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MODELING CONCURRENCY AND SELECTIVE MIXING
IN HETEROSEXUAL PARTNERSHIP NETWORKS WITH

APPLICATIONS TO SEXUALLY TRANSMITTED DISEASES1

BY RYAN ADMIRAAL AND MARK S. HANDCOCK

Murdoch University and University of California, Los Angeles

Network-based models for sexually transmitted disease transmission rely
on initial partnership networks incorporating structures that may be related to
risk of infection. In particular, initial networks should reflect the level of con-
currency and attribute-based selective mixing observed in the population of
interest. We consider momentary degree distributions as measures of con-
currency and propensities for people of certain types to form partnerships
with each other as a measure of attribute-based selective mixing. Estima-
tion of momentary degree distributions and mixing patterns typically relies
on cross-sectional survey data, and, in the context of heterosexual networks,
we describe how this results in two sets of reports that need not be consis-
tent with each other. The reported momentary degree distributions and mix-
ing totals are related through a series of constraints, however. We provide
a method to incorporate those in jointly estimating momentary degree dis-
tributions and mixing totals. We develop a method to simulate heterosexual
networks consistent with these momentary degree distributions and mixing
totals, applying it to data obtained from the National Longitudinal Study of
Adolescent Health. We first use the momentary degree distributions and mix-
ing totals as mean value parameters to estimate the natural parameters for an
exponential-family random graph model and then use a Markov chain Monte
Carlo algorithm to simulate person-level heterosexual partnership networks.

1. Introduction. In its most recent estimates of human immunodeficiency
virus (HIV) prevalence (or total number of infected individuals at a given point
in time), the World Health Organization (WHO) estimated that the number of peo-
ple worldwide infected with HIV had reached 35 million by the end of 2013, with
approximately 70% of infected individuals living in Africa and the overwhelm-
ing majority of cases in sub-Saharan Africa [World Health Organization (2013)].
Despite the pervasiveness of infections in the Africa region, there is significant
variability in HIV prevalence by country, as demonstrated by Demographic and
Health Surveys (DHS) estimates by country presented in the Supplementary Ma-
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FIG. 1. Gonorrhea incidence by year for males (left) and females (right) in the United States.
(From 2012–2014 the “Asian/Pacific Islander” categorization was no longer used, so totals for that
period strictly represent the “Asian” category.) Source: Centers for Disease Control and Prevention
(2015).

terial, Figure S1, for a subset of sub-Saharan Africa countries [Admiraal and Hand-
cock (2016), Demographic and Health Surveys Program (2015)]. Similar dispari-
ties in the incidence (or new cases) of HIV and other sexually transmitted infec-
tions (STIs) exist across races represented in the United States. For example, Fig-
ure 1 presents yearly incidence of Gonorrhea by race from 2007–2014, as reported
by the Centers for Disease Control and Prevention (2015). This shows significantly
higher incidence for non-Hispanic blacks than other races.

The variability we observe in HIV prevalence across countries in sub-Saharan
Africa and in STI incidence for different races in the United States may be related
to biological factors, such as genetics, or behavioral factors, such as condom use.
However, it may also be related to the structure of the network of partnerships in
the population of interest. In particular, differing levels of concurrent partnerships
(or partnerships overlapping in time) and selective mixing (or tendencies for spe-
cific subpopulations to come into contact with each other) may be important in
explaining disparities.

In this paper, we first explain how selective mixing and concurrent partnerships
(or “concurrency”) may be important in producing differential disease prevalence
according to key characteristics. (In the Supplementary Material, Section 1, we
provide a review of common measures of concurrency, studies supporting the im-
portance of concurrency in explaining STI prevalence, and critiques to commonly
employed modeling approaches [Admiraal and Handcock (2016)].) We propose a
method to simultaneously estimate measures of concurrency and selective mixing
for heterosexual partnerships. This method is applicable to cross-sectional survey
data, meaning that it can be readily applied to the most common forms of sex-
ual partnership data that are increasingly being collected in surveys such as the
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DHS. We explain how this method allows for greater flexibility in disease models,
addressing many of the critiques to current modeling approaches, and we demon-
strate how to generate heterosexual partnership networks consistent with measures
of concurrency and selective mixing. These networks can serve as initial networks
(or seeds) for network-based simulations for STI spread through heterosexual pop-
ulations. Finally, we apply our method to data from the National Longitudinal
Study of Adolescent Health.

2. Selective mixing and concurrency. One posited explanation for the higher
prevalence of HIV in sub-Saharan Africa (and particularly Southern Africa) than
other regions of the world is higher prevalence of concurrency [Morris, Epstein and
Wawer (2010)]. This hypothesis, known as the “concurrency hypothesis,” is pred-
icated on the assumption that HIV is transmitted more quickly through concurrent
partnerships than serial monogamy (or nonoverlapping sequential partnerships).
Where concurrency relates to the rate of disease spread, selective mixing corre-
sponds to transmission of the disease between subpopulations. Limited transmis-
sion between subpopulations can potentially allow a disease to propagate within
subpopulations at different rates, producing different disease prevalence within
subpopulations. Thus, both concurrency and selective mixing are important con-
siderations when examining disparities in disease prevalence between subpopula-
tions, whether these subpopulations be world regions, countries, sexes, races, etc.

2.1. Selective mixing. Selective mixing affects the level of connectivity among
various subpopulations and can be instrumental in explaining how a disease may
spread at different rates through subpopulations. In particular, strong assortative
mixing (or preference for partnerships with those of similar characteristics) can
effectively partition a population, limiting disease transmission from one subpop-
ulation to another and allowing for different rates of disease spread within subpop-
ulations when other factors influencing disease prevalence are different for these
subpopulations. Conversely, if mixing is purely random (i.e., nonpreferential), then
there will be numerous opportunities for disease transmission among subpopula-
tions, leading to only minor differences in disease prevalence when other factors
influencing prevalence are similar. Selective mixing is commonly represented by
a mixing matrix (or contact matrix), where elements of the matrix give the num-
ber of partnerships between subpopulations. We refer to the elements of a mixing
matrix as mixing totals.

A number of studies have considered the importance of selective mixing in ex-
plaining disparities in disease prevalence for subpopulations. Many of these stud-
ies focus on selective mixing based on level of sexual activity [Anderson (1992),
Anderson, Gupta and Ng (1990), Busenberg and Castillo-Chavez (1989), Castillo-
Chavez and Blythe (1989), Gupta, Anderson and May (1989), Jacquez, Simon
and Koopman (1989), Garnett and Anderson (1993a, 1993b), Aral et al. (1999),
Chick, Adams and Koopman (2000), Doherty et al. (2006), Garnett et al. (1996),
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Ghani, Swinton and Garnett (1997), Morin et al. (2014)]. This is because much of
the early incentive for considering selective mixing centered on the idea of a core
group characterized by high levels of sexual activity (e.g., sex trade workers and
their clients) being the primary agents of spread [Garnett and Anderson (1993a)].
Because the pervasiveness of the disease was then dependent on the frequency of
partnerships between people with high levels of sexual activity and people with
lower levels of sexual activity, selective mixing based on level of sexual activity
was important in explaining disease spread.

Morris (1997) argues that the evidence supporting core groups as the primary
mechanism for concentrated epidemics is strong, but this does not seem to be the
primary mechanism for generalized epidemics (defined as greater than 1% preva-
lence in the entire population). Many sub-Saharan African countries have been
experiencing generalized epidemics of HIV where new infections are no longer
primarily the result of partnerships between people with high sexual activity levels
and people with lower activity levels, and so the core group is no longer the driv-
ing force behind the epidemic. Consequently, a number of studies have considered
attribute-based mixing (e.g., race, age, education, disease status) [Hyman and Stan-
ley (1988), Busenberg and Castillo-Chavez (1989), Morris (1991, 1994, 1995),
Aral et al. (1999), Morris et al. (2009), Morin et al. (2014), Hamilton and Morris
(2015)]. Morris et al. (2009) and Hamilton and Morris (2015) assert that strong
assortative mixing by race, coupled with different levels of concurrency, is a plau-
sible explanation for the disparities we observe in HIV (and other STI) prevalence
across different races in the United States. If we consider sub-Saharan Africa, few
sexual partnerships occurring between individuals from different countries would
allow for different rates of HIV spread within individual countries, possibly par-
tially explaining the heterogeneity in HIV prevalence we observe.

2.2. Concurrency. Where selective mixing relates to connectivity of subpop-
ulations and disease transmission between subpopulations, concurrency relates to
connectivity of individuals and disease spread between individuals, and a num-
ber of studies have claimed that concurrency is important in explaining dis-
parities in STI prevalence and the speed with which STIs propagate through
a population [Watts and May (1992), Hudson (1993), Morris and Kretzschmar
(1995, 1997, 2000), Kretzschmar and Morris (1996), Ghani, Swinton and Garnett
(1997), Chick, Adams and Koopman (2000), Ghani and Garnett (2000), Koopman
et al. (2000), Adimora and Schoenbach (2002, 2005), Adimora, Schoenbach and
Doherty (2006, 2007), Doherty et al. (2006), Morris, Goodreau and Moody (2007),
Morris et al. (2009), Johnson et al. (2009), Mah and Halperin (2010), Eaton, Hal-
lett and Garnett (2011), Goodreau (2011), Goodreau et al. (2012), Kretzschmar
and Caraël (2012), Hamilton and Morris (2015)]. If we consider a population un-
der serial monogamy, current relationships must end before infected individuals
place other noninfected individuals at risk. With concurrency, on the other hand,
if an individual has concurrent sexual partners and becomes infected by one, the
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other partners are placed at risk almost immediately. Consequently, greater con-
nectivity of a population that is possible under higher levels of concurrency should
theoretically provide a much more efficient mechanism for disease spread.

Historically, concurrency has been measured “directly” through individuals’
self-reports of multiple partnerships being current and sexual (referred to as cur-
rent prevalence of concurrency) or “indirectly” through individuals’ reported first
and last sexual encounters with each partner over a prescribed period of time
[Helleringer, Mkandawire and Kohler (2014)]. In the Supplementary Material,
Section 1, we review commonly used concurrency measures, including the point
prevalence of concurrency (or percentage of the sexually active population with
concurrent partnerships at a given point in time) and the κ-statistic, which was
first proposed by Kretzschmar and Morris (1996) and incorporates the number of
concurrent partnerships people have at a given point in time [Admiraal and Hand-
cock (2016)].

More recent modeling approaches have moved away from point estimators of
concurrency and instead incorporate full momentary degree distributions (from
now on simply referred to as “degree distributions”), the distribution of numbers
of sexual partnerships for individuals at a given point in time [e.g., Carnegie and
Morris (2011), Goodreau et al. (2012), Hamilton, Handcock and Morris (2008),
Morris et al. (2009)]. Degree distributions preserve more of the epidemiologically
relevant information than a single point estimator while being able to recover both
the κ-statistic and point prevalence of concurrency. In particular, the proportion
of the sexually active population with a momentary degree greater than 1 exactly
matches the point prevalence of concurrency. At the same time, the κ-statistic is a
function of the mean and variance of the degree distribution, and so the degree dis-
tribution can also recover the κ-statistic. Consequently, in this paper we use degree
distributions rather than more commonly reported point estimators of concurrency.

In the Supplementary Material, Section 2, we review the literature on concur-
rency and its relationship to disease spread [Admiraal and Handcock (2016)]. We
also review the various critiques of the concurrency hypothesis as well as critiques
of standard modeling approaches presented by Sawers (2013). The method we pro-
pose addresses many of these critiques and provides a significant improvement to
commonly employed modeling approaches on a number of levels. First, concur-
rency can be stratified according to a variety of factors, including sex, race, age or
other characteristics. Second, our approach provides a rigorous mechanism to rec-
oncile inconsistencies in reports from cross-sectional surveys when it is not known
if reports corresponding to one subpopulation (e.g., males, females) are biased.
[Although not demonstrated here, when reports of partnerships for a subpopula-
tion (or subpopulations) are believed to be unbiased whereas reports for those in
other subpopulations are biased, the unbiased reports can be used as constraints to
improve estimates for these other subpopulations using approaches similar to those
considered by Handcock, Rendall and Cheadle (2005) and Rendall et al. (2008).]
Third, the sizes of subpopulations need not be the same. Indeed, our application
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considers a heterosexual partnership network with heterogeneous compositions of
men and women of different races, and it estimates sex- and race-specific degree
distributions. Finally, our method can incorporate population-based estimates of
both concurrency and selective mixing, thereby avoiding many of the simplifying
assumptions (such as random or symmetric assortative mixing) that are required
for disease models that incorporate both. This signals a significant step forward in
the capabilities of network-based disease models to accurately reflect partnership
networks for underlying populations.

3. Simulating networks with degree distributions and mixing totals con-
sistent with underlying populations. In order for disease models to be effec-
tive in measuring the anticipated impacts of various interventions on STI spread,
they should incorporate potential risk factors for the population of interest. This
includes concurrency (as measured through degree distributions) and selective
mixing, and so initial networks should be consistent with observed degree dis-
tributions and selective mixing totals for the population under consideration. To
construct initial networks that incorporate degree distributions and selective mix-
ing for the population of interest, we use a three part process, shown in Figure 2.
First, we use survey data to estimate degree distributions and mixing totals for a
given population. Mixing totals can be based on attributes such as age, race, edu-
cation level and even sexual activity level, and degree distributions can be stratified
similarly. Next, these estimated degree distributions and mixing totals are specified
as the mean value parameters (or expected values of the sufficient statistics) for an
exponential-family random graph model (ERGM). (When full network data or a
cross-sectional census is available, observed degree distributions and mixing totals
can be specified as the mean value parameters.) These mean value parameters are
used to estimate corresponding natural (or canonical) parameters for the ERGM.
These natural parameters are interpretable as conditional log-odds ratios. Finally,
once the natural parameters are specified, the ERGM can be used to simulate net-
works consistent with the desired degree distributions and mixing totals.

Although STI transmission through homosexual partnerships is significant for
some populations [Grulich and Zablotska (2010) note that HIV incidence in North
America, Australia and Western Europe is highest for homosexual men], in this
paper we restrict our focus to disease transmission through heterosexual partner-
ships, in line with many of the previously cited studies. Heterosexual partnership

FIG. 2. Procedure for simulating networks consistent with desired degree distributions and mixing
totals.



MODELING HETEROSEXUAL PARTNERSHIP NETWORKS 2027

networks are bipartite in form, meaning that the population can be partitioned into
two disjoint modes or types (in this case, males and females) with partnerships
restricted to those including one individual of each type. At the same time, while
dyad samples (or samples of pairs of individuals) have been used in some surveys
of male and female reports on sexual activity [Julian et al. (1992), Kinsey, Pomeroy
and Martin (1948), Ochs and Binik (1999), Seal (1997)], most surveys on sexual
activity collect cross-sectional data of individuals and their reported partnerships
(or egocentric network data, also referred to as index respondent data), and the
methods we develop assume such data. When full network data is available, we
note that the first step in Figure 2 is unnecessary, as degree distributions and mix-
ing totals for the full network can be used as the mean value parameters.

3.1. Modeling degree distributions and mixing totals. Suppose a population
consists of M males (M) and F females (F ), the subpopulation of males con-
sists of I different types of sizes M1, . . . ,MI from which m1, . . . ,mI males are
sampled, and the subpopulation of females consists of J different types of sizes
F1, . . . ,FJ from which f1, . . . , fJ females are sampled.

3.1.1. Degree distributions. Let DM
ik represent the number of males of type i

with degree k, and let DF
j� represents the number of females of type j with degree

�. If these population degree totals are a realization from some underlying stochas-
tic process, then corresponding to these totals are expected (superpopulation) de-
gree distributions. Denote the expected degree distribution for males of type i by
πM

i = {πM
i0 , . . . , πM

iF }, i = 1, . . . , I , where πM
ik denotes the population proportion

of males of type i with degree k; and denote the expected degree distribution for
females of type j by πF

j = {πF
j0, . . . , π

F
jM}, j = 1, . . . , J , where πF

j� denotes the
proportion of females of type j with degree �. Then, under a cross-sectional study
design and given Mi and Fj (the number of males of type i and the number of
females of type j , respectively) and degree distributions πM

i and πF
j for males of

type i and females of type j , DM
i = (DM

i0 , . . . ,DM
iF ) and DF

j = (DF
j0, . . . ,D

F
jM)

are modeled according to the multinomial distributions(
DM

i0 , . . . ,DM
iF

)|πM
i ,Mi ∼ Multinomial

(
Mi,π

M
i0 , . . . , πM

iF

)
,(

DF
j0, . . . ,D

F
jM

)|πF
j ,Fj ∼ Multinomial

(
Fj ,π

F
j0, . . . , π

F
jM

)
.

Unless a census is carried out, we do not obtain population degree totals DM
i

and DF
j but instead obtain dM

i = {dM
i0 , . . . , dM

iF } and dF
j = {dF

j0, . . . , d
F
jF }, the

sample degree distributions for males of type i and females of type j . If these are
obtained through a simple random sample of mi males of type i and fj females of
type j , then these can be modeled as(

dM
i0 , . . . , dM

iF

)|πM
i ,mi ∼ Multinomial

(
mi,π

M
i0 , . . . , πM

iF

)
,(

dF
j0, . . . , d

F
jM

)|πF
j , fj ∼ Multinomial

(
fj ,π

F
j0, . . . , π

F
jM

)
.
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TABLE 1
Mixing matrix for males and females, stratified on I types for males and J types for females (left),

and corresponding matrix of expected mixing totals (right)

Females
1 2 · · · J

Males

1 N11 N12 · · · N1J N1·
2 N21 N22 · · · N2J N2·
...

...
...

. . .
...

...

I NI1 NI2 · · · NIJ NI ·
N·1 N·2 · · · N·J N··

Females
1 2 · · · J

Males

1 μ11 μ12 · · · μ1J μ1·
2 μ21 μ22 · · · μ2J μ2·
...

...
...

. . .
...

...

I μI1 μI2 · · · μIJ μI ·
μ·1 μ·2 · · · μ·J μ··

3.1.2. Mixing totals. Selective mixing is most commonly represented by a
mixing matrix which breaks down the total number of partnerships between in-
dividuals of different types. For a heterosexual population, this matrix takes on
the form of the matrix to the left in Table 1, where Nij represents the number
of partnerships between males of type i, i = 1, . . . , I , and females of type j ,
j = 1, . . . , J , and the “·” notation represents summation over a particular index.
This table is conditional on the presence of a tie, and so it does not provide in-
formation about the number of nonpartnerships between men and women of given
types. If the observed population mixing totals are a realization from some un-
derlying stochastic process, then corresponding to the mixing matrix is a matrix
of expected mixing totals μ = (μij )1≤i≤I,1≤j≤J , represented by the matrix to the
right in Table 1.

The expected mixing totals μ must be consistent with the expected degree dis-
tributions. In particular, the total expected number of partnerships for males of type
i is given by

μi· =
J∑

j=1

μij =
F∑

k=0

kπM
ik Mi,(1)

where
∑F

k=0 kπM
ik gives the mean number of partners for males of type i. Simi-

larly, for females of type j ,

μ·j =
M∑

�=0

�πF
j�Fj ,(2)

and the total expected number of partnerships must satisfy

μ·· =
I∑

i=1

(
F∑

k=0

kπM
ik Mi

)
=

J∑
j=1

(
M∑

�=0

�πF
j�Fj

)

(3)

= 1

2

(
I∑

i=1

F∑
k=0

kπM
ik Mi

)
+ 1

2

(
J∑

j=1

M∑
�=0

�πF
j�Fj

)
.
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Thus, the expected mixing totals should be modeled in terms of the expected de-
gree distributions to ensure consistency between the expected mixing totals and
expected degree distributions.

There are a number of different ways that we could consider modeling expected
mixing totals, but, given the constraints specified by (1), (2) and (3), we model μij

as

μij = μi·μ·j
μ··

αij

(4)

= 2(
∑F

k=0 kπM
ik Mi)(

∑M
�=0 �πF

j�Fj )

(
∑I

i=1
∑F

k=0 kπM
ik Mi) + (

∑J
j=1

∑M
�=0 �πF

j�Fj )
αij .

If αij = 1 for all i and j , this is the standard independence model where cells
of a contingency table are specified in terms of the marginals. Thus, αij repre-
sents the cell-specific dependence between males of type i and females of type
j . In the context of mixing matrices, this relates to propensities for partnerships
between males of type i and females of type j beyond what would be expected
under random mixing, and so these are homophily (or assortative) effects if i = j

and heterophily (or disassortative) effects if i �= j . The Supplementary Material,
Section 3, describes several common models for these parameters [Admiraal and
Handcock (2016)].

Note that the dependence parameters α = {α11, . . . , αIJ } must satisfy certain
constraints. In particular, μi· = ∑J

j=1 μij and μ·j = ∑I
i=1 μij , and so, using (1),

(2) and (4), we obtain
F∑

k=0

kπM
ik Mi = 2

J∑
j=1

(
∑F

k=0 kπM
ik Mi)(

∑M
�=0 �πF

j�Fj )

(
∑I

i=1
∑F

k=0 kπM
ik Mi) + (

∑J
j=1

∑M
�=0 �πF

j�Fj )
αij ,

(5)
M∑

�=0

�πF
j�Fj = 2

I∑
i=1

(
∑F

k=0 kπM
ik Mi)(

∑M
�=0 �πF

j�Fj )

(
∑I

i=1
∑F

k=0 kπM
ik Mi) + (

∑J
j=1

∑M
�=0 �πF

j�Fj )
αij .

Now, with cross-sectional sampling, we do not observe N = {N11, . . . ,NIJ }.
Nominated partners are likely to fall outside the sample, and so the mixing to-
tals reported by males need not match those given by females, and this results in
separate mixing matrices nM = {nM

11 , . . . , nM
IJ } and nF = {nF

11, . . . , n
F
IJ } from the

male reports and female reports, respectively. Assume that mi of the Mi males of
type i and fj of the Fj females of type j are randomly sampled. Then the ex-
pected mixing total for partnerships between males of type i and females of type
j is given by

E(Nij ) = μij ,

and the corresponding expected mixing totals from the samples of males and fe-
males are

E
(
nM

ij

) = E

(
Nij

mi

Mi

)
= μij

mi

Mi

, E
(
nF

ji

) = μij

fj

Fj

.
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If we combine this with our model for expected mixing totals given by (4), we
obtain

E
(
nM

ij

) = 2(
∑F

k=0 kπM
ik mi)(

∑M
�=0 �πF

j�Fj )

(
∑I

i=1
∑F

k=0 kπM
ik Mi) + (

∑J
j=1

∑M
�=0 �πF

j�Fj )
αij ,

E
(
nF

ij

) = 2(
∑F

k=0 kπM
ik Mi)(

∑M
�=0 �πF

j�fj )

(
∑I

i=1
∑F

k=0 kπM
ik Mi) + (

∑J
j=1

∑M
�=0 �πF

j�Fj )
αij .

Following the generative process considered by Morris (1991), we assume that
the number of partnership opportunities for individuals is determined by a Poisson
process, and the conditional distribution of the number of partnerships given a
specific number of opportunities is binomial. Then the mixing totals can be shown
to be distributed according to the Poisson distributions

nM
ij |πM

i , πF
j , αij ,mi,Mi, fj ,Fj

∼ Poisson
( 2(

∑F
k=0 kπM

ik mi)(
∑M

�=0 �πF
j�Fj )

(
∑I

i=1
∑F

k=0 kπM
ik Mi) + (

∑J
j=1

∑M
�=0 �πF

j�Fj )
αij

)
,

nF
ij |πM

i , πF
j , αij ,mi,Mi, fj ,Fj

∼ Poisson
( 2(

∑F
k=0 kπM

ik Mi)(
∑M

�=0 �πF
j�fj )

(
∑I

i=1
∑F

k=0 kπM
ik Mi) + (

∑J
j=1

∑M
�=0 �πF

j�Fj )
αij

)
.

3.2. Maximum likelihood estimators for degree distribution and mixing param-
eters. To jointly estimate the degree distributions πM = {πM

1 , . . . , πM
I } and

πF = {πF
1 , . . . , πF

J } and mixing totals μ = (μij )1≤i≤I,1≤j≤J , we use the joint
likelihood of πM, πF and α = (αij )1≤i≤I,1≤j≤J , which is shown in the Sup-
plementary Material, Section S4 [Admiraal and Handcock (2016)]. Note that this
likelihood must be maximized subject to the constraints

F∑
k=0

πM
ik = 1,

M∑
�=0

πF
j� = 1(6)

for all i and j , the typical constraints on parameters for the multinomial distri-
bution, as well as the constraints on α given by (5). Given that the likelihood
must be maximized subject to these constraints, we use constrained maximum
likelihood estimation. Specifically, we use the Rsolnp package [Ghalanos and
Theussls (2012)], based on the SOLNP algorithm of Ye (1987), in R [R Core Team
(2013)] to accomplish this. Once the joint distribution of πM, πF and α is esti-
mated, μ can be obtained using (4). To demonstrate that the estimation method
is well behaved, we provide a simulation study in the Supplementary Material,
Section 6.2 [Admiraal and Handcock (2016)].
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3.3. Estimating natural parameters from mean value parameters. Once de-
gree distributions and mixing totals are estimated from cross-sectional data, these
can be specified as mean value parameters for the ERGM

P(Y = y|θ) = exp(θ · g(y))

κ(θ)
,(7)

where y is a realization of some random network Y , g(y) is a vector of sufficient
statistics, θ is the vector of corresponding natural parameters, and κ(θ) is a nor-
malizing constant. The method of estimating natural parameters θ for an ERGM
of the form (7) using mean value parameters is detailed in the Supplementary Ma-
terial, Section 5, and builds off the results of Barndorff-Nielsen (2014) [Admiraal
and Handcock (2016)].

3.4. Using ERGMs to simulate networks consistent with degree distributions
and mixing totals. With a method to estimate the natural parameters θ of an
ERGM directly from an observed network using Markov chain Monte Carlo
(MCMC) maximum likelihood estimation [Hunter and Handcock (2006)] or in-
directly through the mean value parameters via Newton–Raphson [Handcock
(2003)] as well as to simulate new networks for a set of natural parameters via
MCMC [Hunter et al. (2008)], we turn our attention to simulation of networks
with specific mixing totals and degree distributions for males and females. Here,
we consider the specific ERGM given by

logP(Y = y|θ) =
I∑

i=1

F∑
k=1

δMik DM
ik (y) +

J∑
j=1

M∑
�=1

δFj�D
F
j�(y)

(8)

+
I∑

i=1

J∑
j=1

νijNij (y) − logκ
(
δM, δF , ν

)
,

where DM
ik (y) is the number of males of type i with momentary degree k, DF

j�(y)

is the number of females of type j with momentary degree �, and Nij (y) is the
number of partnerships between males of type i and females of type j . The natu-
ral parameters δM = {δM11 , . . . , δMIF }, δF = {δF11, . . . , δ

F
JM} and ν = {ν11, . . . , νIJ }

correspond to the sufficient statistics DM = {DM
11 (y), . . . ,DM

IF (y)}, DF =
{DF

11(y), . . . ,DF
JM(y)} and N = {N11(y), . . . ,NIJ (y)}. These network statistics

are subject to the constraints

I∑
i=1

F∑
k=1

kDM
ik (y) =

I∑
i=1

J∑
j=1

Nij (y),

J∑
j=1

M∑
�=1

�DF
j�(y) =

I∑
i=1

J∑
j=1

Nij (y),
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F∑
k=1

kDM
ik (y) =

J∑
j=1

Nij (y),

M∑
�=1

�DF
j�(y) =

I∑
i=1

Nij (y),

which ensure that the partnership totals produced by the degree distributions are
in agreement with those from the mixing totals. The ERGM given by (8) is dyad-
independent (i.e., the presence or absence of a tie for a given dyad does not influ-
ence the likelihood of a tie for another dyad), meaning that its likelihood can be
expressed as a logistic regression model [Krivitsky (2012)]. This ensures that such
a model is nondegenerate when parameters lie in the interior of the convex hull.

The desired network statistics corresponding to degree distributions (πM, πF )
and mixing totals (μ) are in fact mean value parameters corresponding to δM, δF

and ν, respectively, and defined by

πM
ik = EδM,δF ,ν

(
DM

ik (y)

Mi

)
,

πF
j� = EδM,δF ,ν

(DF
j�(y)

Fj

)
,

μij = EδM,δF ,ν

(
Nij (y)

)
.

Since we are able to estimate the natural parameters δM, δF and ν from πM, πF

and μ, and since MCMC provides a means to simulate networks for a set of natural
parameters, this model allows us to generate networks consistent with the desired
degree distributions πM and πF and mixing totals μ.

We have implemented this procedure using the ergm package [Handcock et al.
(2013), Hunter et al. (2008)], part of the statnet suite of R packages [Handcock
et al. (2003)] available on CRAN [R Core Team (2013)], which has the capability
to both determine the natural parameters corresponding to a vector of mean value
parameters and simulate networks corresponding to this set of parameters. Thus,
the conversion from mean value parameters to natural parameters is one that does
not need to be done explicitly by the user but can be done automatically when
mean value parameters are passed to the ergm function. To demonstrate that our
method estimates natural parameters consistent with mean value parameters and,
consequently, can simulate networks consistent with desired mean value param-
eters, we provide a simulation study in the Supplementary Material, Section 6.3
[Admiraal and Handcock (2016)].

4. Modeling race heterogeneity in heterosexual partner selection using the
National Longitudinal Study of Adolescent Health. We apply our method to
data from the National Longitudinal Study of Adolescent Health (Add Health)
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[Harris et al. (2009)] to generate heterosexual partnership networks consistent with
race- and sex-specific concurrency and race-based mixing for the population from
which respondents were sampled. Add Health is a nationwide survey that began in
the United States in 1994–1995. It has followed a group of adolescents periodically
over their lifetimes to assess the impact of social and behavioral characteristics in
adolescence on particular outcomes. Students from 80 representative high schools
and 52 middle schools were included in the study, and a total of four waves of the
study have been carried out so far, with the most recent wave being carried out in
2007–2009 and a fifth wave scheduled for 2016–2018.

Wave III of this study was carried out from August 2001 to April 2002 and
included extensive questioning related to respondents’ romantic relationship his-
tories. At the time of the survey, respondents ranged in age from 18 to 28 years, and
all were considered to be part of the sexually active population and included in our
analysis. As part of the interview, information was collected on all relationships
from June 1995 to the time of the interview. For each reported relationship, re-
spondents were asked if the relationship was sexual and current. Further questions
were asked for each partner, including the sex and race of the partner. Restricting
our focus to heterosexual relationships, this allowed us to calculate concurrency
by sex and race using a direct approach.

Although Eaton, McGrath and Newell (2012) suggest that using the direct ap-
proach in measuring concurrency leads to positive bias, their presented current
prevalence of concurrency of 6.7% for KwaZulu-Natal compared to a point preva-
lence of concurrency of 4.7% six months prior to the interview which did not adjust
for increasing levels of missing data for partnership data collected for earlier time
points. Accounting for missing data leads to discrepancies between current and six
month retrospective estimates for only men under the age of 30. Additionally, sep-
arate research by Glynn et al. (2012) using data from Malawi only found a 0.5%
difference between prevalence of concurrency at the time of the interview and the
UNAID Reference Group’s recommended six month retrospective measurement.
In contrast to the findings of Eaton, McGrath and Newell (2012), the estimate pre-
sented by Glynn et al. (2012) for the direct approach was lower than that produced
by the indirect approach. Based on the minor differences between the direct and
indirect approaches for these studies and conflicting directions of possible biases,
Sawers (2013) claims that any bias from using the direct approach in measuring
concurrency is minimal. As Wave III of Add Health predated 2009, UNAIDS Ref-
erence Group on Estimates, Modelling, and Projections (2009) recommendations
were not implemented in the survey, and no questions were included regarding the
timing of sexual events to allow for indirect approach measurements of concur-
rency. Thus, only a direct approach could be used in measuring concurrency at the
time of the interview.

From respondents’ answers to questions on their relationship histories and
whether relationships were sexual and current, we were able to determine degree
distributions by sex and race as well as mixing totals by race for respondents at
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TABLE 2
Degree distributions for non-Hispanic black and white males and females, along with

corresponding sample sizes and population totals

Degree Black males White males Black females White females

0 320 1855 289 1372
1 417 2254 600 3015
2 50 125 53 131
3 23 24 12 16
4 2 2 2
5 5
6 2
7 2
8 1

Sample size 820 4260 954 4538
Population size 1,012,522 5,257,739 1,177,710 5,600,779

the time of the interview. We specifically consider degree distributions and mixing
for non-Hispanic blacks and non-Hispanic whites. Degree distributions for males
and females of both races, along with sample sizes and population totals, are pre-
sented in Table 2, and mixing totals from male and female reports are shown in
Table 3. Note that the majority of partnerships fall along the diagonals of the mix-
ing matrices, suggesting strong assortative mixing by race. Also, note that degree
distributions for black males and white females include gaps between the maximal
observed degree and lower degrees.

Maximizing the likelihood function in the Supplementary Material, equation
(S1), subject to the constraints (6), we obtain the parameter estimates and stan-
dard errors shown in Table 4 [Admiraal and Handcock (2016)]. The estimated
cell-specific dependence parameters and corresponding standard errors provide
evidence of strong assortative mixing by race, as αBB and αWW (corresponding
to mixing between black males and black females and white males and white fe-
males, respectively) are both significantly higher than 1, whereas αBW and αWB
(corresponding to cross-race mixing) are both significantly lower than 1. They also
suggest higher levels of concurrency for non-Hispanic black males and females
than their non-Hispanic white counterparts. If we consider the point prevalence of
concurrency, these (along with corresponding standard errors in parentheses) are
estimated to be

Non-Hispanice Black Non-Hispanic White

Male
∑8

i=2 πM
Bi = 0.1451 (0.0102)

∑4
i=2 πM

Wi = 0.0548 (0.00344)

Female
∑3

i=2 πF
Bi = 0.056 (0.0068)

∑7
i=2 πF

Wi = 0.0254 (0.0020)

and suggest a point prevalence of concurrency for non-Hispanic black males and
females that is roughly 2–2.5 times higher than their non-Hispanic white coun-
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TABLE 3
Mixing totals between non-Hispanic black and non-Hispanic white males and females, as reported

by males (left) and females (right)

Females
Black White

Males Black 573 94
(Respondent) White 53 2644

Males
Black White

Females Black 722 27
(Respondent) White 213 3221

terparts. This combination of strong assortative mixing coupled with higher rates
of concurrency for non-Hispanic blacks than non-Hispanic whites would be con-
sistent with the hypothesis that concurrency and selective mixing may partially
explain higher prevalence of STIs observed in non-Hispanic blacks than whites, as
illustrated for Gonorrhea in Figure 1.

To simulate networks consistent with the estimated degree distributions and
mixing propensities, the estimates for the expected degree distributions πM

B , πM
W ,

πF
B and πF

W serve as the mean value parameters for the degree distributions for

TABLE 4
Parameter estimates and corresponding standard errors for πM and πF , the degree distribution

mean value parameters, and α, the cell-specific dependence parameters

Estimate Std. err. Estimate Std. err.

Degree distributions:
Black
males

πM
B0 0.34578 0.01479 White

males
πM

W0 0.37719 0.00531

πM
B1 0.50909 0.01755 πM

W1 0.56801 0.00729

πM
B2 0.07015 0.00957 πM

W2 0.04141 0.00335

πM
B3 0.03793 0.00770 πM

W3 0.01160 0.00213

πM
B4 0.00400 0.00282 πM

W4 0.00179 0.00119

πM
B5 0.01270 0.00553

πM
B6 0.00696 0.00478

πM
B8 0.01339 0.00628

Black
females

πF
B0 0.33990 0.01577 White

females
πF

W0 0.35221 0.00505

πF
B1 0.60408 0.01607 πF

W1 0.62235 0.00570

πF
B2 0.04664 0.00628 πF

W2 0.02261 0.00189

πF
B3 0.00938 0.00270 πF

W3 0.00237 0.00059

πF
W4 0.00026 0.00018

πF
W7 0.00019 0.00013

Dependence parameters:
αBB 4.37022 0.11983 αBW 0.24061 0.01186

αWB 0.07106 0.00804 αWW 1.20931 0.01074
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TABLE 5
Mean value parameters μ = {μBB,μBW,μWB,μWW} for mixing totals

Females
Black White

Males
Black 806,841.8 197,152.4

White 47,595.7 3,594,920.0

non-Hispanic black and white males and females. Although the expected mixing
totals μ are not directly estimated, these can be recovered using (4) and the esti-
mated degree distributions (πM

B , πM
W , πF

B , πF
W ), cell-specific dependence parame-

ters (αBB, αBW, αWB, αWW) and population sizes by sex and race. These expected
mixing totals are presented in Table 5 and serve as the mean value parameters for
mixing.

We simulated networks scaled to one ten-thousandth the size of the population
considered as part of Add Health in order to produce networks that could readily
be handled by ergm for simulation purposes. In applying this scalar, we preserved
relative compositions by race, corresponding to reported subpopulation sizes in
Table 2. This resulted in a simulated population of 1305 individuals consisting of
101 non-Hispanic black males, 526 non-Hispanic white males, 118 non-Hispanic
black females and 560 non-Hispanic white females. By applying the same scalar to
each sex–race category for the mean value parameters for mixing shown in Table 5,
consistency with the mean value parameters for degree distributions is maintained.

Using the mean value parameters πM and πF for degree distributions and μ

for mixing totals, we estimate the natural parameters δM, δF and ν for the ERGM
given by (8) using the procedure outlined in the Supplementary Material, Section 5
[Admiraal and Handcock (2016)]. We note, however, that we use truncated degree
distributions rather than full degree distributions in the estimation procedure, and
so only a subset of observed degrees is specified in the ERGM. This is for two
reasons. First, specification of full degree distributions corresponding to observed
degrees would result in the introduction of structural zeros for all unobserved de-
grees. This would mean that maximal degrees would be artificially capped at the
maximum observed degree for a given subpopulation. Those with high degrees
are less likely to be observed in cross-sectional surveys but are important for dis-
ease transmission, and so exclusion of such individuals by capping the maximum
degree is potentially problematic. At the same time, if we consider the observed
degree distributions for Add Health, we notice that there are gaps in the degree dis-
tributions for non-Hispanic black males and white females. These gaps are almost
certainly due to sampling variability, and specifying structural zeros would artifi-
cially enforce an unrealistic degree distribution where, for instance, white females
may have four partners or seven partners but not five or six.

One way to eliminate structural zeros is to artificially inflate cases with no ob-
servations, in which case we would obtain nonzero probabilities of observing in-
dividuals with degrees that were not actually observed in the sample. However,
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we note that this would increase the population size (by introducing individuals
corresponding to unobserved degrees) while leading to a significant increase in the
total number of partnerships corresponding to those subpopulations with gaps in
observed degree distributions. It would also require decisions in regard to maxi-
mum degree. Additionally, such an approach would impact estimates for degree
distributions for other subpopulations and mixing totals because of the constraints
that govern the relationships among degree distributions and mixing totals.

An alternative approach is to use truncated degree distributions. By truncating
the degree distributions, the ERGM specifies a subset of degrees for which mean
value parameters are used to estimate corresponding natural parameters. These de-
grees are informed by the data, and so the ERGM is able to target the specified
mean value parameters, but this is not true for degrees that are omitted due to
truncation. As long as truncation ensures that at least one observed degree is omit-
ted from the model for each subpopulation, then the ERGM will attribute nonzero
probability to all degrees omitted due to truncation. Ideally, then, truncation elimi-
nates a minimal subset of observed degrees so that simulated networks are able to
target observed degree distributions as closely as possible while ensuring that all
degrees have nonzero probability of occurring. Truncation can achieve a similar
result to that of artificially inflating the number of cases corresponding to unob-
served degrees but without expanding the population, affecting the consistency of
estimated degree distributions and mixing totals, or forcing decisions in regard to
maximum degree. Consequently, we opt for truncated degree distributions.

Second, we use truncated degree distributions because, even if there were no
gaps in observed degree distributions and there was a clearly specified maximal
degree, inclusion of full observed degree distributions and mixing totals would
lead to an over-specified model. This is due to both the dependence among degree
distribution parameters within a given degree distribution, as reflected in the multi-
nomial constraints given by (6), and the dependence between degree distributions
and mixing totals, as specified in the constraints given by (1)–(4). Consequently,
degree distributions would need to be truncated to ensure identifiability in our
ERGM, and we truncate the degree distributions for males to include 0–3 partners
(as the maximum observed degree for non-Hispanic white males is four) and de-
gree distributions for females to include 0–2 partners (as the maximum observed
degree for non-Hispanic black females is three).

Using the ERGM given by (8) and estimated natural parameters based on the
specified selective mixing totals and truncated degree distributions, we simulate
10,000 partnership networks using a burn-in of 100,000 iterations and interval
length of 10,000. This produces the simulated sex- and race-specific degree dis-
tributions shown in Figure 3 and simulated mixing totals presented in Figure 4.
These simulated distributions, represented by boxplots, are shown along with gray
diamonds for the mean value parameters (i.e., estimated degree distributions and
mixing totals) used to generate the natural parameters of the ERGM. These mean
value parameters represent the targeted values for each of these distributions.
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FIG. 3. Simulated degree distributions for non-Hispanic black males (top left), non-Hispanic white
males (top right), non-Hispanic black females (bottom left) and non-Hispanic white females (bottom
right). Gray diamonds denote the mean value parameters for degree distributions.

We note that the distributions of the statistics from the simulated networks are
centered on the target mean values parameters, suggesting that our method pro-
duces networks consistent in expectation with the desired degree distributions and
mixing totals for the population of interest. This is true even though degree dis-
tribution terms estimated for the ERGM incorporated only truncated degree dis-
tributions. We present simulated degree distributions and mean value parameters
for degrees up to the maximum observed degree for each sex. Because truncated
degree distributions were used, simulated degrees of 4–8 for males and 3–7 for
females were done so without a specified target value. It should be evident that
there is greater variability in simulated distributions for these degrees for non-
Hispanic black males and females than their white counterparts. This can be ex-
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FIG. 4. Simulated mixing totals by sex for non-Hispanic black (B) and non-Hispanic white (W)
Americans. “BW” denotes partnerships between black males and white females, while “WB” de-
notes partnerships between white males and black females. Gray diamonds denote the mean value
parameters for mixing totals.

plained by the cumulative probabilities corresponding to these degrees without
specified target values for each sex- and race-category, as based on estimated de-
gree distributions shown in Table 4. In particular, this probability is 0.0371 and
0.0094 for non-Hispanic black males and females, respectively, while it is only
0.0018 and 0.0005 for their white male and female counterparts, respectively. It
is important for modelers to recognize that variability in simulated distributions
for higher degrees increases with greater levels of truncation, and so truncating a
minimal number of observed degrees with low empirical probabilities will lead to
greater precision in simulated network degree distributions.

5. Discussion. The method presented in this paper provides a means to use
cross-sectional survey data to simulate initial networks consistent with two struc-
tures that may be important in STI transmission for heterosexual partnership
networks—concurrency and selective mixing. Heterosexual networks generated
using our approach can serve as initial networks for dynamic models, such as those
of Snijders (2001) and Krivitsky and Handcock (2014). Such models can include
a variety of subsequent stages or components, including random selection of an
initial set of infected individuals, modeling of partnership duration and new part-
ner selection (which can account for a variety of factors, including individual or
pair characteristics, degrees of individuals, infection status, etc.), disease transmis-
sion (which depends on HIV stage, coital frequency, etc.) and population dynam-
ics (where individuals enter or exit the population of sexually active individuals).
Our method provides an important advancement in the first step of disease mod-
els, as it not only allows modelers to produce initial networks for a heterogeneous



2040 R. ADMIRAAL AND M. S. HANDCOCK

population with different levels of concurrency (and, more specifically, degree dis-
tributions) according to various factors (e.g., sex and race), but also ensures that
both selective mixing and degree distributions are consistent with that observed in
the underlying population.

While the methods presented are explicitly for cross-sectional data, note that
extensions to full network data are straightforward. In the rare instances where it
may be possible to observe a complete network, degree distributions and selective
mixing totals are guaranteed to be consistent with each other, meaning that the first
step outlined in Figure 2 is unnecessary. Hunter and Handcock (2006) demonstrate
how, in such cases, the natural parameters of an ERGM can be estimated directly
from the observed network using MCMC maximum likelihood estimation, mean-
ing that networks matching desired degree distributions and mixing totals can be
simulated through a two-step process of first estimating the natural parameters
from the network and then simulating networks according to these natural param-
eters. Developments by Handcock and Gile (2010) show how these methods can
be extended to adaptive samples, such as data collected through link-tracing.

Although not specifically tied to concurrency, Aral et al. (1999) note that what is
important for disease transmission is not only what happens locally but also what
happens in the broader network. In other words, focus should not be restricted to
just an individual and his or her partners (which is what concurrency does) but
should also include a partner’s partners. This suggests that dyad-dependent char-
acteristics of a network such as 3-paths (i.e., a path of three edges connecting two
males and two females for a heterosexual network), 4-cycles (the smallest con-
nected component for a heterosexual network, consisting of two individuals of the
same sex who share at least two partners) and the size of the largest connected
component may be important to consider. (See Figure 5 for minimal network ex-
amples of both a 3-path and a 4-cycle.) Thus, focusing on concurrency in a strict
sense may fail to capture other relevant network information.

For cross-sectional survey data, only dyad-independent network statistics such
as concurrency and mixing can be measured, whereas dyad-dependent statistics
such as 3-paths, 4-cycles and connected component size cannot. To accurately
simulate networks consistent with these (as well as other dyad-dependent net-
work statistics), full network data would likely be required, as Shalizi and Rinaldo

FIG. 5. Examples of a 3-path (left) and a 4-cycle (right) for a heterosexual population of males
(black square) and females (white triangle).
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(2013) demonstrate that models incorporating a variety of dyad-dependent terms
are not projective. In other words, if model parameters are estimated for a sub-
network, then these are not necessarily true for the full network and vice versa,
and so parameters are not consistent under scaling of the population. Carnegie and
Morris (2011) provide a clear example of this, showing that, for a fixed level of
concurrency and random mixing, increased network size leads to a smaller size of
the largest connected component.

Models including only dyad-independent terms are projective, and so parame-
ter estimates for the terms considered in our ERGM given by (8), which are dyad-
independent, are consistent under scaling of the population. However, the results of
Carnegie and Morris (2011) mean that the size of a sexual network may play a role
in the level of connectedness (and, hence, efficacy for disease transmission) for a
given level of concurrency, and so it is important to recognize the potential ramifi-
cations of a selected population size for simulations on a variety of dyad-dependent
statistics. If appropriate targets for these dyad-dependent statistics are estimable
from other sources of data or expert opinion, these can be incorporated in our es-
timation procedure by including terms for these in the specified ERGM and then
using estimates for these statistics as mean value parameters. These can be paired
with estimates for degree distributions and selective mixing totals in the second
step of our procedure in Figure 2, producing networks that match not only degree
distributions and mixing for the underlying population but also other desired net-
work statistics. We demonstrate this in the case of both 3-paths and 4-cycles in the
Supplementary Material, Section 6.4 [Admiraal and Handcock (2016)].

For the Add Health data, the distribution of 3-paths and 4-cycles for simulated
networks under various scalings of the population is presented in Figure 6. For each

FIG. 6. Simulated distribution of 3-paths (left) and 4-cycles (right) under various scalings of the
population. Observed numbers of 4-cycles for the various scaling constants are presented as jittered
gray circles.
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scalar considered, 10,000 networks were simulated with a burn-in of 100,000 iter-
ations and interval length of 10,000. For 4-cycles, observed data are plotted over
the boxplots and jittered to highlight the relative frequency of networks with at
least one 4-cycle. This illustrates that smaller populations are likely to have fewer
3-paths and more 4-cycles. Additionally, neither the number of 4-cycles nor the
number of 3-paths are linear functions of the scaling constant, indicating that the
model is not projective for these network statistics. This highlights the importance
of specifying target mean value parameters for such statistics that are appropriate
for the population size under consideration. Although, ideally, simulations would
consider a population size equivalent to that of the population under consideration,
the computational burden associated with network-based models frequently pre-
vents this. Consequently, modelers need to be cognizant of the impacts of selected
scaling constants.
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SUPPLEMENTARY MATERIAL

Supplement to “Modeling concurrency and selective mixing in heterosex-
ual partnership networks with applications to sexually transmitted diseases.”
(DOI: 10.1214/16-AOAS963SUPP; .pdf). We provide a full exposition of common
measures of concurrency, studies providing evidence for the importance of concur-
rency in explaining disparities in the spread of sexually transmitted diseases and
studies refuting this conclusion. We additionally present details for estimating nat-
ural parameters from mean value parameters for exponential-family random graph
models, and we provide a full simulation study that demonstrates the usefulness of
our method in generating networks consistent with populations having drastically
different levels of concurrency and selective mixing patterns.
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