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SUPPLEMENTARY MATERIAL: MODELING
CONCURRENCY AND SELECTIVE MIXING IN

HETEROSEXUAL PARTNERSHIP NETWORKS WITH
APPLICATIONS TO SEXUALLY TRANSMITTED

DISEASES

By Ryan Admiraal and Mark S. Handcock

Figure S1 is a barplot of the HIV prevalence for sub-Saharan African
countries based on their Demographic and Health Surveys (DHS) estimates
[Demographic and Health Surveys Program, 2015].
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Fig S1: HIV prevalence for males (gray) and females (black) ages 15–49 years
in select sub-Saharan Africa countries. Source: Demographic and Health
Surveys Program [2015].
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S2

S1. The Measurement of Concurrency. Historically, concurrency
has been measured “directly” through individuals’ self-reports of multiple
partnerships being current and sexual or “indirectly” through individuals’
reported first and last sexual encounters with each partner over a prescribed
period of time [Helleringer et al., 2014]. Even within these two approaches
there has been variability in how concurrency has been measured, and, in an
attempt to produce consistency in the way that concurrency is understood
and measured, the UNAIDS Reference Group on Estimates, Modelling, and
Projections [2009] defined concurrency as “Overlapping sexual partnerships
where sexual intercourse with one partner occurs between two acts of inter-
course with another partner.” It produced a series of recommendations in
terms of how concurrency should be measured, including specifying that the
point prevalence of concurrency be the preferred measure of concurrency.
It also supported two additional point estimators for concurrency, and the
descriptions of these three estimators are presented in Table S1.

Estimator Description

Point prevalence of con-
current partnerships

Percentage of the population with concurrent partnerships
at a given point in time, specified to be six months prior to
the interview according to the UNAIDS Reference Group
recommendations.

Cumulative prevalence of
concurrent partnerships

Percentage of the population with concurrent partnerships
over a given period of time, specified to be the year pre-
ceding the interview according to the UNAIDS Reference
Group recommendations.

Proportion of multiple
partnerships which are
concurrent

Percentage of the population reporting multiple partner-
ships (which may be concurrent or may be “sequentially
monogamous”) that also reported concurrent partnerships
over a given period of time, specified to be the year pre-
ceding the interview according to the UNAIDS Reference
Group recommendations.

Table S1
Point estimators for concurrency recommended by the UNAIDS Reference Group on

Estimates, Modeling, and Projections.

The point estimators for concurrency recommended by the UNAIDS Ref-
erence Group are all based on the indirect approach of measuring concur-
rency with the preferred estimator being a retrospective measure at six
months prior to the time of the interview. Although the direct approach
would be expected to be less susceptible to recall bias because it is based on
partnerships at the time of the interview, Helleringer et al. [2014] note that
the direct approach is speculative and, consequently, may be biased. This is
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because a respondent cannot know for certain whether or not partnerships
deemed to be current or ongoing at the time of the interview will produce
an overlap in sexual encounters corresponding to that time point, as this
requires a future sexual encounter involving one of these partners.

Using sexual partnership data collected in KwaZulu-Natal, South Africa,
from surveys following the UNAIDS Reference Group recommendations,
Eaton et al. [2012] suggest that the direct approach appears to produce
positively biased estimates for concurrency for this region with this bias
being attributable almost completely to men under the age of 30. They ex-
amined the point prevalence of concurrency based on a range of retrospective
time points and found that point prevalence for retrospective time points
of 4-6 months was fairly consistent and higher than other time points, sup-
porting the UNAIDS Reference Group recommended retrospective period
of 6 months. In the case of more recent time points, lower estimates may
in part be explained by either long-term partnerships where one partner-
ship has not produced a sexual encounter or by recent partnerships that a
respondent may be reluctant to reveal. For more distant time points, re-
call bias may lead to missing data for sexual encounters or failure to report
partnerships.

In contrast to the findings of Eaton et al. [2012] for South Africa, Goodreau
et al. [2012] found that point prevalence of concurrency was highest at 2
months prior to interview for data from Zimbabwe [NIMH Collaborative
HIV/STD Prevention Trial Group, 2007]. This would suggest that choice
of an appropriate retrospective period for the indirect approach is not nec-
essarily clear and may depend on the anticipated level of recall bias and
frequency of sexual contact for those engaged in concurrent partnerships.
This lends credence to the notion of concurrency being difficult to precisely
define or measure “because it represents a spectrum of different types of
sexual relationships with varying durations and overlaps” [Lurie and Rosen-
thal, 2010], so, even if the proposed form of point estimator is clear, the best
time point at which to measure it is not.

In an attempt to take into consideration partnership duration and length
of overlap of concurrent partnerships, Lagarde et al. [2001] proposed the
“individual indicator of concurrency” (iic) which measures the duration of
overlap in concurrent partnerships and what would be expected based on
the length of these relationships. This produces an individual-specific mea-
sure which can be aggregated to produce a population-level estimate. While
the durations of not only individual partnerships but also overlaps in con-
current partnerships have ramifications for disease transmission, these are
not measures of concurrency in the strict sense but rather can be consid-
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ered as separate vital considerations for the disease transmission process.
(Both partnership durations and duration of overlap of concurrent partner-
ships can be used to inform the parameters governing partnership formation
and dissolution in network-based simulations, but they do not influence the
structure of an initial network, which is the focus of this paper.) The same
could be said for coital frequency (Gaydosh et al. [2013] find some evi-
dence for coital dilution [i.e. less frequent coital events] for those engaged
in concurrent partnerships) and transmission rates per coital event (which
may change depending on the stage of infection for HIV-positive individ-
uals [Hollingsworth et al., 2008]; coinfections of other STDs [Fleming and
Wasserheit, 1999], schistosomiasis [Kjetland et al., 2012], and malaria [Abu-
Raddad et al., 2006]; whether a male is circumcised [Szabo and Short, 2010];
level of condom use [Davis and Weller, 1999]; etc.).

Although the point estimators recommended by the UNAIDS Reference
Group provide a clear measure of concurrency according to the Group’s
proposed definition, they sacrifice additional information that is relevant
to disease transmission. In particular, they provide no information about
just how many partners those with concurrent partnerships tend to have.
Kretzschmar and Morris [1996] propose point estimators that are meant to
incorporate this information in attempting to measure concurrency for a net-
work representing individuals (as nodes) and partnerships (as edges). They
first present estimators based on the degree mean (i.e. average number of
partnerships per person) for the original network and network density (i.e.
proportion of actual partnerships out of total possible partnerships) for a line
graph constructed by letting edges (i.e. partnerships) in the original network
represent nodes and adjacent edges (i.e. concurrent partnerships) represent
an edge between nodes. These are ultimately deemed to be deficient due to
failure to take into consideration the connectedness of the original network
in the case of the first estimator and the percentage of isolates (i.e. indi-
viduals with no partners) in the original network in the case of the second
estimator. A third estimator of network-level concurrency, referred to as the
κ-statistic, was proposed which was also based on the line graph of ties but
could be shown to be a function of the mean and variance of the degree
distribution for the original network. It represents the average number of
concurrent partnerships per partnership in the population of interest. This
proves beneficial in that it does not require full network data for estimation,
so local network (including cross-sectional) data can be used for estimation
of concurrency.

More recent modeling approaches have moved away from point estimators
of concurrency and instead incorporate full momentary degree distributions
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(from now on simply referred to as “degree distributions”), the distribution
of numbers of sexual partnerships for individuals at a given point in time
(e.g. Morris et al. [2009], Hamilton et al. [2008], Carnegie and Morris [2011],
Goodreau et al. [2012]). Degree distributions preserve more of the epidemio-
logically relevant information than a single point estimator while being able
to recover both the κ-statistic and point prevalence of concurrency. In par-
ticular, the proportion of the sexually active population with a momentary
degree greater than 1 exactly matches the point prevalence of concurrency.
At the same time, since the κ-statistic is a function of the mean and vari-
ance of the degree distribution, the degree distribution can easily recover
the κ-statistic. Consequently, we use degree distributions rather than more
commonly reported point estimators of concurrency.

Like point estimators for concurrency, degree distributions are flexible
and can be stratified according to a variety of characteristics that may be
associated with prevalence of concurrency. For example, Wellings et al. [2006]
find higher levels of concurrency for men than women based on data from
59 countries including the United States, Australia, China, Chile, and much
of Africa and western Europe. Using data from the 2002 National Survey
of Family Growth, Adimora et al. [2007] find that concurrency is related
to race/ethnicity, and using data from the National Longitudinal Study of
Adolescent Health [Harris et al., 2009], Hamilton and Morris [2015] show
that one-year cumulative prevalence for non-Hispanic black Americans is
roughly double that of non-Hispanic white Americans. Based on data from
South Africa, Eaton et al. [2011] show evidence for higher concurrency for
males aged 20-34 years than other age groups. And, in an examination of
data collected in Zambia, Sandøy et al. [2010] found that engagement in
concurrent partnerships was related to age at first sexual encounter, marital
status, age at marriage, and absence from the home. Stratifying for sex,
age, race, and other factors related to differential rates of concurrency can
help ensure that initial networks for disease modeling more accurately reflect
partnership networks in the population of interest.

S2. The Relationship Between Concurrency and Disease Spread.

S2.1. Arguments for the relevance of concurrency to disease spread. A
number of studies have claimed that concurrency is important in explain-
ing disparities in STI prevalence and the speed with which STIs propa-
gate through a population [Watts and May, 1992, Hudson, 1993, Morris
and Kretzschmar, 1995, 1997, 2000, Kretzschmar and Morris, 1996, Ghani
et al., 1997, Chick et al., 2000, Ghani and Garnett, 2000, Koopman et al.,
2000, Adimora and Schoenbach, 2002, 2005, Adimora et al., 2006, 2007, Do-
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herty et al., 2006, Morris et al., 2007, 2009, Johnson et al., 2009, Mah and
Halperin, 2010, Eaton et al., 2011, Goodreau, 2011, Goodreau et al., 2012,
Kretzschmar and Caraël, 2012, Hamilton and Morris, 2015]. If we consider
a population under serial monogamy, current relationships must end before
infected individuals place other non-infected individuals at risk. With con-
currency, on the other hand, if an individual has concurrent sexual partners
and becomes infected by one, the other partners are placed at risk almost
immediately. Consequently, greater connectivity of a population that is pos-
sible under higher levels of concurrency should theoretically provide a much
more efficient mechanism for disease spread.

In a series of simulation studies, Morris and Kretzschmar [1995, 1997] and
Kretzschmar and Morris [1996] investigated the effects of concurrent part-
nerships on the spread of STD epidemics and found that concurrency led to
much more rapid spread of the epidemic in its initial phase, and the expected
number of infected individuals was approximately an exponential function
of the level of concurrency (as measured by the κ-statistic). A later simula-
tion study using observed levels of concurrency based on data from Uganda
concluded that, under proportional mixing (i.e. random partner selection)
and when compared to serial monogamy, the observed level of concurrency
led to an expected 26% increase in the number of infected individuals in the
population after five years [Morris and Kretzschmar, 2000].

In their examination of HIV prevalence in the African-American pop-
ulation in the United States, Adimora and Schoenbach [2002, 2005] and
Adimora et al. [2006] similarly concluded that concurrency is an important
factor in the disparities observed between blacks and other races. Similarly,
simulations by Morris et al. [2009] showed that, based on observed levels of
concurrency and race-based selective mixing from the National Longitudi-
nal Study of Adolescent Health [Harris et al., 2009], concurrency increased
the predicted disparity in HIV prevalence between non-Hispanic black and
white Americans by a multiplicative factor of 2.6. They found that even
slight changes to the level of concurrency led to dramatic changes in this
predicted disparity, so even small changes in the level of concurrency could
have a significant impact on the spread of the disease.

More recent simulations by Eaton et al. [2011] that take into considera-
tion stage-specific HIV transmission rates based on data from Uganda find
that HIV prevalence grows with the level of concurrency (as estimated by
both point prevalence of concurrency and the κ-statistic), and “Indeed, with
staged transmission, concurrency makes the difference as to whether an epi-
demic can spread at all.” Goodreau et al. [2012] extend the Eaton et al.
[2011] model, allowing for differential concurrency by gender and number of
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cohabiting and non-cohabiting partners.
In these studies, selective mixing is not incorporated for the populations

considered (meaning that random mixing is assumed), and simulations as-
sume populations of equal numbers of men and women. (The lone exception
to this is Morris and Kretzschmar [1995], who incorporate mixing but do
so only for symmetric levels of assortativity [or preferences for partnerships
with those of similar characteristics], meaning that propensities for part-
nerships within subpopulations are the same for all subpopulations, and
propensities for partnerships between subpopulations are constrained to be
equal.) In the case of differential concurrency by gender and other factors as
considered by Goodreau et al. [2012] these were handled in an ad hoc man-
ner, averaging the mean number of partners reported by men and women,
respectively, and recoding partnership information for several individuals
to ensure consistency between male and female reports of total number of
partnerships.

S2.2. Critiques of the concurrency hypothesis. In contrast to previously
cited studies suggesting the importance of concurrency in explaining higher
rates of HIV prevalence in sub-Saharan Africa and for non-Hispanic blacks
in the United States, a number of studies refute the concurrency hypothesis.
Lurie and Rosenthal [2010], Sawers and Stillwagon [2010], and Sawers [2013]
present overviews of empirical evidence for the relationship between concur-
rency and HIV risk, noting discrepancies in how concurrency is measured
across multiple studies, thereby compromising the validity of many compar-
isons used to claim that concurrency is important in explaining HIV risk.
They also present results from studies that fail to find evidence supporting
the concurrency hypothesis. For example, Lagarde et al. [2001] examined
data from urban communities in five sub-Saharan African countries. Using
both the κ-statistic of Kretzschmar and Morris [1996] and the iic, they failed
to find significantly higher HIV prevalence for those communities reporting
higher levels of concurrency. Similarly, Tanser et al. [2011] found an asso-
ciation between number of sexual partners and HIV risk but not between
concurrency and HIV risk using data from KwaZulu-Natal. And Mishra and
Assche [2009] claimed that prevalence of HIV does not seem to be associated
with prevalence of concurrency for community- or national-level models in-
corporating DHS and AIDS Indicator Survey (AIS) data from sub-Saharan
Africa.

Sawers and Stillwagon [2010] and Sawers [2013] also review the model-
based approaches used to support the importance of concurrency in disease
transmission. They highlight common errors in modeling approaches as well
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as specific issues with the assumptions underlying some of the more common
modeling methods, including those originally proposed by Morris and Kret-
zschmar. The errors they mention are wide-ranging, including some model-
ers mistakenly treating cumulative prevalence estimates as point prevalence
estimates of concurrency, the use of unrealistic partnership durations and
coital frequency, and transmission rates that are not data-based or that fail
to take into account the stage of HIV infection.

Relevant to the production of an initial network, Sawers [2013] notes
that a number of studies calculate point prevalence of concurrency using
as the denominator the entire population size rather than the population
of sexually active or experienced individuals. Additionally, the majority of
studies considering heterosexual partnership networks use a single measure
of concurrency for men and women together rather than separately for the
two sexes, and nearly all use populations with equal numbers of men and
women for simulations. We additionally note that, while current modeling
approaches commonly incorporate either momentary degree distributions
(or other measures of concurrency) or selective mixing totals, few account
for the two simultaneously due to the complex relationship between them.
Those that do incorporate both have required simplifying assumptions about
the nature of selective mixing or concurrency.

S3. Parameterizations of Dependence Parameters for Mixing.
The parameterization provided in equation (4) of the paper provides flexi-
bility to consider a variety of dependence structures. For instance, if we want
to model uniform homophily (i.e. symmetric assortative mixing), we set

αij =

{
α, i = j
γ, i 6= j

for constants α and γ, and estimated propensities for partnerships with a
person of the same type will be identical across all types. We might also con-
sider modeling differential homophily (i.e. asymmetric assortative mixing),
in which case same-type propensities need not be the same across types. For
differential homophily, we set

αij =

{
αi, i = j
γ, i 6= j.

S4. Maximum Likelihood Estimators for Degree Distribution
and Mixing Parameters. To jointly estimate the degree distributions
πM =

{
πM1 , . . . , πMI

}
and πF =

{
πF1 , . . . , π

F
J

}
and mixing totals µ =
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(µij)1≤i≤I,1≤j≤J described in §3 of the paper, we use the joint likelihood

of πM, πF , and α = (αij)1≤i≤I,1≤j≤J given by

L
(
πM, πF , α

)
=

 I∏
i=1

J∏
j=1

exp

(
− 2(

∑F
k=0 kπ

M
ik mi)(

∑M
`=0 `π

F
j`Fj)

(
∑I

i=1

∑F
k=0 kπ

M
ik Mi)+(

∑J
j=1

∑M
`=0 `π

F
j`Fj)

αij

)
nMij !

·

 2
(∑F

k=0 kπ
M
ik mi

)(∑M
`=0 `π

F
j`Fj

)
(∑I

i=1

∑F
k=0 kπ

M
ik Mi

)
+
(∑J

j=1

∑M
`=0 `π

F
j`Fj

)αij
nMij

·
exp

(
− 2(

∑F
k=0 kπ

M
ik Mi)(

∑M
`=0 `π

F
j`fj)

(
∑I

i=1

∑F
k=0 kπ

M
ik Mi)+(

∑J
j=1

∑M
`=0 `π

F
j`Fj)

αij

)
nFji!

·

 2
(∑F

k=0 kπ
M
ik Mi

)(∑M
`=0 `π

F
j`fj

)
(∑I

i=1

∑F
k=0 kπ

M
ik Mi

)
+
(∑J

j=1

∑M
`=0 `π

F
j`Fj

)αij
nFij


·

[
I∏
i=1

(
mi

dMi0 , · · · , dMiF

)(
πMi0
)dMi0 · · · (πMiF )dMiF

·
J∏
j=1

(
fj

dFj0, · · · , dFjM

)(
πFj0
)dFj0 · · · (πFjM)dFjM

 .(S1)

S5. Estimating Natural Parameters from Mean Value Parame-
ters. To simulate networks consistent with desired mixing totals and de-
gree distributions, we treat the estimated expected degree distributions and
mixing totals as mean value parameters for an exponential-family random
graph model (ERGM). ERGMs are a class of probabilistic models for net-
works that take on the classic exponential-family form. Holland and Lein-
hardt [1981] considered an instance of this class of models when they pro-
posed the p1 model, a model that assumes independence between dyads.
Later developments by Frank and Strauss [1986], Strauss and Ikeda [1990],
and Wasserman and Pattison [1996] generalized this model to produce the
p∗ model, the standard ERGM. This model takes on the form

P (Y = y| θ) =
exp (θ · g(y))

κ(θ)
,(S2)

where y is a realization of some random network Y, g(y) is a vector of
sufficient statistics, θ is the vector of corresponding natural parameters, and
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κ(θ) is the normalizing constant, given by

κ(θ) =
∑
x∈Y

exp (θ · g(x)) ,(S3)

where Y is the network space. Hunter and Handcock [2006] show that in-
ference can be carried out on an observed network for both standard and
curved ERGMs (ERGMs where θ can be expressed as a non-linear func-
tion of some lower dimension parameter) using Markov chain Monte Carlo
(MCMC) maximum likelihood estimation [Geyer and Thompson, 1992].

In addition to its use in maximum likelihood estimation for ERGMs,
MCMC has the added benefit of providing a mechanism for the simulation of
new networks consistent with a vector of natural parameters θ. Hunter et al.
[2008] describe how this can be done using Gibbs sampling, a Metropolis
algorithm, or a Metropolis-Hastings algorithm. This method is fairly robust,
allowing for the introduction of constraints on a number of network statistics
[Morris et al., 2008].

The expected degree distributions πM and πF and expected mixing to-
tals µ provide population-level estimates, but they cannot be directly used
by an ERGM to simulate networks consistent with these structures. How-
ever, they can be used to estimate the natural parameters θ for an ERGM,
thereby enabling us to simulate the desired networks. To demonstrate how
this is done, suppose we want to estimate the natural parameters θ for a vec-
tor of sufficient statistics g(y). Handcock [2003] represents the mean value
parameterization as

µ(θ) = Eθ [g(Y )] ,(S4)

the expected value over the parameter space of the sufficient statistics.
If we recall the form of the ERGM given by (S2) and corresponding nor-

malizing constant given by (S3), then the logarithm of the ERGM is given
by

logP (Y = y|θ) = θ · g(y)− ψ(θ),

where

ψ(θ) = log

[∑
x∈Y

exp (θ · g(x))

]
.
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Then the mean value parameters (S4) can be expressed as

µ(θ) =
∑
y∈Y

g(y)P (Y = y|θ)

=
∑
y∈Y

g(y)
exp (θ · g(y))∑
x∈Y exp (θ · g(x))

(S5)

=
∂ψ(θ)

∂θ
,

and the covariance matrix corresponding to these mean value parameters is
given by

Σ(θ) =
∑
y∈Y

g(y)2P (Y = y|θ)− µ(θ)Tµ(θ)

=
∑
y∈Y

g(y)
exp (θ · g(y))∑
x∈Y exp (θ · g(x))

g(y)T −

∑
y∈Y

g(y)
exp (θ · g(y))∑
x∈Y exp (θ · g(x))

2

=
∂2ψ(θ)

∂θ · ∂θ
.

In the case where the natural parameters θ are known and the mean value
parameters µ(θ) are unknown, it is straightforward to estimate the mean
value parameters and their corresponding variances by simulating networks
from the network space. If we simulate L new networks y1, . . . , yL indepen-
dently and uniformly for a specific value of θ, then we can estimate µ(θ) and
Σ(θ) by

µ̂(θ) =
1

L

L∑
i=1

g (yi)

and

Σ̂(θ) =
1

L

L∑
i=1

g (yi) g (yi)
T − µ̂(θ)T µ̂(θ),

respectively.
Often, the natural parameters are unknown, but desired mean value pa-

rameters µtarget are known, as these correspond to network statistics that
can be easily calculated from cross-sectional data. Throughout we consider
the case where the natural parameters are finite so that µtarget is inside the
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convex hull of the sample space of g(Y ) [Barndorff-Nielsen, 1978]. Conse-
quently, (S4) takes on the form

µtarget ≡ µ(θtarget) = Eθtarget [g(Y )],

and (S5) takes on the form

µtarget =
∑
y∈Y

g(y)
exp (θtarget · g(y))∑
x∈Y exp (θtarget · g(x))

,

where µtarget, the vector of desired mean value parameters, is known but
θtarget, the vector of corresponding natural parameters, is unknown. Solving
for θtarget(µ) requires that we solve

0 = µtarget −
∑
y∈Y

g(y)
exp (θtarget · g(y))∑
x∈Y exp (θtarget · g(x))

.(S6)

Barndorff-Nielsen [1978] shows that θtarget(µ) exists, is the unique solution
to (S6), and can be found using a root-finding algorithm, such as Newton-
Raphson. Moreover, the Fisher information for θtarget (i.e. the natural pa-
rameterization) is given by Σ(θtarget), and the Fisher information for the
mean value parameter µtarget is given by Σ−1(θtarget).

S6. Assessing the Efficacy of the Statistical Approach. To demon-
strate the efficacy of our method outlined in §3 of the paper, we carry out a
simulation study based on hypothetical populations with differing levels of
concurrency and mixing. For each population, we first demonstrate that the
method used for simultaneously estimating degree distributions and mixing
totals is able to effectively recapture population degree distributions and
mixing totals. Then, using the population degree distribution and mixing
totals as mean value parameters, we show that the method of estimating
natural parameters for an ERGM from mean value parameters and simulat-
ing networks based on those natural parameters is able to generate networks
consistent with the mean value parameters. Finally, we demonstrate that ad-
ditional mean value parameters can be considered, including dyad-dependent
statistics such as 3-paths and 4-cycles, and we are able to simulate networks
consistent not only with degree distributions and selective mixing totals but
also these additional network statistics.

S6.1. Populations for Simulation Studies. Throughout, we consider two
hypothetical populations. The first is a population similar to the popula-
tion of non-Hispanic black and white males and females considered in the
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National Longitudinal Survey of Adolescent Health (Add Health), which
we refer to as “Faux Add Health.” Faux Add Health consists of 20% non-
Hispanic blacks and 80% non-Hispanic whites with equal representation of
males and females. Degree distributions are positively skewed, and there is
strong assortative mixing by race, in line with what is observed for the Add
Health survey. We constrain degree distributions to be the same for males
and females as well as both races, and the common degree distribution as
well as cell-specific dependence parameters for selective mixing are presented
in the top panel of Table S2.

Table S2
Degree distributions for non-Hispanic black and white males and females (top left) and

cell-specific dependence parameters (top right), along with degree totals (bottom left) and
mixing totals (bottom right) based on a population of 2,000 individuals for Faux Add

Health.

Degree Proportion Females
0 0.40 Black White
1 0.50

Males
Black αBB = 6 αBW = 3

8

2 0.06 White αWB = 3
8

αWW = 57
32

3 0.03
4 0.01

Degree
Black White Black White Females
Males Males Females Females Black White

0 80 320 80 320
Males

Black 120 30
1 100 400 100 400 White 30 570
2 12 48 12 48
3 6 24 6 24
4 2 8 2 8

Pop. Size 200 800 200 800

We consider a population of 2,000 individuals where population compo-
sitions, degree totals, and mixing totals for Faux Add Health match those
presented in the bottom panel of Table S2. We also artificially constrain
there to be one hundred and eighty 3-paths and five 4-cycles in the pop-
ulation. Later, we will examine the number of 3-paths and 4-cycles when
demonstrating how additional network statistics can be incorporated in our
method. A plot of the underlying network of partnerships for Faux Add
Health is presented in Figure S2. Note that this plot excludes isolates (i.e.
individuals with no partners) in order to better highlight the structure of
the network of partnerships.

The second population considered is substantially different from Faux
Add Health in terms of racial composition, degree distributions, and se-
lective mixing. This population has equal representation of both races (for
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Fig S2: Network of partnerships between males (circles) and females (trian-
gles) considered for Faux Add Health. The two colors represents different
races.
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both sexes), symmetric degree distributions, and random (or proportional)
mixing. We refer to this population as “Faux Symmetric.” The degree dis-
tributions and cell-specific dependence parameters for Faux Symmetric are
as shown in the top panel of Table S3, and degree and mixing totals for a
population of 2,000 individuals are presented in the bottom panel. For Faux
Symmetric, we constrained the network of partnerships to contain eight
thousand 3-paths and five 4-cycles, and the plot of the network of partner-
ships (excluding isolates) is shown in Figure S3. This network is significantly
more dense than Faux Add Health (2,000 partnerships as compared to 750
for Faux Add Health) due to both significantly lower numbers of isolates and
higher prevalence of individuals of degrees two and higher. While unrealistic
for most all sexual networks, such degree distributions and selective mixing
totals may be reasonable for other types of networks, such as friendship or
acquaintanceship networks.

Table S3
Degree distributions for non-Hispanic black and white males and females (top left) and

cell-specific dependence parameters (top right), along with degree totals (bottom left) and
mixing totals (bottom right) based on a population of 2,000 individuals for Faux

Symmetric.

Degree Proportion Females
0 0.20 Black White
1 0.20

Males
Black αBB = 1 αBW = 1

2 0.20 White αWB = 1 αWW = 1
3 0.20
4 0.20

Degree
Black White Black White Females
Males Males Females Females Black White

0 100 100 100 100
Males

Black 500 500
1 100 100 100 100 White 500 500
2 100 100 100 100
3 100 100 100 100
4 100 100 100 100

Pop. Size 500 500 500 500

For both populations we consider simple random sampling of individuals
(so no stratification by sex or race) with sample sizes constituting 25% of
the total population size, producing a sample size of 500 individuals.

S6.2. Estimating Degree Distributions and Mixing Totals for a Given Pop-
ulation. To demonstrate that our method works well, we first consider si-
multaneous estimation of degree and mixing totals using constrained maxi-
mum likelihood estimation. Using 1,000 random samples of 500 individuals
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Fig S3: Network of partnerships between males (circles) and females (tri-
angles) considered for Faux Symmetric. Isolates are excluded, and the two
colors represents different races.
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from Faux Add Health and estimating population-level degree and mixing
totals based on each sample using the method outlined in §3.1 of the paper,
we obtain the distribution of degree totals presented in Figure S4. These
show the simulated degree distributions for each sex and race being largely
centered on the true population degree totals with only slight deviations for
the number of non-Hispanic black males and females of degree 4.

We note that these deviations are likely to be an artifact of the expected
number of non-Hispanic black males (and females) of degree 4 in the sample
being 0.5, leading to an anticipated 50% of samples having no instances of
such individuals. In such cases, the estimated degree distribution attributes
a probability of 0 to that degree, meaning that the estimated population
total corresponding to that degree is also 0. This explains the median of 0 in
the simulated distributions for degree 4 for both non-Hispanic black males
and females.

If we consider similar simulations but where 1,500 individuals (i.e. 75%
of the population) are sampled for each of the 1,000 simulations, these devi-
ations disappear, and distributions of estimated degree totals are centered
on the true population totals for all degrees, as demonstrated in the case
of non-Hispanic black males and females in Figure S5. As would be antici-
pated under larger sample sizes, the variability in the distribution for each
degree total is reduced from what is observed under sampling of 25% of the
population. The estimated mixing totals are similarly effective in accurately
targeting the true mixing totals, as demonstrated in Figure S6, where the
true population totals again lie squarely in the center of simulated distribu-
tions.

Turning our attention to the Faux Symmetric population, if we carry
out 1,000 separate simple random samples of 25% of the population, our
method is again effective in producing estimated degree and mixing totals
that accurately target the population totals, as demonstrated in Figure S7.
As both races have equal representation in the population and the degree
distribution is symmetric for the set of degrees considered, we would expect
nearly identical distributions for simulated degrees for each race and sex.
This is indeed what we appear to observe in Figure S7. Similarly, because
this population has random mixing, the distribution of estimated selective
mixing totals should be symmetric, and Figure S8 shows this to be the
case. Thus, under both skewed and symmetric degree distributions and both
assortative and random mixing, we find that our method is able to estimate
degree distributions and selective mixing totals that are both consistent with
each other and consistent with the underlying population.
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Fig S4: Estimated degree totals for non-Hispanic black males (top left), non-
Hispanic white males (top right), non-Hispanic black females (bottom left),
and non-Hispanic white females (bottom right) for Faux Add Health under
sampling of 25% of the population. Gray diamonds denote the population
degree totals.
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Fig S5: Estimated degree totals for non-Hispanic black males (left) and fe-
males (right) for Faux Add Health under sampling of 75% of the population.
Gray diamonds denote the population degree totals.
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Fig S6: Estimated mixing totals for Faux Add Health under sampling of
25% of the population. Gray diamonds denote the population mixing totals.
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Fig S7: Estimated degree totals for non-Hispanic black males (top left), non-
Hispanic white males (top right), non-Hispanic black females (bottom left),
and non-Hispanic white females (bottom right) for Faux Symmetric under
sampling of 25% of the population. Gray diamonds denote the population
degree totals.
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Fig S8: Estimated mixing totals for Faux Symmetric under sampling of 25%
of the population. Gray diamonds denote the population mixing totals.

S6.3. Generating Networks Consistent with Estimated Degree Distribu-
tions and Mixing Totals. Next, to show that the natural parameters of an
ERGM estimated from mean value parameters can be used to generate ran-
dom networks consistent with those specified mean value parameters, we
estimate natural parameters for the ERGM given by

logP
(
Y = y|δM, δF , ν

)
=

I∑
i=1

F∑
k=1

δMik D
M
ik (y) +

J∑
j=1

M∑
`=1

δFj`D
F
j`(y)

+

I∑
i=1

J∑
j=1

νijNij(y)− log κ(δM, δF , ν),(S7)

where y is a realization of some random network Y, DMik (y) is the num-
ber of males of type i with momentary degree k, DFj`(y) is the number of
females of type j with momentary degree `, and Nij(y) is the number of
partnerships between males of type i and females of type j. The natural pa-
rameters δM =

{
δM11 , . . . , δ

M
IF

}
, δF =

{
δF11, . . . , δ

F
JM

}
, and ν = {ν11, . . . , νIJ}

correspond to the sufficient statistics DM =
{
DM11 (y), . . . , DMIF (y)

}
, DF ={

DF11(y), . . . , DFJM (y)
}

, and N = {N11(y), . . . , NIJ(y)}, and the expected
value of these sufficient statistics is the vector of mean value parameters.
Here, κ(δM, δF , ν, ζ, γ) is the standard ERGM normalizing constant. We es-
timate the natural parameters using mean value parameters specified by the
population degree distributions and mixing totals and applying the method
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outlined in §S5 of the Supplement. For the estimated natural parameters
and ERGM given by (S7), we simulate 1,000 networks using a burn-in of
100,000 iterations and interval length of 10,000. As explained in §4 of the
paper, in estimating the natural parameters we truncate the degree distri-
butions to ensure identifiability, so natural parameters are only estimated
for degrees 0-3 (as opposed to 0-4) for each sex and race.

Using the population degree and mixing totals for Faux Add Health to
estimate natural parameters for the ERGM given by (S7) and simulating
1,000 networks using this model, we obtain the distributions of simulated
degrees by sex and race presented in Figure S9. These distributions are all
centered on the mean value parameters. Similarly, simulated mixing totals
accurately target the mean value parameters, as shown in Figure S10. We
also present the distribution of 3-paths and 4-cycles for these simulated
networks in Figure S10. Terms were not included in the ERGM for either
3-paths or 4-cycles, meaning that natural parameters were not estimated for
either term, and it is readily apparent that the numbers of 3-paths and 4-
cycles from simulated networks do not target the population totals without
bias.

As before, we consider similar simulations for Faux Symmetric. In this
case, only the mean value parameters (and corresponding estimated natural
parameters) change, so the ERGM is identical, and degree distributions are
truncated in exactly the same manner as when considering Faux Add Health.
As was the case for Faux Add Health, simulated networks produce degree
and mixing totals consistent with mean value parameters, as evidenced by
Figure S11 and Figure S12.

S6.4. Incorporating Additional Network Statistics. Finally, we consider
an expansion of the ERGM specified by (S7) to include terms in addition
to degree distribution and mixing totals. In particular, we focus on 3-paths
and 4-cycles (both examples of dyad-dependent terms), although any of a
number of network statistics could be considered here. The resulting ERGM
considered has the form

logP
(
Y = y|δM, δF , ν, ζ, γ

)
=

I∑
i=1

F∑
k=1

δMik D
M
ik (y) +

J∑
j=1

M∑
`=1

δFj`D
F
j`(y)

+
I∑
i=1

J∑
j=1

νijNij(y) + ζP + γC

−log κ(δM, δF , ν, ζ, γ),(S8)
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Fig S9: Simulated degree totals for non-Hispanic black males (top left), non-
Hispanic white males (top right), non-Hispanic black females (bottom left),
and non-Hispanic white females (bottom right) for Faux Add Health. Gray
diamonds denote the population degree totals.
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Fig S10: Simulated mixing totals (left) and 4-cycles and 3-paths (right) for
Faux Add Health. Gray diamonds denote the population mixing totals, 4-
cycles, and 3-paths.

where parameters and sufficient statistics are as before except that addi-
tional natural parameters ζ and γ are introduced corresponding to sufficient
statistics P and C, which represent the number of 3-paths and 4-cycles,
respectively. If target mean value parameters are known (or else estimable
from full or partial network data) for these additional model terms, then we
can specify these in addition to population degree and mixing totals and ap-
ply the method of §S5 of the Supplement to estimate the natural parameters
for this model.

If we recall the distributions of 3-paths and 4-cycles generated by simu-
lated networks using the model given by (S7) and informed by degree and
mixing totals for Faux Add Health, these produce networks with signifi-
cantly more 3-paths and fewer 4-cycles than what are contained in the Faux
Add Health Population. This is quite clear in Figure S10, where the true
number of 4-cycles in the population (shown by the gray diamond) is at the
extreme of the simulated distribution of 4-cycles, and the true number of
3-paths lies in the lower quartile of the simulated distribution of 3-paths.

If we attempt to estimate natural parameters for (S8) using the population
number of 3-paths (180) and 4-cycles (5) in addition to population degree
and mixing totals as mean value parameters, the model is degenerate. This is
because the targeted number of 4-cycles is extreme, as evidenced by Figure
S10, so the vector of mean value parameters does not lie within the convex
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Fig S11: Simulated degree totals for non-Hispanic black males (top left),
non-Hispanic white males (top right), non-Hispanic black females (bottom
left), and non-Hispanic white females (bottom right) for Faux Symmetric.
Gray diamonds denote the population degree totals.

imsart-aoas ver. 2012/08/31 file: Supplement2.tex date: June 4, 2016



S26

●

●

●●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

BB BW WB WW

45
0

50
0

55
0

Mixing Totals

Mixing Totals for Non−Hispanic Black and White Males and Females

N

Fig S12: Simulated mixing totals for Faux Symmetric. Gray diamonds denote
the population mixing totals.

hull of the sample space corresponding to the vector of sufficient statistics. If
we remove the 4-cycles term but keep a 3-paths term in our model, we obtain
a non-degenerate model, and 1,000 simulations based on this model produces
the simulated distribution of 3-paths shown in Figure S13. These show that
the model is now accurately targeting the desired number of 3-paths, so is
able to at least produce networks consistent with the number of 3-paths in
the population. (Simulated distributions for both degree and mixing totals
are consistent with the target mean value parameters as before.)

For modelers who desire to incorporate a number of network statistics in
their ERGM and use mean value parameters to estimate the corresponding
natural parameters, the model degeneracy highlighted for 4-cycles for Faux
Add Health is problematic, and it is important to understand when this
is likely to occur. A simple diagnostic tool that can be implemented is to
first consider a model consisting of degree and mixing totals and simulate
networks based on this model. This can provide some sense of the sample
space of the statistics corresponding to the other terms in the model, so
one can examine the distributions for the other network statistics of interest
and examine where target mean value parameters lie relative to those dis-
tributions. If, as we observed in the cause of 4-cycles for Faux Add Health,
mean value parameters lie either on or very near the boundary of the convex
hull of the sample space (i.e. at least one targeted mean value parameter
lies at or near the extremes of its corresponding simulated distribution of
statistics), then it can be anticipated that the model will be degenerate, and
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Fig S13: Simulated numbers of 3-paths for Faux Add Health for model in-
corporating degree totals, mixing totals, and a 3-path term. Gray diamonds
denote the population number of 3-paths.

those network statistics for which target mean value parameters lie near the
extremes of simulated distributions will either need to be removed or else
have new targets for specified mean value parameters.

To demonstrate that the issue highlighted for 4-cycles for Faux Add
Health is not a systemic issue, we again consider inclusion of terms for 3-
paths and 4-cycles for Faux Symmetric, using the ERGM given by (S8).
Mean value parameters used include the population number of 3-paths
(8,000) and 4-cycles (5) in addition to degree and mixing totals. None of the
targeted mean value parameters are extreme, and we are able to estimate
the natural parameters for (S8) and simulate parameters consistent with the
ERGM. In the case of 3-paths and 4-cycles, simulated distributions are as
shown in Figure S14 and show that our method is again able to accurately
target the desired mean value parameters. (Again, simulated distributions
for both degree and mixing totals are consistent with the target mean value
parameters.) Thus, our method is flexible and allows modelers to target
a variety of network statistics simultaneously, meaning that modelers can
generate initial networks that are consistent not only with dyad-independent
statistics like momentary degree distributions and selective mixing totals but
also dyad-dependent statistics such as number of 3-paths and 4-cycles.
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Symmetric. Gray diamonds denote the population numbers of 3-paths and
4-cycles.
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