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Abstract The Euclidean group of proper isometries SE(3) acts on its Lie algebra,
the vector space of twists by the adjoint action. This extends to multi-twists and
screw systems. Invariants of these actions encode geometric information about the
objects and are fundamental in applications to robot kinematics. This paper explores
relations between known invariants and applies them to serial manipulators.
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1 Introduction

Twists, vectors of twists and screw systems all play an important role in mathe-
matical models of robot manipulator kinematics. They describe the infinitesimal
capabilities of joints, links, and end-effector or platform for a given configuration of
a manipulator. Properties of these objects, especially those that are invariant under
the Euclidean group, are therefore fundamental. By way of examples:

1. a 1-degree of freedom (dof) holonomic, lower-pair joint may be represented by
a twist or screw, which remains invariant under motions of the joint and simulta-
neous motion of the set of links (and their joints) in space;

2. the Denavit–Hartenberg parameters for serial manipulators are design parameters
that are assumed to be unchanged under arbitrary movements of the manipulator;

3. the infinitesimal motion of the platform or end-effector of a manipulator with
k < 6-dof is, in a given configuration, described by a k-system, which should be
independent of the choice of coordinates.
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The aim of this paper is to bring together information about polynomial invariants
in each of these situations. A central role is given to the multi-twist invariants [5, 6]
and their connection to the invariants of Selig [12].

2 The Euclidean Group: Twists, Multi-Twists and Screw Systems

The displacements of a spatial rigid body are described by the (special) Euclidean
group SE(3), a 6-dimensional Lie group, identified via choice of coordinate frames
as the semi-direct product of rotations about the origin, SO(3), and translations R3.
The action of (A,a) ∈ SO(3)nR3 ∼= SE(3) transforms body coordinates x ∈ R3 to
ambient coordinates X via x 7→X = Ax+a. A simultaneous change of ambient and
body coordinate frames, ρ = (R,r), transforms α ∈ SE(3) by conjugation:

α 7→ ρ ◦α ◦ρ
−1 = (RAR−1,−RAR−1r+Ra+ r). (1)

Instantaneous displacement at α ∈ SE(3) is described by the tangent space to the
group, in particular that at the identity, its Lie algebra se(3). An element s∈ se(3) is
a twist and can be represented by a pair of 3-vectors (ωωω,v), its twist coordinates. The
vector ωωω = (ω1,ω2,ω3)

T can be identified in a standard way with a skew-symmetric
3×3 matrix Ω , such that for x∈R3, Ωx=ωωω×x. It can be convenient to represent s
by (Ω ,v). This defines a vector field ẋ = Ωx+v on R3, whose solution, with initial
condition x(0) = x0, is exp(ts)x0 in SE(3). These are the displacements generated
by 1-dof joints, giving the correspondence between joints and twists. The motion is
the same for any non-zero multiple of s so joints are often identified with screws,
elements of the projective Lie algebra Pse(3).

Differentiating (1) gives the adjoint action Ad of SE(3) on se(3)—-how in-
finitesimal displacements transform under change of coordinates ρ ∈ SE(3):

Adρ(Ω ,v) = (RΩR−1,−RΩR−1r+Rv). (2)

Differentiating again, with respect to ρ , and evaluating at the identity gives the
adjoint representation of the Lie algebra. For si = (Ωi,vi), i = 1,2, ads1(s2) =
(Ω1Ω2−Ω2Ω1,Ω1v2−Ω2v1). We also write ads1(s2) = [s1,s2], the Lie bracket
of se(3), given in twist coordinates si = (ωωω i,vi) by [s1,s2] = (ωωω1×ωωω2,ωωω1× v2 +
v1×ωωω2).

Euclidean displacements can also be represented by dual quaternions [3]. Briefly,
a dual quaternion q̌ = q0 +εq1 has conjugate q̌∗ = q∗0 +εq∗1 (where q∗ is the quater-
nion conjugate of q) and is unit if q̌q̌∗ = 1. The unit dual quaternions, DS3, form a
6-dimensional Lie group. The Lie algebra of DS3 is the set of elements ω̌ωω = ωωω +εv,
where ωωω,v are pure imaginary quaternions and the Lie bracket in dual quater-
nion form is the dualised vector product, [ω̌ωω1, ω̌ωω2] = (ωωω1 + εv1)× (ωωω2 + εv2) =
ωωω1×ωωω2 + ε(ωωω1×v2 +v1×ωωω2). There is a 2:1 homomorphism θ : DS3→ SE(3),
θ(q̌).v = q0vq∗0 +(q1q∗0−q0q∗1), which determines a Lie algebra isomorphism and
the adjoint actions of the two groups are equivalent.
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The adjoint action of SE(3) induces several other actions of interest. A multi-
twist is a k-tuple of twists, (s1, . . . ,sk)∈ se(3)k and there is a simultaneous action by
ρ ∈ SE(3):

ρ · (s1, . . . ,sk) = (Adρ(s1), . . . ,Adρ(sk)). (3)

A manipulator or robot arm with several degrees of freedom, as we shall see in
Section 5, is associated with multi-twists. The manipulator’s instantaneous capa-
bility is a subspace of the Lie algebra se(3), i.e. a screw system of order k, or k-
system [9, 10]. These form a Grassmannian manifold G(k,se(3)) for fixed k and
since the adjoint action is linear, there is an induced action of SE(3) on it. Given a k-
system S∈G(k,se(3)) (1≤ k≤ 6) and s1, . . . ,sk a basis for S, there is a well-defined
one-to-one function into the projective exterior product (see, for example, [12]):

π : G(k,se(3))→ P
(
∧kse(3)

)
, S 7→ [s1∧·· ·∧ sk], (4)

and ρ · [s1∧·· ·∧ sk] = [Adρ(s1)∧·· ·∧Adρ(sk)]. Let e1, . . . ,e6 denote the standard
basis for se(3), then s1 ∧ ·· · ∧ sk = ∑ pi1···ik ei1 ∧ ·· · ∧ eik , where the sum is over
sequences i1, . . . , ik, 1≤ i1 < · · ·< ik ≤ 6. The coefficients pi1···ik may be written in
terms of twist coordinates for si and are called Plücker coordinates for the exterior
product. They satisfy algebraic relations that define the Grassmannian G(k,se(3))
as a real algebraic variety and a manifold of dimension k(6− k).

3 Invariants of Multi-Twists

The orbits of group actions are important, both mathematically and practically, and
invariant theory is a key tool in identifying them. Suppose V is a finite-dimensional
real vector (or projective) space and G a group acting on V by linear transformations.
If x1, . . . ,xn are coordinates for V , the polynomial functions on V form an algebra
R[x1, . . . ,xn], abbreviated as R[x]. There is an induced action of G on R[x]: for g∈G,
f ∈ R[x] and x ∈ V , (g · f )(x) = f (g · x). An invariant polynomial is an element
f ∈ R[x] such that for all g ∈ G, g · f = f , and they form a subalgebra R[x]G. For
many groups G, e.g. finite, semisimple or reductive , R[x]G is finitely generated [14].
This is called the First Fundamental Theorem of Invariant Theory, in respect of
G. There exist non-reductive groups for which finite generation does not hold and
the Euclidean group is not reductive, though we know invariant rings are finitely
generated for some representations. For the adjoint action of SE(3), the polynomial
ring is R[ω1,ω2,ω3,v1,v2,v3], (or R[ωωω,v]). In the case n = 3 of a theorem [8] for
SE(n) we have:

Theorem 1. The invariant ring R[ωωω,v]SE(3) is the polynomial ring R[ωωω.ωωω,ωωω.v].

The generating invariants are multiples of the Killing and Klein forms, ωωω.ωωω =

− 1
2 sT As,ωωω.v = 1

2 sT Bs, where A =

(
−2I3 O3
O3 O3

)
, B =

(
O3 I3
I3 O3

)
.
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The forms Qα,β = αA+βB, α,β ∈ R are non-degenerate if and only if β 6= 0
and then are indefinite of index 3. The equations qα,β (s) = sT Qα,β s = 0 define a
family of hypersurfaces, the pitch quadrics, in the screw space Pse(3). For β 6= 0,
these are parametrised by the invariant pitch of the screw h = α/β = ωωω.v/ωωω.ωωω , and
we write qh = 0. For β = 0, set h = ∞ and the variety q∞ = 0 is the projective plane
ωωω = 0, which lies in the intersection of all the pitch quadrics.

The Principle of Transference [11, 13] may be used to find invariants of multi-
twists by dualising the vector invariants of the rotation group SO(3) [15]. Specifi-
cally, given f ∈R[ωωω1, . . . ,ωωωk], its dual form f̌ is given by replacing its variables by
dual quantitites ωωω i + εvi, expanding its Maclaurin series and using ε2 = 0:

f̌ (ωωω1 + εv1, · · · ,ωωωk + εvk) = f (ωωω1, · · · ,ωωωk)+ ε

(
k

∑
r=1

vr
∂ f

∂ωωωr
(ωωω1, . . . ,ωωωk)

)
. (5)

The dual part, f̃ , is the partial polarisation of f . For example, the dual of the invariant
form f (ωωω) = ωωω.ωωω is f̌ (ωωω,v) = ωωω.ωωω + ε ωωω.v, giving the Killing and Klein forms,
respectively. The following theorem [6] realises multi-twist invariants:

Theorem 2. If f is a vector invariant of the adjoint action of SO(3), then the primal
and dual parts of f̌ are vector invariants of the adjoint action of SE(3). The primal
and dual parts of the dualisation of any SO(3) syzygy are syzygies for SE(3).

Dualising the generators for vector invariants [15] of SO(3) gives:

1. for 1≤ i≤ j ≤ m,

Ǐi j := Ii j + ε Ĩi j := ωωω i.ωωω j + ε(ωωω i.v j +ωωω j.vi) =− 1
2

(
sT

i Q∞s j + εsT
i Q0s j

)
; (6)

2. for m≥ 3 and any 1≤ i < j < k ≤ m, setting [u v w] = u.(v×w),

Ǐi jk := Ii jk + ε Ĩi jk : = [ωωω i ωωω j ωωωk]+ ε ([ωωω i ωωω j vk]+ [ωωω i v j ωωωk]+ [vi ωωω j ωωωk])

=− 1
2

(
sT

i Q∞[s j,sk]+ εsT
i Q0[s j,sk]

)
, (7)

For m = 2, there are 6 (quadratic) invariants and they generate the ring of invariants.
For m = 3, there are 14 invariants, but is not known whether the First Fundamental
Theorem holds for m≥ 3. However, the theorem in [6] that, for m = 3, every poly-
nomial invariant can be written as a rational expression in Ii j, Ĩi j and I123, extends
to the general case m > 3, still with only the one cubic invariant. The invariants are
connected by three types of dualised syzygy [15], which we do not specify here.

4 Invariants of screw systems

Hunt’s classification [10] of Ball’s screw systems is given a mathematical basis by
Gibson and Hunt (GH) [9], where a normal form of basis twists for each screw sys-
tem is given. Classes are unions of orbits and the normal forms include invariant
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parameters (moduli). For a generic 2-system (GH-type IA) the moduli h1,h2 are the
principal pitches, which can be found by solving the discriminant det(ST QhS) = 0,
where S is the 6× 2 matrix whose columns are spanning twists. Type IB systems
have a unique infinite pitch screw and contain a unique screw of every pitch whose
axes are coplanar. The normal form has a modulus q, which is the tangent of the
angle this plane makes with the infinitesimal translation. The generic 3-system,
type IA, has normal form with moduli the three principal pitches h1 < h2 < h3
corresponding to the degenerate or singular intersections with the pitch quadrics,
which can be found analogously with 2-systems.

Selig [12] explores the invariant theory for screw systems along these lines. For a
2-system S= [s1∧s2], the coefficients ι1, ι2, ι3 of detST Qα,β S= ι1β 2+ι2αβ +ι3α2

are invariants of the twist-pair s1,s2. Further, if M is a change of basis for the 2-
system then ι ′r = (detM)2 ιr for r = 1,2,3, so they are screw system invariants. They
are sufficient to distinguish most, but not all, of the 2-system orbits. For type IA, the
principal pitches h1,h2 are the solutions of the quadratic ι3h2 + ι2h+ ι1 = 0, giving
h1 + h2 = −ι2/ι3, h1h2 = ι1/ι3. The modulus q for IB systems, which separates
orbits, cannot be found from ι1, ι2, ι3 since these invariants vanish for all q. We show
below that these are the only invariants. (The expressions i4, i5 in [12], Section 8.4
are not true invariants.) Invariants for 3-systems are also identified in [12].

We adapt this approach using the invariant ring for k twists. Form the quadratic
vector invariants into k×k symmetric matrices I = (Ii j), Ĩ = (Ĩi j). A change of basis
M = (mi j)∈GL(k) transforms S= (s1, . . . ,sk) 7→ S′i = SM and, by (6), the invariants
transform in the following way:

I′i j =− 1
2 s′iQ∞s′j =− 1

2 ∑
r

∑
s

mrims j(sT
r Q∞s j) =− 1

2 ∑
r

∑
s

mrims jIrs = (MT IM)i j

(8)

and similarly for Ĩ′i j, replacing Q∞ by Q0. Thus, the action of GL(k) on the quadratic
k-twist invariants is the same as its action on a pair of k-ary quadratic forms. In the
case k = 2, the invariant ring is:

R[ωωω1,v1,ωωω2,v2]
SE(3) = R[I11, I12, I22, Ĩ11, Ĩ12, Ĩ22], (9)

and the 6×6 representation of M ∈ GL(2) is the double symmetric square of M:

(
M̃ O
O M̃

)
where M̃ =

 m2
11 2m11m21 m2

21
m11m12 m11m22 +m12m21 m21m22

m2
12 2m12m22 m2

22

 . (10)

From classical invariant theory [14], we have the following invariants:

j1 = Ĩ11 Ĩ22− Ĩ2
12, j2 = I11 Ĩ22 + I22 Ĩ11−2I12 Ĩ12, j3 = I11I22− I2

12. (11)

A simple way to view these is as the coefficients of det(αI+β Ĩ). Substituting the
Plücker coordinate expressions for the 2-twist invariants and for the coordinates pi j
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confirms that jr = ir, r = 1,2,3 (up to non-zero multiples). By (9), this argument
shows that j1, j2, j3 form a generating set for the invariants of 2-systems.

For k = 3, in addition to 12 quadratic 3-twist invariants there are two cubic in-
variants. Since I123 = ωωω1.(ωωω2×ωωω3) is the volume of the parallelepiped spanned by
these vectors, it satisfies for M ∈GL(3): I′123 = (detM)I123. Polarising this equation
shows that Ĩ123 is also an invariant. Now consider the action of GL(3) on the poly-
nomial ring generated by Ii j, Ĩi j that corresponds to the action on a pair of ternary
quadratics. A set of generating invariants is the coefficients of det(αI+β Ĩ):

k1 = Ĩ11 Ĩ22 Ĩ33− Ĩ11 Ĩ2
23− Ĩ22 Ĩ2

13− Ĩ33 Ĩ2
12 +2Ĩ12 Ĩ13 Ĩ23

k2 = I11 Ĩ22 Ĩ33 + I22 Ĩ11 Ĩ33 + I33 Ĩ11 Ĩ22− I11 Ĩ2
23− I22 Ĩ2

13− I33 Ĩ2
12

+2I12(Ĩ13 Ĩ23− Ĩ12 Ĩ33)+2I13(Ĩ12 Ĩ23− Ĩ13 Ĩ22)+2I23(Ĩ12 Ĩ13− Ĩ11 Ĩ23)

k3 = I11I22 Ĩ33 + I11I33 Ĩ22 + I22I33 Ĩ11− I2
12 Ĩ33− I2

13 Ĩ22− I2
23 Ĩ11

+2(I13I23− I12I33)Ĩ12 +2(I12I23− I13I22)Ĩ13 +2(I12I13− I11I23)Ĩ23

k4 = I11I22I33− I11I2
23− I22I2

13− I33I2
12 +2I12I13I23. (12)

These satisfy the identities k4 = I2
123,k3 = 2I123 Ĩ123, being the two syzygies for 3-

twist invariants [6]. If, in fact, (6,7) generate 3-twist invariants, then I123, Ĩ123,k1,k2
generate the invariant polynomials for 3-systems, however this remains a conjecture.

The invariants correspond to Selig’s:
√
− 1

2 detϒ∞, i0, detϒ0, ΦΦΦ , respectively. As for
2-systems, these invariants determine the principal pitches.

5 Invariants and Serial Manipulators

Brockett’s product of exponentials formulation for a m-dof serial manipulator [1]
requires the choice of m twists, s1, . . . ,sm, representing the joints in the home
configuration. In principle, they may have any pitch, but in practice are usually
pitch zero or infinity, i.e. revolute or prismatic. The forward kinematics for the
end-effector is f : Rm→ SE(3), f (u1, . . . ,um) = exp(u1s1)exp(u2s2) · · ·exp(umsm),
where u1, . . . ,um are joint variables. As the arm moves, so do the joints (other than
s1) and the multi-twist changes. At configuration u = (u1, . . . ,um) :

s2(u) =Ad(exp(u1s1))s2, . . . ,sm(u) = Ad(exp(u1s1) · · ·exp(um−1sm−1))sm. (13)

From the point of view of invariants, in addition to the joint adjoint action on multi-
twists, we must also consider the internal action of earlier joints on later joints.
Notice that motion around the first joint alone gives an equivalent multi-twist, since
we may apply Ad(exp(−u1s1)) to the updated twists in (13) and s1 is fixed by this.
Also, clearly motion about the final joint has no effect.

An alternative formalism for serial kinematics is Denavit–Hartenberg (DH) pa-
rameters [7]. A coordinate frame is chosen for each link in such a way that the joint
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twists have a standard form. The exponential motions generated by each joint must
be connected by corresponding changes of coordinates, expressed in terms of the
DH parameters: link length, link angle and offset. It is implicitly recognised that
these parameters are invariant under global coordinate change (the adjoint action on
the multi-twist), which we refer to as static invariance, and the internal motion of
the manipulator or kinematic invariance. The connection between the static, multi-
twist, invariants and the DH parameters is established in [4,5]. Explicit formulae are
obtained for each in terms of the invariants (6,7). For a multi-twist (s1, . . . ,sm),

• invariants Iii, Ĩii, i = 1, . . . ,m tell us about the individual joints and their pitch hi.
• for each pair si,s j, 1 ≤ i < j ≤ m, the invariants Ii j, Ĩi j determine the link length

li j—the perpendicular distance between the axes of the twists—and link angle
θi j—the angle between these axes, where these are defined.

• for each triple si,s j,sk, 1 ≤ i < j < k ≤ m, the quadratic plus cubic invariants
Ii jk, Ĩi jk, determine the offsets di jk, the distance along the axis of s j between the
feet of the perpendiculars from si,sk, again so long as this is well defined.

Explicit formulae for the screw and DH parameters are:

hi =
Ĩii

Iii
, li j =

Ii j(Iii Ĩ j j + ĨiiI j j)− IiiI j j Ĩi j

IiiI j j

√
IiiI j j− I2

i j

, cosθi j =
Ii j√
IiiI j j

, li j sinθi j =
Ĩi j√
IiiI j j

di jk =
Ĩi jkI j j(Ii jI jk− IikI j j)+ Ii jk

( 1
2 Ĩ j j(Ii jI jk + IikI j j)+ I j j(ĨikI j j− Ii j Ĩ jk− Ĩi jI jk)

)√
I j j(IiiI j j− I2

i j)(I j jIkk− I2
jk)

.

(14)

We have Iii = 0 if and only if ωωω i = 0, so that si is prismatic. The invariant expression
IiiI j j− I2

i j = ‖ωωω i×ωωω j‖2, so vanishes if ωωω i = 0, ωωω j = 0 (i.e. si or s j prismatic) or
ωωω i‖ωωω j—so no unique common perpendicular between the joint axes.

Verifying that an expression is invariant with respect to the action of a (con-
nected) Lie group is equivalent to showing that it is invariant under the infinitesi-
mal action of the Lie algebra, found by differentiating at the identity. Specifically,
since the derivative of the Euclidean group’s adjoint action is the Lie bracket, if
f (si, . . . ,sm) is a multi-twist invariant, then it is an invariant of the motion about
joint r, 2≤ r ≤ m−1, of a serial manipulator if and only if:

∇ f (s1, . . . ,sm) · (0, . . . ,0, [sr,sr+1], . . . , [sr,sm]) = 0. (15)

This is the 6m-dimensional gradient vector multiplied by the column consisting of
r zero 6-vectors, followed by m− r brackets in the Lie algebra se(3).

Theorem 3. For a serial manipulator with joint twists s1, . . . ,sm, the only static
invariants that are kinematically invariant are Iii, Ĩii, 1 ≤ i ≤ m and Ii,i+1, Ĩi,i+1,
1≤ i≤ m−1.

In particular, the invariants Iik, Ĩik, k≥ i+2 are not kinematically invariant under the
action of joint j for i < j < k. The cubic invariants Ii jk, Ĩi jk are not generally kine-
matically invariant for any i, j,k. It follows from (14) that pitches of joints and link



8 Peter Donelan

lengths and angles for successive joints are kinematically invariant, while offsets are
not. However, we have the following special case.

Theorem 4. For a serial manipulator as in Thm. 3, the invariants Ii,i+1,i+2, Ĩi,i+1,i+2
for 1≤ i≤m−2 are kinematically invariant so long as Ĩi+1 = 0. Thus, the offset for
3 successive joints is invariant if the middle joint is revolute.

6 Conclusion

We have shown that the invariant polynomials of multi-twists play a valuable role
in understanding the screw systems and the kinematics of serial manipulators. They
may throw light on other aspects of manipulator kinematics, such as persistence [2]
in which the screw system remains constant under motion of the manipulator’s own
motion. Given their algebraic simplicity, they provide an alternative to DH parame-
ters that are well-adapted to product-of-exponentials formalism.
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