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Abstract
In the field of data-mining, symbolic techniques have produced optimal
solutions, which are expected to contain informative patterns. Visualizing
these patterns can improve the understanding of the ground truth of the
explored domain. However, up to now, the symbolic algorithms struggle
to produce optimal solutions for domains that have an overlapping distri-
bution of feature patterns. Furthermore, the majority of problems have an
overlapping distribution. Thus, novel techniques are needed to improve
symbolic techniques’ capacity to address overlapping domains, so that it
is practicable to achieve the visualization of the underlying patterns.

Michigan-style Learning Classifier Systems (LCSs) are rule-based sym-
bolic learning systems that utilize evolutionary computation to construct
a population of rules to capture patterns and knowledge of the explored
domains. LCSs have been applied to many data-mining tasks and have
achieved good performance. Recently, employing visualization methods
to improve the understanding level of models has become more and more
popular in the data-mining community. In the LCSs field, visualization
techniques orientated to explore feature patterns have not been developed.
Investigating LCSs’ models is commonly based on reading rules or view-
ing their distribution. However, LCSs’ models may contain hundreds or
even thousands of unduplicated rules, which makes the identification of
patterns challenging.

Previously, Butz defined LCSs’ optimal solutions as [O] sets, which are
expected to utilize a minimal number of non-overlapping rules to present
an explored domain completely and correctly. In the last two decades, rule
compaction algorithms have been designed to search for [O]s by compact-
ing LCSs’ models, where rules that violate [O]’s definition are considered



as redundant rules. However, in many problems, an ideal [O] does not
exist. Even if such a ruleset exists, redundant rules are often discovered
in the compacted models. Furthermore, compaction often results in a de-
creased prediction performance. The LCSs community used to believe the
reduced performance is an unavoidable and acceptable price for produc-
ing a compacted model. It is observed that across multiple LCS produced
populations for the same problem, the irrelevant/redundant rules are var-
ied, but useful/accurate rules are consistent. According to this observa-
tion, this thesis collects the common accurate rules and finds that for an
arbitrary clean dataset, the common rules can form a determinate and
unique solution, i.e. the proposed natural solution. A natural solution
is composed of all consistent and unsubsumable rules under the global
search space. A natural solution can correctly and completely represent
the explored clean datasets. Furthermore, searching for natural solutions
can produce concise correct solutions without reducing performance.

To visualize the knowledge in the solutions, three visualization meth-
ods are developed, i.e. Feature Important Map (FIM), Action-based Fea-
ture Importance Map (AFIM), and Action-based Average value Map (AFVM).
FIM can trace how LCSs form patterns during the training process. Be-
sides, AFIM and AFVM precisely present patterns in LCSs’ optimal solu-
tion respectively regarding attribute importance and specified attribute’s
value’s importance.

For the sake of efficiently producing natural solutions, a new type of
compaction algorithm is introduced, termed Razor Cluster Razor (RCR).
RCR is the first algorithm that considers Pittsburgh-style LCSs’ concep-
tions to Michigan-style LCSs’ compaction algorithms, i.e. compacting is
based on multiple models. RCR was first designed for Boolean domains,
then RCR has been extended to adapt to real-value LCSs’ models. The con-
ducted experiments demonstrated that natural solutions are producible
for both Boolean domains and real domains.

The experiments regarding producing natural solutions lead this the-



sis to discover that LCSs have an over-general issue when addressing do-
mains that have an overlapping distribution, i.e. optimal rules’ encodings
naturally share overlapped niches. The over-general issue causes LCSs
to fail in maintaining the prediction performance, i.e. due to the optimal
rules and over-general rules being repeatedly introduced and removed,
training performance can never achieve 100% accuracy. This newly dis-
covered issue inspires the development of the Absumption method as
a complement to the existing Subsumption method, which continuously
seeks to produce optimal rules by correcting over-general rules. Absump-
tion not only improves LCSs’ prediction performance in overlapping do-
mains but also enables LCSs to employ hundreds of cooperative rules to
precisely represent an explored domain.

The success of Absumption demonstrates LCSs’ capacity in address-
ing overlapping domains. However, introducing Absumption to LCSs
does increase the cost of computer resources for training, which results
in a need for more efficient exploration. Furthermore, LCSs employed
search techniques tend to evolve maximally generalized rules, rather than
produce rules that do not overlap with the existing rules in the popula-
tion. Thus, [O]s do not fit LCSs’ fundamental search techniques. As a
result, LCSs’ accurate models often do not contain an optimal solution,
which results in the LCSs produced models being poorly interpretable.
This hampers LCSs from being a good data-mining technique. In this the-
sis, the Absumption and Subsumption based Learning Classifier System
(ASCS) is developed. ASCSs consider natural solution as the search objec-
tive and promote the Absumption mechanism and Subsumption mech-
anism as the primary search strategies. Thus, it is possible to remove
the traditional evolutionary search algorithms, i.e. crossover, mutation,
roulette wheel deletion, and competition selection. Experiments demon-
strated that ASCSs can use thousands of cooperative rules to represent
an explored domain and enable easy pattern visualization that was previ-
ously not possible.
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Chapter 1

Introduction

In the field of data-mining, symbolic techniques, e.g. the Learning classi-
fier systems (LCSs) have produced optimal solutions, which are expected
to contain informative patterns. Visualizing these patterns can improve
the understanding of the ground truth of the explored domain. How-
ever, up to now, the LCSs struggle to produce optimal solutions for some
domains for unknown reasons. Therefore, the LCS community requires
a pipeline that can allow LCSs to consistently and continuously produce
optimal solutions for an arbitrary explored dataset, so that the visible pat-
terns can be provided consistently.

This thesis considers the clean datasets (e.g. clean artificial boolean
problems and UCI datasets) and provides visualization techniques for im-
proving the understanding of the LCSs’ learning scheme and the produced
models. The visualized result demonstrates that LCS can generate solu-
tions that reflect the ground truth for an arbitrary clean dataset. Further-
more, such an interpretable solution is determinate and unique for the
same clean dataset. A hypothesis that explains this phenomenon is pro-
posed, i.e. the natural solution hypothesis 1. Based on the hypothesis, rule

1 The natural solution hypothesis describes that LCSs can utilize all the unsubsumable
and correct rules to build a fully representative model, such model naturally contain the
ground truth of the explored domain, this model terms natural solution in the thesis.

1
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compaction algorithms are developed. These algorithms can consistently
produce optimal solutions by compacting multiple LCS trained popula-
tion for the same domain. Furthermore, the thesis also conduct experi-
ments regarding executing the compaction mechanism during the learn-
ing process rather than after learning. The experiments demonstrate that
such a modification enables LCS to produce optimal solutions for more
complex problems.

1.1 Problem Statement

Learning classifier systems (LCS [99]) are a paradigm of rule-based ma-
chine learning methods that contain a discovery component and a learn-
ing component. LCSs excel in evolving representative models that can re-
flect the underlying patterns of single-step problems, e.g. artificial Boolean
problems. In the field of LCS, there are two most popular LCSs architec-
tures, i.e. Michigan-style [91] and Pittsburgh-style [6]. Both Michigan-
style LCSs and Pittsburgh-style LCSs employ a set of rules to represent
an explored domain. However, these two types of LCSs have two main
differences, i.e. the manner in applying crossover and forming results. In
Michigan-style LCSs, a rule is an individual, which is the basic unit for
applying evolutionary computation operators. The crossover method is
executed to create new rules by randomly exchanging a part of the se-
lected rules’ encoding. After exploration, the output result includes all the
preserved rules. As a comparison, in Pittsburgh-style LCSs, an individ-
ual is a ruleset. The crossover method is invoked for exchanging rules in
different rulesets. When the exploration is completed, the best individual
(ruleset) is selected as the output. Pittsburgh-style LCSs allow a high di-
versity of solutions that increases the possibility of detecting a set of classi-
fiers that can accurately and completely cover all available instances of an
explored domain. Thus, the community used to believe that Pittsburgh-
style LCSs’ production’s prediction performance is more likely to be better
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than Michigan-style LCSs’ results [73]. This conception altered when the
community realized that an LCS’s optimal solution is independent of the
learning schema, i.e. Butz et.al proposed the optimal solution [O] sets 2

and produced the [O] by compacting Michigan LCSs’ results [17].

An [O] is expected to completely and correctly represent a domain with
a minimal number of maximal generalized and non-overlapped rules. Pre-
cisely, an [O] is required to reach four characteristics simultaneously, i.e.
completeness, correctness, minimality, and non-overlapping 3. Further-
more, Butz et al. proposed that an [O] can reflect the nature of the explored
domains with discernable patterns, i.e. [O]s have good interpretability.
In general, there is no mathematical definition to assess a model’s inter-
pretability. Interpretability is the degree to which humanity can under-
stand how a model makes a decision. Thus, visualization techniques are
good methods to verify the interpretability of [O]s [51].

Visualizing patterns from LCSs’ optimal solution is a difficult task. Al-
though many LCS orientated visualization methods have been developed
[90] [92], these methods present vague patterns for the majority of the
tested problems. These visualized patterns are not simple to interpret,
hard to be employed to reveal the ground truth of the explored domain.
Thus, visualization methods that can precisely describe the underlying
patterns are needed to improve LCS’s practicality and suitability in data-
mining.

Producing an optimal solution from LCSs directly or from compacting
an LCS produced model are difficult tasks. Due to the stochastic nature
of the employed evolutionary computation [8], an LCS produced model
unavoidably contains problematic rules such as over-general rules and

2 [O] is one of LCSs’ ideal format solution that can completely and correctly represent
an explored dataset with all the member rules are maximally generalized and non-
overlapped with each other [17].

3 Overlapping describes two rules, which have an overlapped represented niche in their
condition part, e.g. 00#:0 and 0#0:0 are two overlapped rules, as they are overlapped at
the instance 000:0. As a comparison, 00#:0 and 1#0:0 are non-overlapped rules.
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over-specific rules 4. Thus, compaction is essential processing for obtain-
ing an LCS’s optimal solution. However, the existing rule compaction al-
gorithms cannot precisely distinguish good performing over-general rules
with maximally generalized rules. Thus, these compaction algorithms fre-
quently failed in compacting an LCS’s model to its optimal format. Thus,
rule compaction algorithms need to be improved in terms of identify-
ing over-general rules 5 to ensure optimal solutions can be produced ef-
ficiently and consistently.

Ternary representation based LCSs [39] consider the majority of prob-
lems have an overlapping distribution, i.e. the maximally generalized
rules naturally shares overlapped niches. However, LCSs suffers from ad-
dressing the majority of the overlapping domains due mainly to inappro-
priately replacing the maximally generalized rules by good performing
over-general rules. In this scenario, an LCS produced model may lack im-
portant maximally generalized rules, which are an indispensable part of
the optimal solution. Therefore, an efficient search technique is needed to
introduce to LCSs’ exploration phase to address over-general rules so that
LCSs can produce optimal solutions for overlapping domains.

The main objective of this thesis is that precisely visualizing the pat-
terns from LCSs’ optimal solutions. Both Michigan-style LCSs and Pittsburgh-
style LCSs can produce optimal solutions, but Pittsburgh-style LCSs are
much more computationally costly. Thus, this thesis is mainly based-on
Michigan-style LCSs so that optimal solutions of complex problems, e.g.
the 70-bits Multiplexer problem, can be produced in a reasonable time.

1.2 Motivations

The main objective of this thesis is that precisely visualizing the patterns
from LCSs’ optimal solutions.

4 over-specific describes rules that can be covered by other correct and higher general rules.
5 over-general describes rules that violate the truth of the training set.
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1.2.1 Challenge of Visualization Patterns

Symbolic learning systems (e.g. LCSs) are expected to produce models
that contain informative patterns that can reveal the ground truth of the
explored domains. Translating these underlying patterns into discernable
graphs improves the interpretability of the models, which ensures the dis-
covered knowledge to be easy comprehended by humans. However, visu-
alizing patterns of LCSs produced models is a difficult task, especially in
domains that have an overlapping distribution. These tasks are challeng-
ing due mainly to two reasons, which are informative patterns only exist
in an LCS’s optimal solution [42], and obtaining an LCS’s optimal solution
is difficult.

In the LCSs area, correct patterns can precisely reflect an explored do-
mains’ ground truth, e.g. class distribution, feature interaction, and re-
dundant features. These patterns are formed by the distribution of the
ratio of the specified attributes (i.e. attribute importance). Thus, the qual-
ity of member rules in a model determines the quality of the underlying
patterns [39]. Redundant rules and irrelevant rules can change the un-
derlying patterns, which may obscure important knowledge. Thus, only
optimal solutions are expected to contain correct patterns. However, due
to the stochastic characteristic of LCSs employed search operators, LCSs
rarely directly produce an optimal solution. Thus, compaction is a neces-
sary processing for obtaining an LCS’s optimal solution.

Obtaining an optimal solution is difficult due mainly to good perform-
ing over-general rules and accurate maximally generalized rules are diffi-
cult to be precisely distinguished. A good performing over-general rules
can achieve 98%-99% accuracy, which is only 1%-2% lower than a max-
imally generalized rule’s accuracy, i.e. 100%. When prediction perfor-
mance is similar, compaction algorithms are prone to preserve good per-
forming over-general rules, due to these rules have an advantage in gen-
eralization level compares with maximally generalized rules. Replacing
maximally generalized rules with over-general rules causes the original
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training accuracy reduced after compacting, which can be observed in all
the existing compaction algorithms. Thus, existing compaction algorithms
cannot produce optimal solutions consistently.

1.2.2 Why Multiple-Populations

A Michigan style LCS utilizes a population of rules to explore and repre-
sent an observable domain. Introducing multiple-population based tech-
niques to Michigan style LCSs is expected to ensure consistently produc-
ing optimal solutions and efficiently training because of the following rea-
sons:

• A single LCS produced model unavoidably contains problematic rules,
i.e. over-general rules and over-specific rules. In a set of models
for the same problem, although the problematic rules are varied, the
maximal generalized accurate rules are common. Thus, compaction
algorithms, which apply to multiple models for the same problem,
are expected to identify maximal generalized accurate rules success-
fully.

• LCSs allow a combination of complementary over-general rules and
over-specific rules to achieve good prediction performance. An LCS’s
trained model is possible to reach the maximum accuracy without
including all the member rules of the optimal solution. Hence, com-
pacting can fail in detecting an optimal solution when running on a
single LCS’s model that even possesses high performance in predic-
tion.

• LCSs place all rules in one population, such that when applying op-
erators (e.g. matching, subsumption and, rule discovery) all the rules
need to be considered. Placing rules in multiple populations that are
categorised by the rules’ advocated class label and possessed gen-
eralization levels, can ensure a quick rule selection when invoking
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search operators. Thus, the computational cost for exploration is ex-
pected to be reduced.

1.2.3 Limitations of Existing Work

Previously, an LCS’s optimal solution needed to satisfy the definition of
[O], which requires to reach completeness, correctness, minimality, and
non-overlapping simultaneously. Due to [O]’s non-overlapping character-
istic, LCSs can not produce [O]s that can represent overlapping domains.
However, LCS can produce completely accurate models for overlapping
domains. Thus, a new format of LCSs’ optimal solutions needs to be de-
fined to adapt to overlapping domains.

Existing LCS-orientated visualization techniques consider using Ham-
ming distance to cluster rules as a pre-processing for visualizing the pat-
terns. However, there is no evidence to support that Hamming distance
can reflect the correlation between rules. These techniques fail to pro-
duce visualization results that can precisely reveal the ground truth of the
explored domain from LCSs produced models. Thus, new visualization
techniques that can precisely describe underlying patterns in an LCS’s op-
timal solution are needed.

Existing compaction algorithms are designed to maintain the correct-
ness or completeness of a single model. Although the original model
is compacted, the output results usually do not satisfy any definition of
LCS’s optimal solution formats. These models do not contain the pat-
terns that can reveal the ground truth of the explored domain. Thus, com-
paction algorithms that specifically aim to produce LCS’s optimal solu-
tions need to be developed.

Overlapping domains naturally contain good performing over-general
rules. Hence, LCSs cannot distinguish good performing over-general rules
and accurate maximal generalized rules. When exploring overlapping do-
mains, LCSs’ models can be dominated by good performing over-general
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rules. As a result, LCSs fail in producing models that can correctly and
completely represent the target domains. This issue arises the demand of
developing methods to assist LCSs to adapt to overlapping domains. Fur-
thermore, LCSs are expected to produce optimal solutions directly with
techniques that can precisely identify and remove good-performing over-
general rules during the exploration phase.

1.3 Goals

The thesis is that considering multiple, instead of a single population, en-
ables LCSs to produce optimal solutions, adapt overlapping domains and
clearly visualize the underlying patterns in complex domains. To achieve
this overall goal, a set of research objectives have been established to guide
this research, which can be seen as follows.

1 Propose a new definition of LCS optimal solution format. This for-
mat is expected to ensure the LCS’s optimal solution can completely
and correctly represent an overlapping domain together with under-
lying patterns that can be interpretable.

[O] sets have good interpretability, but this optimal solution format
does not suit overlapping domains. In the LCSs field, the majority of
the addressed domains have an overlapping distribution. LCSs are
prone to utilize a combination of maximally generalized overlapped
rules to represent the overlapping domains rather than a ruleset that
only contains non-overlapped rules. As a result, [O] sets cannot be
produced by compacting LCSs’ models of overlapping domains.

2 Develop visualization techniques that are based on clustering rules
by rules’ generalization level6, and then translating the patterns in

6 generalization level describes a rule covered niche size, and this niche size can be quan-
tified, i.e. the number of # in the condition part. A higher generalized rule is expected to
have a larger number of # compare with a lower generalized rule.
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the clustered rulesets to human-discernable graphs. These newly
proposed visualization techniques are expected to improve the un-
derstanding level for both LCSs produced models and LCSs them-
selves. For instances, these visualization algorithms are supposed
to achieve a good understanding of tracing how LCSs form patterns
during the exploration phase, answering how features have inter-
acted with each other, and explaining why model make a decision.

Existing LCS-orientated visualization techniques utilize Hamming
distance based clustering. These techniques provide a vague visu-
alization result, which cannot precisely describe the underlying pat-
terns. Rules that have the same generalization level are expected to
have a common strategy in selecting specified rules. Thus, visualiz-
ing the specification ratio of features based on the rulesets after gen-
eralization level clustering, are expected to reveal the ground truth
of the explored domain precisely, e.g. class distribution, feature in-
teraction, and redundant features.

3 Develop rule compaction algorithms that apply to multiple LCSs’
models for the same problem. These compaction algorithms are ex-
pected to ensure optimal solutions of ternary representation based
LCSs to be produced consistently. Then extend these compaction al-
gorithms to upper and lower boundary representation based LCSs.

LCS’s optimal solutions contain patterns that can reveal the ground
truth of the explored domain. However, existing compaction al-
gorithms are designed to produce a maximally compacted model
rather than consider an optimal solution as an output. Furthermore,
existing compaction algorithms apply to a single model, but a single
accurate model can lack a part of member rules of an optimal solu-
tion. As a result, although the compacted results are accurate, the
contained patterns are poorly interpretable due to lack of member
rules of an optimal solution. Thus, applying compaction algorithms
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to multiple models for the same problem is expected to precisely
identify all the important member rules of an optimal solution.

4 Develop a new Pittsburgh-style LCS that involves an ensemble learn-
ing structure and considers a Michigan-style LCS as an individual
rather than a ruleset. This newly proposed LCS is expected to adapt
to overlapping domains by producing models that can correctly and
completely represent arbitrarily observed datasets.

LCSs allow a combination of complementary over-general rules and
specific rules to achieve good training performance. However, in
a single population, subsumption hampers newly evolved correct
specific rules from being introduced if the population has contained
over-general rules, which can cover the specific rules. Especially,
to overlapping domains, where good performing over-general rules
commonly exist. Thus, LCSs’ produced models are frequently be
dominated by over-general rules when exploring overlapping do-
mains. As a result, LCSs fail in producing models that can com-
pletely and correctly represent an overlapping dataset. Ensemble
learning, (i.e. boosting) can ensure all the evolved over-general rules
to be completely removed periodically by invoking rule compaction
algorithms at the end of each layer. Thus, introducing ensemble
learning to LCSs is expected to reduce over-general rules’ negative
influence in preventing important specific rules from being intro-
duced.

5 Develop a specify operator that can precisely identify and remove
over-general rules during the exploration phase for Michigan-style
LCSs. This specify operator is expected to create important specific
rules by correcting over-general rules to ensure optimal solutions to
be produced consistently and efficiently.

Existing specify operators are designed to reduce the identified over-
general rules’ numerosity rather than directly remove over-general
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rules. Thus, over-general rules still have the potential to dominate
a population when good performing over-general rules exist, e.g.
in overlapping domains. Existing over-general rules will prevent
important specific rules being introduced because of the subsump-
tion mechanism. Thus, immediately removing the identified over-
general rules is expected to ensure the newly evolved important spe-
cific rules can be inserted successfully so that Michigan-style LCS can
address overlapping domains.

6 Develop a new LCS that considers optimal solutions as the final out-
put. This LCS promotes the specify operator, subsumption, and in-
formed mutation as the primary search techniques, removes other
obsolete evolutionary search algorithms, i.e., crossover, mutation,
roulette wheel deletion, and tournament selection. This LCS is ex-
pected to directly produce optimal solutions for the explored do-
mains consistently and efficiently.

Due to the stochastic nature of LCSs employed search strategies,
over-general rules are introduced repeatedly. It is hypothesized that
transforming the search process from stochastic to deterministic can
benefit LCSs in evolving optimal solutions and removing the need to
tune search parameters to the problem. Furthermore, existing LCSs
invoke compaction algorithms after the exploration phase. It is ex-
pected that applying compaction algorithms during the exploration
phase can enable LCSs incrementally to form an optimal solution
during the exploration phase.

1.4 Organization of the Thesis

The rest of this thesis is organised as follows. Chapter 2 presents the lit-
erature review of related work, the experimented benchmarks, and the
parameters settings. The main contributions of the thesis are presented in
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Chapters 3-7, shown in Figure 1.1. Chapter 8 concludes the thesis.

Figure 1.1: The overall structure of the contributions.

Chapter 2 presents the essential background of Learning Classifier Sys-
tems (LCSs) in detail with the four most important aspects, i.e. the basic
structure of rules, the fundamental learning schema, the searching strate-
gies, and the optimal ruleset. It also reviews the most popular rule com-
paction algorithms during the last two decades. It then discusses the
tested benchmarks and the parameters setting.

Chapter 3 proposes a new definition of LCS’s optimal solution, which
is termed natural solution that complements the [O] hypothesis. It then
proposes three LCS-orientated visualization techniques, i.e. Feature Im-
portant Map (FIM), Action-based Feature Importance Map (AFIM), and
Action-based average Value Map (AFVM) respectively aim to trace how
patterns are constructed, reveal how features have interacted, and explain
the cause of a model’s decisions. A set of experiments are conducted on
commonly used artificial Boolean domains of varying difficulty. The re-
sults are then presented and analysed.

Chapter 4 proposes three rule compaction algorithms, i.e. Razor Clus-
ter Razor (RCR), Razor Cluster Razor 2 (RCR2), and Razor Cluster Razor
3 (RCR3) for ternary representation based LCSs. These algorithms inno-
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vatively handle the compaction based on multiple LCS produced models,
rather than applying the compaction to a single model like other stan-
dard compaction algorithms. RCR, RCR2, and RCR3 respectively aim to
produce [O] set, natural solution from well-trained models, and natural so-
lution from insufficiently trained models. The proposed algorithm is then
examined and compared with the existing most popular compaction al-
gorithms, i.e., Compact Ruleset Algorithm (CRA), Fu’s approaches (Fu1,
Fu2, and Fu3), Alternative Reduction Algorithm (CRA2), Kharbat’s ap-
proach (K1), Quick Rule Compaction (QRC), and Parameter Driven Rule
Compaction (PDRC) in terms of the capacity of produce optimal solutions,
the prediction performance, and the computational time.

Chapter 5 introduces an altered version of RCR, termed RCR-Real, that
can adapt to real-valued domains to produce natural solutions. RCR-Real is
orientated to upper and lower boundary representation based LCSs. Then,
this chapter describes how to adapt FIMs to visualize the underlying pat-
terns in RCR-Real compacted models. This chapter also proposes a novel
LCS termed Hierarchical Learning Classifier System (HLCS) to overcome
domains have an over-general issue. The HLCS’s novelty is that it consid-
ers rule compaction as a part of the exploration stage, rather than invoking
compaction after exploration has finished. The performance of RCR-real
and HLCS is examined on a set of UCI datasets that have an over-general
issue.

Chapter 6 proposes a new operator termed as informed mutation that
aims to search for maximally generalized rules by correcting over-general
rules. Then, based on informed mutation, a new mechanism named Ab-
sumption is proposed to enable the LCSs to produce a single model that
contains all the member rules of a natural solution. This complements
the subsumption operator that was designed for improving over-specific
populations. Besides, a new version of RCR terms Razor Cluster Razor in
Single Ternary alphabet (RCR-ST) is also described that aims to extract the
natural solution from an Abusmption based LCS produced results. Their
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performances are then examined on artificial Boolean domains of varying
difficulty.

Chapter 7 proposes a novel LCS that considers natural solution as the
search objective, i.e. Absumption and Subsumption based learning Clas-
sifier System (ASCS). ASCS promotes Absumption, Subsumption, and in-
formed mutation as the primary search strategies, rather than the stan-
dard evolution operators such as crossover, mutation, roulette wheel se-
lection, and tournament selection. ASCS’s performance is then examined
and compared with XCS and UCS on artificial Boolean domains of varying
difficulty in terms of the prediction performance, the computational time
and the interpretability.

Chapter 8 summaries the work and draws overall conclusions of the
thesis. Contributions of the thesis are ascertained. It also suggests some
possible future research directions.
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Chapter 2

Background

This chapter describes Learning Classifier Systems (LCSs) [98] in detail
with the five most important aspects related to this work. The first aspect
is about the fundamentals of LCSs including the structure of rules, the
learning schema [61]. The second aspect illuminates what are LCSs’ over-
specific and over-general issues, together with surveys the LCSs’ search-
ing strategies [67]. Afterward, optimization in rulesets of LCSs is intro-
duced by reviewing the definition of LCSs’ ideal optimization solutions
and the most popular rule compaction algorithms in the last two decades
[58]. The fourth aspect describes how visualization techniques apply to
LCSs in order to present LCSs’ explored results in a human-discernable
manner [93]. In the fifth aspect, a brief description of benchmark prob-
lems and datasets is provided. The training parameters setting for this
project are also presented.

2.1 Learning Classifier System (LCSs)

Learning Classifier Systems (LCSs) [35] are a class of adaptive rule-based
learning systems that explore problems through identifying a population
of attribute-dependent rules that collectively store knowledge in a niche-
based manner. LCSs’ rules are designed to be human-readable, be com-

17
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pact, and contain important information regarding the represented do-
mains. LCSs have forty years of history and have been applied to identify
patterns in many different fields, including multilocus interaction [87] [94]
, non-linear attribute interactions [100], heterogeneity in artificial Boolean
domains [40] [42], epidemiological data sets [89] [90], and other diverse
domains [57] [66] [71] [84] [88]. These works demonstrate that LCSs are
promising techniques for highlighting and characterizing the underlying
patterns of “attribute to action” association in data mining tasks.

In general, there exist two different types of Learning Classifier Sys-
tems (LCSs), which are the Michigan-style LCSs and Pittsburgh-style LCSs
[22]. Holland [36] designed the Michigan-style approaches, while De Jong
and his students [77] [78] introduced the Pittsburgh-style LCS. The two
most fundamental distinctions between these two styles are the structure
of an individual and the output result. In Michigan-style approaches, an
individual is a classifier, the system attempt to evolve a population of clas-
sifiers to cooperatively represent an explored domain, and the final output
is the population (shown in Figure 2.1). As a comparison, in Pittsburgh-
style approaches, an individual is a set of classifiers, a population consists
of a set of individuals, rules can crossover between individuals, and the
best individual will be selected as the final output (shown in Figure 2.2).

One of the most popular accuracy-based Michigan-style LCSs is XCS
[98], which is a rule-based symbolist learning system that employs Evo-
lutionary Computation (EC) techniques [64] to construct a population of
rules to represent an explored domain. XCSs have been frequently applied
to data mining tasks. One of the main reasons is that evidence shows that
XCSs can produce models containing human-discernible patterns [9].

Previously conducted works have demonstrated that LCSs are suitable
techniques for highlighting and characterizing the underlying patterns of
attribute association for addressing data mining tasks, i.e. how different
attributes work together to determine an output action [21]. However, in
practice, an LCSs’ model can have thousands of rules, which makes the
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Figure 2.1: The standard learning schema of the Michigan-style LCSs
where a population [P] preserves all the evolved rules, and evolutionary
computation is used as the primary search technique. After training, the
trained population will go through a compaction process to remove redun-
dant rules. Then statistical analysis methods will be applied to the com-
pacted ruleset in order to translate the underlying knowledge into human
discernable patterns.
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Figure 2.2: A Pittsburgh-style LCS considers a ruleset as an individual, a
population has a set of rulesets, each ruleset evolves non-cooperatively,
and the best ruleset is selected as the final output.
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patterns underlying the model are difficult for humans to comprehend
[17].

Furthermore, due to Michigan-style LCSs continuously introducing new
rules during the whole exploration phase, a trained model unavoidably
contains a considerable number of problematic rules (over-general rules
or over-specific rules) [52]. These problematic rules frequently obscure
the critical patterns [63]. Thus, LCSs frequently require post-processing
to extract useful knowledge. For example, the LCSs’ trained population
needs to be compacted. Then statistical methods, such as calculating the
specification ratio of attributes can be applied to transform the underlying
knowledge to discernable patterns [45].

2.1.1 Michigan-style LCS’s Rules (Classifiers)

Michigan-Style LCSs [99] reserves the discovered knowledge in a set of
rules, see Figure 2.3. Each rule is composed of a condition part, an action
part, and a set of training parameters that records the training history and
training performance. The condition part represents the niches (environ-
mental instances) that this rule covers. LCSs support many different types
of representation format for describing the covered niches.

The ternary representation is one of the most common representation
formats that is employed by LCSs. It is commonly used to address Boolean
domains and classification tasks based on non-continue value problems.
In each condition, the ternary representation encodes all the environmen-
tal attributes and labels these attributes with one of the two states, either
specified or generalized. A specified attribute will be assigned with one of
the plausible values of this attribute in the training set, e.g. in Boolean do-
mains 0, 1. On the other hand, a generalized attribute will be marked with
a “do not care” symbol #. # automatically matches the labeled attribute’s
all plausible values, e.g. 0,1 in Boolean classification tasks. A rule matches
an instance when this instance and the rule have the same value among
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all the specified attributes.

Figure 2.3: A LCSs’ rule, where the condition part employes the ternary
representation format, action is specified as 0.

The action part specifies the action that this rule advocates. For exam-
ple, in binary classification tasks, action can be either 0 or 1 [41]. In multi-
label classification, a rule’s action also can be assigned a set of labels, e.g.
[label0, label1...] [3].

The most common training parameters in LCSs’ rules are numerosity,
experience, accuracy, action set size, and fitness [56]. numerosity indicates the
number of duplicates to a rule. In LCSs if rules have the same encoding
and advocate the same action, then these rules are considered as dupli-
cated. experience relates to a rule’s training time, and experience increases
by one each time after a rule covers an instance. action set size records a
rule’s approximate niche size. Note the value of this parameter is related
to but not equal to the number of covered environmental instances in the
training set of a rule. accuracy is a function of error, and fitness shows a
rule’s potential performance based on the above parameters, which also
need to be taken into account to determine the worth of a rule to a solu-
tion.
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2.1.2 Michigan-style LCS’s Learning Schema

Michigan-style LCSs’ learning schema is shown in Figure 2.1. An LCS
has a population [P] that possesses all the evolved rules that capture the
knowledge of the observed environment [75], e.g. patterns of attribute
association or the importance of each attribute in determining the output
action. LCSs’ learning mechanism can be divided into three main parts,
including covering, rule discovery, and rule validation & deletion.

The learning process of LCSs is step-wise, and the basic unit is an it-
eration. Each iteration of LCS begins with receiving an environmental in-
stance, and then the covering method is invoked when forming a match-
ing set [M] from [P] with rules, which can cover the observed instance if
no sufficient rules can be found. The covering will randomly generalize
several attributes of the instance to introduce new rules to [P], so that this
instance is matchable by [P] next time. Note, the number of new rules is
dependent on the searching strategies of an LCS. If LCSs consider a com-
plete map as the objective, this number is equal to the number of actions
of the explored problem. Instead, if the best action map is the objective, in
this step, covering creates one rule that advocates the instance’s associated
action.

After covering, if [M] possesses at least one rule, LCSs apply the rule
discovery process to try to evolve better new rules. The assumption is
that parents have good performance are more likely to produce offsprings
that can be better adapted to the explored domains, generation by gen-
eration. Thus, the tournament selection method is frequently considered
as the strategy to select the parent rules to evolve offspring rules by EC
methods, i.e. crossover and mutation.

EC methods have a stochastic characteristic, which leads to the newly
created offsprings being potentially redundant. Thus, before inserting into
[P], offsprings need to be verified. In [P], if any rule is the same or able
to subsume an offspring (the subsumption mechanism will be described
in Section 2.2.1), then the numerosity of this rule will increase by one to
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substitute the process of inserting the offspring into [P].

After the rule discovery process, LCSs count the total numerosity of all
rules in [P], i.e. total number of rules. When the value of this total num-
ber violates the capacity limitation of [P], LCSs execute the rule deletion
method. Traditionally, LCSs consider roulette wheel selection (RWS) as the
technique to implement the rule deletion in terms of selecting candidate
rules. When a rule is selected by RWS, LCSs reduce the numerosity of this
rule by one. A rule is removed from [P] when its numerosity decreases
to zero. LCSs repeatedly execute rule deletion until the total number of
numerosity satisfies the [P]’s capacity limitation.

LCSs complete the training process when a pre-defined number of it-
erations to explore the target problem has been performed or some other
criteria have been satisfied, e.g. a set training performance level is reached.

At this stage, the produced [P] unavoidably contains many rules that
are not trained sufficiently. This leads to the [P] containing many redun-
dant rules (over-specific rules or over-general rules), which may obscure
the critical underlying knowledge. Thus, rule compaction algorithms, e.g.
compact ruleset algorithm (CRA) [101], Fu’s first approach (FU1) [34], or
quick rule compaction (QRC) [85], have been applied to remove these
problematic rules from [P]. In most cases, compaction can significantly
reduce the number of rules in [P]. As a result, the underlying knowledge
becomes apparent. Furthermore, statistical analysis methods and visual-
ization techniques can be applied to the compacted [P] so that the under-
lying knowledge can be translated into human-discernable patterns 1.

The community used to believe that the Pittsburgh-style LCSs are bet-
ter than Michigan-style LCSs regarding the produced models’ prediction
performance, i.e. Pittsburgh LCSs are more likely to produce solutions

1 There is no mathematic definition of models’ interpretability. Interpretability is a de-
gree to which humanity can understand the cause a model makes a decision. Human-
discernable patterns mean the patterns in LCSs’ model can be represented in a simple
understandable graph.
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that can represent an explored domain correctly and completely [73]. This
conception altered when the community realize that an LCS’s optimal so-
lution is independent of the learning schema, i.e. Butz et. al proposed the
optimal solution [O] sets and produced the [O] by compacting Michigan
LCSs’ results [17].

2.2 LCSs’ Learning Strategies

LCSs are designed to construct a population of rules to represent an ex-
plored domain. Among all the available rules under the global search
space, there exist two types of problematic rules, i.e. over-specific rules
and over-general rules. These problematic rules can lead to many issues.
For example, over-specific rules increase the [P]’s unnecessary diversity,
obscuring the underlying patterns. Besides, over-general rules add biases
to the [P], reducing the model’s prediction performance. Therefore, to pro-
duce compact and accurate models, LCSs have developed many learning
strategies to avoid, identify, and remove the problematic rules, e.g., sub-
sumption, specify operator, and roulette wheel deletion.

2.2.1 over-specific Rules & Subsumption

In LCSs, “over-specific” describes rules, whose encodings are redundantly
specific. For example, in the 6-bits Multiplexer problem, the rule 0000## :

0 is an over-specific rule since it can be subsumed by the optimal rule
000### : 0 (shown in Algorithm 1)). Therefore, the over-specific rules are
expected to be replaced by other higher generalized rules without reduc-
ing prediction performance. LCSs employ the subsumption mechanism to
remove the over-specific rules to keep a population’s compactness.

In general, LCSs have two subsumption mechanisms, i.e. action set
subsumption (shown in Algorithm 2) and genetic algorithm (GA) sub-
sumption (shown in Algorithm 3). The action set subsumption effects
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Algorithm 1: Judge whether rule1 can subsume rule2

Input: rule1’s encoding en1;
rule2’s encoding en2;

1 for attributei ∈ en1 & attributei ∈ en2 do
2 if en1.attributei!=en2.attributei & en1.attributei!=# then
3 return False rule1 cannot subsume rule2
4 end

5 end
6 return True rule1 can subsume rule2

on rules in the [A] that aims to address the over-specific rules in [A]. At
the end of each iteration, when over-specific rules are identified, their nu-
merosity will reduce by one, and the rule will be removed once its nu-
merosity is reduced to zero. The GA subsumption prevents newly created
over-specific rules to be introduced to the population. When an offspring
has been identified as an over-specific rule, rather than being inserted into
the population, the existing more general rule’s numerosity will increase
by one.

Normally the GA subsumption is always activated. Otherwise, the
produced population cannot be dominated by the most general rules. The
action set subsumption frequently replaces the optimal rules by good per-
formance over-general rules. Thus, in domains that have overlapping dis-
tribution, activating action set subsumption frequently reduces the pro-
duced models’ prediction performance. Therefore, for the majority of tasks,
the action set subsumption is not activated.

2.2.2 over-general Rules & Specify Operator

over-general describes rules that matched instances with different actions.
For example, in the 6-bits Multiplexer problem, the rule 00####:0 is an
over-general rule, which covers the instance 001000:1. The over-general
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Algorithm 2: Action set subsumption

Input: an action set [A];
1 foreach rule ∈ [A] do
2 foreach rule’ ∈ [A] except rule do
3 if rule can subsume rule’ then
4 rule.numerosity++;
5 rule’.numerosity- -;
6 if rule’.numerosity==0 then
7 remove rule’
8 end

9 end

10 end

11 end

rules always negatively influence a model’s prediction performance. How-
ever, LCSs are designed to produce a model as general as possible. As a
result, over-general rules are unavoidable to be produced.

Previously, Lanzi [59] designed the specify operator to counteract the
negative influence of the over-general rules. When one over-general rule
is identified, the specify reduces the problematic rule’s numerosity by one,
and then creates a new rule by specifying one of the over-general rule’s
generalized attribute with one plausible value. An over-general rule will
be removed, once its numerosity has been reduced to zero.

2.2.3 Roulette Wheel Deletion

LCSs utilize Evolutionary Computation (EC) as the main technique for
knowledge discovery, but various LCSs may employ different EC search
strategies, which results in the difference in LCSs’ search performance.
The search strategy determines the number, ability, and diversity of rules
in a [P] and hence the interpretability.
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Algorithm 3: rule discovery subsumption

Input: a population [P];
offsprings created by rule discovery [offsprings]

1 foreach rule ∈ [offsprings] do
2 foreach rule’ ∈ [P] do
3 if rule == rule’ or rule’ can subsume rule then
4 rule’.numerosity++;
5 end

6 end

7 end

XCSs [99] are the most popular reinforcement learning LCSs, as be-
ing accuracy based makes them suited to discovering patterns in datasets.
XCSs employ crossover and mutation as the main searching strategies for
evolving rules. The subsumption method is the most important secondary
search strategy for XCSs as it serves as a preventive method against over-
specific rules. The state that activates subsumption to discard newly gen-
erated rules is when the population has had a sufficiently trained rule that
is correct 2 and more general than the new rule.

XCSs employ roulette wheel selection (RWS) for selecting rules to delete
when the population grows too much. In XCS, this rule removal strategy
considers the rule’s numerosity, generalization level and accuracy. Thus,
XCSs will primarily delete less-general rules, when there are no conspic-
uous 3 inaccurate rules in the population. Such a rule removal strategy
enables XCSs’ models to be compacted but this also leads to issues, e.g.
XCSs frequently omit important specific rules and incorrectly replace im-
portant specific rules with high-performance over-general rules.

When assessing whether a rule is over-general, XCSs utilize the error

2 correct means a rule and all its matches instance support the same action
3 XCS’s RWS utilize a rule’s action set size, numerosity, and fitness, a conspicuous inaccu-

rate rule is expected to have a relatively low value in fitness.
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threshold ε0 4, which is a constant number regardless of the assessed rule’s
generalization level. When ε0 is set weakly,i.e. the assigned value of ε0
is lower than the number of instances (niches) that represented by good
performing over-general rules, over-general rules can be incorrectly con-
sidered as verified accurate rules by the subsumption mechanism, which
will hamper the important specific rules from being inserted into the [P].
This is another reason why XCSs may fail in identifying over-general rules.

As a comparison, UCSs 5 [10] are also accuracy-based but learn under
a supervised scheme, when labeled data is available. This enables UCSs
to precisely assess each rule’s accuracy. Thus, all the UCSs’ main search
strategies are pure accuracy-based, including the RWS and the rule dis-
covery mechanism that is composed of crossover and mutation. UCSs
also consider subsumption as a secondary search strategy for preventing
[P]s from introducing over-specific rules. UCSs give priority to remove
over-general rules and protect all the correct rules. Thus, UCSs can ef-
ficiently reach high performance in prediction, but the produced models
unavoidably contain many redundant rules, due to the lack of methods for
efficiently removing over-specific rules that evolved at early generations.

2.3 LCS’s Optimal Solution

Butz and Kovacs [18] considered that accuracy-based LCSs are designed
to search for correct, maximally general rules, which enables the produced
models to be accurate and compact. Based on this hypothesis, Butz and
Kovacs [18] proposed an optimal ruleset [O] to represent the optimal model
of LCSs, see Figure 2.4. A proper [O] should simultaneously satisfy four
characteristics: completeness, correctness, minimality, and non-overlapping.

Completeness and correctness require that [O]s can precisely represent
the whole problem domain. Furthermore, minimality and non-overlapping

4 The error threshold under which the accuracy of a classifier is set to one.
5 UCS stands for sUpervised Classifier System
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Figure 2.4: Two samples regarding Butz and Kovacs’ optimal ruleset [O]
of the 6-bits Multiplexer problem. An [O] has the characteristics of com-
pletness, correctness, minimality, and non-overlapping. Note, there can be
alternative [O]s for the same problem [17].

indicate that redundant rules are intolerable to [O]s. Ideal [O]s have been
found in the Multiplexer problem from the compacted models of both
XCSs and UCSs. However, in practice, LCSs’ trained [P]s rarely contain
[O]s. This is because LCSs do not consider the non-overlapping condition
as a searching restriction when introducing new rules to [P]. Thus, undu-
plicated rules can have an overlapped condition part. Removing over-
lapped rules may result in a [P] that violates the completeness character-
istic, leading to failure regarding any attempt to compact [P] to an [O].

2.3.1 LCSs’ Compaction Algorithms

When an LCS ceases its training process, as new rules were continuously
introduced, the produced model unavoidably contains a large number of
rules that are either over-general or over-specific. These problematic rules
obscure the valuable underlying knowledge in LCSs’ models, which ham-
pers humans from better understanding the patterns in these problems by
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identifying these models. Thus, LCSs frequently employ rule compaction
algorithms, which serve as post processing in order to improve the inter-
pretability of the produced models by excluding unnecessary rules.

In general, rule compaction algorithms can be categorized into two col-
lections according to their primary compaction objective. The first col-
lection considers preserving the original training accuracy as the primary
compaction objective. This collection includes algorithms such as Com-
pact Ruleset Algorithm (CRA) [101] and Fu’s approaches, e.g. Fu1, and
Fu3 [34]. When compacting, CRA, and Fu’s approaches remove rules se-
quentially, and accuracy re-evaluation is executed after each removal. This
strategy can maximally preserve the original accuracy of the model, as
incorrect removal can be promptly informed by the resulting decreased
accuracy from the re-evaluation. In many cases, these rule compaction
algorithms successfully improve LCSs’ models’ readability by removing
the majority of the problematic rules. However, the re-evaluation proce-
dure is accompanied with the issue of expensive computation cost, which
impedes the adoption to domains with a large training set or [P] contain-
ing a large number of rules, e.g. the 37-bits Multiplexer problem, where
the training set includes around 34 billion different instances, and the 14-
bits Majority-On problem, where [P] may contain more than 10 thousand
rules.

The second collection emphasize is on maintaining the original mod-
els’ completeness regarding covering 6 the training set. This collection in-
cludes the Alternative Reduction Algorithm (CRA2) [25] and its analogs,
e.g. Kharbat’s approach (K1) [45] and Urbanowicz’s methods [85], i.e.
Quick Rule Compaction (QRC), and Parameter Driven Rule Compaction
(PDRC). Distinct from the first category, these algorithms remove the re-
evaluation procedure of prediction performance, as sustaining the orig-
inal accuracy is no longer the primary objective. CRA2 and its analogs
utilize the environmental instances to determine whether a rule should be

6 Covering ensures that all environment instances are matched by at least one rule
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Algorithm 4: Compact Ruleset Algorithm (CRA)

Input: all rules in a trained population P ;
all instances in the training set T ;
Output: final compacted ruleset F Set

1 Rank rule ∈P by numerosity or experience (descending order);
2 Stage One:
3 Original Accuracy= Accuracy(P , T );
4 Subset= empty ruleset;
5 i=0;
6 Rest Accuracy=0;
7 while Rest Accuracy<Original Accuracy do
8 Add ith rule to Subset;
9 Rest Accuracy=Accuracy(Subset, T );

10 i++

11 end
12 Stage Two:
13 foreach rule ∈ Subset do
14 Remove rule from Subset;
15 Rest Accuracy=Accuracy(Subset, T );
16 if Rest Accuracy < Original Accuracy then
17 Add rule to Subset;
18 end

19 end
20 Stage Three:
21 Rank rule ∈ Subset by the number of each rule matched instances

(descending order);
22 while Size(Subset) > 0 and Size(T ) >0 do
23 Add first rule in Subset to F Set;
24 Remove first rule in Subset;
25 for instance ∈ T do
26 if Match(F Set, instance) then
27 Remove instance in T
28 end

29 end

30 end



2.3. LCS’S OPTIMAL SOLUTION 33

retained. When compacting, all the instances in the training set will be se-
quentially reviewed to select and preserve the most suitable rule for each
instance. Due to omitting the re-evaluation processing, the execution effi-
ciency of compacting is greatly improved so that CRA2 and its analogs can
better adapt to domains that have a large number of instances compared
with CRA and Fu’s approaches. However, due to the employed loose rule
removal criterion, CRA2 and its analogs are under the risk of replacing im-
portant specific rules with over-general rules, especially the over-general
rules that possess high accuracy performance. This drawback may result
in the reduced interpretability of the compacted [P]s as the mistakenly
kept over-general rules are likely to obscure the underlying patterns of
the compacted [P]s. Incidentally, after Urbanowicz’s work [85], the en-
thusiasm for researching LCSs’ rule compaction algorithms waned as the
community considered it a fully developed research area.

2.3.2 Compact Ruleset Algorithm (CRA)

CRA [101] starts by ranking rules according to experience or numeros-
ity in descending order (shown in Algorithm 4). The ranking is an effi-
cient method to identify the most promising candidates to keep in a [P].
This is because only good rules are expected to survive constantly under
evolutionary competition. Then, compared with inferior rules, good rules
have a higher value for trained parameters, e.g. experience or numerosity,
which has a positive correlation with the number of survived generations.

After ranking, CRA is composed of three stages that are applied in
sequence. The priority of the first two stages is to preserve the original
accuracy when compacting. This demand necessitates step-wise accuracy
evaluation to ensure the impartiality of removing each rule. Stage one
builds a subset by sequentially receiving a rule from the original [P] in
a top-down manner (ranked by numerosity). The process of receiving
rules ceases when the subset reaches the accuracy of the [P]. Stage two
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Algorithm 5: Stages 1&2 in Fu1

Input: all rules in a trained population P ;
all instances in the training set T ;
Output: a set of rules S Set

1 Stage One:
2 Rank rule ∈ P by numerosity(descending order);
3 Original Accuracy= Accuracy(P , T );
4 Rest Accuracy=Original Accuracy;
5 while Rest Accuracy>=Original Accuracy do
6 Remove last rule in P ;
7 Rest Accuracy=Accuracy(P , T );

8 end
9 Add the newest removed rule to P ;

10 Stage Two:
11 foreach rule ∈ P do
12 Remove rule from P ;
13 Rest Accuracy=Accuracy(P , T );
14 if Rest Accuracy < Original Accuracy then
15 Add rule to S Set;
16 Original Accuracy=Rest Accuracy

17 end

18 end
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removes each rule in the subset in turn. After each removal, an evaluation
is invoked to assess the current subset for accuracy, where a previously
removed rule will be added back if the accuracy decreases. Maximally re-
moving rules from a subset without weakening the capacity of covering
training instances is the objective of the third stage. Stage three begins
with iterating the training instances to count the number of covered in-
stances for each rule. Then, rules are ranked by the number of their cov-
ered instances in an descending order. After ranking, rules in the subset
are selected in sequence from top to bottom in the rank to construct the
final output. The process of construction terminates when the final output
can completely cover the entire training instances.

2.3.3 Fu1

Fu1 [34] is similar to CRA, and also contains three stages. The first two
stages also involve a step-wise accuracy evaluation. Stage one starts by
ranking rules in the descending order of numerosity. Then, in the ranked
[P], rules are continuously removed from the bottom to top order based on
numerosity, which differs from CRA. After each removal, the accuracy of
the current [P] is evaluated. The process of removing is terminated when
the accuracy decreases, at which point, the rule that causes the decrease is
reinserted.

Stage two aims to find a subset of the [P], where each member rule is
important to maintain the prediction performance. In this stage, the rules
in the [P] are removed by turns to identify appropriate rules to place into
the output subset. After each removal, the accuracy of the remaining rules
is tested. The most recently removed rule will be preserved in the subset
if the removal of this rule causes accuracy to decrease. After all the rules
have undergone this process, the subset of the preserved rules is passed to
stage three, which is the same as the last stage of CRA.

Fu1 follows the CRA’s priorities and principles of compaction. In Fu1’s
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Algorithm 6: Incremental deletion procedure in Fu2

Input: a trained population P ;
all instances in the training set T ;
Output: a set of rules S Set

1 foreach rule ∈ P do
2 Remove rule from P ;
3 Rest Accuracy=Accuracy(P , T );
4 if Rest Accuracy < Original Accuracy then
5 Original Accuracy=Rest Accuracy
6 end
7 else
8 rule.numerosity minus one ;
9 end

10 if rule.numerosity> 0 then
11 Add rule to S Set;
12 end

13 end
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first stage, rules are removed from the bottom rather than the top (based
on numerosity in the descending order). This is due to when a popula-
tion lacks training, the rules for triggering termination of rule removal fre-
quently are located near the bottom position in the ranked population. The
altered direction of removing improves Fu1’s efficiency when address-
ing the poorly trained populations. The alteration in Fu1 Stage two, as
shown in Algorithm 5, reduces the computational complexity compared
with CRA.

Algorithm 7: Stage3 in Fu3

Input: remaining rules after first two stages R Set;
all instances in the training set T ;
Output: R Set

1 Rank rule ∈ R Set by fitness or experience (descending order);
2 Original Accuracy=Accuracy(R Set, T );
3 foreach rule ∈ R Set do
4 Remove rule from R Set;
5 Rest Accuracy=Accuracy(R Set, T );
6 if Rest Accuracy < Original Accuracy then
7 Add rule to R Set;
8 end

9 end

2.3.4 Fu2

Fu2 [34] is based on Fu1, which replaces the Fu1’s first two stages with an
incremental deletion procedure (shown in Algorithm 6). The procedure is
similar to Fu1’s second stage, but instead of directly removing rules that
do not match the criterion (inferior rules), the procedure punishes an in-
ferior rule by subtracting one from its numerosity, and a rule will be re-
moved only if its numerosity reaches zero. After the procedure, rules are
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ranked by numerosity in the descending order. Then, rules will undergo
the process that is the same as CRA’s last stage. Although Fu2 achieved an
unsatisfactory performance on the examined domains, Fu2 (July 2002) [34]
is the first attempt to compact rules with the priority of preserving the ca-
pacity of covering training samples, which is slightly earlier than Dixon’s
work (September 2002) [25].

Algorithm 8: CRA2

Input: all rules in a trained population P ;
all instances in training set T ;
Output: a set of rules S Set

1 foreach instance ∈ T do
2 M Set=Match(instance,P );
3 C Action=MaxWeightAction(Match Set);
4 C Set=FindCorrectSet(M Set,C Action);
5 Find a rule with hightest numerosity*accuracy in C Set;
6 if rule 6∈ S Set then
7 Add Mark rule to S Set

8 end

9 end

2.3.5 Fu3

Fu3 follows the first two stages of Fu1 together with a modified last stage
(shown in Algorithm 7). Fu3’s last stage starts by ranking rules in de-
scending order by fitness or experience. Then, the remaining process is
the same as the second stage of CRA. This approach benefits from the step-
wise accuracy evaluation that runs throughout the whole compaction pro-
cess. According to previous experiments in [33], Fu3 preserves the original
training accuracy after compaction. However, the advantage of preserva-
tion is at the price of increasing the computation complexity.
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2.3.6 Alternative Reduction Algorithm (CRA2)

CRA2 gives priority to preserving the capability of covering instances but
reduces the importance of maintaining the original accuracy. CRA2 starts
with creating an empty ruleset to store the most useful rules. In CRA2, the
usefulness of a rule is quantified by computing the product of its accuracy
and numerosity. CRA2 iterates the trained instances to build match-sets
[M ]s.

A [M ] is an aggregation of all the rules in the [P] that cover a specific
instance. In a [M ], the weight of each possible action is calculated by sum-
ming the products of numerosity and fitness of all its supporters (rules).
Then, the action that possesses the highest weight is considered as the ac-
tion to effect. Afterward, an action-set [A] is constructed by collecting all
rules in [M ], which advocate the chosen action. At the end of each itera-
tion, a rule that owns the highest value of usefulness7 in [A] is preserved
in the ruleset. Algorithm 8 shows the pseudo-code of CRA2.

2.3.7 The K1 Approach

K1 [45] works on an offline environment and follows the architecture of
CRA2, except for that K1 involves a pre-processing stage to re-evaluate
each rule’s performance by calculating its entropy. The calculation of a
rule’s entropy begins with finding the difference between the number of
its correct and incorrect matched instances. Then the entropy is obtained
by dividing this difference with the number of training instances. In the
subsequent process, K1 uses the entropy measure to identify the most use-
ful rules. In each iteration, K1 preserves the rule that possesses the highest
entropy (shown in Algorithm 9).

7 a rule’s usefulness in CRA2 is equal to the product of accuracy and numerosity
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Algorithm 9: K1’s pre-processing stage

Input: all rules in a trained population P ;
all instances in the training set T ;
Output: all rules with entropy value in the trained population P

1 foreach instance ∈ T do
2 M Set=Match(instance,P );
3 foreach rule ∈M Set do
4 if rule.action == instance.action then
5 rule.correct++;
6 else
7 rule.incorret++;
8 end

9 end
10 foreach rule ∈M Set do
11 rule.entropy = rule.correct−rule.incorrect

Size(T )

12 end

13 end
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2.3.8 Quick Rule Compaction (QRC)

QRC is similar to CRA with a modification in the last stage. QRC begins by
ranking rules by fitness. After ranking, QRC creates an empty set [T ] for
storing all the training instances. Then, from top to bottom, rules are inter-
rogated in order by the number of correctly covered instances in [T ]. QRC
preserves rules that cover at least one instance. Meanwhile, the covered
instances are removed permanently from [T ]. The compaction process ter-
minates when [T ] is empty, or QRC has iterated through all the rules.

Algorithm 10: Quick Rule Compaction (QRC)

Input: all rules in a trained population P ;
all instances in training set T ;
Output: a sub-set rules R Set

1 Rank rule ∈ Subset by fitness (descending order);
2 while Size(P ) > 0 and Size(T ) >0 do
3 select first rule in P ;
4 match size=0;
5 for instance ∈ T do
6 if Match(rule, instance) then
7 Remove instance in T ;
8 match size++

9 end

10 end
11 if match size >0 then
12 Add rule to R Set

13 end
14 Remove rule from P

15 end
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2.3.9 Parameter Driven Rule Compaction (PDRC)

PDRC follows the structure of CRA2. The only modification of PDRC is
that the method for quantifying a rule’s usefulness is altered. In PDRC
a rule’s usefulness is estimated by a product of three parameters, which
are the numerosity, accuracy, and generalization in encoding (equal to the
number of “#” symbol in an encoding).

2.4 Visualization techniques

Visualization techniques have been widely applied into the LCSs field, es-
pecially for the purposes of investigating the LCS’s training performance,
or representing an LCS’s produced model in a human-discernable form.
For example, a two-dimensional map of training accuracy and learning
iterations is the most common technique (Figure 2.5) for illustrating the
LCSs’ models’ development of the prediction performance. Besides, a
three-dimensional map (Figure 2.6) of fitness, numerosity, and the product
of these two parameters, can be used to identify the discrepancy between
superior rules and inferior rules.

LCSs evolved rules are human-readable as they follow the format of if
“condition” then “action” [15]. Once accurate, the rules have been consid-
ered to contain useful knowledge that can reflect the nature of the explored
domains, but few works have been conducted to visualize the patterns un-
der LCSs’ models. This is because the traditional optimization methods of
LCSs cannot precisely identify the LCSs captured patterns, which ham-
pers the effort of successfully translating LCSs’ underlying patterns into
human-discernable graphs.

Visualization techniques have been employed to investigate the differ-
ence of learning theory between LCS and other systems. This was achieved
by comparing the graphs that describe the system’s learning performance
and the graphs that reflect the trained population’s distribution. For exam-
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Figure 2.5: A sample of visualization for comparing XCSs’ training perfor-
mance with other techniques, e.g. Genetic Programming (GP) regarding
the 11-bits Multiplexer problem. Green graph describes the XCS and blue
graph depicts GP. Y-axis: the training accuracy, which is the average of 30
exploits tasks, plus error bars (shown with dotted line), X-axis: the num-
ber of environmental instances that have been received. This visualization
technique reflects the development of the training performance, which can
be applied to investigate the learning progress of the visualized system.
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Figure 2.6: Visualization for a trained model that aims to distinguish the
superior rules and the inferior rules regarding the 6-bits Multiplexer prob-
lem. Green and blue respectively color the superior rules and the inferior
rules. This technique illustrates the superior rules’ eigenvalue in a single
LCSs produced model ([P]).
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Figure 2.7: XCSF and LWPR’s performance on the Crossed Ridge function.
In (a), the horizontal axis represents the iterations and the vertical axis re-
spectively record the MAE (mean absolute error), RFs (number of classi-
fiers), and generality (mean plus standard deviation). (b) and (c) respec-
tively represent the distribution of LWRP’s and XCSF’s population (ellip-
soidal lines represent the inflection point of the Gaussian activity),x1 and
x2 are two parameters of the Crossed Ridge function. The figure shows
both systems are well applicable to the problem. LWPR reaches a low error
faster than XCSF. However, XCSF is more likely to find a concise solution
[79].
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Figure 2.8: Heat maps visualize the LCS produced population. (a) without
clustering, each row is a rule, each column is a feature, this figure modelled
x0, x1, x2, and x3 as predictive features. (b) the same population after
clustering, feature shows two pairs of interacting features, i.e. (x0,x1) and
(x2, x3) are the most important features [92].
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ple, Butz had conducted a visualization-based experiment [79] regarding
investigating the difference between XCSF8 [102] and Locally Weighted
Projection Regression (LWPR 9 [96])’s difference in addressing function
approximation problems.

For both systems, this work recorded three types of information, i.e.
the mean absolute error, the number of classifiers of both systems (in LWPR,
a classifier is called a receptive field (RFs), thus, RFs represent the num-
ber of classifiers), and generality measure (mean plus standard deviation).
Afterwards, three visualizations (shown in Fig.2.7)that reflect the system’s
training performance are built with the horizontal axis for iterations and
the vertical axis for the recorded information. By comparing these visu-
alizations with the trained populations’ distribution, LCS and LWPR can
be compared objectively regarding computational effort, structuring capa-
bilities, and parameter sensitivity in addressing function approximation
problems [79].

It is possible to utilize visualization technique to reveal the ground
truth of LCS explored problems by clustering the rules of an LCSs’ trained
population, and then visualizing the patterns in the rule clusters, e.g. Ur-
banowicz’s work [92]. This work utilizes the Agglomerative Hierarchical
Clustering (AHC 10 [72]) to cluster the trained rules. Afterwards, a heat
map is employed to visualize the clusters’ rules’ generalization and spec-
ification characteristics (shown in Fig.2.8). Through the visualization re-
sults, the patterns of feature importance distribution are highlighted.

AHC works based on the assumption that Hamming distance can pre-
cisely reflect the correlation between rules. This results in Urbanowicz’s
work cannot adapt to boolean domains. For example, in the natural solu-
tion of the 6-bits Multiplexer problem, AHC considers ##0000 and 000###

8 XCSF is a genetics-based machine learning algorithm, which is a modified version of
XCS.

9 LWPR is a statistics-based machine learning technique that excels in addressing function
approximation problems.

10 A Hamming distance-based clustering technique
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in the same cluster as these two rules’ Hamming distance is 0. The specifi-
cation ratio cannot reflect the difference between the first two address bits
and the last four data bits for this cluster.

2.5 Benchmarks

This thesis aims to identify and visualize the patterns in LCSs’ models.
Therefore, three artificial boolean domains with clear patterns are consid-
ered as the benchmarks, i.e. the Multiplexer problem, the Carry problem,
and the Majority-On problem. Besides, for the sake of investigating the
newly proposed techniques’ potential in adapting to real-world applica-
tions, datasets from the UC Irvine Machine Learning Repository (UCI) [5]
are also tested, including Iris, Sonar, Wine, Australian, German, Wiscon-
sin Breast Cancer Diagnostic (WBCD), Lung Cancer, Hill & Valley, Iono-
sphere, and Zoo.

2.5.1 The Multiplexer Problem

The Multiplexer problems (MUX) are based on the Multiplexer electronic
circuit and have an inherent epistasis data distribution as the values in the
address bits affecting the importance of the data bits.

A Multiplexer accepts m input signals then outputs a signal. The first
k bits are the address, and the remaining 2k bits are data bits. For example
in 6-bits multiplexer, if the input is 010100, then the output will be 1 as the
first two bits 01 represent the index 1 (in base ten), which is the second bit
following the address. Previous works proved that LCSs are capable of
addressing large-scale MUXs, e.g. with a population of around 20 thou-
sand rules, LCSs can correctly represent the 4.3 ∗ 1040 instances in 70-bits
MUX.

None of the existing compaction algorithms had yet successfully com-
pacted large-scale MUXs to their optimal format. Thus, it is interesting to
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determine if any of the tested compaction algorithms can find the optimal
ruleset for a large-scale MUX domain. Furthermore, the attempt of visual-
izing patterns contained by compacted rulesets for large-scale MUXs can
investigate whether our proposed visualization methods can be applied to
large-scale problems.

2.5.2 The Carry Problem

In Carry problems (CARs), two binary numbers of the same length un-
dergo the process of addition. If the addition triggers a carry bit, then the
output is 1 otherwise 0. For example, the action in 1010 is 1, while the
action for 0110 is 0.

CARs have two characteristics that make them become difficult prob-
lems for compaction. Firstly, member rules of an optimal solution for a
CAR have a naturally over-lapping distribution. This means that for rules
that support the same action, their encodings may have an overlapping
area, e.g. in 6-bits CAR, 111##1 : 1 and #111#1 : 1. When a problem
has an over-lapping distribution, LCSs frequently evolved and kept over-
general rules in their final population. Compaction algorithms will fail in
CARs if algorithms cannot identify over-general rules. Secondly, CARs’
optimal rules have different generalization levels. Important but specific
rules may have relatively low training parameters, e.g. numerosity and fit-
ness. Therefore, these important specific rules are under the risk of being
replaced by over-general rules when compacting.

2.5.3 The Majority-On Problem

In the Majority-On domain (MAJs), the correct classification is the ma-
jority value of the N input bits. For example, the output is 1, when the
majority of the input bits are 1s, and the output is 0, when the majority of
the input bits are 0s or the number of 0s and the number of 1s are equal.
For example, 0011’s action is 0, and 0111’s action is 1.
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MAJs are difficult to compact for two reasons. Firstly, the number of
rules in an optimal ruleset for a MAJ is much larger than for other do-
mains, e.g. an optimal set for 11-bits MAJ has 924 rules whereas for the
70-bits MUX only has 128 rules. When compacting, even incorrectly re-
moving one of the optimal rules, the performance of the compacted pop-
ulation will decrease, and the readability of the compacted populations
contained patterns will become obscure. Secondly, MAJs have a severe
over-lapping distribution. In this scenario, LCSs continually evolve good
performance over-general rules, and LCSs incorrectly assign training pa-
rameter values for these problematic rules when training. Therefore, it is
difficult for compaction algorithms to distinguish optimal rules from over-
general rules.

2.5.4 Datasets from UCI

The UCI datasets have been widely employed in the data mining area as
benchmarks [2] [30] [31] [74]. In this work, ten UCI datasets for continu-
ous real domains are studied, six relatively simple datasets are selected to
interrogate the correctness of the proposed work, including Iris [53], Sonar
[48], Wine [11], Australian [11], German [103], and Wisconsin Breast Can-
cer Diagnostic (WBCD) [43]. Furthermore, four other complex domains
are selected to investigate the novel method’s limitations due to high di-
mensionality e.g. Lung Cancer [43], artificial problems e.g. Hill and Val-
ley [20], and multiple actions with a low number of instances e.g. Zoo
[70], and natural domains, e.g. Ionosphere [24]. As the aim is not to test
LCSs capability in dealing with missing data, all the instances that contain
missing data have been removed to avoid this confounding variable rather
than a lack of capability in LCSs.

The Iris Dataset [32] is a very simple domain that refers to a type
of three different iris plants, i.e. Setosa, Versicolor, and Virginia. This
dataset has three classes of fifty instances each and four attributes, i.e.
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sepal length, sepal width, petal length, and petal width.

The Sonar, Mines vs. Rocks Dataset (Sonar) [105] is a real-world task
that records sonar signals bounced off a metal cylinder and those bounced
off a cylindrical rock. The Sonar contains two classes, i.e. rock and mine.
The rock class contains 97 instances and the mine class has 111 instances.
Each instance has sixty attributes, which are valued in the range of 0.0
to 1.0. Each attribute represents the energy within a particular frequency
band, integrated over a certain period.

The Wine dataset [104] is a simple domain for classification tasks, which
represent the results of a chemical analysis of wines grown in the same re-
gion in Italy but derived from different cultivars. This dataset has 178 in-
stances, which belong to three classes. Besides, each instance has thirteen
attributes, i.e. Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium,
Total phenols, Flavanoids, Nonflavanoid phenols, Proanthocyanins, Color
intensity, Hue, OD280/OD315 of diluted wines, and Proline.

The Australian Credit Approval dataset [28] records credit card appli-
cations from Australian. This dataset has two classes and 690 instances.
Each instance has 14 attributes. This dataset is interesting because there is
a good mix of attributes, including continuous, nominal with small num-
bers of values, nominal with larger numbers of values, and missing values.

The South German Credit Dataset (German) [29] shows customers’
credit information. This dataset has 21 attributes and 1000 instances with
700 instances as good credit and 300 instances as bad credit.

The Breast Cancer Wisconsin (Diagnostic) Dataset [82] reports the at-
tributes that are computed from a digitized image of a needle aspirate
of a breast mass. The attributes describe characteristics of the cell nuclei
present in the image. This dataset has 2 classes and 569 instances. Each
instance has 32 attributes.

The Lung Cancer Dataset [37] describes 3 types of pathological lung
cancer, i.e. three classes. This dataset has 32 instances and each instance
has 56 attributes.
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The Hill & Valley Dataset [20] is an artificial problem that each in-
stance describes a graph of either hill or valley. This dataset has 606 in-
stances, each instance represents 100 points (attributes) on a two-dimensional
graph.

The Zoo dataset [50] is a multiple class problem containing 101 in-
stances, that describes 7 types of creatures. In this dataset, an instance
has 16 boolean-valued attributes, i.e. hair, feather, eggs, milk, airborne,
aquatic, predator, toothed, backbone, breaths, venomous, fins, legs, tail,
domestic, and catsize.

The Ionosphere Dataset [105] was collected by a radar system in Goose
Bay, Labrador. This dataset has 34 attributes, 351 instances, and two classes
that are “Good” and “Bad”. “Good” records radar returns that are show-
ing some evidence of some type of structure in the ionosphere. “Bad”
documents the radar returns that pass through the ionosphere.

2.6 Parameters Settings

This thesis’s models are produced by three types of LCSs, i.e. XCS, UCS,
and Absumption and Subsumption based Learning Classifier System (ASCS)
(ASCS is proposed in this project and is described in detail in Section 7).
The description and default values of the training parameters for XCSs are
represented in Table 2.1, and Table 2.2. The UCSs’ parameters are in Table
2.3. Besides, Table 2.4 shows the parameter settings for ASCS.

In this thesis, 18 Boolean problems use the default values of XCSs and
UCSs, i.e. the 6-bits, 11-bits, and 20-bits Multiplexer problem, the 6-bits,
8-bits, 10-bits, 12-bits, 14-bits, and 16-bits Carry problem, the 6-bits, 7-bits,
8-bits, 9-bits, 10-bits, 11-bits, 12-bits, 13-bits, and 14-bits Majority-On prob-
lem. Besides, all the UCI datasets are tested by the training parameter’s
default values.

Regarding the 37-bits and 70-bits Multiplexer problem, the P# is re-
spectively increased to 0.66 and 0.99 in both XCSs and UCSs. Other pa-
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Table 2.1: Table of training parameters for XCSs

Parameter Description Default
α The fall off rate in the fitness evaluation. 0.1

β

The learning rate for updating fitness, prediction,
prediction error, and action set size estimate in
XCS’s classifiers.

0.2

γ The discount rate in multi-step problems. 0.95

δ

The fraction of the mean fitness of the population
below which the fitness of a classifier may be
considered in its vote for deletion.

0.1

ν
Specifies the exponent in the power function for
the fitness evaluation.

5

θGA

The threshold for the GA application
in an action set.

25

ε0
The error threshold under which the accuracy of a
classifier is set to one.

10

θdel

Specified the threshold over which the fitness
of a classifier may be considered in its
deletion probability.

20

pX
The probability of mutating one allele and
the action in an offspring classifier.

0.8
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Table 2.2: Table of training parameters for XCSs

Parameter Description Value
selectTolerance The tolerance of select candidate parents. 0.05

pM
The probability of mutating one allele
and the action in an offerspring classifier.

0.04

tournamentSize
The fraction of classifiers participating
in a tournament from an action set.

0.4

P#

The probability of using a don’t care
symbol in an allele when covering.

0.3

predictionErrorReduction
The reduction of the prediction error
when generating an offspring classifier.

1.0

fitnessReduction
The reduction of the fitness when
generating an offspring classifier.

0.1

θsub
The experience of a classifier required
to be a subsumer.

20

predictionIni
The initial prediction value when
geneerating a new classifier
(e.g in covering).

10

predictionErrorIni
The initial prediction error value
when generating a new classifier
(e.g in cvering).

0

fitnessIni
The initial fitness value when generating
a new classifier (e.g in covering).

0.01
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Table 2.3: Table of training parameters for UCSs

Parameter Name Description Value

ν
Power parameter used to determine the importance
of high accuracy when calculating fitness.

5

χ The probability of applying crossover in the GA. 0.8

υ
The probability of mutating an allele within
an offspring.

0.04

P#

The probability of using a don’t care
symbol in an allele when covering.

0.33

θGA

The GA threshold; The GA is applied in a set
when the average time since the last GA in
the set is greater than theta GA.

25

θdel The deletion experience threshold. 20
θsub The subsumption experience threshold. 20

acc sub Subsumption accuracy requirement. 1.0

β
Learning parameter; Used in calculating
average correct set size.

0.2

δ Used in determining deletion vote calculation. 0.1
init fit The initial fitness for a new classifier. 0.01

fitnessReduction Initial fitness reduction in GA offspring rules. 0.1

θsel
The fraction of the correct set to be included
in tournament selection.

0.5



56 CHAPTER 2. BACKGROUND

Table 2.4: Table of training parameters for UCSs

Parameter Name Description Value

Epoch Number
Number of epochs that are required to be
completed before exploration is ceased.

10

Training Number
Number of instances that need to be
explored in each training run.

50000

Compacting Number
Number of instances that need to tested
in each compacting process.

5000

Maximum Rule Number The maximum number of rules in [P ]. 1000

Experience discount
The discount ratio of experience
at the end of each compacting process.

0.33

rameters use the default values [95].
In ASCS, the 6-bits, 11-bits, and 20-bits Multiplexer problems, the 6-

bits, 8-bits, and 10-bits Carry problems, and the 6-bits, 7-bits, 8-bits, 9-
bits, and 10-bits Majority-On problems are using the default values. In
the 37-bits Multiplexer problem, 12-bits and 14-bits Carry, and 11-bits, 12-
bits, 13-bits, and 14-bits Majority-On problems, the epoch number is 15,
the training number is 250,000, the compacting number is 25,000, and the
maximum number of rules is 10000.



Chapter 3

Natural Solution & Visualization
Techniques

This chapter proposes a new hypothesis, which is termed natural solu-
tion regarding the Learning Classifier System’s optimal solution. Hence,
three novel visualization techniques that aim to translate LCSs’ underlying
knowledge into human-discernable patterns are introduced. The three vi-
sualization techniques are termed Feature Importance Map (FIM), Action-
based Feature Importance Map (AFIM), and Action-based Feature’s aver-
age Value Map (AFVM), respectively.

FIM reflects the importance of each involved attribute. This visualiza-
tion method is easy to implement and can be utilized to trace an LCS’s
performance in patterns, i.e. how patterns are constructed. AFIM shows
attribute importance based on each action, AFIMs can be utilized to in-
vestigate the explored domain’s data distribution. AFVM presents the
specified attribute’s average values based on actions, AFVMs are useful
to detect the relationship between specific values and the output actions,
i.e. the cause of a model’s decisions.

57
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3.1 Introduction

Previously, Butz et al. proposed that LCSs are designed to evolve rule-
sets that are characterized by completeness, correctness, minimality, and
none overlapping to represent the explored domain [18]. Such rulesets are
considered as the optimal results of LCSs and are termed optimal ruleset
[O], which are assumed to contain interpretable patterns that can reflect
the underlying nature of the addressed problem (see Section 3.4.3). How-
ever, in practice, LCSs use Evolunatory Computation (EC) techniques as
the primary search algorithms. The stochastic nature of EC makes LCSs
prone to produce high diversity rules. This indicates that LCSs cannot
guarantee the correctness and minimality of the produced ruleset. Fur-
thermore, LCSs employ subsumption to prevent redundant specific rules
to be introduced to the population [P] [55]. The subsumption method en-
sures that the evolved rules are unsubsumable rather than that the rules
are not overlapping. Hence, in the majority of LCSs produced models, an
[O] does not exist.

In this scenario, a new type of optimal solution to be produced by LCSs
is proposed by this work. This optimal ruleset is expected to represent ex-
plored domains completely and correctly. Furthermore, each member rule
should be consistent and unsubsumable1 under the global search space.
Consistentness requires that a rule can either consistently support or con-
sistently oppose the associated action. The newly defined LCSs’ optimal
solution is termed natural solution, which complements Butz and Kovacs’
[O]. The natural solution has been discovered in all the XCSs [99], and UCSs
[68] addressed domains. However, these optimal solutions for most do-
mains still contain a considerable number of rules that cooperatively rep-
resent the knowledge in a manner that is too complex to be comprehended
by humans [10]. Thus, assistive techniques are required to support hu-

1 subsumable rules are the over-specific rules, unsubsumable rules are non-over-specific
rules.
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mans in understanding the critical knowledge in LCSs’ models. This leads
to the visualization techniques of Action-based Feature Importance Map
(AFIM) and Action-based Feature’s Average value Map (AFVM) being de-
veloped, which can precisely describe patterns of optimal solutions from
different viewpoints.

3.2 Natural Solution

Natural solution is proposed in this work, which is a definition regarding
a type of ideal form of LCSs’ optimal solution. Natural solution describes
a ruleset that includes all the consistent and unsubsumable rules under
the global search space. Natural solution is unique under the global search
space. This uniqueness unlike [O], which may also contain multiple ways
of accurately describing the domain’s patterns. Furthermore, a natural so-
lution can correctly and completely represent arbitrary dataset, e.g. repre-
sent any off-line datasets such as overlapping boolean domains and real-
valued domains in UCI datasets. This differs from [O], which can only
adapt to non-overlapping datasets, e.g. Multiplexer problems. Thus, the
discovery of natural solution reveals that LCSs can produce interpretable
models for both overlapping domains and non-overlapping domains.

A Natural solution has a necessary and sufficient condition, that is a
noiseless training set [T ]. Assuming an N-features problem PrN can be
globally described by M instances, where ([I0, I1, ..., IM ] ⊂ PrN ). Mean-
while, in PrN , m instances form [T ], where [I0, I1, ..., Im] ⊂ [I0, I1, ..., IM ].

In representations that reflect the importance of attributes, the global
search space is naturally splittable. For example, in the ternary alphabet
representation, the global search space (GS) can be split into N+1 sub-
spaces (SP) that are distinguished by the number of generalized features
in the encodings. For example, ([SP0, SP1, ..., SPN ] ⊂ GS) that are ranked
from the most specific (all features are specified) SP0 to the most general
(all features are general) SPN . Since SP0 specifies all features, then, [T ]
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must be a subset of SP0. SP0 ⊂ GS. Therefore, for any [T ], in GS, there
exists at least one [P ] that can completely represent the [T ] correctly.

In GS, among all the possible [P ]s, there exists one solution that pos-
sesses all rules that satisfy two criteria: consistent and maximal gener-
alization, under the global search space. Consistent requires a rule con-
sistently supports or consistently opposes the covered instances’ action.
Maximal generalization expects a rule that can not be subsumed by any
other correct rules in GS. The quality of being unsubsumable indicates
that the encodings of maximal generalization for a specific [T ] are deter-
ministic. Therefore, for any [T ], its natural solution is deterministic. This
characteristic varies from [O], which can be alternative rulesets. Further-
more, in specific cases, some [O] can be a subset of a natural solution (show
in Figure 3.1). When this occurs, similar to natural solution, [O]s will pos-
sess human-discernable patterns (show in Figure 3.3), e.g. some [O]s of
the Multiplexer problems.

Each rule in a natural solution corresponds to a cluster of instances from
[T ]. The instances in the same cluster advocate the same action and share
the same feature importance. A rule’s encoding specifies the important
common features to identify the rule covered instances from instances that
advocate different actions. Therefore, the specified features in the encod-
ings can reflect the knowledge for distinguishing instances possessing dif-
ferent actions, which are the underlying patterns of [T ]. If [T ] and PrN

have a similar distribution, then the detected underlying patterns of [T ]
also are adapted to PrN . Hence, in practice, LCSs still have the potential
to evolve an interpretable ruleset even if only a small portion of possible
instances are observable, e.g. when exploring a 70-bits Multiplexer prob-
lem, LCSs typically observe around four million of all 1.18 ∗ 1021 available
instances.

Natural solutions have been discovered in both XCSs and UCSs’ opti-
mized models. Furthermore, for the same dataset, the natural solutions
found by XCSs and UCSs are the same. This evidence supports the hy-
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pothesis that natural solutions widely exist in various LCSs produced mod-
els and only dependent on the employed representation format.

Figure 3.1: Samples respectively describe a natural solution and a Butz and
Kovacs’ optimal solution [O] for the 6-bits Multiplexer problem. For a
certain dataset, a natural solution is unique, but [O] can be multiple. Fur-
thermore, [O] that be composed of only unsubsumable rules, are always
subsets of the natural solution.

3.3 The Proposed Visualization Techniques

Three types of visualization techniques that aim to explore the discovered
data patterns are proposed, i.e. Feature Importance Map (FIM), Action-
based Feature Importance Map (AFIM), and Action-based Feature’s Av-
erage value Map (AFVM). These methods have been used independently
with a clear comparison of the strengths, weaknesses, and suitability for
various visualization tasks.

3.3.1 Feature Importance Map (FIM)

In the LCS domains, calculating an attribute’s ratio of specification among
all the rules in an LCSs’ model is the most common manner for assess-
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ing each attribute’s importance in addressing the explored problem. The
majority of previous visualization techniques are based on visualizing the
attributes’ specification ratio. However, these techniques cannot precisely
describe the patterns captured by LCSs. Thus, it is hypothesized that clus-
tering the rules according to the rules’ generalization level, and then cal-
culating the specification ratio for attributes in each cluster can improve
the clarity of the visualized patterns. Feature Importance Map (FIM) is
developed based on this hypothesis.

FIMs consider three dimensions, i.e. the labeled attributes, the global
search space that is composed of a set of different generalization levels,
and the attribute importance. The X-axis represents all the involved en-
vironmental attributes. Here, all the attributes are labeled, e.g. when ad-
dressing an n-bits Boolean problem, attributes are labeled from 0 to n− 1.
Y-axis is the global search space that is divided into a set of generalization
levels, e.g. for any n attributes problems, n+1 generalization levels exist
that rank from 0 to n that completely satisfied with general respectively.
Z-axis is the attribute importance that record an attribute’s specification
ratio (importance) at a specific generalization level, e.g. the generalization
level i contains ki rules, among the ki rules, regarding the attributej , mj

rules specific the attributej , then the attributej’s specification ratio Rij at
generalization level i can be calculated by the Equation (3.1).

Rij =
mj

ki
(3.1)

FIMs are able to discover the difference in importance regarding the
considered attributes and highlight the critical generalization levels for
addressing the problem at global level. For example, in Figure 3.2, FIMs
successfully visualize the difference between the address bits (attribute0
and attrbiute1) and the data bits (from attribute2 to attribute5) for the 6-
bits Multiplexer problem. Importantly, this figure identifies that the gen-
eralization level 3 is the most critical generalization level for the explored
domain.
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Figure 3.2: A figure shows the visualization process of Feature Importance
Map (FIM) in the case of the 6-bits Multiplexer problem. First rectangle:
An [O] for 6-bits Multiplexer problem; Second rectangle: calculated statis-
tics (see Section 3.1 for the details); Third rectangle: visualize the statistics
results. In the visualization part, X is the attribute ID; Y records the gener-
alization levels that rank by the number of generalized bits; Z represents
the importance of attributes for a specified attribute at a specific general
level. The FIM shows the importance of each attributes in the specifica-
tion for the explored domain. Furthermore, the importance among all the
involved generalization levels also can be visualized. For example, this
figure shows the generalization level 3 is crucial for the 6-bits Multiplexer
problem.
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Figure 3.3: FIMs respectively describe a natural solution and an [O] for the
6-bits Multiplexer problem. Both natural solution and [O] that are built
by unsubsumable rules, contain patterns that display a distinct difference
between address-bits and data-bits. However, the member rules of [O]
may not be unsubsumable under the global search space.

3.3.2 Action-based Feature Importance Map (AFIM)

FIMs visualize the underlying patterns at the macro level, which makes
FIMs easy for human-discernment in comprehending the basic knowl-
edge of the explored domains. However, LCSs’ captured patterns have
the potential to display more useful information on the addressed prob-
lems. Thus, it is hypothesized that visualizing the underlying patterns
at the micro level can help a human to discover other hidden knowledge
that can not be observed from FIMs. Action-based Feature Importance
Map (AFIM) is developed as a technique for visualizing the attribute im-
portance at the micro level, which are the important attribute values.

AFIMs consider three dimensions, which are attributes (X-axis), search
space (Y-axis), and attribute importance (Z-axis). Different from FIMs,
AFIMs begin with grouping the rules according to the rules’ supported ac-
tions, then independently calculate the attribute importance in each grouped
ruleset. Eventually, the statistics of each action will be respectively trans-



3.3. THE PROPOSED VISUALIZATION TECHNIQUES 65

Figure 3.4: A sample describes the implementation of the Action-based
Feature Importance Map (AFIM) regarding the 6-bits Multiplexer prob-
lem. First rectangle: An [O] for the 6-bits Multiplexer problem; Second
rectangle: statistics calculation process (see Section 3.2 for the details);
Third rectangle: the visualized statistics results, where X is the attribute
ID, Y is the generalization levels that ranks by the number of generalized
attributes, Z represents the attribute importance of specified attributes at
a specific generalization level for the supported action. Graphs for action
1 and action 0 are colored with green and orange, respectively. This fig-
ure shows the explored domains’ distribution and how the importance of
attributes in determining the output action, e.g. the Multiplexer problems
have a balanced distribution as patterns for both actions are completely
overlapped, and the address-bits are very important in determining ac-
tions as the attribute0 and attribute1 are specified by all the rules.
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lated into a graph for visualization. When graphs for the different actions
are represented in the same figure, these graphs will be distinguished by
different colors. Thus, it is possible to discover knowledge regarding the
different patterns between the available actions through the AFIMs.

Similar to FIMs, AFIMs also can reflect the important difference among
the environmental attributes and identify the critical search space (gen-
eralization levels). However, AFIMs show this knowledge at the micro
level, where patterns are related to an available action instead of to the
whole problem domain. Furthermore, AFIMs are competent in discover-
ing the explored domain’s characteristic of class distribution. A problem
has a balanced class distribution when the patterns for different actions
are completely overlapped (shown in Figure 3.4). Otherwise, the prob-
lem has an imbalanced class distribution. Curiously, class imbalance has
previously been counted from the input data, rather than automatically
displayed in the output visualization.

3.3.3 Action-based Feature’s Average value Map (AFVM)

A correlation between a rule’s specified value and this rule’s supported
action can be observed in many LCSs’ optimal solutions, e.g. in the Carry
domain, all the optimal rules’ specified values are the same as these rules’
associated action’s values. Thus, it is hypothesized that visualizing the
patterns of the average value of the specified attributes can answer how
attributes determine the output actions. AFVM is designed because of this
hypothesis.

AFVMs are three-dimensional maps that consider attributes (X-axis),
search space (Y-axis), and the average value of the specified attributes (Z-
axis). The implementation of AFVMs is similar to AFIMs that start with
grouping rules according to their advocated actions. Then the relevant
statistics are calculated independently in each grouped ruleset, e.g. as-
suming a group contains k rules at generalization level i, among the k
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Figure 3.5: A figure illustrates how Action-based Feature’s Average value
Map (AFVM) is implemented on the 6-bits Multiplexer problem. First rect-
angle: An [O] for the 6-bits Multiplexer problem; Second rectangle: results
of the calculated statistics (see Section 3.3 for the details); Third rectangle:
graph of the visualized statistics results, where X is the attribute ID, Y is
the generalization levels that rank by the number of generalized bits, Z
represents the average value of specified attributes at a specific general-
ization level for the supported action. Graphs for action 1 and action 0 are
colored with green and orange, respectively. This shows the relationship
between the specific values of attributes and the output action, e.g. this
figure shows that in the Multiplexer domains, the output action is deter-
mined by the specified value in the data-bits.
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Figure 3.6: FIM, AFIM, and AFVM describe the 10-bits Carry problem.
These graphs can reflect the natural information of the explored domain,
e.g. in the Carry domain, all the considered attributes can be split into two
parts. FIMs are easy to read, AFIMs can reflect the class distribution, and
AFVMs can reflect the relationship between rules’ advocated actions and
the value of the specified attribute.
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rules, mj rules specified the attributej , then the average value of attributej
at generalization level i can be computed by Equation (3.2) where

∑
mj

means the summation of mj rules specified value at attributej . Further-
more, in binary action Boolean encoded domains, in the graphs of action
zero, the value of the specified attributes in rules will reduce by one before
calculating the statistics, e.g. 1 be 0, and 0 be -1. This additional process
intends to clarify the difference in graphs between two actions. The differ-
ence among three visualization techniques is shown in Figure 3.6.

Avei,j =

∑
mj

mj

(3.2)

AFVM can reflect the importance of each attribute in identifying the
action. For example, Figure 3.5 shows that for the 6-bits Multiplexer prob-
lem, the data bits determine the output actions.

3.4 Visualization Results & Discussion

The proposed visualization techniques have an effect on six fields for im-
proving the understanding of the LCSs. Firstly, FIMs can be employed for
tracing LCSs’ training progress so that the learning performance among
different types of LCSs can be interrogated. Secondly, FIMs can investigate
how a specific training parameter impacts the learning process. Thirdly,
FIMs can be applied to visualize the trained models from different types of
LCSs. This allows the difference among various LCSs trained models to be
interrogatable by visualizations. Fourthly, AFIMs can serve to assess com-
paction algorithms’ performance on optimizing LCSs’ produced models.
And arguably most importantly, fifth, AFIMs and AFVMs can efficiently
translate the underlying patterns to human-discernable knowledge of the
explored domains, where knowledge is difficult to discern from directly
reading the member rules in the optimal solutions. Lastly, FIMs for opti-
mal solution visualizations can highlight redundant attributes.
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The models produced by XCS, UCSs, Absumption and Subsumption
based learning classifier system (ASCS 2) are visualized in this section.

3.4.1 Tracing the Learning Progress

FIMs are simple to read, such that these FIMs’ graphs can be employed to
trace the LCSs’ training progress, compared with the traditional training
graphs that mainly record the training accuracy improvements and the
changes in Macro vs Micro population. FIMs can reflect how the underly-
ing patterns formed along with the learning progress, and how the rules’
generalization changes as the evolving process moves forward.

Figure 3.7, Figure 3.8, and Figure 3.9 respectively show the learning
progress of ASCS, UCS, and XCS in addressing the 6-bits Carry problem.
ASCSs are designed to search for the natural solution, which is the opti-
mal solution for the majority of the LCSs addressed domains. Hence,
ASCSs are the only systems that can gradually form human-discernable
patterns during the learning progress. Furthermore, due to ASCS employ-
ing deterministic searching algorithms, i.e. subsumption, absumption 3,
and informed mutation, ASCSs can evolve accurate models within a much
smaller number of iterations when compared with XCSs and UCSs, which
are based on stochastic search algorithms, i.e. crossover, mutation, and
roulette wheel deletion.

Due to XCSs having a preference to evolve general rules, when over-
general rules are incorrectly preserved, XCSs’ training performance may
reduce. For example, Figure 3.9 shows how the over-general rules im-
pact on reducing training accuracy, from iteration 6000 to iteration 10000,
where the number of over-general rules at generalization level 5 is in-

2 ASCS is a new version of LCSs introduced in this work, which varies from other LCSs,
since ASCS considers the natural solution as the primary search objective, Chapter 7 will
describe this system in detail

3 Absumption is an search method that produce specific rules by correct overgeneral rules,
this algorithm will be described in Chapter 6
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Figure 3.7: The detailed description of X, Y, Z for each graph is in section
3.3. The FIMs records the learning progress of an ASCS for the 6-bits Carry
problem, the integers inside the bracket on the Y-axis represent the number
of rules at the specific generalization level. FIMs show that ASCSs spend
200 iterations to reach the maximal accuracy. Afterward, 100 more itera-
tions are consumed for evolving the accurate model to the optimal format
so that the underlying patterns of the optimal solution can be visualized
after 300 iterations.
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Figure 3.8: These FIMs represent the learning progress of the UCSs for the
6-bits Carry problem. Y-axis, the integers inside the brackets are the sum-
mation of the rules’ numerosity at a specific generalization level. UCSs
need around 6000 iterations to produce an accurate model. Due to UCSs
being designed to evolve accurate rules instead of searching for the opti-
mal rules, UCSs’ models do not possess human-discernable patterns (see
Figure 3.7).
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Figure 3.9: These FIMs describe the XCSs’ training progress in address-
ing the 6-bits Carry problem. Y-axis, the integers inside the brackets are
the summation of the rules’ numerosity at a specific generalization level.
XCSs spend 14,000 iterations for evolving consistently accurate models.
Due to XCSs being prone to evolve rules that are maximally generalized
and accurate, the patterns in XCSs’ model only vaguely reflect that the
attributes should be divided into two parts.
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creased from 4 to 12, which results in XCSs’ training accuracy being re-
duced to 98.6% from 100%.

3.4.2 Tracing the Learning Parameters

FIMs can reflect the LCSs’ learning process at a very detailed level. Thus, it
is possible to use FIMs to interrogate how the change of a specific training
parameter impacts LCSs’ training process, i.e. control the generalization
level of the evolved rules.

Figure 3.10 and Figure 3.11 are FIMs recorded training processes (re-
spectively from XCSs and UCSs), where P# is set as a relatively low value
(0.01) regarding addressing the 6-bits Carry problem. Comparing with
these two figures, XCS is much better than UCS regarding the removal
of early generated over-specific rules. This is consistent with the evolu-
tionary characteristics of the two LCSs, where XCSs are prone to preserve
correct general rules and that specific rules tend to be removed, but UCSs
protects all the correct rules, where subsumption is the only mechanism
that prevents UCSs from including over-specific rules.

Furthermore, when compared with the Figure 3.8 and Figure 3.9, where
P# is set as 0.33, the results show that a lower P# value can benefit LCSs
to improve the prediction performance with a much smaller number of
learning iterations. However, the models are flooded with over-specific
rules.

3.4.3 Investigating the Trained Models

FIMs not only could be employed to investigate the learning progress of
LCSs but also can be applied to interrogate the trained models from LCSs.
Hence, the search preference of various LCSs can be visualized. Figure
3.12 shows the visualized patterns from XCSs, UCSs, and ASCSs on three
problems, i.e. 11-bits Multiplexer, 12-bits Carry, and 13-bits Majority-On,
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Figure 3.10: The FIMs for the XCSs’ training progress regarding address-
ing the 6-bits Carry problem, where P# is set with a relatively low value,
that is 0.01. All the rules locate at the generalization level 0 and 1 are
over-specific for this problem. Y-axis, the integers inside the brackets are
the summation of the rules’ numerosity at a specific generalization level.
The FIMs show that at the beginning of the learning, the evolved model
employed a lot of very specific rules to represent the explored domain,
where 156 rules and 129 rules are located respectively at generalization
level 0 and generalization 1, but after 20000 iterations, only 18 rules are in
the generalization level 0 and level 1. This evidence shows that XCSs can
effectively remove the over-specific rules as the learning progresses.
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Figure 3.11: These FIMs regarding the learning progress of the UCSs for
the 6-bits Carry problem with P# is set as 0.01. All the rules are located at
the generalization level 0 and 1 are over-specific for this problem. Y-axis,
the integers inside the brackets are the summation of the rules’ numerosity
at a specific generalization level. The results show that at the beginning of
the learning, a relatively low P# can benefit UCSs in improving prediction
performance. The results also evidence that UCSs does not excel in remov-
ing early generated over-specific rules, as at 10000 iterations there are 56
over-specific rules at generalization level 1, after another 12000 iterations,
only 7 of the over-specific rules have been removed by the UCSs.
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all the visualized models have been trained sufficiently to ensure the rules
have converged to the most suitable generalization level.

All the LCSs can fully address the 11-bits Multiplexer problem. The
results show that even in XCSs and UCSs’ fully representative accurate
models, many over-general and over-specific rules exist. This evidences
that correct over-specific rules and optimal rules can neutralize the over-
general rules’ negative impact on prediction, which can be an advantage
of using multiple rules to construct models. In general, XCSs possess a
larger number of over-general rules but have a smaller number of over-
specific rules compared with UCSs. This is consistent with XCSs having a
preference for evolving general rules and UCSs having a lack of methods
for removing over-specific rules.

The Carry problem and the Majority-On problem have an overlapping
issue. This issue describes that in specific domains, the optimal rules share
overlapping niches (represented instances) that results in LCSs generating
good performance over-general rules such that LCSs’ optimal models are
under the risk of being dominated by the over-general rules. Due to this
issue, XCSs and UCSs cannot generate completely accurate models for the
Carry and Majority-On problems. The presented FIMs can visualize the
over-general phenomenon caused by the overlapping issue for XCSs and
UCSs. The results also evidence that ASCSs can adapt to the overlapping
issue as ASCSs can produce the optimal solutions for domains that have
an overlapping issue.

3.4.4 Assessing the Optimization Performance

LCSs produced models frequently contain a considerable number of re-
dundant rules and irrelevant rules. For the sake of discovering the correct
patterns under LCSs’ models, rule compaction algorithms are developed
that aim to remove the problematic rules from the LCSs’ produced models.
However, due to the lack of techniques for understanding the patterns in
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Figure 3.12: Nine FIMs for the trained LCSs models from XCS, UCS, and
ASCS that addressed the 11-bits Multiplexer, 12-bits Carry, and 13-bits
Majority-On problems. The results show how important it is to obtain
the LCSs’ optimal solutions, as only these solutions possess patterns that
are easily human-discernable (shown in ASCS’s results). The results show
that XCSs’ and UCSs’ trained models contain many redundant rules (over-
specific rules) and irrelevant rules (over-general rules). Hence, visualizing
the results from XCSs and UCSs cannot precisely reflect the ground truth
of the explored domain, i.e. the important difference between the address-
bits and the data-bits in the Multiplexer problem and all the optimal rules
for addressing the odd number attributes Majority-On problem only lo-
cating at a single generalization level. The results of the Carry problem
from XCS and UCS still show that the attributes should be divided into
two parts, but not as precisely as ASCS accomplishes.
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Figure 3.13: AFIMs visualize the optimized XCSs’ models that are com-
pacted by the Fu’s first approach (FU1), Quick Rule Compaction (QRC),
and Razor Cluster Razor (RCR) regarding the 11-bits Multiplexer (MUX),
10-bits Carry and 11-bits Majority-On problems. Graphs for action 1 and
action 0 are respectively colored with green and orange. The results show
that FU1 and QRC compacted models still contain redundant and irrele-
vant rules. In contrast, the RCR successfully compacts the models to the
optimal format, so that the correct graphs can be produced.
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LCSs’ models, previously, the testing accuracy is the only measure for as-
sessing a compaction algorithm’s performance. As a result, although pre-
vious rule compaction algorithms frequently reduce the original models’
training accuracy, no explanation exists for this phenomenon. The AFIMs
enable the patterns in the compacted models to be interrogatable, which
inspires a hypothesis to explain the reduced training accuracy. That is: the
previous rule compaction algorithms cannot distinguish the good perfor-
mance over-general rules and the optimal rules in a single model, which
results in the reduction of the prediction performance.

Figure 3.13 shows the patterns in the compacted XCSs’ models from
Fu’s first approach (FU1), Quick Rule Compaction (QRC), and Razor Clus-
ter Razor (RCR 4). FU1 is designed to remove rules that are redundant for
maintaining the training accuracy, and QRC aims to detect the best rule
for each instance in the training set, then construct a new model with these
best rules. Both FU1 and QRC act on a single model. Whereas, RCR op-
erates on multiple models, which intends to search for the correct unsub-
sumable rules in the global search space. The results show that compacting
multiple LCSs’ models is a promising method for discovering LCSs’ opti-
mal solutions. RCR successfully produces the optimal solutions for all the
tested problems, even in domains in which over-general rules dominate
models, i.e. the 10-bits Carry and 11-bits Majority-On problems, where
the visualized graphs demonstrated there are over-general rules existing
in FU1 and QRC compacted solutions.

All three compaction algorithms successfully remove the problematic
rules from the models for the 11-bits Multiplexer problem, but only RCR
produces a correct visualization result. This is because of the optimal so-
lution of the Multiplexer problems can be either [O]s or a natural solution.
However, FU1 and QRC frequently omit some member rules of natural so-

4 RCR is a rule compaction algorithm that applies the compacting on multiple models to
produce a subset that all member rules are consistent and unsubsumable. This algorithm
will be described in Chapter 4
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lution or incorrectly introduce the natural solution’s member rules to [O]s.
As a result, although the FU1 and QRC compacted models only possess
optimal individual rules, such rulesets do not satisfy the requirement of
natural solution nor [O]s. Thus, these rulesets cannot enable a correct graph
to be visualized.

3.4.5 Visualizing Patterns

LCSs’ models are composed of human-readable rules. Thus, previously
LCSs have claimed to be promising techniques to discover the ground
truth of the explored domains. However, in specific problems, LCSs em-
ploy a large number of cooperating rules to construct an accurate model,
which hamper humans from understanding the underlying patterns of
LCSs’ optimal solutions by reading the rules. As a result, LCSs’ capabil-
ity of applying to data mining tasks are underestimated. In this scenario,
AFIMs and AFVMs are developed to improve the interpretability of the
patterns in LCSs’ optimal solutions.

LCSs excel in addressing the Multiplexer problem as they can cope
with epistasis and heterogeneity, e.g. many versions of LCSs have com-
pletely solved the 70-bits case. According to such achievements, the com-
munity believes LCSs can adapt to large-scale domains by merely tuning
the training parameters, e.g. control the initial generalization level of the
covering mechanism, i.e. tuning P#. However, the transfer of the param-
eters control strategies to other fields cannot improve LCSs’ adaptability
in addressing these problems, e.g. XCSs even fails in addressing 12-bits
Carry or 10-bits Majority-On regardless of how the training parameters
are set. Previously, this phenomenon was hard to be explained because
there exists an expected model for representing the Multiplexer problems.
Such prejudice could result in only the expected rules in LCSs’ solutions
being appreciated. Other rules that are neither redundant nor irrelevant
could be ignored since it is easy for humans to understand the patterns in
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Figure 3.14: AFIMs and AFVMs visualize the 20-bits, 37-bits, and 70-bits
Multiplexer problems. Patterns of action 1 and action 0 are respectively
colored with green and orange. The visualized patterns consistently re-
flect the difference between address-bits and data-bits regardless of the
number of the considered attributes. AFIMs identify that the Multiplexer
problems have a balanced class distribution, as the patterns for both ac-
tions are completely overlapped. AFVMs show that the specified value in
data-bits determine the output action.
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Figure 3.15: AFIMs and AFVMs describe the 10-bits, 12-bits, and 14-bits
Carry problems. Patterns for action 1 and action 0 are respectively colored
with green and orange. The patterns show that attributes should be split
into two parts. AFIMs show that the Carry domains have an imbalanced
class distribution with class 0 as the major class. This is because rules that
advocated action 0 are located at more general generalization levels, which
indicates these rules covered a larger number of instances compared with
rules that support action 1. AFVMs show that the optimal rules’ specific
value is equal to the value of this rule’s advocated action.
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Figure 3.16: AFIMs and AFVMs visualize the 7-bits, 11-bits, 13-bits, 8-bits,
12-bits, and 14-bits Majority-On problems. Patterns of action 1 and action
0 are respectively colored with green and orange. AFIMs show that in
the odd case, this problem is a balanced domain, whereas, in even case,
this is an imbalanced problem. The problem description of the Majority-
On domain does not include this discovery. AFVMs show that the output
actions are determined by the majority of the specified value.
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an expected model rather than LCSs’ natural models, which is composed
of a large number of cooperating rules.

In the last two decades, although LCSs have been applied to many
fields, the community still has little insight regarding the optimal solu-
tions of LCSs. Benefits of the proposed visualization techniques include
that the underlying patterns in complex LCSs’ optimal solutions can be
interrogated, which leads to the discovery of the natural solutions. Nat-
ural solutions are composed of the consistent unsubsumable rules in the
global search space. Natural solutions and [O] that are built by unsubsum-
able rules, contain human-discernable patterns that can reflect the ground
truth of the explored domain, e.g. shown in Figure 3.12 is a natural solu-
tion of the 11-bits Multiplexer problem; in contrast, Figure 3.13 shows the
patterns of 11-bits Multiplexer problem’s [O]. All domains contain natu-
ral solutions, but fewer problems possess [O] that are only composed of
unsubsumable rules.

Figure 3.14, Figure 3.15, and Figure 3.16 respectively show the AFIMs
and AFVMs for the Multiplexer, Carry, and Majority-On domains. The
visualization results show that in the same domain the patterns are con-
sistent regardless of the number of considered attributes, i.e. in the Multi-
plexer domains, the difference between address-bits and data-bits, in the
Carry domains, attributes should split into two parts, and in the Majority-
On domains, optimal rules advocating the same actions are at the same
generalization level. AFVMs show that the Multiplexer problems’ out-
put actions are determined by the data-bits, which is consistent with the
ground truth of this domain. Furthermore, AFIMs indicate that in odd sit-
uations (an odd number of problem bits), the Majority-On problems have
a balanced class distribution, whereas, in the case of even situations, the
Majority-On domains possess an imbalanced class distribution with class
0 as the major class. Such discovery can not be found in the problem de-
scription, which shows that visualization techniques can help humans to
understand previously unknown characteristics of the explored domains.



86CHAPTER 3. NATURAL SOLUTION & VISUALIZATION TECHNIQUES

3.4.6 Highlighting Redundant Attributes

When LCSs’ models reach the optimal format, the redundant attributes
can be identified. Due to these attributes having no contribution in de-
termining the prediction results, the attribute importance of these redun-
dant attributes will be zero, consistently. This results in FIMs being prac-
tical methods in feature selection regarding highlighting the redundant
attributes. Figure 3.17 shows FIMs successfully identifying all the redun-
dant attributes in the explored hidden Boolean domains.

3.5 Conclusions of Visualization Techniques

A definition of a new style of LCSs’ optimal solution (natural solution) is
proposed. A natural solution is unique and deterministic for a certain train-
ing set, and this solution is a ruleset that includes all the consistent and
unsubsumable rules in the global search space. The hypothesis of natu-
ral solution completes the Butz and Kovacs’ [O] hypothesis and contains
human-discernable patterns that reveal the ground truth of the addressed
problems. Furthermore, three types of three-dimensional visualization
techniques for LCSs are proposed, i.e. FIMs, AFIMs, and AFVMs. FIMs
visualize the LCSs’ models at the macro level. FIMs ease the understand-
ing of patterns and can reflect the rules’ generalization distribution and
attribute importance distribution, especially in an LCSs’ optimal model.
AFIMs and AFVMs visualize the LCSs’ model at the micro level. AFIMs
excel in discovering the explored domains’ class distribution. AFVMs can
be adapted to investigate how attributes determine the output actions.

The presented work demonstrates that the proposed visualization meth-
ods are promising techniques in improving the comprehension level of
LCSs. Where the first impressive outcome is that FIMs can precisely visu-
alize the development of the rules’ generalization in LCSs’ learning pro-
cess. This outcome not only enables the searching preference among var-
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Figure 3.17: FIMs describe the 20-bits hidden problems, including the Mul-
tiplexer, Carry, and Majority-On domains, where redundant attributes are
placed at different locations. Results show the visualizations can iden-
tify the redundant attributes despite a shift in the redundant attributes, as
these attributes’ importance is consistently zero.
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ious types of LCSs to be discoverable but also facilitates the understand-
ing of how a specific training parameter effects the learning process of an
LCS. The second outcome is that FIMs, AFIMs, and AFVMs can visual-
ize the underlying patterns in an LCSs’ produced model. This supports
the hypothesis of natural solution and shows these visualization methods
are useful in assessing the performance of LCSs’ compaction algorithms
(optimization algorithms), i.e. evaluate the capability of compaction algo-
rithms in ascertaining the optimal rules by visualizing patterns in a com-
pacted model. Besides, FIMs for hidden problems demonstrate FIMs’ po-
tential in assisting LCSs in adapting to feature selection regarding identi-
fying redundant patterns.

Previously, humans have a preference for detecting the expected rule-
sets from the trained populations of LCSs but ignore other possible rule-
sets. This is because the underlying knowledge is too difficult to under-
stand in an LCSs’ natural solution that may contain thousands of rules. The
proposed visualization techniques can reduce this prejudice since AFIMs
and AFVMs can precisely translate the underlying patterns in the LCSs’
optimal solutions to human-discernable graphs. This enables the knowl-
edge in a complex ruleset to be investigatable, which significantly ad-
vances human’s understanding of the ground truth of the LCSs explored
domains and LCSs themselves.

Four previous misconceptions of LCSs can now be clarified, which can
be seen from the visualized results. (1) The optimal solutions of LCSs are
formed of all the consistent unsubsumable rules in the global search space,
rather than the minimum number of correct maximally generalized rules.
(2) An LCSs’ trained model can reach the maximum accuracy without in-
cluding all the member rules of the optimal solution. Hence, compact-
ing can fail in detecting an optimal solution when running on a single
model that even possesses a high performance in prediction. (3) Although
LCSs are practicable in addressing large-scale Multiplexer problems, due
to the over-lapping issue, LCSs can not adapt to middle-scale over-lapping
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domains without deterministic search algorithms, e.g. the absumption
method. (4) The capability of LCSs in data mining has been underesti-
mated, as LCSs can use a large number of cooperating rules to describe
a complex problem, and the patterns in the solutions are naturally inter-
pretable since these patterns can be translated into a human-discernable
format, including highly complex solutions.
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Chapter 4

Rule Compaction Algorithm

This chapter proposes a hypothesis for explaining why previous com-
paction algorithms may decrease the training accuracy after compaction.
Subsequently, a novel way to compact LCS’s trained models is also intro-
duced. The new algorithm is termed Razor Cluster Razor (RCR), which in-
novatively handles the compaction based on multiple LCS produced mod-
els, rather than applying the compaction to a single model like other stan-
dard compaction algorithms. Furthermore, two variants of RCR, termed
RCR2 and RCR3, are also described to further explore the benefits of this
multiple population-based compaction algorithm. RCR2 considers the
natural solution as the primary search objective, and RCR3 is designed
to adapt to models that have insufficient training performance.

4.1 Introduction

The first rule compaction algorithm for LCSs was the Compact Ruleset
Algorithm (CRA) [101], which was developed by Wilson in 2001. CRA
was applied to an integer encoded LCS (XCSI) to search for a minimal rule
subset from a trained population that was sufficient to solve a problem.
A successful application was data mining on the Wisconsin Breast Cancer
dataset (WBC), where CRA compacted a population with 100% training
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accuracy into a much smaller subset while preserving the maximal train-
ing accuracy.

CRA was designed to function on well-trained populations that had
100% accuracy. Although CRA achieves excellent performance on the
WBC problem, there are problems where LCSs rarely reach the required
training accuracy. As a result, such a rigorous precondition of 100% train-
ing accuracy hampers CRA’s applications to adapt to some LCSs’ addressed
problems.

In 2002, inspired by CRA, Fu and Davis developed three compaction
algorithms named Fu1, Fu2, and Fu3 [33], which are specialized in man-
aging populations with non-perfect training accuracy. CRA, Fu1, and Fu3
achieved the task of rule removal by analyzing rules from the macro view-
point (population) and employed step-wise accuracy evaluation to quan-
tify the importance of a rule to a population. Although the employed
strategies achieved good performance, the extensive repetition of accuracy
testing results in a severe computation complexity issue. This limits CRA
and Fu’s approaches to adapt to domains that involve a large number of
training instances.

In this scenario, Dixon proposed the Alternative Reduction Algorithm
[25], namely CRA2. CRA2 analyzes rules from the viewpoint of micro-
population (i.e. match-set) and utilizes a product of several training pa-
rameters to guide compaction so that CRA2 is free from excessive accu-
racy evaluations. The performance of CRA2 depends on the quality of
the rules. Due to the lack of methods for appraising the accuracy of rules
when rules’ parameters were assigned inappropriately, CRA2 has the risk
of incorrectly replacing an important rule with a problematic rule.

To combat CRA2’s primary disadvantage, Kharbat proposed a new ap-
proach (K1) [47]. K1 follows the architecture of CRA2 but utilizes the train-
ing set to re-evaluate the entropy for each rule, and K1 assumes the value
of entropy can reflect a rule’s performance. Therefore, the compaction of
K1 is based on entropy. K1 surpassed other compaction algorithms in de-
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tecting [O]1. However, if a model does not possess an [O], K1’s compacted
results will have a much lower accuracy than the original accuracy.

Up to this point, rule compaction algorithms had the issue of reduc-
ing population size in conjunction with reducing the overall population
performance. Motivated by this, Urbanowicz examined the above algo-
rithms and proposed Quick Rule Compaction (QRC) together with Pa-
rameter Driven Rule Compaction (PDRC) [85]. Based on an empirical
study, PDRC changes the selected parameter combination for searching
for a ruleset. QRC slightly alters the architecture of CRA2. Both algo-
rithms surpass previous algorithms in preserving the training accuracy.
However, after compaction, these two algorithms still produce alternative
rulesets, which contain inconsistent patterns that may produce incorrect
visualized results, e.g. unimportant attributes may be highlighted incor-
rectly.

Previously, compaction algorithms are either inadequate for large do-
mains (as they take too long to check for accuracy preservation) or lack of
the interpretability (as they include superfluous rules) for the compacted
results. In this scenario of such a predicament, the Razor Cluster Razor
(RCR) was introduced as a pragmatic approach for compacting large-size
populations in domains with a large number of attributes. RCR consid-
ers the [O] as the main compaction objective. If [O] does not exist, RCR
attempts to produce a natural solution instead. To investigate whether
a model can simultaneously have [O] and natural solution inside, RCR2
is designed, which considers natural solution as the only search objec-
tive. Furthermore, RCR’s utmost goal is to preserve the underlying pat-
terns of the original populations to enhance the interpretability of the com-
pacted results. However, according to the conducted experiments by this
work, RCR could not identify problematic rules when LCSs produced
over-general rules that dominated the populations. Thus RCR3 is de-

1 [O] sets is a style of LCSs’ optimal solution that can correctly and completely represent a
domain with a minimal number of non-overlapped rules
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signed to adapt RCR to the models with insufficient training performance,
i.e. not 100% testing accuracy.

A result finding from reviewing the above algorithms is that across
multiple LCSs’ populations for the same task, although the problematic
rules can be different, the accurate rules are common. Furthermore, these
common rules can construct a fully representative model, which contains
patterns that can consistently refer to the nature of the explored domain,
e.g. the data distribution or the importance of features for determining
actions. This finding inspires us to investigate how compaction algorithms
determine the quality of patterns in visualization.

4.2 Overlapping Distribution and Overlapping

issue

Rule compaction algorithms are employed to eliminate rules from a popu-
lation that do not influence the overall performance. In the articles related
to compaction algorithms [4] [19] [46] [92], the most common issue is that
the training accuracy is reduced together with the removed rules, e.g. a
model’s original training accuracy is 100%, after compaction this model’s
accuracy performance on the training set becomes 97%. Here the issue is
termed as reduced accuracy. However, up to now, no article has proposed
a convincing explanation for this issue. Here it is hypothesized that the
incorrectly preserved over-general rules are responsible for the reduced
accuracy. It is assumed that when a problem has an overlapping distribu-
tion, i.e. the niches of the optimal rules will have overlapping areas and
similar generalization levels. Such optimal rules frequently produce over-
general rules that have high training accuracy [34]. Such problematic rules
are easy to be evolved but difficult to be removed. Thus, over many iter-
ations, a [P] can be flooded by these problematic rules, and this will be a
challenge for rule compaction algorithms to distinguish and remove these
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problematic rules. Hence, the reduced accuracy issue occurs.

When training, LCSs unavoidably introduce over-general rules to their
final populations as the GA is continuously searching for plausible better
rules [27]. When an over-general rule possesses an innate high accuracy,
its training parameters, e.g. numerosity, accuracy, and fitness, are under
the risk of being assigned high values improperly. This issue is because
LCSs assign rules’ training parameters according to the rule’s generaliza-
tion and accuracy. For instance, in an 8-bit Majority-On problem, the ac-
curacy of the over-general rule 000##### : 0 is 96.875%, which is close
to 100%. However, this over-general rule represents double the number of
instances compared with 0000#### : 0, which is the maximally general
and correct rule. Note, the accuracy of an over-general rule can even reach
higher than 99% in the Majority-On problems, which consider more than
fourteen attributes. In these scenarios, compaction algorithms, which uti-
lize training parameters to determine whether to remove a rule, can pre-
serve over-general rules.

In practice, if a ruleset consists of over-general rules and over-specific
rules that are complementary, then this ruleset still has the potential to
reach the maximum accuracy of prediction [97]. This phenomenon is be-
cause LCSs utilize the votes of all matched rules to determine the output
action for the observed states. Furthermore, each rule estimates its votes
from its training parameters. For example, in a 4-bit Majority-On prob-
lem (ground truth of this problem shown in Fig.4.1), where, num stands
for numerosity and pre is an abbreviation of prediction. Meanwhile, the
value of a rule’s vote is equivalent to the product of its num and pre. Say,
a ruleset comprises of five over-general rules 0### : 0, num: 12, pre: 990;
##0# : 0, num: 11, pre:990 ; ###0 : 0, num:12, pre 990; 11## : 1 num:
14, pre 990; and, ##11 : 1 num 14, pre 990; and two over-specific rules
#100 : 0, num 4 pre:1000; and, 00#1 : 0, num 4, pre 1000. Although all
members in this ruleset possess a problematic encoding part, in case of
prediction, this ruleset still reaches 100% accuracy. In practice, previous
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Figure 4.1: Four figures illustrate the over-general issue of LCSs. All fig-
ures are based on 4-bit Majority-On problem. An encoding is visualized
through the form of Bit0Bit1Bit2Bit3. The horizontal axis depicts Bit0,
and Bit1 together with the vertical axis that represents Bit2, and Bit3. (a)
describes the ground truth of action distribution. (b) shows the maximum
generalized correct encodings of action zero. (c), and (d) expose the over-
general encodings of action zero and one, respectively. In the case of un-
matched niches, blue and white apiece specify niches for action zero and
action one. Meanwhile, green indicates correctly matched niches, whereas
red marks incorrectly matched niches.
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compaction algorithms frequently produce such rulesets. Due to the qual-
ity of interperability being determined by their encodings, the compacted
results with such problematic encodings can result in incorrect patterns
for the addressed problem domain.

In general, the risk for LCSs of improperly assigning training parame-
ters to rules increases when exploring domains with an increasing number
of features [60]. In order to counteract the negative influence of the incor-
rectly covered niches for maintaining accuracy more over-specific rules
need to be engaged. However, the majority of LCSs follow the princi-
ple of searching for rules with a high generalization level. This principle
results in issues when LCSs attempt to explore domains that have good
performing over-general rules. In these domains, over-general rules can
dominate a population, and then not enough capacity remains for storing
rules that are specific but correct [26]. The domination does not mean that
LCSs preserve the over-general rules. In these cases, LCSs continuously
remove the over-general rules, but soon after the removal, LCSs evolve
new over-general rules. When the velocity of removal is less than the ve-
locity of evolving, a population can be observed as being dominated by
over-general rules. When this issue occurs, all the rules in a population
are inexperienced, i.e. low experience. In practice, such a problematic pop-
ulation still can reach high training accuracy with a set of over-specific
rules that can correct the mispredictions caused by the over-general rules.
However, such performance is vulnerable. When the over-specific rules
are excluded from these populations, accuracy will decrease. The priority
purpose of compaction algorithms is to remove redundant rules, e.g. over-
specific rules. Furthermore, the majority of the previous compaction algo-
rithms perform in a single population. Thus, it is anticipated that the com-
pacted results will fail in preserving accuracy for populations that have a
severe over-general issue.
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4.3 Rule Compaction Algorithms

Three types of new rule compaction algorithms are introduced, which are
Razor Cluster Razor (RCR), Razor Cluster Razor2 (RCR2), and Razor Clus-
ter Razor3 (RCR3). RCR is the first algorithm that applies the compaction
to multiple LCSs produced models (i.e. populations of rules) in order to
produce an optimal solution, which contains patterns that can reflect the
nature of the addressed problem. Thus, RCR considers [O] (Butz defined
optimal solution, detail described in Section 2.3) as the primary objective.
Since LCSs’s models may not have an [O], then when [O] does not ex-
ist, RCR produces a natural solution as an alternative. As a comparison,
the primary objective of RCR2 is to produce a natural solution, regardless
of whether [O] exists. Both RCR and RCR2 cannot adapt to models that
have insufficient training performance as these methods depend on good
performing models. Thus, RCR3 is designed to address models that have
an unsatisfactory performance with a rigorous rule verification process.
Hence, RCR3 can distinguish optimal rules from high performance over-
general rules. As a result, an optimal ruleset can be produced even from
a set of problematic LCSs models, e.g. have insufficient training or have
been flooded by over-general rules.

4.3.1 Razor Cluster Razor

The main innovation of the RCR is proposing a different definition for the
redundant rules. Formerly, being redundant is equivalent to being “re-
placeable”. Here “replaceable” characterizes rules that can be removed
without reducing the original performance of the priority criterion, e.g.
accuracy of training set in CRA or covering capacity in CRA2. In RCR,
redundant describes rules that are either over-general or subsumable rules.
over-general depicts rules that have issues in representing a niche pre-
cisely. For example, a portion of a rule covered instance opposes this rule’s
action. Besides, “subsumable” specifies insufficiently general rules. For
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Figure 4.2: The implementation process of Razor Cluster Razor (RCR).

example, a rule is “subsumable”, when this rule’s covered instances can
be completely covered by any other correct rule, which can also cover ad-
ditional instances.

The altered redundant definition results in RCR identifying redundant
rules through investigating the encodings of rules, rather than reviewing
the training sets. This transformation of identification ensures the com-
putation complexity of RCR is independent of the number of training in-
stances, which makes RCR preferable to previous compaction algorithms
in large domains 2. Because of the altered identification, RCR’s rule se-
lection criterion for rule removal is different from other compaction algo-
rithms. During selection, rather than depending on a rule’s contribution
to the prediction performance of a population, RCR relies on both a rule’s

2 Large domains describe benchmarks that current computers can not iterate through all
the available instances, e.g. 37-bits and 70-bits Multiplexer problems.
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correctness and encoding’s irreplaceability under the global search space,
i.e. unsubsumable. This new selection strategy brings an additional ben-
efit, which is liberating compaction methods from compacting in a single
population to being able to compact multiple populations trained for the
same problem. Thus, RCR gathers candidate rules from different popula-
tions trained on the same task together as the source for compaction. The
enriched sources of candidate rules improve the probability of detecting
optimal rules for the tested task. As a result, the underlying patterns can
be highlighted.

Furthermore, in domains, when only a portion of all possible instances
is reviewable due to a time constraint, previous algorithms cannot distin-
guish over-general rules from rules that are more specific but correct due
to lack of the samples for inspection. However, RCR does not suffer this
problem, as RCR verifies rules based on multiple populations. Since, al-
though problematic rules can be various, optimal rules are common. Thus,
selecting the most common rules from multiple populations can efficiently
detect the optimal rules without testing the rules with the whole dataset.

An RCR is composed of three stages: Razor in Micro (RMI), Clustering,
and Razor in Macro (RMA). The architecture of RCR is shown in Fig 4.2.
RMI is a pre-processing step that removes inaccurate rules and inferior
rules from individual populations. In RMI, the criterion for “inaccurate”
is a rule’s training accuracy. RMI removes rules, where training accuracy
does not reach the maximum level of 100% accuracy (note the assumption
that the environment contains patterns that enable 100% accurate rule to
form). A rule’s level of inferiority is estimated by the product of a rule’s
numerosity and fitness. RMI ranks all rules according to the product in de-
scending order. Then, RMI removes rules in a lower rank (see Algorithm
11), say the last 40% of rules, where past work indicates the lower-ranked
rules do not contribute to the solution.

In the attribute importance based representation (e.g. ternary alpha-
bet representation), the global search space for any N -attributes domain
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Algorithm 11: Razor in Micro (RMI)

Input: all rules in a trained population P ;
the percentage of kept rules Threshold
Output: remained rules P

1 foreach rule ∈ P do
2 rule.indicator = rule.numerosity*rule.fitness if

rule.accuracy<1.0 then
3 Remove rule from P

4 end

5 end
6 Rank rule ∈ P by indicator (ascending order);
7 while P .Size > Threshold* P .Size do
8 Remove the first rule in P
9 end

has N+1 sub-search spaces, which are distinguished by the number of the
specified attributes. Clustering is responsible for clustering rules in their
interrelated sub-search spaces for all the populations. After clustering, all
the clusters are ranked by the number of specified attributes from the most
general (zero) to the most specific (N ). Furthermore, during the clustering
process, if a rule possesses the minimum value of prediction (completely
incorrect rules), its action will be flipped. Meanwhile, all the duplicated
rules are merged by accumulating numerosity and experience (shown in
Algorithm 12). Note, the flipping process is only activated for binary class
domains. In the case of multiple class domains, all the completely incor-
rect rules are discarded.

RMA employs subsumption (shown in Algorithm 13) to remove re-
dundant rules from the clustered ruleset. Since subsumption depends on
the encodings of rules, the improperly introduced incorrect encodings will
adversely affect the correctness of the final results. In this scenario, RMA
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Algorithm 12: Clustering

Input: a set of populations after RMI P Set;
number of involved attributes N ;
Output: a set of clusters C

1 Initial an empty rule clusters C (an N attribute domain possesses
N+1 Clusters);

2 foreach P ∈ P Set do
3 foreach r ∈ P do
4 ID= the number of specified attributes in r.encoding;
5 if r.prediction==0 then
6 flip r.action
7 end
8 if ∃ r′ in C[ID], r′.encoding==r.encoding then
9 r′.numerosity+=r.numerosity;

10 r′.experience+=r.experience

11 end
12 else
13 Add r to C[ID]

14 end

15 end

16 end
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Algorithm 13: Subsumption of encodings

Input: a relatively general rule rule;
a relatively specific rule rule′;
number of attributes in encoding N ;
Output: Whether the rule′ can be subsumed

1 for i=0; i < N ; i++ do
2 if rule.encoding[i] ! = don’t care and rule.encoding[i] ! =

rule′.encoding[i] then
3 return False
4 end

5 end
6 Return True

invokes an Error Detector (ED) for diagnosing and removing incorrect
rules before executing the subsumption method see Algorithm 14. LCSs
intrinsically keep correct rules, and LCSs assign a relatively higher value
for these rules in numerosity compare with incorrect rules. Based on this,
ED quantifies a rule’s risk of being incorrect by accumulating the numeros-
ity of its conflict rules (this accumulated value is termed conflict value).
Note, conflict describes rules that have overlapping encodings but sup-
port different actions, e.g. rule 1## : 1 conflicts with rule #1# : 0.

ED iterates rules in each cluster, three times. In the first time, a rule
will be compared with all other rules in more specific clusters. Hence this
rule’s more specific conflicting rules can be identified so that the conflict-
ing value of this rule can be determined (shown in Algorithm 14). In this
iteration, the rules, where their conflicting value surpasses their numeros-
ity are categorized as incorrect rules, so ED removes these incorrect rules.
Next, the direction of the comparison is reversed. A rule is compared with
all the rules in more general clusters. As above, all the identified incorrect
rules are removed. In the last turn, rules are interrogated by the alterna-
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Algorithm 14: Error detector (first iteration)

Input: a clustered ruleset Cluster;
Output: a clustered ruleset after operating Clusters

1 foreach Cluster ∈ Clusters do
2 foreach rule ∈ Cluster do
3 Error value=0;
4 foreach Cluster′ ∈ Cluster and Cluster′ is less general than

Cluster do
5 foreach rule′ ∈ Cluster′ do
6 if rule and rule′ have overlapping then
7 Error value+= rule′.numerosity
8 end

9 end

10 end
11 if Error value > rule.numerosity then
12 Remove rule from Cluster

13 end

14 end

15 end
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Algorithm 15: Find the [O]

Input: the dominant cluster cluster;
Output: a subset of cluster (Bestsub)

1 Rank the rules ∈ cluster by numerosity in descending order;
2 Maxim numerosity=0;
3 Bestsub = an empty ruleset;
4 foreach rule ∈ clusters do
5 cluster′=clusters;
6 sub = an empty ruleset;
7 Add rule to sub;
8 foreach rule′ ∈ cluster′ do
9 if rule′ does not overlap with any rule in sub then

10 Add rule′ to sub
11 end

12 end
13 total numerosity = sum the numerosity of rules in sub;
14 if total numerosity>Maxim numerosity then
15 Maxim numerosity = total numerosity;
16 Bestsub = sub

17 end

18 end
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tive rules in the same cluster to identify and remove the last potentially
incorrect rules.

After RMA executes the subsumption, RMA will check whether a dom-
inant cluster (DC) exists among the clusters. A DC is a label for the phe-
nomenon, where the majority of rules assemble in a single cluster e.g. in
MUX domains. A rule’s numerosity represents the number of duplications
that a rule has. Then, the number of a cluster’s possessed rules is equiv-
alent to the sum of all its rules’ numerosity. A DC is apparent, where the
DC occupies more than say 80% of the total numerosity amongst all the
rules (this threshold is straightforward to tune empirically).

RMA attempts to compact the clustered ruleset further when a domain
is determined to have a dominant cluster. RMA achieves further com-
paction by searching the [O] from the dominant cluster, as displayed in
the Algorithm 15. [O] is a set of rules that can completely represent the
training samples correctly, and do not represent overlapping niches with
each other. However, in some domains, even if a dominant cluster exists,
an [O] still can be absent, e.g. the 7-bit Majority-on problem. Hence, roll-
back will be activated if the attempt of detecting [O] fails. On the other
hand, if RMA finds an eligible [O], rules other than members of [O] will
be removed.

4.3.2 Razor Cluster Razor 2 (RCR2)

RCR has a priority to search for [O]s. When an [O] exists, RCR does not
produce a natural solution. To investigate whether [O] and the natural
solution can exist simultaneously, RCR2 is proposed, concentrating on
searching the member rules for the natural solution from multiple popula-
tions. Furthermore, RCR is designed completely for binary class domains.
In RCR, only the completely correct rules are kept. However, in multi-
class domains, completely correct rules and completely incorrect rules can
carry different patterns. To keep the completeness of the underlying pat-
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terns to enable a consummate visualization. After RCR, the RCR2 and
RCR3 methods preserve all rules that are consistent (both completely cor-
rect rules and completely incorrect rules). Thus, RCR2 and RCR3 extend
RCR’s adaption to multi-class domains.

Algorithm 16: Clustering of RCR2

1 Output: OpR← Absumption created new rules;
Input: a set of populations after RMI P Set;
number of involved attributes N ;
Output: a set of clusters for completely correct rules C1;
a set of clusters for completely incorrect rules C2;

2 Initial two empty rule clusters C1 and C2 (an N attribute domain
possesses N+1 Clusters);

3 foreach P ∈ P Set do
4 foreach r ∈ P do
5 ID= the number of specified attributes in r.encoding;
6 if r.prediction==0 (Minimum) then
7 if ∃ r′ ∈ C1[ID] and r′.encoding==r.encoding then

r′.numerosity+=r.numerosity;
8 else Add r to C1[ID];

9 end
10 if r.prediction==1000 (Maximum) then
11 if ∃ r′ ∈ C2[ID] and r′.encoding==r.encoding then

r′.numerosity+=r.numerosity;
12 else Add r to C2[ID]

13 end

14 end

15 end

Similar to RCR, RCR2 comprises three stages, RMI, Clustering, and
RMA. The RMI of RCR2 abolishes the process of inferior rules removal,
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as this processing is under the risk of incorrectly removing important but
specific rules. Different from [O], some member rules of natural solutions
can locate at low generalization levels, these rules may have a relatively
low value in both numerosity and fitness. Therefore, this abolition of re-
moving inferior rules is expected to benefit RCR2 in preserving member
rules of natural solutions. As mentioned, RCR2 preserves consistent rules.
Thus all the rules, which accuracy reached the maximum 100% or the min-
imum 0%, will be kept after RMI.

Clustering of RCR2 starts with grouping rules into two collections. The
grouping is according to whether a rule’s prediction is either maximum
(completely correct rules) or minimum (completely incorrect rules). Dur-
ing grouping, rules are removed if they do not possess the extreme values
of prediction. Furthermore, duplicated rules from different populations
are merged by accumulating their numerosity. In each group, rules are
clustered based on the number of specified features (details shown in Al-
gorithm 16).

RMA of RCR2 follows RCR’s ED and subsumption mechanism, but
RCR2 removes the process of searching for [O]. This is because RCR2’s pri-
mary objective is to search for a natural solution to represent the addressed
problem. In general, an [O] has a smaller number of member rules than a
natural solution, but this does not indicate [O]s are better under all criteria
than natural solutions. First, [O] excludes a portion of accurate maximally
generalized rules in the global search space, which may result in the visu-
alized patterns being incomplete. Second, although [O] reveal patterns for
the Multiplexer problems, in other domains, none interpretable [O] have
been found from LCSs trained models, e.g. the Carry problem and the
Majority-On problem.
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Algorithm 17: Reviewing the training instances in RCR3

Input: a population of rules P ;
all the training instances T ;
Output: P with the reviewed training instances for each rule

1 foreach I ∈ T do
2 foreach r ∈ P do
3 if r cover I then
4 If r supports I .action r.correct++;
5 If r opposes I .action r.incorrect++;

6 end

7 end

8 end

4.3.3 Razor Cluster Razor 3 (RCR3)

over-general rules can dominate populations of LCSs when the explored
domains have a severe over-general issue, e.g. the Majority-On problems.
In these scenarios, LCSs improperly update the training parameters for
over-general rules. Furthermore, a common problematic rule may dwell
in all LCSs’ produced populations. As a result, the strategy of analyzing
rules from different populations does not help RCR and RCR2 to iden-
tify over-general rules. A practical way to address this issue is that re-
evaluating each rule with the whole training set so that optimal rules can
be distinguished from the massive problematic rules. Based on this strat-
egy of re-evaluation, RCR3 is proposed.

RCR3 follows the architecture of RCR2, i.e. including RMI, Clustering,
and RMA. The RMI of RCR3 begins by attaching two new training pa-
rameters to each rule, which are correct and incorrect. Afterward, the con-
tinuity of all involved rules is re-evaluated. During re-evaluating, each
rule records the number of its correctly matched samples in the correct
together with the number of incorrectly matched samples stores in the in-
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correct (shown in Algorithm 17). A rule fails in evaluation if this rule’s
product of correct and incorrect is higher than zero. After evaluation, the
RMI removes all rules that fail the evaluation. Note, due to RCR3 review-
ing all members in the training set, RCR3 does not adapt to large-scale
problems, e.g. the 70-bit Multiplexer problem.

After RMI, rules from different populations are merged, grouped, and
clustered under Clustering, which is the same as the Clustering of RCR2.
As a comparison of RCR and RCR2, RMA of RCR3 abolishes ED, due to
the re-evaluation in RMI, having excluded all the potential over-general
rules. RCR3’s RMA starts from subsumption to remove over-specific rules.
Then RMA ranks rules according to the generalization of their encodings.
Lastly, rules undergo the process of Urbanowicz’s Quick Rule Compaction
(QRC) to remove rules that are redundant in representing the training set
(detail of QRC is described in Section 2.3.8). As QRC is involved in the fi-
nal process, RCR3 differs from RCR and RCR2 in the priority of searching,
RCR3 has the priority of searching for a ruleset that has a minimal number
of rules to represent the addressed problem but allows over-lapping, this
is different from [O] or natural solution.

4.4 Results of RCR Evaluation

To examine the capacity of compacted populations from the novel meth-
ods to find patterns, three artificial Boolean domains at different scales are
considered as benchmark problems. Specifically, Multiplexer problems
(MUX), Carry problems (CARs), and Majority-On domains (MAJs). Ac-
tion based Feature Importance Map (AFIM) and Action based Feature’s
Average Value Map (AFVM) are employed as the technique to visualize
the underlying patterns. The detail of AFIM and AFVM is described in
Chapter 3.
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Table 4.1: The running time, the number of rules and the accuracy in a
compacted population for MUX. Values in parentheses are the number
of optimal rules. s, m, and, h are the symbols for the second, minute,
and hour, respectively. “−” indicates that an implementation spends more
than one week on computing to compact the ruleset, so the result for this
implementation is absent.

Problem MUX6(8) MUX11(16) MUX20(32) MUX(64) MUX70(128)

CRA
<1s 11s 5.1h – –
8±0 24±6 69±14 – –

100% 99.97% 99.96% – –

FU1
<1s 29.6m – – –
9±1 35±10 – – –

100% 99.98% – – –

FU3
<1s 60.3m – – –
8±0 20±4 – – –

100% 99.98% – – –

CRA2
<1s 2.1s 49.8m – –
9±1 35±10 74±13 – –

100% 100% 100% – –

K1
<1s 4.7s 1.76h – –
8±0 29±6 64±6 – –

100% 100% 100% – –
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Table 4.2: The running time, the number of rules and the accuracy in a
compacted population for MUX. Values in parentheses are the number
of optimal rules. s, m, and, h are the symbols for the second, minute,
and hour, respectively. “−” indicates that an implementation spends more
than one week on computing to compact the ruleset, so the result for this
implementation is absent.

Problem MUX6(8) MUX11(16) MUX20(32) MUX(64) MUX70(128)

QRC
<1s <1s 7.1m – –
9±1 35±10 62±10 – –

100% 100% 100% – –

PDRC
<1s 2.3s 51.85m – –
9±1 30±7 65±7 – –

100% 100% 100% – –

RCR
<1s 25s 5.4m 5.8m 19.98h
8±0 16±0 32±0 64±0 128±0

100% 100% 100% 100% 100%

RCR2
<1s 25s 5.9m 7m 71.9h

18±0 54±0 160±0 249±15 958±36
100% 100% 100% 100% 100%

RCR3
<1s 25s 5.9h – –
8±0 20±4 56±4 – –

100% 100% 100% – –
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4.4.1 Result of Multiplexer Problems (MUX)

The over-general issue in MUX is not prevalent, as the domain is non-
overlapping. Therefore, LCSs are capable of addressing large scale MUXs,
e.g. 70-bits. However, as the scale of MUXs becomes larger, although
over-general rules do not dominate a single population, the number of
over-general rules in [P] unavoidably increases as the length of condition
increases. Note, both the training accuracy and the testing accuracy of the
compacted rulesets of evolved populations reach 100%.

According to the results shown in Table 4.1 and Table 4.2 . CRA, Fu1,
and Fu3 fail in maintaining the original accuracy after compaction. This
failure is because these algorithms’ first two steps use a single rule’s con-
tribution to maintain global performance to determine the rule’s removal.
However, as mentioned, LCSs frequently represent domains with a set of
rules that are problematic but complementary. Therefore, after the first
two steps, a combination of over-general rules and over-specific rules can
replace important rules.

Furthermore, the last step of CRA, Fu1, and Fu3 have the same ob-
jective, which aims to represent a training set with a minimal number of
rules, regardless of the accuracy. Thus, the last step can remove rules that
are over-specific but vital to maintaining performance. Straightforwardly,
after compaction, the observed performance decreased. Note, due to ad-
ditional time consumption that is caused by computation complexity, only
RCR and RCR2 can adapt to 37-bits and 70-bits MUXs in these tested do-
mains in a timely manner (under a week using a PC of 2.4GHZ CPU and
10GB RAM).

Continuity of Patterns in MUX

All maps shown in Fig. 4.3 represent patterns of feature importance from
RCR compacted results, where results for any problem where the com-
paction algorithm needs more than one week are omitted. According to
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the visualization, in all cases, the difference between the address bits and
data bits have been highlighted. Furthermore, these patterns exist in all
MUX problems regardless of the scale. This indicates that when artificial
Boolean domains share the same background logic, no matter how the
scale changes, the underlying patterns are similar. These results show the
possibility of utilizing patterns at low scale to infer patterns at a larger
scale. Patterns can be easily transformable between analogous domains.
Moreover, visualizations show that in MUXs, action zero and action one
share the same feature importance distribution.

Patterns Comparison Between Different Algorithms

AFVMs reflect the average value of each specified feature. According to
the visualizations shown in Fig. 4.4. RCR, RCR2, and RCR3 have visual-
ized that actions are determined by the data bits. For example, in the case
of action one, all the features in data bits are specified as one. Meanwhile,
when action is zero, in data bits, all the specified features are valued as
zero.

Furthermore, RCR and RCR2 present the knowledge that in address
bits, the possibility of each feature to be specified as one or zero is equal.
Patterns of RCR3 do not show such a phenomenon, due to the lack of
completeness when compared with natural solutions or have redundant
rules when compared with N-ORCs.

Among visualizations for the three CRA2 analogous algorithms (shown
in Fig. 4.5), K1 has the best patterns, which are close to that of all the
three RCRs. The difference between the address bits and the data bits is
highlighted. CRA2 and QRC also produced acceptable patterns, but their
produced patterns are not as transparent as RCRs’.

In general, visualizations of the CRA analogous algorithms have the
worst interpretability regarding their patterns (shown in Fig. 4.6). FU3 is
the only algorithm that can visualize the underlying patterns of action zero
correctly. However, there is noise in the patterns of action one, which may
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Figure 4.3: AFIMs for five MUX problems based on RCR compacted re-
sults, maps following orders of left to right and then from top to bottom
are patterns of 6-bits, 11-bits, 20-bits, 37-bits, and 70-bits MUX. Blue rep-
resents the patterns of action zero, while orange marks action one. AFIMs
aim to show the distribution of the instances for the explored domains.
The graphs for action one and action zero are completely overlapped,
which shows that the domain is evenly sampled. This demonstrates that
MUXs are balanced domains. X-axis: Attribute Id, Y-axis: sub-search
space Id, Z-axis: Feature Importance, which describes a feature’s specified
level at a certain sub-search space.
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Figure 4.4: AFVMs for 11-bit MUXs, following the order of left to right, are
from compacted results of RCR, RCR2, and RCR3. AFVMs aim to show
how features determine the action. All visualizations show the difference
between the address bits (first three) and data bits (last eight). Further-
more, visualizations show evidence that the value of address bits may
determine the action. As a comparison, in RCR and RCR2, patterns for
address bits for both actions are symmetric with the value of 0.5, which
indicates for both actions, the same strategy is employed to identify ad-
dress bits. However, patterns from RCR3 cannot show such a symmetric
distribution. Therefore, the interpretability of RCR3’s result is worse than
RCR’s N-ORC and RCR2’s natural solution. Note, AFIMs (Fig. 4.3) show
the importance of specifying a bit, whereas AFVMs (here) show the im-
portance of the value of the bit to the class once specified.

Figure 4.5: AFVMs for 11-bit MUXs, following the order of left to right,
are from the compacted results of K1, QRC, and CRA2. Results from
CRA2 analogous algorithms show vague patterns for the explored do-
mains. However, compared with RCR’s results, the visualizations are less
transparent in terms of patterns for identifying address bits.
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Figure 4.6: AFVMs for 11-bit MUXs, following the order of left to right, are
from the compacted results of FU3, FU1, and CRA. The performance of
visualization of FU3 is close to the CRA2 analogous algorithms. However,
FU1 and CRA show evidence of over-general rules.

reduce the patterns’ readability. FU1 and CRA cannot produce compacted
results with good readability. These results indicate CRA analogous can-
not produce informative patterns for domains, even those without any
severe over-general issue.

[O] Versus Natural Solution for Different Patterns

RCR2 produces a natural solution, where the selected rules have maximal
accuracy and maximal generalization. RCR generates a subset of a natu-
ral solution, where the training set is fully represented, and all members’
encodings of this subset contain non-overlapping rules (this subset terms
[O]). RCR3 attempts to compact RCR2’s results, but do not consider the
property of overlapping when compacting. Thus RCR3 produces alterna-
tive rulesets, which are similar to [O] that consider completeness, correct-
ness, and minimality, but RCR3’ results allow overlapped rules.

Visualizations of the 11-bits MUX problem are shown in Fig 4.7. Pat-
terns related to a natural solution show the number of address-bits is equal
to the number of covered sub-search spaces. The [O]s do not show such
a pattern. However, patterns of [O] successfully highlight the difference
between address bits and data bits. In the case of RCR3’s results, patterns
of feature importance are less transparent. Therefore, only natural solu-
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Figure 4.7: AFVMs for 11-bit MUXs, following the order of left to right,
are from compacted results of RCR, RCR2, and RCR3. Visualizations show
that both [O]s and natural solutions can reflect the MUXs are balanced as
patterns for both actions are symmetric. However, patterns of RCR3 do
not show such a symmetric relationship between both actions. As a result,
RCR3’s patterns fail in identifying such a distribution.

tions and [O]s are capable of producing patterns of feature importance
that are very transparent. Incorrectly introducing or incorrectly removing
only one rule in the compacted results will cause the visualized patterns
to loose transparency at a certain level.

Furthermore, the attempt to search for a natural solution fails in MUXs,
where the scale is larger than 11-bits. Two factors may be responsible for
this failure. Firstly, compared with [O], the number of members in the
natural solution is much larger. The difference in size will become more
significant when the scale of MUXs enlarges. Therefore, it is difficult for
LCSs to evolve and keep all members of the natural solution when the
scale is large. Secondly, MUXs can be completely represented by an [O] at
all scales, which means that in these cases, a portion of the natural solu-
tions is replaceable. Hence, LCSs may be prone to remove these replace-
able rules, which results in RCR2 failing in searching for natural solutions
for MUXs in the cases of large scales.
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4.4.2 Result of Carry Problems (CAR)

Among the tested artificial Boolean domains, the Carry problems (CARs)
have a moderate over-general issue. In these scenarios, K1, as an algo-
rithm that seeks the most general rules, always produces a solution that
only comprises rules with a severe over-general problem. Therefore, read-
ing K1’s outcomes cannot achieve any informative patterns for the ex-
plored CARs. As a comparison, QRC shows promising performance in
counteracting the adverse influence of over-general issue with a solution
that is close to a natural solution. However, compared with natural solu-
tions produced by RCRs, redundant over-specific rules are still involved
in a QRC’s result. Other algorithms, such as CRA, FU1, FU3, CRA2, and
PDRC, show evidence of how algorithms can be disturbed by over-general
rules when compacting.

Another interesting finding is that RCR, RCR2, and RCR3 all produce
a natural solution as the final output (shown in Table 4.3 and Table 4.4
). This phenomenon is because when using the ternary representation to
represent CARs, a natural over-lapping distribution exists. This distribu-
tion results in a fully representative ruleset that must involve overlapping
rules. Therefore, there is no suitable [O] for CARS, so that RCR and RCR2
produce a natural solution as the output. The phenomenon of RCR3 pro-
ducing natural solutions indicates that all members of a natural solution
are vital to represent the full training set. This discovery evidences that a
natural solution reaches the minimal number of rules in a ruleset to rep-
resent CARs. This is because alternative fully representative rulesets have
to replace a maximally general rule with one or more less general rules,
which may enlarge the number of involved rules compared with natural
solutions.
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Table 4.3: The running time, the number of rules and the accuracy in a
compacted population for CAR. Values in parentheses are the number of
optimal rules. s, m, and, h are the symbols for the second, minute, and
hour, respectively.

Problem CAR6(18) CAR8(38) CAR10(78) CAR12(158)

CRA
<1s 9.78s 2.3m 2.72h

17±4 55±26 98±49 345±145
100% 100% 99.79% 99.69%

FU1
3,1s 3.72m 43.2m 9.64h

17±1 38±2 76±7 115±12
99.95% 99.38% 99.39% 98.78%

FU3
3.2s 3.92m 43.4m 9.72h

15±3 32±5 56±10 54±9
99.95% 99.38% 99.41% 98.93%

CRA2
<1s <1s 2.12s 14s

17±1 38±2 79±2 115±9
100% 99.99% 99.89% 99.02%

K1
<1s <1s 4.5s 31.44s
5±0 5±0 5±0 5±0

81.25% 77.71% 76.3% 75.35%
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Table 4.4: The running time, the number of rules and the accuracy in a
compacted population for CAR. Values in parentheses are the number of
optimal rules. s, m, and, h are the symbols for the second, minute, and
hour, respectively.

Problem CAR6(18) CAR8(38) CAR10(78) CAR12(158)

QRC
<1s <1s <1s 2.01s

18±0 38±1 81±3 146±10
100% 100% 100% 99.44%

PDRC
<1s <1s 2.11s 14.44s

17±1 34±3 59±9 73±11
99.95% 99.09% 98.68% 98.26%

RCR
<1s 4.1s 37s 4.1m

18±0 38±0 78±0 158±0
100% 100% 100% 100%

RCR2
<1s 5.2s 40s 4.23m

18±0 38±0 78±0 158±0
100% 100% 100% 100%

RCR3
<1s 4.1s 37s 4.11m

18±0 38±0 78±0 158±0
100% 100% 100% 100%
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Continuity of Patterns in CARs:

Although AFVMs contain more information and are simple to visualize
patterns for rulesets with problematic rules. AFIMs are easy to read, and
are transparent when understanding the continuity of patterns. Therefore,
four AFIMs are employed to show the attribute importance distribution
of CARs (shown in Fig. 4.8). Similar to MUXs, the underlying patterns of
CARs also contain a property of continuity when the length of involved
features scales. The patterns clearly show CARs should be split into two
equal parts, which follows the policy of how CARs execute.

Furthermore, there is a significant difference between patterns for ac-
tion zero and action one. This difference indicates that different from
MUXs, CARs are imbalanced domains. Moreover, compared to action
zero, features for action one are more frequently specified to ascertain an
instance of action one. This phenomenon reflects that in CARs, the size of
niches of action zero is larger than that of action one, which is consistent
with the ground truth of CARs.

Patterns Comparison Between Different Algorithms:

The visualization of RCR’s results (shown in Fig. 4.9) clearly shows that
the generalization boundary of action one is between four to eight, and
for action zero is between five to eight in the 12-bits CAR. This boundary
indicates that for action zero, any involved rule that specified more than
five features must be over-specific, and the most general rules have eight
features that are generalized. Furthermore, this result also shows that in
each rule, the value of each specified feature is consistent with the value
of its supported action.

In general, the visualization of QRC is close to RCR’s. However, there
is evidence of QRC’s compacted population containing redundant over-
specific rules. For example, in action zero, rules specifying six features
are kept. These incorrectly kept rules make the visualization of QRC less
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Figure 4.8: AFIMs for four CAR problems based on RCR compacted re-
sults, maps following orders of left to right and then from top to bottom
are patterns of 6-bits, 8-bits, 10-bits, and 12-bits CARs. Blue represents
the patterns of action zero, while orange marks the action one. Graphs
demonstrate that CARs are imbalanced domains with action zero as the
majority class.
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Figure 4.9: AFVMs for 10-bits CARs, following the order of left to right,
are from compacted results of RCR, and QRC. Patterns of RCR show that
features need to be split into two equal parts. Moreover, in each part, the
features have front locations that are more critical in determining actions
as these features are more frequently specified, e.g. bit0 and bit5. As a
comparison, patterns of QRC cannot clearly show such insights.

transparent. As a comparison, PDRC and K1 show the issue of using over-
general rules replacing more specific vital rules (show in Fig. 4.10). In the
visualization of PDRC, for action one, all vital rules that generalized four
features are not included. In the visualization of K1, due to only the se-
vere over-compaction, no correct patterns can be visualized. In the cases
of FU1 and FU3 (shown in Fig. 4.11), a large number of over-specific rules
are kept together with over-general rules. This evidence confirms the pro-
posed assertion of CRA and its analogous algorithms being prone to use a
combination of rules, which are problematic but complementary, to main-
tain their performance.

4.4.3 Result of Majority-On Problems (MAJ)

MAJs suffer from a severe over-general issue, which is caused by these
problems’ overlapping distribution of samples (shown in Fig. 4.1). There-
fore, over-general rules frequently dominate the populations of MAJs. In
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Figure 4.10: AFVMs for 10-bits CARs, following the order of left to right,
are from compacted results of PDRC, and K1. The results of PDRC re-
place important rules with over-general rules. Thus a portion of patterns
disappears. K1 is dominated by over-general rules, which show incorrect
patterns that can misguide readers.

Figure 4.11: AFVMs for 10-bits CARs, following the order of left to right,
are from compacted results of FU1, and FU3. Graphs here are based on
a ruleset of over-general rules and over-specific rules. Thus, the actual
patterns are indiscernible.
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these cases, LCSs inappropriately assign a relatively high value of training
parameters to some of the problematic rules. These rules with inappro-
priate valued parameters increase the difficulty of correctly executing the
process of ascertaining whether a rule needs to be removed when com-
pacting.

In general, MAJ’s over-general issue becomes more serious when the
number of involved features increases. The results in Table 4.5, Table 4.6,
Table 4.7 and Table 4.8 support this hypothesis. Besides, results show the
limitations of RCR and RCR2 on the 11-bits MAJ. In this case, common
problematic rules with an inappropriate high value of training parameters
can dwell in all the included populations. As a result, merging duplicated
rules in different populations cannot highlight the most important rules
through the value of the training parameters. This failure hampers RCR
and RCR2 from searching for members of natural solutions. However,
RCR3 completely addresses the 11-bit MAJ. This success indicates that
LCSs’ produced populations still contain members of natural solutions.
Furthermore, re-evaluating rules’ continuity can be a promising method
to assist the compaction algorithms in adapting to populations that are
dominated by problematic rules.

An interesting result in MAJ12 is that CRA reaches 98.84% after com-
paction, but RCR3 only achieves 81.3%. However, RCR3 produced a rule-
set only with correct rules, which leads to uncovered instances causing all
of the lost accuracy. As a comparison, CRA covers all the instances, but
incorrectly predicts 1.16% of instances. Furthermore, the optimal number
of rules for 12-bit MAJ is 1716. RCR3 detects around 1000 of these rules.
However, CRA’s produced ruleset only consists of around 300 rules, which
indicates that the over-general rules have dominated the CRA compacted
population. Furthermore, this is the only problem where FU’s approaches
consume less time than CRA. This is because LCSs cannot completely ad-
dress this problem, and the highest training accuracy is 98%. Fu’s ap-
proaches surpass CRA in running time, which conforms to the claim of
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FU’s approaches, where these approaches are designed to address insuffi-
ciently trained populations.

Continuity of Patterns in MAJs:

According to the visualizations in Fig. 4.12. The patterns of MAJs are dif-
ferent, depending upon whether the number of involved features is even
or odd. In the case of being even, the patterns for two actions are sep-
arated. Meanwhile, for rules that support action one, features are more
frequently specified compared with the rules of action zero. This phe-
nomenon indicates that in the even situation, MAJs are imbalanced, and
action zero possesses a larger size of niches compared with action one. In
the case of being odd, patterns are completely duplicated, which implies
these MAJs have a balanced distribution of niches. This observation is not
immediate available in the problem definition.

Patterns Comparison Between Different Algorithms:

The visualization of RCR3’s compacted result precisely identifies that in
each rule for the 11-bits MAJs, shown in Fig. 4.13, six features need to
be specified. Meanwhile, for all rules, the value of its specified feature is
equal to the rule’s supported action. These patterns indicate that the ma-
jority value of the involved features determines the output action, which
follows the ground truth of MAJs. As a comparison, although the visu-
alization of RCR is somehow readable, it does not offer much useful in-
formation. K1’s visualization is based on a ruleset with a severe over-
general issue, which may misguide readers. Patterns from QRC’s, CRA’s,
and FU1’s results are completely indiscernible.
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Table 4.5: The running time, the number of rules and the accuracy in a
compacted population for MAJ. Values in parentheses are the number of
optimal rules. s, m, and, h are the symbols for the second, minute, and
hour, respectively.

Problem MAJ6(35) MAJ8(126) MAJ10(462) MAJ12(1716)

CRA
<1s 12s 11.2m 39.9h

26±7 82±15 136±18 312±55
100% 100% 99.99% 98.48%

FU1
2.7s 4.1m 1.9h 16.3h

33±2 125±5 348±22 491±19
99.84% 99.73% 98.11% 95.64%

FU3
2.83s 4.16m 2.7h 18.39h
29±3 104±13 175±15 278±25

99.84% 99.73% 98.25% 97.19%

CRA2
<1s <1s 3.3s 20s

33±2 128±5 346±20 196±17
99.99% 99.98% 97.67% 95.18%

K1
<1s <1s 6.2s 37s

13±1 20±3 28±5 34±3
88.39% 83.95% 83.84% 83.98%
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Table 4.6: The running time, the number of rules and the accuracy in a
compacted population for MAJ. Values in parentheses are the number of
optimal rules. s, m, and, h are the symbols for the second, minute, and
hour, respectively.

Problem MAJ6(35) MAJ8(126) MAJ10(462) MAJ12(1716)

QRC
<1s <1s 1.6s 6.3s

35±0 129±3 485±5 285±35
100% 100% 99.88% 93.05%

PDRC
<1s <1s 3.3s 19.3s

29±5 87±10 229±18 227±25
98.39% 98.1% 97.19% 94.5%

RCR
<1s 6.1s 56s 3.2m

35±0 126±0 462±0 649±93
100% 100% 100% 90.16%

RCR2
<1s 7.2s 57s 3.8m

35±0 126±0 462±0 700±50
100% 100% 100% 90.26%

RCR3
<1s 7.3s 56s 17.51m

35±0 126±0 462±0 1039±51
100% 100% 100% 81.03%
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Table 4.7: The running time, the number of rules and the accuracy in a
compacted population for MAJ. Values in parentheses are the number of
optimal rules. s, m, and, h are the symbols for the second, minute, and
hour, respectively.

Problem MAJ7(70) MAJ9(252) MAJ11(942)

CRA
2.1s 1.15m 3.78h

53±17 109±11 307±62
100% 100% 99.99%

FU1
23s 28.3m 6.54h

70±2 245±3 376±12
100% 99.56% 97.35%

FU3
22.3s 28.6m 6.52h
66±4 162±11 208±14
100% 99.56% 98.39%

CRA2
<1s 1.2s 8s

71±2 252±3 347±13
100% 99.76% 96.38%

K1
<1s 2.3s 17s

17±3 22±2 24±6
89.55% 87.33% 84.88%
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Table 4.8: The running time, the number of rules and the accuracy in a
compacted population for MAJ. Values in parentheses are the number of
optimal rules. s, m, and, h are the symbols for the second, minute, and
hour, respectively.

Problem MAJ7(70) MAJ9(252) MAJ11(942)

QRC
<1s <1s 4s

72±1 254±2 620±29
100% 100% 94.85%

PDRC
<1s 1.2s 8s

59±11 124±6 270±17
89.71% 96.7% 95.95%

RCR
2.1s 6.1s 1.4m

70±0 252±0 874±23
100% 100% 99.37%

RCR2
2.1s 10s 1.78m

70±0 252±0 879±30
100% 100% 99.17%

RCR3
2.2s 9.1s 1.3m

70±0 252±0 924±0
100% 100% 100%
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Figure 4.12: AFIMs for six MAJ problems based on RCR3 compacted re-
sults, maps following orders of left to right and then from top to bottom
are patterns of 6-bits, 7-bits, 8-bits, 9-bits, 10-bits, and 11-bits MAJ. Blue
represents the patterns of action zero, while orange marks the action one.
Patterns show MAJs are balanced when the number of features is odd. In
even situations, MAJs are imbalanced with the majority class zero. Note
this discovered pattern can not be identified from the problem definition.
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Figure 4.13: Six AFIMs for 11-bits MAJ problems, maps following orders
of left to right and then from top to bottom are patterns of RCR3, RCR,
K1, QRC, CRA, and FU1. Patterns of RCR3 demonstrate that in MAJ11,
the majority of values of features determine the action, which is consistent
with the ground truth. RCR and K1 show the patterns of over-general
rules, which may misguide readers. The patterns of QRC, CRA, and FU1
consist of many problematic rules. Hence, these patterns are indiscernible
in terms of identifying the ground truth.
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4.5 Conclusions of Rule Compaction Algorithms

The proposed work has provided further evidence that LCSs is a suit-
able technique for producing natural, interpretable models in data min-
ing tasks, which contribute to interpretable AI, an important future re-
search direction. Noiseless artificial Boolean domains contain discernible
patterns, which enable the effectiveness of interpretable techniques to be
ascertained, are selected as benchmarks.

The most popular compaction algorithms in the last two decades have
been reviewed to investigate how compaction algorithms can produce an
effective population that the contained underlying patterns are visualiz-
able in a transparent manner. According to the results of the conducted
experiments, two issues in the LCSs field can be identified. Firstly, the
patterns contained in the compacted population of high performance can
be undiscernible when visualized. Secondly, due to time constraints, the
strategy of repeatedly reviewing a training set will reduce the applicability
of compaction algorithms in addressing large-scale problems. Experimen-
tal results suggest a solution for addressing these two issues. That is, when
compacting, instead of preserving prediction performance, it is preferable
to preserve the rules that have correct encodings, so that the underlying
patterns of LCSs produced model can be kept after optimization (com-
paction). Successful compaction is demonstrated, especially on the 11-bits
Majority-On problem that RCR3 correctly collects all 924 different interact-
ing rules for constructing a fully representative model. Furthermore, for
the first time, RCR and RCR2 successfully compact the large-scale 70-bits
Multiplexer problem without reducing the training accuracy.

The results support the assumption that the natural solution and the
[O] can simultaneously exist, as in any MUX that is less than 20-bits, RCR
captures [O]s together with RCR2 detected natural solutions. In MUXs,
both [O]s and natural solutions contain human-discernable patterns, which
support the assertion that LCSs are able to produce natural interpretable
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solutions for explored domains. Besides, results indicate that natural solu-
tions are the same for the same problem ranther than [O]s can be multiple.
Regarding the LCSs produced models, if the models have been trained
properly, natural solutions can always be captured. However, in domains
that have an overlapping distribution, LCSs models can not be used to
produce [O] as the subsumption mechanism continuously removes the
member rules in [O]s, which have specific encodings that could be con-
sidered as over-specific by the subsumption. Lastly, results identified that
12-bits Majority-On problem is the limitation of all the tested compaction
algorithms, as none of these algorithms can capture an interpretable rule-
set for this problem.
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Chapter 5

Rule Compaction in Real-Value
Domains

An interesting question is that whether the proposed natural solution hy-
pothesis and visualization pipeline can adapt to the clean real-value at-
tributes problems. To investigate this question, this chapter develops a
new version of RCR, i.e. RCR-Real, that can compact a real-value at-
tributes problem orientated model to its natural solution format. Further-
more, the visualization technique, i.e. the FIM has been extended to enable
the RCR-Real compacted models’ patterns to be visible. More importantly,
to assist LCS to produce natural solutions for real-value domains, which
have an overlapping distribution, a novel LCS termed Hierarchical Learn-
ing Classifier System (HLCS) is proposed. The HLCS’s novelty is that it
considers rule compaction as a part of the exploration stage, rather than
invoking compaction after exploration has finished. The conducted ex-
periments successfully find natural solutions for all the tested clean UCI
datasets. Furthermore, the produced natural solutions contain visible pat-
terns that reflect the ground truth of the explored UCI datasets.

137
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5.1 Introduction

LCS’s employed representation format has an inherent rich characteristic.
Thus, LCSS can represent the underlying patterns in multiple (polymor-
phic) ways [12] [13] [14] [81] [83]. This may obscure the most informa-
tive patterns. A novel rule reduction algorithm that purposes to identify
such patterns is proposed based on ensembles of multiple trained LCSs
models to reduce the local diversity and global polymorphism 1. Further-
more, a hierarchical learning architecture based on the newly proposed
compaction algorithm is introduced to LCS, with the intention to assist
LCSs in adapting to real-value domains with an overlapping distribution.

The objective is to develop a technique that can interrogate the hidden
patterns in LCSs’ trained populations and improve the LCSs’ representa-
tion capacity in overlapping real-value domains. This will enable visu-
alization of the importance of features in data groups (niches) that can
contain heterogeneous patterns, i.e. even if different patterns result in the
same class, the importance of features can be found.

Previously, the Razor Cluster Razor (RCR1, RCR2, and RCR3) described
in Chapter 4 aims to search for the optimal global solutions in Boolean
domains based on analyzing a set of LCSs’ trained populations. These
Boolean orientated RCRs compact rulesets for any such domain that LCSs
can completely solve, i.e. reach 100% accuracy in the test set. This work
aims to determine whether the convergent evolution phenomenon helps
in real-value domains, which are inherently unlikely to be completely solv-
able by any classification technique due to their imprecise decision bound-
aries, e.g. caused by signal noise.

RCR-real is proposed here, which is tailored to the most common repre-
sentation used in real-value domains, i.e. upper and lower bounds rather
than the ternary alphabet of Boolean domains. An LCSs-based hierarchy

1 Local diversity and global polymorphism frequently result in an uncertain visualization
result, which might not precisely present important patterns.
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learning architecture is also proposed to extract the common ruleset for
LCSs’ non-completely solvable domains.

The objectives are to firstly create a method to extract a common ruleset
for an ensemble of LCSs that have separately explored the domain. Sec-
ond, it also aims to estimate each involved attribute’s distinguishability.
Finally, to visualize a problem’s detected underlying heterogeneous pat-
terns (see Section 3). Ten different UCI datasets are used as benchmarks
to visualize the learned knowledge. Note, this work does not seek to im-
prove LCSs’ prediction capability, instead the representation of underly-
ing capability. Thus the system’s performance is estimated by the training
result only, where overfitting is to be detected through the visualization.
The proposed work is based on XCS (a reinforcement-learning LCS) as it
forms a complete map of inputs to outputs. The main alternative, UCS (a
supervised-learning LCS), forms a best-action map, which lacks the con-
sistent incorrect information of the observed domain needed to calculate
attribute importance.

5.2 Compaction Algorithm for Real-Valued Do-

mains

Since XCSs employ different representations for Boolean and real-value
domains, the implementation between Boolean orientated RCRs and RCR-
Real is different. The only commonality between them is the basic philos-
ophy, which is that “entities are not to be multiplied without necessary”,
i.e. Occam’s razor. This theory inspires an alternative way to handle the
rule compaction problem, where it is hypothesized that rules can be com-
pacted under a macro view rather than a micro view. The rule reduction
methods prior to RCR focused on interrogating individual rule’s perfor-
mance in a population, despite how individuals interact with each other.
Moreover, sampling all rules from a single population results in a substan-
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Figure 5.1: The following graph for the RCR-Real process. RCR-Real is
composed of Razor in Micro that aims to reduce rules’ diversity in in-
dividual models, Rule Clusters that intends to unite rules from different
models into a single model, and Razor in Macro aims to reduce the rules’
polymorphism in the merged model.
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tial risk of being misguided by the variance in the ways the correct rules
population can be formulated (termed polymorphism). This may explain
why although LCSs are competent to generate optimal rules for the ad-
dressed problem, the previous rule reduction methods find it difficult to
compact a population to its optimal state, i.e. just containing one set of
only optimal rules.

The RCR-Real process is shown in Fig. 5.1. The three-phases of RCR-
real are razors in micro, rules cluster, and razors in macro, which are pro-
cessed in sequence. Razors seek to simplify as much as possible, but no
simpler. Razors in micro aims to remove the poor performance rules in
each population. Subsequently, the remaining rules in all populations will
be gathered together to be clustered according to the number of attributes
kept in each individual, where this process is termed as rules cluster. Fi-
nally, for the sake of reducing rules’ polymorphism in the clustered set,
the razor in macro is introduced.

5.2.1 Razor in Micro

In XCSs, the training population is larger than the optimal number of final
rules to guarantee that XCS is capable of exploring multiple competing
hypotheses simultaneously. Thus, a high diversity of rules is introduced
to the actual final population. As a result, the quality of the evolved rules
is varied. In certain domains, the majority of rules are redundant for rep-
resenting the task’s patterns. Moreover, a few rules may even make a neg-
ative contribution. Hence, this pre-processing phrase is needed to remove
the inferior individuals in a population.

Generally, three factors can describe an inferior individual rule: inade-
quate training, inconsistent prediction behavior, and no contribution to the
represent action of the task. Any such rule in a population should be ex-
cluded to reduce unnecessary diversity. The Razor in micro includes four
dependent steps that are implemented in sequence (shown in Algorithm
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Algorithm 18: Razor in Micro (RMI) in RCR-Real

Input: all rules in a trained population P ;
the percentage of kept rules ThresholdP
Output: a compacted population P

1 foreach rule ∈ P do
2 if rule.accuracy<1.0 then
3 Remove rule from P

4 end
5 if rule.fitness==0.0 then
6 Remove rule from P

7 end
8 if not rule.fitness==Maximum or Minimum then
9 Remove rule from P

10 end

11 end
12 Rank rule ∈ P by rule.numerosity (ascending order);
13 while P .Size > ThresholdP * P .Size do
14 Remove the first rule in P
15 end

18). The first step intends to remove rules that may produce an incorrect
prediction for a portion of the covered instances. As a sufficiently trained
rule’s accuracy can stay at the maximum value (100%), only if this rule pro-
duces consistent performance regarding prediction. Thus, this step only
preserves the rules whose accuracy is equal to the maximum value.

The next two steps consider removing rules that have no contribution
to retaining a population’s prediction performance. The second step eval-
uates rules based on rules’ fitness. As rules’ fitness indicates a rule’s poten-
tial performance in representing a problem. Thus, rules that has a minimal
value (0) in fitness indicate these rules are irrelevant to a population’s per-
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Algorithm 19: Clustering

Input: a training set T ;
a set of populations after RMI P Set;
Output: a clustered population CP

1 Initial an empty clustered population CP according tuple {action,
prediction} (an N actions domain possesses 2N Clusters);

2 foreach Population (P ) ∈ P Set do
3 foreach rule (r) ∈ P do
4 foreach instance ∈ T do
5 if r cover instance then
6 if advocate the same action then
7 Inscert instance.ID to r.record
8 end
9 r.number++

10 end

11 end
12 r.nicheaccuracy = r.number / size(r.record)

13 end
14 cluster r to CP according {action, prediction}
15 end
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formance. Hence, such rules will be removed in this step. The third step
assesses rules according to the rule’s prediction, and only preserve rules
where their prediction reach either the maximum value or the minimum
value discovered so far. Note this step can only be activated for the cases
having no noise.

The last step aims to remove rules that are trained insufficiently, and
to delete rules that are redundant potentially. This purpose is achieved
by ranking all the remaining rules according to their numerosity and then
removing the last 70% 2 bottom-ranked individual rules. This strategy is
supported by empirical evidence from the previous experiments in Boolean
domains, where XCSs tend to offer the most important individuals a higher
numerosity value compared with the redundant ones. By implementing
the Razor in micro, the majority of the redundant rules and irrelevant rules
will be excluded from a population. Thus, a candidate population’s rule
diversity is reduced.

5.2.2 Rule Cluster

Commonly, XCSs employ the upper and lower bounds representation in
real-value domains [[attribute0 high boundary, attribute0 low boundary], [attribute1
high boundary, attribute1 low boundary]. . . ], which offer rules both preci-
sion and generality. However, due to the rich representation style, a rule’s
explicitly represented niches cannot be assessed directly in the condition
part, which hampers efforts to detect the target’s unique morphism.

In the implementation of the rule cluster (shown in Algorithm 19), two
stages are included. In stage one, each selected rule reviews the training
set to record the matched niches (instances) and the correctly represented
niches. Hence, RCR can estimate each rule’s niche accuracy by dividing
the size of the correct niches by the size of the matched niches. The niche
accuracy will be used in Razor in Macro to remove the remaining incon-

2 This setting is based on experience, this setting value can be altered for different problems
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Algorithm 20: Error Detector in RCR-Real

Input: a clustered population P ;
Output: a compacted population P

1 foreach rule ∈ P .correct set do
2 if not rule.niche accuracy==1.0 then
3 Remove rule from P .correct set
4 end

5 end
6 foreach rule ∈ P .incorrect set do
7 if not rule.niche accuracy==0.0 then
8 Remove rule from P .correct set
9 end

10 end

sistent rules.
In the next stage, all the pre-processed rules will be clustered according

to the prediction, action tuple, since after Razor in Micro, all the remaining
rules’ prediction can only be either the maximum value or the minimum
value. Thus, the number of clusters is equal to double the number of ac-
tions. Note, if a rule’s prediction is associated with the maximum value,
then it is a correct rule. Otherwise, the rule is an incorrect individual. As
XCSs naturally seek to form complete maps, which consist of both correct
rules and incorrect rules, the inherent patterns of each can be different,
especially in multi-action domains. Thus, without the clustering process,
the effort of identifying the underlying patterns from a population cannot
make progress, since important patterns are mixed together.

5.2.3 Razor in Macro

XCSs aim to form a complete map to represent the explored domains.
However, due to the XCS’ rich representation, extremely diverse rules are
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Algorithm 21: Rule Merge in RCR-Real

Input: a clustered population P ;
Output: a compacted population PC

1 rank rules according to numerosity (descending order);
2 foreach rule1 ∈ P do
3 Add rule1 to PC ;
4 remove rule1 from P ;
5 foreach rule2 ∈ P do
6 if rule1.record==rule2.record then
7 rule1.numerosity+=rule2.numerosity;
8 remove rule2 from P

9 end

10 end

11 end

generated, which obscures the discovered patterns. Razor in macro is de-
signed to compact the XCS’s trained populations to their single common
state by reducing the populations’ polymorphism. Three processes are in-
volved, including error detection, rules merging, and two-level subsump-
tion.

The error detection aims to eliminate all the remaining irrelevant indi-
vidual rules by interrogating each rules’ niche accuracy. For any correct
rule, its niche accuracy reaches the maximum, and for any incorrect rule,
its niche accuracy ought to decrease to the minimum. Otherwise, the rule
must be irrelevant to the optimum population (shown in Algorithm 20).

The rule merging method focuses on merging rules within the same
niche. During the merging process, attributes will be merged one by one,
and only the common overlap interval will remain. Therefore, the final
merged rule will approximate the target, which successfully removes any
unsupported attribute interval. Merged rules’ numerosity will be summed
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Algorithm 22: First stage subsumption in RCR-Real

Input: a clustered population P ;
Output: a compacted population PC

1 rank rules according to numerosity (descending order);
2 foreach rule1 ∈ P do
3 Add rule1 to PC ;
4 remove rule1 from P ;
5 foreach rule2 ∈ P do
6 if rule2.record∈rule1.record then
7 remove rule2 from P

8 end

9 end

10 end

(show in Algorithm 21).

In XCSs, subsumption focuses on addressing the redundant rules prob-
lem. In RCR-Real, a novel two-level subsumption is implemented. The
first level (shown in Algorithm 22) ranks all the remaining rules according
to their numerosity and invokes subsumption from top to bottom. Each
rule will be compared with all their peer rules that have a lower rank. If
a lower-rank rule can be subsumed, it will be deleted. In the second level
(shown in Algorithm 23), all the rules will be ranked according to their
represented niche size, and then subsumption is reactivated to ensure that
the output set is as general as possible. Eventually, for the sake of visual-
ization in the next step, all the selected individual rules will be placed into
a positive set or a negative set, depending on whether their prediction is
maximum or minimum.
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Algorithm 23: Second stage subsumption in RCR-Real

Input: a clustered population P ;
Output: a compacted population P

1 rank rules according to numerosity (ascending order);
2 foreach rule ∈ P do
3 remove rule from P ;
4 if rule.record/∈P then
5 add rule to P
6 end

7 end

5.3 Visualization in real-value domains

Attribute Importance Map visualizes the importance of each considered
attribute to identify the importance of an attribute in determining the out-
put action. In the Boolean domain, an attribute’s importance is assessed
by its generality level. In real-value domains, the employed representa-
tion format (upper and lower boundary representation) does not reflect
the attributes’ generality level. Here, the attribute importance is estimated
by analyzing each attribute’s independent distinguishability by compar-
ing each attribute represented non-overlap space for each action between
the RCR produced positive set and negative set.

AInfnm =

∑i=mi
i=m0

(
∑j=mj

j=m0
(PSizenmi+NSizenmj−2∗PNSizenmij))

Nmlength∑i=mi
i=m0 PSizenmi +

∑j=mj
j=m0NSizenmj

(5.1)

AImpkm =
AInfkm∑att=n

att=0 AInfattm
(5.2)

In real-value domains, an attribute’s importance can be assessed by
Equation 5.1 and Equation 5.2. Assume a problem, which has an action
set A, A=[Act0, Act1...Actm] and an attributes set N, N=[Att0, Att1,...AttM],
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and for an action a (a ∈ A), it associates a support ruleset Im, Im= [Pm0, Pm1

... Pmi] and an opposite ruleset 3 Jm ,Jm= [Nm0, Nm1...Nmj], in i (i ∈ I) posi-
tive ruleset or j (j ∈ J) negative ruleset, for any related attribute n,(n ∈ N),
its represented range is defined as PSizenmi and NSizenmj . The overlap
between i positive rule and j negative rule for attribute n is defined as
PNsizenmij , Nmlength response for the number of negative rules for action
a (a ∈ A), then the attribute n’s influence for action a AInfna can be esti-
mated by Equation 5.1. Afterward, the attribute k (k ∈ N) importance to
action a AImpnm can be calculated by normalizing the attribute influence
as shown in Equation 5.2.

5.3.1 Hierarchical Learning Classifier System

The Hierarchical Learning Classifier System (HLCS) is proposed (see Fig.
5.2) to correctly and completely represent an identified dataset with a de-
fined representation format. Furthermore, when a ruleset has represented
a dataset, HLCS attempts to use this ruleset to produce the explored prob-
lem’s visualizations that can present the underlying patterns through hu-
man discernable graphs. HLCS is inspired by homologues of ensemble
learning, i.e. bagging and boosting. Besides, the ideas from population-
based incremental learning (PBIL) also influence the HLCS, where learn-
ing is “adapted to new data without forgetting the existing knowledge”.

HLCS’s learning process is composed of a few layers of automatically
splitting a dataset and incrementally exploring a domain, which resemble
boosting. The number of layers depends on the explored dataset, where
layers are automatically increased until the produced models represent
the target dataset, completely and correctly. A layer includes a training
set, several independent XCSs, a rule compaction mechanism based on
RCR-real, and FIMs for translating the underlying patterns into discern-

3 An opposite ruleset includes all rules, where their assigned accuracy is 0%, which indi-
cates that these rules oppose their assigned class label.
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Figure 5.2: The architecture of the Hierarchical Learning Classifier System
(HLCS). The number of layers will automatically be increased until the
HLCS completely represents the target dataset. Each layer consists of five
modules, a data filter based on the RCR compacted positive set, a bagging
based training process, RCR, attribute importance analysis, and attribute
importance visualization.
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able graphs. Furthermore, after the first layer, any additional layer con-
siders a subset of instances from the original dataset as the training set.
This subset is composed of all the unrepresented instances that cannot be
matched by the RCR-real compacted models’ positive set in the former
layers. Thus, former layers’ compacted models perform the role of data
filters to construct the training set for the next layers.

HLCSs utilize a bagging style structure for applying the exploring pro-
cess, where multiple XCSs explore the same training set, synchronously.
This structure avoids the errors caused by the XCS’s stochastic character-
istic in a single trained model. This is because important rules are always
common, but erroneous rules can be varied in the populations. Thus, it
is practicable for RCR-real to select the most crucial rules from multiple
XCSs’ models, as important rules are expected to appear repeatedly in dif-
ferent models, highlighting these rules’ importance.

Furthermore, HLCS benefits by applying parallel computing, although
multiple XCSs are employed, the computation in HLCS only introduces
around 20% additional execution time than standard XCS. At the end of
each layer, HLCS produces a visualization result based on an RCR-real
compacted model. This visualization is achieved by implementing real-
value domains orientated FIMs, which introducing in Section 3.3.

5.4 Experiments and Results of Real-Value Do-

mains

Six basic datasets from continuous real-value domains in UCI are selected
to interrogate the HLCS correctness, including Iris, Sonar, Wine, Australian,
German, Wisconsin Breast Cancer Diagnostic (WBCD). Four complex do-
mains for investigating the HLCS’s limitations are also selected, including
high dimensionality, (i.e. Lung Cancer), artificial problem, (i.e. Hill and
Valley), multiple classes with a low number of instances, (i.e. Zoo), and
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Table 5.1: RCR, XCS, HLCS results regarding the number of rules and
training accuracy, where [low, high] values of average over 30 runs are
presented. “+” is a symbol for distinguishing different layers, where in-
stance numbers or rule numbers in different layers are split by this sym-
bol. “acc” represents for accuracy, size represents the number of instances
in the training set.

Domian Iris Wine Australian Sonar
size 150 178 680+10 208

XCS size [1557,1675] [2736,2813] [2611,2714] [2924,2958]
RCR size 9 13 115+9 208
XCS acc [99.5%,100%] [100%,100%] [93.9%,97.2%] [99%,100%]
RCR acc 100% 100% 98.56% 100%

HLCS acc 100% 100% 100% 100%

natural domains, (i.e. Ionosphere).

Among all the ten explored datasets, HLCS achieves 100% training ac-
curacy, whereas standard XCS failed in four of them (see Table 5.1 and
Table 5.2). For all the domains, more than 90% of the introduced rules in
XCSs are removed after RCR-real has been implemented. Note, results in
Table 5.1 and Table 5.2 are not testing accuracy for prediction.

RCR-Real produces a stable performance model consisting of rules that
have different represented niches. Importantly, the rulesets’ performance
can be interrogated not only by the accuracy but also by their general-
ity and overfitting. For example, the results for Lung cancer and Sonar
problems indicate that these domains need to be represented by the most
specific rulesets (Lung cancer is a high-dimension problem and Sonar is
a difficult domain). Unexpectedly, a very general ruleset is produced for
the Zoo dataset, which contains seven classes. Traditionally, LCSs are not
systems that have good performance for domains with a high number of
classes but low number of instances.
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Table 5.2: RCR, XCS, HLCS results regarding the number of rules and
training accuracy, where [low, high] values of average over 30 runs are
presented. The “+” symbol is used for distinguishing different layers,
where instance numbers or rule numbers in different layers are split by
this symbol. “acc” represents for accuracy, the size represents the num-
ber of instances in the training set. Note as pattern extraction, rather than
prediction, is considered all data is used for training. Overfitting can be
identified through the visualization, i.e., many very specific rules.

Domian Zoo WBCD Ionosphere
size 101 683 351

XCS size [2756,2834] [2576,2653] [2764,2848]
RCR size 12 37 154
XCS acc [100%,100%] [99.6%,100%] [97.5%,100%]
RCR acc 100% 100% 100%

HLCS acc 100% 100% 100%
Domain German Lung Cancer Hill Valley

size 940+60 18+9 559+47
XCS size [2642,2745] [2944,2963] [2981,2994]
RCR size 242+14 18+9 267+31
XCS acc [78.5%,86.8%] [63.1%,70.3%] [79.7%,86.8%]
RCR acc 94% 66.66% 100%

HLCS acc 100% 100% 100%
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Figure 5.3: HLCS’ Training performance for the German and Australia
problems. The graph shows how HLCS produces a fully representative
model with two layers.

The training graph (Figure 5.3) shows that there is a limitation on pro-
ducing a fully representative model by XCSs, without the edition of the
method to add hierarchies. Layer 0 is essentially a standard XCS’s train-
ing performance, where a clear steady-state error range exists, regardless
of how many additional training iterations are introduced. This can be
caused by overlapping niches suited to polymorphic rulesets, where the
XCS identifies multiple main patterns. Hierarchically removing the main
patterns and associated data enables the XCS to discover the next most im-
portant patterns and so forth. Each of such patterns can contain epistatic
relationships between features, unlike decision trees where each hierar-
chy layer focusses on an individual feature. Ultimately, the last hierarchy
could consist of the hard to classify outlier data points where no general-
ity is possible, giving rise to specific rules. These can be identified through
equal importance being given to each attribute (feature).

After the HLCS splits the problem domain into successive comprehen-
sive parts, the completely represented solutions are obtained. Thus, it is
practicable for HLCSs to completely represent domains. The training map
for the German domain exhibits how XCS’s population is dominated by
over-general rules in the first stage of training (layer 0) as when they form
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performance drops. This does not occur for the Australia dataset, which
suggests specific rules are formed.

Table 5.3: HLCS and traditional feature rankers’ results for the Iris prob-
lem. Iris problem has three class labels, i.e. Setosa, Versicolour, and Vir-
ginica.

Feature Rank Attribute Importance

HLCS Setosa
Petal Length, Petal Width: 50%
Sepal length, Sepal width: 0%

HLCS Versicolour
Petal length: 32.8%, Petal Width:31%

Sepal width: 18.3%, Sepal length:17.9%

HLCS Virginica
Petal Width:29.4%, Petal length: 28.9%
Sepal length:21.3%, Sepal width: 20.4%

PCA Petal length, petal width

Relief
Petal width, petal length,
sepal width, sepal length

CFS Petal length, petal width

5.4.1 Feature Ranking

When FIM is applied to RCR-real compacted models, the calculated at-
tribute importance can be considered as an assessment for feature rank-
ing. Thus, HLCS can be employed as a feature ranking technique, which
reaches an action-based fine-grained level and can reflect how important
an attribute is in determining output actions. The Iris dataset’s ranked re-
sults (see in Table 5.3) display the order of attributes’ importance identified
by HLCS. Besides, in order to compare HLCS with traditional attribute
ranking techniques, i.e. Principal Components Analysis (PCA), Relief, and
Consecution based Feature Selection (CFS), Table 5.3 is presented.

HLCSs produced feature (attribute) ranking is action-based, as in mul-
tiple class domain, different classes may have a different attribute impor-
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tance ranking. Thus, HLCSs produce a feature ranking for each considered
action. In the Iris problem, three classes are involved, accordingly, HLCSs
output three independent feature rankings (shown in Table 5.3 ,which are
HLCS Setosa, HLCS Versicolour, HLCS Virginica).

In all classes, HLCS identifies that petal length and petal width are the
most important attributes, which is supported by PCA and CFS. Moreover,
HLCS also identifies that petal length and petal width having similar at-
tribute importance. Meanwhile, sepal width and sepal length having simi-
lar attribute importance. This discovery can also be found by using Relief.
The Iris domain indicates that although HLCS is based on investigating
the LCS produced rules, the novel proposed system obtains common at-
tributes’ importance with traditional statistics-based algorithms but dis-
plays the achievement in a much clearer manner.

5.4.2 Learning from Feature Ranking

Once the output is known, the solution can be interrogated, such that over-
fitting can be examined, i.e. the discovered patterns can be observed. It
appears that LCSs learn some strange patterns, e.g. in the Zoo dataset (see
Table 5.4: feather attribute is not important to classify birds, but milk is.
LCSs consider birds are animals that can be distinguished by [not] produc-
ing milk, laying eggs, and [not] having hair. Mammals need to seriously
consider their fins, where this is an excellent example of a heterogeneous
niche. To distinguish all the animal classes, milk is really important. Am-
phibians contain fewer species, which does not distract HLCS as it iden-
tifies that backbone type and the number of tails are important to categories
these species. Also, [not] feathers has the same importance level as fin for
identifying fishes.

If LCSs’ detected underlying patterns are directly compared with com-
mon human knowledge, there is obviously a huge gap between human’s
and LCS’s comprehension of the world. However, if the training dataset
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Table 5.4: HLCS highlighting mammal and fish classes and traditional fea-
ture rank results for Zoo problem.

Feature Rank Attribute Importance

HLCS Mammal

Milk:17.4%, fins:17.1%, hair:8.8%, tail:8.5%
airborne:5.8%, Eggs, toothed, backbone:4.4%

breathes, venomous, domestic:4.4%, Legs:4.3%
catesize:4.3%, aquatic:4.2%, predictor: 3.4%,

feathers:0%

HLCS Fish

Hair, feathers, eggs, milk, airborne: 7.3%
aquatic, predator, toothed, backbone: 7.3%

fins, legs, tail, domestic: 7.3%,
Venomous, catesize: 2.4% breathes:0%

PCA
Feathers, eggs, milk, airborne, aquatic, predator,

toothed, backbone, breathes,venomous

Relief
Venomous, breathes, tail, milk, backbone,
domestic, predator, eggs, fins, airborne,
feathers, legs, aquatic, toothed, catesize

CFS
Airborne, breathes, venomous, fins,

domestic, catesize

of learned knowledge is further investigated, interesting patterns emerge.
Firstly, Zoo is a typically unbalanced dataset, where mammals occupy
around 41% of the dataset. This indicates that identifying differentiating
common attributes for the mammals class is the most important task, and
among all the species, only mammals produce milk. Moreover, due to
the involvement of sea mammals, only mammals have a non-consistent
fin number. That is the main reason why LCSs identify fin and milk as
the most important attributes to distinguish mammals from others. Mean-
while, birds only occupy 20% of the dataset, and feathers only could be
used for birds, such that this attribute’s function can be replaced by a
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Figure 5.4: First line, the result for Zoo and Iris problems, respectively.
Second line, the result for Wine and WBCD problems, respectively.

combination from the first ten attributes. Thus, the feather is a redundant
attribute in this case, e.g. CFS removes feather, and in Relief, feather gets
a low rank, which is 10th. Not only bird, but the mammal, amphibian,
and reptile also note feather is redundant. Fish and bird do have a simi-
lar attribute importance distribution. Therefore, to distinguish these two
species, certain discriminative attributes need to be considered. Thus, in
fish support rules, the feather attribute is considered.

The ranked features could also be visualized with FIM (show in Fig-
ure 5.4 ). In the Wine domain, HLCS identifies proline, color intensity, and
OD280 / OD315 of diluted wines as the most important attributes for
class0, class1, and class2, respectively. Flavanoids need to be considered
for all the classes. The HLCS identifies that the most important attributes
for WBCD are Bare Nuclei and Normal Nucleoli in both actions. Generally,
as WBCD only contains two actions, the results for each action’s attribute
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importance distribution became very similar. However, the attributes’ po-
tential range is still different, which is why these two distributions are not
exactly the same.

The result shows that compared with humans, LCSs have an advan-
tage, which is to get rid of the primacy effect. LCSs are impartial to the
underlying patterns for the domains. Therefore, by visualizing these hid-
den patterns, humans could understand the patterns in the dataset better
as prejudice can be avoided. In contrast with standard attribute rank algo-
rithms, the proposed HLCS offers a fine-grained level ranked attributes,
which helps researchers not only know which attributes are important but
also hints about why these attributes are important.

5.5 Conclusion of Real-Value Domain Compaction

Algorithm

This work extends the RCR to adapt to real-value domains. The proposed
RCR-real successfully produces optimal solutions by analyzing multiple
XCSs’ models based on upper and lower boundary representation format.
In RCR-real’s compacted models, the member rules are consistent and un-
subsumable. Similar to natural solutions, the patterns in an RCR-real’s
solution is interpretable. Subsequently, a real-value domain orientated
Feature Importance Map (FIM) is developed to translate the underlying
patterns to discernable graphs. However, due to the rich nature of the
employed representation format, rules represent the same niches (pheno-
types) can have different encoding (genotype), thus different from natural
solutions, RCR-real’s can produce alternative solutions, which are neither
deterministic nor unique.

A hierarchical architecture is introduced to XCSs. This architecture ap-
plies incremental learning and ensemble learning to LCSs, and the pro-
posed LCS termed HLCS. HLCS divides the learning process into a set of
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layers to incrementally collect the learned knowledge. The number of lay-
ers increases, automatically, until the evolved ruleset in these layers can
complementarily represent the target dataset. For all the tested dataset,
HLCSs produce a fully representative model with a defined representation
format. Such models can reflect the attributes’ importance in determining
each action. Thus, HLCS’s models can be applied to feature ranking tasks,
where the underlying knowledge can reveal the ground truth of the ex-
plored dataset and avoid human prejudice.



Chapter 6

Absumption

Previous chapters have demonstrated that LCSs are prone to evolve mod-
els composed of all correct, unsubsumable rules under the global search
space (natural solution). However, due to the issues caused by over-general
rules, in overlapping domains, multiple LCSs’ models are necessary for
identifying all member rules in order to produce a natural solution. Pro-
ducing multiple models and introducing additional optimization algo-
rithms increase the complexity of the LCSs and the computation costs.
This drawback of producing the natural solution was the inspiration of
developing an operator that can assist LCSs to adapt to overlapping do-
mains. Thus, a new operator termed as informed mutation is introduced to
search for optimal rules based on correcting over-general rules. Further-
more, based on informed mutation, a new mechanism named Absumption
is proposed to enable the LCSs to produce a single model that contains all
the member rules of a natural solution. This complements the subsump-
tion operator that was designed for improving over-specific populations.
Besides, a new version of RCR terms Razor Cluster Razor in Single Ternary
alphabet (RCR-ST) is also described that aims to extract the natural solu-
tion from an abusmption based LCS produced results.

161
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6.1 Introduction

Visualizing the output of an algorithm is important for understanding the
patterns in the data and how the algorithm produced solutions for the
classification problem. However, producing a correct visualization result
is not easy if the patterns in the underlying model are unnecessarily com-
plicated, such as information distributed among edges and nodes of a net-
work. Many sub-symbolic algorithms struggle in this regard [106] [86]
[65]. Symbolic approaches offer a more human-readable alternative, but
they struggle to produce maximal generalization, maximal accuracy, and
minimal redundancy in their models [49] [62] [54].

Although the LCSs’ produced population of rules [P ] is often accurate,
it is also inundated with a number of over-general rules and over-specific
rules [44]. During exploration, LCSs do not have any explicit method to
remove such rules. These issues are especially severe in over-lapping do-
mains as different rules attempt to share the same data niche.

This chapter introduces the Absumption method as a complement to
the Subsumption method that addresses over-specific rules. The Absump-
tion method uses an over-general rule’s inconsistency to identify this type
of rule, then using an informed mutation operator attempts to correct the
rule. Furthermore, a rule compaction algorithm that depends on Absump-
tion is also proposed, termed Razor Cluster Razor in Single Ternary al-
phabet (RCR-ST), to remove all the irrelevant and redundant rules in the
trained population [P ]. Although the developed methods can work with
real-world data, Boolean domains with different scales of condition length
are selected as the example problems as the over-general issue-level can
be controlled by tuning the data distribution. These permits investigate
how Absumption acts on over-general issues. Moreover, the discovered
underlying patterns in these domains can be more easily compared to the
ground truth patterns. Within each domain, the problem size (number of
bits) can scale, where accurate visualization of the solutions will enable
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the equations for the optimal size of solutions for a problem to be verified,
which increases user confidence in future solution verification.

6.2 Methods

Three methods are introduced in this section. The informed mutation which
attempts to detect optimal rules based on correcting the over-general rules.
Absumption, a new mechanism that aims to assist LCSs to adapt over-
lapping domains. RCR-ST, which is a rule compaction algorithm that is
developed to discover natural solutions inside Absumption based LCSs’
results.

6.2.1 Informed mutation

XCSs consider optimal rules are excepted to be located at a highly general
search space. Thus, XCSs utilize tournament selection and Subsumption to
guide the searching process to guarantee that the newly created rules have
a higher generalization level than their parent rules. As a result, when
exploring, XCSs tend to search the general search space but frequently
misjudge the importance of specific regions of the search space. Recent
experiments have demonstrated that highly specific rules can be necessary
to address the target problem in overlapping domains. Hence, XCSs need
an operator to explore new rules with highly specified conditions. In this
scenario, the informed mutation is proposed to create specific rules based
on almost nearly correct over-general rules.
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Figure 6.1: Informed mutation: Creating new conditions based on correct-
ing an over-general condition. Randomly select a ′#′ bit to become the
specific bit. Afterward, record the value of the corresponding bit on the
instance. Create a new condition by replacing the selected ′#′ bit by the
flipped recorded value. Hence, the new rules will not cover the observed
instance any more.

Optimal rules are expected to make a consistent prediction for all their
matched instances. Thus, an inconsistent rule must be an over-general
rule. Informed mutation utilizes the information that an optimal rule is
consistent. When a rule is identified to be inconsistent (over-general) by
an instance, then the informed mutation receives this inconsistent rule and
this instance. Afterward, the informed mutation creates new rules by ex-
cluding the instance from the inconsistent rule’s encoding (shown in Fig-
ure 6.1).

For example, in the 6-bits Majority-On problem, 00####:0 is an over-
general rule. Assuming that when exploring, this over-general rule is
identified when it matches the instance 001111. Then, the informed mu-
tation will create a new rule based on rule 00####:0 and instance 001111.
The process is that informed mutation randomly selects a generalized at-
tribute from the over-general rule, and sets this attribute value different
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Algorithm 24: Informed Mutation

Input: an over-general rule r;
an instance that can identify this rule is over-general i
Output: a corrected rule nr

1 Randomly select a generalized attribute Ar in r;
2 find the corresponding attribute in i,Ai;
3 Create nr by Specifying the Ar with a different value of Ai;

from the instance, as the mutation is informed, this instance leads the rule
being over-general. Here, assume the third attribute is selected, the newly
produced rule is 000###:0, which will no longer cover the instance 001111.
Hence, step by step, the informed mutation will produce suitable rules by
correcting the over-general rules’ niches (shown in Algorithm 24).

6.3 Absumption

To assist XCSs to overcome the over-general issue so that XCSs can adapt
to overlapping domains, a novel mechanism termed Absumption is pro-
posed. Absumption identifies over-general rules based on over-general
rules’ non-consistency. Absumption hypothesis that in XCSs, a rule’s con-
sistency can be assessed by this rule received environmental rewards’ con-
sistency. Thus, Absumption introduces two new training parameters, the
number of positive rewards (NPR) and the number of negative rewards
(NNR) to XCSs in order to assess a rule’s consistency. NPR records the
number of times a rule receives a positive reward from the environment,
whereas NNR traces the number of negative rewards. Both NPR and
NNR’s initial value is zero. Absumption will be activated to rules, where
the product of NPR and NNR exceeds zero, as this indicates a rule has
become inconsistent.

Absumption uses a rule’s experience and the size of its represented
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Algorithm 25: Absumption

Data: rules in action set A; rules in population P;
the observed instance S; initialize an empty condition set for the
Absumption created rules OpC;
initialize an empty rule set for final output rules OpR;
Result: Non-duplicated Absumption created new rules OpR

1 (REAthreshold, NPR, and NNR are defined in section 6.3 );
2 foreach rule ∈ A do
3 if rule.NPR ∗ rule.NNR > 0 then
4 if rule.REA < REAthreshold then
5 Remove rule from A;
6 Remove rule from P;

7 end
8 else
9 for i = 0;i++;i < rule.numerosity do

10 condition = Specify(rule.condition, S);
11 if condition 6∈ OpC then
12 Add condition to OpC;
13 end

14 end
15 Remove rule from A; Remove rule from P;

16 end

17 end
18 foreach condition ∈ OpC do
19 rule=CreateRule(condition);
20 Add rule to OpR;

21 end

22 end
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niches for assessing the probability of an over-general rule’s encoding
carrying correct genotypic information. In Absumption, this assessment
probability termed, Represented niche and Experiment Assessment (REA),
acts as a trigger of strategy selection for decomposing over-general rules.
Absumption executes one of the two strategies, either removing or replacing
for any identified over-general rule. When an XCS is exploring, in each
iteration, all the identified over-general rules will undergo Absumption.
For any over-general rules, their REA value is higher than the predefined
REA threshold, then Absumption considers these rules’ genes are highly
likely to be close to being correct. Thus, it is reasonable for Absumption
to invoke informed mutation to create new rules by correcting these over-
general rules’ niches. Afterward, the newly created rules replace the over-
general rules in [P ]. Regarding rules that associate with low REA, the
condition part rarely carries correct genes. Hence, the removing strategy is
evoked in order to eliminate these over-general rules from [P ], so that the
adverse impact of these rules on classification performance is prevented,
immediately. The proposed work empirically set the threshold of REA as
1 (shown in Algorithm 25).

Absumption is similar to the specialization mechanism of Anticipatory
Classifier System2 (ACS2) [80]. As a comparison, Absumption identifies
over-general rules based on continuity rather than a determined proba-
bility as employed by ACS2. The altered distinction strategy affords Ab-
sumption the capability of addressing domains with severe over-general
issues but results in the assisted LCSs suffering in the case of noisy envi-
ronments. As Absumption requires a rule and its matched instances ad-
vocate the same class label, if a dataset contains noise instances, Absump-
tion must result in producing rules overfit these noise instances. This is a
tradeoff for overcoming the over-general issue.

Another similar mechanism is Lanzi’s specific operator [59], but it dif-
fers from Absumption in three aspects. Firstly, these two techniques have
different objectives. The specific operator is designed to enrich the diver-
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sity of specific rules in [P ], whereas Absumption aims to search for an
optimal rule by iteratively correcting over-general rules. Secondly, they
have varying strategies to identify over-general rules. The specific op-
erator removes one of over-general rule’s numerosity, and only removes
the over-general rule, where the numerosity reaches zero. As a compari-
son, Absumption removes general rule, immediately, after they have been
identified. This difference is because the specific operator considers that an
over-general rule can have a positive impact on prediction performance.
However, the Absumption hypothesis is that an over-general rule’s impor-
tance in maintaining prediction performance can be completely replaced
by the optimal rules. Thirdly, they create new rules via a different method.
The specific operator randomly selects a generalized attribute and speci-
fies this selected attribute with a random value. As a comparison, the Ab-
sumption specifies the selected attribute with an informed value, which
excludes the incorrectly matched instance from the niche.

6.4 Razor Cluster Razor Single Ternary

XCSs continuously discover rules during the exploration process in case
better patterns are discovered or the domain is dynamic. Thus, when XCSs
cease the exploration phase, it is not guaranteed that all the final rules
have been trained sufficiently. Besides, in order to achieve the capability of
simultaneously exploring multiple competing hypotheses, XCSs employ
a training population [P ] that is likely to be much larger than the optimal
number of rules. Hence, irrelevant and redundant rules unavoidably exist
in the final [P ], which obscures the informative patterns.
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Figure 6.2: The flowchart of RCR-ST, that consists of diversity razor, space
cluster, and polymorphism razor. RCR-ST is Absumption dependent.
RCR-ST aims to compact a XCSs produced [P ] to the most straightforward
form.

For the sake of improving the Absumption-based on XCSs’ produced
models’ interoperability to the state-of-art level, the Razor Cluster Razor
Single Ternary (RCR-ST) method is proposed, as shown in Figure 6.2. This
is an Absumption dependent rule compaction algorithm. This aims to op-
timize an XCS trained [P ] to the most straightforward form. This method
is inspired by the Occam’s Razor theory, which is “Entities are not to be
multiplied without necessity”. The RCR-ST method composes of three
phases, which are Diversity Razor, Space Cluster, and Polymorphism Ra-
zor.

Diversity Razor has a Fitness Verification Operator(FV) and an Experi-
ence Verification Operator (EV). These two operators aim to remove irrel-
evant rules by interrogating individuals’ training performance according
to the rules’ training parameters. With Absumption, the irrelevant rules
in the final [P ] are expected to be either non-contributing to form the so-
lution [P ] or insufficiently trained. FV utilizes individuals’ fitness to es-
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timate a rule’s contribution, removing the rules whose fitness reaches the
minimum value, i.e. 0. EV removes any insufficiently trained rules when a
rule’s experience is less than its average niche. In this work, a rule’s niche
is set equal to its niche size.

Space Cluster is responsible for removing redundant rules by imple-
menting the flipping and clustering process. In binary classification prob-
lems, flipping a completely incorrect rule’s action could make it become a
completely correct rule. Thus, the flipping executes on all the rules, whose
action is associated with the minimum prediction (completely incorrect)
to conduct the correction.

In ternary based XCSs, the global search space of exploring any N -bit
binary problem consists of N+1 sub-search spaces that are distinguished by
the number of specified condition attributes Nsat. For example, a 6-bit
problem has seven sub-spaces ranging from the bottom (i.e. no specified
bits, e.g. ######:1) to the top (i.e. all specified bits, e.g. 011010:1). Be-
sides, each sub-space Spi is capable of independently fully representing
the global problem domain. Clustering manages to place each rule into its
related sub-space for the subsequent Polymorphism Razor.

Alternative rule combinations that represent the same niches cause
ambiguous explanations for the underlying patterns for data, which is
named the polymorphism issue [63]. Error Detection, Non-over-lapping
set builder (N-O Builder), and Subsumption methods constitute the Poly-
morphism Razor. This is designed to solve the polymorphism issue by
removing all redundant rules from [P ], such that the simplest [P ] with
fully representative capacity can be constructed (a unique morphism).

The Absumption leads to potentially over-general rules’ experience be-
ing slightly lower than their companions in the same sub-space. R stands
for a single rule, where exp records the associated experience, Spi repre-
sents a sub-space, and |Spi| is equal to the number of included rules, then

∀ R ∈ Spi, if R.exp < 0.2 ∗
∑

R∈Spi
(R.exp)

|Spi| , R are removed by Error Detection.
Additionally, in any fully representative [P ], if both optimal rules and in-
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correct rules exist, then conflict must occur, i.e. two rules have overlap in
a search space but propose different actions. In Error Detection, each rule
is compared with the others, when conflict happens, record the sum of the
numerosity as the conflicting value. Finally, remove any tested rule where
its numerosity is less than its conflicting value.

In non-over-lapping domains, e.g. in the Multiplexer problem, there
are optimal rule sets ([O] set), where no member rules share niches and
assemble at the same sub-space. In these cases, the replaceable, redundant
issue happens. All the replaceable rules are neither incorrect nor subsum-
able. Therefore, it is impossible to distinguish replaceable rules by analyz-
ing their accuracy or generalization. An alternative way to address this
problem is attempting to form a non-over-lapping and fully representa-
tive rule set on the sub-space, which has the highest sum of all the related
rules’ numerosity (Algorithm 26). If the N-O builder finds such a satisfied
rule set, it removes all the other rules. Otherwise, it activates Subsumption
in order to remove all the subsumable rules.

6.5 Result and Experiments of Absumption

Three types of artificial Boolean domains with different condition length
are considered as benchmarks, i.e, the Majority-On, Carry, and Multiplexer
problem domains. All the results experiments have been run indepen-
dently thirty times.

6.5.1 Absumption Learning Performance

In all the domains, the covering method is responsible for covering any un-
matched observations in the initial training stage. Because of the stochastic
nature of the covering process, many over-general rules are placed into the
population. This results in absumption’s removing operator being highly
activated at the start of the training. Once the covering process ceases, the
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Algorithm 26: Find the fully representative non-overlap rule set
from the sub-space that has the highest sum of numerosity

Data: The size of the problem’s niche GN;
All rules in the selected sub-search space S;
initialize an empty rule set for temporary store Stemp;
initialize an empty rule set for final output rules Subset;
Result: A fully representative rule set Subset

1 foreach rule ∈ S do
2 Stemp← S;
3 Add rule to Subset;
4 Remove rule from Stemp;
5 foreach rule′ ∈ Stemp do
6 if ∀ r ∈ Subset; r ∩ rule′ =∅ then
7 Add rule′ to Subset;
8 end

9 end
10 SN← 0 Subset represented niches;
11 foreach rule′ ∈ Stemp do
12 SN+=rule′.niche
13 end
14 if SN=GN then
15 break;
16 end
17 else
18 Subset← an empty rule set;
19 end

20 end
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removing operator’s activeness also reduces. However, instead of ceasing,
the removing operator eventually maintains a steady activation level. This
is due to XCSs employing the crossover search operator, which unavoid-
ably generates incorrect rules, Figure 6.3 shows the rate of absumption
application.

Although the removing operator continuously deleted rules from the
population, the population’s capability of representing niches did not re-
duce. That is because of the Absumption’s specification operator’s capa-
bility in protecting potentially correct genes in non-optimal rules.

For example, in the 6-bit Majority-On problem, 11####:1 is a typically
good performing, but non-optimal rule, which has 87.5% accuracy, only
incorrectly predicting niche 110000. In this case, the informed mutation
is invoked to produce new rules based on specifying an attribute to ex-
pel the problematic niche from the incorrect rule’s condition. Therefore,
after specification operator, four candidates may be introduced, which
are 111###:1, 11#1##:1, 11##1#:1, 11###1:1. Hence, an incorrect rule’s cor-
rect represented niche is generated. Since, in overlapping domains, the
crossover search is prone to generate many good performance incorrect
rules, such that, the specification operator is relatively active, whereas it is
inactive in non-overlapping domains, e.g. Multiplexer.

Compared with the Carry problem, the Majority-On problem has a
more complex over-lapping distribution, which results in producing over-
general rules instead of over-specific rules, so that the Majority-On prob-
lem depends much more on the Absumption compared with Subsump-
tion.

The GA Subsumption aims to prevent over-specific rules joining [P],
and the Action set Subsumption is responsible for removing the over-
specific rules in [P]. Previously, due to the difficulty of distinguishing over-
general rules and optimal rules, the activation of the Action set Subsump-
tion could introduce an adverse effect, as potentially optimal rules were
incorrectly removed. However, the Absumption method continuously re-
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Figure 6.3: The impact of Absumption assisting XCSs in solving over-
lapping domains. A clear positive correlation exists between Absump-
tion’s activation level and the problem’s over-lapping level. First line: 6-
bits and 10-bits Majority-On; Second line: 6-bits and 10-bits Carry; Last
line 6-bits and 11-bits Multiplexer.
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moves over-general rules, which guarantees the long survived rules’ qual-
ity. For instance, #11:1, which represent two instances, needs to be verified
with over 200 experience.

Hence, once Absumption is activated, the Action set Subsumption can
also be activated. The Action set Subsumption does not contribute to 6-bit
problems, as the training process is too short of marking the “long sur-
vival” rules. For the 10-bit Carry, and Majority-On problems, the Action
set Subsumption demonstrates the ability to remove over-specific rules
efficiently. Once the Action set Subsumption is highly activated, the possi-
bility for activating the GA Subsumption 1 decreases, which indicates that
the rule discovery process generates less over-specific rules.

6.5.2 Absumption to Addresses the Over-General Issue

The primary role of Absumption is assisting XCSs to overcome overlap-
ping domains, to address the over-general issue. Previously, the commu-
nity considers that XCSs can produce acceptable models for overlapping
domains. However, all these models’ training accuracy can be at most
99%, which violates the natural solution hypothesis. Such a phenomenon
happens because XCSs represent the explored domain with a combina-
tion of over-general rules and over-specific rules rather than optimal rules,
which is the over-general issue. The produced problematic models are
likely to possess useful patterns. Absumption enables XCSs to address the
over-general issue by removing the over-general rules, immediately and
consistently, so that optimal rules can be preserved during exploration.
Although, improving the accuracy by 1%-2% may appear as a small con-
tribution, in terms of pattern understanding, the ability to ascertain opti-
mal rules is a major improvement.

The Majority-On domains have a severe over-general issue. These do-

1 Executing the Subsumption operator to the GA evolved rules before inserting this newly
created rule into a population.
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Table 6.1: Samples of XCSs produced rules from both Absumption is active
or inactive for 8-bits Majority-On problem. In this domain, the correct
optimal rules for action 1 or action 0 need to specify five 1s or four 0s,
respectively, otherwise, they are over-general rules.

No-Absumption Absumption
1##1#1#1:1 11#1#1#1:1
#111###1:1 1111###1:1
11#1##1#:1 11#1##11:1
0##0##0#:0 0##0##00:0
###0#00#:0 ###0000#:0
#0#0###0:0 00#0###0:0

mains’ optimal rules have an inherent horizontal distribution, i.e. many
similar rules assemble at the same sub-space. This distribution results in
XCSs having a tendency to produce good performance over-general rules.
This tendency gradually obscures the optimal rules. Hence, the over-
general rules are incorrectly highlighted so replace the optimal rules in [P ].
For example, in 8-bit Majority-On, 1111####:1 is a highlighted incorrect
rule, where error only occurs in instance 11110000 among the represented
sixteen instances. As these incorrect rules have a relatively good perfor-
mance, XCSs may incorrectly highlight them, especially in reinforcement-
based XCSs. Moreover, due to the employed crossover search operator,
XCSs may produce many such incorrect rules. Eventually, these over-
general rules dominate the population, which causes further misclassifi-
cation.
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Figure 6.4: Red circles stand for XCSs with Absumption, blue trangles
represent XCSs without Absumption. For clarify, only the training per-
formance on the last 2.5 million iterations is shown. Left to right: 10-bit
Majority-On, 12-bit Carry. The Mann-Whitney U test output results for
12-bits carry problem, and 10-bits majority-on problem are 3.03e−13, and
3.11e−13, respectively. Note, dependent axis scale.

The Carry domains have a vertical distribution optimal rule set, i.e. op-
timal members are non-uniformly distributed in several sequential sub-
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spaces. In these cases, good performing over-general rules occur in the
middle of the related sub search space, which omits some very specified
optimal rules. In general, the Carry problem’s over-lapping level is less
than the Majority-On problem. Thus, XCSs can achieve better perfor-
mance, but still cannot produce a model to fully represent the problem,
when the domains’ number of attributes is larger than eight.

Figure 6.4 demonstrates that Absumption does assist XCSs to address
overlapping domains. Furthermore, the results of both domains are much
smaller than the critical value of U, which is 0.05 in the Mann-Whitney
U-Test. The results from the conducted U test on the final performance
of two systems show statistically significant performance in their 1% im-
provement regarding accuracy.

6.5.3 Absumption Avoids Over-General Rules

XCSs utilize reinforcement learning techniques, e.g. Q-learning, to esti-
mate each rule’s performance. As a result, good performing over-general
rules might be incorrectly highlighted. Subsequently, the employed Sub-
sumption methods will continuously subsume vital rules that are rela-
tively more specific. Gradually, a [P ] will be dominated by these prob-
lematic rules. Since standard XCSs lack methods for counteracting over-
general rules, they are unable to completely represent any overlapping
domains that contain more than eight attributes (8-bits). Therefore, XCSs
have been incorrectly labeled as a technique that cannot learn all Boolean
functions [38].

A defective [P ] not only suffers from unsatisfactory classification per-
formance but also has trouble with the transparency of the mined underly-
ing patterns, e.g. the top map in Figure 6.5, which is based on a standard
XCS produced [P ] that has had the incorrect rules and the subsumable
rules removed completely. This map merely ambiguously reflects that the
6+6 Carry problem has a symmetrical attribute importance distribution.
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Figure 6.5: X: Attribute Id, Y: sub-search space Id, Z: Attribute Importance.
Three attribute importance maps for three compacted [P ]s of 6+6 Carry
problem. Top to bottom: first, a standard XCS’s [P ]; second, optimal rules
in a standard XCS’s [P ] showing that attribute 2, 3, 4, 5, 8, 9, 10, 11 are
missing; third, XCS with activated Absumption produced [P ].
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As a comparison, the bottom map, which is based on an optimal rule set,
visualizes the symmetrical patterns precisely.

The second map visualizes the patterns of optimal rules in a defective
[P ], which only partly exhibits the symmetrical characteristic of the 6+6-
bits Carry problem. Since the optimal rules with a relatively more specific
encoding are missing, the second map cannot offer any pattern about bit3
to bit5, and bit8 to bit11. The first two maps demonstrate that without the
assistance from Absumption, in Carry domains, over-general rules result
in either obscuring or fragmenting visible patterns. Similar maps of the
Majority-On domains are not presented, due to all the optimal rules be-
ing replaced by a good performing over-general kindred. Therefore, after
compaction, only one over-general rule is kept.

6.5.4 Razor Cluster Razor Single Ternary

RCR-ST is a rule compaction algorithm, which builds on Absumption. Ab-
sumption avoids over-general rules in the produced rule set. Thus the
binding compaction algorithm does not suffer from the poor performance
caused by incorrectly keeping the over-general rules but removing the op-
timal rules. RCR-ST aims to mine the optimal rule set from a single XCS’s
trained [P]. Any N attributes Boolean problemBPN consists of M instances
(BPN ⊃ [Ins0, Ins1, ..., InsM ]) the ternary representation’s global search
space (GS) can naturally split into N+1 sub-spaces (GS ⊃ [SP0, SP1, ...,
SPN ]), based on the number of specified attributes Nsat of an encoding.
Each SP consists of CNsat

N ∗2Nsat available rules (r). In SPN , all the attributes
are specified. Hence, SPN = BPN . Therefore, for any BPN , at least one
fully-representative model in GS can be found. Straightforwardly, ∀ Ins,
Ins ∈ BPN , ∃ r, Ins ∈ r, r is completely accurate, r ∈ GS. Hence, ∃ P, P ⊃
[r0,r1,... ,ri], BPN ∈ P.

In a fully representative P, ∀ r, if r is not completely accurate, then r
is irrelevant to BPN . ∀ ri, ri ∈ P, ri ∈ SPi, if ∃ rj , rj ∈ P, rj ∈ SPj , i>
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Table 6.2: Non-Absumption XCS [P] size and accuracy versus Absumption
XCSs, S-size and S-Accuracy respectively stand for number of rules and
classification accuracy for standard XCSs without Absumption, whereas,
A-size and A-Accuracy record the results for the Absumption based XCSs.
With the assistance of Absumption, XCSs achieve maximal accuracy and
optimal rule set (sizes are recorded in the A-size) for all the tested do-
mains.

Problem S-Size S-Accuracy A-Size A-Accuracy
6-bit MUX 172 100% 8 100%

11-bit MUX 222 100% 16 100%
20-bit MUX 4216 100% 32 100%
37-bit MUX 6822 100% 64 100%
6-bit Carry 124 100% 18 100%
8-bit Carry 512 99.8% 38 100%
10-bit Carry 852 99.4% 78 100%
12-bit Carry 950 99.2% 158 100%
6-bit Maj-On 157 100% 35 100%
7-bit Maj-On 561 100% 70 100%
8-bit Maj-On 2672 99.6% 126 100%
9-bit Maj-On 6305 99.4% 252 100%

10-bit Maj-On 9244 98.6% 462 100%
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Figure 6.6: Three FIMs show that an Absumption based XCS’s [P ]’s under-
lying patterns are highlighted by RCR-ST removing incorrect rules and
redundant rules in sequence for the 6-bits Majority-On problem. X: At-
tribute Id, Y: sub-search space Id, Z: Attribute Importance. The top graph
presents the patterns inside an XCS’s [P ], the middle graph describes the
patterns of [P ] when incorrect rules (over-general rules) are removed by
RCR-ST’s diversity razor. The last graph shows the patterns after RCR-ST
have been completed, which are optimal.
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Figure 6.7: Six FIMs show how a Boolean problem’s patterns change with
the problem’ size scale. X: Attribute Id, Y: sub-search space Id, Z: Attribute
Importance. The figures in the first column are for 2+4 bits, 4+16 bits,
and 5+32 bits Multiplexer, where all the difference between address bits
and data bits are highlighted. The second column’s figures respectively
represent the 3+3 bits, 4+4 bits, and 5+5 bits Carry problems, which clearly
distinguish the difference between the two parts of each problem.
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Figure 6.8: Two FIMs show how a Boolean problem’s patterns change with
the problem’ size scale. X: Attribute Id, Y: sub-search space Id, Z: Attribute
Importance. The two figures show the optimal rules of even cases (8-bits
and 10-bits) in the Majority-On problems locate at the same generaliza-
tion level, which explains why the Majority-On domains having a severe
overlapping issue.

j, ri ∈ rj , then ri is redundant. The number of representative instances
of an r is equal to 2N−Nsat . Hence r’s representation size is ≥ 1 once a
P matches all the instances, P is fully representative. Thus for any BPN

the minimum member of rules of a fully representative P must satisfied
that P ≤M. Straightforwardly, XCSs with ternary representation could be
considered as an automatic data compression algorithm, once the dataset
is successfully compacted, the informative patterns of the dataset become
apparent.

The attribute importance following the sub-space clustering in RCR-
ST collected classifiers is shown in Figure 6.6 (6-bits Majority-On prob-
lem). Essentially, for a given attribute level, this shows how likely a given
attribute is to be specified. This clearly visualizes the different underly-
ing patterns in each problem domain. Moreover, by implementing this
method in the same domain with various scales (length of the condition),
the hidden patterns that influence the attributes at a specific scale have
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been detected.

Figure 6.7 and Figure 6.8 show how the attribute importance grad-
ually becomes clarified by removing irrelevant rules based on diversity
and removing redundant rules based on polymorphism. In all the Mul-
tiplexer problems, all the optimal rule members were limited to one sub-
space for all the results. This supports the Multiplexer problems are non-
overlapping. The difference of importance between address bit and the
data bit is highlighted. Moreover, although the data bits’ attribute im-
portance is decreased as the problem scales, all the address bits’ attribute
importance is kept at 1.0. From the 3+3-bits to 6+6-bits Carry problems,
the RCR-ST visualizes a natural symmetry to the attribute importance dis-
tribution. Additionally, when the problem is increased by 2 bits, only one
additional sub-space is introduced. In the Majority-On problems, the vi-
sualization reflects a distribution relationship between the odd condition
length and even condition length problems. In even length problems, all
optimal rules cross two sub-spaces, whereas, in odd length, optimal rules
gather in one sub-space.

The RCR-ST successfully compacts all the thirteen tested problems’
model to their maximal accuracy, maximal generalization, and minimal
redundancy state, which is also the problems’ optimal rule set ([O] or nat-
ural solution), shown in Table 6.2. The last 1% accuracy is the most difficult
part for XCSs to represent in over-lapping domains. The 100% accuracy
[P ] has the potential to highlight all the optimal rules, whereas a 99% ac-
curacy [P ] in certain domains, may highlight none of the optimal rules,
as shown in Table 6.1. An additional result of this work is the equation
for calculating each problem’s optimal rule size. In Multiplexer problems,
all optimal rules contain the specified address bits and one data bit that re-
flect the action. Hence the size of the optimal rule set for the k-bits address
Multiplexer problem equals 2k.

All the Carry problems’ optimal rules have a regular distribution, e.g.
in 6-bits the number of preserved rules on sub-space 2-4 are [2,12,4]. When
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the Carry problem scales by 2 bits the covered sub-space will increase
by one, e.g. in 8-bits [2,4,24,8], on sub-space 2-5, 10-bit [2,4,8,48,16], and
12-bit [2,4,8,16,96,32]. Hence, the Carry problems’ optimal rule set size =

2
N
2
+1 +

∑k=N
2
−2

k=1 2k, (N > 4). In N-bits Majority-On problems, the size of
the optimal set needs to consider the length of condition; in the odd situa-

tions, size=2∗C
N+1

2
N , whereas even situations, size=C

N
2
+1

N +C
N
2
N . It would be

very difficult (and has not been achieved previously) to mine these rules
from a single standard XCS produced population.

6.6 Conslusion for Absumption

An informed mutation operator is designed to search for important spe-
cific rules by correcting over-general rules. Based on informed mutation, a
mechanism named Absumption is introduced to assist the XCS symbolic
rule production system to address Boolean problems that have an over-
lapping issue. The training analysis reflects that the use of the Absump-
tion method has a positive correlation between the method’s activity level
and the problem dataset’s over-lapping level. Moreover, for all the tested
over-lapping domains, Absumption enables the generation of fully repre-
sentative models.

An Absumption dependent rule compaction algorithm, RCR-ST, is also
introduced, devoted to identifying an optimal rule set from a fully rep-
resentative model by removing irrelevant diversity and redundant poly-
morphism rules. Moreover, according to the optimal rules’ distribution,
the formulations for calculating the number of optimal rules for the Mul-
tiplexer, Majority-On, and Carry problems can be defined.



Chapter 7

Absumption and Subsumption
based LCS (ASCS)

Learning Classifier Systems (LCSs) have been identified as useful data
mining techniques that can obtain optimal results that contain human-
discernable patterns [76] for a number of tasks. Previously, Butz described
LCSs are designed to evolve a minimal number of non-overlapping rules
to represent an explored domain, accurately and completely [16]. Such op-
timal rulesets term as [O] sets. However, due to [O] sets not representing
the non-overlapping domains, and LCSs were not designed to construct a
non-overlapping ruleset, LCSs rarely produce [O] sets as the final result.
According to the experiments in Chapter 6, another style of the optimal
ruleset consisting of consistent, unsubsumable rules is discovered. This
new form of optimal rulesets are termed natural solutions, which also have
good interpretable patterns.

Furthermore, natural solutions can be employed to represent domains
that have an overlapping distribution and can be easily constructed by
LCSs’ employed search mechanism, i.e. Subsumption. Such a discovery
inspired the development of a new LCS that considers natural solutions as
the search objective. Furthermore, this novel LCS is designed to promote
Absumption, Subsumption, and informed mutation as the primary search

187
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strategies, rather than the standard evolution operators such as crossover,
mutation, roulette wheel selection, and tournament selection. Thus, this
novel LCS is termed Absumption and Subsumption based learning Clas-
sifier System (ASCS). This chapter introduces the ASCS. The conducted
experiments are to demonstrate that ASCS enables training efficiency and
easy patterns visualization.

7.1 Introduction

Previously, Butz et. al [18] defined the optimal ruleset [O] of LCSs and
demonstrates that the optimal results contain human-discernable patterns.
[O] sets are expected to completely, correctly represent an explored do-
main with a minimal number of non-overlapped rules. However, in the
past two decades, no LCS considers [O] sets explicitly as the final results.
The employed searching strategies should be responsible for this strategy.
Thus, a change to the traditional evolutionary operators, i.e. crossover,
mutation, Subsumption, roulette wheel deletion, and tournament selec-
tion is needed. When these operators work cooperatively, the only char-
acteristic of the evolved rules that can be guaranteed is that rules will
be highly generalized, but they cannot guarantee that the evolved rules
are non-overlapped [7]. In another word, standard LCSs naturally can-
not produce [O] sets for representing the majority of the commonly tested
domains.

Experiments shown in Chapter 5 and 6 have evidenced the existence of
another style of optimal rule sets that contain all the consistent, unsubsum-
able rules under the global search space, i.e. natural solution [63]. Natural
solutions also possess useful underlying patterns that can reflect the nature
of the explored domains. Meanwhile, unlike [O]s that can be multiple for
a single noiseless dataset, the relevant natural solution is deterministic and
unique. This indicates that, once a noiseless dataset’s natural solution is
identified, the underlying nature of the dataset can be visualized. Fur-
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thermore, constructing a natural solution is technically supported by one of
the LCSs’ fundamental searching mechanisms, i.e. Subsumption, which is
designed to assist LCSs to search for the maximally generalized rules.

LCSs have an over-general issue when attempting to explore domains
that have an overlapping distribution [1] [69], e.g. the Carry problems and
the Majority-On problems. This is because, LCSs employ crossover and
mutation as the primary search strategies, which results in the evolved
rules’ possible generalization levels being determined by P#

1. When P#

is inappropriately set with a high value, LCSs omit the important specific
rules and evolve over-general rules, resulting in a cover and delete cycle
[23]. Conversely, if P# is set too low to fit the target problem, LCSs lack
the motivation to discover the important general rules, leading to an in-
efficient exploration performance. Thus, an inappropriate P# setting can
result in a crossover and mutation based LCS producing a poor perfor-
mance model.

Absumption is a complementary mechanism to Subsumption (see Al-
gorithm 25 in Chapter 6). Absumption is designed to generate specific
rules by correcting over-general rules. When Absumption is activated as a
secondary search strategy, LCSs can overcome a domains’ over-general is-
sues. However, the processing of Absumption has previously been in the
same paradigm as mutation and crossover in evolving new specific rules,
which wastes computational resources. Furthermore, LCSs still fail in
overlapping domains when an LCS’ frequency of its rule discovery mech-
anism introducing new over-general rules surpasses the efficiency of Ab-
sumption identifying over-general rules, so that they can be removed. All
these circumstances lead to the necessity of designing a new LCS, which
can consistently evolve an optimal result is, simple to control, and effi-
ciently exploresthe domain.

The Absumption and Subsumption based Learning Classifier System
(ASCS) is proposed, which considers natural solutions as the search objec-

1 probability of generalizing attributes when covering
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tive. Furthermore, Subsumption, Absumption, and informed mutation are
promoted as the only search methods for discovering and removing rules.
ASCS replaces all the LCSs’ current obsolete training parameters (see Ta-
ble 7.1 and Table 7.2) with five new parameters that do not affect or restrict
the searchable generalization levels. Moreover, ASCS is designed to effi-
ciently and consistently produce models that contain human-discernable
patterns for noiseless domains.

Three artificial Boolean domains from 6-bits to 70-bits noiseless envi-
ronments are used as benchmarks. The proposed system addresses the 37
and 70-bits Multiplexer problems, showing whether the new search strate-
gies retain the ability to adapt to large scale Boolean domains. Successfully
visualizing patterns is demonstrated as in all the experienced domains, the
new system produced models that can be directly translated into graphs
that contain human-discernable patterns, especially on the 13-bits and 14-
bits Majority-On problems that respectively require 3432 and 6435 differ-
ent interacting co-operating rules in the optimum solution to be uniquely
identified to enable correct visualization.

7.2 Proposed Methods

Absumption and Subsumption Learning Classifier System (ASCS) is a rule-
based machine learning system with a generalization-level based architec-
ture for exploring noiseless domains (shown in Fig. 7.1). The primary
objective for ASCS is to search for rules that contain human-discernable
patterns from a given search space for an observable dataset. According
to previous experiments, [O] sets can possess such interpretable patterns.
However, [O] sets are difficult to be evolved by LCSs, and [O] sets fail
in representing domains with an overlapped distribution. Recent exper-
iments have demonstrated that the natural solution also contains human-
interpretable patterns, which coincides with the proposed system’s objec-
tive. Furthermore, the processing of producing natural solutions is sup-
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ported by an LCSs’ fundamental search mechanism, i.e. Subsumption that
assistant LCSs to search for the maximally generalized (unsubsumable)
rules. Hence, ASCS considers natural solution as the search objective. This
makes ASCS differ from previous LCSs, as ASCSs have a certain search-
ing objective rather than utilize alternative ruleset to represent an explored
domain.

Figure 7.1: The figure shows one epoch of ASCS for learning. A learn-
ing process of ASCS contains Epnum epochs. Each epoch runs the training
mechanism with review Tnum number of environmental instances and in-
vokes the compaction mechanism once. ASCS terminates this process after
all the predefined epochs.

The member rules of an natural solution are expected to be consistent
and unsubsumable under the global search space (see Section 3.2). Thus,
ASCSs consider these two characteristics as the most important condition
to determine the evolved rules that need to be kept. For efficient explo-
ration, ASCS manages rules in a class label and generalization based popu-
lation pool, so that when introducing new rules, the computation resource
that is spent on identifying whether a rule is redundant is reduced.

Furthermore, ASCSs altered the primary search techniques that leads
to ASCSs omit the unnecessary system complexity for evolving target rules.
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As optimal rules are expected to be located at different generalization lev-
els for the most domains, ASCSs introduce incremental learning to enable
the system to gradually identify the target solution for getting rid of the
negative effect of the good performing over-general rules. Thus, ASCSs
divide the learning process into a set of epochs, i.e. supervised batch learn-
ing. Each epoch executes certain iterations of the training mechanism for
exploration and then invokes the compaction mechanism to remove rules
that are either over-general or over-specific for maintaining the popula-
tions’ compactness. The learning process ceases once ASCS has completed
all the epochs. ASCSs introduce five new parameters in controlling the ex-
ploration phase and three new parameters for tracing each rules’ training
performance. However, ASCSs abandon all the obsolete training parame-
ters of XCS and UCS (show in Table 7.1 and Table 7.2) in order to deliver a
system that is easy to control.

7.2.1 Rules in ASCSs

An ASCS is supervised and multiple rules-based. A rule is the most ba-
sic unit for capturing the learned patterns from the environment. A rule
has an condition part for identifying the covered niches, an action part
for recoding the output action, and three parameters for tracing this rule’s
learning performance. ASCSs consider the ternary alphabet representa-
tion as the encoding format. For example, in Boolean domains, an encod-
ing considers all the attributes and is a string formed by {0,1,“#”}, where
“#” is the don’t care symbol that matches both 0 and 1. The compaction of
the encoding is feasible because the condition’s representation ensures the
formation of generalization, the rules whose condition has “#”, that can
match multiple instances. A rule’s action is one of the plausible actions in
the environment.

ASCSs are expected to identify consistent, unsubsumable rules. There-
fore, each rule in ASCSs has two parameters: the positive experience (Pe)
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and negative experience (Ne) that respectively record the number of times
that this rule advocates or opposites a matched instance, with initial values
as zero. Pe andNe can assess a rule’s consistency, effectiveness and distinc-
tiveness. Since any consistent rule’s product of Pe and Ne is expected to be
zero.

The Subsumption mechanism can determine a rule’s unsubsumable
characteristic. However, due to new rules being continuously introduced
during the evolutionary training process, and rules with different gener-
alization levels requiring a different number of experience to guarantee
this rule’s correctness. Thus, a constant experience threshold may fail
in identifying over-general rules that are highly generalized and possess
high prediction performance. These problematic rules have the potential
to incorrectly subsume specific optimal rules, which results in an incom-
plete ruleset. For the sake of ensuring each rule has been trained suffi-
ciently to avoid the issues caused by good performing over-general rules,
ASCSs assign each rule a Subsume state (Pstate) parameter. Pstate identifies
whether a rule is authorized to subsume other rules. The initial authority
of a rule’s Pstate is false, and this authority will be altered to true if the rule
compaction process preserves this rule at the end of an epoch.

7.2.2 Parameters for controlling ASCSs

LCSs have a number of parameters for guiding the system to construct a
representative model. These parameters are designed based on one of the
two primary objectives: either aiming to identify a newly created rule’s
generalization level, or aiming to support LCSs to determine whether a
rule should be preserved.

Finely tuning these parameters assists LCSs to adapt to various prob-
lem domains. However, setting these parameters with arbitrary values can
lead to LCSs to produce models that perform poorly. For example, XCSs
and UCSs employ the probability P# to identify the initial generalization
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Table 7.1: Training parameters setting table. Note, in LCSs, GA Threshold
θGA is the threshold for applying the GA application in an action set.

System Parameters for controlling system

XCS

Learning Rate, Exponent, GA Threshold,
Crossover Probability, Mutation Probability,
Covering Probability, Deletion Fitness,
Reduction Fitness, Tournament Ratio,
Fitness Fall Off Rate, Deletion Threshold,
Prediction Error Threshold,
Subsumption Threshold,
Population Size, Iteration;

UCS

Learning Rate, Exponent, GA threshold,
Crossover Probability, Mutation Probability,
Covering Probability, Deletion Fitness,
Reduction Fitness, Tournament Ratio,
Subsumption Threshold,
Population Size, Iteration;

ASCS
Epoch Number, Training Number,
Compacting Number, Maximum Rule Number,
Experience Discounting Ratio.
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Table 7.2: A rule’s parameters

System Parameters for Recording rule’s Performance

XCS

Prediction, Prediction Error,
Accuracy, Fitness, Numerosity,
Experience, Action Set Size,
Time Stamp;

UCS

Numerosity, Fitness, Accuracy,
Action Set Size, Deletion Vote,
Time Stamp GA, Match Count,
Correct Count;

ASCS
Positive Experience,
Negative Experience,
Subsumption State.

levels for rules produced by the covering process. Furthermore, when
crossover and mutation are considered as the primary searching strate-
gies, the consequence is P# can determine the searchable generalization
level range. Thus, an inappropriate setting in P# can result in the ma-
jority of the evolved rules possessing a generalization level that does not
fit the explored domain. The Subsumption threshold is an indispensable
parameter for identifying whether a rule has the ability to subsume other
rules. Mis-setting this parameter can lead to a model being overwhelmed
by over-general rules.

To avoid the issues caused by inappropriately setting parameters, ASCSs
deliver a simple control system that removes all LCSs’ obsolete training
parameters (show in Table 7.1 and Table 7.2). ASCSs automatically deter-
mine where a newly created rule’ generalization level is, and whether a
rule should be kept, rather than be intervened by thresholds that need to
be predefined. To enable automatic exploration, ASCSs split the whole ex-
ploring process into a set of epochs, so that ASCSs can adaptively adjust
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the evolving rules’ generalization to the most suitable levels for represent-
ing the target problem, epoch by epoch. The Epoch Number (EN ) defines
the number of epochs that need to be completed before the exploration
ceases.

An epoch has a training phase and a compacting phase. Each epoch
reviews an equal number of environmental instances and their relevant
actions, where these instances are split into two parts, i.e. for training and
compacting. Training Number (TN ) specifies the number of instances that
need to be received in the training process. Compacting Number (CN )
defines how many instances the compacting process reviews. ASCSs use
a combination of EN , TN , and CN together to define the total number of
iterations. This definition differs from other LCSs that use a single con-
stant number for setting the number of training/testing instances. This
change is necessary for ASCSs, as ASCSs exclude the identified redundant
generalization levels at the end of each epoch. Thus, ASCSs are able to
automatically narrow the search space. TN implies the number of rules
that will be evolved. Thus, when setting TN , it is necessary to consider
the number of member rules in the target optimal solution. CN relates to
the ASCSs’ capacity to distinguish over-general rules. Increasing CN is a
practicable strategy to aid ASCSs to address domains that have an over-
lapping distribution. Allowing adjusting the EN , TN , and CN permits the
ASCS to efficiently adapt to domains with different sizes of search space
and different data distributions.

An ASCS is a multiple populations based system and a population con-
tains multiple rules. Thus, ASCSs are at risk of being very slow if there
are too many candidate rules in the model when exploring. Thus, ASCSs
introduce Rule Maximal Number (RMN ) to identify a suggested maxi-
mum number of rules in the model. Different from other LCSs, ASCSs do
not accept duplicated rules, so ASCSs’ rules do not possess numerosity.
Thus, ASCS’s number of rules is equivalent to the number of the rules in
the model, rather than the sum of all the possessed rules’ numerosity. Be-
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sides, RMN offers a suggested number, rather than a number that strictly
restricts the maximum number of rules. This is because RMN only affects
the rule discovery mechanism but does not impact the covering process.
New rules still can be introduced through the covering process, even after
the limit of RMN has been exceeded. Meanwhile, RMN does not func-
tion as a trigger for invoking rule deletion, e.g. when a model’s actual rule
number exceeds the defined RMN .

ASCSs provide an experience discounting ratio (Drate) to specify a rate
for discounting all the preserved rule’s Pe and Ne at the end of each epoch.
Reducing preserved rules’ experience facilitates the processing of subsum-
ing early epoch produced over-specific rules by optimal rules detected in
a later epoch. Otherwise, these over-specific rules require a large number
of epochs to be removed.

7.2.3 Population Pool in ASCS

LCSs verify the redundancy of a newly created rule by comparing this
rules with all rules that exist in the population. However, this verifying
process only needs to consider rules that are more general or have the
same generalized as the new evolved rule, and any rule possesses a less
generalization level is irrelevant to the verification. Thus, it is hypoth-
esized that storing the evolved rules in a structure that is based on the
rules’ generalization level can avoid the unnecessary computation cost in-
curred the verification process. Hence, ASCSs introduce a new structure
for keeping rules, which is termed the population pool. This clusters rules
according to their advocated actions, possessed consistency tendency, and
located generalization level.

A population pool organizes rules in three stages. In the first stage,
ASCSs categorize rules into a set of groups [GA] according to their advo-
cated actions. This is because optimal rules that advocate the same action
have a similar pattern in constructing their encodings, i.e. specify a simi-
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Figure 7.2: ASCS’s population pool containing populations in the form of
[Action [Pp, Pn]...], Pp and Pn are respectively the positive and negative
population for rules that are completely correct and completely incorrect.
In the populations, rules are clustered according to the number of gener-
alized attributes.
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lar number of attributes or specify attributes with the same value. In the
second phase, in each [GA], ASCSs group rules into different populations
according to the rules’ consistency tendency. ASCSs consider two types of
consistency tendency, either positive or negative. Thus, each [GA] subor-
dinates two populations that are termed positive population [Pp] and the
negative population [Pn]. Rules that advocate all the covered instances’
actions are considered as completely correct rules 2; these rules have a
positive consistency tendency and will be stored in [Pp]. Oppositely, the
completely incorrect rules are assigned to [Pn]. This stage enables ASCSs
to support both the complete map and the best action map. When ASCS
accepts both [Pp] and [Pn], the produced models are complete maps, which
is the same as XCSs. Once an ASCS excludes the [Pn], the produced mod-
els are the best action maps , which are the same as the UCSs’ results.

In [Pp] and [Pn], the last stage clusters the rules based on the number
of generalized attributes in rules’ encodings. For example, an N -attributes
domain, a population contains N+1 clusters that are ranked from the most
specific cluster0 to the most general clusterN (shown in Fig. 7.2). This
stage not only reduces the computation costing for inserting new rules
but also facilitates the implementation of Absumption and Subsumption.
Besides, an additional benefit from this clustering architecture is to en-
able the ASCSs to exclude redundant search spaces as the exploration pro-
gresses. As each cluster represents a portion of the search space, when an
redundant search space is identified, ASCSs can deactivate these redun-
dant clusters when evolving new rules. As a result, ASCSs can narrow the
search space to the most reasonable range. To enable the capacity to con-
trol the search space, ASCSs assign each cluster a propertyAstate to identify
whether this cluster is available to explore for searching. Rule discovery
strategies, e.g. the covering and the informed mutation, are forbidden
to produce rules that belong to an unavailable cluster, but this restriction

2 In ASCSs, a completely correct rule’s Ne are expected to be zero, whereas a completely
incorrect rule’s Pe must be zero.
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Figure 7.3: ASCS’s training mechanism only considers the generalization-
level based methods as the search algorithms: Subsumption for remov-
ing over-specific, Absumption for exploring specific and removing over-
general, and an informed mutation for exploring general rules.

does not affect Absumption. The search ability of clusters is always avail-
able, except after compaction, when a cluster and its nearest more specific
cluster do not contain any rules.

7.2.4 Training Mechanism in ASCS

ASCS innovatively considers Absumption, Subsumption, and informed
mutation instead of crossover and mutation as the primary strategies for
the evolutionary process, i.e. covering process and rule discovery. The
main motivation for altering the search strategies is to produce natural so-
lutions as the final result. This enables ASCSs’ results to contain human-
discernable patterns, rather than merely possess accurate prediction per-
formance. Furthermore, for efficient removal of potentially irrelevant rules
or redundant rules, ASCS replaces the traditional roulette wheel deletion
as both Absumption and Subsumption to delete problematic rules (shown
in Figure 7.3).

ASCS is a supervised learner. In each learning iteration (shown in Al-
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Algorithm 27: Matching process in ASCSs

Data: Population Pool Ppool;
An environmental instance I ;
Result: Match Sets [Ms] (Each population has one [M ])

1 foreach GA ∈ Ppool do
2 [M]← empty set
3 foreach rule ∈ Pp do
4 if rule match I then
5 Add rule to [M]

6 end

7 end
8 foreach rule ∈ Pn do
9 if rule match I then

10 Add rule to [M]

11 end

12 end
13 Add [M] to [Ms]

14 end
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Algorithm 28: Covering & updating process in ASCSs

Data: Population Pool Ppool;
An environmental instance I ;
Match Sets [Ms] from Matching process;

1 foreach [M] ∈ [Ms] do
2 if [M] is empty then
3 find the corresponding GA in Ppool;
4 for Cluster ∈ Pp ∈ GA from most general to most specific do
5 if Cluster is available for search then
6 in this Cluster, create a rule covers I ;
7 break;

8 end

9 end
10 for Cluster ∈ Pn ∈ GA from most general to most specific do
11 if Cluster is available for search then
12 in this Cluster, create a rule covers I ;
13 break;

14 end

15 end

16 end
17 else
18 foreach rule ∈ [M] do
19 if rule advocate I’s action then
20 rule.Pe++
21 end
22 if rule opposite I’s action then
23 rule.Ne++
24 end

25 end

26 end

27 end
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gorithm 27), the learning mechanism begins with stochastically receiving
an instance I that follows the format of state : action. For each [GA], from
its [Pp] and [Pn], ASCS attempts to form a match set [M ] that is composed
of all rules that can match I’s state. Thus, the evolution of each [GA] is in-
dependent of others. For any [GA], if its [M ] does not contain any rule, the
covering method is invoked to create two new rules to match the I’s state
with the conditions that respectively belong to the most general available
cluster in [Pp] and [Pn]. To any [M ], which is not empty, ASCS updates
the matched rules’ EP and EN . Once a rule and the matched I advocate
the same action, EP increases by one. Otherwise, add one to EN (shown
in Algorithm 28).

Algorithm 29: categorize matched rules into Absumption set or
informed set

Data: Match Lists [Ms] from Matching process;
Result: an Absumption Set [AB];
an Informed Set [IN ];

1 foreach [M] ∈ [Ms] do
2 foreach rule ∈ [M] do
3 consistency = rule.Pe*rule.Ne;
4 if consistency != 0 then
5 Add rule to [AB]

6 end
7 else
8 Add rule to [IN ]

9 end

10 end

11 end

After updating the experience, the matched rules will be categorized
into either the Absumption set [AB] or the Informed set [IN ], respectively,
for the consistent rules and inconsistent rules (show in Algorithm 29). The
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consistency is assessed according to the product of a rule’s Pe and Ne, if
the product is not zero, then the rule is inconsistent, oppositely, the rule is
consistent.

Algorithm 30: Informed Mutation

Data: an Informed Set [IN ];
Result: a set for new generated rules [new];

1 Clustering rules ∈ [IN ] into a set of clusters (generalization level);
2 foreach cluster ∈ clusters do
3 if rules in Cluster has specified attributes then
4 Randomly select a rule;
5 Create a rule by randomly generalize a specified attribute;
6 Add the newly created rule to [new];

7 end

8 end

Rule Discovery is composed of Absumption mechanism and Informed
mutation. Absumption mechanism affects all the rules in [AB] that at-
tempt to evolve important specific rules by correcting the over-general
issues of these identified inconsistent rules. The implementation detail
of Absumption mechanism can be reviewed in Chapter 6. The informed
mutation attempt to improve the model’s generalization level by evolv-
ing higher generalized rules based on [IN ]. In ASCS, Informed mutation
begins with clustering all [IN ]’s rules according to the number of gener-
alized attributes, and then informed mutation randomly selects one rule
from each cluster. If the selected rule has specified attributes, the informed
mutation randomly chooses one of the specified attributes, which is then
substituted with the don’t care symbol to represent the chosen attribute.

After the rule discovery, ASCS verifies all the newly created rules’ re-
dundancy, i.e. whether the new rule exists in the population pool, or other
rules can subsume the new rule. In ASCSs, redundancy verification is
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Figure 7.4: ASCS’s compacting mechanism: functions are executed se-
quentially to maintain the compactness of the populations and adjust the
range of the possible search space.

simple. ASCSs check the cluster, where the new rule will be inserted, to
identify whether this rule exists. Then, ASCSs compares the new rules
with old rules in the same population that are located at higher general-
ized level clusters to identify whether the rule can be subsumed. In ASCSs,
old rules that can subsume new rules need to simultaneously satisfy three
pre-conditions: an old rule can completely cover a new rule’s represented
niches, the two rules advocate the same action, and the old rule’s Pstate is
true. ASCS removes all the identified redundant new rules.

At the end of each iteration, ASCSs insert all the remaining new rules
into the population pool. Meanwhile, Absumption removes all the rules in
[AB] from the population pool. Note, Absumption is the only mechanism
that has the authority to remove existing rules in ASCSs during evolution.
Compacting during training also removes unnecessary rules.

7.2.5 Compacting Mechanism in ASCS

The compaction mechanism (shown in Fig. 7.4) is designed to maintain the
compactness of the populations by eliminating problematic rules that are
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either over-general or over-specific. At the beginning of the compaction,
a set of environmental instances is reviewed to ascertain potential over-
general rules. This process also ensures that all the current rules have been
trained appropriately. Then, inconsistent remover and error remover act to
remove over-general rules. Inconsistent remover utilizes the same strategy
as Absumption to identify over-general rules. Whereas, for each [GA],
Error remover ascertains the remaining over-general rules by comparing
rules in [Pp] with rules in [Pn] (shown in algorithm 31).

Algorithm 31: Error Remover for a Positive Population

Input: all rules in a positive population Ppos;
all rules in a negative population Pneg;
Output: a sub-set rules for removal task Srem

1 Srem← an empty list;
2 foreach R ∈ Ppos do
3 RError ← 0;
4 foreach R′ ∈ Pneg do
5 if R and R′ have overlapping in condition then
6 RError+=R′.EN

7 end
8 if RError R.EP then
9 Srem append R;

10 break;

11 end

12 end

13 end

Subsumption is responsible for removing over-specific rules by delet-
ing any subsumable rules from the populations. After removing problem-
atic rules, ASCS discounts all remaining rules’ Pe and Ne by the Drate rate
so that over-specific rules evolved during early epochs can be properly



7.3. RESULTS 207

subsumed in future epochs. Finally, ASCS applies the search space control
strategy for adjusting the available range of the search space to the most
reasonable area for the next epoch.

7.2.6 Prediction in ASCS

The use of typical least mean squares (Widrow-Hoff) learning rule is also
omitted with ASCS. Given an instance, ASCS makes a “best guess” pre-
diction of the “weight” to be expected for each possible class label. ASCS
creates a Weight List WL for storing all the weights. The weight for a class
label is experience-based that is equivalent to the summation of EP of all
matched advocated rules in Pp minus the summation of EN of all matched
opponent rules in Pn. Two summations are considered since Pp records
the knowledge of which is an instance’s expected class label, whereas Pn

shows which class label is unexpected.

7.3 Results

The difference in training performance among UCS, XCS, and ASCS is
shown in Fig. 7.5. UCSs utilize rules’ accuracy to guide the searching
process. When the Subsumption mechanism for the action set is inac-
tive, UCSs are prone to keep all the evolved completely correct rules. This
searching preference enables UCSs to produce an accurate model, quickly.
However, the UCSs’ models include a large number of rules, where most
of them are irrelevant for producing informative patterns (shown in Table
7.3 and Table 7.4, UCSs’ models have proper performance in prediction
but contain very few patterns).

When the crossover algorithm serves as the primary evolutionary method,
the newly evolved rules’ available generalization is limited by the initial
generalization of rules, which are introduced by covering. In other words,
P# determines the generalization of the newly evolved rules. Hence, it
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Table 7.3: A - training accuracy, T - time when the system first reaches
100%. If a system cannot produce a fully representative model, T will be
marked as−−. Symbols as s, m, h, and d denote the second, minute, hour,
and day, respectively. ASCS completely addresses all the tested domains
as it can adapt to domains that need specific rules or have an over-lapping
issue.

Problem
XCS UCS ASCS

T A T A T A
6 MUX 1m 100% 5s 100% 2s 100%
11 MUX 9m 100% 1.2m 100% 27s 100%
20 MUX 1.6h 100% 3.5m 100% 56s 100%
37 MUX 1.2d 100% 1.5h 100% 47m 100%
70 MUX 5d 100% 3d 100% 13h 100%
6 CAR 2.3m 100% 5s 100% 1s 100%
8 CAR 9.7m 100% 33s 100% 25s 100%
10 CAR 3h 100% 18m 100% 47s 100%
12 CAR −− 99.6% 3.9h 100% 34m 100%
14 CAR −− 99.18% −− 99.6% 2h 100%
8 MAJ 74m 100% 11s 100% 4s 100%
11 MAJ −− 98.7% 7.4m 100% 22m 100%
12 MAJ −− 97.36% −− 98% 42m 100%
13 MAJ −− 95.6% 27m 100% 3h 100%
14 MAJ −− 95.3% −− 97% 12h 100%
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Table 7.4: Models’ capacity for producing patterns: the number of rules
in [O] for Multiplexer problems, and in natural solutions for Carry and
Majority-On problems shown in brackets. The rule numbers in brackets
are for best action maps (UCS). The numbers should be double in the
case of complete maps (XCS, ASCS). N is the number of rules in a sin-
gle model, and P is the percentage of a single model capturing important
rules. A model can produce a correct visualization result only if its P is
100%. ASCS is the only system that can precisely evolve all the important
rules for patterns in a single model.

Problem
XCS UCS ASCS

N P N P N P
6 MUX (8) 117 100% 1269 100% 32 100%
11 MUX (16) 1243 100% 2744 100% 108 100%
20 MUX (32) 4085 100% 6786 99% 320 100%
37 MUX (64) 5194 100% 7174 71% 768 100%
70 MUX (128) 13448 70% 30857 30% 1726 100%
6 CAR (18) 192 100% 780 100% 36 100%
8 CAR (38) 607 100% 3796 100% 76 100%
10 CAR (78) 836 98.5% 4954 56.2% 156 100%
12 CAR (158) 1716 64.8% 6978 26.3% 316 100%
14 CAR (318) 2339 22% 8978 14.9% 636 100%
8 MAJ (126) 978 99.2% 2599 88% 252 100%
11 MAJ (924) 3097 42% 6490 55% 1848 100%
12 MAJ (1716) 6778 38% 8490 17% 3432 100%
13 MAJ (3432) 8503 7.7% 8739 7% 6864 100%
14 MAJ (6435) 9114 1.2% 10747 3.6% 12870 100%
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Figure 7.5: A training performance comparison graphs among XCS, UCS
and ASCS. The green star and the blue triangle stand for UCS and XCS,
respectively. The black cross and the red rhombus record the number of
rules an ASCS possesses before compaction and after ASCS compaction.
Vertical bars mark when the training performance first reaches 100% accu-
racy.
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Figure 7.6: Patterns for action 1, and action 0 are colored with blue and
green, respectively. X is the attribute ID, Y is the cluster ID that ranks by
the number of generalized bits, Z represents the average value of speci-
fied attributes. From top to bottom rows are the results from XCS, UCS,
and ASCS. The 10-bits Carry’s models that respectively before and after
compacted by quick rule compaction (QRC) are visualized. This shows
ASCS’s models can be visualized without being processed by additional
compaction algorithms.
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Figure 7.7: Patterns for action 1, and action 0 are colored with blue and
green, respectively. X is the attribute ID, Y is the cluster ID that ranks by
the number of generalized bits, Z represents the average value of specified
attributes. From top to bottom rows are the results from XCS, UCS, and
ASCS. The graphs reflect the visualizations for 12-bits and 14-bits Carry
problems. This shows ASCS has an advantage in producing graphs that
contain human-discernable patterns over XCSs and UCSs in complex do-
mains. Besides, results show patterns for the same domains will be con-
sistent regardless of the change of scales.
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is practicable for crossover-based LCSs to address complex domains once
the solution rules’ generalization is known, e.g. UCSs and XCSs can ad-
dress the 70-bits Multiplexer by carefully tuning the P#. However, due
to the limitation of crossover, it is difficult for UCS to fully address do-
mains that need a set of complementary rules across many different gen-
eralization levels. For example, UCS fails on the 14-bits Carry problem,
which requires rules across seven different generalization levels to con-
struct a fully representative model. Besides, due to the employed error
threshold ε0

3, Subsumption does not consider the relationship between
an individual rule’s generalization and its experience, so good perform-
ing over-general rules risk being incorrectly considered as a Subsumption
candidate. Hence, UCS cannot address situations in the Majority-On prob-
lems, that have a severe over-general issue, e.g. 12-bits and 14-bits.

XCSs tend to evolve and preserve the most general rules, which results
in XCSs’ models being more compact and containing more patterns than
UCSs. However, the priority of considering rules’ generalization leads
XCSs to need more iterations to achieve a satisfactory prediction perfor-
mance than the other two systems. Besides, XCSs frequently omit impor-
tant specific rules. As a result, XCSs fail in completely address any Carry
problem that is larger than 10-bits. Similar to UCSs, XCSs have issues in
identifying high-accuracy over-general rules. Hence, XCSs do not work
properly for the Majority-On domains.

ASCSs seek the completely correct unsubsumable rules. During the
training process, only the inconsistent rules are removed by Absumption.
An inconsistent rule must be an over-general rule, which is poor to de-
scribe the problem domain. Thus, ASCSs ensure that important rules will
not be incorrectly removed before they have been trained sufficiently. As a
result, ASCSs are the only system that produce models that not only reach
the maximum accuracy but also contain full patterns for all the tested do-
mains.

3 ε0 is the error threshold under which the accuracy of a classifier is set to one.
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Previously, in crossover based LCSs, the rules’ searchable generaliza-
tions are determined by P#. When the P# is set lower than the optimal
value, LCSs’ models will be flooded with redundant specific rules, and
lose the motivation to search for rules that are more general. Oppositely,
when P# is unnecessarily high, over-general rules are continuously intro-
duced to models, then LCSs omit the important specific rules. As ASCS
can search the whole search space, it can completely address problems
that need rules that are located at different generalization levels, e.g. the
Carry problems. However, a too large search space brings an issue that
ASCS cannot converge in a small number of iterations, e.g. in the 37-bits
Multiplexer problem, where although ASCS’s model achieves satisfactory
performance in both prediction and discovery of patterns, the model con-
tains many redundant rules. In the 70-bits Multiplexer problem, due to
the huge search space, similar to UCSs and XCSs, ASCSs need to limit the
available generalization level to 60 and 68 4 to grant ASCS the capability
to address this problem in an efficient manner, (ASCS spends 13 hours for
achieving the maximal accuracy, whereas XCS and UCS need 5 days and
3 days, respectively).

7.3.1 Pattern Visualization

Producing a correct visualization for an explored domain is difficult, as
this requires a model to contain all the member rules of a natural solution
or an [O] and also remove all the redundant/irrelevant rules. Previously,
it was practicable to achieve correct visualizations by compacting multiple
XCSs’ or UCSs’ models. However, such a process of compacting consumes
a lot of computing resources, e.g. around 50 UCSs’ models that have been
trained for 4 million iterations are required to collect all the 1716 different
interacting rules for producing the correct graph for the 11-bits Majority-

4 The available generalization level is set as 60 to 68 that aims to imitate the UCS and XCS’s
assigned value of P# for the 70-bits Multiplexer problem.



7.4. CONCLUSIONS ON ASCS 215

On problem. Now, ASCS can produce the same graph within 260 thou-
sand iterations in a single run. Due to ASCS’s high-efficiency in searching
for natural solutions, it is plausible to visualize the patterns for more com-
plex domains, which have not been done previously. For example, the
13-bits, the 14-bits Majority-On problems respectively require 3432, and
6435 different interacting co-operating rules (note, these rules are not lin-
early separable), and 14-bits Carry problem that expects 158 rules, which
are located at seven different generalization levels (shown in Figure 7.6
and Figure 7.7).

7.4 Conclusions on ASCS

ASCS replaces the traditional crossover and mutation operators in LCSs
with the Subsumption and Absumption mechanisms as the primary search
methods for the evolutionary process. ASCSs preserve the correct unsub-
sumable & unabsumable rules, rather than UCSs which protect all the
fully correct rules, and XCSs pursue the most generalized rules. ASCS
retains previous LCSs’ capacity to adapt to large complexity domains, e.g.
addressing the 37-bits and 70-bits Multiplexer problems. This supports
Butz’s conclusions regarding the crossover operator having a minor influ-
ence on niche support, and once the most generalized rules are found that,
the mutation operator is disruptive.

Furthermore, ASCS achieves fully representative models for the 13-
bits, 14-bits Majority-On, and the 14-bits Carry problems, which over-
comes XCSs’ and UCSs’ drawbacks in exploring domains that require spe-
cific rules and have an overlapping distribution. This can be ascribed to
ASCSs’ quick response to remove identified over-general rules, and ASCSs
only being allowed to remove identified over-general rules in training
mechanism. Such strategies reduce the over-general rules’ negative influ-
ence in omitting important specific rules in GA Subsumption. Hence, the
essential specific rules can be evolved and kept. Furthermore, since ASCSs
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consider the natural solutions as the search objective, the produced mod-
els of ASCSs can be directly transformed into human-discernable graphs
without any additional compaction procedures.



Chapter 8

Conclusions

The theme of this work is that considering multiple, instead of a single,
populations enables Learning Classifier Systems to produce natural solu-
tions, overcome overlapping niche issues and clearly visualize the under-
lying patterns in complex domains.

LCSs produced optimal solutions are expected to contain informative
patterns that can reflect the ground truth of the explored problems. How-
ever, previously the community fails in finding LCSs defined optimal so-
lutions (i.e. [O]) in many LCS addressed domains. This leads to a need to
find a new style of LCS’s optimal solution that can be adapted to all LCS
addressed problems.

This thesis proposed natural solution that complement the hypothe-
sis of the optimal solutions of LCSs, i.e. [O]. Natural solution expects
member rules that are consistent and subsumable under the global search
space. This differs from the [O], which requires member rules are none-
overlapped. Experiments in Section 3.4.5 first time demonstrated that
a natural solution can consistently represent overlapping problems with
100% accuracy, which [O]s used to fail. Thus, natural solution contributes to
support that LCSs can technically produce models that can fully represent
overlapping domains.

An LCS optimal solution can contain thousands of different interact-
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ing rules, which makes it impracticable to understand patterns by directly
reading rules. This raises the requirement for developing visualization
techniques that can precisely describe this underlying patterns in an LCSs’
optimal solution.

Three visualization techniques, i.e. Feature Importance Map (FIM),
Action-based Feature Importance Map (AFIM), and Action-based average
Feature Value Map (AFVM) are proposed. FIM is easy to understand pat-
terns, it can be employed to trace how LCSs develop patterns during the
exploration phase. AFIM presents how each attribute determines the out-
put actions. AFVM answers why a model makes a certain decision.

These visualization techniques utilize rules’ generalization level to clus-
ter rules for category rules that may carry a common pattern. This differs
from previous visualization algorithms, which utilize Hamming distance
to cluster rules. For the first time, the patterns captured by an LCSs’ opti-
mal solutions for Boolean domains are precisely described and the process
of how LCSs develop patterns are visualized (see experiments in Section
3.4). Thus, the proposed visualization techniques contribute to improving
the understanding of both LCSs produced models and LCSs themselves.

Due to the stochastic nature of the employed EC operators, LCSs un-
avoidably produce models that contain over-general rules and over-specific
rules. These problematic rules may obscure important patterns. Thus, the
LCSs field needs rule compaction algorithms that can consistently produce
optimal solutions.

Four rule compaction algorithms are proposed, i.e. Razor Cluster Ra-
zor (RCR), Razor CLuster Razor 2 (RCR2), Razor Cluster Razor 3 (RCR3),
and Razor Cluster Razor Real (RCR-real). RCR, RCR2, and RCR3 are
Boolean domain orientated specifically for models that employ ternary
representation format, whereas RCR-real is designed for real-value prob-
lems that have been addressed by upper and lower boundary represen-
tation based LCSs. RCR has the priority to produce [O] sets, and RCR2,
RCR3, and RCR-real aim to produce natural solutions. Different from RCR2
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and RCR-real, RCR3 can adapt to domains that have a serve over-general
issue.

The proposed RCRs consider multiple LCSs produced models for the
same problem as the source for compacting. This differs from classic com-
paction algorithms, which act on a single model. Furthermore, RCRs pri-
marily considers selecting rules based on rules’ consistency and unsub-
sumable characteristic under the global search space. As a comparison,
previous compaction algorithms select rules based on a rule’s contribution
to either maintaining original models’ capacity in prediction performance
or representing the training set.

The innovation regarding the rule selection strategies results in RCRs
to be the first algorithm that can consistently identify optimal solutions
from LCSs addressed domains (see the experiments in Sections 4.4 and
5.4.2). Thus, RCRs contribute to improving the quality of LCSs produced
models.

LCSs did not consistently produce optimal solutions for domains that
contain overlapping niches. However, the majority of real-valued prob-
lems have overlapping niches. Thus, LCSs needed to be improved to
adapt to overlapping domains. Hence, an LCS with layered learning archi-
tecture is proposed, i.e. Hierarchical Learning Classifier System (HLCS).
HLCS is a Pittsburgh-style LCS, which considers a Michigan-style LCS
as an individual. This differs from classical Pittsburgh-style LCSs, which
consider a population as an individual. HLCS shows the ability to pro-
duce models that can 100% correctly represent arbitrary datasets (see ex-
periments in Section 5.4). This contributes to extending LCSs’ adaption to
real-valued domains.

An LCS’s search operator is proposed, i.e. Absumption. Absump-
tion counters the over-general issue by creating new rules by correcting
over-general rules and removing identified over-general rules immedi-
ately. This differs from specify operator, which utilizes over-general rules to
produce specific rules randomly and reduce over-general rules’ numeros-
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ity. Experiments demonstrated that with Absumption, for the first time,
a single LCS can produce the natural solution for overlapping domains
(see Section 6.5.3). Thus, Absumption contributes to overcoming the over-
general issue.

Absumption and Subsumption based Learning Classifier System (ASCS)
is created. ASCS promotes the Absumption, Subsumption, and informed
mutation as the primary search strategies, but removes the traditional evo-
lutionary computation algorithms, i.e. crossover, mutation, roulette wheel
deletion, and tournament selection, which differs from standard LCSs. For
the first time, ASCS successfully produced [O] for 70-bits Multiplexer and
detected the natural solution for the 14-bits Majority-On problem, which is
composed of 12870 cooperative rules (see Section 7.3 ). ASCS contributes
to enabling LCSs to address overlapping domains efficiently and allowing
easy visualization.

8.1 Major Contributions

This thesis makes the following major contributions.

1 In Chapter 3, this thesis proposes natural solution, which describes a
format of LCSs’ optimal solution. A natural solution consists of all the
consistent and maximally generalized rules under the global search
space. Natural solution complement the [O] hypothesis by allowing
overlapped rules to be member rules of an optimal solution. Nat-
ural solution is the first LCS’s optimal solution format that can be
produced by LCSs to represent overlapping domains correctly and
completely. In addition a natural solution contains interpretable pat-
terns.

Part of this contribution has been submitted in:

Yi Liu, Will, N. Browne and Bing Xue. “Rule Compaction Algo-
rithms for Learning Classifier Systems”. Transactions on Evolution-
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ary Learning and Optimization 2020.

2 In Chapter 3, this thesis proposes three visualization techniques, i.e.
Feature Important Map (FIM), Action-based Feature Importance Map
(AFIM), and Action-based average Value Map (AFVM). FIM, AFIM
and AFVM respectively aim to trace how patterns are constructed,
reveal how features have interacted, and explain the cause of a model’s
decisions. For the first time, underlying patterns in an LCS’s opti-
mal solution can be precisely visualized. The proposed visualiza-
tion techniques improve the understanding level of LCS’s produced
models and LCS themselves.

Part of this contribution has been published in:

Yi Liu, Will, N. Browne and Bing Xue. “Visualizations for Rule-Based
Machine Learning”. Natural Computing 2020.

3 In Chapter 4, this thesis proposes three rule compaction algorithms
that are orientated to ternary representation based LCSs, Razor Clus-
ter Razor (RCR), Razor Cluster Razor 2 (RCR2), and Razor Cluster
Razor 3 (RCR3). These algorithms innovatively handle the com-
paction based on multiple LCS produced models, rather than apply-
ing the compaction to a single model like other standard compaction
algorithms. RCR, RCR2, and RCR3 respectively aim to produce [O],
natural solution from well-trained models, and natural solution from
insufficiently trained models. For the first time, the proposed com-
paction algorithms ensure LCS’s optimal solutions can be produced
consistently and efficiently.

Part of this contribution has been submitted in:

Yi Liu, Will, N. Browne and Bing Xue. “Rule Compaction Algo-
rithms for Learning Classifier Systems”. Transactions on Evolution-
ary Learning and Optimization 2020.

Part of this contribution has been published in:
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Yi Liu, Will, N. Browne and Bing Xue. “Visualisation and optimi-
sation of learning classifier systems for multiple domain learning”.
Asia-Pacific Conference on Simulated Evolution and Learning. Springer,
2017. pp. 448-461.

Yi Liu, Will, N. Browne and Bing Xue. “Adapting bagging and boost-
ing to learning classifier systems”. International Conference on the
Applications of Evolutionary Computation. Springer, 2018. pp. 405-
420.

4 In Chapter 5, this thesis proposes Razor Cluster Razor Real (RCR-
real), which is a rule compaction algorithm that applies to the up-
per and lower boundary representation based LCSs to produce nat-
ural solution. RCR-real can adapt to real-valued problems that have
continuous-valued features. For the first time, optimal solutions of
LCSs that addressed real-valued problems can be produced.

Part of this contribution has been published in:

Yi Liu, Will, N. Browne and Bing Xue. “Hierarchical Learning Clas-
sifier Systems for Polymorphism in Heterogeneous Niches”. Aus-
tralasian Joint Conference on Artificial Intelligence. Springer, 2018.
pp. 397-409.

5 In Chapter 5, this thesis proposes the Hierarchical Learning Classi-
fier System (HLCS), which introduces incremental learning and en-
semble learning to a Pittsburgh-style LCS and considers a Michigan-
style LCSs as an individual rather than a ruleset. HLCS is the first
LCS that can produce models that can completely and correctly rep-
resent arbitrary overlapping datasets with continuous-valued fea-
tures. In addition, HLCS can precisely visualize the underlying pat-
terns of the produced models.

Part of this contribution has been published in:



8.1. MAJOR CONTRIBUTIONS 223

Yi Liu, Will, N. Browne and Bing Xue. “Hierarchical Learning Clas-
sifier Systems for Polymorphism in Heterogeneous Niches”. Aus-
tralasian Joint Conference on Artificial Intelligence. Springer, 2018.
pp. 397-409.

6 In Chapter 6, this thesis proposes a new search operator termed as
informed mutation that aims to search for maximally generalized rules
by correcting over-general rules. Then, based on informed mutation, a
new mechanism named Absumption is proposed to enable the LCSs
to produce a single model that contains all the member rules of a nat-
ural solution. Absumption successfully improves the training per-
formance of XCSs by counteracting over-general rules. Moreover,
Absumption enables the produced rule-set to be compacted, such
that underlying patterns can be visualized precisely. Furthermore,
because Absumption assists XCSs to address the complex overlap-
ping domains, the optimal rules’ distribution is identified so that the
formulations for calculating the number of optimal rules for the Mul-
tiplexer, Majority-On, and Carry problems can be identified.

Part of this contribution has been published in:

Yi Liu, Will, N. Browne and Bing Xue. “Absumption to complement
subsumption in learning classifier systems”. Proceedings of the Ge-
netic and Evolutionary Computation Conference. 2019. pp. 410-418.

7 In Chapter 7, this thesis proposes a new type of LCS that considers
natural solutions as the search objective, i.e. absumption and sub-
sumption based learning classifier system (ASCS). ASCS promotes
the absumption, subsumption, and informed mutation as the pri-
mary search strategies and removes other obsolete evolutionary search
algorithms, i.e. crossover, mutation, roulette wheel deletion, and
tournament selection. ASCS enables training efficiency and easy pat-
terns visualization for complex Boolean domains that have an over-
lapping distribution. For the first time, the 14-bits Majority-On prob-
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lem is addressed, with 6435 different interacting co-operating rules
in the optimum solution to be uniquely identified to enable correct
visualization.

Part of this contribution has been published in:

Yi Liu, Will, N. Browne and Bing Xue. “Absumption and subsump-
tion based learning classifier systems”. Proceedings of the Genetic
and Evolutionary Computation Conference. 2020. pp. 368-376.

8.2 Main Conclusions

This thesis finds that LCS can produce optimal solutions for clean datasets,
which have overlapping distribution characteristic. Furthermore, the gen-
erated optimal solutions contain visible patterns that can reflect the ground
truth of the explored datasets.

This section discusses the main conclusions for the five research objec-
tives drawn from the five contribution chapters, i.e. Chapter 3 to Chapter
7.

8.2.1 Patterns Visualization

Chapter 3 proposed the natural solution hypothesis and three visualiza-
tion techniques that allowing translating LCSs detected patterns to visible
graphs.

It is found that technically LCSs can produce a natural solution format
solution for an arbitrary clean dataset.

A natural solution naturally captures the patterns that reflect the ground
truth of the problem domains, e.g. data distribution and attributes impor-
tance.

A natural solution consists of all the unsubduable correct rules from the
global search space. One limitation of the natural solution is that collecting
all the member rules is difficult when the target dataset has a huge global
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search space. For example, a clean dataset contains a large number of
unduplicated instances.

Results demonstrates that utilizing generalization-based clustering can
efficiently cluster rules that have the same strategies for classifying the
covered instances. Visualizing the specification ratio of the clustered rules
can highlight the difference of each attribute’s importance. Then, the un-
derlying ground truth such as data distribution, attribute association, and
irrelevant attributes become apparent in the present graph. Such graphs
can improve the understanding of LCSs’ produced solution and LCSs them-
selves. This is because the visualization technique can present the most
important information in a simple graph for models, which contain thou-
sands of different rules, and can track how LCSs form the patterns through
the learning process.

There does not exist a standard visualization regulation, which nor-
malizes the format of representing patterns with graphs. Thus, readers
may fail to understand the presented patterns. Hence, the quality of the
produced visualizations depends on subjective rather than objective. This
results in a limitation of the proposed visualization technique, i.e., the gen-
erated visualization results require the readers to have pre-knowledge of
the explored problem to ensure the graphs captured patterns to be under-
stood appropriately.

8.2.2 Rule Compaction for Boolean Problems

Chapter 4 proposed RCR and RCR2 that respectively search [O] and natu-
ral solution from multiple LCS produced solutions for the same problem.
Furthermore, a modified version of RCR2 is also proposed, i.e. RCR3, that
specialized for adapting to models that have not been trained sufficiently,
e.g. models that have low training accuracy.

It is found that although LCS can fully represent the same dataset with
alternative rulesets, these different rulesets contain common rules, which
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are the member rules of the natural solution for the target dataset. Thus,
it is practicable to form the target dataset’s natural solution by collecting
rules from multiple LCS produced models for the same dataset.

The conducted experiments demonstrate that LCSs can only adapt to
high dimensional problems, which can be represented by an [O]. It is evi-
denced that not all domains can be represented by an [O], but all the tested
problems have a corresponding natural solution. Meanwhile, for the same
dataset, there may exist alternative [O]s, but the natural solution is deter-
minate and unique. Furthermore, if a domain has a [O], then the [O] is
always a subset of the domain’s natural solution.

Results show that the proposed RCRs fails to form an [O] or natural so-
lutions when the problem domain has an overlapping distribution. This is
because such domains contain good-performing over general rules, which
hampers LCS from preserving correct maximally generalized rules, which
are the member rules of natural solutions or [O]s.

8.2.3 Rule Compaction Algorithms for Real-Value Attribute

Domains

Chapter 5 extend the RCR2 for adapting to the real-value attribute prob-
lems, i.e. the RCR-Real. Meanwhile, HLCS is proposed to produce natural
solutions by exploring clean real-value attribute datasets. HLCS is based
on Pittsburgh-style architecture, consider an XCS as an individual, and
invokes RCR-Real during the training process rather than after training.

The thesis finds that the natural solution hypothesis also suits the clean
real-value attribute problems as RCR-Real successfully producing the nat-
ural solution for all the tested UCI problems. HLCS successfully addressed
tested overlapping domains, which supports the hypothesis that LCS can
overcome overlapping domains with evolved models that reach 100% train-
ing accuracy. Results also show that invoking the compaction process in
the training process can relieve the issue of good performing rules replace
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the optimal rules.
A limitation of HLCS is that this system is inefficient. This is because

HLCS increase the number of the involved XCSs to counteract the negative
influence of good performing over general rules. Such a strategy can be
inefficient when the target domain has a serious overlapping issue.

8.2.4 Absumption for Overlapping Domain

This thesis proposed a new search operator, i.e. informed mutation that
aims to identify and remove over-general rules efficiently. Based on the
informed mutation, Chapter 6 proposed the Absumption to assist LCS to
address overlapping domains.

It is found that immediately remove the identified over-general rules
can efficiently prevent LCS from replacing the optimal rules with good
performing over-general rules. Furthermore, creating rules by specifying
over-general rules can improve training efficiency. The results show that
LCS can produce a natural solution for overlapping domains in a single
model when the invoked Absumption can overcome the problem’s over-
lapping issue.

One limitation of the proposed informed mutation and Absumption is
that they cannot adapt to the noise domains. Furthermore, absumption
fails when the target problem has a severe good performing issue, e.g.,
problems that naturally contain over-general rules, in which training ac-
curacy is higher than 99%.

8.2.5 ASCS for Efficient Learning

This thesis proposed a new version of LCSs for efficiently producing nat-
ural solutions for clean datasets, i.e. the ASCS. Chapter 6 proposes ASCS,
which promotes Absumption and Subsumption as the main search strate-
gies. Meanwhile, ASCS removes the crossover, mutation and route wheel
selection.
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Results show that replaces the crossover and mutation with informed
mutation and absumption can improve LCSs’ efficiency in producing nat-
ural solutions. Furthermore, it is found that when changing LCSs’ search
strategies from stochastic to deterministic, LCSs can address the overlap-
ping domains.

A limitation of ASCS is that this system cannot adapt to noise dataset.
This is because a natural solution does not exist in noise datasets. Another
limitation is that for complex problems, i.e. 70-bits Multiplexer problem,
ASCS requires manually tune the training parameters.

8.3 Future Work

This section highlights key areas of future work.

8.3.1 Pattern Visualization on Code Fragment based LCSs

This thesis focuses mainly on visualizing patterns from LCS’s models that
employ representation formats, that are analogous to the Genetic Algo-
rithms’ linear binary representations, e.g. the ternary representation and
the upper and lower boundary representation. This thesis has shown it
is possible to visualize patterns from LCS’s optimal solutions. The visual-
ized patterns can reveal the ground truth of LCSs explored domains, e.g.
feature interacting, redundant features, and class distribution. In practice,
LCSs support Genetic Programming’s tree-like representations, e.g. code
fragment. In future, it will be interesting to investigate how to visualize
patterns from code fragment based models.
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8.3.2 Identify the Optimal Solution for Code Fragment based

LCSs

This thesis proposed the natural solution, which is the first optimal solu-
tion format that can be produced by ternary representation based LCSs
with the capacity of representing an overlapping domain completely and
correctly. The natural solution has shown that contain patterns that can be
translated into human-discernable graphs. Furthermore, natural solution
has been extended to adapt to the upper and lower boundary represen-
tation based LCSs. In future, it is interesting to investigate whether code
fragment based LCSs can produce a natural solution to represent an ex-
plored domain.

8.3.3 Adapting Deductive Learning to LCSs

Two very distinct and opposing learning approaches are deductive and
inductive learning. Both approaches can offer certain advantages, but
the biggest difference is the process of training. In deductive learning,
a model is formed in a top-down way (generate knowledge based on an
assumed truth). This approach is very solution-centred. Conversely, in-
ductive learning is a much more data-centred approach, where learning is
implemented in a bottom-up manner (search the truth based on the knowl-
edge).

LCSs are inductive learning system, i.e. generate knowledge by explor-
ing datasets. This thesis proposed methods, that can extract knowledge
from LCSs’ optimal solutions. The conducted experiments have shown
that different GA-based representation formats can reveal different ground
truths of an explored domain. For example, the ternary representation ex-
cels in showing feature interaction, redundant features, and class distribu-
tion. As a comparison, the upper and lower boundary provides a grained
level feature ranking result. Thus, it is assumed that intelligent models
can be produced by using tree-like representations to evolve functional
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program based on exploring the discovered truth, which have been pro-
duced by GA based LCSs, e.g. introducing deductive learning to LCSs.
In future, it is interesting to develop LCSs that allow deductive learning
to produce smart models, e.g. a model can represent a Boolean domain
regardless of the number of attributes.
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