
in both reported and used distributions shown in Figure 2.

7. Discussion

The modelling approach we have described can be easily implemented for any situation where
two disjoint sets separately report shared events, and it provides a mechanism to quickly highlight
whether the reports are inconsistent and, if so, where these inconsistencies occur. We demonstrated
the use of our approach for male and female reports of sexual partnerships in the NHSLS and
fertility in the NSFG and, in both instances, showed inconsistencies in male and female reports. In
the case of fertility, inconsistencies were more widespread. Note that, while our method highlights
inconsistencies, it does not explain the reasons for them. Nevertheless, it provides a mechanism
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by which to determine where the researcher should further investigate to determine the causes for
inconsistent reporting. For instance, while the focus may be on reporting error, differences could
also appear due to sampling bias. In the case of our analysis of fertility reports in the NSFG,
imputation of fathers’ birth years also comes into play. Additionally, for a fair comparison of the
two sets of reports, this should be done on a closed population. While we have restricted analyses
to males and females of certain ages (in the case of the NHSLS) and males and females born in
certain years (in the case of the NSFG) in an attempt to achieve this, there are segments of the
population, such as those who are incarcerated, who may be nominated by respondents as partners
or fathers but themselves cannot be sampled. Should they behave significantly different from the
population as a whole and represent a significant portion of a population or sub-population (such
as a particular sex or race), they could substantially impact on these comparisons.

An admitted weakness of our modelling approach is its treatment of multiple reports of part-
nerships or children by a respondent as being independent and identically distributed, thereby
enabling us to represent mixing totals through a two-way contingency table. While, undoubtedly,
modelling these multiple reports by a respondent through multi-way contingency tables provides
an improvement in terms of capturing the dependence structure for reports by an individual, it
introduces its own problems with significantly more involved modelling and sparse contingency
tables.

To illustrate these issues, we return to our application of assessing the consistency of male and
female reports of concurrent partnerships in the NHSLS. There, we considered partnerships between
white and black/African-American males. Rather than allow respondents to contribute multiple
times to the mixing matrix, we could instead consider separate three-way tables to represent
reported partnership totals from male reports and female reports. An example of such a table for
male reports is provided in Table 10. The first dimension represents the ethnicity of the respondent,
and each successive dimension represents a different possible partner ethnicity. Interpreting one of
the expected cell counts, µMWk1 denotes the expected number of males who are white and have k
white partners and 1 black/African-American partner. It should be clear that there is no expected
cell count for female reports that can be compared to µMWk1 to check for consistency. To assess
consistency, it is necessary to examine the equivalence of linear combinations of expected cell
counts. For instance, to obtain the expected number of partnerships between white males and
white females, as estimated from male reports, one must calculate

k∑
i=1

∑̀
j=1

iµMWij . (7)

and a similar calculation must be carried out to produce the corresponding expected partnership
total from female reports. To get direct comparisons of male and female reports, then, a model for
these multi-way contingency tables must be able to simultaneously model marginal distributions to
allow us to assess consistency of reports, and log-linear marginal models provide a means to do this.
(Aitchison and Silvey (1958), Haber (1985), Haber and Brown (1986), and Lang and Agresti (1994)
developed much of the theory and algorithms for fitting such models, while Bergsma et al. (2009)
provides a recent comprehensive examination of the theory, applications, and implementation of
these models.)

In spite of the existence of these models, properties of estimators and standard errors for these
models under complex sample designs are not well understood, so extensions to even a Poisson
sampling design are not straightforward. Even if they were, this does not address the more pressing
problem of tables like Table 10 tending to be sparse, especially when considering fertility and sexual
partnerships. In fact, we would expect the majority of cells to be zeros, and approaches such as
artificially inflating zero count cells create issues in terms of assessing the consistency of reports,
especially for sparse tables. In the types of applications we consider, it seems most appropriate to
treat zeros as random/sampling zeros, and parameters corresponding to such zeros are not estimable
in saturated models like those considered, compromising the validity of Wald tests. They may be
estimable for other models, although this depends both on the sparsity of the table and the specific
models being considered, and, in general, we recommend caution in interpreting Wald tests for
sparse tables.

To address sparsity in a table like Table 10, we might consider collapsing cells. This introduces a
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Table 10. Three-way table for reported mixing totals from male reports.
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new problem, however, as linear combinations of the form (7) can no longer be computed. In other
words, it is no longer possible to assess the consistency of reports. Artificially inflating empty cells
also creates issues by introducing error in these linear combinations. Consequently, while not ideal,
the assumption of partnerships being independent and identically distributed at least produces a
tractable solution.
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