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Abstract

We present mathematical analysis of temperature oscillations in depth-dependent
media by investigating the thermodynamics of sea ice and of soils. Time-series
temperature measurements from thermistor strings are common in both sea ice
and soils and are used to study their properties, evolution, seepage flux and a host
of interactions with their environment. We use numerical tools and perturbation
theory to study the propagation of high frequency, small amplitude temperature
oscillations through the in-homogeneous media using one dimensional models.
Analytical tools for studying such thermal waves are derived.

In sea ice the absorption of solar radiation and oscillating air temperatures
result in two distinct thermal wave propagation behaviours. At depths, station-
ary waves associated with in place solar heating are observed, whereas near the
surface, travelling thermal waves are present due to the quick decay in the ab-
sorbed solar radiation and the oscillatory air temperatures. These are observed in
thermistor string data taken in McMurdo Sound, Antarctica between 1996-2003.
Using a variety of mathematical tools, the leading order behaviour of the diurnal
temperature oscillation is approximated in terms of elementary functions and is
compared with results from numerical simulations.

The thermodynamics of soils differ from sea ice in that all the solar radiation is
absorbed at the upper boundary and water movement within the soil carries heat.
Macroscale in-homogeneity in the advection-diffusion equation is considered and
the thermal wave propagation characteristics are studied using a WKB approxi-
mation. The leading order behaviour is shown to reduce exactly to the Stallman
equations, being the solution to the thermal wave propagation in a homogeneous
soil with constant, uniform water flow. We use the leading order WKB expan-
sion to estimate errors in the homogeneous soil assumption commonly made to
estimate the seepage velocity and soil diffusivity. It is shown that the diffusivity
estimations are relatively stable and provide reasonably accurate results, but the
seepage velocity estimations incur significant errors that should be considered. A
frequency dependence in the error leads us to suggest multi-frequency analysis
for detection and further studies of the effects of in-homogeneous soil thermody-
namics.
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Chapter 1

Introduction

Sea ice is formed by the freezing of sea water in the colder months, typically in
high latitude regions, and forms one of the largest annual cycle on the planet.
For example, Antarctic sea ice extent ranges from 19 million km2 to 3 million
km2 at its extremes [16]. Sea ice extent has been studied thoroughly with the aid
of satellite imagery [82] but models fail to capture the observed decline in sea
ice extent [106]. Sea ice models form key components in forecasting the global
climate and its response to perturbations in the climate.

A large fraction of the sea ice is first year sea ice which grows in the colder
months to a thickness of up to about 2 m and melts in the warmer months. Some
sea ice survives the warmer months to become second year or multi year ice. The
properties of the multi year ice differ from that of first year ice due to its age and
history, such as its density and thermal properties [75,100]. Further, a snow cover
on the ice can become flooded to form layers of sea ice with varying properties as
the snow properties themselves are highly dynamic due to compression, redistri-
bution by winds and meltpond formation.

1.1 Importance of Sea Ice

Sea ice plays a key factor in the global climate dynamics and is an indicator of cli-
mate change. Further, sea ice harbours ecosystems and its presence and absence
plays a key role in the life cycle of these organisms. Hence studying sea ice is of
great importance, as will be discussed in the following sub-sections.
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2 CHAPTER 1. INTRODUCTION

1.1.1 Climate

The properties of sea ice are extremely important for climate modelling as sea ice
forms a physical, optical and thermodynamic barrier between the ocean and the
atmosphere, mediating the heat exchange between the two [97]. Sea ice is inher-
ently coupled to the ocean and atmosphere due to its interactions with them. For
example, the energy budget of the ocean is highly dependent on the amount of
sun light entering the ocean. A thin layer of sea ice reflects a significant portion
of the incoming radiation back into the atmosphere [55], and hence sea ice extent,
depth, surface albedo and many other factors will dictate the solar energy flux
into the ocean. The albedo effect has the greatest implications on the global cli-
mate and has been the first term to be incorporated in global models, for which
sea ice was simply included by ’painting the sea white’. Further effects include
the insulation sea ice provides between the ocean and the atmosphere, brine rejec-
tion from freezing sea ice into the ocean affecting ocean circulation, heat storage
and release in the freezing/melting of the sea ice into the ocean, sea ice breakup
and movement and many more.

It is important to note that the effects of sea ice on the global climate form both
positive and negative feedback loops. The albedo effect forms a positive feedback
loop, where greater growth of sea ice leads to less solar radiation absorbed in
high latitude regions and so more sea ice growth can occur. The thermal barrier
that sea ice forms constitutes a negative feedback loop, where more sea ice cover
insulates the oceans, reducing the heat loss and the amount of sea ice that can
form.

The thermodynamic interactions between sea ice, atmosphere and the ocean
are inherently linked to the physical properties and physical interactions that oc-
cur, and vice versa. Ice extent is regulated by ice freeze in dates, ice breakups,
ridges and all other ice dynamics, all of which play a crucial role in coupling to
the ice cover and its effects. As will be discussed later, the physical and thermal
properties of sea ice are inherently linked due to its complex structure.

1.1.2 Ecological Importance

Algae and other biological organisms get trapped in the freezing sea ice. The
vertical distribution of the algae depends on the growth rate of the sea ice and
the currents in the water column below. The presence of sea ice forms a physi-
cal boundary for organisms to live on, and can protect the organisms from lethal
UV radiation, however thick sea ice may block radiation necessary for photosyn-
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thesis [72]. During the melt of sea ice organic material is released into the water
column, with some fish migrating underneath melting sea ice to make use of the
increased food availability. Studying sea ice behaviour is necessary to develop
our understanding of the interactions between these organisms and their unique
habitat.

1.2 Structure and the Growth Process of Sea Ice

Sea ice is a complex material due to the inclusion of brine as well as other impuri-
ties. Fundamentally, it is modelled as a mushy layer [21, 36]; a solid matrix of ice,
bathed in liquid water with impurities (brine). Brine is a patch of highly saline
sea water, the salt being rejected by nearby freezing ice crystals. Brine has signif-
icantly different thermal properties to pure ice and hence the composite material
of the two has varying and dynamic thermal and physical properties. Brine pock-
ets expand and contract with temperature as well as migrating through the sea
ice [56]. These brine pockets can become elongated and connect and form brine
tubes which when connected to the ocean flush out carrying heat and salts, as
well as other impurities with them [75]. The dynamic nature of the brine pockets
and tubes adds a dynamic aspect to the physical and thermal properties of sea
ice. Sea ice is inherently a complex 3 dimensional substance due to these brine
pockets and impurities. However, with increasing measurements, accurate bulk
thermal and physical properties have been calculated and account for brine and
other impurities.

The presence of brine pockets and other impurities induce complex optical
interactions in the sea ice via scattering and absorption [19,69]. The optical prop-
erties of sea ice are necessary to understand the sea ice’s effects on the ocean-
atmosphere interaction and further the thermodynamics that occur in the sea ice.

Around Antarctica, sea ice initially freezes by forming frazil ice, many small
ice crystals sloshed by waves, currents and winds. These are stirred and mixed
until a layer with thickness of around 20-50 cm of frazil ice crystals is present on
the surface, at which point the ice is able to solidify together and form a slab.
After a solid ice slab is achieved, further heat conduction allows crystals with
their fastest growth directed vertically to dominate the growth process, and rel-
atively clear, columnar ice is formed [103]. The top layer of frazil ice compris-
ing randomly oriented crystals has distinctively different optical properties to the
columnar ice grown at deeper depths.

Super-cooled water currents near ice shelves lead to platelet ice crystals to
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form in the supercooled water. These are buoyant and float up to the ice slab,
sticking to the bottom of the ice. As the columnar ice grows further the platelet
crystals get incorporated into the ice. These have been observed extensively in
locations such as McMurdo Sound, Antarctica and can contribute significantly
to the ice thickness [95]. The platelet crystals can be observed in crystal cross
sections from ice cores under cross-polarized filters [103].

As well as affecting the optical and thermodynamic properties of sea ice, the
mechanical properties of sea ice yield interesting ice dynamics. Sea ice dynamics
can result in both sea ice breakup and growth. Ocean waves have been shown
to be a good predictor for sea ice breakup in certain regions of the Antarctic [50],
as well as other factors such as ocean currents and winds. The effects of these
interactions are mediated by the thickness of the sea ice [50, 67]. An accurate
understanding of the breakup of sea ice is therefore reliant on the prediction of
sea ice thickness, a poorly understood and hard to measure quantity. Further, the
inclusion of the brine tubes and pockets in the sea ice compromises its mechanical
strength when a temperature of about -5 ◦C [23] is reached. At this temperature
the brine tubes get large enough to connect and flush into the ocean, allowing for
warm ocean water to rise up within the sea ice. The sea ice turns into a slush and
melts rapidly.

From the above discussion we see that the thermodynamics and dynamics of
sea ice are inherently linked. Better understandings of both is necessary to inform
large scale models and predict the effects that various forcing factors will have on
sea ice behaviour.

Forcing factors are the conditions imposed on the sea ice and snow. For exam-
ple, the air temperatures near the surface of the sea ice/snow, the amount of ra-
diation falling on the sea ice/snow and the ocean swells and currents. Inherently
all these processes are linked together with the sea ice and affect one another. For
modelling purposes, a model for each component (such as a sea ice model, ocean
model, atmospheric model etc.) is usually simulated independently with forcing
factors being parameterized; simulating the entire climate together and its intri-
cate inter-dependencies is not practical with the computational tools available. A
great emphasis has been put on analysing measurements to get accurate param-
eterizations of prominent forcing factors. For example, projects such as SHEBA
(Surface HEat Budget of the Arctic Ocean) [105] have aimed to parameterize the
sea ice albedo and more with measurements. This sea ice - radiation interaction
has been linked to varying amounts of sea ice melt [107] and internal puddle for-
mation [1, 43] with measurements of the radiation characteristics being essential
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for such studies [109].

1.3 Periodic Forcing

Understanding the effects of periodic driving forces on sea ice is of great impor-
tance due to the periodic nature of air temperatures, solar irradiance, ocean cur-
rents, tides and many more natural processes that interact with the sea ice. Re-
solving the details of daily variations is important for accurate predictions to be
made, even within one season [27]. The two periodic interactions we will focus
on are the air temperature and the short wave solar radiation penetrating the sea
ice and snow. The periodic air temperatures dictate the boundary condition (the
energy balance at the surface of the sea ice), whereas the solar irradiance affects
the energy balance within the sea ice.

Thermistor string measurements taken near McMurdo Sound, Antarctica show
daily temperature oscillations, as has been examined by [66, 103] and as can be
seen in Figure 1.1. The daily oscillations are of smaller amplitude and faster
frequency to the amplitude and frequency of the sea ice’s thermal response to
weather systems (occurring over weeks and months).

The thermodynamic effects of oscillatory boundary conditions on sea ice have
been studied by [108], but without the availability of good parameterizations of
the physical and thermal properties the analysis was limited. An estimation for
the thermal conductivity of sea ice was attained by analysis of measured ther-
mal wave propagation, however, it was shown that solar radiation, being unac-
counted for rigorously, complicated the calculations. The analysis of the thermal
wave propagation required the removal of the effect of the solar radiation ab-
sorption which was done via trial and error fittings or by analysing data where
insignificant solar radiation was present. Based on this work and that of [53], a
more comprehensive model was developed by [18], predicting the temperature
field of a homogeneous translucent medium and refining estimates of the ther-
mal diffusivity by [53] of an in-homogeneous medium when temperature and
heat flux measurements are available. More recently, numerical analysis of the
solar heating of sea ice, ice sheets, snow and other semi-transparant media have
become widely used [5, 19, 66, 92, 101]. Heat propagation through porous, fibrous
or in general an-isotropic and in-homogeneous materials has become an inter-
est point due to their technological applications, amongst these are functionally
graded materials [98]. In Chapters 3 and 4 we provide an analytical approxima-
tion for the propagation behaviour of thermal waves in sea ice due to solar heat-
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Figure 1.1: Thermistor string data from first year Antarctic sea ice 1996 (top) and multi-
year Antarctic sea ice 2003 (bottom). The colours indicate temperature in ◦C according
to the colour bars to the right of each plot. The top left plot shows the 1996 measure-
ments over the entire range that they were taken and on the right the same plot is cropped
slightly with further contours added to highlight the daily oscillations present in the data.
The thermistors were deployed (day 0 in the plots) on the 12th of June, 1996 and 7th
of November, 2003. We see the amplitude of the daily oscillations is much smaller and
oscillates much faster than the weather systems. The thermistor string deployed in 2003
into multiyear sea ice exhibits strong daily oscillations too, with a storm dumping about
20 cm of snow on the ice after ≈ 20 days from the beginning of the measurement as can
be seen by the sudden temperature rise.
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ing and small amplitude oscillations in the air temperature following the work
presented in [66] and further build on it with asymptotic analysis.

1.4 Soils and Sediments

In addition to studying sea ice thermodynamics, a project to study soil thermo-
dynamics was undertaken. We provide an introduction to soil thermodynamics
below and present the remainder of the work associated with this project in Chap-
ter 5.

The study of soil and sediment thermodynamics is of great importance to var-
ious fields of study such as hydrology and geology, with applications in building
science, agriculture and ecology. Most notably, soil thermodynamics are used in
large scale modelling for IPCC reports in the study of climate change [97]. How-
ever, it is also found in studies estimating groundwater movement, river seepage,
soil characteristics and Earth-air heat exchangers. It has become common to use
heat as a tracer for groundwater movement due to the water’s movement carry-
ing heat. Further, temperature measurements are relatively cheap and easy and
do not pollute the environment like chemical tracers. Although heat pulse in-
jection may be used to make such measurements, many authors have opted for
using natural heat as a tracer in the form of temperature measurements. Common
analysis methods track the amplitude and phase of various temperature oscilla-
tions as they propagate into the soil. For these methods careful measurements,
analysis and theory for the amplitude and phase propagation of a thermal wave
must be undertaken.

Soils are modelled as a heterogeneous, porous medium composed of a solid
matrix of various compounds with fluid flow occurring between the pores (both
water vapour). Soils and sediments are typically composed of various materials
with varying grain sizes and structures. Intricate models must be undertaken
in order to determine the bulk thermal properties of such a medium. The study
of the effects of soil heterogeneity ranges on scales of microscopic (the sizes of
the pores) to macroscopic, such as various sediment layers or impurity inclu-
sions. Following [80], early suggestions included estimating the bulk thermal
conductivity of a two phase medium by the geometric mean of a two phases
weighted by their volume fraction. Theoretical models bound the bulk thermal
conductivity [29] of such materials. Homogenization of the heat equation [31]
indicates that the microscopic variations may be averaged over in the leading or-
der behaviour of the thermal waves, although the average taken may not be the
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average expected. For example, the effective thermal conductivity is calculated
as kave = 〈k−1〉−1 where < . > indicates averaging over the small scale depen-
dence. The homogenized thermodynamics model used for soils is the advection-
diffusion equation [2, 39].

ρc
∂T

∂t
=

∂

∂z

(
k
∂T

∂z

)
− qρwcw

∂T

∂z
,

where ρ and c are the bulk density and specific heat capacity of the soil, ρw
and cw are the density and specific heat capacity of water, q is the vertical seepage
velocity (water flow) and k is the effective thermal conductivity. Exact solutions
to this equation were derived by [96] in the case of a homogeneous soil with
a constant, uniform seepage velocity, with most analytical and numerical tools
using these assumptions [30, 44, 62, 65]. However, there is a growing interest in
analysing the effects of heterogeneous soils [48, 86], non-constant [81] and non-
uniform [68] seepage fluxes as well as other theory assumptions [41], all of which
have only been studied numerically.

1.5 Outline of Thesis

The remainder of this thesis is presented as follows. A numerical simulator of
sea ice transient temperatures is presented in Chapter 2 and validated against
a number of sea ice thermistor strings. The simulator is designed to aid in the
studies presented in the remainder of the thesis as well as being an easy to use
tool for further sea ice thermodynamics research. This material will be submit-
ted shortly to the Journal of Oceanic and Atmospheric Technology. In Chapter 3
we introduce a two time analysis to derive a differential equation for the leading
order behaviour of quick, small amplitude thermal waves due to solar heating
and oscillating air temperatures. Data analysis is presented along with numerical
solutions and simulation results. In Chapter 4 we use boundary layer theory to
construct the leading order behaviour of solutions to the thermal waves in sea
ice using matched asymptotics and a WKB approximation and further approx-
imate these in terms of elementary functions using the method of steepest de-
scent. Chapter 5 contains the soil thermodynamics project, in which we analyse
the effects of the heterogeneity of soils on the resulting thermal wave propagation
using perturbation methods. This is used to derive errors in common tools used
to infer soil diffusivity and seepage fluxes which are based on thermal waves in
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homogeneous soils. Conclusions of the two projects are summarised in Chapter
6 as well as possible future work.
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Chapter 2

Transient Temperature Simulator for
Sea Ice

2.1 Background

Many thermistor string measurements have been taken of sea ice temperature,
with data repositories available online, such as in [71]. Some successes of the
thermistor string projects include an improved parameterization of the thermal
conductivity of sea ice [77], detection of supercooled water currents beneath the
sea ice [95], tracking snow and ice depths/thickness over time [54], parameteriz-
ing the albedo [105] and many more. To further analyse such data, comparisons
between the data and numerical modelling aid in quantifying contributions of
various parameters and processes. For example, simulations with various oceanic
flux’s or salinity profiles can be compared to each other and the data set.

A rigorous model of the sea ice thermodynamics is no easy task due to the
multi-phase nature of sea ice and its complicated, three dimensional structure (see
section 1.2). Mushy layer models of sea ice [21,36] have indicated that during the
growth phase the sea ice is well modelled by neglecting horizontal heat transfer
and assuming the thermodynamics are represented by the bulk properties of sea
ice, which have been measured extensively (see Appendix A). This allows for the
development of a much simpler model of sea ice thermodynamics being a one
dimensional, non-linear heat equation. Numerical models for studying the tem-
perature transients in sea ice in this fashion have been developed [51, 63, 83, 99],
each being geared towards various applications such as multi-year modelling of
multi-year ice, slush layer inclusion, first year sea ice growth or the inclusion of
biological species, with great success. Numerical schemes are used where dis-
cretizations in time and space allows for a numerical approximation of the non-

11
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Figure 2.1: Thermistor string measurements of first year sea ice from McMurdo Sound,
Antarctica in the winter months of 1997.

linear heat equation to be iterated, coupled with the selected boundary condi-
tions.

A drawback of some previous models is the expensive computations required
for transient temperature calculations, hindering the coupling of such models to
large scale climate models where they must be evaluated on many grid cells.
There has been an emphasis on developing suitable, lightweight models that
would couple well with full climactic models [35, 110]. The lightweight mod-
els must be verified against rigorous models and data to ensure the assumptions
made do not lead to significant biases developing. For example, studies have
found that significant errors develop when diurnal (daily) cycles of forcing data
is neglected [27].

In this chapter we develop in MATLAB the existing one-dimensional thermo-
dynamics model discussed in section 2.2 for the growth of sea ice and compare
it to thermistor string data. Features such as ice depth and snow thickness have
been analysed by previous models and are recreated well [54]. The numerical
solver will be used to analyse the finer details present in the thermistor string
data, such as the temperature transients and ice growth rate. This numerical tool
will aid in analysing the thermal waves in response to the solar radiation absorp-
tion in later chapters, as well as further numerical studies of sea ice.
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2.2 Sea Ice Thermodynamics

The heat equation has been studied thoroughly in various applications [14,28,40].
The solutions can only be expressed in terms of elementary functions in very
specific formulations of the equation. For this reason it is very common to study
the solutions numerically [15,20,34,51,110,114] especially when comparing to sea
ice temperature data.

We consider the processes that take place after stable sea ice has formed, and
assume a one dimensional model following [51,63]. The model is not designed to
simulate the melting of sea ice, or the formation of slushy layers at the snow/ice
interface.

Let the thickness of the ice be given by H(t) and the thickness of the snow
cover be given by h(t), as illustrated in Figure 2.2. We assume a sharp interface
between the ice and the ocean, meaning that the ice/ocean interface is at z =

−H(t). z = 0 is set to be the ice/snow interface. At all times we have H(t) ≤ 0

and h(t) ≥ 0. Inside the ice we would like to satisfy the heat equation,

ρc
∂T

∂t
=

∂

∂z

(
k
∂T

∂z

)
+ P (z, t) , z ∈ [−H, 0] , (2.1)

where ρ is the density, c is the heat capacity, k is the thermal conductivity of
sea ice and P (z, t) is the power absorbed per m3 due to penetrating short wave
radiation. The absorbed power is parameterized as an exponential decay in three
regions (in the snow, the upper 20 cm of the sea ice and the remainder of the
sea ice), P (z, t) = P0(t)Ae−αz, with a constant extinction coefficient, α, in each
region. The respective extinction coefficients used are 20, 20 and 2 m−1 following
[55, 58, 69, 73]. P (z, t) is ensured to be continuous across the boundaries of these
regions with relevant prefactors, A, in each region. Hence, A and α are piecwise
constant functions of depth. The amount of solar radiation entering the ice/snow
top layer, P0, is given by [91] as below. Other parameterizations of incident power
and cloud cover parameterization such as detailed in [46] may be adopted.

P0 = (1− α) (1− 0.52c)S0
cos2(Z)

1.2 cos(Z) + 10−3V (2.7 + cos(Z)) + 0.1
, (2.2)

where V is the vapour pressure, α is the albedo, Z is the solar zenith angle,
S0 is the solar constant of 1362 W/m2 and c is a cloudiness factor employed
by [10]. The cloudiness factor is provided by the user while the solar zenith an-
gle is computed using the package provided in [47] and the user specified lati-



14 CHAPTER 2. TRANSIENT TEMPERATURE SIMULATOR FOR SEA ICE

Figure 2.2: Top: Following [63] we consider the dominant heat exchanges between the
sea ice, snow, atmosphere and ocean. A steady state temperature profile is shown for con-
stant physical and thermal parameters. Bottom: Reprinted from [69], the solar heating
term in sea ice calculated at midday from Monte Carlo photon tracing simulations with
depth dependent ice scattering parameters as measured in [26]. Each curve represents a
simulation with different scattering parameters as measured in different sea ice locations
by [26].
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tude/longitude. The albedo has been parameterized in accordance with CCSM3
as presented, for example, by [59].

If snow is present a similar equation holds for the snow in the region z ∈ [0, h].
Although the heat absorbed due to short wave radiation is mostly only present
in spring and summer and may be neglected during the winter (growth phase)
months, we include such a term in the above equations for greater applicability.

The boundary conditions these equations must satisfy are derived from bal-
ancing the heat transfer at either end of the sea ice/snow. Each of these inter-
actions constitute entire fields of active study, so we present some of the latest
parameterizations of these heat transfers below.

• Ocean-ice interface, at z = H(t) the ocean and ice must both be at the freez-
ing temperature

T
∣∣
z=H(t)

= Tfreezing , (2.3)

assumed to be in perfect thermal contact.

The ice growth rate is determined via a localised steady state approximation
at the ice/ocean interface, the heat extracted via the ice dictates the rate at
which the liquid freezes modified by an oceanic heat flux

k
∂T

∂z

∣∣∣
z=H(t)

=
dH(t)

dt
Lρice +Wocean , (2.4)

where L is the latent heat of fusion of the ocean and Wocean is the oceanic
heat flux needed to maintain the boundary at the freezing temperature.
The oceanic heat flux depends on the conditions of the ocean beneath the
ice, and is associated with warm currents or super-cooled water inducing
platelet ice growth [95].

• The top temperature of the sea ice (or snow if present) is modelled using
an energy balance following the numerical models in the literature cited
previously.

k
∂T

∂z

∣∣∣∣
z=h(t)

+Qd,lw − εσT 4
0 +Qs +Ql = 0 , (2.5)

where each term represents: the conductive heat flow from the sea ice/snow,
the down-welling long-wave radiation, the up-welling long-wave radiation
and the turbulent heat fluxes to and from the atmosphere (sensible and la-
tent). The turbulent heat fluxes are parameterized following [3].

Qs = ρaircp,airChvws (Θ0 −Θair) ,

Ql = ρairLv,airClvws (H0 −Hair) ,
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where ρair is the density of air, cp is the specific heat capacity of air, L is
the latent heat of sublimation, vws is the wind speed, Θ0 and Θair are the
potential temperatures at the surface of the sea ice/snow and air respec-
tively and H0 and Hair are the specific humidity of the surface and the
air respectively. H0 is interpreted as the saturation humidity at the sur-
face temperature. Cl and Ch are the bulk coefficients of turbulent latent
and sensible heat transfer respectively, and depend on the stability of the
atmosphere, roughness lengths of temperature, humidity and windspeed.
Assuming that the roughness lengths of humidity and air temperature are
equal reduces Ch = Cl [3, 4]. We compute Ch using the stability func-
tions proposed in [25] based on the bulk Richardson number Rib and the
neutral-limit turbulent Prandtl number, Pr0, a parameterization based on
the SHEBA dataset. Other parameterizations, such as the ones discussed
in [61], may be used alternatively.

Unlike other models in the literature [52, 64], we do not include melt pond
formation, but rather raise a warning for times where simulated tempera-
tures were higher than the melting temperatures. This is due to minimal
melt occurring during the winter months for which this model is valid.

• If snow is present, at the ice/snow interface the temperature is set to be
continuous and the heat flux from either side must balance

Tice
∣∣
z=0

= Tsnow
∣∣
z=0

, kice
∂Tice
∂z

∣∣∣
z=0

= ksnow
∂Tsnow
∂z

∣∣∣
z=0

. (2.6)

2.3 Discretization and Freezing the Boundary

The domain over which the heat equation is to be solved is changing as the ice
grows or melts. A transformation of the depth variable allows an equivalent prob-
lem to be solved over a fixed domain [49] (a frozen boundary, a fitting name for
our application). This adds ease in numerical computations and avoids errors
associated with interpolation when the boundary moves which could introduce
unknown errors. Both the ice/ocean boundary and the snow/air boundary coor-
dinates are frozen by defining the new depth variables ξ = z

H(t)
for ice and χ = z

h(t)

for snow, so that the snow/air boundary is fixed at χ = 1, the ice/ocean boundary
is fixed at ξ = 1, and both coordinates have their origin at the ice/snow boundary.
For all times, the temperature profiles are now represented on the depth ranges
ξ, χ ∈ [0, 1].
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The chain rule for changing the variables are as follows, in the ice

∂

∂t

∣∣∣∣
z

=
∂

∂t
+
∂ξ

∂t

∂

∂ξ
=

∂

∂t
− ξ Ḣ(t)

H(t)

∂

∂ξ

∂

∂z
=
∂ξ

∂z

∂

∂ξ
=

1

H(t)

∂

∂ξ

and similarly in the snow.
With reference to the equations in section 2.2, the transformed heat equation

reads

∂T

∂t
=

1

ρcH(t)2

∂

∂ξ

(
k
∂T

∂ξ

)
+ ξ

Ḣ(t)

H(t)

∂T

∂ξ
+

1

ρc
P (H(t)ξ, t) , ξ ∈ [0, 1] , (2.7)

for ice, and similarly for snow.
We know apply the method of lines [87] by discretizing over the depth, turn-

ing the partial differential equation into many coupled ordinary differential equa-
tions. A mesh of constant spacing ∆ξ,∆χ is used on the reparameterized depth
variables. Typical values for these are between 0.005 and 0.1. This prepares the
approximate solution to be easily attained using numerical computations. The
spatially varying parameters are labeled as follows at these depths

Ti = T (ξi, t), ρi = ρ(ξi), ci = c(ξi), ki = k(ξi), ξi = i×∆ξ, i = 0, 1, . . . , n

and the spatial derivatives are approximated using central differences

∂

∂ξ

(
k
∂T

∂ξ

)
≈
ki+1/2

(
Ti+1−Ti

∆ξ

)
− ki−1/2

(
Ti−Ti−1

∆ξ

)
∆ξ

, (2.8)

where we note that the thermal conductivity is to be evaluated ’in between’ the
discretized points. This is done by interpolating on the temperature profile

ki±1/2 = k

(
ξi + ξi±1

2

)
.

The coupled ordinary differential equations representing the evolution of the
temperature profile are approximated by

dTi
dt

=
1

ρiciH2

ki+ 1
2

(Ti+1 − Ti) + ki− 1
2

(Ti−1 − Ti)
(∆ξ)2

+ξ
Ḣ

H

(
Ti+1 − Ti−1

2∆ξ

)
+

1

ρici
P (Hξi, t), i = 1 . . . n− 1 . (2.9)

Similarly, the temperatures in the snow, T sj , must satisfy

dT sj
dt

=
1

ρsjc
s
jh

2

(
ksj+1 + ksj

) (
T sj+1 − T sj

)
+
(
ksj−1 + ksj

) (
T sj−1 − T sj

)
2(∆χ)2

+χ
ḣ

h

(
T sj+1 − T sj−1

2∆χ

)
+

1

ρjcj
P (Hχj, t), j = 1 . . .m− 1 . (2.10)
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These equations, together with the discretized version of equation 2.4,

dH

dt
=

(
kn−1/2

Lρn−1/2

)(
Tn − Tn−1

H∆ξ

)
− Wocean

Lρn−1/2

, (2.11)

are to be solved simultaneously for the unknown temperatures Ti(t) and T sj (t),
i = 1 . . . n− 1, j = 1 . . .m− 1, and for the unknown H(t). The subscripts on ρ are
to be interpreted the same as those on k.

The user provides h(t). If no snow layer is desired, h may be set to a relatively
small number so that the snow layer has negligible effect. This allows snow to
be added at a later time after being removed, and through numerical testing was
found to not affect the solution appreciably. Solving requires that the boundary
values T0, Tn, T s0 , and T sm are known. These are provided by the discretized ver-
sion of the boundary conditions, equations 2.3, 2.5 and 2.6.

• At the ice/ocean interface, Tn = Tfreezing.

• The upper temperature is solved for numerically to satisfy the following

k1/2
T0 − T1

H∆ξ
+Qd,lw − εσT 4

0 +Qs +Ql = 0 (2.12)

with the down-welling longwave radiation set by the user as a time-series,
and the turbulent heat fluxes calculated using the previously stated param-
eterizations based on user provided atmospheric conditions.

• The ice/snow interface boundary condition at origin is given by T0 = T s0 ,
and

k0

(
T1 − T0

H ∆ξ

)
= ks0

(
T s1 − T s0
h∆χ

)
.

Solving for T0 gives:

T0 =
Hks0T

s
1 ∆ξ − hk0T1 ∆χ

Hks0 ∆ξ − hk0 ∆χ
. (2.13)

Equations 2.9, 2.10, and 2.11 are solved simultaneously together with the bound-
ary conditions, using Matlab’s stiff ordinary differential equation solver ode15s.
The system at hand is stiff, most easily seen through the varying time scales
present, parts of the solution can vary quickly, such as during rapidly changing
atmospheric conditions, while other parts vary more slowly [88]. More details
on the numerical simulation may be found in the code with documentation on
GitHub [8].
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2.4 Validating the Model

We compare simulated temperatures to field measurements of thermistor strings
from both the Arctic and Antarctic available at online repositories. Thermistor
string data from [71], labeled AR, and measurements undertaken in McMurdo
Sound, Antarctica taken from https://seaice.alaska.edu/gi/data/mcmurdo/

[75, 103], labeled AN, are used for comparison. Here we demonstrate such com-
parisons with the measurements undertaken in McMurdo Sound, Antarctica, dur-
ing 1997. Temperature profiles of the sea ice were obtained by placing thermistors
on a 2 m rod at intervals of 10 cm and freezing it into relatively fresh 90 cm thick
sea ice in early June. Thermistor temperatures were recorded every half-hour to
a data-logger until removal early in December. Further details such as the in-
strumentation and location can be found in [103]. We estimate the oceanic heat
flux from the measurements and provide it to the simulation, as is detailed in the
following analysis.

2.4.1 Ice Thickness Estimation

At each time, we use the temperatures measured with the thermistor array fol-
lowing the methods used by [24] as illustrated in Figure 2.3, to estimate ice thick-
ness. The thermistors are divided into two groups, labeled ice and ocean. Initially
all thermistors are in the ocean group. A linear line is fitted to the four thermistors
closest to the ocean and the intersection of this line and the freezing temperature,
being the mean of the ocean thermistors, is found. If the intersection is between
the deepest ice thermistor and the highest ocean thermistor, the intersection is
saved as the sea ice boundary. If not, the lowest ice thermistor is transfered to the
ocean thermistor group and the process repeated. We further check the mean of
the four ice thermistors closest to the ocean is lower than the mean of the ocean
thermistors to increase reliability. This assumes a ’clean boundary’ between the
ice and the ocean, ignoring the effects of a possible mushy layer due to the pres-
ence of brine channels or a sub-ice platelet layer [95, 111, 112].

By smoothing the estimates of ice thickness H using a 7 day running average
and differentiating with respect to time, an estimate for the growth rate Ḣ is also
obtained directly from thermistor data for comparison purposes. Smoothing is
necessary as the data is noisy, giving high variability in growth rates otherwise.

https://seaice.alaska.edu/gi/data/mcmurdo/
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Figure 2.3: A sketch illustrating how the data is used to infer the location of the ice-ocean
interface following [24]. A local freezing temperature is calculated directly from the data.
The intersection between this and a line fitted to the last four points within the ice gives
the estimated interface location (marked by the black x). The gradient of the temperature
profile at the interface is estimated as the slope of the fitted red line.

2.4.2 Estimating Oceanic Heat Flux

The data-based temperature gradients are used together with data-based esti-
mates of H and Ḣ , to derive the elusive oceanic heat flux term, following [24,32],
by balancing the heat fluxes in a reference layer 15 cm above the base of the sea
ice.

Wocean = −k ∂T
∂z

∣∣∣∣
z=zr

+ ρc∆H Ṫ
∣∣∣
z=zr
− ḢLρ . (2.14)

For AN1997, a significant transition to a negative oceanic heat flux may be
seen in Figure 2.4 when the ice is about 1.4 meters thick, approximately at day 40.
This coincides with the first appearance of platelet ice in ice cores [103], as seen in
Figure 2.5.

2.4.3 Numerical Simulation of Ice Temperatures

The simulator was run, using thermistor measurements at time zero to provide
the initial temperature profile for starting the simulation. Since the uppermost
thermistors are inside snow, the (modeled) upper boundary condition is set via
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Figure 2.4: Heat flux balance near the bottom of the sea ice is used to calculate the oceanic
heat flux for the AN1997 thermistor. The contributions are as follows. Solid blue line:
latent heat of freezing. Dashed red line: conductive heat into the ice. Dotted yellow line:
internal heating of the reference layer as its temperature changes. Dashed purple line: The
oceanic heat flux calculated from equation 2.14.

the first thermistor in the sea ice. A snow layer is then not needed and is not
simulated in this section, which tests the accuracy of our numerical simulator for
heat transport solely within the sea ice. The surface temperature is forced onto
the upper ice thermistor.

We test the sensitivity of the simulation to the salinity profile by comparing
simulations with the same forcing parameters. Presented is the difference be-
tween the simulated measurements using the forcing parameters of AN1997, with
a salinity of 10 ppt and 2 ppt. A maximal difference in the temperature field of
1◦C is observed, and the subsequent changes to the ice-ocean interface evolution
result in about a 6 cm difference after 100 days of simulation, as seen in Figure
2.6.

The differences between simulated and measured temperatures are plotted in
Figure 2.7, with the ice-ocean interfaces overlaid. The comparisons shown in-
dicate very good agreement between the simulated and measured temperatures
within the sea ice, to approximately a 1 ◦C accuracy in regions of sea ice growth.
For times of sea ice melt we observe large discrepancies, seen as large blue sec-
tions in Figure 2.7. This is due to the lack of convective heat transport in the
simulation, associated with the ocean and/or melt ponds flushing the sea ice.
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Figure 2.5: Reprinted from [103]. Ice core data taken near the temperature array AN1997
in November 1997. The crystal orientations, viewed under crossed polarisers, change from
aligned to random, giving insight to the presence or absence of platelet ice.
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Figure 2.6: Top: Forcing data from thermistor AN1997 is used to compare the sensitiv-
ity of the model to the input salinity. The colours represent the difference between the
simulated temperatures T2 ppt − T10 ppt where the subscript denotes the constant salinity
value used in the simulation. Overlaid is the calculated ice/ocean interface for the 2 ppt
salinity (red) and 10 ppt salinity (black). Bottom: The calculated temperature profile for
the simulation with a salinity of 2 ppt.
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These events usually occur when the sea ice is warming above the freezing tem-
perature. The large discrepancy around days 80-90 of AN1999 occur at times of
a noted instrumentation failure inducing a lack of data at these times, with linear
interpolation being used to fill the gap in the data.

Figure 2.7: Comparison between the simulated and thermistor array measurements. The
surface temperatures is plotted as a blue line above each thermistor array comparison, and
the colour represents the discrepancy Tsimulated − Tdata in the various thermistor arrays.
Overlaid are the measured sea ice-ocean interface (black line) and the simulated ocean
interface (red line). From left to right, then top to bottom, the thermistor arrays are: (1)
AN1996, (2) AN1997, (3) AN1999, (4) AR2014C, (5) AR2015A, (6) AR2015G

The striped colour patterns visible in Figure 2.7 during conductive dominated
heat transport regions represent travelling waves of small discrepancies in tem-
perature, possibly due to uncertainties in the salinity values affecting the ice’s
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thermal properties.
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2.5 Further Application: Snow Cover

Snow may be added to the model by the user and can vary in thickness with time
as desired. New snow is automatically added at the current air temperature, and
snow is removed at the temperatures that currently apply inside the removed
snow.

We compare our model simulated results to sea ice growth rates measured
via banding analysis performed on an ice core from 1999 in McMurdo Sound,
Antarctica, and a previously used steady state model as described in [104]. The
banding analysis uses dark bands sometimes seen in young sea ice to infer sea ice
growth rate as a function of thickness and can be used to measure growth rates for
thin sea ice when a thermistor string cannot safely be deployed. An ice thickness
of 110±5 cm was measured using data from a nearby thermistor string [94,104] on
21 June. Congelation ice formation started at 15 cm thickness. The models were
tuned to match the sudden rise in air temperatures causing a drop in the growth
rates near a thickness of 60 cm and to match the final ice thickness. The model
presented in [104] was tuned with a freeze in time (15 cm thickness of ice) of the
early hours of 14 May. Our simulation with no snow had a freeze in time of the
early hours of 15 May and with a 15 mm snow cover a freeze in time of midday
on 11 May. The final thicknesses on 21 June of the simulations were 110cm with
no snow and 105 cm with 15 mm of snow. Both of these are within the measured
value range.

With no snow cover the dynamic simulation overestimates the banding-inferred
growth rates, and the steady-state model presented in [104] (which also made no
allowance for a snow cover) fits the early growth rates more closely than our
transient model. This may be due to the different freeze in dates selected to tune
each model. When the same freeze in date is selected the transient rates are a
closer match to the steady state rates early in the season, but they deviate from
the steady state rates later in the season. Furthermore, the latent heat of sea ice
used in the steady state model is higher than what we would expect [115] at the
typical temperature and salinity of near-freezing sea water, inhibiting the overall
modeled growth rates of the steady-state model used.

A constant 15 mm thick snow cover in the dynamic simulations produces bet-
ter agreement with banding-inferred growth rates than the no snow models, as
may be seen in Figure 2.8. The match is surprisingly good over both early and
late times, given the simplicity of the assumption that the snow cover is constant
in time. The expected effect of the presence of a snow cover is clearly seen, reduc-
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ing ice growth rates compared to when there is no snow cover, especially earlier
in the season.
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Figure 2.8: A comparison of ice growth rates computed using a steady state model as
described in [104] (solid red curve) with growth rates computed using the new fully tran-
sient model presented in this chapter (dashed blue curve). Data values are computed
from a banding analysis of ice cores (black symbols) [104]. Air temperatures used are
those given in [104] Left: No snow layer is present in the transient simulations (dashed
blue curve). Right: A snow layer of constant 15 mm thickness has been included in the
transient simulations (dashed blue curve).

The ice core with banding analysis performed to get these measurements was
taken about 1km offshore near Arrival Heights in Antarctica in 1999 at a site 150 m
away from a thermistor string at a latitude/longitude of 77◦50.197’S, 166◦36.764’E.
The thermistor string used has been described in [95] and analysed in [103]. The
air temperatures measured at Scott Base [70] were used as a proxy for the air tem-
peratures above the ice for the simulations. Some snow cover was observed to be
present at the site when ice cores were taken.

2.6 Summary

In this chapter we presented a numerical tool for calculating temperature tran-
sients in sea ice and snow based on models developed in the literature. We use
parameterizations of the thermal and physical properties of sea ice and snow in
the literature. The model is implemented in MATLAB and is numerically solved
using the built in stiff differential equation solver ode15s.
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The mechanics of the model include using a coordinate transformation to
solve an equivalent heat conduction problem on a fixed boundary (with ”frozen”
coordinates). The method of lines is used to discretize over a spacial mesh and
convert the partial differential equation to a set of coupled ordinary differential
equations. The code is made available on GitHub [8] and other online reposito-
ries.

The model is compared to thermistor string measurements with inclusion of
estimated ocean flux from the data. We see excellent transient treatment, with an
agreement of 1 ◦C within the entire thermistor array during times of conductive
heat transport. Discrepancies between the model and the data highlight times
of non-conductive heat transport or occur at times of measurement equipment
failures. The ice depth is recreated well throughout the growth stage.

Further comparison to sea ice growth rates from McMurdo Sound, Antarctica
in 1999 obtained from ice core banding patterns indicate the need of a previously
speculated 15 mm layer of snow.



Chapter 3

Oscillatory Temperatures in Sea Ice

Solar radiation heats up the sea ice over the summer months and is a contributor
to sea ice melt [1, 74]. Understanding the solar radiation’s interaction with the
sea ice is vital to better understand the late-season thermodynamics and how sea
ice mediates the solar radiation absorption of the ocean. Although a significant
portion of the incident solar radiation is reflected at the surface of the sea ice [105],
radiation can penetrate deep into the snow and ice and when absorbed adds a
distributed heat source. Parameterizations of this interaction (such as the amount
of radiation entering the sea ice, the absorption over depth, radiation heating up
the ocean below etc.) are all important parameters to understand due to their
effect on solar heat absorption by the sea ice and the ocean. These also dictate the
thermal wave behaviour present in the sea ice induced by the diurnal oscillation
of the solar radiation.

In this chapter we follow the work presented in [66] to derive the leading
order behaviour of the thermal waves due to the absorption of solar radiation
within the sea ice. We start by introducing Monte Carlo photon tracing simu-
lations run by [69], giving estimates for the distributed source term P (z). Data
analysis is presented to motivate the study of the thermal waves generated by
such a distributed source and an oscillatory boundary condition. Analysis of the
amplitude and phase of thermal waves present in thermistor data from 1996, 1999
and 2003 is presented. We then derive a differential equation for the amplitude
and phase of the thermal waves generated by the distributed heating term and
oscillatory boundary conditions.

29
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3.1 Background

During the summer months where the sun rises above the horizon in Antarctica
the azimuth (angle above the horizon) of the sun has a 24-hour periodicity with a
slow drift throughout the year. The amount of solar radiation that enters the sea
ice depends on the atmospheric and surface conditions, as well as the conditions
of the ice, such as its thickness. Clouds and other particles in the air scatter and
absorb sun light and can cause both a decrease or increase (atmospheric lensing)
in the solar radiation entering the sea ice. The presence of snow or meltponds
significantly changes the albedo, being the ratio of reflected to incident sunlight.

As the sunlight enters the sea ice it is scattered and absorbed. For a homo-
geneous material, the absorbed power per unit volume follows Beer’s law [11],
an exponential decay. As was discussed in the introduction, sea ice is a com-
plex, inhomogeneous material. The scattering and absorption of the light is very
complex and can vary significantly for various ice locations, growth types etc.
Most significantly, the lack of a uniform crystal orientation in the upper sections
of the ice slab, where frazil ice growth occurred, causes significant scattering and
absorption in the upper ≈20 cm of sea ice.

Monte Carlo photon tracing simulations have been used to investigate the
solar radiation absorption of sea ice [55, 57, 58, 69]. In [69] such simulations were
setup based on scattering and absorption parameters of sea ice that are depth and
wavelength dependent, as measured in [26,102]. This gives the distributed source
term P (z) that we will use in our analysis. As seen in Figure 3.1 the distributed
heating source can be well approximated by an exponential decay with a fixed
decay coefficient in two regions, one very near the surface to a depth of about
20 cm and the other from 20 cm and deeper. As has been studied in [19, 69], the
inclusion of algae, air bubbles and other impurities can increase absorption at
depths, effectively decreasing the decay rate of the distributed source. In [66,103]
it was noted that the absorption of sunlight by the therimstors is negligible and
inclusion of impurities in the ice is necessary to explain the decay of the thermal
waves measured.

This distributed heating term has been linked to daily oscillations measured
in the sea ice thermsitor arrays. Such examples are shown in Figures 1.1 and 3.2.
These measured thermal waves with a periodicity of 24 hours are also due to a
second prominent driving force - diurnal oscillations of the air temperatures. Air
temperature measurements from Scott Base in 1997 retrieved from [70] shown in
Figure 3.3 indicate typical large weather system variations overlaid with smaller
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Figure 3.1: Reprinted from [69], the solar heating term in sea ice calculated from Monte
Carlo photon tracing simulations with depth dependent ice scattering parameters as mea-
sured in [26]. Each curve represents a simulation with different scattering parameters as
measured in different sea ice locations by [26].

daily variation. Air temperature fluctuations and incoming solar radiation mea-
surements from Scott Base in 1999, also retrieved from [70], show a slight lag be-
tween of the daily temperature cycle as compared with the solar radiation, seen
in Figure 3.4. Air temperatures were processed with a high pass filter to extract
the daily (and sub-daily) temperature fluctuations.

We present measured daily thermal oscillations from the thermistor strings in
the sea ice, following the work of [66] and using the thermistor strings referenced
in Chapter 2. We extract the thermal wave amplitude and phase by applying
a highpass frequency filter to the timeseries of each thermistor. Oscillations of
frequency slower than 1 wave/day are filtered out. Care was taken in this process
by using a zero phase filter, ensuring that the phase of the thermal waves is not
compromised. An example of the result of such analysis is displayed in Figure
3.5. Similar analysis consisting of a fitted background temperature profile from
daily averages being subtracted results in very similar thermal wave profiles.

We see very clearly that two regions are present with different thermal wave
behaviour. The first is a quick decay of travelling thermal waves (with a varying
phase in relation to depth) up to a thickness of ≈ 50 cm. The second region con-
sists of a slower decay of the thermal waves at a fixed phase. The travelling ther-
mal waves have been attributed to the quick decay in the absorbed power at shal-
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Figure 3.2: The AN1996 thermistor data overlaid with contours. The daily cycle appears
both near and far from the top surface approximately from day 120, with small daily
oscillations appearing over the ’background’ temperature profile at depths deeper than
0.5 m.
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Figure 3.3: Air temperatures as measured in Scott Base, Antarctica from 01 August-31
December 1997 (left) and a close up highlighting the daily oscillations measured (right).
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Figure 3.4: Air temperature fluctuations (solid blue) and global (direct plus diffuse) radi-
ation falling on the surface of Antarctica (dashed red) as measured at Scott Base, Antarc-
tica in 1999.
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Figure 3.5: The measured daily fluctuations in the AN1996 thermistor array. The colour
map shows the temperature fluctuation from the average background temperature profile.
We clearly see the travelling thermal waves near the surface of the sea ice and the station-
ary thermal waves at deeper depths (the bottom 0.8 m of data not shown) with a relatively
constant amplitude. It is interesting to note that the waves destructively interfere near a
depth of ≈ 0.5 m. The colour map has been saturated to ensure the stationary waves are
visible.
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lower depths inducing a heat imbalance that decays into the ice over time [66].
We add that an oscillatory boundary condition, such as oscillating air tempera-
tures, also induces a travelling thermal wave and the observed travelling thermal
wave will be a combination of the atmosphere induced and solar radiation in-
duced travelling waves. The deeper stationary waves are due to in place heating
by the solar radiation that is absorbed at depths, with the decay of absorbed radi-
ation being shallow enough for negligible heat conduction to take place and the
thermal waves do not travel and have a fixed phase.

The thermal waves profiles, such as the one shown in Figure 3.5, are used to
extract the amplitude and phase of the thermal waves in each day. This is done
by restricting the waves profile to the day of interest and fitting a sine wave to the
timeseries of each thermistor. The amplitude and phase of the fitted sine waves
are plotted as a function of depth for a number of selected days in Figures 3.6, 3.7
and 3.8. The phases plotted are in relation to the sun altitude, with a minimum
altitude at midnight and a maximum altitude at midday (see Figure 3.4).

The variation in the amplitudes between the days is probably due to variation
in cloud cover restricting the amount of solar radiation entering the sea ice. There
is variation in the thermal wave structure between the days, such as the decay rate
near the surface and transition depth between travelling and stationary thermal
waves. The thermal waves in the multiyear sea ice appear a lot more consistent
than those in first year sea ice, possibly due to consistent atmospheric conditions.

3.2 Differential Equation for Thermal Waves

Beginning with equation 2.1, we search for the role of the distributed heating term
(and later an oscillating boundary condition) in the solution for the temperature.

ρ(z, T )c(z, T )
∂T

∂t
=

∂

∂z

(
k(z, T )

∂T

∂z

)
+

1

2
P (z)

(
1 + eiωt

)
.

We have introduced complex variables by denoting T = Re
[
T̄
]

and drop-
ping the over-bar for simplicity of analysing the periodic nature of the solar heat-
ing term. We have assumed a time dependence for the solar heating term of
1
2

(1 + eiωt) such that the sun ‘barely’ sets at midnight and is directly overhead at
midday, valid for an average November day in McMurdo Sound, Antarctica. This
will be generalised to an arbitrary diurnal time dependence later. The equation is
subject to a simplified Newton-style cooling version of the boundary conditions
discussed in Chapter 2 (equation 2.5), as has been used by [19].
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Figure 3.6: Thermal wave amplitude and phases from thermistor string AN1996 taken
in first-year sea ice.
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Figure 3.7: Thermal wave amplitude and phases from thermistor string AN1999 taken
in first-year sea ice.
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Figure 3.8: Thermal wave amplitude and phases from thermistor string AN2003 taken
in multi-year sea ice.
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T (H(t), t) = Tfreezing , (3.1)

∂T (z, t)

∂z

∣∣∣
z=0

= α [T (0, t)− Tair(t)] , α =
h

k
, (3.2)

where h is the heat transfer constant. This equation is strongly non-linear and
due to the complicated analytical form of the physical parameters (see Appendix
A), no simple analytical solutions can be found. The physical and thermal prop-
erties vary with temperature, depth and in principle also time due to the dynamic
nature of the salinity and structure of the sea ice. Some analytical models begin
by assuming the thermal conductivity is constant [18, 66]. Over the temperature
range from -25 to -1.8 ◦C this assumption is valid to an accuracy of about 11%.
We do not consider this and will see the effect of neglecting the variation of the
thermal conductivity on the thermal wave behaviour. By freezing the moving
boundary with a Landau transformation [49] (as introduced in section 2.3), and
re-arranging, we get

∂T

∂t
=

1

H2(t)ρc

∂

∂z

(
k(z, T )

∂T

∂z

)
+

1

2
Q(z, T )

(
1 + eiωt

)
+ z

Ḣ(t)

H(t)

∂T

∂z
, (3.3)

Ḣ(t) =
1

Lρice

(
k
∂T

∂z

∣∣∣∣
z=1

−Wocean

)
, (3.4)

with Q(z, T ) = P (z)/ρ(T )c(T ) and H(t) is the thickness of the sea ice. The
prefactors in the above equation are k/ρc ≈ 10−6 m2s−1, Q0 ≈ 10−3 Ks−1 and
Ḣ/H ≈ 10−8 s−1 for sea ice of thickness 1 m (see Chapter 2) where the last term
decreases for thicker ice later in the season. The last term on the right hand side
of equation 3.3 is negligible and is neglected from here on.

Due to the non-linearity, the solution cannot be decomposed into a sum of
terms, each satisfying the different driving forces (non-homogeneous boundary
condition and distributed heating source). Taking a data driven analysis, from
Figures 1.1, 3.2 and 3.3 we see the sea ice and air temperatures may be decom-
posed into a sum of large, slow variations (on the scale of weeks and months), and
smaller, quicker variations (on the scale of daily and subdaily). Using a two time
analysis method [45] following the work of [66], we define fast and slow time as
t+ = t+O(ε2), t̃ = εt and model the air temperature as Tair = T̄air(t̃)+εT̃air(t

+) for
a small parameter ε. We have taken the distinguished limit [9] that the fast time
oscillations are of order ε. Further, we take the distinguished limit that the source
term is of order ε. Via the chain rule, the change of variables is ∂

∂t
= ∂

∂t+
+ ε ∂

∂t̃
.
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Next we apply a regular perturbation expansion on the solution of the form
T (z, t+, t̃) = T0(z, t+, t̃) + εT1(z, t+, t̃) + O(ε2), and assume that each term is a
bounded function of t+. This allows for the parameters to be expanded in a Taylor
series around T = T0, given by

k(z, T ) = k(z, T0) + εT1kT (z, T0) +O(ε2) etc. ,

where subscript T denotes partial differentiation with respect to temperature.
From now on the brackets of the parameters evaluated at (z, T0) will be omit-
ted. This gives the following for the differential equation, separated into powers
of ε.

ε0 :
∂T0

∂t+
− 1

H2(t)ρc

∂

∂z

(
k
∂T0

∂z

)
= 0 , (3.5)

ε1 :
∂T0

∂t̃
+
∂T1

∂t+
− 1

H2(t)ρc

∂

∂z

(
k
∂T1

∂z

)
− 1

2
Q
(

1 + eiω0t+
)

− T1

[
DT

∂2T0

∂z2
+

(
kz
ρc

)
T

∂T0

∂z
+

1

2
QT

(
1 + eiω0t+

)]
= 0 . (3.6)

where D = k
H2ρc

. This is subject to the boundary conditions, separated into pow-
ers of ε, as below.

z = 0 : T0,z = α
(
T0 − T̄air(t̃)

)
,

T1,z = α
(
T1 − T̃air(t+)

)
,

Tn,z = αTn, n > 1 .

z = 1 : T0 = Tfreezing ,

Tn = 0, n > 0 .

with subscript z indicating partial differentiation with respect to depth. The tem-
perature derivatives of the parameters are all present in the coefficient of T1 as the
term in square brackets in equation 3.6. From Appendix A and typical values of
T0 ≈ ∂T0

∂z
≈ −10, ∂

2T0
∂z2
≈ 1, estimated from thermistor array measurements (Figure

3.2), we see typical values of this coefficient are two orders of magnitude smaller
than the other coefficients present in equation 3.6 and so the term with coefficient
in square brackets is omitted in the remainder of the thesis. The distributed heat-
ing terms in the O(ε1) equation result in secular terms being present that cannot
be eliminated. This indicates that the expansion is valid for a limited duration of
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fast time before the secular terms become significant. Equation 3.6 is separable
and linear, allowing for the separation of the thermal waves of the three driving
forces: the non-homogeneous boundary condition (thermal waves due to oscil-
lating air temperatures), the distributed source term (thermal waves due to solar
heating) and heating from the background temperature profile (non-oscillatory).
We write T1 = θ1 + θ2 + θ3 with

∂θ1

∂t+
=

1

H2(t)ρc

∂

∂z

(
k
∂θ1

∂z

)
+

1

2
Qeiω0t+ , (3.7)

z = 0
∂θ1

∂z
= αθ1 ,

z = 1 θ1 = 0 .

∂θ2

∂t+
=

1

H2(t)ρc

∂

∂z

(
k
∂θ2

∂z

)
, (3.8)

z = 0
∂θ2

∂z
= α

[
θ2 − F2(t+)

]
,

z = 1 θ2 = 0 .

∂θ3

∂t+
=

1

H2(t)ρc

∂

∂z

(
k
∂θ3

∂z

)
+

1

2
Q− ∂T0

∂t̃
, (3.9)

z = 0
∂θ3

∂z
= αθ3 ,

z = 1 θ2 = 0 .

We focus on the component θ1 below (thermal waves generated by the solar heat-
ing) and treat θ2 (thermal waves generated by oscillating air temperatures) in a
coming subsection. The component θ3 is of little physical interest, being the heat-
ing term due to the background temperature profile, hence is not analysed. The
harmonic source term forces the time dependence of the solution to be harmonic,
with θ1 = eiω0t+Z(z; t̃), giving

DZ ′′(z; t̃) +
∂k

∂z

1

ρc
Z ′(z; t̃)− iω0Z(z; t̃) +

1

2
Q = 0 (3.10)

with D = k/(H2(t)ρc) being the diffusivity and primes denote differentiation
with respect to z (depth). Z is a function of depth and slow time as the coefficients
depend on slow time. The explicit dependence on slow time will not be written
in the remainder of this chapter.

Equation 3.10 is a second order, complex valued differential equation with
variable coefficients and no closed form solution exists. It is convenient to re-
parameterize to eliminate the first derivative term [38], as well as write this in
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terms of non-dimensional functions. Our goal will become to find approximate
solutions by applying a singular perturbation due to the presence of the small
parameter and the numerically small value of the diffusivity. We letZ = U(z)V (z)

with

U(z) = exp

(
−1

2

∫ z

0

1

k

∂k

∂z
dx

)
=

√
k(0)

k(z)
, (3.11)

DV ′′(z)−

(
iω0 +D

1

2

∂

∂z

(
1

k

∂k

∂z

)
+D

1

4

(
1

k

∂k

∂z

)2
)
V (z) +

Q(z)

2U(z)
= 0 , (3.12)

and define the non-dimensional functions f(z) = D(z)
D(0)

, g(z) = Q(z)
Q(0)U(z)

and further
define δ = 1

ω
D(0) (a small parameter) and V (z) = 1

2ω0
Q(0)W (z) to get

δW ′′(z)−W (z)

(
i

f(z)
+
δ

2

∂

∂z

(
1

k

∂k

∂z

)
+
δ

4

(
1

k

∂k

∂z

)2
)

= − g(z)

f(z)
.

The coefficients of W (z) that are of order δ are orders of magnitude smaller than
1 and so may be omitted in the leading order behaviour.

δW ′′(z)−W (z)
i

f(z)
= − g(z)

f(z)
, (3.13)

subject to the boundary conditions

z = 0 : W ′ = W

(
α +

1

k

∂k

∂z

)
, (3.14)

z = 1 : W = 0 . (3.15)

W and U are to be combined in the following manner to reproduce the complex
valued temperature field. εθ1 = 1

2ω
Q(0)U(z)W (z)eiωt where ω is the diurnal angu-

lar frequency.
In the remainder of this chapter we describe the terms present in equation

3.13 and show that a similar equation holds for θ2 (the thermal waves due to the
oscillating air temperatures), indicating similar behaviour. Numerical solutions
are presented along with data from thermistor string measurements and numer-
ical simulations of the heat equation to motivate further analysis of approximate
solutions to equation 3.13 which will be derived in the next chapter.

3.2.1 Parameters

The parameters in equations 3.13 and 3.11 that we need to quantify are the func-
tions g(z), f(z), k(z) and the value of δ.
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The form of g(z), the normalized source term, is obtained from photon-tracing
Monte Carlo simulations presented by [69] as has been discussed earlier. The
power absorbed per unit volume P is parameterized as a decaying exponential
with two decay constants in the two regions of sea ice.

P (z) = P0 ×

e
− zH
v1 , z ≤ zc ,

e
− zcH

v1 e
− (z−zc)H

v2 , z > zc .

g(z) is given by

g(z) = g̃(z)×

e
− zH
v1 , z ≤ zc ,

e
− zcH

v1 e
− (z−zc)H

v2 , z > zc ,
(3.16)

with g̃(z) = ρ(T0(0))c(T0(0))
ρ(T0(z))c(T0(z))U(z)

and common values of the parameters are given
in table 3.1 [66, 69]. The Landau transformation (equation 3.3) has introduced
the factors of H in the exponent of g(z); we re-parameterize the decay constants
ṽj = vj/H, j = 1, 2 and drop the tilde on the ṽj from here on.

The term g̃ varies significantly only for large z, as seen in Figure 3.9 showing
a particular form of P normalized to have a maximum value of 1, along with the
forms of g(z) for different surface temperatures.
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Figure 3.9: P (solid line) and g(z) (dotted lines) plotted after normalizing to have a
maximum of 1 for a number of surface background temperatures, assuming a linear in
depth profile for T0(z, t̃).
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Incorporation of impurities such as algae in the ice may increase the power
absorbed at deeper depths [69]. This can be modeled by adjusting the value of v2

appropriately.

Case v1 v2 zc ×H
86b 0.054 0.3 0.24
86c 0.14 0.39 0.48

Table 3.1: Fitted exponential form to the solar heating source term P (z) attained with
Monte Carlo scattering simulations from [69]. H is the sea ice thickness in meters.

The form of f(z) and k(z) is obtained from general diffusivity and conduc-
tivity curves. The formulae for the physical parameters, and hence diffusivity,
are provided in Appendix A, and depend on the background temperature and
salinity profiles. The temperature profile changes as weather systems diffuse
through the ice and hence change the form of f(z) and k(z). Figure 3.10 shows
the normalized diffusivity f(z) assuming linear background temperature profiles
for various surface temperatures, along with an average fitted quadratic being
fquad(z) = 1 − 0.42z − 0.48z2. k(z) is also shown for various surface tempera-
tures and is fitted with a linear line for z < 0.8 for each surface temperature,
k(z)/k(0) = 1 + az. The values of a of the fitted lines are listed in table 3.2. The
diffusivity of a substance is never zero and so f(z) never reaches zero on the in-
terval z ∈ [0, 1].

The value of δ is δ = D(0)
ω

= 60∗60∗24
2π

D(0). We summarize the values of δ
based on the temperature at the surface of the ice. Note that the value of δ will
depend on the thickness of the ice so we tabulate δH2, as D(0) = k/(H2ρc)|z=0.
The tabulated values are for a surface salinity of 5 ppt and only vary slightly for
salinities between 2 ppt and 10 ppt.

3.2.2 Oscillatory Air Temperatures

The thermal waves generated by the oscillatory air temperatures are modelled to
leading order by equation 3.8, repeated below

∂θ2

∂t+
=

1

H2(t)ρc

∂

∂z

[
k
∂θ2

∂z

]
,

z = 0 :
∂θ2

∂z
= α

[
θ2 − T̃air(t+)

]
,

z = 1 : θ2 = 0 .
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Figure 3.10: Diffusivity (left) and thermal conductivity (right) as a function of depth
assuming a linear temperature profile for various surface temperatures. The diffusivity
and thermal conductivity have been normalized to their maximum value. These plots are
for a constant salinity of 5 ppt and do not vary significantly for salinities between 2 ppt
and 10 ppt

T0|z=0 δH2 a

-5 5.72× 10−3 -0.064
-10 1.14× 10−2 -0.081
-15 1.43× 10−2 -0.096
-20 1.61× 10−2 -0.112
-25 1.75× 10−2 -0.129

Table 3.2: The values of the small parameter δ and the fitted depth variation of the thermal
conductivity for z < 0.8, k(z)/k(0) = 1 + az, for various ice surface temperatures in ◦C.
H is the sea ice thickness in meters.
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This is a standard heat equation with non-constant coefficients, and so we
separate the variables in a similar fashion to the method done for θ1. We first use
a Fourier sum to represent the fast time air temperatures, T̃air(t+) =

∑
Ane

iωnt+ .
Due to the linearity of the above equation in θ2, we form the Ansatz θ2 =

∑
Zn(z)eiωnt

+

with

iωnZn =
1

H2ρc

d

dz

(
k
dZn
dz

)
, (3.17)

z = 0 :
dZn
dz

= α [Zn − An] ,

z = 1 : Zn = 0 .

For each component Zn, we apply the same methodology as was applied be-

tween equations 3.7 and 3.13. Letting Zn(z) = U(z)Vn(z) with U(z) =
√

k(0)
k(z)

we
get

DV ′′n (z)−

(
iωn +D

1

2

∂

∂z

(
1

z

∂k

∂z

)
+D

1

4

(
1

k

∂k

∂z

)2
)
Vn(z) = 0 .

By re-parameterizing with f(z) = D(z)
D(0)

, δ = 1
ωn
D(0) and Wn = Vn and neglect-

ing the small terms in the coefficient of Vn to get

δW ′′
n (z)− i

f(z)
Wn(z) = 0 , (3.18)

along with the boundary conditions

W ′
n(0) = α (Wn(0)− An) ,

Wn(1) = 0 .

This is the same equation as equation 3.13 but without the source term and
with a non-homogeneous boundary condition. Due to the depth varying coeffi-
cients it cannot be solved via elementary methods and so approximate solutions
will be considered in the next chapter.

3.2.3 Non-constant Conductivity Terms

Most models of sea ice thermodynamics neglect the term kzTz from the heat equa-
tion, assuming that k does not depend on depths [18,66]. This assumption is valid
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when ∂k
∂z

∂T
∂z
� k(z, T )∂

2T
∂z2

. This is supported by the thermistor string data, Figure
3.11 shows the contribution ratio of the term ∂k(z,T )

∂z
∂T
∂z

relative to k(z, T )∂
2T
∂z2

for the
1996 thermistor string.
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Figure 3.11: From the 1996 thermistor string data, the ratio
∂k
∂z

∂T
∂z

∂k
∂z

∂T
∂z

+k ∂
2T
∂z2

is presented.

Points in the water were ignored. Data from different years resulted in similar results.
Left: The ratio is plotted assuming a salinity of 5ppt. Near the surface and later in the
season the ratio is seen to be smaller than in other regions on average. Right: Histogram
of occurrence of the term ratio, with a logarithmic scale on the y-axis. This ratio is bigger
than 0.5 for 1.8% of the points, and bigger than 0.1 for about 17% of the points. The
average ratio observed was 0.07.

We see that in our analysis, the term kz does not show up in the leading order
behaviour of W (z). It does appear in equation 3.11, and leads to the modification

of the amplitude of the thermal waves by the factor
√

k(0)
k(z)

. For sea ice, the thermal
conductivity may vary by about 11% over the depth of the sea ice. Omission of
this term miscalculates the amplitude of the thermal wave by about 5%.

3.3 Numerical and Data Comparison

Figure 3.12 shows numerical simulations (using the tool developed in Chapter 2)
with various source term sizes, P0 = P (0), and various surface temperatures. We
see that the effects of P0 on the thermal wave behaviour are insignificant while the
effects of the surface temperature are extremely significant, modelled with vary-
ing the parameter δ appropriately. Further comparisons between these numerical
simulations and solutions to equation 3.10 show good agreement. Examples of
this are presented in Figure 3.13.
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Figure 3.12: Thermal waves analysis for various values of P0 and surface temperatures
from numerical simulations (Chapter 2). Amplitude is plotted on the left and phase on the
right. The distributed source parameters used are: v1 = 0.05 m, v2 = 0.5 m, zc = 0.2 m,
α = 10 m−1. Top: A constant surface temperature of -10 ◦C is used and P0 is varied. As
seen the amplitudes of the thermal waves scale with the value of P0 but the thermal wave
structure remains relatively unchanged. Bottom: Variation of the surface temperature
from -5 ◦C to -15 ◦C with a constant value of P0 = 3000 J/m3.
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Figure 3.13: Thermal waves from the numerical simulations (Chapter 2) in the bottom
of Figure 3.12 (solid lines) and numerical solutions of equation 3.10 (dashed lines) of the
same parameters. Amplitudes on the left and phases on the right.
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Including an oscillatory air temperature of amplitude 2 ◦C and lagging the so-
lar heating term by π

2
, a similar comparison is achieved in Figure 3.14, comparing

the numerical simulation results to the numerical solution of equations 3.10 and
3.17.
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Figure 3.14: Thermal waves due to solar heating and oscillatory air temperatures. Plotted
are numerical simulations as in Figure 3.12 with an added oscillating air temperature of
amplitude 2 ◦C and lagging the solar heating term by π

2
(solid lines), and numerical

solutions of equations 3.10 and 3.17 (dashed lines). Amplitudes on the left and phases on
the right.

The numerical solutions of equations 3.10 and 3.17 appear to posses the same
features as the data analysis presented in Figures 3.6, 3.7 and 3.8. Numerical
solutions of equation 3.10 and 3.17 are overlaid on the data analysis from the
1996 thermistor in Figure 3.15. The simulation parameters used where: P0 =

3000 J/m3, α = 10 m−1, H = 1.8 m, zc = 0.2 m, v1 = 0.05 m, Ts = −5 ◦C (the sur-
face temperature) and the air temperature oscillations are of amplitude 2 ◦C and
lagging the solar heating by π

2
. The plotted lines have the following parameters.

Dotted line: v2 = 0.5 m. Dashed line: v2 = 2 m.
When simulated with a value for v2 of 2 rather than 0.5, the standard value for

sea ice [69], a better match with the data is obtained for the decay of the thermal
waves for z > 0.3. This is probably due to increased impurity concentrations at
lower depths, as studied by [69].

It has been noted previously [11, 66] that the numerical solutions exhibit a
solid-state greenhouse effect with the maximum amplitude of the thermal wave
being just below the surface, as seen in our numerical calculations, but missing
in the data. This is physically due to the surface losing heat to the atmosphere,
cooling it with respect to the layer of sea ice below it. It is not observed in the data
as the 0.1 m spacing of the thermistors is too coarse to resolve it, and furthermore
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Figure 3.15: Numerical solutions to equation 3.10 and 3.17 (solid and dashed black lines)
with parameters as described in the text, overlaid with thermal wave amplitude and phase
from the 1996 thermistor data (Figure 3.6).

travelling waves due to oscillating air temperatures drown out this effect at the
surface (see Figures 3.14 and 3.15).

The numerical solutions of the above theory and simulations are seen to be in
close agreement and posses the same features as the data. In the next chapter we
seek analytical approximations to the solutions of equations 3.13 and 3.18.
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Chapter 4

Mathematical Approximations

In this chapter we analyse solutions to the heat diffusion equation derived in the
previous chapter. Equations 3.13 and 3.18 are (non)-homogeneous second order
ordinary differential equations with varying coefficients and cannot be solved us-
ing elementary methods. Numerical solutions presented in the previous chapter
have highlighted a number of interesting behaviours, including:

• The travelling thermal waves at shallow depths,

• The stationary thermal waves at deeper depths,

• The change over region between the two wave-types,

• The solid state green-house effect near the surface of the ice.

Previous analysis of solar heating [18, 53, 108] has assumed constant thermal
and optical properties. From our analysis it will become apparent that it is vital
to consider the variation in the optical properties to understand the behaviour of
the thermal waves, and considerations of the variation of the thermal properties
gives further refinements to the wave propagation behaviour.

In this chapter we will begin by introducing the techniques of boundary layer
theory. Motivated by the small parameters present in equations 3.13 and 3.18 we
apply boundary layer theory to derive approximate solutions to these equations.
We will find inner and outer solutions to equation 3.13, followed by the leading
order WKB approximation to equations 3.13 and 3.18, giving a uniform approx-
imation to each. The WKB approximation to equation 3.13 is approximated in
terms of elementary functions using the Method of Steepest Descent. Each of the
above is compared with numerical examples.

49
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4.1 Introduction

Here we introduce some mathematical techniques following [9] that will be used
in the forthcoming chapter. The differential equations of interest, equations 3.13
and 3.18, have small parameters multiplying the highest derivative term. In the
limit δ → 0, this is a singular perturbation to the differential equation as the order
of the differential equation changes between the differential equation with and
without a zero value of δ.

4.1.1 Matched Asymptotics

Matched asymptotic analysis is a powerful technique to analyse the solution be-
haviour of a differential equation with a small parameter. The core to these meth-
ods is to identify regions where the solution to the differential equation is slowly
varying (outer regions), and regions/points where the solution is rapidly varying
as the small parameter, δ, is varied (boundary layers or inner regions). The width
of boundary layers decreases as the small parameter is decreased, and the solu-
tion becomes discontinuous in the boundary layer in the limit δ −→ 0. In order to
apply this method we need to know where the boundary layers are.

In the outer regions higher order derivative terms with coefficient terms of
small parameters become negligible. The solution is approximated by a solution
to a similar differential equation with δ = 0. The solution to this equation is called
the outer solution.

Within inner regions, the narrow width of the boundary layer(s) allows for
suitable approximations to be made to the differential equation and an approxi-
mate solution to the differential equation is obtained, valid in the boundary layer,
called the inner solution. The outer and inner solution are then matched to deter-
mine any previously undetermined coefficients by comparing the solutions over
a common region of validity which in the limit δ −→ 0 covers the entire ice depth.

4.1.2 WKB Theory

Unlike matched asymptotics where solutions are approximated over subsets of
the interval of interest, a WKB approximation gives a uniform approximation
over the entire interval. The key to the WKB approximation is to expand the
solution in the form of an exponential with various ’sizes’ of phase functions. The
’size’ is determined by the power of the small parameter present in the differential
equation. As with matched asymptotics, the solution is valid in the limit of the
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small parameter tending to zero. The WKB expansion of second order differential
equations has been studied thoroughly and we present a derivation of it here.

We begin with a homogeneous second order equation with small parameter ε.

ε2W ′′(z)−Q(z)W (z) = 0 (4.1)

We write the solution in terms of an exponential with a varying amplitude and
phase function

W (z) = A(z)eS(z)/δ

where δ is a small parameter that characterizes the solution’s quick oscillations
or exponential behaviour in response to the small parameter in the differential
equation. By expanding A(z) and S(z) as power series of δ the two expansions
are combined into a single exponential expansion and written as

W (z) ∼ exp

(
1

δ

∞∑
n=0

δnSn(z)

)
, δ −→ 0

where the functions Sn(z) characterize the solution and are O(1). We substitute
this form into equation 4.1 by first calculating W ′(z) and W ′′(z).

W ′(z) ∼

(
1

δ

∞∑
n=0

δnS ′n(z)

)
exp

(
1

δ

∞∑
n=0

δnSn(z)

)
, δ −→ 0 ,

W ′′(z) ∼

(1

δ

∞∑
n=0

δnS ′n(z)

)2

+

(
1

δ

∞∑
n=0

δnS ′′n(z)

) exp

(
1

δ

∞∑
n=0

δnSn(z)

)
, δ −→ 0 .

Substituting in to equation 4.1 and dividing off the exponential term we get

ε2

(1

δ

∞∑
n=0

δnS ′n(z)

)2

+

(
1

δ

∞∑
n=0

δnS ′′n(z)

) = Q(z) .

The largest term on the left hand side is ε2

δ2
S ′0(z) and is chosen to be same order of

magnitude as Q(z) (assuming Q(z) 6= 0) with the distinguished limit δ = ε. Since
the terms Sn(z) are allO(1), we match powers of ε on the left and right hand sides
of the equation to get the following series of equations for the Sn(z)’s

S ′20 (z) = Q(z) ,

2S ′0(z)S ′1(z) + S ′′0 (z) = 0 ,

2S ′0(z)S ′n(z) + S ′′n−1 +
n−1∑
i=1

S ′i(z)S ′n−i(z) = 0 , n ≥ 2 .
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These equations can be solved iteratively with the first three solutions shown
below

S0(z) = ±
∫ z

0

√
Q(x)dx ,

S1(z) = −1

4
ln (Q(z)) ,

S2(z) = ±
∫ z

0

(
Q′′(x)

8Q3/2(x)
− 5 (Q′(x))2

32Q5/2(x)

)
dx .

Combining the first two terms gives a uniformly valid approximation over
the entire interval (that Q(z) 6= 0) up to order ε. Further terms can be included
to attain more accurate approximations, however it is important to note that the
series is only valid in the limit ε → 0 and for a fixed ε the WKB series with in-
creasing number of terms typically diverges. For a terminated series to be a good
approximation for the solution we require that every successive term in the ter-
minated series be significantly smaller than the previous. Further, we require that
the next term in the series is sufficiently smaller than 1. So for a terminated series
of the first two terms to be a good approximation, W (z) ∼ exp

(
1
ε
S0(z) + S1(z)

)
,

we require 1
ε
S0(z)� S1(z) and εS2(z)� 1 for all z in the interval of interest.

4.1.3 Laplace’s Method

Laplace’s method is used to approximate integrals of an exponential with a large
parameter by taking the limit as the large parameter x tends to infinity. A Laplace
integral is of the form

I =

∫ b

a

exφ(s)f(s)ds , (4.2)

(note: f(s) is a general function here) where φ is a real valued function. In the limit
that x −→ ∞ most of the contribution to the integral comes from a narrow region
around the maximum point of φ(s). Here we will treat the case that this occurs at
one of the end points. The integral may be approximated by the integral over a
small narrow region around the endpoint where a maximum in φ is attained.

We introduce the integral

Iε =

∫ b

b−ε
exφ(s)f(s)ds ,

where we have assumed that the maximum of φ(s) is attained at the point s = b.
As is shown by [9] the integral that we have neglected, with integration limits
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from a to b − ε, is subdominant to Iε in the limit x −→ ∞. To approximate the
integral Iε we note that the integral is over an infinitesimal region and so the
functions f(s) and φ(s) are well approximated by their Taylor series. That is, in
the region b− ε < s < b we have

f(s) ≈ f(b) + . . . ,

φ(s) ≈ φ(b) + (s− b)φ′(b) + . . . .

Substituting this into the integral Iε we get the leading order behaviour of the
integral being

Iε ∼
∫ b

b−ε
ex(φ(b)+(s−b)φ′(b))f(b)ds , x→∞ .

This integral can be evaluated! However we note that the leading order be-
haviour should not depend on ε, the length of the interval where the integrand
is largest, and extending the bounds of integration to −∞ introduces only expo-
nentially small errors in the limit x −→ ∞. The approximation of the integral Iε
becomes

Iε ∼
∫ b

−∞
ex(φ(b)+(s−b)φ′(b))f(b)ds ∼ 1

x
f(b)exφ(b) 1

φ′(b)
, x→∞ . (4.3)

For an integral where the bounds are closer together than the decay of the
exponential, for example, if |a− b| ∼ 1

x
then this approximation becomes invalid.

4.1.4 Method of Steepest Descent

The method of steepest descent applies to integrals with exponential terms with
large parameters and complex phase functions,

I =

∫
C

exφ(s)f(s)ds , (4.4)

where C is a complex contour of integration, φ(s), f(s) are analytic functions of
s and x is a large parameter. The core to this method is to use the analyticity
of the integrand to deform the contour of integration to a contour of steepest
descent/ascent. General complex variable theory [9, 22] shows that contours of
constant imaginary component are also contours of steepest descent/ascent of the
real component, and vice versa. Further, so long as we don’t pass branch cuts or
through branch points, the contour of integration may be deformed to a different
contour with the same beginning and end points. We deform the original contour
of integration to a set of contours of constant imaginary component of the phase
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function, φ(s), from either endpoint of the original contour and join these with a
contour of constant real component of φ(s). Along each of the first two contours
of integration the integral is a Laplace integral as the exponential function takes
on only real values, and further attains its maximum at one end of the integration
contour (unless a saddle point is present, these are dealt with in [9]). The contour
of constant real component is usually sent to infinity where the real component
of φ(s) tends to −∞ and so the integrand vanishes along this contour.

4.2 Boundary Layer Analysis

We begin with asymptotic analysis of equation 3.13, reprinted below, following
the work presented in [69].

δW ′′(z)−W (z)
i

f(z)
= − g(z)

f(z)
. (4.5)

The small parameter in the coefficient of the second derivative term induces bound-
ary layers near z = 0 and z = 1 as may be see by the numerical solutions (see, for
instance, Figure 4.1). Far away from these points the solution takes on the form
of the outer solution, and near these points more complex behaviour is present.

4.2.1 Matched Asymptotics

The leading order outer solution is found by setting δ = 0 in equation 4.5. Here
we immediately retrieve the outer solution as

Wouter(z) = −ig(z) . (4.6)

The outer solution takes the form of stationary waves decaying at the same rate as
the source term. This can be seen more explicitly by writing down the equivalent
temperature profile oscillations described by the outer solution.

εθ1,outer = −Q(z)

2ω
ei(ω0t++π/2) .

This is interpreted as the in-place heating due to the source term, where conduc-
tion is negligible. The temperature evolution is out of phase from the heating
source by π

2
, due to the ice retaining heat. The outer solution is not self consis-

tent when g(z) varies as e−
z√
δ or steeper, as then the second derivative term in

equation 3.13 is of order 1 like the source term.
We turn to the inner region and focus on the boundary layer at z = 0. We

define the inner variableZ = z√
δ
. The functions f(

√
δZ) and g(

√
δZ) are expanded
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in a Maclaurin series, and to leading order in
√
δ we retain only the constant term

being f(0) = g(0) = 1. Within the inner region we wish to solve

W ′′
inner(Z)− iWinner(Z) = −1 .

This is exactly solve-able [28], and solutions may be written as a sum of homoge-
neous and particular solutions.

Winner(Z) = c1 exp
(√

iZ
)

+ c2 exp
(
−
√
iZ
)
− i , (4.7)

In order to match with the outer solution, we compute the following limits,

lim
z→0

Wouter = −i ,

lim
Z→∞

Winner = c1 exp
(√

iZ
)
− i ,

and see that we must choose c1 = 0 to match the two expressions. The coeffi-
cient c2 is determined by the boundary conditions at z = 0: 1√

δ
dW
dZ

=
(
α + kz

k

)
W .

However, expanding this boundary condition in
√
δ we get c2 = 0, and it appears

we have lost the structure of the boundary layer to leading order. Further, we
note that for physically relevant parameters, the outer solution is inconsistent for
z < zc, as v1 ∼

√
δ, being the source term decay parameter. The inner solution

does not appear to posses the structure of the travelling thermal waves due to
the quick decay of the source term or the interaction with the atmosphere via the
presence of the term αW in the upper boundary condition. This is due to the
above form being derived in the limit δ → 0 with all other parameters assumed
constant with respect to δ. However, physically relevant parameter values do
match significant power of δ, with

√
δ ≈ 0.1. In order to better model the interac-

tion with the atmosphere and the source term, we take a number of distinguished
limits. These are motivated by the physically relevant values of v1 ≈ 0.1, α ≈ 10,
and zc ≈ 0.2. The source term is re-parameterized with the distinguished limit
of v1 =

√
δν1. This leads to a global breakdown in the region z < zc, for which

WKB approximations are commonly used. A WKB approximation will be devel-
oped in the next section, for now we continue using matched asymptotics and to
ensure the self-consistency of the outer solution we choose zc =

√
δZc so that the

change over region of the source term occurs in the inner region. Further, we take
the distinguished limit α = α̃√

δ
in the upper boundary condition. Under these
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parameterizations we get the following inner equation to leading order in
√
δ,

W ′′
inner(Z)− iWinner(Z) =

−e
− Z
ν1 , Z ≤ Zc

−e−
Zc
ν1 , Z > Zc ,

dWinner

dZ

∣∣∣∣
Z=0

= α̃Winner .

This is to be solved in the regions Z ≤ Zc and Z > Zc. As before, this is exactly
solvable with the same homogeneous solution as previously. We pick a particular
solution of the form Winner,p = c̃e

− Z
ν1 for Z ≤ Zc and Winner,p = c for Z > Zc and

solve for these constants.

c̃ = −
i+ 1

ν21
1
ν41

+ 1
,

c = −ie−
Zc
ν1 .

The general solution of the inner solution is therefore given by

Winner =


c̃1 exp

(√
iZ
)

+ c̃2 exp
(
−
√
iZ
)
−

(
i+ 1

ν21
1
ν41

+ 1

)
e
− Z
ν1 , Z ≤ Zc

c1 exp
(√

iZ
)

+ c2 exp
(
−
√
iZ
)
− ie−

Zc
ν1 , Z > Zc

(4.8)

Matching with the outer solution we must set c1 = 0. Since g(Z) is continuous
we ensure Winner and W ′

inner are continuous at Z = Zc and satisfy the boundary
condition at Z = 0. Combining all three conditions the remaining constants are
given by

c̃1 =
e
−Zc

(
1
ν1

+
√
i
) (
α
(√

i− iν1

)
− (
√
i)3ν1 + i

)
2
(√

iα + i
)

(ν2
1 + i)

, (4.9)

c̃2 =
e
−Zc

(
1
ν1

+
√
i
) (
α
(
iν1 −

√
i
)
− (
√
i)3ν1 + i

)
+ 2(
√
i)3ν1(αν1 + 1)

2
(√

iα + i
)

(ν2
1 + i)

, (4.10)

c2 =
1

2
(√

iα + i
)

(ν2
1 + i)

(
2(
√
i)3ν1(αν1 + 1) + e

−Zc
(

1
ν1

+
√
i
)

(4.11)

×
(
α(iν1 −

√
i)− (

√
i)3ν1 + i− e2

√
iZc
(
α
(√

i+ iν1

)
+ (
√
i)3ν1 + i

)))
.

4.2.2 Interpretations and Numerical Comparisons

Equation 4.8, the inner solution, is seen to have the form of a stationary wave
(as with the outer solution), being the particular solution, and a travelling wave
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component from the homogeneous solution.The decay of the stationary wave is
the same as the distributed source term, whereas the decay of the travelling wave
is given by the diffusivity at the surface, δ. Travelling waves will only be visible
in the solution plots if the decay of the travelling waves is significantly slower
than the decay of the stationary waves, that is 1√

2δ
� 1

v1
is required for travelling

waves to be present.

We compare numerical solutions of equation 3.13 to the outer solution (equa-
tion 4.6) and both inner solutions (equations 4.7 and 4.8) for a variety of parameter
values in Figures 4.1 and 4.2. We see that for extremely small values of δ both in-
ner solutions converge to the exact solution in their range of validity, and the exact
solution converges to the outer solution in larger subsets of the interval [0, 1]. It
is seen that the revised inner solution (equation 4.8) performs significantly better
than equation 4.7 for physically relevant values, although it does not capture the
change of wave region - from travelling to stationary. The solid-state greenhouse
effect may be studied using the revised inner solution as it is seen to always occur
within its region of validity.

We do not focus on the inner region near z = 1 as it is of little physical interest
and has a similar mathematical form to the boundary layer near z = 0. Matched
asymptotics of equation 3.18 yield similar results, with a trivial outer solution
Wouter = 0 and the solution to a constant parameter heat equation in the inner
solution.

4.3 WKB Approximation

The inner and outer solutions (equations 4.6 and 4.8) recreate the numerical solu-
tion well in their respective regions of validity, however, do not perform well in
the intermediate region where the travelling and stationary waves meet for phys-
ically relevant parameter values. Further, the inner solution is simply the solution
to the constant parameter heat equation and, although performing well numeri-
cally, does not give insight into the non-constant parameter case. In this section
we derive a uniform approximation to the solutions of equations 3.13 and 3.18.
We begin by analysing the homogeneous equation and use the Green’s function
method [9] to obtain approximate solutions to the non-homogeneous equation.
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Figure 4.1: The two derivations of the inner solution, equation 4.7 (purple dashed), equa-
tion 4.8 (orange dashed), and the outer solution, equation 4.6 (yellow dotted), compared
with numerical solutions of equation 3.13 (blue solid) for parameter values as follow:
α = 10, v1 = 0.05, v2 = 0.5, zc = 0.2, δ = 10−2 (top) 10−3 (middle) 10−4 (bottom).
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Figure 4.2: The two derivations of the inner solution, equation 4.7 (purple dashed), equa-
tion 4.8 (orange dashed), and the outer solution, equation 4.6 (yellow dotted), compared
with numerical solutions of equation 3.13 (blue solid) for parameter values as follows:
α = 1/

√
δ, v1 =

√
δ, v2 = 0.5, zc = 5 ×

√
δ, δ = 10−2 (top) 10−3 (middle) 10−4

(bottom).
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4.3.1 Homogeneous System

The homogeneous system (equation 3.18) is as follows:

δW ′′ − i

f(z)
W = 0 .

Homogeneous second order differential equations of this form have been stud-
ied thoroughly, and hence we can immediately write down the leading order
WKB approximation as given in [9] and described previously.

W ∼ Wh,WKB = exp

(
1

ε
S0(z) + S1(z) +O(ε)

)
,

with

ε2 = δ ,

S0(z) = ±
∫ z

0

√
i

f(s)
ds ,

S1(z) = −1

4
ln

(
i

f(z)

)
.

The ± gives rise to two solutions which can be linearly combined to form a
solution of the form

Wh,WKB = h1f
1
4 (z) exp

[
1√
δ

∫ z

0

√
i

f(t)
dt

]
+ h2f

1
4 (z) exp

[
− 1√

δ

∫ z

0

√
i

f(t)
dt

]
,

(4.12)

where h1 and h2 are constants to be determined via the boundary conditions.
This, together with the time oscillation, has the form of travelling thermal wave
as can be seen in the similarity to equation 4.8 with assumed constant f(z). From
here on we will drop the subscript WKB, with a subscript of h representing approx-
imate solutions to the homogeneous system.

Validity of the Leading Order WKB Approximation

To test the validity of this leading order approximation we compute the next term
in the WKB series, which must be much less than 1 and also much less than the
previous terms.

√
δS2(z) =

√
δ

∫ z

0

1

32

(
i

f(t)

)3/2 (
4f(t)f′′(t)− 3f′(t)2

)
dt



4.3. WKB APPROXIMATION 61

For our parameterization, f(z) doesn’t have a zero on [0, 1] and in fact f(z) is
bounded between 1 and 0.1 for all salinity profiles, f ′(z) is between 0 and -1.5
and f ′′(z) ≈ −1. The next term in the WKB series is bounded by the following.

∣∣∣√δS2(z)
∣∣∣ < ∣∣∣∣∣√δ

∫ z

0

1

32

(
i

0.1

)3/2 (
4× 1(−1)− 3(−1.5)2

)
dt

∣∣∣∣∣
≈
√
δ

1

3
103/2z ≈ 10

√
δz

This term gives the error estimation of the WKB approximation with the first
two terms, which is valid on 0 ≤ z ≤ 1 if δ < 10−2. As seen in our parameteriza-
tion of δ for physically relevant values, this is the case! For a value of δ = 10−3 we
can expect a maximum error of about

√
10−3 × 10 ≈ 0.3 or 30% over 0 ≤ z ≤ 1.

This is an over-estimation for the error near the surface as it is highly sensitive
to the changes in f(z), with the large error estimation due to the small value of
f(z) near z = 1. On the interval 0 ≤ z ≤ 0.8, f(z) is bounded between 1 and 0.3,
hence the term |

√
δS2(z) is bounded by 2

√
δ, giving a maximum error of 6% for

δ = 10−3.

Oscillating Air Temperatures - Boundary Conditions

Here we will show that the dominant balance of equal thermal wave and air tem-
perature wave amplitudes is the only possible balance to get non-trivial solutions.
If we had selected a dominant balance where the fast time dependence of the air
temperatures was a different order other than ε, matching the powers of ε in the
boundary conditions would not include the non-homogeneity in the boundary
conditions of equation 3.18. This would result in the following boundary condi-
tions for Wh.

Wh(1) = 0 ,

W ′
h(0) = αW (0) .

From equation 4.12, the boundary conditions are written explicitly as

h1 exp

[
2√
δ

∫ 1

0

√
i

f(t)
dt

]
+ h2 = 0 ,

h1

[
1

4
f ′(0) +

√
i√
δ
− α

]
+ h2

[
1

4
f ′(0)−

√
i√
δ
− α

]
= 0 .

In general, the only solution to these boundary conditions is the trivial solu-
tion except for specific parameter values of δ, α for which the matrix of coefficients
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is non-invertible. This is physically interpreted as no driving oscillatory ’force’
(being a source term or boundary condition) being present and hence no thermal
waves are present.

We turn to the dominant balance stated earlier and apply the following bound-
ary conditions on the leading order WKB approximation for equation 3.18

Wh(1) = 0 ,

W ′
h(0) = α(W (0)− A) .

The boundary conditions will determine the constants h1, h2. Using γ′(0) =
√

i
δ

and the form of Wh we simplify the boundary conditions to

h1e
2γ(1) + h2 = 0 ,

h1

[
1

4
f ′(0) +

√
i

δ
− α

]
+ h2

[
1

4
f ′(0)−

√
i

δ
− α

]
= −Aα .

Solving the boundary conditions simultaneously, we get the following solutions
for the constants h1, h2.

h1 = − 2Aαe−γ(1)

sinh(γ(1)) (4α− f ′(0)) + 4
√

i
δ

cosh(γ(1))
.

h2 =
2Aαeγ(1)

sinh(γ(1)) (4α− f ′(0)) + 4
√

i
δ

cosh(γ(1))
.

Since γ(1) ∼ 1√
δ
, δ −→ 0, the hyperbolic trig functions are well approximated with

exponentials to give the following approximate constants.

h1 ≈ −
4Aαe−2γ(1)

4α− f ′(0) + 4
√

i
δ

. (4.13)

h2 ≈
4Aα

4α− f ′(0) + 4
√

i
δ

. (4.14)

The growing exponential term h1f
1
4 (z)eγ(z) is only non-negligible near z = 1,

where it ensures the boundary condition at z = 1 is met. This term is the reflected
thermal wave from the bottom boundary. Hence the dominant behaviour of the
solution is a travelling wave decaying into the ice from the upper surface. The
parameter α dictates the atmosphere-ice thermal contact. For α = 0 we get h2 =

h1 = 0, the ice is completely isolated from the atmosphere and hence no thermal
waves are present. For α −→∞we get h2 → A, the ice is in perfect thermal contact
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with the atmosphere. We have assumed, as is physically relevant, that f(z) varies
more slowly than γ(z), so h1 < A for all parameter values.

We see excellent numerical agreement between the leading order WKB ap-
proximation above and numerical solutions to equation 3.18. Examples of such
comparisons are provided in Figure 4.3 for a diurnal thermal wave of amplitude
2 ◦C.

4.3.2 Non-Homogeneous Case - Distributed Source

We approach approximating the solution to the non-homogeneous system (equa-
tion 3.13) using the Green’s function method and the WKB approximation, in-
spired by the demonstration in [9]. We will construct an approximate Green’s
function using the WKB method and use it to get approximate solutions to equa-
tion 3.13. We write the approximate solution as

WWKB(z) =

∫
G(z, s)

(
− g(s)

f(s)

)
ds

δ′
d2

dz2
G(z, s)− i

f(z)
G(z, s) = δ(z − s)

where the constant δ has been relabeled δ′ to distinguish the delta function in the
above equation, but from now on we drop the ’. Again we drop the subscript WKB
from here on.

For all values of z 6= s, the equation reduces to the homogeneous case (equa-
tion 3.18) that was approximated previously. Hence we get two approximate so-
lutions, one in the region z > s and one in the region z < s both taking the form
of equation 4.12.

G(z, s) ∼

{
c1(s)f

1
4 (z) exp [γ(z)] + c̃1(s)f

1
4 (z) exp [−γ(z)] , z < s

c2(s)f
1
4 (z) exp [γ(z)] + c̃2(s)f

1
4 (z) exp [−γ(z)] , z > s

(4.15)

with

γ(z) =

√
i

δ

∫ z

0

√
1

f(t)
dt. (4.16)

The constants c1, c2 etc. are to be found from the boundary conditions and the
patching conditions. The approximate solution for W (z) is written as

W (z) ∼
∫ z

0

G2(z, s)

(
− g(s)

f(s)

)
ds+

∫ 1

z

G1(z, s)

(
− g(s)

f(s)

)
ds (4.17)
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Figure 4.3: Comparison between numerical solutions of equation 3.18 (solid blue) and
the leading order WKB approximation (equation 4.12) with h1 = 0 and h2 as in equation
4.14 (orange x’s). A surface temperature of -5 ◦C and an ice depth of H=2 m were used,
along with α =1 (top), 10 (middle) and 100 (bottom).
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where the subscript corresponds to the subscript of the constants in each Greens
function component.

The patching conditions on the Greens function states that G(z, s) is continu-
ous at z = s and d

dz
G(z, s) has a discontinuity of 1

δ
at z = s. We get the following

two conditions

c1(s) exp [2γ(s)] + c̃1(s)− c2(s) exp [2γ(s)]− c̃2(s) = 0 ,

c1(s)
1

4
f−

3
4 (s)f ′(s) exp [γ(s)] + c1(s)f

1
4 (s)γ′(s) exp [γ(s)]

+ c̃1(s)
1

4
f−

3
4 (s)f ′(s) exp [−γ(s)]− c̃1(s)f

1
4 (s)γ′(s) exp [−γ(s)]

− c2(s)
1

4
f−

3
4 (s)f ′(s) exp [γ(s)]− c2(s)f

1
4 (s)γ′(s) exp [γ(s)]

− c̃2(s)
1

4
f−

3
4 (s)f ′(s) exp [−γ(s)] + c̃2(s)f

1
4 (s)γ′(s) exp [−γ(s)] = −1

δ
.

Two more boundary conditions are needed to fix the values of c1, c2, c̃1, c̃2, these
are the boundary conditions imposed on W (z) treated next.

Boundary Conditions

For a generalised homogeneous boundary condition on W (z), we apply the same
boundary condition to the Green’s function to retrieve a relevant solution [9].

a1W (z1) + a2W
′(z1) = 0 ,

a1G(z1, s) + a2G
′(z1, s) = 0 ,

with primes denoting differentiation with respect to z. The boundary conditions
for W (z) are

W ′(0) = αW (0) , W (1) = 0 .

To fulfill the first boundary condition we require

G′(0, s) = αG(0, s) ,

where the derivativeG′(0, s) is to be interpreted as limz→0+
∂G(z,s)
∂z

asW (z) is given
in terms of an integral of G with respect to s. Substituting and simplifying with

f(0) = 1, γ(0) = 0 and γ′(0) =
√

i
δ
, we get

c1(s)

(
1

4
f ′(0) +

√
i

δ
− α

)
+ c̃1(s)

(
1

4
f ′(0)−

√
i

δ
− α

)
= 0 .
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For the second boundary condition, we require

exp [2γ(1)] c2(s) + c̃2(s) = 0 .

Combining all four boundary and patching conditions we solve explicitly for the
coefficients c1, c2, c̃1, c̃2 as

c1(s) =
sinh(γ(1)− γ(s))

4
√

f(s)γ′(s)

(
−4α− 4

√
i
δ

+ f′(0)
)

2δ
(

sinh(γ(1))
(
4α− f′(0)

)
+ 4
√

i
δ

cosh(γ(1))
) ,

c̃1(s) = −sinh(γ(1)− γ(s))
4
√

f(s)γ′(s)

(
−4α + 4

√
i
δ

+ f′(0)
)

2δ
(

sinh(γ(1))
(
4α− f′(0)

)
+ 4
√

i
δ

cosh(γ(1))
) ,

c2(s) =
e−γ(1)

((
4α− f′(0)

)
sinh(γ(s)) + 4

√
i
δ

cosh(γ(s))
)

2δ 4
√

f(s)γ′(s)
(

sinh(γ(1))
(
4α− f′(0)

)
+ 4
√

i
δ

cosh(γ(1))
) ,

c̃2(s) =
eγ(1)

((
−4α + f′(0)

)
sinh(γ(s))− 4

√
i
δ

cosh(γ(s))
)

2δ 4
√

f(s)γ′(s)
(

sinh(γ(1))
(
4α− f′(0)

)
+ 4
√

i
δ

cosh(γ(1))
) .

Numerical Comparison

Numerical approximations are calculated using the above constants and equa-
tion 4.17 using MATLAB’s builtin integral function. These appear to recreate
the numerical solutions of equation 3.13 extraordinarily well for a wide range of
values, as presented in Figures 4.4 and 4.5. We see that as expected by the error
estimations, the largest relative error occurs near z = 1.

The leading order behaviour is written in terms of complicated integrals in
equation 4.17. In the next section we apply relevant approximations to the above
leading order behaviour in search of analytical approximations to it.
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Figure 4.4: Numerically calculated WKB approximations, equation 4.17, (dashed red)
compared with numerical solutions (solid blue) of equation 3.13. The parameters used
were: v1 = 0.07, v2 = 0.25, zc = 0.2, δ = 3 × 10−3 and α = 100 (top), 10 (middle) and
1 (bottom).
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Figure 4.5: Numerically calculated WKB approximations, equation 4.17, (dashed red)
compared with numerical solutions (solid blue) of equation 3.13. The parameters used
were: α = 10, v1 = 0.07, v2 = 0.25, zc = 0.2, δ = 10−4 (top) and 10−1 (bottom). The
WKB approximation recreates the numerical solution fairly accurately over the entire
range even for relatively high (and un-physical) values of δ.
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4.3.3 Asymptotic form in the limit δ −→ 0

For all relevant salinity profiles and surface temperatures, γ(z) is an increasing
function on z ∈ [0, 1], and γ(z) ∼ 1√

δ
. In the limit δ −→ 0, γ(1) −→ ∞ and so

sinh (γ(1)) ≈ cosh (γ(1)) ≈ 1
2
eγ(1). This is valid for all values of z and s.

c1(s) ≈ −sinh(γ(1)− γ(s))
4
√

f(s)γ′(s)
1

δeγ(1)
, (4.18)

c̃1(s) ≈ −sinh(γ(1)− γ(s))
4
√

f(s)γ′(s)
β

δeγ(1)
, (4.19)

c2(s) ≈ e−2γ(1)

2δ 4
√

f(s)γ′(s)

[
eγ(s) + e−γ(s)β

]
, (4.20)

c̃2(s) ≈ −1

2δ 4
√

f(s)γ′(s)

[
eγ(s) + e−γ(s)β

]
, (4.21)

with

β =
−4α + f ′(0) + 4

√
i
δ

4α− f ′(0) + 4
√

i
δ

.

The approximate form of the Green’s function (separated into the two regions
z > s and z < s) from equation 4.15 is as below,

G1(z, s) ≈ sinh(γ(s)− γ(1))

γ′(s)

4
√

f(z)
4
√

f(s)δeγ(1)
(exp(γ(z)) + β exp(−γ(z))) ,

G2(z, s) ≈
4
√

f(z)

2δ 4
√

f(s)γ′(s)

[
eγ(s) + βe−γ(s)

] (
e−2γ(1) exp(γ(z))− exp(−γ(z))

)
.

These Green’s functions may further be approximated by disregarding terms with
e−2γ(1). As was noted for the homogeneous system, these are associated with the
boundary condition at z = 1 and reflected thermal waves. Terms of this form
only become significant relative to the other terms near s = 1. At these points
the contribution of the Green’s function to W (z) is subdominant to the contribu-
tion in the remainder of the region due to the exponentially decreasing nature of
the source term g(s)

f(s)
and the Green’s function being of order e−γ(1). We further

approximate the Green’s function as below.

G1(z, s) ≈ e−γ(s)

2γ′(s)

4
√

f(z)
4
√

f(s)δ
(exp(γ(z)) + β exp(−γ(z))) ,

G2(z, s) ≈ −
4
√

f(z)

2δ 4
√

f(s)γ′(s)

[
eγ(s) + βe−γ(s)

]
exp(−γ(z)) .



70 CHAPTER 4. MATHEMATICAL APPROXIMATIONS

What does this mean for the form of W (z)? We separate the approximate so-
lutions into W (z) = W1(z) + W2(z), each corresponding to the Green’s function
integral with the same subscript. Using γ′(s) =

√
i

δf(s)
we simplify the expres-

sions as below.

W1(z) ∼
∫ 1

z

G1(s, z)

(
− g(s)

f(s)

)
ds

≈ − 4
√

f(z) (exp(γ(z)) + β exp(−γ(z)))
1

2
√
iδ

∫ 1

z

e−γ(s)f−
3
4 (s)g(s)ds , (4.22)

W2(z) ∼
∫ z

0

G2(s, z)

(
− g(s)

f(s)

)
ds

≈ 4
√

f(z) exp(−γ(z))
1

2
√
iδ

∫ z

0

[
eγ(s) + βe−γ(s)

]
f−

3
4 (s)g(s)ds . (4.23)

It is worthy to note that we have not assumed any region of validity for the
above approximations, they are valid and introduce only small errors over the
entire range z ∈ [0, 1] in the limit δ −→ 0. The approximate solution has now been
written in terms of the following integrals.

Ĩ1(z) =

∫ 1

z

e−γ(s)f−
3
4 (s)g(s)ds , (4.24)

I2(z) =

∫ z

0

eγ(s)f−
3
4 (s)g(s)ds , (4.25)

Ĩ2(z) =

∫ z

0

e−γ(s)f−
3
4 (s)g(s)ds . (4.26)

With the relevant forms of the parameter functions f(z), g(z) these integrals can-
not be written in terms of elementary functions. However, the leading order be-
haviour of these integrals can be evaluated by using methods as described in [9]
and as introduced in section 4.1. We re-write

γ(s) = xφ(s), x =
1√
δ
, φ(s) =

√
i

∫ s

0

f−
1
2 (t)dt

to highlight the large parameter present in the exponent of the integrands of the
above integrals. Next we evaluate the leading order contribution of these inte-
grals in the limit δ −→ 0 corresponding to x −→∞.

Method of Steepest Descent

We will need to evaluate four integrals in general in order to approximate the
integrals of interest (equations 4.24-4.26). These are as follows
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J1 =

∫ b

a

e
− 1√

δ
φ(s)

f−
3
4 (s)g(s)ds , (4.27)

J2 =

∫ b

a

e
1√
δ
φ(s)

f−
3
4 (s)g(s)ds , (4.28)

J3 =

∫ b

a

e
− 1√

δ

(
φ(s)+ s

ν1

)
f−

3
4 (s)g̃(s)ds , (4.29)

J4 =

∫ b

a

e
1√
δ

(
φ(s)− s

ν1

)
f−

3
4 (s)g̃(s)ds . (4.30)

J1 and J2 give the contribution of integrals where g′(s) is negligible compared
to the decay of the exponential with the large parameter (in the region s > zc),
whereas J3 and J4 give contributions in the region where g′(s) is comparable to
the decay of the exponential with the large parameter (in the region s < zc). We
have written, as before,

γ(s) =

√
i

δ

∫ s

0

f−
1
2 (t)dt =

1√
δ
φ(s) ,

to make use of the small parameter, and g(s) = e
− s√

δν1 g̃(s) where g̃(s) is the slowly
varying component of g(s). In order to apply the method of steepest descent, we
need some knowledge of the contours of constant imaginary (and constant real)
components. Using a quadratic approximation to f(s), f(s) = 1 − q1z − q2z

2, as
discussed in Figure 3.10, φ(s) takes on the form

φq(s) =
i log

(
2
√
f(s)− if ′(s)√

q2

)
√
q2

−
i log

(
2− iq1√

q2

)
√
q2

.

This is multi-valued as f(s) has two zeros. From here on we will use the quadratic
fitting to f(z) and will denote φ(s) = φq(s). The real and imaginary components
of φ(s) are shown in Figure 4.6. The function φ can also be written as a complex
valued arcsin. These expressions do not yield any obvious method of determining
the contours of constant imaginary and real parts. However, we can extract some
of this information as will be shown in a few paragraphs.

The branch cuts present in Figure 4.6 connect the zeroes of f to infinity, with
the default branch cuts of Mathematica shown. However, the branch cuts can be
chosen to be any connected curve connecting the branch points (the zeroes of f
and infinity). For all salinity profiles f(s) does not have a zero on the interval
[0, 1]. The contours of integration (z, 1) or (0, z) in equations 4.27, 4.28, 4.29 and
4.30 can be deformed into two contours of constant phase, C1 and C3, from each
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Figure 4.6: The real (left) and imaginary (right) components of +φ(s) in the complex
plane. Note the two branch cuts connecting the zeros of f(s) to infinity. A typical contour
of integration is indicated with a blue arrow. Using the method of steepest descent, this
contour is deformed to a contour of integration indicated by the black, purple and red lines
(referred to in the text via C1, C2 and C3, respectively).

end point to a point at infinity. These are connected with a contour C2 being a
contour of constant real component at infinity. We select the branch cuts for φ(s)

appropriately, for example, a contour of constant imaginary component of φ(s)

not between C1 and C3, to ensure the contours of integration do not cross branch
cuts. Further, since C1 and C3 are contours of constant imaginary component,
they are contours of steepest descent/ascent for the real component of φ(s) [9].
That means that the real component of φ(s) along the contour C2 is bounded by
max(φ(a), φ(b)).

We assume we have the three curves C1,2,3 all parameterized with constant
speed, |c′n(t)| = 1 for all t ∈ [0, ln] with ln being the length of each contour. For an
appropriate branch cut choice the contours C1,3 tend to∞ where the real compo-
nent of φ(s) tends to −∞, as the contours C1,3 are of steepest descent/ascent. It is
worthy to note that we have not needed to assume that δ −→ 0 yet, the negligible
contribution from the integral along C2 occurs without this consideration.

Now we deform the integral onto these contours. We illustrate this with the
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integral J1 from above.

J1 =

∫ b

a

e
− 1√

δ
φ(s)

f−
3
4 (s)g(s)ds ,

=

∫
C1+C2+C3

e
− 1√

δ
φ(s)

f−
3
4 (s)g(s)ds ,

=

∫ l1

0

e
− 1√

δ
φ(c1(t))

f−
3
4 (c1(t))g(c1(t))c′1(t)dt

+

∫ l2

0

e
− 1√

δ
φ(c2(t))

f−
3
4 (c2(t))g(c2(t))c′2(t)dt

+

∫ l3

0

e
− 1√

δ
φ(c3(t))

f−
3
4 (c3(t))g(c3(t))c′3(t)dt .

The integrals along C1 and C3 are Laplace integrals (see section 4.1), with the
maximum of φ(c1,3) attained at one end point as they are steepest descent/ascent
contours. We use Laplace’s method to estimate these. The various terms in the
integrand are represented with their Taylor series near the point t = 0 where
−φ(c1) attains its maximum and t = l3, where −φ(c3) attains its maximum. We
focus on C1 below.

φ(c1(t)) ≈ φ(c1(0)) + tφ′(c1(0))c′1(0) + ...

f−
3
4 (c1(t))g(c1(t))c′1(t) ≈ f−

3
4 (c1(0))g(c1(0))c′1(0) + ...

We require c1(0) and c′1(0) to attain the leading order behaviour. From the in-
tegration limits we have that c1(0) = a. Since φ(c1(t)) has constant imaginary
component, then d

dt
(φ(c1(t))) ∈ R and so

φ′(c1(t))c′1(t) ∈ R ,

Arg(φ′(c1(t))) = −Arg(c′1(t)) ,

Arg(c′1(0)) = −Arg

(√
i

f(a)

)
= −π

4
.

Hence we have c′1(0) = e−i
π
4 . This is enough to get the leading order expansion.

Substituting in the value of c′1(0) into the Taylor expansion of φ(c1(t)) we get

φ(c1(t)) ≈ a+ t

√
i

f(a)
e−i

π
4 ,

≈ a+ t

√
1

f(a)
.
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And so the integral along C1 is approximated by∫
C1

∼
∫ ∞

0

e
− 1√

δ
(a+t 1√

f(a)
)
f−

3
4 (a)g(a)e−i

π
4 dt , δ → 0

∼ −
√
δf−

3
4 (a)g(a)e−i

π
4 e−γ(a) 1

− 1√
f(a)

, δ → 0

∼
√
δ

i
f−

1
4 (a)g(a)e−γ(a) , δ → 0 .

This is the first surface term that arises if one uses integration by parts. Following
a similar process we see that the contribution from C3 gives the second surface
term attained by integration by parts.∫

C3

∼ −
√
δ

i
f−

1
4 (b)g(b)e−γ(b) .

Combining all the elements together, the leading order behaviour of the inte-
gral J1 (equation 4.27) is as follows.

J1 ∼
√
δ

i
f−

1
4 (a)g(a)e−γ(a) −

√
δ

i
f−

1
4 (b)g(b)e−γ(b) , δ → 0 . (4.31)

Although this is the same result as would have been obtained via integration by
parts, the method of steepest descent justifies retaining both surface terms which
cannot be justified otherwise. Similarly we compute the leading order behaviour
of the other three integrals (equations 4.28-4.30) as follows.

J2 ∼
√
δ

i
f−

1
4 (b)g(b)eγ(b) −

√
δ

i
f−

1
4 (a)g(a)eγ(a) , δ → 0 , (4.32)

J3 ∼
√
δ

√
i+

√
f(a)

ν1

f−
1
4 (a)g(a)e−γ(a) −

√
δ

√
i+

√
f(b)

ν1

f−
1
4 (b)g(b)e−γ(b) , δ → 0 , (4.33)

J4 ∼
√
δ

√
i−
√
f(b)

ν1

f−
1
4 (b)g(b)eγ(b) −

√
δ

√
i−
√
f(b)

ν1

f−
1
4 (a)g(a)eγ(a) , δ → 0 . (4.34)

Approximate Solution using the Method of Steepest Descent

Using the integrals approximated using the method of steepest descent, we turn
to approximate the integrals that give rise to the form of W (z) = W1(z) + W2(z).
These have to be separated over two regions, z < zc and z > zc.

z < zc:

Ĩ1 ∼ J3(z, zc) + J1(zc, 1) ,

I2 ∼ J4(0, z) ,

Ĩ2 ∼ J3(0, z) .
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Substituting the above integrals into equations 4.22 and 4.23, the following ap-
proximations are attained for W1(z) and W2(z), with appropriate approximations
made for neglecting small terms in the last line.

W1 ∼ 4
√

f(z)
(
eγ(z) + βeγ(z)

)( 1

2
√
iδ

)
Ĩ1

∼ 1

2
√
iδ

4
√

f(z)
(
eγ(z) + βe−γ(z)

)( √
δ

√
i+

√
f(z)

ν1

F−(z)

−
√
δ

√
i+

√
f(zc)

ν1

F−(zc) +

√
δ

i
F−(zc)−

√
δ

i
F−(1)

)

∼ 1

2

1

i+

√
if(z)

ν1

g(z)
(
1 + βe−2γ(z)

)

+
1

2

1

i
− 1

i+

√
if(zc)

ν1

 f
1
4 (z)

f
1
4 (zc)

g(zc)e
−γ(zc)

(
eγ(z) + βe−γ(z)

)
, (4.35)

W2 ∼
1

2
√
iδ
f

1
4 (z)e−γ(z)

(
I2 + βĨ2

)
∼ 1

2
√
iδ
f

1
4 (z)e−γ(z)

( √
δ

√
i−
√
f(z)

ν1

F+(z)−
√
δ

√
i−
√
f(0)

ν1

F+(0)

+ β

 √
δ

√
i+

√
f(0)

ν1

F−(0)−
√
δ

√
i+

√
f(z)

ν1

F−(z)

)

∼ 1

2
√
i
f

1
4 (z)e−γ(z)

(
1

√
i−
√
f(z)

ν1

F+(z)− 1√
i− 1

ν1

+ β

 1√
i+ 1

ν1

− 1
√
i+

√
f(z)

ν1

F−(z)

), (4.36)

where we have defined F±(x) = f−
1
4 (x)g(x)e±γ(x) for compactness.

z > zc:

Ĩ1 ∼ J1(z, 1) ,

I2 ∼ J4(0, zc) + J2(zc, z) ,

Ĩ2 ∼ J3(0, zc) + J1(zc, z) .

Written explicitly, we are especially interested in the solution not close to z = 1,
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and simplifications in this case are written from the third line.

W1 ∼ 4
√

f(z)
(
eγ(z) + βe−γ(z)

)( 1

2
√
iδ

)
Ĩ1

∼ 4
√

f(z)
(
eγ(z) + βe−γ(z)

)( 1

2
√
iδ

)√
δ

i

(
F−(z)− F−(1)

)
≈ − i

2
g(z). (4.37)

W2 ∼
1

2
√
iδ
f

1
4 (z)e−γ(z)

(
I2 + βĨ2

)
∼ 1

2
√
iδ
f

1
4 (z)e−γ(z)

[ √
δ

√
i−
√
f(zc)

ν1

F+(zc)−
√
δ√

i− 1
ν1

+

√
δ

i
(F+(z)− F+(zc))

+ β

 √
δ√

i+ 1
ν1

−
√
δ

√
i+

√
f(zc)

ν1

F−(zc) +

√
δ

i
(F−(zc)− F−(z))

]

≈ − i
2
g(z)− i

2
f

1
4 (z)e−γ(z)

 1

1−
√

f(zc)

iν21

− 1

F+(zc)−
1

1− 1√
iν1

+
β

1 + 1√
iν1

 .

(4.38)

Using the definition of γ(z) =
∫ z

0

√
i

δf(x)
dx, we see that the term exp (−γ(z))

is a decaying travelling thermal wave. For z > zc the approximate solution is
explicitly a sum of travelling and stationary waves as the term in square brackets
of the above equation is a constant with respect to z. For z < zc we have a sum of
a travelling decaying wave, a reflected thermal wave from z = zc, and a station-
ary wave. This has the same structure as the outer and inner solutions (equation
4.6, 4.8), but with the travelling waves taking on the form of the leading order
WKB approximation to the homogeneous equation (equation 3.18). Numerical
comparisons of this approximation are seen in Figures 4.7 and 4.8. The approx-
imation begins to misrepresent the solution significantly for large values of δ or
relatively steep forms of g(z), but otherwise are in close agreement with the nu-
merical solutions.

Equations 4.35-4.38 give a uniform approximation for the leading order be-
haviour of the thermal waves in terms of purely elementary functions. The an-
alytical structure of these thermal waves may be studied further using these ex-
pressions, for example, in investigating the change of wave-type location and its
behaviour. From values of W we may calculate the corresponding temperature

oscillations via εθ1 = 1
2ω
Q(0)U(z)W (z)eiωt with U(z) =

√
k(0)
k(z)

.
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Figure 4.7: The approximation given in equations 4.35, 4.36, 4.37 and 4.38 (dashed, red)
and numerical solutions to equation 3.13 (solid, blue) for the following parameter values:
α = 10, v1 = 0.05, v2 = 0.25, zc = 0.2, δ = 10−2 (top) 10−3 (middle) 10−4 (bottom).
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Figure 4.8: The approximation given in equations 4.35, 4.36, 4.37 and 4.38 (dashed, red)
and numerical solutions to equation 3.13 (solid, blue) for the following parameter values:
α = 10, δ = 3× 10−3, v1 = 0.05, zc = 0.2, v2 = 0.1 (top) 0.25 (middle) 0.5 (bottom).
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4.4 Extensions to any Time-Dependent Diurnal Source

In the above analysis we took the time dependence of the solar radiation to be
that of an oscillatory sine wave. This is a reasonably good assumption in Mc-
Murdo Sound, Antarctica in mid-November (see Figure 3.4) but would fail to
capture the time dependence of early season light as the sun just barely begins
to emerge. Inspired by the discussion presented by [37], the above formulation
may be extended easily to analyse thermal waves of different time dependen-
cies. This extension makes use of the key assumption that on a short time scale
of a few days, the time-parameterization of the solar irradiance does not change
significantly, meaning that it can be approximated by a Fourier series.

Q(z, t) = Q(z)×

(
a0 +

∑
n6=0

ane
inω0t+

)
, (4.39)

where we assume that locally the function has period one day. Applying the
two time analysis method as before we arrive at equation 3.7 with the source
term containing the sum of frequencies. Its solution may be written as a sum of
components, each taking into account a different term in the Fourier series.

θ1(z, t) =
∑
n6=0

θn1 (z)einω0t+

inω0θ
n
1 =

1

ρc

∂

∂z

(
k
∂θn1
∂z

)
+
an
2
Q(z)einω0t+

As before this induces the oscillatory time dependence of einω0t+ on θn1 and hence
we eventually get to equation 3.13 but with δ = 1

nω0
D(0) and V = an

nω0
Q(0)W (z),

analogous to the parameterizations after equation 3.12. In most cases an decreases
rapidly enough that only a few terms are needed to represent the solution suffi-
ciently.

For higher harmonics with increasing n, the value of δ gets smaller meaning
that the outer solution becomes a good approximation of θn for n > n0 for some
n0. The prefactor an

n
of the solution indicates that for most cases the contributions

from harmonics of higher frequency becomes negligible. For example, the outer
solution (the stationary waves) is given by

θ1,outer(z, t
+) = −iQ(z)

∑
n6=0

an
n
eiω0nt+ ,

with faster oscillating components contributing less to the solution.
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4.5 Summary

The equation for the leading behaviour of the thermal waves induced by the so-
lar heating and oscillating air temperatures as derived in the previous chapter
have been analysed using matched asymptotic techniques as well as the WKB
method. The leading order WKB behaviour has been approximated in terms of
elementary functions and shows clear evidence of the travelling and stationary
wave behaviour seen in measurements. Comparisons with numerical solutions
and numerical simulations are in good agreement with the asymptotic analysis.

The first two terms of the WKB approximation to equations 3.13 and 3.18 are
seen to re-create numerical solutions for parameter values of physical interest ac-
curately. Further, we approximate the WKB approximation (written in terms of
integrals that may not be evaluated analytically) in terms of elementary functions
by making use of the method of steepest descent. These also re-create the solu-
tions/WKB approximation well for physically relevant parameters and converge
to the exact (numerical) solution in the limit δ −→ 0. We show this with a number
of numerical examples.

The approximated form of the WKB expansion has strong physical interpreta-
tions in terms of travelling and stationary waves and may be used to further study
the analytical structure of these and the destructive interference that is sometimes
present in the numerical solutions and data. Further investigations could investi-
gate the changeover location between the stationary and travelling thermal waves
or the solid-state greenhouse effect present near the surface.



Chapter 5

Soil Thermodynamics

Soils are in-homogeneous materials and, similarly to sea ice, are commonly stud-
ied with thermistor string measurements [30, 62, 76, 80]. They are porous media
with complicated physical structures allowing water transport in liquid and/or
vapour form. Advective heat transport is significant in soils, whereas solar radia-
tive heating is only present at the surface of the soil.

There are two mathematical problems to solve, the forward problem: estimat-
ing soil temperatures based on measurements or knowledge of the soil param-
eters and water flows, and the inverse problem: estimating the soil parameters
based on temperature measurements. These have been investigated numerically
in some detail. Analytical analysis of these have been mainly limited to homoge-
neous soils with constant, uniform water flow [96]. Under these conditions the
inverse problem [62] and the forward problem [33, 96] have been solved and im-
plemented by various authors. The challenge still remains for development of
analytical analysis for when the homogeneous soil with constant, uniform water
flow assumptions are not met.

The WKB approximation for the temperature oscillations in sea ice suggests
that similar approaches may be used in analysing the thermodynamics of soils.
In this chapter we will briefly motivate studying thermodynamics in soils with
reference to measurements presented by [7] and common analysis tools. A similar
method to Chapters 3 and 4 is used to derive the leading order behaviour of
temperature oscillations due to the macroscale heterogeneity in soils. Using these
results we demonstrate the effects of a depth varying thermal conductivity and
the errors introduced by assuming a constant, average thermal conductivity.

81
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5.1 Introduction

In the past few decades using heat as a tracer for groundwater movement has
aided studies of groundwater-surface water interactions; it has the benefit of be-
ing relatively cheap and easy to measure. Most methods developed for analysing
temperature timeseries data and extracting estimates for soil diffusivity and seep-
age velocity are based on the theory of homogeneous soils. Amongst these in-
clude analytical [30,62,65,113], numerical [42,79,85] and graphical [7,93] tools, to
give a few examples. Soils are inherently heterogeneous due to their composition
and structure. The heterogeneity may be modelled on two length scales, the mi-
croscopic scale due to the presence of different materials and grain sizes, and the
macroscopic scale, due to the composition of the materials varying with depth.

There has been a growing interest in determining the sensitivity and errors
of the analysis methods developed for one dimensional, homogeneous soils with
constant, uniform seepage velocity. For example, numerical studies have inves-
tigated the effects of time variations in the seepage velocity [81], heterogeneous
soils [84,86,90] including heterogeneous hydraulic conductivity [41] and varying
water flows [68]. Measurements of the thermal conductivity of soils by [86] and
numerical simulations demonstrated that using in-stu measured thermal conduc-
tivity in modelling resulted in a seepage flux estimate up to 64% lower or 75%
higher than when standard thermal conductivity values from the literature are
adopted. Layered media were considered by [48, 89] where in each layer the ho-
mogeneous assumptions hold, and the resulting medium is shown to have in-
teresting thermal wave propagation behaviour. In [37] it is demonstrated that
the depth variation of the soil parameters introduces complicated structure to the
amplitude and phase behaviour.

5.1.1 Temperature Time Series Analysis Methods

From measurements of the amplitude decay (ln(A)) and phase shift (∆φ) of a par-
ticular harmonic signal between two thermistors at different depths, it is common
to estimate the diffusivity and the seepage velocity. Most methods, with notable
exceptions being that developed by [37] and some numerical studies such as [86],
are based on homogeneous soils.

Based on the Stallman equation derived by [96], being the solution to the con-
stant parameters advection-diffusion equation, Hatch et al. [30] derived transcen-
dental formulae to estimate the thermal front velocity, and hence the seepage
velocity based on measurements of the amplitude decay and phase shift of a har-



5.1. INTRODUCTION 83

monic temperature signal propagating into the soil. These are given by

vt,A =
2κe
∆z

ln(A) +

√
α + v2

t,A

2
,

vt,φ =

√
α− 2

(
∆φ4πκe
P∆z

)2

,

where α =
√
v4
t +

(
8πκe
P

)2 with vt taking on the appropriate subscript for each
equation, κe is the effective thermal diffusivity and A, ∆φ are the amplitude ratio
and phase shift of the detected signal between the two thermistors of interest,
spaced z m apart. vt is the thermal front velocity defined as vt = q ρwcw

ρc
with

q being the vertical seepage velocity, ρ and c are the density and specific heat
capacity of the soil, and similarly ρw and cw are the density and specific heat
capacity of water (or the fluid flowing through the soil). It is important to note
that the effective thermal diffusivity, κe, must be estimated prior to applying these
formula. [65] and then [62] demonstrated that these expressions may be combined
for a simultaneous estimation of the thermal diffusivity and the seepage velocity
using a direct equation. The formula presented by [62] are as follows

κe,measured =
ηz2ω

ln2(A) + ∆φ2
, (5.1)

vt,measured =
ω∆z√

ln2(A) + ∆φ2

1− η2√
1 + η2

, (5.2)

with η = − ln(A)
∆φ

.
Graphical methods, such as finite difference schemes used by [76], fourier

analysis methods [7] or thermal orbits [93], are also based on the solution to the
homogeneous soil with constant uniform seepage velocity. Further, numerical
tools such as [42,85] make use of the above mentioned analytical tools to estimate
the soil parameters and seepage velocity. Other numerical tools such as presented
by [79] use the constant parameter solution to estimate the average parameters
between thermistors.

5.1.2 Data Analysis

Here we present some data analysis to illustrate some of the above mentioned
methods. We use the data provided by [7], available at [6]. This is a thermistor
string with thermistors at depths of 0.1 m, 0.3 m, 0.5 m, 0.7 m, 0.9 m and 1.1 m,
planted in the Carrapateena mine site in South Australia. Temperatures at these
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depths were recorded every 15 minutes from December 2012 until August 2013.
The temperature record is presented in Figure 5.1. Using the methods described
in [7], the timeseries of each thermistor is processed using a Fast Fourier Trans-
form, with the results shown in Figure 5.1. We clearly see a diurnal signal at all
depths.

The theory for homogeneous soils with no advective heat transport predicts
exactly equal depth variations of ln(A) and ∆φ [37], being the amplitude decay
and phase shift of a harmonic temperature oscillation. The measured ln(A) and
∆φ for the diurnal signal are shown in Figure 5.2. A slight non-linear behaviour
over depth is observed for both ln(A) and ∆φ, as well as a discrepancy between
the two indicating the presence of non-conductive heat transport and heteroge-
neous parameters. Figure 5.3 shows plots of ln(A) and ∆φ between every con-
secutive pair of thermistors as a function of frequency. It is evident that the be-
haviours of the two quantities are not the same, and the greatest discrepancy
occurs at the surface where we expect the most non-conductive heat transport to
occur.

Further, one may apply equations 5.1 and 5.2 to each harmonic in the fourier
series to estimate the diffusivity and seepage velocity. The results of this are pre-
sented in Figure 5.4. In a homogeneous soil with constant water flow, we expect
the values plotted in Figure 5.4 to not depend on frequency, being the harmonic
of the fourier decomposition of the temperature records that was used for anal-
ysis. However, it is evident that there is a frequency dependence of these mea-
surements, especially in the seepage flux estimates. This indicates a significant
violation of the model assumptions, a time variation in the water flux and/or
depth dependent parameters. The diffusivity estimates are within agreement of
the estimates described in [7], with an expected increase in thermal diffusivity
between the last pair of thermistors.

5.1.3 Non-Uniform Soils

Attention to the effects of the non-uniformity of soil parameters with only con-
ductive effects was considered by [37] and has been applied by numerous au-
thors, for example [76]. A one dimensional model is considered, neglecting hori-
zontal heat transport. That is, we assume that there are no macroscopic horizontal
variations in the soil properties and water flow, hence no heat flows horizontally.
With depth dependent thermal conductivity and heat capacity, the heat equation
is assumed to have a solution of the form T (z, t) = T0(z)+

∑
rL(z) sin (Lωt+ φL(z)),

interpreted as rL and φL being the amplitude and phase of the harmonic with an-
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Figure 5.1: The Carrapateena site temperature record presented by [7]. Top: Temperature
is plotted as the vertical axis and shown via the colourmap (◦C). Bottom: The Fast Fourier
Transform of the timeseries of each thermistor plotted against the period of oscillation. The
thermistor depths correspond to the colours: Dark blue - 0.1 m. Red - 0.3 m. Orange -
0.5 m. Purple - 0.7 m. Green - 0.9 m. Cyan - 1.1 m.
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Figure 5.2: ln(A) (dashed red line, x’s) and ∆φ (solid blue, o’s) of the diurnal signal vs
depth in the Carrapateena site temperature record.

gular frequency ωL. By plugging into the heat equation we arrive at the following
formulae for the thermal properties

k′

k
=
rLφ

′2
L − r′′L
r′L

, (5.3)

ωL

κ
=

2r′Lφ
′
L

rL
+ φ′′L +

k′φ′L
k

, (5.4)

where primes denote differentiation with respect to depth. For a uniform soil
the first of the above equations will equal zero, whereas the second of the above
equations will only include the first term on the right hand side. For a uniform
soil these may be solved together to get rL = e−αz and φL = −αz for a con-
stant α which depends on the thermal diffusivity and ωL. These formulae predict
non-linear in depth behaviours for ln(rL) and φ, as seen in Figure 5.2, for depth
depended soil parameters, as discussed by [37]. However the formula do not ac-
count for non-conductive heat transport such as advection due to vertical water
movement.

5.2 Differential Equation for Thermal Waves in Soils

If we assume the soil has only depth dependent parameters, as in [37], one can
immediately write down a linear advection-diffusion equation [2],

ρc
∂T

∂t
=

∂

∂z

(
k
∂T

∂z

)
− ∂

∂z
(ρwcwqT ) , (5.5)

with k being the effective thermal conductivity, ρc the volumetric heat capacity
of the soil-water system, ρwcw is the volumetric heat capacity of the water and
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Figure 5.3: ln(A2/A1)/∆z (red dots) and ∆φ/∆z (blue o’s), between every set of con-
secutive thermistors, vs square root of frequency for the Carrapateena site temperature
record. The thermistors are: (a) 0.1 m-0.3 m, (b) 0.3 m-0.5 m, (c) 0.5 m-0.7 m, (d) 0.7 m-
0.9 m and (e) 0.9 m-1.1 m.
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Figure 5.4: Applying equations 5.1 and 5.2 to the fourier decomposition of the Car-
rapateena site temperature record. The colours correspond to the following thermistors
analysed: Blue - 0.1-0.3 m. Red - 0.3-0.5 m. Orange - 0.5-0.7 m. Purple - 0.7-0.9 m.
Green - 0.9-1.1 m.

q is the vertical Darcian fluid velocity or seepage flux (positive is downwards).
Standard boundary conditions from the literature are applied, a forced function
of time at the upper surface, and a fixed temperature at infinity.

T (0, t) = Ttop(t) , (5.6)

lim
L→∞

T (L, t) = TEarth . (5.7)

However, it is known that a temperature dependence is present in the thermal
properties of soils, as measured for example by [60, 76]. This makes the heat
equation above practically impossible to solve. Having homogenized the equa-
tion over the microscale, a similar approach to that taken in the sea ice thermody-
namics is used to find the leading order behaviour of the thermal waves of small
amplitude and fast frequency.

We begin by non-dimensionalising the equation. Let T = T0T̄ , z = z0z̄, t = t0t̄,
ρc = ρ0c0ρ̄c̄, k = k0k̄ and ρwcwq = ρw,0cw,0q0ρ̄wc̄wq̄w, with subscript 0 indicating
a constant. For common measurements, we let T0 = 40 ◦C, z0 = 1 m, ρ0c0 =

5× 106 J/(C m3), ke,0 = 1 W/(m-C), ρw,0cw,0q0 = 1 J/(C m2 s) [12, 17, 86]. We drop
the bars on the variables and the advection-diffusion equation thus reads

ρc
∂T

∂t
=

∂

∂z

(
k
∂T

∂z

)
− ∂

∂z
(ρwcwqT ) ,

where we have selected t0 = ρ0c0 = 5 × 106. We apply a two time analysis fol-
lowing [45] by defining fast time t+ = t +O(ε2) and slow time t̃ = εt. We set the
upper boundary condition to have a sum of a slow time function and a fast time
function, specifically assuming that the fast time dependence is of order ε, while
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the slow time dependence is of order 1. Ttop = F1(t̃) + εF2(t+). Via the chain rule
we have

∂

∂t
=

∂

∂t+
+ ε

∂

∂t̃
+O(ε2) .

We apply an asymptotic expansion with T (z, t+, t̃) = T0(z, t̃) + εT1(z, t+, t̃) +

O(ε2) and motivated by the data assume the background temperature, T0, is in-
dependent of fast time. This allows us to expand the physical parameters (that
depend on temperature and depth) around T = T0, giving

k(z, T ) = k(z, T0) + εT1kT (z, T0) +O(ε2) ,

ρ(z, T ) = ρ(z, T0) + εT2ρT (z, T0) +O(ε2) ,

c(z, T ) = c(z, T0) + εT1cT (z, T0) +O(ε2) ,

where subscript T indicates partial differentiation with respect to T . From now
on we drop the brackets on the physical parameters. We plug these expressions
into the partial differential equation and collect terms of powers of ε.

O(ε0) : 0 = D
∂2T0

∂z2
+
∂T0

∂z

(
−γq +

k′

ρc

)
− T0γq

′ , (5.8)

O(ε1) :
∂T0

∂t̃
+
∂T1

∂t+
= D

∂2T1

∂z2
+
∂T1

∂z

(
−γq +

k′

ρc

)
− T1γq

′ (5.9)

+ T1

[
∂D

∂T

∂2T0

∂z2
+
∂T0

∂z

∂

∂T

(
−γq +

k′

ρc

)
− T0

∂γ

∂T
q′
]
,

where ’ denotes partial differentiation with respect to z, and we have denoted
γ = ρwcw/(ρc) and D = k/(ρc). Notice that the temperature derivatives of the
physical parameters are all present in the coefficient of the term T1. Measurements
by [60,76] indicate that this coefficient is at least two orders of magnitude smaller
than the other coefficients of equation 5.9, so similarly to the sea ice, we omit the
term with square brackets in equation 5.9. The powers of ε are matched in the
boundary conditions.

T0|z=0 = F1(t̃) ,

lim
L−→∞T0|z=L = TEarth ,

T1|z=0 = F2(t+) ,

lim
L−→∞T1|z=L = 0 .

Equation 5.8 may be solved for T0 independently of T1, although the non-linearity
of equation 5.8 means that a numerical solution is generally required. For equa-
tion 5.9, we are particularly interested in the effects of the boundary conditions,
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i.e. the thermal waves induced by the fast time boundary conditions. We write
the solution as a sum of two components, T1 = T̃1 + T̄1 where T̃ satisfies equa-
tion 5.9 including the term ∂T0

∂t̃
with a homogeneous boundary condition at z = 0,

and T̄ satisfies the equation without the term ∂T0
∂t̃

and with the non-homogeneous
boundary condition at z = 0.

∂T̄1

∂t+
= D

∂2T̄1

∂z2
+
∂T̄1

∂z

(
−γq +

k′

ρc

)
− T̄1γq

′ , (5.10)

T̄1|z=0 = F2(t+) ,

lim
L−→∞ T̄1|z=L = 0 .

∂T0

∂t̃
+
∂T̃1

∂t+
= D

∂2T̃1

∂z2
+
∂T̃1

∂z

(
−γq +

k′

ρc

)
− T̃1γq

′ , (5.11)

T̃1|z=0 = 0 ,

lim
L−→∞ T̃1|z=L = 0 .

We interpret the term ∂T0
∂t̃

as a distributed source term with T̃1 being the ther-
mal waves generated by it and T̄1 as the thermal waves generated by the fast time
boundary condition. T̃1 has secular terms due to the source term being fast time
independent, indicating that the expansion’s validity is restricted to some point
in fast time. We focus on T̄1 and drop the bar. It satisfies a linear partial differen-
tial equation, where the coefficients all depend on slow time and depth giving T1

an implicit dependence on slow time. Equation 5.10 is separable and so we write
the solution as

T1 =
∑

Γn(t+)θn(z) ,

with

Γn(t+) = Ane
iωnt+ ,

D(z)θ′′n +

(
k′(z)

ρ(z)c(z)
− γ(z)q(z)

)
θ′n − (γ(z)q′(z) + iωn) θn = 0 ,

with the boundary conditions ∑
n

Γn(t+) = F2(t+) ,

θn(0) = 1 ,

lim
L−→∞ θn(L) = 0 .

We see that the Γn’s are exactly the components of the fourier expansion series
of F2(t+). The magnitude of θn(z) corresponds to the amplitude of the frequency
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ωn whereas the phase corresponds to the lag of the frequency as a function of
depth. We apply a change of variables in order to eliminate the first derivative
term by letting θn(z) = U(z)V (z) with

U(z) = exp

(
−
∫ z

0

k′(x)− q(x)ρwcw
2k(x)

dx

)
, (5.12)

D(z)V ′′(z) + V (z)

(
− iωn −D(z)

[(
k′(z)− q(z)ρwcw

2k(z)

)′
+
q′(z)ρwcw
k(z)

+

(
k′(z)− q(z)ρwcw

2k(z)

)2
])

= 0 .

(5.13)

Most researchers define the thermal front velocity as vt = γ(z)q(z) and report
the solution in terms of this parameter. However, it is rather more convenient to
define the parameter ξ(z) = (q(z)ρwcw−k′(z))/(2k(z)) being a reparameterization
of the seepage velocity with reference to the effective thermal conductivity similar
to that used by [44]. We also reparameterize the diffusivity using δ = D(0)/ωn,
f(z) = D(z)/D(0) and denoteQ(z) = ξ2−ξ′+q′(z)ρwcw/k(z). The above equation
re-arranges to the following

U(z) = exp

(∫ z

0

ξ(x)dx

)
, (5.14)

δV ′′(z)− V (z)

(
i

f(z)
+ δQ(z)

)
= 0 . (5.15)

We note here the effects of a varying thermal conductivity and the seepage
velocity come into the equation in the same form, real components of ξ and Q

that do not depend on the frequency of the thermal wave. From temperature
measurements alone we cannot determine both the thermal properties and the
seepage velocity.

We may dimensionalise this equation by reversing the re-parameterizations
performed to non-dimensionalize equation 5.5: D → D/(ρ0c0), t→ t0t and hence
ωn → ωn/t0. These only appear in equation 5.15 in the term δ = D(0)t0/(ωnρ0c0)

and cancel as the choice ρ0c0 = t0 was made. Hence equation 5.15 may be used
with SI units for the parameters.

5.2.1 General Approximate Solutions

Equation 5.15 is a second order, complex valued differential equation with depth
dependent coefficients, so just like with the sea ice thermodynamics, no closed
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form solution exists. However, asymptotic approximations such as the WKB ex-
pansion may be computed, as will be done moving forwards.

We make use of the small numerical value of the parameter δ in equation 5.15
to apply a singular perturbation. Here, one needs to quantify the relative sizes of
the terms present in the above equation in order to proceed with a perturbation
expansion. That is, one needs to specify the ’size’ (being the order of δ) of Q(z)

in equation 5.15. Measurements by [12, 17] in riverbeds show common seepage
velocities are on the scale of q ≈ 10−5 m/s. Using measurements of the diurnal
cycle (ω ≈ 7 × 10−5 s−1) and soil diffusivities of D ≈ 10−7 m2/s, we get δQ ≈
0.5 ∼ i/f(z). We assume the dominant balance Q(z) ∼ 1/δ and specifically take
Q(z) = Q̃(z)/δ. We note that the WKB approximation is asymptotically still valid
to leading order even when this assumption fails, for example, for a very low
seepage velocity.

The leading order WKB behaviour of the solution is written as

V (z) ∼ exp

(
1√
δ
S0 + S1 +O(

√
δ)

)
,

with

S0 = ±
∫ z

0

√
i

f(x)
+ Q̃(x)dx ,

S1 = −1

4
ln

(
i

f(z)
+ Q̃(z)

)
+

1

4
ln

(
i

f(0)
+ Q̃(0)

)
.

As with the sea ice, this is a valid approximation if the next term,
√
δS2(z), is

much smaller than 1. This is the case if f(z) does not have a zero.
The general approximate solution is written as a linear combination of the

above expression, each with a different sign for S0, however, the boundary con-
dition at infinity requires that only the decaying solution is present. We note that
for relevant parameters, the term i/f(z) + Q̃(z) does not pass zero, making the
above WKB approximation valid [9]. Combining with the solution for U(z) via
θn = V (z)U(z) and ensuring that the boundary condition at z = 0 is met we get

θn(z) ∼ exp

[
−
∫ z

0

(
1√
δ

√
i

f(x)
+ Q̃(x)− ξ(x)

)
dx

− 1

4
ln

(
i

f(z)
+ Q̃(z)

)
+

1

4
ln

(
i

f(0)
+ Q̃(0)

)]
, δ → 0 . (5.16)

We note that for most functional forms of f(x) and Q̃(x), analytical expressions
of such an integral do not exist or are written in terms of special functions.
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5.2.2 Reduction to Homogeneous Soils with Constant, Uniform

Seepage Velocity

With fhom(z) = 1, ξhom = qρwcw/(2k) and Qhom(z) = (qρwcw/(2k))2, the solution to
equation 5.16 is as follows

θn,hom(z) ∼ exp

(
−

(√
i

δ
+ ξ2 − ξ

)
z

)
. (5.17)

Using trigonometric identities to separate the real and imaginary components one
arrives at the equation

θn,hom(z) ∼ exp

− 1√
2

√√ξ4 +
1

δ2
+ ξ2 −

√
2ξ

 z − i√
2

√√ξ4 +
1

δ2
− ξ2

 z

 .

(5.18)

These are exactly the Stallman equations [96] being the exact solution to the ho-
mogeneous soil with uniform water flow. The real part of the exponent dictates
the amplitude decay of the temperature signal, whereas the imaginary compo-
nent dictates its phase lag.

From these equations, one can set the real component of the exponent to ln(A)

and the imaginary component to ∆φ and get similar formulae for δ and ξ to those
in [62]. Doing so, we arrive at the following expressions.

δω = D = ± ln(Ar)ωz
2

∆φ (∆φ2 + ln(Ar)2)
. (5.19)

ξ =
ln(Ar)

2 −∆φ2

2 ln(Ar)z
. (5.20)

By the definition of ξ = qρwcw/(2k) and the variable vt = qρwcw/(ρc) as defined
in [62], we have ξ = vt/(2δ) and it is simple to show the equivalence of equations
5.19, 5.20 to equations 5.1, 5.2.

5.3 Numerical Validation

Numerical simulations were set up using MATLAB’s one dimensional PDE solver
pdepe in search for solutions to equation 5.5, following the numerical modeling
by [81]. A constant depth mesh of 1 mm was used. The upper boundary con-
dition was set as will be discussed, and a lower boundary condition of constant
temperature was set at z = 10 m, a large enough distance to not disturb the be-
haviour of the solution where the temperature measurements were analysed. An
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absolute tolerance of 10−6 ◦C and a relative tolerance of 10−9 were used and an
initial isothermal condition.

We ensure the simulation with the above mesh parameters yields reliable re-
sults by simulating soil thermodynamics with constant parameters and ensuring
the simulation matches the exact solution to within 0.1%. An example of the tem-
perature field of such a simulation is given in Figure 5.5.
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Figure 5.5: The oscillatory temperature field, shown in colour via the colourbar from -1
◦C to +1 ◦C, simulated with a surface oscillation of amplitude 1 ◦C and periodicity of
1/day.

We present two examples of numerical comparisons in Figure 5.6, one of a
varying thermal conductivity and one for a varying seepage velocity. Soil tem-
peratures were simulated with an oscillatory boundary condition of amplitude 1
◦C. The resulting thermal waves (for example, as seen in Figure 5.5) were anal-
ysed with sine waves being fit to the temperature series windowed to intervals of
1 oscillation for each mesh depth between z = 0 and z = 0.1 meters. The leading
order WKB approximation is calculated from equation 5.16, with numerical in-
tegration being calculated using MATLAB’s cumtrapz function over the selected
mesh.

In Figure 5.6 we see very good agreement between the thermal wave prop-
agation (both amplitude and phase) between the numerical simulations and the
solutions to equation 5.16 in both comparisons. The largest errors occur for the
lowest frequency wave of the varying thermal conductivity. We interpret this
being due to the WKB approximation being an asymptotic relation valid in the
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Figure 5.6: Amplitude decay (solid lines, x’s) and phase shifts (dashed lines, o’s) with
a forced thermal wave at the upper boundary of frequency 0.5/day (yellow), 1/day (red)
and 2/day (blue). The leading order WKB approximation (equation 5.16) is shown with
the lines, overlaid with the numerical simulation results, as described in section 5.3, as
symbols. A seepage velocity of −10−6 m/s and diffusivity of 10−7 m2/s were used at the
upper boundary. Top: Thermal conductivity varies linearly and doubles over the range
z = 0 to z = 0.1 m with all other parameters held constant. Bottom: seepage velocity
varies linearly with depth and doubles over the range z = 0 to z = 0.1 m with all other
parameter held constant.
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limit δ = D(0)/ω −→ 0, and hence we expect larger errors to be present for lower
thermal wave frequencies.
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5.4 In-Homogeneous Soils with No Seepage

In the case of no advective heat transport, we set the seepage velocity to zero
to get ξ = −k′(z)/k(z) and Q(z) = ξ2 − ξ′. For an analysis of diurnal signals
(ω ≈ 7 × 10−5 s−1) and a soil diffusivity of D ≈ 10−7 m2/s we have δ ≈ 10−3.
Assuming that Q(z) ≈ 1 we see that Q(z) � 1/δ ≈ 100 and so Q(z) enters only
in the third order WKB term. The leading order WKB terms of equation 5.15 are
calculated as

S0 = −
∫ z

0

√
i

f(x)
dx , (5.21)

S1 = −1

4
ln

(
i

f(z)

)
+

1

4
ln

(
i

f(0)

)
. (5.22)

On the other hand, for a frequency of 1/year (the annual cycle), such as in [76,
116], we have ω ≈ 2×10−7 s−1 and δ ≈ 0.5. The term δQ(z) may become compara-
ble to the term i/f(z) and the above approximation fails significantly. This would
be evident if the measured behaviours conflict with the theory presented here or
of [37]. For example, one might notice the amplitude decay and phase shift be-
tween two thermistors as a function of ω differing for low ω. These are expected
to be equal for a uniform soil or in the limit of high frequency thermal waves but
expected to differ for lower frequency waves where δQ(z) becomes comparable
to i/f(z).

Solving the associated equation forU(z) (equation 5.14) givesU(z) =
√
k(0)/k(z).

Combining with the leading order WKB approximation of equation 5.15 gives the
leading order behaviour of thermal waves in a soil with no advective heat trans-
port as

θn(z) ∼

√
k(0)

k(z)
f

1
4 (z) exp

(
− 1√

δ

∫ z

0

√
i

f(x)
dx

)
, δ → 0 . (5.23)

The next term in the WKB series may be calculated and shown to be sufficiently
small for δ < 10−2. We compare this result to that of [37]. The leading order phase
(φ) and amplitude (r) are

φ = −
∫ z

0

√
1

2δf(x)
dx ,

r = 4
√
f(z)

√
k(0)

k(z)
eφ(z) .
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Plugging these in to the RHS of the equations 5.3 and 5.4 respectively we get the
results of [37] to within terms of order

√
δ.

RHS1 ∼
k′(z)

k(z)
+
√
δ
k(z)2 (4f(z)f ′′(z)− 3f ′(z)2) + 4f(z)2k′(z)2 − 8f(z)2k(z)k′′(z)

8
√

2f(z)3/2k(z)2

+O
(
δ1
)
. (5.24)

RHS2 =
1

δf(z)
=

ω

D0f(z)
. (5.25)

This is expected as the WKB approximation used is valid up to terms of order
√
δ.

Note that the second equation is satisfied exactly.

5.5 In-Homogeneous Soils with Seepage

Following the methods in the constant parameter case above, the amplitude de-
cay (real component of exponent) and phase shift (imaginary component of the
exponent) may be written explicitly from equation 5.16 using trigonometric iden-
tities. Writing the solution as θn ∼ ea(z)+ib(z), where a(z) denotes the amplitude
decay and b(z) denotes the phase shift with

a(z) = −
∫ z

0

 1√
2


√√√√√

Q(x)2 +

(
ω

f(x)D0

)2

+Q(x)−
√

2ξ(x)


 dx

− 1

4
ln

√(
ω

D0f(z)

)2

+Q(z)2 +
1

4
ln

√(
ω

D0

)2

+Q(0)2 , (5.26)

and

b(z) = −
∫ z

0

 1√
2


√√√√√

Q(x)2 +

(
ω

f(x)D0

)2

−Q(z)


 dx

− 1

4
tan−1

(
ω

D0f(z)Q(z)

)
+

1

4
tan−1

(
ω

D0Q(0)

)
. (5.27)

For most functional forms of f(z) andQ(z) these integrals do not admit analytical
solutions. We further note that writing the above leading order in terms of the
complex square root allows for easier integral evaluation and analysis.

5.5.1 Numerical Examples

Solutions to equation 5.16 with various parameter functions are presented in Fig-
ure 5.7, along with solutions using constant, average parameter values. The wave
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propagation behaviour, especially the amplitude decay, is relatively sensitive to
changes in k. Variations in the specific heat capacity also induce relatively sig-
nificant wave propagation behaviour, similarly to the varying k case, with larger
discrepancies in the amplitude decay. The difference between a varying seepage
velocity and an average seepage velocity appear to be negligible in the example
presented.

5.6 Case Study - Linear Thermal Conductivity

Here we analyse the errors introduced by methods assuming a constant, average
thermal conductivity for a soil compared to a linear in depth variation of thermal
conductivity (the simplest depth variation possible) to develop tools for studies
such as [86]. Consider the case of a linear in depth thermal conductivity profile:
k(z) = k0(1 + az), with all other parameters assumed constant. The parameter
functions are therefore given by: f(z) = 1 + az, ξ(z) = qcwρw−ak0

2k0(az+1)
and Q(z) =

q2c2wρ
2
w−a2k20

4k20(az+1)2
.

In the leading order behaviour, equation 5.16, we denote the integral the ’S0

term’ and the remainder of the terms the ’S1 terms’. We consider the follow-
ing for comparison: kave = k0(1 + 1

2
az), fave = 1 + 1

2
az, ξave = qcwρw

2k0(1+ 1
2
az)

and

Qave =
(

qcwρw
2k0(1+ 1

2
az)

)2

being the average, constant parameter approximation, mod-
elling the soil as homogeneous. These are attained by averaging the parameters
between 0 m and z m. Under this approximation thermal waves of the form of
equation 5.17 are present, with the appropriate terms substituted in.

5.6.1 S1 terms

The S1 terms reduce to 0 for the average, constant parameter approximation,
S1,ave = 0. Defining the quantity ξ0 = (qcwρw)/(2k0), we get the following form
for the S1 terms.

S1 =
1

4

(
ln

(
ξ2

0 −
a2

4
+
iω

D0

)
− ln

(
4ξ2

0 − a2 + 4iω(az+1)
D0

4(az + 1)2

))
. (5.28)
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Figure 5.7: Amplitude decay (solid lines) and phase shift (dashed lines) of various thermal
waves as a function of frequency, between a 0.1 m slab of soil. For each plot, two solutions
to equation 5.16 are shown, the darker colours correspond to a soil with a linearly varying
parameter and the lighter colours correspond to a soil with a constant, average value for
that parameter. The varying parameters double over the 0.1 m depth and are Top Left:
thermal conductivity, Top Right: specific heat capacity and Bottom: seepage velocity
(the lines are so close they are practically indistinguishable for this plot).
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We consider three limits for instructive purposes: ω −→ 0, ω −→∞ and a −→ 0. Each
is given below

S1 ∼
1

2
ln(az + 1) +

iazω

D0 (a2 − 4ξ2
0)

+O
(
ω2
)

, ω → 0 , (5.29)

S1 ∼
1

4
ln(az + 1) +

iazD0 (a2 − 4ξ2
0)

16ω(az + 1)
+O

(
1

ω2

)
, ω →∞ , (5.30)

S1 ∼
az (2D0ξ

2
0 + iω)

4D0ξ2
0 + 4iω

+O
(
a2
)

, a→ 0 . (5.31)

We see that in both high and low frequencies, the term ln(1 + az) is present,
with divergent behaviour as 1 + az tends to 0. The term D0(1 + az) is the diffu-
sivity at a depth z which cannot reach zero, however, for a negative value of a,
neglecting the term ln(az + 1) would introduce significant errors at depths. The
first corrective terms in the high and low frequency limits are real and hence only
affect the amplitude decay of the thermal wave. The second terms, proportional
to ω and ω−1, are imaginary and so only affect the phase shift behaviour of the
thermal waves. These are plotted along with the exact values of S1 in Figure 5.8.
This demonstrates that the amplitude and phase behaviour of the thermal waves
are affected in different forms due to the depth dependence of the thermal con-
ductivity.
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Figure 5.8: The real (left) and imaginary (right) parts of the term S1 shown for a low
frequency (1/month, solid blue line) and high frequency (1/day, soil red line) thermal
wave. The corresponding low and high frequency limits given by equations 5.29 and
5.30 are plotted as dashed lines. The low frequency limit is in very good agreement with
the exact value and can only just be distinguished in both plots. Parameters used are:
D0 = 10−7 m2/s, q = −10−5 m/s and z = 0.2 m.
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5.6.2 S0 term

For a thermal conductivity linearly varying in depth, the solution to S0 may be
written in terms of ln functions as below

S0 =
1

2a

(
− 2

√
C
D0

−
(√

4ξ2
0 − a2 + a− 2ξ0

)
ln

(√
−D0 (a2 − 4ξ2

0)−
√
C
)

+

(√
4ξ2

0 − a2 − a+ 2ξ0

)
ln

(√
−D0 (a2 − 4ξ2

0) +
√
C
) )∣∣∣∣∣

x=z

x=0

, (5.32)

with ξ0 = qcwρw/(2k(0)) and C = −a2D0 +4iaωx+4D0ξ
2
0 +4iω. Using the average,

constant parameters we get the following

S0,ave = −
z
(√

4D0ξ2
0 + 2iω(az + 2)− 2

√
D0ξ0

)
√
D0(az + 2)

. (5.33)

In order to gain further insight into the errors of the constant parameter assump-
tion, we expand the error ratio of the average solution approximation below to
leading order in a.

S0 − S0,ave

S0

∼ a

2
(√

ξ2
0 + i ω

D0
− ξ0

) +O(a2) . (5.34)

It is evident that the error introduced is frequency dependent, and the com-
plex values indicate that the amplitude and phase propagation behaviour are
non-trivial. We expand the error in large and small frequencies to get the fol-
lowing.

S0 − S0,ave

S0

∼ 1 +
4az(ξ0 − |ξ0|)(√

4ξ2
0 − a2 + a− 2ξ0

)
(az + 2) log(az + 1)

+O (ω) . (5.35)

S0 − S0,ave

S0

∼ 1− az√
2az + 4

(√
az + 1− 1

) +O
(

1√
ω

)
. (5.36)

The two terms are plotted for a particular set of parameters against the value of
a in Figure 5.9. There is a trend of increasing error for larger absolute value of a,
however, the complex structure of the error yields a curious dip around a ≈ 2ξ0

in the low frequency limit. Further study of this structure is beyond the scope of
our work. From this and the above equations it is evident that assuming a ho-
mogeneous thermal conductivity incurs significant wave propagation behaviour
errors that depend on the amount of macroscale heterogeneity and the frequency
of the thermal wave of interest.
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Figure 5.9: Absolute value of S0−S0,ave

S0
, being the relative error associated with an average

thermal conductivity for a linear thermal conductivity for the S0 term. Low and high fre-
quency limits (equations 5.35 and 5.36) are shown in dashed lines (blue - high frequency
limit, red - Low frequency limit). The exact error ratio is shown in solid lines for thermal
waves of frequency 1/day (red) and 1/month (blue). Parameters used are: D0 = 10−7

m2/s, q = −10−6 m/s and z = 0.2 m.

5.6.3 Errors in κe,measured and ξmeasured

Applying equations 5.19 and 5.20 onto a thermal wave of the form of equation
5.18, θhom (assumed to be a homogeneous soil with constant, uniform seepage
velocity), with an average thermal conductivity, we get

κave,measured = D0

(
1 +

az

2

)
, (5.37)

ξave,measured =
ξ0

1 + az
2

= ξ0

(
1− az

2

)
+O

(
a2
)
. (5.38)

These are exactly the average diffusivity and ξ as we would expect. However,
using the above WKB leading order behaviours we get the following, taken in
the limits a −→ 0 and D0

ω
−→ 0.

κmeasured = D0

(
1 +

az

2

)
+ a

D2
0ξ0

2ω
+O

(
a2 + a

D
5
2
0 ξ

2
0

ω
3
2

)
. (5.39)

ξmeasured = ξ0

(
1− az

2

)
− a

4
− a
√
D0ξ0

2
√

2ω
+O

(
a2 +

D0ξ
2
0

ω

)
. (5.40)

The difference between κmeasured and D(z) is small as for most soil parameters
of interest, we have D0ξ0

ω
� D0. However the term D0ξ20

ω
may not be smaller than ξ0
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for parameters of interest but only for relatively low seepage velocities. Expand-
ing the full solution for ξmeasured, using the WKB approximation, to first order in a
we obtain

ξmeasured =ξ0

(
1− 1

2
az

)
− 1

2
a− aψ√

2
(
χ
√
ψ − 1 +

√
ψ + 1

)
sgn(ξ0)− 2ψ

− 1

2
a

(
ψ2
(√

2|ξ0|
√
ψ + 1− 2ξ0

)2
)−1

×

[
√

2ξ0|ξ0|
(

2
√
ψ + 1 + χ

(√
ψ − 1 + χ

√
ψ + 1

))
− ξ2

0

(
(ψ + 2)χ2 + 2 (ψ + 1)

) ]
(5.41)

with χ = ω/(D0ξ
2
0) and ψ =

√
χ2 + 1. The average system (equations 5.37 and

5.38) captures only the first correction terms from equations 5.39 and 5.40, omit-
ting terms of first order in a. The omitted term in the diffusivity is aD2

0ξ0/(2ω)

which, for most applications, would be relatively small compared with the term
D0 (1 + az/2). The omitted term for the variable ξmeasured is−a/4−a

√
D0ξ0/(2

√
2ω)

which is not small, specifically the term a
4
.

We verify these numerically. Figure 5.10 shows the application of equations
5.19 and 5.20 onto thermal waves with a varying thermal conductivity as a func-
tion of depth. Shown are the parameters for a constant, average thermal wave, the
leading order WKB form of the thermal wave and numerical simulations (Section
5.3). Equations 5.41 and 5.39 were used for calculations of the leading order WKB
thermal wave. The greater heterogeneity in the simulated thermal conductivity
resulted in a greater departure from the numerical simulation results under a ho-
mogeneous thermal wave assumption, whereas the leading order WKB remained
in good agreement with the numerical simulations.

The example shown in Figure 5.10 shows the error of the average, constant
thermal conductivity assumption to be about 6% and 2.5% for a thermal conduc-
tivity that increases by 5% and 2.5% over a depth of 0.1 m, respectively. Mea-
surements of thermal conductivity by [86] indicate that the thermal conductivity
of various soils and sediments can vary between 0.55 and 2.96 W/(m K) over a
depth of 0.5 m, corresponding to an average value of a = 1.08. Hence we would
expect much larger errors to be introduced in the constant thermal conductivity
assumption for such a soil. This indicates that more careful attention should be
given to the depth variation of the thermal conductivity when estimating low
seepage velocities.
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Figure 5.10: The estimate for κmeasured (left) and ξmeasured (right) from equations 5.19 and
5.20 for various approximations of a thermal waves with a linear thermal conductivity
with depth gradient a = 0.25 (top) and a = 0.5 (bottom). The lines shown are for a
thermal wave with average, constant parameters (dashed blue), the leading order WKB
estimate (solid red) and numerical simulations (black x’s). Simulation parameters were:
k(0) = 1 W/(m K), D0 = 10−7 m2/s and q = 10−6 m/s.
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Chapter 6

Conclusions

Thermal wave behaviour was studied in depth dependent media with applica-
tions to sea ice and soils. We derive new and more accurate formulae for the am-
plitude and phase of thermal waves in sea ice and soils. These formulae are po-
tentially useful for predicting sea ice and soil temperatures, inferring macroscale
thermal properties of sea ice and soils, or for inferring vertical water velocities in
soils.

A one-dimensional numerical solver was developed for sea ice thermodynam-
ics. The sea ice growth rate and temperature field are solved for simultaneously
using the latest parameterizations in the literature of the atmospheric heat fluxes,
solar radiation absorption and thermal parameters of sea ice. Comparisons with
numerous thermistor string measurements from the Arctic and Antarctic indicate
simulations are accurate to within 1 ◦C during times of conduction-dominated
heat transport. Periods of non-conductive heat transport (sea ice melt), which
are not modelled, were seen to produce large discrepancies between the model
and the measurements and hence may be easily identified. The numerical tool is
designed to be easy to apply and the code and documentation are available on
GitHub [8].

Following [66] we study the thermal waves generated by the absorption of so-
lar radiation in sea ice. We further consider thermal waves due to oscillating air
temperatures. Travelling thermal waves near the surface are attributed to the os-
cillating air temperatures and the quick decay of the solar heating term, whereas
stationary thermal waves deeper in the sea ice are associated with solar heating.
A differential equation is derived in the limit of high frequency, small amplitude
thermal waves. Numerical solutions are shown to posses the same structure as
the thermal waves present in thermistor string measurements. We use matched
asymptotics and the WKB expansion to derive analytical expressions for the ther-

107
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mal waves. A criterion for travelling thermal waves to be present is derived us-
ing the inner and outer solutions. The leading order WKB approximation for
the thermal waves is derived. The method of steepest descent is used to further
approximate this in terms of elementary functions. Comparisons with numeri-
cal solutions of the differential equation and thermal waves from the numerical
simulator indicate excellent agreement. Use of analytical expressions in deter-
mining the temperature field within sea ice would be of interest in developing
lightweight simulators for sea ice temperature, an essential component of global
climate simulations.

Using the same methods as for sea ice, soil thermodynamics are studied with
emphasis on analysis of the diurnal thermal waves. As with sea ice, two time
analysis is used to derive the leading order behaviour of high frequency, small
amplitude thermal waves. A WKB approximation is used to leading order, giv-
ing a uniform approximation for the temperature oscillations, valid for depth-
varying soils. This is shown to reduce to the Stallman equations under the ap-
propriate conditions and agrees with the implicit results of [37]. The WKB ap-
proximation is compared with numerical simulations for a variety of parameters.
The close agreement indicates the computationally cheap WKB approximation
could serve as a tool for predicting soil temperatures in large scale simulations
for depth-dependent soils without compromising significant accuracy.

Using the leading order WKB expansion we find that for soils with a depth
dependent thermal conductivity, the tools in the literature give reliable estimates
of the thermal diffusivity of the soil but significant systematic error in the seepage
velocity. This is supported with a number of numerical examples. The analytical
expressions developed would be of interest both in developing new tools for soil
thermodynamics analysis and in understanding the limitations of the tools com-
monly used in the literature. We highlight the need for a variety of measurements
to be undertaken in order for robust conclusions to be drawn.

Recent developments in soil thermodynamics include multi-frequency anal-
ysis [7]. The presented theory predicts frequency dependent thermal wave be-
haviour that may be scrutinised with accurate, high temporal resolution mea-
surements. With further comparison between measurements, simulations and
the presented theory, multi-frequency techniques could prove to give insight into
the heterogeneity of the soil.

A significant assumption in the presented methods is the constant seepage
velocity. It has been shown that such an assumption introduces significant errors
in transient seepage velocity scenarios [81]. Further temperature measurements
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complemented by seepage measurements will give insight into the effects of tran-
sient seepage on the heat balance. Analytical studies of the effects of a transient
seepage velocity on the thermal wave behaviour would be of great interest and
applicability to better interpret such measurements, bound errors on seepage es-
timates and gain a deeper understanding of the heat transfer in transient seepage
scenarios.
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Appendix A

Physical Parameters and Constants

Here we summarise parameterization of sea ice and snow properties from the
literature. Temperature, T , is measured in degrees Celsius, and salinity, S, in units
of grams per gram (note that this is a factor of 1000 smaller than other standard
units such as ppt, parts per thousand). All other quantities are given in SI units.

A.1 Ice Properties

• Thermal Conductivity [77] [W/(m C)]:

kice =
ρ

ρice

[
2.11− 0.011T + 0.09

S

T
− ρ− ρice

1000

]
.

• Heat Capacity [78, 115] [J/(kg C)]:

cice = 1000
(

2.113 + 0.0075T − 0.0034S × 1000 + 0.00008ST × 1000

+18.04
S × 1000

T 2

)
.

• Density [115] [kg/(m3)]

ρice = (1− Va)
(

1− 4.51S

T

)
917 .

• Latent Heat of Fusion [115] [J/kg]:

Lice = 4184

(
79.68− 0.505T − 27.3S + 4311.5

S

T

)
.
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124 APPENDIX A. PHYSICAL PARAMETERS AND CONSTANTS

A.2 Snow Properties

• Density [64] [kg/m3]: ρsnow = 330 .

• Thermal Conductivity [115] [W/(m C)]:

ksnow = 0.0688 exp
(

0.0088T + 4.6682
ρsnow
1000

)
.

• Heat Capacity [115] [J/(kg C)]:

csnow = (2.7442 + 0.1282(T + 273.15))× 18.02

1000
.

A.3 Common Soil Properties

• Volumetric Heat Capacity [13] [J/(C m3)]]: ρc ≈ 2− 4× 106 .

• Thermal Conductivity [86] [W/(m C)]: k ≈ 0.55− 2.96 .

• Water Seepage Velocity [17] [m/s]: q ≈ 8× 10−6 .
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