
The subglacial landscape and hydrology

of Antarctica mapped from space

A thesis presented for the degree of

Doctor of Philosophy in Physical Geography

Wei Ji Leong

Antarctic Research Centre

Victoria University of Wellington

New Zealand

12 July 2021



2



Abstract

To narrow uncertainties in the Antarctic ice sheet's contribution to sea level rise,
we present a collection of novel machine learning and automated satellite remote
sensing methods which use ice surface observations to infer the subglacial nature
of Antarctica. A super-resolution deep neural network called DeepBedMap was
designed and trained to produce a high-resolution (250 m) bed elevation model of
Antarctica called DeepBedMap_DEM that preserves bed roughness details useful
for catchment- to continent-scale ice sheet modelling. This DeepBedMap_DEM
is compared with a smoother, medium-resolution (500 m) BedMachine topography
in a basal inversion experiment over Pine Island Glacier, with results motivating
more research into the interacting roles of subglacial hydrology which in�uences
skin drag and high resolution bed topographies which in�uences form drag. Active
subglacial lakes in Antarctica were mapped using an unsupervised density-based
classi�cation method on ICESat-2 point cloud data from 2018-2020, yielding 194
active subglacial lakes, including 36 new lakes in the 86�88°S area not detected
by the previous ICESat (2003-2009) mission. This thesis showcases both the rich
diversity in subglacial landscapes and the dynamic nature of subglacial hydrology
in Antarctica, forming a foundation enabling the accurate modelling of overland ice
�ow in critical regions of the vulnerable West Antarctic Ice Sheet.

Plain language summary

Antarctica has a lot of ice, but we're unsure how fast ice can slide into the sea and
cause water to go up in beaches around the world. So we teach computers to solve
hard math problems that tell us how fast sea water might go up. These computers
are fed with lots of pictures taken from cameras up in the sky and space. Ice sits on
top of rock in Antarctica, and with practice, the computers get pretty good at telling
us how high and bumpy the rock is. The rock under the ice appears quite bumpy,
and ice probably doesn't like sliding over bumpy rocks since it's rough. Sometimes
though, ice may not mind sliding over rough bits of rock if the rock moves along
with it, or if water gets in between the rock and ice to makes things slippery, but we
ask our smart computers to be sure. There are also lasers from space shooting down
at earth and bouncing back to tell us how ice in Antarctica is going up or down.
Once in a while, they tell us that ice in parts of Antarctica moved up or down a
bit too fast. Smart people think these are lakes hiding under the ice, �lling up with
water or draining, and we found many of these lakes over Antarctica, especially in
an area called Whillans Ice Stream on the Siple Coast. We hope that the computers
can keep learning faster because there's a lot of pictures showing ice moving pretty
fast, and it doesn't look like there's much time before a big chunk of ice might break
away in Antarctica and �ood beaches around the world.
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Chapter 1

Introduction

1.1 Motivation

What is the rate at which sea level will rise and a�ect coastal communities around
the globe? Besides greenhouse gas emissions, a large uncertainty in the answer to
that question lies in the Antarctic ice sheet's behaviour. By 2100, Antarctica is
projected to contribute as little as 0.03 m to as much as 0.28 m sea level equivalent
(SLE) of water under a high emissions scenario (RCP 8.5, Fig. 1.1f, IPCC, 2019).
To narrow the range of this projection, one of the regions we need to understand is
Antarctica's bed, the part hidden under the ice. This thesis synthesizes a collection
of satellite remote sensing methods, using what we can see at the surface of the
Antarctic continent, to deduce what is happening in the subglacial world below.

Figure 1.1: Contribution of the cryosphere to sea level change. Modelled and ob-
served historical changes in the cryosphere since 1950, and the projected future
changes under low (RCP2.6) and high (RCP8.5) greenhouse gas emissions scenar-
ios. Figure adapted from SPM.1 in the Summary for Policy Makers, IPCC Special
Report on the Ocean and Cryosphere in a Changing Climate (IPCC, 2019).
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1.2. THESIS CONTEXT CHAPTER 1. INTRODUCTION

1.2 Thesis context

Antarctica is a large continent, 53× the size of New Zealand or 1.8× the size of
Australia, and satellite measurements are one of the best ways to cover the whole
icescape. While the �rst satellite images of Antarctica were taken in 1964 by the
Nimbus I satellite (Meier et al., 2013), continuous modern-day observations only
started in 1979. Forty years later, and there is now a wealth of openly available
optical images of much of the continent, currently captured by NASA's Landsat 8
(Roy et al., 2014) and the European Space Agency (ESA)'s Sentinel 2 (Drusch et al.,
2012). Changes to Antarctica's mass can be measured at kilometre-scale using the
Gravity Recovery and Climate Experiment Follow-On (GRACE-FO, 2018-) satellites
(Landerer et al., 2020), and at metre-scales using the Ice, Cloud and land Elevation
Satellite-2 (ICESat-2, 2018-; Markus et al., 2017). Also with radar instruments like
Sentinel 1 (Attema et al., 2009) and Cryosat 2 (Wingham et al., 2006), cloud-free
monitoring of the Antarctic surface has never been easier. Sadly, most of these
satellites can only observe the surface of the Antarctic continent. There are physical
constraints on designing an Earth orbiting satellite which can penetrate through
both the atmosphere and kilometres of ice (Culberg & Schroeder, 2020; Gogineni et
al., 2018). Arguably more is known about the subglacial landscape of Mars's polar
caps (Arnold et al., 2019; Lauro et al., 2020; Orosei et al., 2018) than that of our
own planet Earth. Still, it is possible to infer about Antarctica's bed properties by
combining satellite observations captured over large surface areas with what little is
known about the bed at discrete sites targeted by oversnow observations, and this
is the approach this thesis will take.

1.2.1 Research Questions

To better understand the drivers of Antarctic ice �ow, we present high spatial resolu-
tion (<= 250 m) views of Antarctica's subglacial geography, as inferred from satellite
detected ice surface changes. Novel machine learning and automated remote sens-
ing techniques are applied to infer both the subglacial landscape and subglacial
hydrological network of Antarctica. The 3 main research questions are as follows:

1. How can we integrate existing high spatial resolution remote sensing products
to boost the resolution of existing bed elevation maps of Antarctica?

2. What e�ect does a rough surface, high-resolution (250 m) bed topography have
on the friction parameters of an ice sheet model?

3. Where does water drain and accumulate underneath the Antarctic Ice Sheet,
how much volume is mobilized, and at what timescales do these processes
occur?

The products of this thesis will be a revised continent-wide map of Antarctica's
bed topography and subglacial hydrology, including a revised inventory of active
subglacial lakes. Building on top of this, are regional-scale derived products of basal
friction and a time-series of ice volume displacement analyzed at select drainage
basins. Taken together, these datasets form a foundation enabling accurate mod-
elling of overland ice �ow.
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CHAPTER 1. INTRODUCTION 1.3. BACKGROUND

1.2.2 Outline

This thesis is comprised of �ve chapters.
Chapter 1 establishes the context behind this research, the three research ques-

tions, and also the outline you are reading now. It also contains an introduction to
the in�uence of subglacial topography and subglacial hydrology on ice �ow.

Chapter 2 is adapted from a journal paper submitted to The Cryosphere (Leong
& Horgan, 2020b), reformatted to �t in this thesis. It starts with an introduction
to the �eld of deep learning in the context of geospatial science. The chapter then
provides a detailed look into the construction of a convolutional neural network ar-
chitecture to generate a super-resolution (250 m) bed elevation map of Antarctica
from a low resolution (1000 m) BEDMAP2 input and other remote sensing observa-
tions of the ice surface.

Chapter 3 uses the neural network generated super-resolution Antarctic bed
elevation map to perform an ice sheet model basal inversion over Pine Island Glacier.
In this chapter, we examine the inverted properties of basal drag, e�ective pressure
and friction coe�cient using two bed elevation models of di�erent spatial resolutions.
The output of this exercise is to analyze the e�ects of using a rougher bed on ice
�ow modelling.

Chapter 4 looks into the active subglacial hydrology system of Antarctica using
ICESat-2 laser altimetry. A revised and automated method for building an active
subglacial lake inventory is described, with details on the timing of subglacial lake
drainage and �lling events, and the estimated volume of water exchanged. The
increased spatiotemporal resolution of these subglacial hydrological maps, combined
with an improved subglacial topography, is used to examine the drivers of Antarctic
ice �ow.

Chapter 5 provides a discussion of the 3 research questions, and implications for
future work. It also presents the main conclusions of this thesis.

1.3 Background

Glaciers and ice sheets move in three main ways: 1) internal deformation of the ice
due to gravity 2) sliding of the ice over the basal substrate 3) deformation of the
basal substrate.

The latter two processes can be collectively termed as basal slip (Cu�ey & Pa-
terson, 2010). While the bed topography of Antarctica can change signi�cantly
over geological time (e.g. Hochmuth et al., 2020), the amount of water available
to slide a glacier is more dynamic and can act on sub-annual to annual timescales
(e.g. Siegfried et al., 2016). Much focus has been placed on the importance of sub-
glacial water on ice dynamics, such as the draining and �lling of subglacial lakes (e.g.
Siegfried & Fricker, 2018; B. E. Smith et al., 2009) and glacial surges due to rainfall
events (e.g. Iken et al., 1983). Another contributor is the structure of the basal to-
pography that exerts a drag on the ice-rock contact surface (e.g. Kyrke-Smith et al.,
2018). The base of the ice sheet is di�cult to observe, as they require oversnow
seismic or radar surveys (e.g. Holschuh et al., 2020) or direct drilling access (e.g.
Tulaczyk et al., 2014). In contrast, the surface of the ice sheet can be more readily
examined using satellites and other remote sensing instruments (e.g. Howat et al.,
2019; Mouginot et al., 2019a). The study of basal slip at local to regional scales,
from sliding due to water and bed deformation, varies with speci�c conditions at the
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bed, and can be posed as a geographical question: 1) Where in Antarctica does bed
topography not have an important control on ice �ow (i.e. water is more important).
2) Where in Antarctica does bed topography have an important control on ice �ow
(i.e. a better bed is needed).

To answer this question, we �rst require an accurate geographic model of the
bed, a Digital Elevation Model with su�cient �ne-scale structures (Chp. 2, Leong
& Horgan, 2020b). Current generations of Antarctic bed elevation models such as
BEDMAP2 (Fretwell et al., 2013) are overly smooth by necessity. BEDMAP2 is
derived from Radio-echo sounding (RES) observations, the data was interpolated to
a 5 km grid, and then to a 1 km grid. BedMachine Antarctica (Morlighem, 2020)
is generated by mass conservation and is also smoothed in such a way that fails to
capture the inherent sub-kilometre scale roughness of an ice sheet's topograhy as
seen in paleo-ice sheets uncovered in the modern day.

The smoothness of existing interpolated bed topography products at the sub-
kilometre scale is evident when looking along a transect pro�le. In Fig. 1.2, we show
how �ne scale roughness exists in ground-truth radio-echo sounding (RES) bed picks.
Continent-wide bed elevation products like BEDMAP2 and BedMachine Antarctica
fail to capture this roughness. Newer regional products over the Weddell Sea sector
(Jeofry et al., 2018) and Princess Elizabeth Land (Cui et al., 2020) provide more
accurate interpolated bed elevations but are still unable to resolve short-wavelength
bed roughness. Thus, we require a method applicable to the entire continent that
retains �ne-scale (sub-kilometre) roughness critical for modelling ice �ow (see e.g.
Bingham et al., 2017; Falcini et al., 2018; Hubbard et al., 2000; Siegert et al., 2004)

One way to improve on smooth bed topographies is by using deep learning (see
Goodfellow et al., 2016, for a review). Speci�cally, training a neural network on
areas with high resolution datasets, and using it to predict what a high resolution
topography would look like in areas with little to no direct observations (Chp. 2,
Leong & Horgan, 2020b). Our deep learning method has similarities with inverse
methods (Gudmundsson, 2011), whereby knowing ice surface elevation, velocity, sur-
face accummulation, and other surface observations in detail allows us to infer what
the bed topography might be like. In contrast to inverse methods, we introduced
a speci�c adversarial loss function (Goodfellow et al., 2014) that penalizes overtly
smooth topography, pushing bed predictions towards that of realistic groundtruth
surfaces.

With the DeepBedMap dataset, we then experiment how ice �ow over a rough
surface di�ers from ice �ow over smooth topography (Chp. 3). Two beds are com-
pared using a Full Stokes ice �ow model - a full physical treatment of how an ice
stream �ows, including the three-dimensional driving forces and stresses that govern
the behaviour of an ice body (Larour et al., 2012). One outcome of this exercise is to
measure the basal traction of an ice stream, separable into form drag and skin drag
(Fig. 1.3, Bingham et al., 2017; Kyrke-Smith et al., 2018; Minchew & Joughin, 2020;
Schoof, 2002). Form drag is basal drag due to topography (c.f. Weertman, 1957), a
component which typically increases with higher resolution topography. Skin drag
is the frictional force occurring at the ice-rock interface, determined by bed material
properties, and signi�cantly in�uenced by water that acts to decrease friction (Iver-
son & Zoet, 2015). Skin drag may be overestimated in comparison to form drag
on glaciers such as Pine Island Glacier (Bingham et al., 2017; Kyrke-Smith et al.,
2018), and this detail is of particular relevance when modelling vulnerable glaciers
in the Amundsen sea sector (Kyrke-Smith et al., 2018).

20



CHAPTER 1. INTRODUCTION 1.3. BACKGROUND

−1500

−1000

−500

E
le

v
a

ti
o

n
 (

m
)

DeepBedMap
Groundtruth
BedMachine

a)

0

20

40

60

80

100

R
o

u
g

h
n

e
s
s
 (

m
)

−1550 −1500 −1450 −1400 −1350 −1300

Polar Stereographic X (km)

DeepBedMap
Groundtruth
BedMachine

b)

Figure 1.2: Comparing RES bed elevation measurements against di�erent bed prod-
ucts along transect lines in Antarctica. Top panel is over Thwaites Glacier, showing
super resolution DeepBedMap_DEM (purple; Leong & Horgan, 2020b), Ground-
truth Operation IceBridge RES points (orange; Shi et al., 2010) and BedMachine
Antarctica (green; Morlighem et al., 2019). Bottom panel is over Princess Elizabeth
Land, showing ICECAP2 RES transects (black), BEDMAP2 (blue), BedMachine
(red), and ICECAP2 DEM (green) (Fig. 6 from Cui et al., 2020, licensed under
CC-BY-4.0).
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Figure 1.3: A universal glacier slip law spanning the spectrum of form drag and
skin drag regimes. Figure is from Minchew and Joughin (2020). Reprinted with
permission from AAAS.

Regardless of the nature of subglacial topography, water remains important in
determining ice �ow. Water beneath an ice sheet is dynamic, and has been shown
to a�ect the speed of mountain glaciers (e.g. Iken et al., 1983), and that of outlet
glaciers in Greenland where surface water has the ability to access the bed via
moulins (Zwally, 2002). While no active moulins are known to be present in the
interior regions of West and East Antarctica (Dirscherl et al., 2020; Stokes et al.,
2019), there is still a considerable volume of water trapped in subglacial lakes (Wright
& Siegert, 2012). Many of these subglacial lakes are active and have drained and
�lled over the satellite era (Fig. 1.4, Siegfried & Fricker, 2018; B. E. Smith et al.,
2009), including some that were associated with a temporary speed-ups of ice �ow
(e.g. Bell et al., 2007; Scambos et al., 2011; Stearns et al., 2008; Wright et al., 2014).

The subglacial hydrological system of Antarctica is very dynamic, and e�ort
is needed to model and account for how subglacial water weakens subglacial till
and induce faster sliding. The Subglacial Hydrology Model Intercomparison Project
(SHMIP; De Fleurian et al., 2018) subjected a land terminating ice sheet to di�erent
subglacial hydrological schemes and forcing cycles (steady state, diurnal and sea-
sonal), looking at how e�ective pressure (ice overburden pressure minus subglacial
water pressure) and discharge volumes were a�ected. SHMIP found that complex
2-D models which include the physics of drainage systems were needed to model
dynamic short term (e.g. diurnal) cycles, while simpler 0-D or 1-D models may
su�ce for less dynamic scenarios like those in steady state or happening on annual
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Figure 1.4: Subglacial lakes over Antarctica as detected by satellite and airborne
sensors. Active subglacial lakes as detected by di�erent satellite sensors are repre-
sented by di�erent coloured blobs (blue, light blue and purple). Radio-echo sounding
(RES) detected subglacial lakes are shown as red blobs. Figure is from Siegfried and
Fricker (2018).

timescales. In Chapter 4, our �ndings of rapid, sub-annual transmission of sub-
glacial water across a connected subglacial lake system suggests that 2-D models
are therefore needed. Our understanding of subglacial hydrology is still inadequate
as mentioned in recent model intercomparisons (ISMIP6; Seroussi et al., 2020),
and research will need to focus on coupling subglacial hydrology models with ice
sheet models (e.g. Smith-Johnsen et al., 2020; Sommers et al., 2018) to examine the
in�uence of distributed vs channelized �ow on ice dynamics.

One takeaway from this thesis is the need to e�ciently integrate data and meth-
ods from various �elds working on Antarctic glaciology. In order to inform our
understanding of future ice sheet behaviour for sea level rise projections, it is crucial
to make full and e�cient use of the growing volume of remote sensing and �eld
collected data in our ice sheet models. The novel machine learning and automated
remote sensing methods we introduce present an exciting path forward over exist-
ing classical methods, by enabling for the e�cient ingestion and merging of diverse
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datasets. The bed of Antarctica may remain out of reach for the most part, but
one can hope that the increasing synergy between data collectors and modellers will
continue to improve our understanding of the Antarctic bed.
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Chapter 2

DeepBedMap: a deep neural network
for resolving the bed topography of
Antarctica

Abstract

To resolve the bed elevation of Antarctica, we present DeepBedMap � a novel ma-
chine learning method that can produce Antarctic bed topography with adequate
surface roughness from multiple remote sensing data inputs. The super-resolution
deep convolutional neural network model is trained on scattered regions in Antarc-
tica where high-resolution (250m) ground-truth bed elevation grids are available.
This model is then used to generate high-resolution bed topography in less surveyed
areas. DeepBedMap improves on previous interpolation methods by not restrict-
ing itself to a low-spatial-resolution (1000m) BEDMAP2 raster image as its prior
image. It takes in additional high-spatial-resolution datasets, such as ice surface
elevation, velocity and snow accumulation, to better inform the bed topography
even in the absence of ice thickness data from direct ice-penetrating-radar sur-
veys. The DeepBedMap model is based on an adapted architecture of the Enhanced
Super-Resolution Generative Adversarial Network, chosen to minimize per-pixel el-
evation errors while producing realistic topography. The �nal product is a four-
times-upsampled (250m) bed elevation model of Antarctica that can be used by
glaciologists interested in the subglacial terrain and by ice sheet modellers wanting
to run catchment- or continent-scale ice sheet model simulations. We show that
DeepBedMap o�ers a rougher topographic pro�le compared to the standard bicu-
bically interpolated BEDMAP2 and BedMachine Antarctica and envision it being
used where a high-resolution bed elevation model is required.

2.1 Introduction

The bed of the Antarctic ice sheet is one of the most challenging surfaces on Earth
to map due to the thick layer of ice cover. Knowledge of bed elevation is however
essential for estimating the volume of ice currently stored in the ice sheets and
for input to the numerical models that are used to estimate the contribution ice
sheets are likely to make to sea level in the coming century. The Antarctic ice
sheet is estimated to hold a sea level equivalent (SLE) of 57.9± 0.9m (Morlighem
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et al., 2019). Between 2012 and 2017, the Antarctic ice sheet was losing mass at an
average rate of 219± 43 Gt yr−1 (0.61± 0.12 mm yr−1 SLE), with most of the ice loss
attributed to the acceleration, retreat and rapid thinning of major West Antarctic Ice
Sheet outlet glaciers (IMBIE, 2018). Bed elevation exerts additional controls on ice
�ow by routing subglacial water and providing frictional resistance to �ow (Siegert
et al., 2004). Bed roughness, especially at short wavelengths, exerts a frictional force
against the �ow of ice, making it an important in�uence on ice velocity (Bingham
et al., 2017; Falcini et al., 2018). The importance of bed elevation has led to major
e�orts to compile bed elevation models of Antarctica, notably with the BEDMAP1
(Lythe & Vaughan, 2001) and BEDMAP2 (Fretwell et al., 2013) products. A need
for a higher-spatial-resolution digital elevation model (DEM) is also apparent, as ice
sheet models move to using sub-kilometre grids in order to quantify glacier ice �ow
dynamics more accurately (Graham et al., 2017; Le Brocq et al., 2010). Finer grids
are especially important at the ice sheet's grounding zone on which adaptive mesh
re�nement schemes have focused (e.g. Cornford et al., 2016), and attention to the
bed roughness component is imperative for proper modelling of fast-�owing outlet
glaciers (Durand et al., 2011; Nias et al., 2016). Here we address the challenge of
producing a high-resolution DEM while preserving a realistic representation of the
bed terrain's roughness.

Estimating bed elevation directly from geophysical observations primarily uses
ice-penetrating-radar methods (e.g. Robin et al., 1970). Airborne radar methods
enable reliable along-track estimates with low uncertainty (around the 1% level)
introduced by imperfect knowledge of the �rn and ice velocity structure, with some
potential uncertainty introduced by picking the bed return. Radar-derived bed
estimates remain limited in their geographic coverage (Fretwell et al., 2013) and are
typically anisotropic in their coverage, with higher spatial sampling in the along-
track direction than between tracks.

To overcome these limitations, indirect methods of estimating bed elevation have
been developed, and these include inverse methods and spatial statistical methods.
Inverse methods use surface observations combined with glaciological-process knowl-
edge to determine ice thickness (e.g. van Pelt et al., 2013). A non-linear relationship
exists between the thickness of glaciers, ice streams and ice sheets and how they �ow
(Raymond & Gudmundsson, 2005), meaning one can theoretically use a well-resolved
surface to infer bed properties (e.g. Farinotti et al., 2009). Using surface observation
inputs, such as the glacier outline, surface digital elevation models, surface mass bal-
ance, surface rate of elevation change, and surface ice �ow velocity, various models
have been tested in the Ice Thickness Models Intercomparison eXperiment (ITMIX;
Farinotti et al., 2017) to determine ice thickness (surface elevation minus bed ele-
vation). While signi�cant inter-model uncertainties do exist, they can be mitigated
by combining several models in an ensemble to provide a better consensus estimate
(Farinotti et al., 2019). On a larger scale, the inverse technique has also been ap-
plied to the Greenland (Morlighem et al., 2017) and Antarctic (Morlighem et al.,
2019) ice sheets, speci�cally using the mass conservation approach (Morlighem et
al., 2011). Spatial statistical methods seek to derive a higher-spatial-resolution bed
by applying the topographical likeness of bed features known to great detail in one
area to other regions. For example, the conditional simulation method applied by
Go� et al. (2014) is able to resolve both �ne-scale roughness and channelized mor-
phology over the complex topography of Thwaites Glacier and make use of the fact
that roughness statistics are di�erent between highland and lowland areas. Graham

26



CHAPTER 2. DEEPBEDMAP 2.2. RELATED WORK

et al. (2017) uses a two-step approach to generate their synthetic high-resolution
grid, with the high-frequency roughness component coming from the ICECAP and
BEDMAP1 compilation radar point data and the low-frequency component coming
from BEDMAP2. Neither method is perfect, and we see all of the above methods
as complementary.

We present a deep-neural-network method that is trained on direct ice-penetrating-
radar observations over Antarctica and one which has features from both the indirect
inverse modelling and spatial statistical methodologies. An arti�cial neural network,
loosely based on biological neural networks, is a system made up of neurons. Each
neuron comprises a simple mathematical function that takes an input to produce
an output value, and neural networks work by combining many of these neurons
together. The term deep neural network is used when there is not a direct function
mapping between the input data and �nal output but two or more layers that are
connected to one another (see LeCun et al., 2015, for a review). They are trained us-
ing backpropagation, a procedure whereby the weights or parameters of the neurons'
connections are adjusted so as to minimize the error between the ground truth and
output of the neural network (Rumelhart et al., 1986). Similar work has been done
before using arti�cial neural networks for estimating bed topography(e.g. Clarke et
al., 2009; Monnier & Zhu, 2018), but to our knowledge, no-one so far in the glacio-
logical community has attempted to use convolutional neural networks that work in
a more spatially aware, 2-dimensional setting. Convolutional neural networks di�er
from standard arti�cial neural networks in that they use kernels or �lters in place
of regular neurons (again, see LeCun et al., 2015, for a review). The techniques we
employ are prevalent in the computer vision community, having existed since the
1980s (Fukushima & Miyake, 1982; LeCun et al., 1989) and are commonly used in
visual pattern recognition tasks (e.g. Krizhevsky et al., 2012; Lecun et al., 1998).
Our main contributions are twofold: we (1) present a high-resolution (250m) bed
elevation map of Antarctica that goes beyond the 1 km resolution of BEDMAP2
(Fretwell et al., 2013) and (2) design a deep convolutional neural network to inte-
grate as many remote sensing datasets as possible which are relevant to estimating
Antarctica's bed topography. We name the neural network �DeepBedMap�, and the
resulting digital elevation model (DEM) product �DeepBedMap_DEM�.

2.2 Related Work

2.2.1 Super-Resolution

Super resolution involves the processing of a low-resolution raster image into a
higher-resolution one (R. Tsai & Huang, 1984). The idea is similar to the work on en-
hancing regular photographs to look crisper. The problem is especially ill-posed be-
cause a speci�c low-resolution input can correspond to many possible high-resolution
outputs, resulting in the development of several di�erent algorithms aimed at solv-
ing this challenge (see Nasrollahi & Moeslund, 2014, for a review). One promising
approach is to use deep neural networks (LeCun et al., 2015) to learn an end-to-end
mapping between the low- and high-resolution images, a method coined the Super-
Resolution Convolutional Neural Network (SRCNN; Dong et al., 2014). Since the
development of SRCNN, multiple advances have been made to improve the percep-
tual quality of super-resolution neural networks (see W. Yang et al., 2019, for a
review). One way is to use a better loss function, also known as a cost function. A
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loss function is a mathematical function that represents the error between the out-
put of the neural network and the ground truth (see also Appendix A). By having
an adversarial component in its loss function, the Super-Resolution Generative Ad-
versarial Network (SRGAN; Ledig et al., 2017) manages to produce super-resolution
images with �ner perceptual details. A generative adversarial network (Goodfellow
et al., 2014) consists of two neural networks, a generator and a discriminator. A
common analogy used is to treat the generator as an artist that produces imitation
paintings and the discriminator as an art critic that determines the authenticity of
the paintings. The artist wants to fool the critic into believing its paintings are real,
while the critic tries to identify problems with the painting. Over time, the artist or
generator model learns to improve itself based on the critic's judgement, producing
authentic-looking paintings with high perceptual quality. Perceptual quality is the
extent to which an image looks like a valid natural image, usually as judged by a
human. In this case, perceptual quality is quanti�ed mathematically by the dis-
criminator or critic taking into account high-level features of an image like contrast,
texture, etc. Another way to improve performance is by recon�guring the neural
network's architecture, wherein the layout or building blocks of the neural network
are changed. By removing unnecessary model components and adding residual con-
nections (He et al., 2015), an enhanced deep super-resolution network (EDSR; Lim
et al., 2017) features a deeper neural network model that has better performance
than older models. For the DeepBedMap model, we choose to adapt the Enhanced
Super-Resolution Generative Adversarial Network (ESRGAN; X. Wang et al., 2019)
which brings together the ideas mentioned above. This approach produces state-
of-the-art perceptual quality and won the 2018 Perceptual Image Restoration and
Manipulation Challenge on Super Resolution (Third Region; Blau et al., 2018).

2.2.2 Network Conditioning

Network conditioning means having a neural network process one source of infor-
mation in the context of other sources (Dumoulin et al., 2018). In a geographic
context, conditioning is akin to using not just one layer but also other relevant lay-
ers with meaningful links to provide additional information for the task at hand.
Many ways exist to insert extra conditional information into a neural network, such
as concatenation-based conditioning, conditional biasing, conditional scaling and
conditional a�ne transformations (Dumoulin et al., 2018). We choose to use the
concatenation-based conditioning approach, whereby all of the individual raster im-
ages are concatenated together channel-wise, much like the individual bands of a
multispectral satellite image. This was deemed the most appropriate conditioning
method as all the contextual remote sensing datasets are raster grid images and also
because this approach aligns with related work in the remote sensing �eld.

An example similar to this DEM super-resolution problem is the classic problem
of pan-sharpening, whereby a blurry low-resolution multispectral image conditioned
with a high-resolution panchromatic image can be turned into a high-resolution
multispectral image. There is ongoing research into the use of deep convolutional
neural networks for pan-sharpening (Masi et al., 2016; Scarpa et al., 2018), some-
times with the incorporation of speci�c domain knowledge (J. Yang et al., 2017),
all of which show promising improvements over classical image processing methods.
More recently, generative adversarial networks (Goodfellow et al., 2014) have been
used in the conditional sense for general image-to-image translation tasks (e.g. Isola
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et al., 2016; Park et al., 2019), and also for producing more realistic pan-sharpened
satellite images (Liu et al., 2018). Our DeepBedMap model builds upon these ideas
and other related DEM super-resolution work (Chen et al., 2016; Xu et al., 2015),
while incorporating extra conditional information speci�c to the cryospheric domain
for resolving the bed elevation of Antarctica.

2.3 Data and Methods

2.3.1 Data Preparation

Our convolutional neural network model works on 2-D images, so we ensure all the
datasets are in a suitable raster grid format. Ground-truth bed elevation points
picked from radar surveys (see Table 2.1) are �rst compiled together onto a common
Antarctic stereographic projection (EPSG:3031) using the WGS84 datum, reproject-
ing where necessary. These points are then gridded onto a 250m spatial resolution
(pixel-node-registered) grid. We preprocess the points �rst using Generic Mapping
Tools v6.0 (GMT6; Wessel et al., 2019), computing the median elevation for each
pixel block in a regular grid. The preprocessed points are then run through an
adjustable-tension continuous-curvature spline function with a tension factor set to
0.35 to produce a digital elevation model grid. This grid is further post-processed to
mask out pixels that are more than 3 pixels (750m) from the nearest ground-truth
point.

Table 2.1: High-resolution ground-truth datasets from ice-penetrating-radar surveys
(collectively labelled as y) used to train the DeepBedMap model. Training site
locations can be seen in Fig. 2.2.

Location Citation

Pine Island Glacier Bingham et al. (2017)
Wilkes Subglacial Basin Jordan et al. (2010)
Carlson Inlet King (2011)
Rutford Ice Stream King et al. (2016)
Various locations in Antarctica Shi et al. (2010)

To create the training dataset, we use a sliding window to obtain square tiles
cropped from the high-resolution (250m) ground-truth bed elevation grids, with
each tile required to be completely �lled with data (i.e. no Not a Number � NaN
� values). Besides these ground-truth bed elevation tiles, we also obtain other tiled
inputs (see Table 2.2) corresponding to the same spatial bounding box area. To
reduce border edge artefacts in the prediction, the neural network model's input
convolutional layers (see Fig. 2.1) use no padding (also known as �valid� padding)
when performing the initial convolution operation. This means that the model
input grids (x, w1, w2, w3) have to cover a larger spatial area than the ground-truth
grids (y). More speci�cally, the model inputs cover an area of 11 km× 11 km (e.g.
11 pixels× 11 pixels for BEDMAP2), while the ground-truth grids cover an area of
9 km× 9 km (36 pixels× 36 pixels). As the pixels of the ground-truth grids may not
align perfectly with those of the model's input grids, we use bilinear interpolation
to ensure that all the input grids cover the same spatial bounds as those of the
reference ground-truth tiles. The general locations of these training tiles are shown
in orange in Fig. 2.2.
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2.3.2 Model Design
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Figure 2.1: DeepBedMap generator model architecture composed of three modules.
The input module processes each of the four inputs (BEDMAP2, Fretwell et al.,
2013; REMA, Howat et al., 2019; MEaSUREs Ice Velocity, Mouginot et al., 2019b;
snow accumulation, Arthern et al., 2006; see also Table 2.2) into a consistent tensor.
The core module processes the rich information contained within the concatenated
inputs. The upsampling module scales the tensor up by 4 times and does some extra
processing to produce the output DeepBedMap_DEM.

Our DeepBedMap model is a generative adversarial network (Goodfellow et al.,
2014) composed of two convolutional neural network models, a generator Gθ that
produces the bed elevation prediction and a discriminator Dη critic that will judge
the quality of this output. The two models are trained to compete against each other,
with the generator trying to produce images that are misclassi�ed as real by the
discriminator and the discriminator learning to spot problems with the generator's
prediction in relation to the ground truth. Following this is a mathematical de�nition
of the neural network models and their architecture.

The objective of the main super-resolution generator model Gθ is to produce a
high-resolution (250m) grid of Antarctica's bed elevation ŷ given a low-resolution
(1000m) BEDMAP2 (Fretwell et al., 2013) image x. However, the information
contained in BEDMAP2 is insu�cient for this regular super-resolution task, so we
provide the neural network with more context through network conditioning (see
Sect. 2.2.2). Speci�cally, the model is conditioned at the input block stage with three
raster grids (see Table 2.2): (1) ice surface elevation w1, (2) ice surface velocity w2

and (3) snow accumulation w3. This can be formulated as follows:

ŷ = Gθ(x,w
1, w2, w3), (2.1)

where Gθ is the generator (see Fig. 2.1) that produces high-resolution image
candidates ŷ. For brevity in the following equations, we simplify Eq. (2.1) to hide
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conditional inputs w1, w2 and w3, so that all input images are represented using x. To
train the generative adversarial network, we update the parameters of the generator θ
and discriminator η as follows:

θ̂ = arg min
θ

1

N

N∑
n=1

LG(ŷn, yn), (2.2)

η̂ = arg min
η

1

N

N∑
n=1

LD(ŷn, yn), (2.3)

where new estimates of the neural network parameters θ̂ and η̂ are produced
by minimizing the total loss functions LG and LD, respectively, for the genera-
tor G and discriminator D and ŷn and yn are the set of predicted and ground-truth
high-resolution images over N training samples. The generator network's loss LG

is a custom perceptual loss function with four weighted components � content, ad-
versarial, topographic and structural loss. The discriminator network's loss LD is
designed to maximize the likelihood that predicted images are classi�ed as fake (0)
and ground-truth images are classi�ed as real (1). Details of these loss functions are
described in Appendix A.

Noting that the objective of the Generator G is opposite to that of the Discrimi-
nator D, we formulate the adversarial min-max problem following Goodfellow et al.
(2014) as so:

min
G

max
D

V (G,D) = Ey∼Pdata(y)[lnD(y)]

+ Ex∼PG(x)
[ln(1−D(G(x)))],

(2.4)

where for the discriminator D, we maximize the expectation E or the likelihood
that the probability distribution of the discriminator's output �ts D(y) = 1 when
y ∼ Pdata(y); i.e. we want the discriminator to classify the high-resolution image as
real (1) when the image y is in the distribution of the ground-truth images Pdata(y).
For the generator G, we minimize the likelihood that the discriminator classi�es
the generator output D(G(x)) = 0 when x ∼ PG(x); i.e. we do not want the
discriminator to classify the super-resolution image as fake (0) when the inputs x
are in the distribution of generated images PG(x). The overall goal of the entire
network is to make the distribution of generated images G(x) as similar as possible
to the ground truth y through optimizing the value function V .

DeepBedMap's model architecture is adapted from the Enhanced Super-Resolution
Generative Adversarial Network (ESRGAN; X. Wang et al., 2019). The generator
model G (see Fig. 2.1) consists of an input, core and upsampling module. The in-
put module is made up of four sub-networks, each one composed of a convolutional
neural network that processes the input image into a consistent 9× 9 shaped ten-
sor. Note that the MEaSUREs Ice Velocity (Mouginot et al., 2019b) input has two
channels, one each for the x and y velocity components. All the processed inputs
are then concatenated together channel-wise before being fed into the core module.
The core module is based on the ESRGAN architecture with 12 residual-in-residual
dense blocks (see X. Wang et al., 2019, for details), saddled in between a pre-residual
and post-residual convolutional layer. A skip connection runs from the pre-residual
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Figure 2.2: DeepBedMap_DEM over the entire Antarctic continent. Plotted on
an Antarctic stereographic projection (EPSG:3031) with elevation referenced to the
WGS84 datum. Grounding line is plotted as thin black line. Purple box shows Pine
Island Glacier extent used in Fig. 2.3. Yellow box shows Thwaites Glacier extent
used in Fig. 2.5. Orange areas show locations of training tiles (see Table 2.1).

layer's output to the post-residual layer's output before being fed into the upsam-
pling module. This skip connection (He et al., 2016) helps with the neural network
training process by allowing the model to also consider minimally processed infor-
mation from the input module, instead of solely relying on derived information from
the residual-block layers when performing the upsampling. The upsampling module
is composed of two upsampling blocks, speci�cally a nearest-neighbour upsampling
followed by a convolutional layer and leaky recti�ed linear unit (LeakyReLU; Maas
et al., 2013) activation, which progressively scales the tensors by 2 times each time.
Following this are two deformable convolutional layers (Dai et al., 2017) which pro-
duce the �nal-output super-resolution DeepBedMap_DEM. This generator model
is trained to gradually improve its prediction by comparing the predicted output
with ground-truth images in the training regions (see Fig. 2.2), using the total loss
function de�ned in Eq. (A.9).

The main di�erences between the DeepBedMap generator model and ESRGAN
are the custom input block at the beginning and the deformable convolutional layers
at the end. The custom input block is designed to handle the prior low-resolution
BEDMAP2 image and conditional inputs (see Table 2.2). Deformable convolution
was chosen in place of the standard convolution so as to enhance the model's pre-
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dictive capability by having it learn dense spatial transformations.
Besides the generator model, there is a separate adversarial discriminator model

D (not shown in the paper). Again, we follow ESRGAN's (X. Wang et al., 2019) lead
by implementing the adversarial discriminator network in the style of the Visual Ge-
ometry Group convolutional neural network model (VGG; Simonyan & Zisserman,
2014). The discriminator model consists of 10 blocks made up of a convolutional,
batch normalization (Io�e & Szegedy, 2015) and LeakyReLU (Maas et al., 2013)
layer, followed by two fully connected layers comprised of 100neurons and 1 neuron,
respectively. For numerical stability, we omit the �nal fully connected layer's sig-
moid activation function from the discriminator model's construction, integrating it
instead into the binary cross-entropy loss functions at Eqs. (A.2) and (A.3) using
the log-sum-exp function. The output of this discriminator model is a value ranging
from 0 (fake) to 1 (real) that scores the generator model's output image. This score
is used by both the discriminator and generator in the training process and helps
to push the predictions towards more realistic bed elevations. More details of the
neural network training setup can be found in Appendix B.

2.4 Results

2.4.1 DeepBedMap_DEM Topography

Here we present the output digital elevation model (DEM) of the super-resolution
DeepBedMap neural network model and compare it with bed topography produced
by other methods. The resulting DEM has a 250m spatial resolution and there-
fore a four-times upsampled bed elevation grid product of BEDMAP2 (Fretwell et
al., 2013). In Fig. 2.2, we show that the full Antarctic-wide DeepBedMap_DEM
manages to capture general topographical features across the whole continent. The
model is only valid for grounded-ice regions, but we have produced predictions ex-
tending outside of the grounding-zone area (including ice shelf cavities) using the
same bed elevation, surface elevation, ice velocity and snow accumulation inputs
where such data are available up to the ice shelf front. We emphasize that the bed el-
evation under the ice shelves has not been super resolved properly and is not intended
for ice sheet modelling use. Users are encouraged to cut the DeepBedMap_DEM
using their preferred grounding line (e.g. Bindschadler et al., 2011; Mouginot et
al., 2017; Rignot et al., 2011) and replace the under-ice-shelf areas with another
bathymetry grid product (e.g. GEBCO Bathymetric Compilation Group 2020, 2020).
The transition from the DeepBedMap_DEM to the bathymetry product across the
grounding zone can then be smoothed using inverse distance weighting or an alter-
native interpolation method.

We now highlight some qualitative observations of DeepBedMap_DEM's bed
topography beneath Pine Island Glacier (Figure 2.3) and other parts of Antarc-
tica (Figure 2.4). DeepBedMap_DEM shows a terrain with realistic topograph-
ical features, having �ne-scale bumps and troughs that makes it rougher than
that of BEDMAP2 (Fretwell et al., 2013) and BedMachine Antarctica (Morlighem,
2019) while still preserving the general topography of the area (Figure 2.3). Over
steep topographical areas such as the Transantarctic Mountains (Figure 2.4a, 2.4h),
DeepBedMap produced speckle (S) texture patterns. Along fast �owing ice streams
and glaciers (Figure 2.4b, 2.4c, 2.4d, 2.4e, 2.4f, 2.4g, 2.4h), we can see ridges (R)
aligned parallel to the sides of the valley, i.e. along �ow. In some cases, the ridges
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Figure 2.3: Comparison of interpolated bed elevation grid products over Pine Island
Glacier (see extent in Figure 2.2). a DeepBedMap (ours) at 250 m resolution. b
BEDMAP2 (Fretwell et al., 2013), originally 1000 m, bicubic interpolated to 250
m. c Elevation Di�erence between DeepBedMap and BEDMAP2. d BedMachine
Antarctica (Morlighem, 2019), originally 500 m, bicubic interpolated to 250 m.
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Figure 2.4: Close-up views of DeepBedMap_DEM around Antarctica. Panels (a�
c) show Siple Coast locations. Panels (d�f) show Weddell Sea region locations.
Panels (g�i) show East Antarctica locations. Features of interest are annotated in
black text against a white background: ridges R, speckle patterns S, terraces T,
wave patterns W.
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are also oriented perpendicular to the �ow direction such at Whillans Ice Stream
(Figure 2.4b), Bindschadler Ice Stream (Figure 2.4c) and Totten Glacier (Figure
2.4g), resulting in intersecting ridges that creates a box-like, honeycomb structure.
Over relatively �at regions in both West and East Antarctica (e.g. Figure 2.4g),
there are some hummocky, wave-like (W) patterns occasionally represented in the
terrain. Terrace (T) features can occasionally be found winding along the side of
hills such as at the Gamburtsev Subglacial Mountains (Figure 2.4i).

2.4.2 Surface Roughness

We compare the roughness of DeepBedMap_DEM vs. BedMachine Antarctica with
ground-truth grids from processed Operation IceBridge data (Shi et al., 2010) us-
ing standard deviation SD as a simple measure of roughness (Rippin et al., 2014).
We calculate the surface roughness for a single 250m pixel from the SD of eleva-
tion values over a square 1250m× 1250m area (i.e. 5 pixels× 5 pixels) surround-
ing the central pixel. Focusing on Thwaites Glacier, the spatial 2-D view of the
DeepBedMap_DEM (Fig. 2.5a) shows a range of typical topographic features such
as hills and canyons. The calculated 2-D roughnesses for both DeepBedMap_DEM
(Fig. 2.5b) and the Ground truth (Fig. 2.5c) lie in a similar range from 0 to 400m,
whereas the roughness of BedMachine Antarctica (Fig. 2.5d) is mostly in the 0-
to-200m range (hence the di�erent colour scale). Also, the roughness pattern for
both DeepBedMap_DEM and the ground truth has a more distributed cluster pat-
tern made up of little pockets (especially towards the coastal region on the left;
see Fig. 2.5b and c), whereas the BedMachine Antarctica roughness pattern shows
larger cluster pockets in isolated regions (see Fig. 2.5d).

Taking a 1-D transect over the 250m resolution DeepBedMap_DEM, BedMa-
chine Antarctica and ground-truth grids, we illustrate the di�erences in bed topogra-
phy and roughness from the coast towards the inland area of Thwaites Glacier with
a �ight trace from Operation IceBridge (see Fig. 2.6). For better comparison, we
have calculated the Operation IceBridge ground-truth bed elevation and roughness
values from a resampled 250m grid instead of using its native along-track resolution.
All three elevation pro�les are shown to follow the same general trend from the rela-
tively rough coastal region (Fig. 2.6a from −1550 to −1500 km on the x scale), along
the retrograde slope (Fig. 2.6a from −1500 to −1450 km on the x scale) and into
the interior region. DeepBedMap_DEM features a relatively noisy elevation pro�le
with multiple �ne-scale (< 10 km) bumps and troughs similar to the ground truth,
while BedMachine Antarctica shows a smoother pro�le that is almost a moving av-
erage of the ground-truth elevation (Fig. 2.6a). Looking at the roughness statistic
(Fig. 2.6b), both the DeepBedMap_DEM and Operation IceBridge ground-truth
grids have a mean SD of about 40m, whereas BedMachine Antarctica has a mean
of about 10m and rarely exceeds a SD value of 20m along the transect.
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Figure 2.5: Spatial 2-D view of grids over Thwaites Glacier, West Antarctica. Plot-
ted on an Antarctic stereographic projection (EPSG:3031) with elevation and SD
values in metres referenced to the WGS84 datum. (a) DeepBedMap digital elevation
model. (b) 2-D roughness from the DeepBedMap_DEM grid. (c) 2-D roughness
from interpolated Operation IceBridge grid. (d) 2-D roughness from bicubically in-
terpolated BedMachine Antarctica grid. Orange points in (a) correspond to transect
sampling locations used in Fig. 2.6.
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Machine Antarctica.
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2.5 Discussion

2.5.1 Bed Features

In Sect. 2.4.1, we show that the DeepBedMap model has produced a high-resolution
(250m) result (see Fig. 2.3) that can capture a detailed picture of the underlying bed
topography. The �ne-scale bumps and troughs are the result of the DeepBedMap
generator model learning to produce features that are similar to those found in the
high-resolution ground-truth datasets it was trained on. However, there are also
artefacts produced by the model. For example, the winding terrace (T, Fig. 2.4)
features are hard to explain, and though they resemble eskers (Drews et al., 2017),
their placement along the sides of hills does not support this view. Similarly, we are
not sure why speckle (S, Fig. 2.4) texture patterns are found over steep mountains,
but the lack of high-resolution training datasets likely leads the model to perform
worse over these high-gradient areas.

Another issue is that DeepBedMap will often pick up details from the high-
resolution ice surface elevation model (Howat et al., 2019) input dataset, which
may not be representative of the true bed topography. For example, the ridges (R,
Fig. 2.4) found along fast-�owing ice streams and glaciers are likely to be the imprints
of crevasses or �ow stripes (Glasser & Gudmundsson, 2012) observable from the sur-
face. An alternative explanation is that the ridges, especially the honeycomb-shaped
ones, are rhombohedral moraine deposits formed by soft sediment squeezed up into
basal crevasses that are sometimes found at stagnant surging glaciers (Dowdeswell,
Canals, et al., 2016; Dowdeswell, Solheim, et al., 2016; Solheim & P�rman, 1985).
We favour the �rst interpretation as the positions of these bed features coincide with
the surface features and also because these ridges are more likely to be eroded away
in these fast-�owing ice stream areas.

The hummocky wave-like (W) patterns we observe over the relatively �at and
slower-�owing areas are likely to result from surface megadune structures (Scambos,
2014). Alternatively, they may be ribbed or Rogen moraine features that are formed
in an orientation transverse to the ice �ow direction (Hättestrand, 1997; Hättestrand
& Kleman, 1999). While any one of these two explanations may be valid in di�erent
regions of Antarctica, we lean towards the conservative interpretation that these fea-
tures are the result of the DeepBedMap model over�tting to the ice surface elevation
data.

2.5.2 Roughness

In Sect. 2.4.2, we quantitatively show that a well-trained DeepBedMap neural net-
work model can produce high roughness values more comparable to the ground
truth than those of BedMachine Antarctica. While the mass conservation technique
used by BedMachine Antarctica (Morlighem et al., 2019) improves upon ordinary
interpolation techniques such as bicubic interpolation and kriging, its results are
still inherently smooth by nature. The ground-truth grids show that rough areas
do exist on a �ne scale, and so the high-resolution models we produce should re�ect
that.

DeepBedMap_DEM manages to capture much of the rough topography found in
the Operation IceBridge ground-truth data, especially near the coast (see Fig. 2.6a,
from −1550 to −1500 km on the x scale) where the terrain tends to be rougher.
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Along the retrograde slope (see Fig. 2.6a, from −1500 to −1450 km on the x scale),
several of the �ne-scale (< 10 km) bumps and troughs in DeepBedMap_DEM can
be seen to correlate well in position with the ground truth. In contrast, the cubically
interpolated BedMachine Antarctica product lacks such �ne-scale (< 10 km) bumps
and troughs, appearing as a relatively smooth terrain over much of the transect.
Previous studies that estimated basal shear stress over Thwaites Glacier have found
a band of strong bed extending about 80�100 km from the grounding line, with
pockets of weak bed interspersed between bands of strong bed further upstream
(Joughin et al., 2009; Sergienko & Hindmarsh, 2013), a pattern that is broadly
consistent with the DeepBedMap_DEM roughness results (see Fig. 2.5b).

In general, DeepBedMap_DEM produces a topography that is rougher, with
SD values more in line with those observed in the ground truth (see Fig. 2.6b).
The roughness values for BedMachine Antarctica are consistently lower throughout
the transect, a consequence of the mass conservation technique using regularization
parameters that yield smooth results. We note that the DeepBedMap_DEM does
appear rougher than the ground truth in certain areas. It is possible to tweak the
training regime to incorporate roughness (or any statistical measure) into the loss
function (see Appendix A) to yield the desired surface, and this will be explored
in future work (see Sect. 2.5.4). Recent studies have stressed the importance of
form drag (basal drag due to bed topography) over skin drag (or basal friction)
on the basal traction of Pine Island Glacier (Bingham et al., 2017; Kyrke-Smith et
al., 2018), and the DeepBedMap super-resolution work here shows strong potential
in meeting that demand as a high-resolution bed topography dataset for ice sheet
modelling studies.

In terms of bed roughness anisotropy, DeepBedMap is able to capture aspects
of it from the ground-truth grids by combining (1) ice �ow direction via the ice
velocity grid's x and y components (Mouginot et al., 2019b), (2) ice surface aspect
via the ice surface elevation grid (Howat et al., 2019), and (3) the low-resolution
bed elevation input (Fretwell et al., 2013). There are therefore inherent assumptions
that the topography of the current bed is associated with the current ice �ow di-
rection, surface aspect and existing low-resolution BEDMAP2 anisotropy. Provided
that the direction of this surface velocity and aspect is the same as bed roughness
anisotropy, as demonstrated in Holschuh et al. (2020), the neural network will be
able to recognize it and perform accordingly. However, if the ice �ow direction and
surface aspect is not associated with bed anisotropy, then this assumption will be
violated and the model will not perform well.

2.5.3 Limitations

The DeepBedMap model is trained only on a small fraction of the area of Antarctica,
at less than 0.1% of the grounded-ice regions (excluding ice shelves and islands).
This is because the pixel-based convolutional neural network cannot be trained on
sparse survey point measurements, nor is it able to constrain itself with track-based
radar data. As the along-track resolution of radar bed picks are much smaller than
250m pixels, it is also not easy to preserve roughness from radar unless smaller
pixels are used. The topography generated by the model is sensitive to the accuracy
of its data inputs (see Tables 2.1 and 2.2), and though this is a problem faced
by other inverse methods, neural network models like the one presented can be
particularly biased towards the training dataset. Speci�cally, the DeepBedMap
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model focuses on resolving short-wavelength features important for sub-kilometre
roughness, compared to BedMachine Antarctica (Morlighem et al., 2019) which
recovers large-scale features like ridges and valleys well.

An inherent assumption in this methodology is that the training datasets have
sampled the variable bed lithology of Antarctica (Cox et al., 2018) su�ciently. This
is unlikely to be true, introducing uncertainty into the result as di�erent lithologies
may cause the same macroscale bed landscapes to result in a range of surface fea-
tures. In particular, the experimental model's topography is likely skewed towards
the distribution of the training regions that tend to reside in coastal regions, espe-
cially over ice streams in West Antarctica (see Fig. 2.2). While bed lithology could
be used as an input to inform the DeepBedMap model's prediction, it is challeng-
ing to �nd a suitable geological map (or geopotential proxy; see e.g. Aitken et al.,
2014; Cox et al., 2018) for the entire Antarctic continent that has a su�ciently high
spatial resolution. Ideally, the lithological map (categorical or qualitative) would
�rst be converted to a hardness map with an appropriate erosion law and history
incorporated (quantitative). This is because it is easier to train generative adver-
sarial networks on quantitative data (e.g. hardness as a scale from 0 to 10) than
on categorical data variables (e.g. sedimentary, igneous or metamorphic rocks); the
latter would require a more elaborate model architecture and loss function design.

2.5.4 Future directions

The way forward for DeepBedMap is to combine quality datasets gathered by ra-
dioglaciology and remote sensing specialists, with new advancements made by the
ice sheet modelling and machine learning community. While care has been taken
to source the best possible datasets (see Tables 2.1 and 2.2), we note that there
are still areas where more data are needed. Radio-echo sounding is the best tool
available to �ll in the data gap, as it provides not only the high-resolution datasets
needed for training but also the background coarse-resolution BEDMAP dataset.
Besides targeting radio-echo-sounding acquisitions over a diverse range of bed and
�ow types, swath reprocessing of old datasets that have that capability (Holschuh et
al., 2020) may be another useful addition to the training set. The super-resolution
DeepBedMap technique can also be applied on bed elevation inputs newer than
BEDMAP2 (Fretwell et al., 2013), such as the 1000m resolution DEM over the Wed-
dell Sea (Jeofry et al., 2017), the 500m resolution BedMachine Antarctica dataset
(Morlighem, 2019) or the upcoming BEDMAP3.

A way to increase the number of high-resolution ground-truth training data
further is to look at formerly glaciated beds. There are a wealth of data around the
margins of Antarctica in the form of swath bathymetry data and also on land in
areas like the former Laurentide ice sheet. The current model architecture does not
support using solely �elevation� as an input, because it also requires ice elevation,
ice surface velocity and snow accumulation data. In order to support using these
paleobeds as training data, one could do one of the following:

1. Have a paleo-ice-sheet model that provides these ice surface observation pa-
rameters. However, continent-scale ice sheet models quite often produce only
kilometre-scale outputs, and there are inherent uncertainties with past ice
sheet reconstructions that may bias the resulting trained neural network model.

2. Modularize the neural network model to support di�erent sets of training data.
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One main branch would be trained like a single-image super-resolution problem
(W. Yang et al., 2019), where we try to map a low-resolution BEDMAP2 tile
to a high-resolution ground-truth image (be it from a contemporary bed, a
paleobed or o�shore bathymetry). The optional conditional branches would
then act to support and improve on the result of this naive super-resolution
method. This design is more complicated to set up and train, but it can
increase the available training data by at least an order of magnitude and lead
to better results.

From a satellite remote sensing perspective, it is important to continue the
work on increasing spatial coverage and measurement precision. Some of the con-
ditional datasets used such as REMA (Howat et al., 2019) and MEaSUREs Ice
Velocity (Mouginot et al., 2019b) contain data gaps which introduce artefacts in the
DeepBedMap_DEM, and those holes need to be patched up for proper continent-
wide prediction. A surface mass balance dataset with sub-kilometre spatial reso-
lution will also prove useful in replacing the snow accumulation dataset (Arthern
et al., 2006) used in this work. As the DeepBedMap model relies on data from
multiple sources collected over di�erent epochs, it has no proper sense of time. Ice
elevation change captured using satellite altimeters such as from CryoSat-2 (Helm
et al., 2014), ICESat-2 (Markus et al., 2017) or the upcoming CRISTAL (Kern et al.,
2020) could be added as an additional input to better account for temporal factors.

The DeepBedMap model's modular design (see Sect. 2.3.2) means the di�erent
modules (see Fig. 2.1) can be improved on and adapted for future-use cases. The
generator model architecture's input module can be modi�ed to handle new datasets
such as the ones suggested above or redesigned to extract a greater amount of
information for better performance. Similarly, the core and upsampling modules
which are based on ESRGAN (X. Wang et al., 2019) can be replaced with newer,
better architectures as the need arises. The discriminator model which is currently
one designed for standard computer vision tasks can also be modi�ed to incorporate
glaciology-speci�c criteria. For example, the generated bed elevation image could
be scrutinized by the discriminator model for valid properties such as topographic
features that are aligned with the ice �ow direction. The redesigned neural network
model can be retrained from scratch or �ne-tuned using the trained weights from
DeepBedMap to further improve the predictive performance. Taken together, these
advances will lead to an even more accurate and higher-resolution bed elevation
model.

2.6 Conclusions

The DeepBedMap convolutional neural network method presents a data-driven ap-
proach to resolve the bed topography of Antarctica using existing data. It is
an improvement beyond simple interpolation techniques, generating high-spatial-
resolution (250m) topography that preserves detail in bed roughness and is adapt-
able for catchment- to continent-scale studies on ice sheets. Unlike other inverse
methods that rely on some explicit parameterization of ice �ow physics, the model
uses deep learning to �nd suitable neural network parameters via an iterative error
minimization approach. This makes the resulting model particularly sensitive to the
training dataset, emphasizing the value of densely spaced bed elevation datasets and
the need for such sampling over a more diverse range of Antarctic substrate types.
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The use of graphical processing units (GPUs) for training and inference allows the
neural network method to scale easily, and the addition of more training datasets
will allow it to perform better.

The work here is intended not to discourage the usage of other inverse modelling
or spatial statistical techniques but to introduce an alternative methodology, with an
outlook towards combining each methodology's strengths. Once properly trained,
the DeepBedMap model runs quickly (about 3min for the whole Antarctic conti-
nent) and produces realistic rough topography. Combining the DeepBedMap model
with more physically based mass conservation inverse approaches (e.g. Morlighem
et al., 2019) will likely result in more e�cient ways of generating accurate bed eleva-
tion maps of Antarctica. One side product resulting from this work is a test-driven
development framework that can be used to measure and compare the performance
of upcoming bed terrain models. The radioglaciology community has already begun
to compile a new comprehensive bed elevation and ice thickness dataset for Antarc-
tica, and there have been discussions on combining various terrain interpolation
techniques in an ensemble to collaboratively create the new BEDMAP3.

2.7 Code and data availability

Python code for data preparation, neural network model training and visualization
of model outputs is freely available at https://github.com/weiji14/deepbedmap (last
access: 9 August 2020) and at https://doi.org/10.5281/zenodo.3752613 (Leong &
Horgan, 2020a). Neural network model training experiment runs are also recorded
at https://www.comet.ml/weiji14/deepbedmap (last access: 9 August 2020).

The DeepBedMap_DEM is available from Zenodo at https://doi.org/10.5281/
zenodo.3752613 (Leong & Horgan, 2020a). The Pine Island Glacier dataset (Bing-
ham et al., 2017) is available on request from Robert Bingham. The Carlson Inlet
dataset (King, 2011) is available on request from Edward King. Bed elevation
datasets from Wilkes Subglacial Basin (Ferraccioli et al., 2018) and Rutford Ice
Stream (King et al., 2016) are available from the British Antarctic Survey's Polar
Data Centre (https://ramadda.data.bas.ac.uk, last access: 14 January 2020). Other
Antarctic bed elevation datasets are available from the Center for Remote Sensing
of Ice Sheets (https://data.cresis.ku.edu/data/rds, last access: 15 August 2019) or
from the National Snow and Ice Data Center (https://nsidc.org/data/IRMCR2/
versions/1, last access: 15 August 2019). BEDMAP2 (Fretwell et al., 2013) and
REMA (Howat et al., 2018) are available from the Polar Geospatial Center (http:
//data.pgc.umn.edu, last access: 30 August 2019). MEaSUREs Ice Velocity data
(Mouginot et al., 2019b) are available from NSIDC (https://nsidc.org/data/nsidc-0754/
versions/1, last access: 31 August 2019). Antarctic snow accumulation data (Arth-
ern et al., 2006) are available from the British Antarctic Survey (https://secure.
antarctica.ac.uk/data/bedmap2/resources/Arthern_accumulation, last access: 17 June 2019).
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Chapter 3

The role of subglacial topography on
Antarctic ice �ow

Abstract

To examine the in�uence of bed topography on ice motion, we conduct an inversion
experiment using two beds with di�erent spatial resolutions - the 250 m resolution
DeepBedMap_DEM and the 500 m resolution BedMachine Antarctica. At the bed
of a glacier, form drag and skin drag resists the driving stress of the overriding ice.
We examine how an increase in form drag due to higher resolution topography a�ects
the remaining skin drag component which is controlled by subglacial hydrology and
bed material properties. An iterative least-squares control method basal inversion is
performed using the Ice-sheet and Sea-level System Model (ISSM) with L1L2 stress
balance equations and a Schoof-type Coulomb-limited sliding law. Comparison of
inverted �elds between DeepBedMap_DEM and BedMachine Antarctica do not
appear to be signi�cantly di�erent. Basal drag and slipperiness �elds are slightly
higher, while e�ective pressure is generally lower when using the higher-resolution
DeepBedMap_DEM, due to a higher bed elevation model and thinner ice inducing
less overburden pressure. Previous inversion studies using a Weertman-style sliding
relation over Pine Island Glacier indicated that high resolution bed topography
(i.e. more form drag) reduced basal drag (i.e. less skin drag), a conclusion that
is not supported in this work as no noticeable decrease in basal drag (i.e. skin
drag) was observed when higher resolution topography (i.e. more form drag) was
used. These �ndings warrant more investigation into the dependence of ice sheet
modelling on higher spatial resolution bed topographies (<= 100 m) which increases
form drag, and time-dependent subglacial hydrology which in�uences skin drag, over
more diverse subglacial settings in West Antarctica.

3.1 Introduction

The bed topography of Antarctica is a critical parameter in ice sheet modelling
studies as it a�ects basal slip - the combined motion of ice from sliding and bed
deformation (Cu�ey & Paterson, 2010, p.223). Understanding the slip relation re-
mains one of the biggest uncertainties in our determination of the Antarctic ice
sheet's contribution to sea level rise (e.g. Bulthuis et al., 2019; Ritz et al., 2015).
The basal conditions of an ice sheet vary spatially, and are often determined via
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inverse methods. Inverse methods allow us to use ice surface observations coupled
with ice physics to solve for critical basal parameters needed for ice sheet modelling
(e.g. Joughin et al., 2009; MacAyeal, 1992; Morlighem et al., 2013), and also to re-
solve bed topography (e.g. Leong & Horgan, 2020b; Morlighem et al., 2019). These
indirect empirical methods are used because sampling subglacial sediments under
the Antarctic ice sheet is logistically challenging (e.g. Siegert, Makinson, et al., 2014;
Tulaczyk et al., 2014), though having direct access to sediments would allow us to
use physically based methods of quantifying basal slip (e.g. Zoet & Iverson, 2020).

This chapter explores the interplay between two components of frictional drag at
the ice-bed interface - form drag and skin drag (Bingham et al., 2017; Kyrke-Smith
et al., 2018; Minchew & Joughin, 2020; Schoof, 2002). Form drag occurs from long-
wavelength bed topography opposing ice motion (Schoof, 2002; Weertman, 1957),
while skin drag arises in relation to lubricating water and bed material properties
(Iverson & Zoet, 2015). To study this, we look at how a high resolution (250 m)
rougher bed (Leong & Horgan, 2020a) compares with a medium resolution (500 m)
smoother bed (Morlighem, 2020). The spatially varying basal drag of the bed can
be worked out by using bed topography to calculate form drag (Schoof, 2002), and
then taking the remainder balance as skin drag which is determined by bed material
properties and subglacial hydrology (Kyrke-Smith et al., 2018). In the following, we
review two key parameters which ice sheet models are sensitive to - multi-scale bed
topography features and sliding law relations.

3.1.1 Bed Topography

Durand et al. (2011) performed a sensitivity analysis on di�erent spatial resolution
beds using a 2-D �owline model and suggested that a spatial resolution of at least
1 km was needed to accurately model coastal outlet glaciers. This was followed by
the creation of BEDMAP2 (Fretwell et al., 2013) - a 1 km resolution Antarctic bed
elevation model resampled from a 5 km grid, which became the de facto standard
for ice sheet models (see e.g. Seroussi et al., 2019). However, there have been issues
reported in relation to BEDMAP2's ice thickness at the former grounding line of
Pine Island Glacier that did not respect mass conservation (Rignot et al., 2014).
High resolution bed elevations are especially needed close to grounding zones (e.g.
Cornford et al., 2016; Schoof, 2007), and there is a need for high resolution (<=
500 m) bed elevation models that preserve topographic details, so that form drag -
resistance to ice �ow due to bed topography - is correctly accounted for (Bingham
et al., 2017; Kyrke-Smith et al., 2018). The limitations of BEDMAP2 motivated the
creation of higher resolution (<= 500 m) bed DEMs with two important attributes -
large-scale topography that is consistent with mass conservation requirements (e.g.
Morlighem et al., 2011), and preservation of �ne-scale roughness details (e.g. Go�
et al., 2014; Graham et al., 2017), both of which are needed to fully capture ice-sheet
dynamics.

Long-wavelength details captured by mass conservation

Ice sheet models include the physical laws of mass conservation, and this can be used
to invert ice surface observations into bed elevation (e.g. Morlighem et al., 2011).
Using an ensemble of 2-D shelfy stream approximation (SSA; MacAyeal, 1989) mod-
els, Schlegel et al. (2018) performed a comparison of bedrock topography over the
Antarctic ice sheet, and their informed bound (using regionally based boundary
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conditions) experiments showed that using an improved BEDMAP2 mass conserv-
ing grid (cf. Rignot et al., 2014) produced 0.3292 ± 0.1019 m SLE, while the older
BEDMAP (Lythe & Vaughan, 2001) grid produced a 0.1845± 0.088 34 m SLE over
a 100 yr period. This represents a mean increase of 0.14 m SLE from the improved
resolution BEDMAP2 mass conserving grid, but also an 18% increase in the SLE
uncertainty which suggests a wider range of grounding line retreat scenarios with
implications for ice sheet stability. On a catchment scale, Nias et al. (2018) produced
a mass-conserving bed topography over Pine Island Glacier and found that modelled
sea level contributions over a 50 yr period was consistently higher using the mass-
conserving bed (0.08�0.10 mm yr−1 SLE) than with BEDMAP2 (0.04�0.07 mm yr−1

SLE) irrespective of the sliding law used. Since then, this mass conservation tech-
nique has been applied to other key outlet glaciers and ice streams in BedMachine
Antarctica (Morlighem, 2020), identifying new areas vulnerable to Marine Ice Sheet
Instability such as at Ninnis Glacier in George V Land and Denman Glacier in East
Antarctica which both rest on retrograde slopes (Morlighem et al., 2019). This
medium resolution (500 m) mass conserving BedMachine Antarctica grid (version 2,
Morlighem, 2020) will be used in our basal inversion experiment.

Short-wavelength details from spatial statistics

Using an ensemble of L1L2 (Hindmarsh, 2004; Schoof & Hindmarsh, 2010) ice sheet
models, Sun et al. (2014) showed that the phase of low-frequency noise (> 10 km)
was more important than the phase of high-frequency noise (< 1 km) of the same
amplitude in their model projection runs. Still, the ice sheet model was sensitive
to the amplitude of the short-wavelength/high-frequency noise even if the phase of
that noise was not so important. Spatial statistical methods have since been used to
retrieve this topographical noise along radio-echo sounding (RES) transects and ap-
ply it spatially to a larger regional extent. Over Thwaites Glacier, Go� et al. (2014)
captured the di�erent roughness statistics between highland and lowland parts, and
applied these to the whole catchment using a conditional simulation method which
allowed �ne-scale roughness and channelized morphologies to be resolved better
than ordinary kriging. Graham et al. (2017) generated a synthetic high-resolution
(100 m) grid using a two-step approach, with the low-frequency component derived
from BEDMAP2, and a high-frequency component derived from radar point data
from the Investigating the Cryospheric Evolution of the Central Antarctic Plate
(ICECAP) and BEDMAP compilation. Leong and Horgan (2019) used 2-D grid-
ded RES ground-truth data with ice surface observations of elevation, velocity and
snow accumulation to train a super-resolution deep neural network model, using it
to produce a 250 m resolution grid of the Antarctic ice sheet. This super-resolution
(250 m) DeepBedMap_DEM grid (version 1.1, Leong & Horgan, 2020a) will be used
in our basal inversion experiment.

3.1.2 Basal drag

Form drag arises due to large-scale bed topography which opposes the motion of ice
as it �ows and deforms around obstacles on a rigid bed (Schoof, 2002; Weertman,
1957). Skin drag occurs in relation to bed material properties and in the presence of
water that acts to lubricate the ice-bed interface and allow subglacial till to deform
more easily (Iverson & Zoet, 2015). The physical mechanisms of these two processes
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may di�er, but the mathematical formulation and parameterizations for both are
similar (Fig. 1.3, Minchew & Joughin, 2020).

3.1.2.1 Physical basis of basal slip

A basal slip law that relates basal drag or basal shear stress τb with e�ective normal
stress (pressure) N and basal slip velocity ub is given by Zoet and Iverson (2020,
eq.1):

τb = min[N tan(φ), (Cub)
1/m] (3.1)

where φ is the friction angle of the basal till, such that tan(φ) is the friction
coe�cient, m is a slip law exponent, and C is a constant dependent on a transitional
velocity ut and bed roughness, formulated as C = (N tan(φ))m

ut
. The approximate

continuous form of Equation (3.1) (Zoet & Iverson, 2020, eq.3) is as follows:

τb = N tan(φ)

(
ub

ub + ut

)1/p

(3.2)

where p is a slip exponent, experimentally determined to be ∼ 5 (Zoet & Iverson,
2020).

At low basal slip speeds (ub → 0) typically found over rigid, dry beds, viscous
Weertman-style behaviour ((Cub)

1/m in Eq. 3.1, Weertman, 1957) dominates total
drag τb. At high basal slip speeds (ub →∞) found over water-saturated deforming
beds, Coulomb-plastic behaviour (N tan(φ) in Eq. 3.1, e.g. Joughin et al., 2019;
Schoof, 2005) is more in�uential. The upper bound of τb is based on the shear
strength of the till, as determined from ring-shear laboratory experiments (Zoet &
Iverson, 2020). Past the transition speed ut, basal drag τb becomes independent of
basal slip velocity ub (c.f. Stearns & van der Veen, 2018). The physical formulation
of Equation (3.1) is similar to that of other Coulomb-based parametrizations (e.g.
Joughin et al., 2019; V. C. Tsai et al., 2015), but while previous implementations
�xed C to estimate ut via inversion (a posteriori), Equation (3.1) is formulated on
a physical basis with ut derived independently (using clast size and till placement,
see eq.2 in Zoet & Iverson, 2020) and then used to directly determine C (a priori).

3.1.2.2 Sliding laws - linear viscous to Coulomb-limited

It is not feasible to access subglacial till across a glaciated area to physically de-
termine ut using Equation (3.1), so parameterized basal slip relations are used in
practice. Sensitivity analyses conducted in multiple ice sheet model comparison
studies (e.g. Seroussi et al., 2019; Sun et al., 2020; Zhang et al., 2017) have ex-
plored the use of di�erent basal slip relations or sliding laws (see Fig. 3.1), and
the di�erent tunable parameters that come with them. Gillet-Chaulet et al. (2016)
used surface velocity observations from 1996 to 2010 over Pine Island Glacier and
suggested that a non-linear Weertman stress exponent of m >= 5 best matched
observed �ow accelerations, with the assumption that the basal slipperiness coef-
�cient C remained constant over the period. In the Antarctic BUttressing Model
Intercomparison Project (ABUMIP; Sun et al., 2020), the ice-shelf removal or `�oat-
kill' experiment (ABUK) noted how ice sheet models implementing linear Weert-
man/Coulomb friction laws tend to show lower ice loss (3.07 m SLE) than models
which implemented pseudo-plastic (4.41 m SLE) or plastic (10.20 m SLE) sliding
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laws. Ice sheet models implementing such non-linear/plastic sliding laws generally
lead to faster grounding line retreat than those using viscous linear sliding laws over
the Amundsen Sea Embayment area (e.g. Brondex et al., 2017; Bulthuis et al., 2019;
Joughin et al., 2009; Ritz et al., 2015).

Figure 3.1: Comparison of linear (Weertman, Budd) and non-linear, Coulomb lim-
ited (Schoof and Tsai) sliding laws. Basal velocity ub is plotted on the vertical y-axis
and e�ective pressure N is plotted on the horizontal x-axis. Coloured iso-lines rep-
resent basal drag (τb) values ranging from 0.04 MPa to 0.2 MPa. Figure is from
Brondex et al. (2017).

Other intercomparisons have judged the ability of di�erent sliding laws to prop-
erly model grounding line dynamics, with overarching support for e�ective pressure
(N) dependent sliding laws such as Budd-type (Budd et al., 1979), Tsai-type (V. C.
Tsai et al., 2015) or Schoof-type (Schoof, 2005) formulations instead of a classi-
cal Weertman-type (Weertman, 1957) relation (see Fig. 3.1, Brondex et al., 2017;
Brondex et al., 2019). In particular, Joughin et al. (2019) noted how the e�ects of
cavitation on sliding (see Schoof, 2005) appear important at Pine Island Glacier,
recommending a regularized Coulomb sliding law with m = 3 and velocity threshold
uo = 300 m yr−1 to reliably reproduce glacier behaviour in a manner applicable to
both weak till and hard bedrock areas. Coulomb-limited sliding relations are gen-
erally favoured, such as a Schoof-type law for its ability to transition continuously
between Weertman and Coulomb sliding regimes in di�erent settings (Brondex et
al., 2017; Brondex et al., 2019; Cornford et al., 2020; Minchew & Joughin, 2020;
Zoet & Iverson, 2020). Thus, we choose to use the Schoof sliding law (adapted from
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Schoof, 2005, eq. 6.2), presented below in a form similar to that of Equation (3.2):

τb = NC

(
Λ

Λ + Λ0

)1/m

,Λ =
ub
Nm

(3.3)

where τb is basal drag, N is e�ective pressure, C is the Schoof friction coe�cient
less than the maximum bed slope (c.f. tan(φ) in Eq. (3.2)), ub is basal velocity,
Λ0 is a maximum threshold that satis�es Iken's bound (c.f. ut in Eq. (3.2)), and
m is a power law exponent. Equation (3.3) will be reformulated as Equation (3.5)
in the Methods section to follow the ISSM (Larour et al., 2012) Schoof sliding law
implementation.

3.1.3 Previous work

Kyrke-Smith et al. (2018) ran a Full Stokes ice sheet model inversion experiment
with a Weertman-style sliding law on two di�erent beds - a high-resolution (50 m)
bed topography from DELORES data (Bingham et al., 2017) and on a low-resolution
(1000 m) BEDMAP2 (Fretwell et al., 2013) - to compare the balance of slipperiness
(C) and basal drag (τb) estimates. They reported that spatial patterns of both
slipperiness C and basal drag τb were similar across both high- and low-resolution
experiments. However, the magnitude of the spatially averaged basal drag τb (i.e.
skin drag) was consistently lower when using the high-resolution DELORES DEM
than with the low-resolution BEDMAP2 owing to more form drag being accounted
for. Over the iSTARt1 area for example, the high-resolution DELORES DEM had
τ̄b = 6.8 kPa, low-resolution BEDMAP2 had τ̄b = 9.6 kPa, while the �at bed control
experiment had τ̄b = 11.9 kPa. The lower mean basal drag τ̄b was attributed to
an increase in form drag introduced by the high-resolution DELORES DEM that
induces more resistive stresses on ice. The skin drag component must therefore
decrease, corresponding to a lower slipperiness C, in order for the modelled velocity
to match the observed velocity in the inversion process. The implications of this
are that both basal drag τb and slipperiness C may be overestimated for ice sheet
models using parameterizations based on low-resolution bed topography models like
BEDMAP2 (Kyrke-Smith et al., 2018). Here, we expand on the work of Kyrke-
Smith et al. (2018) by running an L1L2 ice sheet model (ISSM; Larour et al., 2012)
using a Coulomb-limited Schoof-type sliding law (Joughin et al., 2019; Schoof, 2005)
over the larger spatial area of the main trunk of Pine Island Glacier (see Fig. 3.2).
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3.2 Methods

3.2.1 Ice Sheet model set-up

3.2.1.1 Stress balance model

We use an L1L2 model (Hindmarsh, 2004; Schoof & Hindmarsh, 2010) implemented
in the Ice-sheet and Sea-level SystemModel (ISSM, v4.18; Larour et al., 2012). ISSM
is a thermomechanical �nite-element ice �ow model that follows physical laws for
the conservation of mass, momentum and energy, coupled with constitutive material
laws and boundary conditions (Larour et al., 2012). Ice is treated as an viscous
incompressible material (Cu�ey & Paterson, 2010) with a non-linear ice e�ective
viscosity µ following a Norton-Ho� rheology law (Glen's �ow law, Glen, 1955):

µ =
B

2ε̇
(n−1)/n
e

(3.4)

where B is the temperature dependent ice hardness (rigidity), ε̇e is the e�ective
strain rate tensor, n is Glen's �ow law exponent.

3.2.1.2 Sliding law

Within ISSM, we applied a Schoof-type basal sliding law (Schoof, 2005):

τb = − C|ub|m−1ub(
1 +

(
C

CmaxN

)1/m

+ |ub|
)m (3.5)

where τb is basal drag, C is the Schoof friction coe�cient (slipperiness), Cmax is
a Coloumb friction upper bound parameter, ub is basal ice velocity, N is e�ective
pressure, and m is a positive power law exponent (note that m here is the reciprocal
of m in other studies (e.g. V. C. Tsai et al., 2015), i.e. m = 1/mTsai = 1/3).

The friction factor Cmax imposes an upper limit on τb which must satisfy Iken's
bound (Gagliardini et al., 2007; Iken, 1981):

τb ≤ N tan β (3.6)

where β is the maximum local up-slope angle between the bed and mean �ow
direction. Based on lab experiments (Iverson et al., 1998), Cmax is set to between
tan 10° = 0.17 and tan 40° = 0.84, with lower values corresponding to clay-rich
tills (Cu�ey & Paterson, 2010, pp.266-267). The spatial distribution of Cmax varies
across a glacier but no method yet exists to constrain it, so a uniform value of 0.4
is used instead (0.4 and 0.6 was used in Brondex et al., 2019). The magnitude of
τb has an asymptotic behaviour, such that τb ∼ Cumb as N trends towards in�nity
corresponding to a Weertman-type sliding regime, and τb ∼ CmaxN as N trends
towards zero corresponding to a Coloumb-type sliding regime (Brondex et al., 2017).

The e�ective pressure (N) can be approximated using ice overburden pressure
minus water pressure:

N = ρigH − Pw (3.7)

where ρi is ice density, g is gravitational acceleration, H is ice thickness and Pw
is water pressure.
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3.2.1.3 Boundary conditions

Figure 3.2: Topographies and speed over Pine Island Glacier study area. a) Ice
surface elevation from Howat et al. (2019). b) Ice surface speed (contours in white)
from Mouginot et al. (2019b). c) DeepBedMap_DEM bed elevation. d) BedMachine
bed elevation. Plotted on an Antarctic Stereographic Projection with a standard
latitude of 71°S (EPSG:3031).

The boundary conditions are kept equal across all experiments, aside from mod-
i�cations to the bed topography (see Fig. 3.2). The model's spatial domain is a
triangulated static anisotropic adaptive mesh grid with 10 vertical layers, and a
spatial resolution of 250�20 000 m (higher resolution over areas of high ice velocity),
located over the main trunk of Pine Island Glacier. The same mesh is used for both
experiments. A minimum ice thickness of 1 m is set to avoid numerical instabilities.
A stress-free surface is applied at the ice-atmosphere interface σ ·n = 0 where σ is
the Cauchy stress tensor and n is the unit outward-pointing normal vector (Larour
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et al., 2012, eq. 18). Surface mass balance, ice temperature and geothermal heat
�ux are from ALBMAPv1 (Le Brocq et al., 2010).

3.2.2 Inverting for basal drag τb

To determine the spatial distribution of basal drag (τb), we run an inversion using
remotely sensed values of surface velocity us (Fig. 3.2b). This is accomplished using
a least-squares approach involving a control method (MacAyeal, 1992, eq. 6) which
avoids the errors in τb caused by using a direct algebraic inversion approach (e.g.
MacAyeal, 1992, eq. 4, 5) which is more sensitive to un-physical interpolations of
us. Following Morlighem et al. (2013, eq. 9), the objective function or cost function
J used to minimize the di�erence in modelled and observed surface velocities is
formulated as follows:

J(v, α) = Jmis + γ1J1 + γtJ2 (3.8)

where v is ice surface velocity, α is the parameter being inverted (i.e. the friction
coe�cient ln(C)), and γ1, γt are non-dimensional weighting constants. The initial

friction coe�cient was set as α0 = 10 (Pa yr/m)1/2 for the model domain. We set
γ1 = 100 and γt = 10−7 following Morlighem et al. (2013).

The �rst term Jmis is an L
2 mis�t calculated as:

Jmis =
1

2

∫
Γs

(vx − vobsx )2 + (vy − vobsy )2 dΓs (3.9)

where vx and vy are modelled ice surface velocities (in the x and y directions),
vobsx and vobsy are observed ice surface velocities from Mouginot et al. (2019a), and
Γs is the ice surface domain.

The second term J1 takes the squared natural logarithmic di�erence between u
and uobs:

J1 =
1

2

∫
Γs

ln

( √
u2 + v2 + ε√
u2
obs + v2

obs + ε

)2

dΓs (3.10)

where ε is a minimal velocity used to avoid division by zero. This J1 term
accounts for the order of magnitude di�erence in ice �ow speed that ranges from
> 1000 m yr−1 at ice streams to < 1 m yr−1 in the slow moving interior (Mouginot
et al., 2019a).

The third term J2 is a Tikhonov regularization term which applies a degree of
smoothness to the inversion:

J2 =
1

2

∫
Γb

∇α · ∇α dΓb (3.11)

where Γb is the ice bed domain, and recall that α is the parameter being inverted.
The inversion is computed by iteratively minimizing the total cost function J

until a convergence stopping criterion is reached. The stopping criterion is set em-
pirically as when the cost function output value reduces by < 0.1 between successive
iterations. Further details of the inversion process can be found in Morlighem et al.
(2013).

55



3.3. RESULTS CHAPTER 3. BASAL INVERSION

3.3 Results

We now present our results over Pine Island Glacier, comparing the medium spa-
tial resolution (500 m) smooth bed (BedMachine v2; Morlighem, 2020) with a high
spatial resolution (250 m) rough bed (DeepBedMap_DEM v1.1; Leong & Horgan,
2020a). In the following, we present the inverted spatial distributions of each bed's
modelled velocity (ub, Fig. 3.3) along with e�ective pressure (N , Fig. 3.4), slipperi-
ness (C, Fig. 3.5), and basal drag (τb, Fig. 3.6) �elds. For all the �elds above, we also
present a transect plot taken along the main trunk of Pine Island Glacier (Fig. 3.7)
and across �ow (Fig. 3.8).

Basal velocity (ub)

In Fig. 3.3, velocity ub is shown to increase from the upstream part of the glacier
(A) to the downstream part of the glacier (B) near the grounding zone for both
DeepBedMap and BedMachine. The mean velocity (ūb) for DeepBedMap_DEM
(614 m yr−1) is slightly higher than that of BedMachine (552 m yr−1), a di�erence of
62 m yr−1. Spatially, the di�erence in velocity between the two beds appears to be
greatest near the grounding zone around point B (see also Fig. 3.8b).

E�ective Pressure (N)

In Fig. 3.4, e�ective pressure N is shown to decrease from the upstream part
of the glacier (A) to the downstream part of the glacier (B) near the ground-
ing zone for both DeepBedMap and BedMachine. The mean e�ective pressure
(N̄) for DeepBedMap_DEM (1.3389× 107 Pa) is lower than that of BedMachine
(1.3807× 107 Pa), a di�erence of 4.1762× 105 Pa. The along-�ow transect plot (see
Fig. 3.7c) shows that DeepBedMap_DEM's e�ective pressure �eld over the ground-
ing zone (near point B) is noisier than that of BedMachine.
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Slipperiness (C)

In Fig. 3.5, slipperiness C (friction coe�cient) is shown to increase from the up-
stream part of the glacier (A) to the downstream part of the glacier (B) near the
grounding zone for both DeepBedMap and BedMachine. The mean slipperiness (C̄)

for DeepBedMap_DEM (31.39 (Pa yr/m)1/2) is slightly higher than that of BedMa-

chine (31.33 (Pa yr/m)1/2), a di�erence of 0.06 (Pa yr/m)1/2. The along-�ow transect
plot (see Fig. 3.7d) shows that DeepBedMap_DEM is missing one slipperiness peak
at Y:-130000 compared to BedMachine Antarctica, owing to an o�set of one the
ridges.

Basal drag (τb)

In Fig. 3.6, basal drag τb is shown to increase from the upstream part of the glacier
(A) to the downstream part of the glacier (B) near the grounding zone for both
DeepBedMap and BedMachine. The mean basal drag (τ̄b) for DeepBedMap_DEM
(203 Pa) is slightly higher than that of BedMachine (192 Pa), a di�erence of 11 Pa.
Spatially, the di�erence in basal drag between the two beds appears more pronounced
near the shear margins along the main trunk of the glacier (see across-track transect
at Fig. 3.8e).

Transect along Pine Island Glacier trunk

Transect plots are shown along the main trunk of Pine Island Glacier from upstream
point A to downstream point B (Fig. 3.7), and across �ow from high elevation point
C to low elevation point D (Fig. 3.8), with DeepBedMap_DEM (Leong & Horgan,
2020a) and BedMachine (Morlighem, 2020) both showing the same broad trends.
Modelled basal velocity (ub) for BedMachine appears to �t closer to the ground-
truth velocities observed by remote sensing methods (Mouginot et al., 2019b) than
for DeepBedMap_DEM (Fig. 3.7b, Fig. 3.8b). E�ective pressure (N) tends to be
lower for DeepBedMap_DEM than that of BedMachine across both transect lines
(Fig. 3.7c, Fig. 3.8c), except for near the grounding line close to point B (Fig. 3.7c).
Slipperiness (C, Fig. 3.7d, Fig. 3.8d) and basal drag (τb, Fig. 3.7e, Fig. 3.8e) �elds
are mostly comparable for both bed topographies.
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Figure 3.7: Transect plot along Pine Island Glacier trunk from upstream point
A to downstream point B. Panels from top to bottom shows comparison of
DeepBedMap_DEM and BedMachine in terms of: a) Bed elevation (zb), b) Ice
surface velocity (us), c) E�ective pressure (N), d) Slipperiness (C), e) Basal drag
(τb).
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Figure 3.8: Transect plot cutting across Pine Island Glacier trunk from high eleva-
tion point C to low elevation point D. Panels from top to bottom shows comparison
of DeepBedMap_DEM and BedMachine in terms of: a) Bed elevation (zb), b) Ice
surface velocity (us), c) E�ective pressure (N), d) Slipperiness (C), e) Basal drag
(τb).
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3.4 Discussion and Conclusion

The inverted basal drag (τ̄b, Fig. 3.6) and slipperiness (C̄, Fig. 3.5) over Pine Is-
land Glacier is slightly higher for DeepBedMap_DEM than BedMachine Antarctica,
while e�ective pressure (N̄ , Fig. 3.4) is generally lower (see Sec. 3.3). This mean
di�erence in basal drag from using two di�erent resolution beds is only 11 Pa and not
very signi�cant. In particular, this result is di�erent to the �ndings of Kyrke-Smith
et al. (2018) who showed a reduction in basal drag (less skin drag) and slipperiness C
when using a higher resolution basal topography (more form drag). Several factors
could account for this discrepancy.

Firstly, the 250 m di�erence in spatial resolution between DeepBedMap_DEM
(Leong & Horgan, 2020a) and BedMachine Antarctica (Morlighem, 2020) is much
smaller than the 950 m di�erence between DELORES DEM (Bingham et al., 2017)
and BEDMAP2 (Fretwell et al., 2013). This smaller resolution di�erence may mean
that the di�erences in basal drag (Fig. 3.6) and slipperiness (Fig. 3.5) are less ap-
parent. It could also be a higher resolution (<= 100 m) bed is needed (e.g. Graham
et al., 2017) before the e�ects of form drag are signi�cant enough to a�ect slipper-
iness C and hence basal drag τb. Alternatively, the e�ects may have been masked
when bed elevation is interpolated to the same 250�20 000 m resolution mesh for
both experiments (Sec. 3.2.1.3), and future studies should investigate such resolu-
tion dependence e�ects.

Secondly, the use of a Schoof-type friction law in our inversion (see 3.2) instead
of a Weertman-type sliding law as in Kyrke-Smith et al. (2018) may mean that
form drag from high resolution topography has less of an e�ect on basal drag τb
(i.e. skin drag). Following the logic of Kyrke-Smith et al. (2018), a more accurate,
high-resolution bed topography model (i.e. more form drag) should lower basal
drag (τb, i.e. skin drag). Theoretically, this would shift parts of glaciers �owing at a
rate close to the transitional velocity (ut) from a skin drag regime to a transitional
or form drag regime (see Fig. 1.3, Minchew & Joughin, 2020). This logic implies
that subglacial water which in�uences skin drag (related to form drag τb) plays a
less important role in ice dynamics when rougher, higher resolution bed elevation
models (i.e. more form drag) are used, supporting studies where subglacial water
inputs did not lead to signi�cant speed ups in ice �ow (e.g. B. E. Smith et al., 2017).

However, observed velocities over most of Pine Island Glacier are > 100 m yr−1

(see Fig. 3.2b) which suggests a predominantly Coulomb-type (skin drag based) �ow
regime rather than a Weertman-type (form drag based) �ow regime (see Fig. 1.3,
Minchew & Joughin, 2020). The decrease in basal drag τb (i.e. less skin drag)
from using a higher resolution topography (i.e. more form drag) observed by Kyrke-
Smith et al. (2018) may be an artifact of using an unbounded Weertman-type sliding
relation, as our experiments using a Schoof-type sliding law did not reproduce this
behaviour. In fact, Fig. 3.6 shows that using a higher resolution DeepBedMap_DEM
over the lower resolution BedMachine (i.e. more form drag) actually led to a slight
increase in inverted form drag τb (i.e. more skin drag), contrary to the �ndings of
Kyrke-Smith et al. (2018). The Weertman-style sliding law used by Kyrke-Smith
et al. (2018) in their inversion experiments lacks a parameterization of e�ective
pressure N , thus excluding the possible e�ects of water cavitation (Budd et al.,
1979; Gagliardini et al., 2007) or ice �ow over deformable till (Zoet & Iverson,
2020). Their Weertman stress exponent value of m = 3 also di�ers from that of
Joughin et al. (2019) who recommends using m = 8 for a Weertman slip relation to
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best match observed velocity data over Pine Island Glacier. It thus remains to be
seen whether our �ndings and those of Kyrke-Smith et al. (2018) reporting on the
e�ects of high resolution topography a�ecting skin drag can be generalized to more
realistic sliding laws, and a wider area of the Antarctic Ice Sheet.

The inversion study here over the main trunk of Pine Island Glacier used a
Schoof-type sliding relation on two beds with di�erent spatial resolutions and rough-
ness (i.e. di�erent form drag). Our �ndings suggest that skin drag (in�uenced by
subglacial water and bed material properties) cannot be ruled out as an important
factor in ice dynamics when using a high resolution bed, because basal drag (τb,
i.e. skin drag) did not noticeably decrease when more form drag was added with
the use of a higher resolution (250 m) DeepBedMap_DEM over the medium reso-
lution (500 m) BedMachine (Fig. 3.6). Future modelling work could include better
parametrizations of e�ective pressure N , such as with an evolving subglacial hydrol-
ogy model (e.g. Sommers et al., 2018). Inversion experiments should also be carried
out on even higher resolution (<= 100 m) bed elevation models (e.g. Graham et al.,
2017). A more thorough sensitivity analysis should be carried out to test di�erent
values of parameters such as Cmax in the Schoof sliding law, and also regularization
parameters γ1 and γ2 (or others) to see how basal drag τb may change in magnitude
or spatially. A prognostic forward model run using these high resolution bed eleva-
tion models with a Schoof-type sliding law and Full Stokes (or higher order) stress
balance equations would also be useful to assess the potential e�ects of di�erent
basal traction and slipperiness �elds on Antarctic grounding line migration and its
resulting contribution to sea level rise.
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Chapter 4

Automated classi�cation of active
subglacial lakes in Antarctica from
ICESat-2/ATLAS laser altimetry
(2018�2020)

Abstract

To examine an aspect of subglacial water movement in Antarctica, we present a new
map of active subglacial lakes inferred from spatiotemporal patterns of ice surface
elevation trends. An unsupervised density-based classi�cation technique is applied
to pre-processed ICESat-2/ATLAS laser altimetry point clouds to detect localized
clusters with anomalous rates of elevation change (> 0.2 m yr−1) over a short period
of time (< 1 yr). These elevation anomaly clusters are inferred to be due to basal
water movement. Our compilation counted a total of 194 active subglacial lakes
over the 2018-2020 period, including 36 potential new lakes in the 86�88°S area
not detected by the previous ICESat (2003-2009) mission. We detail a cascading
series of active subglacial lakes exhibiting drain-�ll activity along the Whillans Ice
Stream central basin, including a rapid (∼ 7 m vertical displacement over 3 months)
�lling event at Subglacial Lake Whillans IX. The high resolution (< 40 m along-
track spacing) ICESat-2 laser altimetry data also reveal the presence of multi-lobe
subglacial lake clusters separated by ridges, with implications for our understanding
of subglacial bedforms, and hydrological connectivity along the Siple Coast.

4.1 Introduction

NASA's Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) laser altimeter launched
in 2018 (Markus et al., 2017; Neumann et al., 2019) and has already produced an
order of magnitude more data over the previous generation ICESat (2003-2009;
Shuman et al., 2006; Zwally et al., 2002), allowing us to map the surface of the
Antarctic in great detail. This high data volume presents opportunities to capture
glaciological processes at an unprecedented scale, both spatially and temporally. It
also comes with computational challenges, prompting a revision to classic analysis
techniques. We present an e�cient method to identify elevation change from dense
point clouds to classify high magnitude (>0.2 m), short duration (<1 yr) ice surface
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elevation change events for subglacial lake detection. Our main contributions are
to: (1) extend the inventory of over 400 subglacial lakes reported in Antarctica by
Siegfried and Fricker (2018) (see Fig. 4.1), and (2) provide a view of the interaction
of subglacial lakes and bedforms in a contemporary setting over the Siple Coast ice
streams at seasonal timescales.

Figure 4.1: Distribution of active subglacial lakes over Antarctica detected by
ICESat-2 laser altimetry for the 2018-2020 period. Grounding line and coastline
(Depoorter et al., 2013) are plotted as thin white lines. Background image is
MODIS Mosaic of Antarctica 2009 (Haran et al., 2014) overlaid with MEaSUREs
Phase-based Ice Velocity (Mouginot et al., 2019b), o�shore bathymetry is from
SRTM15+V2.1 (Tozer et al., 2019). Antarctic place names are labelled in white.
Siple Coast study area for Fig. 4.5 is plotted as a black box. Figure produced us-
ing PyGMT (Uieda et al., 2020; Wessel et al., 2019) with scienti�c colour maps
(Crameri, 2018). Plotted on an Antarctic Stereographic Projection with a standard
latitude of 71°S (EPSG:3031).

4.1.1 Subglacial lakes in Antarctica

In 1967, the �rst evidence of a subglacial lake in Antarctica was obtained using radio-
echo sounding (RES) data obtained by a joint programme between the UK Scott
Polar Research Institute, the US National Science Foundation and the Technical
University of Denmark (Robin et al., 1969). This work led to the �rst subglacial
lake inventory of 17 lakes (Oswald & Robin, 1973), followed by a second inventory
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of 77 lakes (Siegert et al., 1996), and a third inventory of 145 lakes (Siegert et al.,
2005), all detected using RES. A fourth inventory with 379 subglacial lakes was
compiled, this time including both `classic' RES detected lakes and active subglacial
lakes detected by satellite remote sensing (Wright & Siegert, 2012). `Classic' lakes
are classi�ed from radar transects on the basis of hydraulic �atness, with a specular
re�ection across >= 5 % of its extent while maintaining a re�ection coe�cient of
>= 10 dB across 5 % of its extent, together with a brightness of > 2 dB relative to
its surroundings (Carter et al., 2007). `Active' lakes are classi�ed on the basis of
localized ice volume displacements, whereby a > 0.1 m elevation anomaly is observed
that is not attributed to secular mass imbalance or other errors (see Siegfried &
Fricker, 2018; B. E. Smith et al., 2009). In Fig. 4.1, we show the distribution of
194 active subglacial lakes detected on the basis on ICESat-2 laser altimetry vertical
elevation change anomalies for the 2018-2020 time period following the methodology
described in Sec. 4.2.4.

4.1.1.1 Satellite detected active subglacial lakes

The volume of water in subglacial lakes can change rapidly over sub-annual to annual
timescales. Lakes exhibiting such behaviour are termed active subglacial lakes (B. E.
Smith et al., 2009), in contrast to `classic' subglacial lakes detected on the basis
of specular radar re�ections (Carter et al., 2007). If the water volume changes
are large enough, these can result in vertical surface displacements that can be
detected using satellite remote sensing. Using radar interferometry, Gray (2005)
noted a 24-day vertical lowering of ∼ 0.5 m in 1997 over a ∼ 125 m2 area at Kamb
Ice Stream or a rate of up to 2 cm per day, with similar vertical displacements
detected at the neighbouring Bindschadler Ice Stream. This pattern of vertical
surface displacements was interpreted as due to an imbalance in subglacial water
input and output from hydropotential depressions. Fricker et al. (2007) used ICESat
laser altimetry and MODIS optical image di�erencing to deduce a network of Siple
Coast active subglacial lakes on the basis of geographically localized height change
anomalies from 2003 to 2006. They estimated a volume increase of 1.2 km3 at
Subglacial Lake Conway and oscillatory behaviour leading to a net volume increase
of 0.12 km3 at Subglacial Lake Mercer. At Subglacial Lake Engelhardt, ∼ 2.0 km3

of water was estimated to have drained over a period of 2.7 yr.
The ICESat-based lake detection technique was then applied by B. E. Smith et

al. (2009) to the whole Antarctic continent, yielding a total of 124 active subglacial
lakes, 31 of which had volume ranges > 0.2 km3. The active subglacial lakes from
B. E. Smith et al. (2009) are typically small with < 20 km widths and a median size
of ∼ 13 km2. In contrast to larger lakes like Lake Vostok and the Recovery Lakes
which have �at surfaces, many of these small active lakes have a rougher textured
surface, making them more di�cult to identify using optical imagery. The spatial
distribution of these ICESat detected active subglacial lakes was mostly clustered
within 200 km of major outlet glaciers and ice streams. Filling and draining pat-
terns of lakes varied across the continent, with no apparent linkage between closely
situated lakes in Academy Glacier while a partial linkage was observed between ad-
jacent lakes over Slessor Glacier (B. E. Smith et al., 2009). There appeared to be a
direct linkage at Recovery Glacier however, where ∼ 3.0 km3 of water drained from
upstream lakes while downstream lakes �lled by ∼ 3.1 km3 from November 2002
to February 2008 (B. E. Smith et al., 2009), corroborating previous observations
by Bell et al. (2007). Subsequent discoveries have followed to bring the number of
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subglacial lakes in Antarctica to above 400 (e.g. Kim et al., 2016; Napoleoni et al.,
2020; Rivera et al., 2015; B. E. Smith et al., 2017; Wright et al., 2012; Wright et al.,
2014).

4.1.1.2 Geophysical surveys of active subglacial lakes

Several active lakes originally detected by satellite remote sensing were also surveyed
using oversnow geophysical methods (e.g. Christianson et al., 2012; Wright et al.,
2014). Few showed up with �at, bright specular re�ections indicative of a `classic'
subglacial lake detected using radar surveys (Carter et al., 2007). This disconnect
between oversnow detected `classic' lakes and satellite detected `active' lakes was
a puzzle to glaciologists for some years (Siegert et al., 2016). A targeted RES
study of Lake Institute E2, previously detected using ICESat (B. E. Smith et al.,
2009), yielded non-specular and non-�at radar re�ections that did not meet the
criteria of a deep-water subglacial lake (Siegert, Ross, Corr, et al., 2014). This
discrepancy may be due to a limitation of RES methods that cannot resolve shallow
(< 10 m) water bodies owing to very high frequency (VHF, ∼ 60 MHz) radio waves
penetrating shallow layers and also from interference of RES re�ections o� the �oor
and ceiling of subglacial lakes (Gorman & Siegert, 1999). Modelling conducted by
Carter et al. (2017) suggests that the water of active subglacial lakes may be stored
in soft sediment which would not show as a bright specular surface in RES data.
Tulaczyk and Foley (2020) cautioned that the electrical conductivity properties of
deformable clay-rich materials as detected by lower frequency radar waves (5 MHz
central frequency) could be falsely misinterpreted as subglacial water. The electrical
conductivity properties of subglacial materials should thus be carefully accounted
for when interpreting the presence or absence of subglacial water from RES data.

One exception is Lake CookE2 in East Antarctica (see Fig. 4.1) which is both an
active lake and a `classic' radar lake. CookE2 was originally detected using ICESat
laser altimetry by B. E. Smith et al. (2009), and reanalyzed by Cryosat-2 radar
altimetry (McMillan et al., 2013) and ASTER and SPOT5 stereo imagery (Flament
et al., 2014), with a measured ice surface lowering of ∼ 70 m from November 2006 to
October 2008 equivalent to ∼ 6 Gt of water or ∼ 8 % of the Antarctic ice sheet's mass
imbalance (Shepherd et al., 2012). An airborne-radar resurvey by Y. Li et al. (2020)
showed that Lake CookE2 is bounded by steep topography, with a constrained lake
area of ∼ 46 km2 and a minimum lake depth 10 m (Gorman & Siegert, 1999). Based
on the bright and smooth re�ection observed in the radar transects, Y. Li et al.
(2020) derived a lake length and width of ∼ 12.2 km and ∼ 4.1 km, smaller than
the ∼ 16.6 km and ∼ 9.9 km ICESat measured lake outline (B. E. Smith et al.,
2009) derived from a 0.1 m elevation anomaly. There was also no radar evidence for
water found in the adjacent hook-shaped zone previously classi�ed as part of the
Lake CookE2 based on satellite measured elevation changes. The ICESat derived
lake area was as much as six times overestimated compared to that derived from
airborne radar-based assessments (Y. Li et al., 2020), cautioning the use of using
vertical displacements as the sole basis of inferring true lake outlines.

4.1.1.3 Subglacial lake direct access programmes

To examine subglacial lakes and the boundary condition at the ice-bed interface,
several drilling campaigns have directly accessed the bed of the Antarctic ice sheet.
The �rst attempt to drill into a subglacial lake was conducted at Lake Vostok in
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February 2012 (Lukin & Vasiliev, 2014). While direct water samples yielded two
unknown bacterial phylotypes with no biogeochemical signatures (Bulat, 2016), pre-
vious DNA studies from lake accretion ice samples have isolated the thermophile
bacteria Hydrogenophilus thermoluteolus which indicate near-bottom water temper-
atures reaching up to 50°C or a geothermal heat �ux of 200�240 W m−2 in the lake
sediments (Bulat et al., 2012; Bulat et al., 2004; Talalay et al., 2020), pointing to
a direct source of energy for meltwater production. On January 2013, the Whillans
Ice Stream Subglacial Access Research Drilling (WISSARD) team managed to suc-
cessfully sample Subglacial Lake Whillans (Tulaczyk et al., 2014). They found a
rich ecosystem of chemolithoautotrophs in a wedge of water only ∼ 2.2 m deep under
∼ 800 m of ice (Christner et al., 2014; Mikucki et al., 2016). Sediment cores retrieved
from Subglacial Lake Whillans were composed of a macroscopically structure-less
diamicton similar to subglacial tills found under other ice streams on the Siple Coast,
with a shear strength ranging from 2 kPa near the core top, increasing to 6 kPa at
0.2 m below surface (Tulaczyk et al., 2014). The borehole measured 2.2 m lake depth
stands in contrast with the 8± 2 m depth inferred from seismic measurements done
2 years previously (Horgan et al., 2012), pointing to limitations in the spatial res-
olution of geophysical methods (Tulaczyk et al., 2014). These direct access studies
act to complement and inform remote sensing work, pointing to geothermal heat
as a potential source of subglacial lake water, and also providing constrains on the
possible forms of water storage and �ow across Antarctica's subglacial hydrological
system.

4.1.2 Antarctic subglacial water system interactions

4.1.2.1 Sources of subglacial water

The Antarctic ice sheet has low amounts of surface meltwater inputs, making it
di�erent from the Greenland ice sheet and temperate glaciers (Bell et al., 2018).
While water can be seen on the surface in places close to dark, low-albedo areas
like blue ice regions (e.g. Kingslake et al., 2017), the total area of supraglacial lakes
detected upstream of the grounding line in East Antarctica is only 253±2.53 km2 in
2017 (Stokes et al., 2019), with most developing at low elevations (<100 m) and near
rock outcrops (Dirscherl et al., 2020; Stokes et al., 2019). Most of the production of
Antarctic subglacial water comes from basal melt processes, either from geothermal
heat �ow (e.g. Burton-Johnson et al., 2020; Fisher et al., 2015) or frictional heating
under fast �owing ice streams (e.g. M. Ho�man & Price, 2014; Zhao et al., 2018).
Where there are low hydraulic slopes and less frictional heating from water �ow,
upstream sources can still contribute signi�cant amounts of subglacial water, such
as on the Siple Coast (Alley, 1989; Bougamont et al., 2003). Subglacial water �ows
from areas of high to low hydraulic potential (see Sec. C), and this �ow happens
through a dynamic subglacial drainage system which can take varying forms.

4.1.2.2 Subglacial water drainage systems

A range of subglacial pathways have been proposed and observed, ranging from fast
�ow in concentrated channels, to slower distributed sheet �ow and porous ground-
water �ow (Fig. 4.2; Flowers, 2015). The type of subglacial drainage system is likely
to be in�uenced by factors like bedrock geology, the temperature pro�le of the ice
column, as well as the rate and amount input water into the system (see Flowers,
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Figure 4.2: Channelized vs Distributed �ow in a subglacial drainage system. Figure
adapted from Flowers (2015).

2015, for a review). For soft bed types, water can incise into the bed to form Nye
channels (Fig. 4.2c, Nye, 1969) or broad shaped canals (Fig. 4.2d, Ng, 2000), �ow
along cavities (Fig. 4.2f, Lliboutry, 1968), or if the rock is permeable, the water may
�ow within the rock itself (Fig. 4.2g, Shoemaker, 1986). For hard bed types, water
may incise instead into the basal ice, forming semi-circular Röthlisberger channels
(Fig. 4.2a, Röthlisberger, 1972) or broad low channels (Fig. 4.2b, Hooke et al., 1990),
or �ow as a thin sheet of water between the ice-rock interface (Fig. 4.2e, Weertman,
1957). Over space and time, these subglacial drainage structures can change between
the two extremes of e�cient and ine�cient regimes (Fig. 4.2) which has important
consequences for ice dynamics (Sec. 4.1.2.4)

4.1.2.3 Drumlins shaped by subglacial water

The type of subglacial drainage system (Fig. 4.2) may play a role in shaping the
subglacial terrain. Elongated subglacial landforms oriented parallel to ice �ow direc-
tion such as �utes, drumlins and mega-scale glacial lineations (see Ely et al., 2016)
have been observed beneath Antarctica at Thwaites glacier (Holschuh et al., 2020),
Rutford Ice Stream (King et al., 2016) and Whillans Ice Stream (Rooney et al.,
1987). However, the formation of such elongated subglacial landforms has only been
observed using repeat measurements once in Antarctica, from seismic measurements
acquired in 1991, 1997, and 2004 at Rutford Ice Stream by A. Smith et al. (2007).
Two main mechanisms of drumlin formation were proposed. The �rst interpretation
is that of a glacial �ute (Boulton, 1976) where sediment in�lls a groove or channel
at the base of the ice (e.g. an R-channel, see Fig. 4.2a). The second interpretation
is that of a viscous deformation model (e.g. Hindmarsh, 1998), whereby soft un-
derlying till is shaped into drumlin formations. Either way, both these mechanisms
share a common requirement for the presence of a soft deformable sediment (e.g.
Fig. 4.2d, Fig. 4.2g) that can be reworked into an elongated subglacial landform.
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4.1.2.4 The in�uence of water on ice �ow

Glaciers have been observed to �ow faster after heavy rainfall or during the spring
melt season in alpine settings (e.g. Iken et al., 1983), and in Greenland (Zwally,
2002). Over Antarctica, a review by Fricker et al. (2016) detailed three documented
cases of temporary ice acceleration that coincides with active subglacial lake drainage
events. Scambos et al. (2011) reported on a subglacial lake drainage event (measured
by ICESat laser altimetry) potential linked to a speed up event (measured by image
feature tracking) at Crane Glacier, Antarctic Peninsula. Bell et al. (2007) found the
onset of rapid �ow at the downslope margins of four Recovery subglacial lakes. Over
Byrd glacier, subglacial lake drainage has also been linked to glacier acceleration
(Stearns et al., 2008; Wright et al., 2014). Still, there has been considerable debate
on the in�uence of water versus topographic controls on the �ow of ice. Siegfried
et al. (2016) analyzed continuous GPS data on Whillans and Mercer Ice Stream,
linking a subglacial �ood event with a two year (2012-2013) period of increased ice
velocity up to 3.8 % above the previous background trend (2010-2011). However,
two separate Subglacial Lake Mercer drainage events were both correlated with
increased velocity (in late 2012) and decreasing velocity (late 2014), which points to
the varying in�uence of active subglacial lakes on Antarctic ice �ow and the need for
better ice sheet models that can capture this level of complex behaviour (Siegfried
et al., 2016). Winsborrow et al. (2010) reviewed the locations of ice streams -
areas of fast ice �ow bounded by slower ice, suggesting that topographic focusing is
typically more important than meltwater or soft beds. Over Thwaites Glacier, it has
been suggested that extra water had little or no in�uence on the speed of the lower
trunk of Thwaites Glacier, owing to a stronger control by bed topography (A. O.
Ho�man et al., 2020; B. E. Smith et al., 2017). Over the Recovery/Slessor/Bailey
Region, Diez et al. (2018) suggests that �ow in the downstream areas of Recovery
Glacier are topographically controlled, while upstream parts are controlled by basal
water. The mobility of subglacial water over short timescales and across diverse
geographical settings indicate that e�cient methods for mapping spatiotemporal
patterns of subglacial hydrology are needed, and this forms the focus of the following
sections.

73



4.2. METHODS CHAPTER 4. ICESAT-2 SUBGLACIAL LAKES

4.2 Methods

To map the location of Antarctic active subglacial lakes, we present an automated
algorithm focused on elevation time-series data from the ICESat-2 laser altimeter
(Markus et al., 2017; Neumann et al., 2019). First, we detail the components of ice
surface elevation change over time, and outline methods for measuring these vertical
displacements using satellite based sensors. Next, we present a point-cloud based
algorithm for detecting active subglacial lake clusters from elevation change anomaly
clusters. The algorithm is designed to e�ciently leverage the high (60 m along-track
spacing) density ICESat-2/ATLAS land ice time-series data product (ATL11; B. E.
Smith et al., 2021). We then conduct crossover track analyses over individual lake
areas and use it to generate a time-series of ice volume displacement.

4.2.1 Components of ice surface elevation change over time

Surface elevation change over a column of ice is described by Cu�ey and Paterson
(2010, p.335) as follows:
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ḃs
ρs

+
ḃb
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where ice surface elevation is S, bed elevation is B and time is t. The vertical
accumulation terms are made of the surface speci�c balance rate ḃs and surface ice
density ρs, basal speci�c balance rate ḃb and basal ice density ρi, and rate of mass
loss by melt µ̇i. A glossary description for these terms can be found in Cogley et al.
(2011).

The horizontal �ux divergence term is calculated as follows:
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+
δqy
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(4.2)

where qx and qy are ice �uxes in the along-�ow x and across-�ow y direction.

The densi�cation rate Dρ
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is calculated as follows:
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where u, v, w are ice velocities in the x, y and z components respectively. Fur-
ther details of the derivation of Equations (4.1), (4.2) and (4.3) can be obtained in
Whillans (1977) and Reeh et al. (1999).

Our study focuses on changes in the subglacial component δB, but since satellites
measure the total change in ice surface elevation δz = δS− δB, we need to separate
the di�erent surface and basal processes that lead to the total elevation change
observed (see Fig. 4.3). As the magnitude of vertical elevation changes and the
timespan in which this elevation change occurs di�er between surface and basal
processes, these elevation time-series patterns can be used to determine the cause of
elevation changes. The following paragraphs lists out some of the major components
a�ecting ice surface elevation changes on short (< 1 yr) timescales.

74



CHAPTER 4. ICESAT-2 SUBGLACIAL LAKES 4.2. METHODS

Surface balance

On the surface (air-ice interface), snow accumulation (Fig. 4.3 green) can lead to an
increase in elevation, while a decrease in elevation can come from snow compaction
(Fig. 4.3 red) or mass wasting processes (Fig. 4.3 blue). Surface processes are sea-
sonally dependent, with an greater increase in elevation due to snow accumulation
over the austral winter than in the austral summer due to more �rn compaction
(Fig. 4.3, Ligtenberg et al., 2012). In Antarctica, accumulation tends to be a slow
and gradual process due the low precipitation over the continent, in the order of
∼ 2 mm yr−1 (Fig. 4.3 green, Arthern et al., 2006). Mass wasting processes (Fig. 4.3
blue) typically occur in fast �owing ice regions like glaciers and ice streams. Over
a year, the net contribution of these surface processes are typically in the order of
centimetres to tens of centimetres a year. Over a decade, these may amount to about
a metre or less of elevation change, and we can observe this stable linear trend in
most parts of the Antarctic continent over the satellite era (B. E. Smith, Fricker,
Gardner, Medley, et al., 2020).

Figure 4.3: Seasonal cycle of ice surface elevation change (dH/dt) over Antarc-
tica. Total monthly surface change (vtot, black) components are: accumulation
(vacc, green) and snowmelt (vme, blue), densi�cation/�rn compaction (vfc, red), �ux
divergence/vertical downward movement of ice (vice, brown) and tidal buoyancy ef-
fects (vby, orange). Figure is from Ligtenberg et al. (2012).

Densi�cation

The conversion of snow to �rn and then to glacier ice through the process of densi-
�cation results in a change in the height of an ice column. The rate of densi�cation
varies throughout the ice column, and is a�ected by temperature and the snow ac-
cumulation rate (Herron & Langway, 1980). Over Antarctica, thickness change from
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densi�cation can be greater than that due to mass-balance changes, and the mag-
nitude of simulated �rn depth changes of ±0.2 m yr−1 (Fig. 4.3 red) is a source of
uncertainty when converting altimetry derived ice elevation changes to mass balance
changes (Helsen et al., 2008). Firn densi�cation is also strongly time-dependent,
with winter months showing slower rates of �rn compaction due to snow accumula-
tion and summer months showing more �rn compaction due to higher temperatures
(see Fig. 4.3, Ligtenberg et al., 2011).

Flux divergence

Flux divergence is the vertical component of ice thickness change at a �xed point in
space occurring due to ice �ow, independent of changes in accumulation, ablation
or ice density (Fig. 4.3 brown, see Cogley et al., 2011, p.43). Over Antarctica,
this is seen as a dynamic thickening signal over Kamb Ice Stream (B. E. Smith et
al., 2005), and dynamic thinning signal over the Amundsen Sea sector and Totten
Glacier (Flament & Rémy, 2012; Pritchard et al., 2009).

Basal balance

On the bottom (ice-rock interface), changes in the volume accreted basal ice or
subglacial water can also lead to ice surface elevation changes. At Dome A in East
Antarctica, RES observations revealed ice accretion plumes up to 1100 m in height
that result in a thicker ice column, and the rates of basal ice freeze-on could be
greater than surface accumulation rates in localized areas (Bell et al., 2011). The
mechanism of subglacial lake drainage and �lling events are thought to be through
sediment-�oored canals at the Whillans Ice Stream in Antarctica (Carter et al.,
2017), though predicting the onset of these draining and �lling events remain an
elusive task. The drainage or �lling however, can take place rapidly at time scales of
a few days or weeks, with ice surface elevation changes up to a few metres observed
(e.g. Siegfried et al., 2016). The pattern of sudden elevation change over a short
timescale caused by subglacial water volume changes typically occurs over a limited
geographical region of a few square kilometres (e.g. Siegfried & Fricker, 2018; B. E.
Smith et al., 2009). This stands in contrast with the background gradual trend in
elevation change caused by surface processes. It is this anomalous pattern which
is used as the basis of active subglacial lake detection. Besides subglacial water
volume changes a�ecting ice surface elevation, variability in basal traction can also
lead to ice surface changes (Gudmundsson, 2003; Raymond & Gudmundsson, 2005;
Sergienko et al., 2007).
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4.2.2 Active subglacial lake detection from remote sensing

4.2.2.1 Satellite sensors measuring elevation over Antarctica

Several satellite sensors exist to measure ice surface height, such as laser and radar
altimeters, or optical photogrammetry (see Fricker et al., 2016, for a review). A
comparison of three main satellite-based methods as of 2020 is given below:

REMA stereophotogrammetry

The Worldview-1/2/3 and GeoEye-1 satellites capture optical images, and ice sur-
face elevation estimated via stereophotogrammetry is used to create the Reference
Elevation Model of Antarctica (REMA) DEM (Howat et al., 2019). The visible
light part of the electromagnetic spectrum (e.g Red, Green, Blue, Infrared bands)
detected by optical sensors are a�ected by cloud cover, and can only work during
summer months with daylight. Stereophotogrammetry requires at least two views of
the same location taken at di�erent viewpoints to derive the parallax measurement.
The Worldview-1/2/3 and GeoEye-1 satellites used by REMA reaches 88°S, with
the remainder 2° radius pole hole �lled in the REMA mosaic products. Compared
to laser and radar altimeters, this method can achieve a high spatiotemporal reso-
lution under cloud-free weather conditions. The REMA strip DEM products have
a spatial resolution of 2 m over West Antarctica and 8 m over East Antarctica.

Cryosat-2 radar altimeter

The CryoSat-2/SIRAL radar altimeter (2010- ; Wingham et al., 2006) allows for
direct measurement of the ice surface, subjected to a correction for �rn penetration.
It uses radio waves (Ku band, 13.6 GHz) that is una�ected by cloud cover. Cryosat-2
reaches 88°S. It is less capable of detecting signals over steep undulating topography
compared to ICESat-2. In SARIn mode, the beam `footprint' is approximately
380�410 m along-track and 1.7 km across-track (McMillan et al., 2013).

ICESat-2 laser altimeter

The ICESat-2/ATLAS (2018- ; Markus et al., 2017) laser altimeter o�ers the most
precise measurement of the ice surface, with little to no �rn penetration. It shoots
green 532nm wavelength photon light that is a�ected by cloud cover. ICESat-2 can
reach 88°S which is an additional 2 degrees of latitude over ICESat's 86°S limit. The
ICESat-2/ATLAS instrument's 6 laser beam architecture allow us to better handle
anomalous heights due to cross-track slopes that was a major issue in the previous
generation ICESat/GLAS mission. There is an order of magnitude increase in track
density, and thus greater coverage of Northern areas of the Antarctica continent,
notably near the coastal areas. ICESat-2's 3 beam pairs are separated by ∼ 3 km
across-track and beams within a pair separated by ∼ 90 m. The laser has a footprint
size of 17 m, with an along-track sampling interval of 0.7 m, the ATL06 land ice
product has 40 m along-track resolution (B. E. Smith et al., 2019). Assessment of
the ICESat-2 ATL06 land ice height product over relatively homogeneous and low-
slope areas in Antarctica yielded an vertical accuracy and precision of ∼ 3 ± 9 cm
(Brunt et al., 2019).

We will focus on the ICESat-2/ATLAS satellite sensor in our study, as it is o�ers
the highest spatial and temporal resolution product for obtaining ice surface height
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information. In particular, a more precise cross-track slope correction enabled by
ICESat's 6 laser-beam setup allows us to simplify the active subglacial lake detection
algorithm in B. E. Smith et al. (2009) considerably. However, the increased data
density of ICESat-2 over ICESat also requires a more deliberate data engineering
process which will be outlined next.

4.2.3 Measuring rapid height change signals

ICESat-2's ATLAS instrument has six laser beams which pulses at 10 000 Hz com-
pared to the previous generation ICESat's GLAS instrument at 40 Hz (Markus et
al., 2017), providing a dense point cloud that enables development of more pre-
cise change detection algorithms. To realize the full potential of these dense point
clouds, a fundamental rethink is needed in the way we isolate elevation change
signals over noise at scale. Lake outline delineation has to shift away from using
spatially averaged gridded change measures (c.f. Siegfried & Fricker, 2018; B. E.
Smith et al., 2009) to discrete point-based measurements that can capture change
exactly at where it is happening, so as to resolve higher spatial resolution outlines
at sub-decimetre scales.

This point cloud based revolution of delineating active subglacial lake outlines is
enabled by ICESat-2's ATL11 land-ice time-series product (B. E. Smith et al., 2021),
based on the ATL06 land-ice height product (B. E. Smith et al., 2019) but with sev-
eral enhancements conducive to ice elevation time-series analysis. The ATL11 prod-
uct (B. E. Smith et al., 2021) is created by taking the six tracks from ATL06 and per-
forming a height correction to account for spatial o�sets between repeat track mea-
surements (see https://nsidc.org/sites/nsidc.org/�les/technical-references/ICESat2_
ATL11_ATBD_r002.pdf for more details), resulting in three `pair' tracks that pro-
vide a robust point-based time-series of height measurements.

4.2.3.1 Magnitude of height change hrange

In Siegfried and Fricker (2018) and B. E. Smith et al. (2009), active subglacial lakes
are detected on the basis of the magnitude of vertical elevation change hrange =
hmax − hmin. This approach is prone to outliers and requires a pre-processing step
to �lter out elevation anomalies such as ones caused by cloud interference which
lead to incorrect hrange values. The pre-�ltering step can be too aggressive and may
waste data incorrectly classi�ed as false negatives. However, range calculations are
fast to compute and scale linearly with the number of data points. They can be
used to quickly locate areas that have experienced a signi�cant amount of elevation
change. Areas with high hrange values can then be analyzed further using regression
methods.

4.2.3.2 Rate of ice surface elevation change over time (dh/dt)

The rate of ice surface elevation change over time can be calculated using a linear
least-squares regression formula. The rate of elevation change over time dh

dt
can be

found through a linear regression of data points elevation h0 at time t0 until hn at
time tn. This is more computationally expensive than the hrange calculation, and
thus more e�ort is required to scale it to continent-wide analysis. This approach
is more robust to outliers than hrange. While pre-processing steps can be used, it
is not an essential requirement and the �lters can be less aggressive to minimize
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waste of false negative data. In the case of ICESat-2, this pre-processing �lter can
be done on the basis of quality assessment criteria such as the photon return signal.
Alternatively, a weighted linear regression can be used to give more weight to good
data points (i.e. those less a�ected by clouds) and less weight to the anomalous
points, thereby keeping data culling to a minimum.

Still, we may need to account for temporal dependence when interpreting rate
of elevation change dh

dt
at any given point. Details in the elevation trend may be

masked, for example, if the surface were to rise at t1 and fall at t2, resulting in a dh
dt

value that may not indicate a signi�cant change. The short two-year time period
(2018-2020) used in this study allows us to neglect this temporal dependence e�ect,
but dh

dt
should be interpreted carefully when using longer term time-series data to

avoid masking out elevation anomalies with a cyclic nature.

4.2.4 Clustering active lakes: Using DBSCAN

To detect subglacial lake clusters directly on our dense point cloud, we utilize the
Density-based spatial clustering of applications with noise (DBSCAN) algorithm
(Schubert et al., 2017). DBSCAN is an unsupervised classi�cation algorithm that
does not require the operator to pre-determine the number of clusters (as with K-
means clustering). It is suited ideally for our active subglacial lake detection task,
as it can handle non-spherical shapes. There are only two parameters that need to
be set. ε de�nes the maximum distance between which two points can be linked in
a cluster. To �lter out outliers, there is a minPts setting that sets the minimum
number of points in a neighborhood (ε) surrounding a point which is needed such
that the point is considered to be a core point of a cluster.

Algorithm 1 Subglacial Lake Finder algorithm

for basin in basins do . loop through each Antarctic drainage basin
Let basin_points be a set of points inside the drainage basin with dh

dt
values

Let x be an empty point database to store �ltered points
tolerance← 3× Median(|basin_points|)
for basin_point in basin_points do

if basin_point ≥ tolerance then . Find points with above average dhdt
Add basin_point to x

end if
end for
lakesdrain ← DBSCAN(x with dh

dt
< 0) . Labelled draining lake points

lakesfill ← DBSCAN(x with dh
dt
> 0) . Labelled �lling lake points

lakes← lakesdrain ⊕ lakesfill . Concatenate all lakes
return lakes

end for

Full details of the active subglacial lake �nder algorithm are presented in pseu-
docode format at Algorithm 1. Empirically, we determine DBSCAN parameter
values of ε = 3000 m (same as the across-track spacing of ICESat-2's 3 laser beam
pairs) and minPts = 300 to work well for �nding potential elevation anomaly clus-
ters while isolating spurious elevation change signals (e.g. due to cloud cover or
steep slopes).

The resulting set of potential active subglacial lake clusters (both draining and
�lling lakes), are then passed though a post-processing stage to prune out false
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positive lakes. The criteria in this post-processing �ltering algorithm is adapted
from those used in the ICESat (2003-2009) (Fricker et al., 2007; B. E. Smith et
al., 2009) and Cryosat-2 (2013-) (e.g. Kim et al., 2016; Siegfried & Fricker, 2018)
missions, but revised for the current ICESat-2 (2018-) mission. Full details of the
subglacial lake �ltering algorithm are presented in pseudocode format at Algorithm
2.

Algorithm 2 Subglacial Lake Filtering algorithm

Require: lakes
Let lakedb be an empty lake database to store �ltered lakes
for lake in lakes do

Let pointsinner be a set of points inside the potential lake with
dh
dt

values
dhdtinner ← Median(pointsinner)
lake_polygon← ConvexHull(pointsinner)
Let pointsouter be all points within a 5000 m bu�er zone outside the

lake_polygon
dhdtouter ← Median(pointsouter)
madouter ← Median(|pointsouter − dhdtouter|) . Median Absolute Deviation of

pointsouter
if |dhdtinner − dhdtouter| ≥ 3×madouter then

Add lake_polygon to lakedb
end if

end for
return lakedb

Algorithm 2 produces a database of lake polygon outlines lakedb directly from
ICESat-2 points using a convex hull (Barber et al., 1996) without the use of an
intermediate grid interpolation step. This database of active subglacial lake bound-
aries lakedb is supplemented with additional statistics within and outside of the
subglacial lake's perimeter. Inside the polygon, we include the maximum absolute
elevation change over time (max |dh

dt
|) as well as the median and mean elevation

change over time (dhdtinner, dhdt). Outside the polygon, we store information on
the background median elevation change over time (dhdtouter) as well as the me-
dian absolute deviation and standard deviation of elevation change over time values
(madouter, stdouter). The database lakedb also includes a list of ICESat-2 reference
ground track number and laser pair names (refgtracks) crossing the polygon area.

Owing to the dynamic nature of these subglacial lake activity, wherein lakes can
drain in a matter of weeks or months, we have automated the procedure to make it
easier to get into more detailed analysis sooner. The automation allows us to detect
such events every season, or every month, depending on data availability.

4.2.5 Crossover track analysis and ice volume displacement

Once the lake outlines are obtained, we conducted further crossover analysis to
generate a higher temporal resolution (< ICESat-2's 91-day repeat cycle) elevation
change time-series on areas of interest (see Fig.4.4). We utilized the x2sys_cross
package (Wessel, 2010), setting a maximum crossover distance threshold of 250 m,
with crossover values linearly interpolated from their actual track points. For each
crossover point, an elevation anomaly time series is generated by subtracting the
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crossover elevation at any time (hn at tn) with the �rst crossover elevation value
(h0 at t0). The crossover elevation anomalies of individual lakes will be presented
in Sec. 4.3.2 in conjunction with an ice surface elevation plot and an along-track
transect plot.

Figure 4.4: Schematic of ICESat-2 altimetry repeat-track and crossover-track anal-
ysis. a Repeat-track analysis on a single ICESat-2 beam pair over four ICESat-2
cycles, with each cycle repeating over the same reference track every 91 days. b
Closeup view of a single ICESat-2 beam pair separated into left and right tracks.
These two tracks in an ATL06 beam pair are normalized into a single track in the
ATL11 product after cross-track slope corrections are applied, as illustrated by the
nominal reference track (black) in the middle. c Crossover-track analysis is con-
ducted at the interpolated intersection point (black) of two tracks - the ascending
track (purple) and descending track (green). Figure is from T. Li et al. (2020),
licensed under CC-BY-4.0.

A time-series of ice volume displacement is estimated by multiplying lake area
with elevation anomalies, following Kim et al. (2016) and Siegfried et al. (2016).
Speci�cally, we use the rolling mean of the elevation anomaly crossover time-series
over a 91 day period. Siegfried et al. (2016) recommends using the term ice volume
displacement, which represents an upper limit on likely basal water volume changes.
These ice volume displacement results will be presented in Sec. 4.4.3.
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4.3 Results

4.3.1 ICESat-2 active subglacial lake inventory

Here we present an inventory of Antarctic active subglacial lakes for the time period
2018-2020 as detected by ICESat-2 laser altimetry. The Antarctic-wide inventory
(Fig. 4.1) consists of individual lake polygons classi�ed using elevation anomalies
(Sec. 4.2.4). ICESat-2's increased spatial data density identi�ed a greater distri-
bution of Antarctic active subglacial lakes, including 36 potential new lakes in the
86�88°S area missing from the previous ICESat mission (Fig. 4.1). Instead of ∼ 131
active subglacial lakes with a combined area of ∼ 25 793 km2 detected over 13 years
(Siegfried & Fricker, 2018), we detected ∼ 194 active subglacial lakes with a com-
bined area of ∼ 15 688 km2 over 2 years (Fig. 4.1). Elevation anomaly clusters
prevalent along the Siple Coast (Fig. 4.5) are explored in Sec. 4.3.1.1.
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Figure 4.5: Siple Coast active subglacial lakes detected by ICESat-2 laser altimetry.
Coloured polygons show areas with elevation anomalies (high |dhdt|) from 2018-10-
14 to 2020-11-11, going from red (surface lowering) to blue (surface uplift). Selected
active subglacial lakes and other features of interest (denoted with an asterisk *) are
labelled in white. Abbreviations are: Mac1: MacAyeal 1, Mac4: MacAyeal 4, K1:
Kamb 1, K34: Kamb 34, K5: Kamb 5, K6: Kamb 6, K8: Kamb 8, SLE: Subglacial
Lake Engelhardt, SLW: Subglacial Lake Whillans, WIX: Whillans IX, WX: Whillans
X, WXI: Whillans XI, W6: Whillans 6, W7: Whillans 7, L12: Lake 12, L78: Lake
78, SLM: Subglacial Lake Mercer, SLC: Subglacial Lake Conway. Grounding line
(Depoorter et al., 2013) is plotted as a white line. Ice �ow is from top left to bottom
right. Plotted on an Antarctic Stereographic Projection with a standard latitude of
71°S (EPSG:3031).
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4.3.1.1 Siple Coast active subglacial lakes

Active subglacial lake boundaries classi�ed from the DBSCAN-based algorithm
(Sec. 4.2.4) that coincide with previous lake inventories (Siegfried & Fricker, 2018;
B. E. Smith et al., 2009) are labelled in Fig. 4.5 alongside some newly discovered lakes
labelled with roman numerals (Whillans IX, X and XI). Over MacAyeal Ice Stream,
the algorithm detected two draining lakes - MacAyeal 1 (Mac1) and MacAyeal 4
(Mac4) documented in Fricker et al. (2010), and two potential new active subglacial
lakes, one �lling between Mac1 and Mac4, one �lling to the South of Mac1 next to
Shabtaie Ice Ridge. Over Bindschadler Ice Stream three small elevation anomaly
clusters are identi�ed, one pair which is draining and �lling close together, and a
further one upstream to the West that is draining. Over Kamb Ice Stream, the algo-
rithm detected �lling lakes Kamb 1 (K1), Kamb 34 (K34, see also Kim et al., 2016),
Kamb 5 (K5), Kamb 6 (K6), Kamb 7 (K7) and Kamb 8 (K8) originally reported in
B. E. Smith et al. (2009).

Further South along the Siple Coast, more clusters of elevation anomalies/active
subglacial lakes are identi�able, with some forming mega-clusters. Over the up-
stream area of Whillans Ice Stream, the algorithm detected lakes Whillans 6 (W6)
and Whillans 7 (W7) reported in B. E. Smith et al. (2009), and three other �ll-
ing lakes including Whillans IX (WIX) to be discussed in Sec. 4.3.2. Over the
downstream area of Whillans Ice Stream, the algorithm detected Subglacial Lake
Conway (SLC), Subglacial Lake Engelhardt (SLE), Subglacial Lake Whillans (SLW)
and Lake 12 (L12) reported in Fricker and Scambos (2009), and a new �lling lake
named Whillans XI (WXI) upstream of Subglacial Lake Whillans. Note that SLC
exists as a mega-cluster of 2 draining lakes, and SLW (see also Sec. 4.3.2) is a mega-
cluster consisting of 3 �lling lakes. Over Mercer Ice Stream, the algorithm detected
Lake 78 (L78; see also Siegfried & Fricker, 2018) and Subglacial Lake Mercer (SLM)
reported in Fricker and Scambos (2009), as well as one new �lling lake upstream.
Note that L78 exists as a mega-cluster of 4 �lling lakes, and SLM consists of 3 lakes
- one draining and two �lling.

Some potentially erroneous classi�cations (*1 to *6 in Fig. 4.5) were also made.
Sites *1 and *2 located upstream of Crary Ice Rise are unlikely to be active subglacial
lakes because they are close to the grounding zone and exhibit oscillatory elevation
anomaly patterns indicative of tidal cycle based �uctuations. Site *3 downstream of
Subglacial Lake Engelhardt is likely the location of crevassing at the grounding zone
transition which resulted in an elevation lowering. Sites *4, *5, and *6 are likely
false positive lakes misclassi�ed from altimetry errors over the steep topography of
the Transantarctic Mountains.

In the following, we focus on analyzing surface elevation change along theWhillans
Ice Stream central catchment saw a series of potentially connected elevation anoma-
lies, including one cluster (Whillans IX) not identi�ed in any previous lake inventory

4.3.2 Active subglacial lakes at Whillans Ice Stream central

basin

To examine the spatiotemporal patterns of individual active subglacial lakes in
greater detail, we present a time-series analysis using our methodology in Sec. 4.2.5,
focusing on the Whillans Ice Stream at the Siple Coast (Fig. 4.5). Results are shown
via 1) crossover analysis, 2) DEM di�erencing, and 3) Along track plots.
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Whillans 7

At Whillans 7, a decrease in ice surface elevation occurred from November 2019 to
November 2020 (Fig. 4.6). Within the lake area of ∼ 125.24 km2 (Fig. 4.7), the
median rate of elevation change is ∼ −3.03 m yr−1 while the mean rate of elevation
change is ∼ −3.30 m yr−1. The maximum vertical displacement observed over the
time period is ∼ −7.32 m, translating to a maximum rate of elevation change of
∼ −9.82 m yr−1, concentrated at the Western part (right-hand side of Fig. 4.8) of
the subglacial lake.

Figure 4.6: Elevation anomaly of crossover points within Whillans 7. 91 day rolling
mean of elevation anomalies shown as black dashed line. Inset plot shows locations
of crossover points (brown) within lake outline (cyan).

84



CHAPTER 4. ICESAT-2 SUBGLACIAL LAKES 4.3. RESULTS

Figure 4.7: Top: Digital Surface Elevation Model at Whillans 7 from interpolating
the mean elevation measured by ICESat-2 over 2018-2020. Overlaid on top are
ICESat-2 points (green), transect line in Fig. 4.8 (yellow) and lake outline (cyan).
Bottom: Trend map of ice surface elevation change over time (dhdt).

Figure 4.8: Along track view of ice surface elevation over Whillans 7 from ICESat-2
Cycle 3 to Cycle 9. Ice surface elevation is changing by ∼ 10 m yr−1 over a distance
of ∼ 14 km for this lake.
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Whillans IX

At Whillans IX, an increase in ice surface elevation occurred from November 2019 to
March 2020 (Fig. 4.9). Within the lake area of ∼ 221.22 km2 (Fig. 4.10), the median
rate of elevation change is ∼ 1.57 m yr−1 while the mean rate of elevation change is
∼ 1.92 m yr−1. The maximum vertical displacement observed over the time period
is ∼ 7.60 m, translating to a maximum rate of elevation change of ∼ 7.26 m yr−1,
concentrated at the Western part (right-hand side of Fig. 4.11) of the subglacial lake
centred around EPSG:3031 X:-445000, Y:-535000.

Subsequently from March 2020 to November 2020, the ice surface elevation de-
creased gradually over time. The transect view of the lake (Fig. 4.11) shows that the
Western lobe (which previously experienced the most sudden rapid rise) lowered in
elevation by ∼ 2 m, while the Eastern (left-hand side of Fig. 4.11) lobe saw a slight
uplift of <1 m.

Figure 4.9: Elevation anomaly of crossover points within Whillans IX. 91 day rolling
mean of elevation anomalies shown as black dashed line. Inset plot shows locations
of crossover points (blue) within lake outline (cyan).
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Figure 4.10: Top: Digital Surface Elevation Model at Whillans IX from interpolating
the mean elevation measured by ICESat-2 over 2018-2020. Overlaid on top are
ICESat-2 points (green), transect line in Fig. 4.11 (yellow) and lake outline (cyan).
Bottom: Trend map of ice surface elevation change over time (dhdt).

Figure 4.11: Along track view of ice surface elevation over Whillans IX from ICESat-
2 Cycle 3 to Cycle 8. Ice surface elevation is changing by ∼ 7 m yr−1 over a distance
of ∼ 11 km for this lake.
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Subglacial Lake Whillans

At Subglacial Lake Whillans, an increase in ice surface elevation occurred from April
2019 to November 2020 (Fig. 4.12) across three separate clusters (Fig. 4.13). Within
the combined lake area of ∼ 265.05 km2 (Fig. 4.13), the median rate of elevation
change is ∼ 1.01 m yr−1 while the mean rate of elevation change is ∼ 1.05 m yr−1.
The maximum vertical displacement observed over the time period is ∼ 4.68 m,
translating to a maximum rate of elevation change of ∼ 1.90 m yr−1, concentrated
at the Southern cluster (right-hand side of Fig. 4.14). A ridge ∼ 6 km wide separates
the Southern Subglacial Lake Whillans from two other Northern clusters. The two
Northern elevation anomaly clusters themselves are separated by a distance of ∼
1 km.

Figure 4.12: Elevation anomaly of crossover points within Subglacial Lake Whillans.
91 day rolling mean of elevation anomalies shown as black dashed line. Inset plot
shows locations of crossover points (blue) within lake outline (cyan).
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Figure 4.13: Top: Digital Surface Elevation Model at Subglacial Lake Whillans from
interpolating the mean elevation measured by ICESat-2 over 2018-2020. Overlaid on
top are ICESat-2 points (green), transect line in Fig. 4.14 (yellow) and lake outline
(cyan). Bottom: Trend map of ice surface elevation change over time (dhdt).

Figure 4.14: Along track view of ice surface elevation over Subglacial Lake Whillans
from ICESat-2 Cycle 3 to Cycle 8. Ice surface elevation is changing by ∼ 2 m yr−1

over a distance of ∼ 4 km for the Southern (right-side) lake.
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Lake 12

At Lake 12, an increase in ice surface elevation occurred from June 2020 to November
2020 (Fig. 4.15). Within the lake area of ∼ 50.57 km2 (Fig. 4.16), the median rate
of elevation change is ∼ 1.20 m yr−1 while the mean rate of elevation change is
∼ 1.36 m yr−1. The maximum vertical displacement observed over the time period
is ∼ 4.24 m, translating to a maximum rate of elevation change of ∼ 3.55 m yr−1,
concentrated at the Eastern part (left-hand side of Fig. 4.17) of the subglacial lake.

Figure 4.15: Elevation anomaly of crossover points within Lake 12. 91 day rolling
mean of elevation anomalies shown as black dashed line. Inset plot shows locations
of crossover points (blue) within lake outline (cyan).
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Figure 4.16: Top: Digital Surface Elevation Model at Lake 12 from interpolating the
mean elevation measured by ICESat-2 over 2018-2020. Overlaid on top are ICESat-
2 points (green), transect line in Fig. 4.17 (yellow) and lake outline (cyan). Bottom:
Trend map of ice surface elevation change over time (dhdt).

Figure 4.17: Along track view of ice surface elevation over Lake 12 from ICESat-2
Cycle 3 to Cycle 9. Ice surface elevation is changing by ∼ 4 m yr−1 over a distance
of ∼ 6 km for this lake.
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4.4 Discussion

4.4.1 Comparison to previous active subglacial lake studies

ICESat-2 classi�ed Antarctic active subglacial lakes (Fig. 4.1) allow us to revisit
previously studied lakes and observe new ones. As with the previous ICESat based
inventory (B. E. Smith et al., 2009), most active subglacial lakes are located over
West Antarctica (see Fig. 4.1), including signi�cant clusters over the Institute Ice
Stream and Foundation Ice Stream, as well as over Slessor Glacier and Recovery
Glacier. No active subglacial lakes were detected over the Ellsworth Subglacial
Highlands (c.f. Napoleoni et al., 2020) in this study, though this may be due to DB-
SCAN parameters used in Sec. 4.2.4. Over Thwaites glacier, we observed drainage
at Thw124 and �lling at Thw170 in the 2018-2020 ICESat-2 laser altimetry data,
matching those observed with Cryosat-2 radar altimetry (Malczyk et al., 2020; B. E.
Smith et al., 2017) and Sentinel-1 SAR data (A. O. Ho�man et al., 2020). We pri-
marily focus our study on the biggest cluster of active subglacial lakes over the Siple
Coast (see Sec. 4.3.1.1, Sec. 4.4.2), building on the observations of Siegfried et al.
(2016).

Active subglacial lakes were also observed over other parts of East Antarctica
(Fig. 4.1). Signi�cant clusters exist over Byrd Glacier (c.f. Wright et al., 2014)
and David Glacier (c.f. Lindzey et al., 2020). Our ICESat-2 algorithm also detected
surface uplift occurring at Lake Cook E2 (c.f. Y. Li et al., 2020) and surface lowering
at Nimrod 2 (c.f. B. E. Smith et al., 2009). This ICESat-2 active subglacial lake
inventory from 2018 to 2020 overlaps with many previously discovered lakes from
the ICESat and Cryosat-2 missions (see Siegfried & Fricker, 2018; B. E. Smith et al.,
2009), though the lake outlines can vary somewhat. Going forward, a systematic
way of naming these dynamic lake features is needed as more subglacial lakes are
discovered.

4.4.2 Multi-lobe active subglacial lakes

On the Siple Coast (Fig. 4.5) at Whillans 7 (Fig. 4.7), Subglacial Lake Whillans
(Fig. 4.13) and Whillans IX (Fig. 4.10), we observed active subglacial lake clusters
with multiple lobes closely spaced together, separated by ridge structures 1�4 km
apart. These multi-cluster patterns of ice surface elevation change observed from
precise ICESat-2 laser altimetry provide clues into subglacial water pathways and
the subglacial geomorphology of the Antarctic ice sheet. From 2018-2020 at Sub-
glacial Lake Whillans (Fig. 4.13) and Whillans IX (Fig. 4.10), there was a simulta-
neous �lling up of water in multiple lobes straddling a relatively stable medial ridge
with negligible surface elevation change. These stable medial ridges at Whillans
Ice Stream are possibly surface expressions of subglacial ridges, and we can map
the maximum width and minimum length of these features precisely using repeat
ICESat-2 altimetry measurements. There are gaps of: ∼ 4 km separating the South-
ern and Northern clusters of Subglacial Lake Whillans (Fig. 4.13); ∼ 1 km separat-
ing clusters at Whillans 7 (Fig. 4.7); and ∼ 1 km separating clusters at Whillans IX
(Fig. 4.10). No maximum length can be determined however, so a length to width
ratio for geomorphological classi�cation of these ridges (Ely et al., 2016) would re-
quire further ground-based RES or active seismic surveys (e.g. Christianson et al.,
2012; Horgan et al., 2012).
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The pattern of �lling and draining in distinct clusters of multi-lobe subglacial
lake systems at Whillans Ice Stream occurred in tandem, albeit at di�erent rates
(Fig. 4.8, Fig. 4.11). This may be a subglacial distributary, with the subglacial
water network branching o� and causing di�erential in�ow into the multi-lobe lakes.
Alternatively, it could indicate the presence of a connected active subglacial water
system straddling a permeable ridge-like structure, or that of a less permeable ridge-
like seal breaking and healing over time, allowing for direct water movement across
subglacial channels or canals (see Sec. 4.1.2.2). Similar lobe-like structures have
been observed at the Whillans Southern catchment at Subglacial Lake Conway and
Subglacial Lake Mercer where lake drainage occurred at the same time with Lower
Subglacial Lake Conway and Lower Subglacial Lake Mercer respectively (Siegfried &
Fricker, 2021), possibly occurring as a result of similar processes whereby subglacial
ridge structures semi-separate each individual water store.

4.4.3 Cascading drain �ll activity of Whillans subglacial lakes

Figure 4.18: Active subglacial lakes over the Whillans Ice Stream Central Catch-
ment. Ice �ow direction is from left to right. a) Estimated ice volume displacement
for: Whillans 7 (W7), Whillans IX (WIX), Subglacial Lake Whillans (SLW) and
Lake 12 (L12). b) Hydropotential map of the study area with contours at 250 kPa
intervals, overlaid with subglacial lake locations (red: draining, blue: �lling).

93



4.4. DISCUSSION CHAPTER 4. ICESAT-2 SUBGLACIAL LAKES

4.4.3.1 Upstream drainage of Whillans 7 and Whillans IX

In Section 4.3.2, we showed a series of active subglacial lakes along the Whillans Ice
Stream central basin undergoing localized ice surface elevation change fromWhillans
7 (Fig. 4.6) to Lake 12 (Fig. 4.15). Using ice volume displacement time-series data
(Sec. 4.2.5) and hydropotential maps (Appendix C), we detail a cascading pattern
of lake drainage (see Fig. 4.18) similar to those observed at Recovery Glacier (Dow
et al., 2018) and Thwaites Glacier (B. E. Smith et al., 2017). The drainage activity
started from November 2019 at Whillans 7 (Fig. 4.6) with a maximum volume
displacement of 0.3 km3, and this lake is likely the main source of basal water input
to Subglacial Lake Whillans IX (Fig. 4.9) which experienced a volume increase of
up to 0.4 km3 from November 2019 to March 2020. The remaining 0.1 km3 not
accounted for by Whillans 7 could be sourced from draining lake Whillans 6 (W6)
on the van der Veen Ice Stream that connects into Whillans Ice Stream's main trunk
according to the hydropotential map (see Fig. 4.18b), though previously modelled
subglacial water �ux (Fig. 4.19, Carter et al., 2013; Le Brocq et al., 2009) indicated
that Whillans 6 �ows South into Subglacial Lake Conway. From April 2020 to
November 2020, the ice volume of Whillans 7 decreased at a slower rate with a total
drop in ice volume of about 0.1 km3, while Subglacial Lake Whillans IX experienced
a greater drop in ice volume of about 0.2 km3 over the same period.

4.4.3.2 Downstream �lling of Subglacial Lake Whillans and Lake 12

Water that drained from the two upstream lakes induced localized uplifts further
downstream (Fig. 4.18). The area around Subglacial Lake Whillans (Fig. 4.13,
Tulaczyk et al., 2014) saw an elevation uplift from April to November 2020 in three
distinct clusters (Fig. 4.12), corresponding to an increase in ice volume displacement
of almost 0.4 km3. From there, the water appeared to have �owed into Subglacial
Lake 12 (Fig. 4.15) which saw an increase in ice volume displacement of 0.1 km3

from June to November 2020. Previous hydropotential maps for the ICESat time
period (2003-2009, see Fig. 4.19, Carter et al., 2013) suggested that subglacial water
at the Whillans central catchment �owed along a more Southern path closer to Lake
10 (Siegfried et al., 2016) and out to the ice shelf cavity via the Whillans Grounding
Zone subglacial estuary (see Horgan et al., 2012). The ICESat-2 observations did
not detect any signi�cant elevation anomaly over Lake 10 (see Fig. 4.19, Fig. 4.18b,
Fig. 4.5), and we suggest that a more Northern path via Lake 12 (Fig. 4.15) was
taken instead over the course of 2020, indicating that �ow re-routing may have
occurred at the Whillans Ice Stream Central Catchment (c.f. Carter et al., 2013).
Still, subglacial water �ow could be occurring along the Southern route, just that no
active subglacial lake activity was detected by the DBSCAN algorithm in Sec. 4.2.4.

4.4.3.3 Rate and periodicity of water output into the ocean

The high temporal resolution (< 3 months) data from our crossover analysis can
reveal the timing and volume of subglacial water discharge. Filling events can be
very rapid, with Whillans IX (Fig. 4.9) showing a maximum elevation change of
∼ 8 m from December 2019 to March 2020, corresponding to an ice volume dis-
placement of 0.4 km3 (Fig. 4.18a) over 3 months. Conversely, drainage events can
be slow and sustained, as in Whillans 7 (Fig. 4.6) with a maximum elevation change
of ∼ −7 m from Oct 2019 to November 2020, corresponding to an ice volume dis-
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Figure 4.19: Modelled subglacial water �ux (2003-2009) over Kamb (KIS), Whillans
(WIS) and Mercer Ice Stream (MIS). Abbreviated lake names are: K1, K5: Kamb 1
and 5, W8, W7, W6: Whillans 8, 7, and 6; USLC: Upper Subglacial Lake Conway,
SLC: Subglacial Lake Conway, SLM: Subglacial Lake Mercer, SLW: Subglacial Lake
Whillans, SLE: Subglacial Lake Engelhardt, L78, L12, L10: Lake 78, 12, and 10.
Flow direction is from left to right. Figure adapted from Carter et al. (2013).
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placement of 0.3 km3 (Fig. 4.18a) over 11 months. This unusual pattern of a rapid
�lling and slow drainage at Subglacial Lake Whillans IX (Fig. 4.9) and Whillans 7
(Fig. 4.6) stands in contrast to previous patterns of slow �ll and rapid drainage in
the Whillans catchment (e.g. Siegfried & Fricker, 2018; Siegfried et al., 2016). This
2019 subglacial lake drainage event is the 5th one observed along the Whillans Ice
Stream central catchment since satellite observations started in 2003 (Siegfried &
Fricker, 2018). Cryosat-2 observations from 2013 onwards appear to show more fre-
quent �ll-drain cycles over Subglacial Lake Whillans, with an event in 2014 (Siegfried
et al., 2016), 2017 (Siegfried & Fricker, 2018), and now in 2019 (Fig. 4.12). This
short residence time of water (2�3 yr) observed along the Whillans Ice Stream cen-
tral catchment from 2013-2020 has implications for the biogeochemical cycling in the
Southern Ocean which was previously inferred to be longer (years to decades) based
on measurements at Subglacial Lake Mercer (Hawkings et al., 2020; Vick-Majors
et al., 2020). Further repeat satellite altimeter measurements into the future (e.g.
CRISTAL; Kern et al., 2020) will be needed to capture the periodicity of these
trends.

4.4.4 Limitations

The clustering algorithm was ran on ICESat-2 ATL11 land ice time-series (B. E.
Smith et al., 2021) points which have a lower data density (3 laser tracks) than
the ATL06 land ice (B. E. Smith, Fricker, Gardner, Siegfried, et al., 2020) or raw
ATL03 (Neumann et al., 2020) point cloud products (6 laser tracks). The tradeo�
was made here on the basis of higher vertical accuracy and precision, rather than
denser spatial coverage. This means that our active subglacial lake outlines loses
∼ 45 m of horizontal precision (half the 90 m spacing of an ICESat-2 laser pair),
compared to if the ATL06 product was used as in Siegfried and Fricker (2021).
However, we note that determining active subglacial lake polygon areas here on
the basis of vertical displacement may represent an overestimate of the true lake
area owing to the complexity of vertical ice dynamic signals (c.f. Y. Li et al., 2020;
Sergienko et al., 2007).

Furthermore, the elevation anomalies clusters may be due to other factors other
than basal water volume changes (see Sec. 4.2.1). Sergienko et al. (2007) notes that
basal traction variability is another potential source of ice surface elevation change,
and argues that simultaneous analysis of surface velocity changes (e.g. Siegfried et
al., 2016) is required to interpret the likely cause of change. Our classi�cation of
active subglacial lakes on the sole basis of vertical elevation change thus represents
an upper estimate on inferred subglacial water volume changes. Integration of hor-
izontal displacements from InSAR speckle-tracking, SAR o�set-tracking or Optical
feature-tracking (e.g. Gardner et al., 2018) is left to future work, and a challenge
will be in sourcing year-round, cloud-free, satellite measurements that reach up to
88°S (currently only available with ICESat-2 and Cryosat-2).

4.5 Conclusions

This ICESat-2 (2018-) active subglacial lake time series extends that of the ICE-
Sat (2003-2009) and ongoing Cryosat-2 (2010-) mission (Siegfried & Fricker, 2018).
Using an unsupervised clustering method (DBSCAN), we identi�ed localized ice
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surface anomalies over the whole Antarctic continent that are likely caused by sub-
glacial water movement. Along the central catchment of Whillans Ice Stream, we
applied crossover track analysis to look at the temporal evolution of these elevation
anomalies at short (< 3 month) timescales. A cascading pattern of subglacial lake
drainage was observed, starting upstream at Whillans 7 from November 2019 and
ending downstream at Lake 12 up to November 2020. Along this cascading drainage
path, we detected several new active subglacial lakes, including one named Whillans
IX at near the intersection of van der Veen Ice Stream and Whilans Ice Stream.
Notably, the rapid rate of �lling (∼ 8 m of vertical displacement over 3 months) at
Whillans IX has not been observed previously, and these observations of short water
residence times have implications for biogeochemical cycling in the Siple Coast and
Ross Ice Shelf area. Some active subglacial lakes also exhibited multi-lobe cluster
patterns, which we infer to be an indication of subglacial ridges that have some form
of subglacial water connectivity. A challenge remains in reconciling active subglacial
lake outline classi�cations from di�erent satellite sensors over time, while systemat-
ically naming the lakes in a standardized way as more lakes become discovered in
the future.
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Chapter 5

Conclusion

This thesis maps the subglacial world of Antarctica using satellite surface observa-
tions. A series of machine learning, inverse modelling and remote sensing methods
were presented, utilizing high spatial resolution (<= 250 m) datasets to investigate
Antarctica's subglacial topography and hydrology, with implications for ice �ow dy-
namics and future sea level projections. This section synthesizes the �ndings made
in the context of our original research questions, highlights gaps remaining in both
our observations and numerical models of subglacial Antarctica, and presents a path
forward for future studies.

5.1 Research Questions

1. How can we integrate existing high spatial resolution remote sensing products
to boost the resolution of existing bed elevation maps of Antarctica?

A deep neural network called DeepBedMap was designed to super-resolve the
bed elevation of Antarctica (Leong & Horgan, 2020b), with the model archi-
tecture adapted from an Enhanced Super-Resolution Generative Adversarial
Network (X. Wang et al., 2019). The DeepBedMap model is trained on ar-
eas in Antarctica where high-resolution (250 m) ground-truth bed elevation
grid images are available, and then applied across the entire Antarctic conti-
nent. Inputs to the model are a prior low-resolution (1 km) BEDMAP2 image,
and conditional remote sensing images of ice surface elevation, velocity and
snow accumulation. Model training occurs via an iterative error minimization
approach with a custom perceptual loss function that pushes the predicted
images to be as close as possible to the ground-truth images. The model out-
put is a four-times-upsampled super-resolution (250 m) bed elevation model of
Antarctica called DeepBedMap_DEM that preserves detail in bed roughness
and can be used for catchment- to continent-scale ice sheet modelling studies.

2. What e�ect does a rough surface, high-resolution (250 m) bed topography have
on the friction parameters of an ice sheet model?

To examine the relative contributions of form drag and skin drag which op-
poses the driving stress of a glacier, a basal inversion experiment was per-
formed on two di�erent bed topographies - a rougher high-resolution (250 m)
DeepBedMap_DEM (Leong & Horgan, 2020b) and a smoother medium-resolution
(500 m) BedMachine Antarctica (Morlighem et al., 2019). The inversion was
conducted via an iterative least-squares control method using the Ice-sheet and
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Sea-level System Model (ISSM; Larour et al., 2012) with a Coulomb-limited
Schoof-type sliding law. The inverted basal �elds between DeepBedMap_DEM
and BedMachine did not appear to be signi�cantly di�erent, though both basal
drag and slipperiness �elds are slightly higher while e�ective pressure is gener-
ally lower for the inversions that used the higher-resolution DeepBedMap_DEM.
We did not observe a noticeable decrease in basal drag (i.e. less skin drag)
when higher resolution topography (i.e. more form drag) was used, in contrast
to previous studies using a Weertman-style sliding relation by Kyrke-Smith et
al. (2018) who indicated that basal drag was reduced (i.e. less skin drag) when
high resolution bed topography (i.e. more form drag) was incorporated into
the model. Our �ndings in this chapter highlight that more ice sheet mod-
elling research is needed over diverse subglacial settings in West Antarctica.
Speci�cally, to investigate the role of subglacial hydrology which in�uences
skin drag, and the e�ects of using high resolution bed topographies (≤ 100 m)
which increases form drag.

3. Where does water drain and accumulate underneath the Antarctic Ice Sheet,
how much volume is mobilized, and at what timescales do these processes
occur?

A map of active subglacial lakes in Antarctica is presented, detected using
ICESat-2 laser altimetry data over the 2018-2020 time period. Active sub-
glacial lake locations were determined via an unsupervised density-based clas-
si�cation method on ICESat-2 point cloud data pre-processed to highlight
anomalous ice surface elevation change rates. The algorithm yielded a total
of 195 active subglacial lakes, including 36 new lakes in the 86�88°S area not
detected by the previous ICESat (2003-2009) mission. We detailed a cascad-
ing pattern of drain-�ll activity over the Whillans Ice Stream central basin at
the Siple Coast, and revealed multi-lobe subglacial lake clusters separated by
ridges using the high resolution (< 40 m along-track spacing) ICESat-2 laser
altimetry data. An interesting observation was the unusually high rate of sur-
face elevation uplift and slow descent at Subglacial Lake Whillans IX (∼ 8 m
vertical rise over 3 months) and Whillans 7 (∼ −7 m lowering over 11 months)
which stands in contrast with previous studies over the Whillans Ice Stream
catchment area that tend to show slow �ll and rapid drainage (Siegfried &
Fricker, 2018; Siegfried et al., 2016).

5.2 Future work

Many advances in glaciology are driven by the availability of newer, high quality
datasets combined with better, physical numerical models. In particular, highly
parallel compute processors such as general purpose graphical processing units has
opened up new possibilities around the use of neural network models on remote sens-
ing data. Computational glaciology can greatly bene�t from new machine learning
tools that allow us to see and predict changes that were previously unattainable. One
of the exciting ideas emerging from this work, is how measurement data collected
at multiple scales (satellite, airborne, ground-based) can be integrated statistically
and be used to infer high resolution data at unsurveyed sites, while providing the
intelligence to suggest new sites where �eld measurements should go next. In the
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following, we highlight data gaps to be �lled, and missing components in our un-
derstanding of the physical mechanisms of ice �ow over the subglacial terrain of
Antarctica.

5.2.1 Towards BEDMAP3 - More data to super-resolve the

bed topography of Antarctica

In Chapter 2, we indicated that there is missing coverage of bed elevation data in
parts of Antarctica, and that Radio-echo sounding (RES) is the best tool available
to �ll in these gaps. Swath processing of RES data (e.g. Holschuh et al., 2020)
should become a priority, and new acquisitions should target a diverse range of bed
and �ow types. Furthermore, we should continue to survey formerly glaciated beds
around the margins of Antarctica using ship-based swath bathymetry instruments
and on land in areas like the former Laurentide ice sheet using LIDAR. Continued
measurements by remote sensing satellites is also needed to patch up data gaps in
surface elevation, velocity and snow accumulation. All this new data will be used
to inform the next generation bed topography model of Antarctica - BEDMAP3.

5.2.2 Coupling ice �ow models with evolving subglacial hy-

drological models

In Chapter 3, our basal inversion experiment suggested that subglacial water which
in�uences skin drag cannot be ruled out as an important factor that a�ects ice
dynamics when using a high resolution bed. Hence, future modelling studies could
include a coupling with an evolving subglacial hydrology model (e.g. Sommers et al.,
2018) to better parametrize the e�ective pressure �eld in a Coulomb-limited sliding
law. More prognostic forward model runs should be done on high resolution bed ele-
vation models with a Schoof-type sliding law and Full Stokes (or higher order) stress
balance equations to assess the potential e�ects of di�erent basal traction and slip-
periness �elds on Antarctic grounding line migration and its resulting contribution
to sea level rise.

5.2.3 Continuous active subglacial lake time-series data

In Chapter 4, we used the ICESat-2 laser altimeter to create an inventory of active
subglacial lakes for a short time period from 2018-2020, but future work should ex-
tend the record both backwards in time to the ICESat era (2003-2009) and into the
future such as with the CRISTAL radar altimeter mission (Kern et al., 2020). A pri-
ority for the remote sensing community will be to mitigate against any interruptions
in the data record (such as between ICESat and Cryosat-2 previously), utilizing air-
borne geophysical surveys or GPS stations (such as with Operation IceBridge) if
necessary on key sites to minimize loss of continuous coverage. One critical piece
of work will lie in calibrating di�erences in elevation measurements across laser-
and radar-based satellite altimeters (c.f. Siegfried & Fricker, 2018), for the currently
operational ICESat-2 and Cryosat-2 (Brunt et al., 2020) and in the future as new
satellite altimeters come online.
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5.3 Concluding remark

The objective of this thesis were to 1) create a high-resolution (250 m) map of Antarc-
tica's bed, 2) investigate how high-resolution bed topography a�ects basal friction,
and 3) map out the active subglacial hydrological system of Antarctica. These are
addressed using a series of novel machine learning and automated satellite remote
sensing methods that use surface observations to infer the nature of Antarctica's
subglacial topography and hydrology.
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Appendix A

Details of loss function components

The loss function, or cost function, is a mathematical function that maps a set
of input variables to an output loss value. The loss value can be thought of as
a weighted sum of several error metrics between the neural network's prediction
and the expected output or ground truth. It is this loss value which we want to
minimize so as to train the neural network model to perform better, and we do this
by iteratively optimizing the parameters in the loss function. Following this are
the details of the various loss functions that make up the total loss function of the
DeepBedMap generative adversarial network model.

A.1 Content Loss

To bring the pixel values of the generated images closer to those of the ground truth,
we �rst de�ne the content-loss function L1. Following ESRGAN (X. Wang et al.,
2019), we have

L1 =
1

n

n∑
i=1

||ŷi − yi||1 , (A.1)

where we take the mean absolute error between the generator network's predicted
value ŷi and the ground-truth value yi, respectively, over every pixel i.

A.2 Adversarial Loss

Next, we de�ne an adversarial loss to encourage the production of high-resolution
images ŷ closer to the manifold of natural-looking digital-elevation-model images.
To do so, we introduce the standard discriminator in the form of D(y) = σ(C(y)),
where σ is the sigmoid activation function and C(y) is the raw, non-transformed
output from a discriminator neural network acting on high-resolution image y. The
ESRGAN model (X. Wang et al., 2019), however, employs an improved relativistic-
average discriminator (Jolicoeur-Martineau, 2018) denoted by DRa. It is de�ned as
DRa(y, ŷ) = σ(C(y)−Eŷ[C(ŷ)]), where Eŷ[·] is the arithmetic mean operation carried
out over every generated image ŷ in a mini batch. We use a binary cross-entropy
loss as the discriminator's loss function de�ned as follows:

LRa
D = −Ey[ln(D(y, ŷ))]− Eŷ[ln(1−D(ŷ, y))]. (A.2)
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The generator network's adversarial loss is in a symmetrical form:

LRa
G = −Ey[ln(1−D(y, ŷ))]− Eŷ[ln(D(ŷ, y))]. (A.3)

A.3 Topographic Loss

We further de�ne a topographic loss so that the elevation values in the super-
resolved image make topographic sense with respect to the original low-resolution
image. Speci�cally, we want the mean value of each 4× 4 grid on the predicted
super-resolution (DeepBedMap) image to closely match its spatially corresponding
1 pixel× 1 pixel area on the low-resolution (BEDMAP2) image.

First, we apply a 4× 4 mean pooling operation on the generator network's pre-
dicted super-resolution image:

¯̂yj =
1

n

n∑
i=1

ŷi , (A.4)

where ¯̂yj is the mean of all predicted values ŷi across the 16 super-resolved pixels i
within a 4× 4 grid corresponding to the spatial location of 1 low-resolution pixel at
position j. Following this, we can compute the topographic loss as follows:

LT =
1

m

m∑
i=1

||¯̂yj − xj||1 , (A.5)

where we take the mean absolute error between the mean of the 4× 4 super-
resolved pixels calculated in Eq. (A.4) ¯̂yj and those of the spatially corresponding
low-resolution pixel xj, respectively, over every low-resolution pixel j.

A.4 Structural Loss

Lastly, we de�ne a structural loss that takes into account luminance, contrast and
structural information between the predicted and ground-truth images. This is based
on the structural similarity index (SSIM; Z. Wang et al., 2004) and is calculated over
a single window patch as

SSIM(ŷ, y) =
(2µŷµy + c1)(2σŷy + c2)

(µ2
ŷ + µ2

y + c1)(σ2
ŷ + σ2

y + c2)
, (A.6)

where µŷ and µy are the arithmetic mean of predicted image ŷ and ground-truth
image y, respectively, over a single window that we set to 9 pixels× 9 pixels; σŷy
is the covariance of ŷ and y; σ2

ŷ and σ2
y are the variances of ŷ and y, respectively;

and c1 and c2 are two variables set to 0.012 and 0.032 to stabilize division with a
weak denominator. Thus, we can formulate the structural loss as follows:

LS = 1− 1

p

p∑
i=1

SSIM(ŷ, y)p , (A.7)

where we take 1 minus the mean of all structural similarity values SSIM(ŷ, y)
calculated over every patch p obtained via a sliding window over the predicted
image ŷ and ground-truth image y.
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A.5 Total Loss Function

Finally, we compile the loss functions for the discriminator and generator networks
as follows:

LD = LRa
D , (A.8)

LG = ηL1 + λLRa
G + θLT + ζLS , (A.9)

where η, λ, θ and ζ are the scaled weights for the content L1, adversarial LD,
topographic LT and structural losses LS, respectively (see Table B.1 for values used).
The loss functions LD and LG are minimized in an alternate 1 : 1 manner so as
to solve the entire generative adversarial network's objective function de�ned in
Eq. (2.4).
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Appendix B

Neural Network Training Details

The neural networks were developed using Chainer v7.0.0 (Tokui et al., 2019) and
trained using full-precision (�oating point 32) arithmetic. Experiments were car-
ried out on four graphical processing units (GPUs), speci�cally two Tesla P100
GPUs and two Tesla V100 GPUs. On the Tesla V100 GPU setup, one training
run with about 150 epochs takes about 30min. This is using a batch size of 128
on a total of 3826 training image tiles, with 202 tiles reserved for validation, i.e.
a 95/5 training/validation split. We next describe the method used to evaluate
each DeepBedMap candidate model, as well as the high-level way in which we semi-
automatically arrived at a good model via semi-automatic hyperparameter tuning.

To check for over�tting, we evaluate the generative adversarial network model
using the validation dataset after each epoch using two performance metrics � a
peak signal-to-noise ratio (PSNR) metric for the generator and an accuracy metric
for the discriminator. Training stops when these validation performance metrics
show little improvement, roughly at 140 epochs.

Next, we conduct a full evaluation on an independent test dataset, comparing
the model's predicted grid output with actual ground-truth xyz points. Using the
�grdtrack� function in Generic Mapping Tools v6.0 (Wessel et al., 2019), we obtain
the grid elevation at each ground-truth point and use it to calculate the elevation
error on a point-to-point basis. All of these elevation errors are then used to compute
a root mean square error (RMSE) statistic over this independent test site. This

Table B.1: Optimized hyperparameter settings.

Hyperparameter Setting Tuning range

Learning rate (for both generator and discriminator) 1.7× 10−4 2× 10−4 to 1× 10−4

Number of residual-in-residual blocks 12 8 to 14

Mini-batch size 128 64 or 128

Number of epochs 140 90 to 150

Residual scaling 0.2 0.1 to 0.5

Content-loss weighting η 1× 10−2 Fixed

Adversarial-loss weighting λ 2× 10−2 Fixed

Topographic-loss weighting θ 2× 10−3 Fixed

Structural-loss weighting ζ 5.25 Fixed

He normal initialization scaling 0.1 Fixed

Adam optimizer epsilon 0.1 Fixed

Adam optimizer beta1 0.9 Fixed

Adam optimizer beta2 0.99 Fixed
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RMSE value is used to judge the model's performance in relation to baseline bicubic
interpolation and is also the metric minimized by a hyperparameter optimization
algorithm which we will describe next.

Neural networks contain a lot of hyperparameter settings that need to be decided
upon, and generative adversarial networks are particularly sensitive to di�erent hy-
perparameter settings. To stabilize model training and obtain better performance,
we tune the hyperparameters (see Table B.1) using a Bayesian approach. Speci�-
cally, we employ the Tree-structured Parzen Estimator (Bergstra et al., 2011) from
the Optuna v2.0.0 (Akiba et al., 2019) library with default settings as per the Hy-
peropt library (Bergstra et al., 2015). Given that we have four GPUs, we choose
to parallelize the hyperparameter tuning experiments asynchronously between all
four devices. The estimator �rst conducts 20 random experimental trials to scan
the hyperparameter space, gradually narrowing down its range to a few candidate
hyperparameters in subsequent experiments. We set each GPU to run a target of
60 experimental trials (i.e. a total of 240), though unpromising trials that have
exploding or vanishing gradients are pruned prematurely using the Hyperband al-
gorithm (L. Li et al., 2018) to save on time and computational resources. The top
models from these experiments undergo further visual evaluation, and we continue
to conduct further experiments until a suitable candidate model is found.
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Hydropotential

Hydropotential (or hydrostatic pressure) refers to the static energy of water available
at a particular time and place. It is a function of the amount of pressure exerted
on a water body, located at a particular elevation relative to a reference datum. By
calculating hydropotential over a spatial surface, we can then derive the hydropo-
tential gradients which provides us with a measure of the direction and tendency of
water to �ow if suitable conduits exist in its path. Following the methods of Shreve
(1972), basal hydropotential φ is calculated as follows:

φ = φ0 + pw + ρwgzb (C.1)

where φ denotes hydropotential at the base of the ice, φ0 is an arbitrary con-
stant, pw is water pressure and ρwgzb is the elevation potential term. The elevation
potential term is made up of the density of water ρw multiplied by the gravitational
acceleration term g multiplied by the bed elevation zb. In most cases, subglacial
water pressure pw can be approximated as the pressure induced by the overlying ice
(overburden pressure):

pw = ρi ∗ g ∗ (zs − zb) (C.2)

where the static water pressure pw is equal to the density of ice ρi multiplied
by the gravitational acceleration term g multiplied by the thickness of ice zs − zb
obtained from the ice surface elevation zs minus the ice bed elevation zb. Using
a gravitational acceleration g of 9.8 m s−1, ice density ρi of 917 kg m−3, and water
density ρw of 1000 kg m−3, we can substitute Equation (C.2) into (C.1) to obtain
the following equation:

φ = 813.4

(
917

83
∗ zs + zb

)
(C.3)

where the ice surface elevation zs is about
917
83

= 11.05 times more important
than bed surface elevation zb for its e�ect on hydropotential φ. This is an oft-cited
constant, and varies across the literature from as low as 8 to as high as 11 depending
on what densities of water ρw and ice ρi are used in the calculation.
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