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Abstract—We develop a memory graph convolutional network
(MGCN) framework for sea surface temperature (SST) predic-
tion. The MGCN consists of two memory layers, one graph
layer, and one output layer. The memory layer captures SST
temporal changes via temporal convolution units and gate linear
units. The graph layer encodes SST spatial changes in terms
of characteristics derived from graph Laplacian. The output
layer encapsulates information from the previous layers and
produces SST prediction results. The MGCN characterizes both
the temporal and spatial changes, rendering a comprehensive SST
prediction strategy. We use daily mean SST data for two areas
near the Bohai Sea and the East China Sea for experimental
evaluations and validate that the MGCN performs better than
other traditional machine learning methods for nearshore SST
prediction. In addition, we test the MGCN on weekly and
monthly mean SST data sets and validate that the MGCN is
robust and suitable for SST prediction.

Index Terms—Graph convolutional network, Sea Surface Tem-
perature, Spatio-temporal prediction.

I. INTRODUCTION

SEA surface temperature (SST) is an essential variable for
global climate and weather changes studies. Predicting

SST is an important topic of ocean research [1]. There are two
major goals of developing SST prediction methods. The first is
to promote the understanding of ocean dynamics; this requires
characterizing large-scale, high-resolution SST variations. The
second goal, which is our focus, is to provide effective tools to
marine applications. For instance, SST predictions can provide
meaningful indications for fishing directions [2] and storm
tracking [3]. In this scenario, the scale and resolution required
for SST prediction are flexible, as they are usually employed
as a layer of information along with other variables as, for
instance, chlorophyll concentration and atmospheric pressure.

SST prediction methods belong to two main categories:
numerical, and data-driven. Numerical methods utilize math-
ematical models that describe ocean dynamics and thermo-
dynamics to establish prediction models. Recently, Wang et
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al. [4] proposed a model-based analogue forecasting (MAF)
method to predict Indo-Pacific SST values. The model uses
subsurface thermal conditions as one of the influencing factors
for SST prediction. Numerical methods use intricate equations
that tend to underestimate the observed SST variability. Data-
driven methods learn the latent characteristics from SST data.
Typically, Markov models [5] are constructed in terms of
seasonally changing multi-variable forecast. Multi-layer per-
ceptron regression (MLPR) [6] and support vector regression
(SVR) [7] are widely used for SST prediction. Recurrent
neural networks (RNN) and their variants (long and short-
term memory – LSTM, and gated recurrent units – GRU),
developed for learning time-series data changes. Zhang et
al. [8] employed a fully-connected LSTM to predict future SST
values. The LSTM structure models SST sequences, and the
fully connected structure produces the predictions. The GRU
model is effective and has a simpler structure than the LSTM
model. Zhang et al. [9] designed a neural network based on
the GRU model for middle and long-term SST prediction.

The aforementioned methods predict SST values without
considering spatial factors. However, SST values of different
sites are likely to be related [10]. Xiao et al. [11] developed
a convolutional LSTM for predicting the areal SST field.
The model uses convolutional neural networks to extract the
location information of the area on the basis of LSTM.

There are no SST data in some areas, such as land or
islands, over which there is no information. In this scenario, it
is difficult for the convolutional neural network to fully encode
SST spatial changes. In our work, we develop a memory
graph convolutional (MGCN) network for SST prediction.
There are two main contributions. Firstly, we develop a model
based on memory and graph layers for spatio-temporal SST
prediction. The memory layers capture the temporal changes
of the SST sequence, while the graph layers encode SST
spatial changes in the frequency domain. Specifically, graph
representations can be constructed in arbitrary forms that
overcome the data irregularity. Secondly, we use a 39-year
SST time-series in the Bohai Sea and the East China Sea
to validate the effectiveness of the proposed MGCN network
for coastal SST prediction. Experimental results show that
our model has better performance than some commonly used
machine learning methods.

II. MEMORY GRAPH CONVOLUTIONAL NETWORKS FOR
SEA SURFACE TEMPERATURE PREDICTION

A. Graph Representations for SST Data
We employ graphs for representing SST data. The sea

surface locations are represented in terms of longitude and
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latitude grids. An SST value at each grid point for each time
is recorded. In our work, we define graph representations in
terms of valid SST data on grids.

Assume that we have a sequence S = (S1, S2, . . . , ST )
of data defined on a regular grid of longitude and latitude
coordinates, and each layer St is comprised of N valid SST
points (locations such as coasts and islands do not render valid
SST measurements). We define the adjacency matrix W =[
wi,j

]
for St, 1 ≤ t ≤ T , based on the Euclidean distance

di,j between coordinates i and j as

wij =

{
exp

{
− d2ij

r2

}
if dij ≤ dmin,

0 otherwise.
(1)

where r is a scaling factor, and dmin is a threshold distance
above which the weight is zero.

Fig. 1 illustrates this configuration for r = 1. The purple
bullets denote the N = 32 grid valid points, for which wi,j =
1. The thick segments denote points at distance d1,2 = 1,
for which wi,j = exp{−1}. The thin segments denote points
at distance d1,2 =

√
2, for which wi,j = exp{−2}. Pairs of

points at distances greater that dmin =
√

2 are not connected
and, thus, their weights are zero.

Fig. 1: Graph representation of SST data at a single instant.

An advantage of graph representations is that they compre-
hensively characterize irregular data. As illustrated, locations
such as coasts and islands without valid SST data are not
considered in the graph representation. In contrast to the full
grid data requirement arising in [11], the graph representation
is more flexible.

B. Memory Graph Convolutional Networks

Fig. 2 illustrates the main structure of the memory graph
convolutional network (MGCN) for SST prediction. The
input of the network is a sequence of T SST images
(S1, S2, . . . , ST ) with adjacency matrix W , computed accord-
ing to (1). The output of the network is the SST prediction
result ST+1 at time T + 1.

The network consists of two memory layers, one graph
layer and one output layer. The memory and the graph layers
capture the temporal and spatial changes of the SST sequence,
respectively. The output layer maps the final prediction results.
The graph layer is sandwiched between two memory layers.

Such a structure realizes the rapid propagation of networks by
scale compression [12].

Denote S(`) ∈ RN×T`×C` as the input for each layer of
the network, where N is the number of valid SST points, and
T` and C` denote the input length and the number of input
channels at `-th layer, respectively.

C. Memory layers for Capturing SST Temporal Changes

We employ memory layers to capture the temporal changes
of the SST data sequence. The two memory layers have the
same structure, illustrated in Fig. 3: a temporal convolution
unit and a gated linear unit (GLU) [13].

The temporal convolution unit takes S(1) =
(S1, S2, . . . , ST ) as input, and produces the output U
as follows:

U = S(1) ∗ Am + bm, (2)

where Am and bm denote the convolution kernels and the bias
of the memory layer, respectively, and ∗ is the convolution
operation with kernel of width Km and height is set to 1.
The output U is divided equally in channel dimension in two
parts, X and Y , which have the same number of channels. In
addition, a Km-length sequence S(1)c = (ST−Km+1, . . . , ST )

is cropped from S(1) such that S(1)c and X (and Y) have the
same size. The GLU produces S(2), the output of the first
memory layer, as

S(2) =
(
X + S(1)c

)
� σ(Y), (3)

where � is the Hadamard product, and σ is the sigmoid
function.

In contrast to recurrent networks, Memory layers only
involve convolution without recurrence, rendering improved
computational efficiency.

D. Graph layers for Encoding SST spatial Changes

We employ graph layers to capture the spatial changes of
the SST data sequence. Fig. 4 shows its structure.

We use spectrum graph convolution to encode SST spatial
changes. The graph Laplacian matrix L for characterizing the
graph spectrum is defined as follows:

L = IN − D− 1
2WD

1
2 , (4)

where IN is the identity matrix, and Dii =
∑
j wij . The

spectrum graph convolution operates in terms of a product
of the weighted spatial convolution operator gθ and the output
of the memory layer S(2):

V = gθ(L)S(2), (5)

where V denotes the output of the graph convolution. We
use Chebyshev polynomials [14] to approximate the weighted
spatial convolution operator gθ to reduce the computational
complexity. The graph convolution unit is given as:

V =

K∑
k=1

Tk(2L/λmax − IN )S(2)θk, (6)



3

Fig. 2: A memory graph convolutional network (surrounded by the dashed box).

Fig. 3: Memory layer.

Fig. 4: Graph layer

where Tk(•) denotes the Chebyshev polynomial of order k, θk
denotes the matrix of polynomial coefficients of order k, and
λmax denotes the largest eigenvalue of L.

We use the residual connection to improve network training
accuracy. Overall, the graph convolution operates as follows:

S(3) = ReLu(S(2) + V), (7)

where ReLU denotes a nonlinear activation function.
In contrast to two-dimensional convolution methods that

just conduct convolutions over regular sizes, graph layers
easily process SST data at irregular locations and encode
spatial dependencies among neighboring SST values in a
comprehensive and controlled manner.

E. Output layers and Loss Functions

We construct the output layer based on a temporal convo-
lutional unit with a sigmoid function and a fully-connected
layer, as illustrated in Fig. 5.

The convolution unit with a sigmoid function maps the
output of the second memory layer S(4) to a single-step

prediction Z . The fully connected layer produces the SST
prediction ŜT+1 as follows:

ŜT+1 = AoZ + bo, (8)

where Ao and bo denote the weight and bias of the output
layer, respectively.

Fig. 5: An output layer.

The loss function for training is given as:

L(Θ) =
∥∥MGCN

(
(S1, S2, . . . , ST ),W ; Θ

)
− ST+1

∥∥+ Lreg,
(9)

where Θ are trainable parameters, and Lreg is a regularization
term. We use L2 regularization to avoid overfitting.

III. EXPERIMENTS

A. Data Sets and Experimental Settings

We use Optimum Interpolation Sea Surface Temperature
(OISST) data produced by the National Oceanic and At-
mospheric Administration (NOAA), Boulder, Colorado, USA
(https://www.ncdc.noaa.gov/oisst). The NOAA OISST data
sets contain daily, weekly, and monthly mean SST grid data.
Daily OISST data covers the global ocean from 89.75°S
to 89.75°N, 0.25°E to 359.25°E, with spatial resolution of
0.25°× 0.25°. Weekly and monthly OISST data cover the
global ocean from 89.5°S to 89.5°N, 0.5°E to 359.5°E with
spatial resolution of 1°× 1°.

We create SST data sets which contain SST sequences in the
Bohai Sea and the East China Sea from NOAA OISST data.
The temporal coverage of the SST data sets is from January
1982 to December 2019. The data for each region include
daily, weekly, and monthly mean SST data sets. Each SST
data set is further divided into three sets: training, validation,
and test. The training sets are the SST data from 1982 to
2017, and the validation and test sets are the SST data for the
entire year of 2018 and 2019, respectively. The Bohai Sea daily
mean SST data set covers the area from 37.25°N to 41.00°N,

https://www.ncdc.noaa.gov/oisst
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117.50°E to 121.50°E. The Bohai Sea weekly and monthly
mean SST data sets cover the area from 37°N to 41°N, 117°E
to 121°E. The East China Sea daily mean SST data set covers
the area from 27.75°N to 32.50°N, 123.00°E to 126.75°E. The
East China Sea weekly and monthly mean SST data sets cover
the area from 28°N to 32°N, 123°E to 127°E. SST data are
missing on some grid points (especially for lands or islands)
in the experimental area. These points are not considered for
computing the weighted adjacency matrix.

MGCN is compared with support vector regression (SVR),
gate recurrent unit (GRU) and long and short-term time-
series network (LSTNet) [15]. SVR and GRU are time-series
predicting methods. LSTNet is a spatiotemporal predicting
method which operates by extracting the local dependencies
between SST. All methods are used to predict the SST of
the next day, next three days and next seven days based on
the daily mean SST data set. Additionally, experiments are
conducted for predicting SST for the next week and the next
three weeks based on the weekly mean SST data set, and the
next month based on the monthly mean SST data set. All
methods use manual search to set hyperparameters for getting
the best performance.

We use the root mean squared error (RMSE) and the mean
absolute error (MAE) to evaluate the effectiveness of the four
methods. The smaller RMSE and MAE are, the better is
method’s performance.

We conducted the experiments on a computing platform
with three Intel Xeon CPUs E5-2690 at 2.60 GHz and
NVIDIA Tesla K80 GPU. GRU, LSTNet and MGCN are im-
plemented by tensorflow under Python. SVR is implemented
by Scikit-learn, a machine learning library based on Python.
To support the reproducibility and replicability in remote
sensing research [16], we have publicly released our code
(https://github.com/upczxy/MGCN-SST-Prediction).

B. Results and Analysis

The setting of the adjacency matrix is the key to the MGCN
network. We carry out experiments with different values of r
and dmin in (1) to obtain the best network performance. We
calculate the RMSE of the predicted SST from the Bohai Sea
and the East China Sea data sets for the next seven days.

Denote the threshold ϕ = exp{−d2min/r
2}. We set r =

1, 5, 10 according to the area size, and ϕ is set from 0 to 0.9.
Fig. 6 shows the RMSE of the seven day predictions with
varying r and ϕ. The results show that (r = 1, ϕ = 0.7) and
(r = 5, ϕ = 0.2) are suitable parameters for the Bohai Sea
SST and the East China Sea SST predictions, respectively.

Table I shows the performance of the next day, the next
three days and the next seven days predictions with the four
methods on the Bohai Sea and East China Sea SST data sets.
The bold entries denote the best results. It is clear that the
prediction performance of our MGCN method is better than
the other three methods over the three prediction time scales.
Specifically, the other three methods have different prediction
performances for the Bohai Sea and the East China Sea data
sets. For example, the LSTNet method outperforms SVR on
the Bohai Sea SST data set, but the performance is opposite
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Fig. 6: RMSE of seven day predictions with different values
of r and ϕ.

for one day and three-day predictions on the East Sea SST
data set. Our MGCN model performs best on both data sets
compared with the other three methods. It reflects that MGCN
is suitable for SST predictions in different areas.

TABLE I
DAILY PREDICTION RESULTS (RMSE AND MAE) ON THE BOHAI SEA

AND CHINA EAST SEA SST DATA SETS.

Sea
Area Method Metrics Daily

1 3 7

Bohai
Sea

SVR RMSE 0.5179 0.8183 1.2145
MAE 0.4026 0.6147 0.9630

GRU RMSE 0.4111 0.7808 1.0681
MAE 0.3021 0.5946 0.8420

LSTNet RMSE 0.3907 0.7413 1.0593
MAE 0.2719 0.5589 0.8208

MGCN RMSE 0.3858 0.6950 0.9204
MAE 0.2711 0.5314 0.7206

East
China
Sea

SVR RMSE 0.3746 0.6601 0.9182
MAE 0.2697 0.4940 0.7022

GRU RMSE 0.4689 0.6739 0.9557
MAE 0.3854 0.5082 0.7202

LSTNet RMSE 0.4458 0.6785 0.9056
MAE 0.3404 0.5195 0.7035

MGCN RMSE 0.3274 0.6026 0.7637
MAE 0.2229 0.4555 0.5941

Fig 7 shows the RMSE for 1 to 7 days ahead SST predic-
tion using four methods. The RMSE of the MGCN network
increases at a smaller rate than those of the reference methods
as the prediction horizon increases from 1 to 7 days. The figure
shows that MGCN maintains a respectable performance for
long time daily mean SST predictions.

Table II presents the performance of the four methods on
the prediction of SST data sets in one week, three weeks
and one month. MGCN outperforms the other three methods,
and SVR is the worst one. Besides, the temporal and spatial
resolution of weekly and monthly mean SST data is lower than
daily mean SST data, and the amount of data is also reduced.
The prediction accuracy of the reference methods decreases. It
confirms that MGCN is more accurate and robust in long-term
SST prediction. Furthermore, the method is better suited for
monthly timescales than daily and weekly timescales because
the latter are chaotic in nature.

The computational complexity for training the entire net-

https://github.com/upczxy/MGCN-SST-Prediction
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Fig. 7: RMSE for 1 to 7 days ahead SST prediction by four
methods.

TABLE II
WEEKLY AND MONTHLY PREDICTION RESULTS (RMSE AND MAE) ON

THE BOHAI SEA AND CHINA EAST SEA SST DATA SETS.

Sea
Area Method Metric Weekly Monthly

1 3 1

Bohai
Sea

SVR RMSE 1.1165 1.4248 1.0372
MAE 0.9680 1.2065 0.8822

GRU RMSE 0.7540 0.9493 0.6581
MAE 0.6400 0.7506 0.7526

LSTNet RMSE 0.5563 0.9200 0.5796
MAE 0.4500 0.7178 0.4958

MGCN RMSE 0.4699 0.7861 0.4994
MAE 0.3717 0.6210 0.4528

East
China
Sea

SVR RMSE 0.9017 1.1664 1.0911
MAE 0.7542 0.9509 0.8929

GRU RMSE 0.7632 1.0136 0.7778
MAE 0.6115 0.8279 0.6395

LSTNet RMSE 0.6662 1.0035 0.7667
MAE 0.5342 0.8341 0.6310

MGCN RMSE 0.5588 0.7351 0.6365
MAE 0.4399 0.6049 0.5333

work is of order O(ENTKmC3C4), where E denotes the
training iterations, and C3 and C4 denote the number of input
channels at the graph layer and the second memory layer,
respectively. The adjacency weighted matrix is computed only
once, with computational complexity is O(N2). Compared
with recurrent networks, our method achieves parallelization
input and improves training efficiency.

IV. CONCLUSIONS

In this letter, a memory graph convolutional network has
been developed to predict future SST values by learning tem-
poral changes with spatial information. The network consists
of two memory layers, one graph layer, and one output layer.
The memory layers are used to capture the time-series changes
of SST, and the graph layer learns the spatial relationship of
SST. The output layer maps the prediction result.

The experiments explore the optimal parameters of the
adjacency matrix in the convolutional graph, and validate the
effectiveness of the MGCN on the SST data from the Bohai
Sea and East China Sea. Experimental results confirm that our
MGCN method improves the RMSE on different time scales
compared with the other three methods.

The suitable adjacency matrix is different for different
resolutions and areas of SST data. We will investigate more
comprehensive ways for learning weights to improve the
SST prediction effectiveness. Furthermore, low-level remote
sensing SST observation products are disturbed by cloud
coverage, and there might be blank in some regions. In future
works, we will use a graph layer to extract spatial features of
SST data. Then, we will feed the spatial features to a memory
layer implementing a diffusion process that progressively
reconstructs the score matrix. Finally, we will reconstruct and
predict cloud coverage SST data.
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