
Collapse in a Transfinite

Hierarchy of Turing

Degrees

by

Ellen Hammatt

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Master of Science

in Mathematics.

Victoria University of Wellington

2021

Abstract

In [2], Downey and Greenberg use the ordinals below ε0 to bound the num-

ber of mind-changes of computable approximations of ∆0
2 functions. This

gives rise to a new transfinite hierarchy in the c.e. degrees; the totally α-c.a.

degrees. This hierarchy is significant because it unifies the combinatorics of

many constructions as well as giving natural definability results in the c.e.

Turing degrees. We study the structure of this hierarchy; in particular we

investigate collapse in upper cones. We give a proof in which we build a c.e.

set using a strategy tree to show there is no uniform way to find a maximal

totally ω2-c.a. degree above a given totally ω-c.a. degree. Then we discuss

extensions of this result.

ii

Acknowledgments

First I would like to thank my supervisors, Noam and Rod, for their excellent

guidance and advice, with a particular thanks to Noam for his continuous

support in my times of stress.

Thank you to my fellow students: Malcolm for his help with TikZ and

Linus for all his words of encouragement and advice.

I would also like to thank my parents and my brother for their support

throughout my studies. Along with a special mention to my father for his

help with proofreading.

iii

iv

Contents

1 Introduction 1

1.1 α-c.a. 2

1.2 Hierarchy Collapse . 5

1.3 Maximal totally α-c.a. degrees 6

2 Maximality 9

2.1 Maximal totally ω-c.a. degrees 9

2.2 Maximal totally ωω-c.a. degrees in upper cones 12

2.3 Maximal totally ω2-c.a. degrees in upper cones 14

3 Theorem 21

3.1 Glossary . 21

3.2 Technical Discussion . 24

3.3 Tree of Strategies . 31

3.3.1 Assigning Requirements 32

3.3.2 Types of Nodes . 33

3.4 Construction . 35

3.4.1 Verification . 39

4 Extending Results 67

4.1 Two c.e. sets . 67

4.2 Three c.e. sets . 73

v

vi CONTENTS

Chapter 1

Introduction

Computability theory seeks to understand the relative complexity of mathe-

matical objects. We use reductions such as Turing reducibility to formalise

the idea of relative information content. Another tool to further our un-

derstanding is to calibrate objects into various hierarchies; the arithmetical

hierarchy is an example of this. It is significant that the arithmetical hierar-

chy aligns with the Turing jumps; this gives alignment between syntactical

and algorithmic complexity. In [2], Downey and Greenberg use the notion

that a degree can compute complicated objects if and only if some func-

tions in the degree are difficult to approximate. Computability theory allows

us to formalise this notion. In [2], Downey and Greenberg use the relative

complexity of functions that bound the mind-change function of computable

approximations of ∆0
2 functions to give rise to a new transfinite hierarchy in

the c.e. degrees. This hierarchy is significant because it unifies the combina-

torics of many constructions as well as giving natural definability results in

the c.e. Turing degrees. We give examples of this in the following section.

It is of interest to investigate the structure of this hierarchy. We look for

levels of the hierarchy at which no new degrees exist; we say that at such

levels the hierarchy collapses. Notions of maximality in this hierarchy are

of particular interest because the existence of maximal elements of classes

is rare in the c.e. degrees. It is also significant because the maximal totally

1

2 CHAPTER 1. INTRODUCTION

ω-c.a. degrees 1 form a naturally definable antichain in the c.e. degrees. In

this thesis we investigate collapse in upper cones by considering the existence

of maximal degrees above another degree.

In particular we investigate the question of whether there exists a degree

d that is totally ω-c.a. such that no degree above d is maximal totally ω2-c.a.

The result we find is that there is no uniform way to find a maximal totally

ω2-c.a. degree above a given totally ω-c.a. degree. Priority arguments using

strategy trees are used to answer such questions. We now provide the context

to understand the meaning of this question we are considering.

1.1 α-c.a.

We start with the Shoenfield Limit Lemma [9] which states that a function

f : ω → ω is ∆0
2 (or equivalently, computable from 0′) if and only if it has

a computable approximation. A computable approximation is a uniformly

computable sequence 〈fs〉s<ω such that for all x and for all but finitely many

stages s, fs(x) = f(x). Every computable approximation has an associated

mind-change function which is the function that tells us how many times

the computable approximation changes its mind on a given x. Formally

m〈fs〉(x) = #{s : fs+1(x) 6= fs(x)}. Now consider the complexity of functions

which bound the mind-change function. The idea is that a function with

approximations that has many mind changes requires greater computational

power. Functions with a computable function bounding its mind-change

function are called ω-computably approximable (ω-c.a.). The idea for the

new hierarchy is to extend this to find a general definition of α-c.a for an

ordinal α in such a way to give meaningful calibration of computational

power.

For an ordinal α, an α-computable approximation of a function f is a

computable approximation 〈fs〉s<ω of f , equipped with a uniformly com-

putable sequence 〈os〉s<ω of functions from ω to α such that for all x and s,

1see next section for formal definition.

1.1. α-C.A. 3

os+1(x) ≤ os(x) and if fs+1(x) 6= fs(x) then os+1(x) < os(x). The idea is that

we ‘count’ down along α as the computable approximation changes its mind.

Then the ‘longer’ α is, the more the approximation can change its mind.

Notice that we need to be careful about which computable copy of the

ordinal α we are using. Ershov proved that every ∆0
2 function is ω-c.a. for

some computable copy of ω [6, 7, 8]. Ershov’s idea was that the complexity

of a computable approximation of f can be encoded into the presentation of

ω. So if we just allow any presentation of α the hierarchy obtained from this

definition is useless for calibration below 0′ as it collapses at ω, so it does

not help us further understand the relative complexity. Ershov’s result arises

from the existence of ‘bad’ copies of ω. For example, there is a presentation

of ω where the successor function is not computable. Ershov [7], and Epstein,

Haas and Kramer [5] used Kleene’s system of ordinal notations. But under

this definition, every ∆0
2 function is ω2-c.a. because it is possible that we

are not able to compute which copy of ω a given element lies in. Therefore

this does not suffice for study below 0′. This motivates the desire to find

a well-behaved class of presentations of ordinals in which these things are

computable. Downey and Greenberg found that Cantor’s normal form gives

the required information for ordinals up to ε0.

Every ordinal α has a unique expression as the sum: ωα1n1 + ωα2n2 +

· · ·+ωαknk, where ni < ω are non-zero and α1 > α2 > · · · > αk; this is called

the Cantor normal form of α. ε0 = sup{ω, ωω, ωωω
, ...} is the least ordinal γ

such that ωγ = γ. So for all ordinals α < ε0, the ordinals appearing as the

exponents in the Cantor normal form of α are all strictly smaller than α. A

presentation of α is canonical if we can computably find the Cantor normal

form of α. Now f is α-c.a. if there is an α-computable approximation for a

canonical computable presentation of α. Note that any two canonical copies

of α are computably isomorphic, and so the notion of α-c.a. does not depend

on which canonical copy we use. Also note that we are able to find canonical

computable presentations of all α ≤ ε0. Details can be found in [2].

Now notice that this measure of complexity does not align with Turing

4 CHAPTER 1. INTRODUCTION

reducibility. In terms of the definition of α-c.a. that we just defined, a c.e. set

is very simple because the bound on the mind-change function is low as there

is only at most one change on each input. But c.e. sets can compute complex

functions; hence they can be complicated in terms of Turing degrees, such as

∅′. We are motivated to force alignment by making the following definition:

a Turing degree d is totally α-c.a. if every function f ∈ d is α-c.a. This is

the definition that yields the new hierarchy.

Now an important fact that will be used in this thesis is the ability to

effectively list the α-c.a. functions. To do this we use tidy (α+1)-computable

approximations. These are approximations 〈fs, os〉 such that for all n, f0(n) =

0 and for all n and s, if os(n + 1) < α then os(n) < α. We may think of

these as partial α-computable approximations. We can think of os(n) = α as

os(n) ↑; at such a stage the ordinal in α has not yet been declared. Such

an approximation is eventually α-computable if for all n there is a stage

s such that os(n) < α. Now there is a computable list 〈〈f is, ois〉s<ω〉i<ω of

tidy (α + 1)-computable approximations such that letting f i = lims f
i
s, the

sequence 〈f i〉i<ω lists the α-c.a. functions. This means that for every α-c.a.

function there is an i such that 〈〈f is, ois〉s<ω〉 is eventually α-computable and

f i = f . See [2] for the full details.

Note that equipped with this listing of tidy (α+ 1)-computable approxi-

mations, it follows that there is a uniformly 0′-computable listing of all α-c.a.

functions. Using this sequence we are able to construct a 0′-computable func-

tion which dominates every α-c.a. function; hence every totally α-c.a. degree

is low2.

An array computable degree is a degree such that every function in the

degree has a computable approximation such that its mind-change function

is bounded by the identity function. Notice that this is a uniform version

of the notion of totally ω-c.a. This class is significant because it captures

the combinatorics of a wide range of constructions, for example: a degree

is array non-computable if and only if it bounds a disjoint pair of c.e. sets

which have no separator computing 0′ [4]. There are many more examples

1.2. HIERARCHY COLLAPSE 5

of equivalence given in [2]. This motivates the hierarchy as the totally α-c.a.

degrees allow us to generalise array non-computability.

The totally ω-c.a. degrees naturally align with another level of permitting

hence also capture the dynamics of a number of constructions. A c.e. degree

is not totally ω-c.a. if and only if it bounds a (weak) critical triple in the

c.e. degrees [3]. This shows that the ω-c.a. degrees are naturally definable

in the c.e. degrees. The totally ω-c.a. degrees also capture the dynamics of

many constructions; for example, in [2] the class of not totally ω-c.a. degrees

relates to presentations of left c.e. reals. See [2] for details.

Another class of particular significance is the totally < ωω-c.a. degrees.

A totally < ωω-c.a. degree is such that every function in it is ωn for some

n < ω. Now it is shown in [2] that a c.e. degree bounds a copy of the 1-3-1

lattice if and only if it is not totally < ωω-c.a. This shows that totally < ωω-

c.a. degrees are naturally definable in the c.e. degrees. Now totally < ωω-

c.a. degrees also capture the dynamics of constructions; in particular they

characterise non-uniform arguments with some ω levels of non-unformity.

1.2 Hierarchy Collapse

Now that we have defined the hierarchy, we investigate the structure of this

hierarchy. We ask, at what levels does the hierarchy collapse? Is there a

level β such that every degree that is totally β-c.a. is also totally α-c.a. for

some α < β? At such levels β no new degrees exist hence the hierarchy has

collapsed at this level. We call a degree properly totally α-c.a. if it is totally

α-c.a. and not totally β-c.a. for any β < α. Note that we are concerned with

c.e. degrees, so all degrees mentioned in following theorems are c.e. degrees.

The theorem below tells us that the levels which do not collapse are powers

of ω.

Theorem 1.1. ([2, Thm.3.6]) Let α ≤ ε0. There is a properly totally α-c.a.

c.e. degree if and only if α is a power of ω.

6 CHAPTER 1. INTRODUCTION

Therefore the first proper levels of the hierarchy are the totally ω-c.a.

degrees, then the totally ω2-c.a. degrees, ... totally ωω-c.a. degrees, totally

ωω+1-c.a. degrees, From now on all ordinals are powers of ω.

Now we consider the structure of the hierarchy in upper cones. This is

where we investigate the structure of the hierarchy above a specific degree d.

So we ask if there is a β such that every degree c >T d that is totally β-c.a.

is also α-c.a. for some α < β. The following is a result shown in [1]:

Theorem 1.2. Let α < ε0 be a power of ω. Above every totally α-c.a. degree

there is a totally (α · ω3)-c.a. degree which is not totally α-c.a.

In particular, let α = ω. Then this theorem tells us that above every

totally ω-c.a. degree there is a totally ω4-c.a. degree which is not ω-c.a. So

we ask, can we make this stronger? Can this degree be made ω3-c.a. or even

ω2-c.a.? Li Ling Ko (personal communication) recently showed that above

every ω-c.a. degree there is a properly totally ω2-c.a. degree, with a non-

uniform argument using results from [1]. It is not clear how this generalises,

for example, is there a properly totally ω3-c.a. degree above every ω2-c.a

degree? The question of whether there is a uniform way to find a properly

totally ω2-c.a. degree above a totally ω-c.a. degree is still open.

1.3 Maximal totally α-c.a. degrees

A degree d is maximal totally α-c.a. if d is totally α-c.a. and no b>Td

is totally α-c.a. The following theorem is proved in [2]; this tells us that

maximal totally α-c.a. degrees exist at every proper level of the hierarchy. In

the next chapter we will discuss how we can construct such degrees.

Theorem 1.3. ([2, Thm.4.1]) If α ≤ ε0 is a power of ω, then there is a

maximal totally α-c.a. c.e. degree.

We now ask, could there be a totally ω-c.a. degree d which is a maximal

totally ω2-c.a. degree? This would mean there is no degree above d that

1.3. MAXIMAL TOTALLY α-C.A. DEGREES 7

is totally ω2-c.a. but not totally ω-c.a. Which implies there is collapse in

the upper cone. The following theorem, proved in [2], says there is no such

degree:

Theorem 1.4. ([2, Thm.4.12]) Let β < ε. Every totally ωβ-c.a. c.e. degree

is bounded by a strictly greater totally ωβ+1-c.a. c.e. degree.

So we know that no totally α-c.a. degree can be maximal totally β-c.a.

for β > α. As a result we know that every maximal totally α-c.a. degree is

properly totally α-c.a. Hence for α < β ≤ ε0, the ability to find a maximal

totally β-c.a. degree above every totally α-c.a. degree, implies that level β

does not collapse in upper cones. So clearly it is of interest to find maximal

totally β-c.a. degrees above totally α-c.a. degrees. The following theorem

was proved in [1]:

Theorem 1.5. Let α < β ≤ ε0 be powers of ω, and suppose that β ≥ αω.

Then every totally α-c.a. degree is bounded by a maximal totally β-c.a.

degree.

We will discuss the idea of how to construct such degrees in the next

chapter. This theorem shows that there is no collapse in upper cones for

levels β ≥ αω. It is still unknown whether there is collapse in upper cones

for β < αω. In particular we ask, is every totally ω-c.a. degree bounded by a

maximal totally ω2-c.a. degree?

In [1] it was proved that there is a totally ω-c.a. degree such that it is

not bounded by any maximal totally ω-c.a. degree. Now in this thesis we

investigate the question: does there exist a c.e. set A such that A is totally

ω-c.a. and no c.e. set B ≥T A is maximal totally ω2-c.a. It is currently

unknown whether this is true or not. In Chapter 3 we prove the following

theorem:

Theorem 1.6. There is a computable function f such that for all k the

following hold:

• Wf(k) is totally ω-c.a.

8 CHAPTER 1. INTRODUCTION

• Wk ⊕Wf(k) is not maximal totally ω2-c.a.

This implies the following corollary which means that a maximal totally

ω2-c.a. degree above a given totally ω-c.a. degree cannot be found uniformly:

Corollary 1.6.1. There is no computable function g such that for all m, if

Wm is totally ω-c.a. then Wm ⊕Wg(m) is maximal totally ω2-c.a.

Proof. Suppose there is such a computable function g. Let f be the function

given by Theorem 1.6. By the recursion theorem, there is an m such that

f(g(m)) = m. Now by applying the function f on input g(m): Wf(g(m))

is totally ω-c.a. and Wg(m) ⊕ Wf(g(m)) is not maximal totally ω2-c.a. But

f(g(m)) = m, so this means Wm is totally ω-c.a. and Wg(m) ⊕ Wm is not

maximal totally ω2-c.a. Now Wm is totally ω-c.a., so by applying g on input

m: Wm ⊕ Wg(m) is maximal totally ω2-c.a. This is a contradiction; hence

there is no such computable function g.

Chapter 2

Maximality

2.1 Maximal totally ω-c.a. degrees

First we will discuss how to construct a maximal totally ω-c.a. degree. We

build a c.e. set D such that the degree of D is maximal totally ω-c.a. To

ensure degT (D) is totally ω-c.a. we meet the following set of requirements

for all functionals Γ:

• NΓ: If Γ(D) is total then Γ(D) is ω-c.a.

To ensure degT (D) is maximal we ensure that every c.e. set above D is not

totally ω-c.a. So for each c.e. set W , we build a functional ΨW (D,W) with

the aim of showing that either W ≤T D or ΨW (D,W) is not ω-c.a. Let

〈fk, ok〉 be the sequence of tidy (ω + 1)-computable approximations. As

discussed in Chapter 1, for every ω-c.a. function there is some k such that

〈fk, ok〉 is eventually ω-computable and f = fk. Then for all c.e. sets W and

all k < ω we meet the following set of requirements:

• PW,k: If 〈fk, ok〉 is eventually ω-computable then either W ≤T D or

ΨW (D,W) 6= fk.

This construction requires a strategy tree. A node working for an NΓ

requirement is denoted τ . To meet an NΓ requirement we need to come up

with an ω-computable approximation for Γ(D). We can achieve this if we are

9

10 CHAPTER 2. MAXIMALITY

able to devise a strategy to compute a bound for the number of D changes

that could possibly injure the computation Γ(D, x) for each x. So at each

expansionary stage we declare a bound for a new x and we need to ensure

that this bound is correct. We build D, so any number that enters D was

enumerated into D by some PW,k requirement; the idea is to restrict which

requirements can injure a Γ(D, x) computation.

Nodes working for a PW,k requirement are denoted σ. The strategy to

meet a PW,k requirement is to appoint a follower p and whenever we see

ΨW (D,W, p)[s] = fks (p) we enumerate ψs(p) into Ds+1. But recall 〈fk, ok〉 is

a tidy (ω + 1)-computable approximation so after this enumeration at stage

s it is possible that there is a stage t where fkt (p) 6= fks (p). Then it is possible

that there is some stage r ≥ t such that ΨW (D,W, p)[t] = fkt (p); hence the

diagonalisation attempt at stage s has failed and we need to enumerate ψr(p)

into Ds+1. Now notice that each time this happens there has been a change in

fk(p); hence ok(p) must have decreased since this is a tidy (ω+1)-computable

approximation. Then we know that this will not happen infinitely often

because ok(p) has to decrease after each failed diagonalisation attempt; hence

this allows us to successfully diagonalise and achieve the requirement that

ΨW (D,W) 6= fk. Now we not only know that we can successfully diagonalise

but once we see oks(p) < ω we have a bound on how many numbers we will

need to enumerate into D in order to achieve diagonalisation.

To meet NΓ requirements we can only allow a follower to injure a Γ(D, x)

computation if it had seen oks(p) < ω at the stage we declare the ordinal

oΓ(x) for our ω-computable approximation, all other followers must protect

this computation. When we first declare this ordinal we say that x has been

established. The idea will be to define our ordinal approximation as the

sum of ok(p) for all followers such that ok(p) < ω. Then as long as we can

successfully protect the computation, Γ(D, x), from all other followers this

will successfully bound the number of injuries to Γ(D, x).

Now to ensure ΨW (D,W, p) is total we need to define this computation

immediately after we appoint p. It is possible that ok(p) = ω at this stage.

2.1. MAXIMAL TOTALLY ω-C.A. DEGREES 11

Therefore there could be some x established for an NΓ requirement after

the use of the computation ΨW (D,W, p) is defined but before the stage we

see ok(p) < ω. Since x was established before the ordinal was revealed we

cannot allow p to injure Γ(D, x). But since the computation ΨW (D,W, p)

was defined before x was established there is no guarantee that ψt(p) > γt(x).

Note that we cannot wait until we see ok(p) < ω before declaring the ordinal

for x because it is possible that this never happens. So we need to wait for

an opportunity to lift ψ(p) to be larger than the use of all computations it

must protect. This means that before σ can start putting numbers into D to

make progress on meeting its requirement we need to wait for a W change

that permits us to lift the use. Now you may ask, what if this never happens?

Well, there is no guarantee that W will permit a single (σ, p), but using the

fact that we only require ΨW (D,W) 6= fk if W 6≤T D, we know that if we

appoint a sequence of followers p0, p1, ... then one of them will eventually be

permitted. Notice that the action of σ is finite, we only need to continue

to appoint followers when no current follower has been permitted and only

a single follower needs to enumerate numbers into D to achieve its goal of

ΨW (D,W, p)[s] 6= fks (p). Then we are able to initialise all nodes weaker than

σ each time we enumerate a number into D. Therefore only τ nodes such

that τ ∞ � σ will sustain injury from (σ, p). Notice that to ensure that the

ψσ(p) > γτ (x) when the use is lifted large, we also require Γτ (D, x)[s] ↓ for

all (τ, x) protected by (σ, p) at the stage we lift the use large. But as long

as Γτ (D) is actually total then this is guaranteed to eventually align with a

W change. Now σ � τ ∞ but in some constructions it is possible that τ ∞
is on the true path but the measured functional Γτ (D) is not total; this will

be discussed later as this happens in the construction that will be detailed

in Chapter 3. But in this construction we are able to make D totally ω-c.a.;

hence D is low2. Therefore in this construction if τ ∞ lies on the true path,

Γτ (D) is total.

Notice that this argument generalises for any α ≤ ε0.

12 CHAPTER 2. MAXIMALITY

2.2 Maximal totally ωω-c.a. degrees in upper

cones

Now we will discuss the proof of Theorem 1.5 in the case for α = ω and

β = ωω. Let A be such that degT (A) is totally ω-c.a. Then we build a set D

such that degT (A⊕D) is maximal totally ωω-c.a. To ensure degT (A⊕D) is

totally ωω-c.a. we meet the following set of requirements for all functionals

Γ:

• NΓ: If Γ(A,D) is total then Γ(A,D) is ωω-c.a.

To ensure degT (A⊕D) is maximal we ensure that every c.e. set above A⊕D
is not ωω-c.a. So for all c.e. sets W we build a functional ΨW (A,D,W) with

the aim that either W ≤T A ⊕ D or ΨW (A,D,W) is not ωω-c.a. Let 〈fk〉
be the sequence that lists all ωω-c.a. functions. So for all c.e. sets W and all

k < ω we meet the following set of requirements:

• PW,k: If 〈fk, ok〉 is eventually ωω-computable then either W ≤T A⊕D
or ΨW (A,D,W) 6= fk.

Notice that the requirements are very similar to the requirements in the

previous discussion. The basic module for meeting these requirements is the

same as the previous discussion, in particular if A was empty then the exact

strategy for building a maximal degree works. So now we ask, what happens

when a number goes into A?

We begin by following the strategy as in the previous section. Once

oks(p) < ωω we wait for a W change to permit use to lift ψ(p) large, above

the use of Γτ (A,D, x) computations that (σ, p) must protect. But then after

(σ, p) is permitted a number could enter A. Now while we get to redefine

Ψσ(A,D,W, p), lifting the use large again would not help us because we must

define the new Ψσ(A,D,W, p) computation before the protected Γτ (A,D, x)

computations recover. So we must cancel follower p and appoint a new

follower. If infinitely many followers are cancelled then W ≤T A⊕D; hence

it is ok that diagonalisation will fail in this case.

2.2. MAXIMAL TOTALLY ωω-C.A. DEGREES IN UPPER CONES 13

So we are able to ensure that (σ, p) does not injure any Γτ (A,D, x) com-

putations that it must protect. Now consider how we meet requirements

NΓ. Since protection works we can take the sum of the ordinals ok(p) such

that ok(p) < ωω and this bounds the number of D changes that can injure

a Γτ (A,D, y) computation. But what happens when a number enters A?

We need a way to count these A changes. So we use the fact that A is to-

tally ω-c.a. To use this, we build a shadow functional Γ̂(A) and appoint a

tracker z for input x. We define the use of the computation Γ̂(A, z) to have

use γ(x). Then if there is an A change below the use of the computation

Γτ (A,D, x), this is also below the use of the computation Γ̂(A, z). Since A

is totally ω-c.a., Γ̂(A) is ω-c.a. Then the ordinal given for input z in an

ω-computable approximation of Γ̂(A) is a bound of how many A changes

occur below the computation Γτ (A,D, x). To obtain this ordinal bound τ

nodes will need to guess whether Γ̂(A) = gi or not, where 〈gi, li〉 is the list

of tidy ω + 1-computable approximations. The tracker is able to ‘track’ the

A changes below the use of Γτ (A,D, x) while γ̂(z) ≥ γ(x). But notice that

when there is a D change below γ(x) then the tracker becomes useless since

we may no longer have γ̂(z) ≥ γ(x). Hence when this happens we will need

to appoint a new tracker z′.

Now that a new tracker has been appointed, this will have its own ordinal

bound for the number of A changes below Γ(A,D, x) and it is quite possible

that this is larger than the ordinal for the old tracker. So we need to be able

to decrease our ordinal by a multiple of ω so we are able to incorporate the

ordinal bound of the new tracker. Now we can see that the strategy is to use

the fact that ω · ωω = ωω so we are able to drop down by a multiple of ω for

each D change and can incorporate the ordinal of the new tracker this way.

This will work because we need to replace the tracker after each D change.

14 CHAPTER 2. MAXIMALITY

2.3 Maximal totally ω2-c.a. degrees in upper

cones

Now we consider whether we can make the bound for β in Theorem 1.5 any

better. In particular we ask whether there is a maximal totally ω2-c.a. degree

above every totally ω-c.a. degree. We consider the discussion in the previous

section and ask what happens to this argument if we try to make degT (A⊕D)

totally ω2-c.a. instead of ωω-c.a.

The key to being able to make degT (A ⊕ W) totally ωω-c.a. was that

ω · ωω = ωω. Now ω · ω2 6= ω2 so it is clear that we are not able to use the

same strategy as we are unable to change the tracker for every D change that

occurs. For every (σ, p) we have an ordinal of the form ω ·m(p) + k(p). We

define an ordinal for Γ(A,D, x) of the form ω · d(x) + b(x). Now we are able

to fully incorporate the ordinal for (σ, p) as in the last discussion, allowing

us to deal with D changes. We are able to appoint a tracker, z, for x but

when there is a D change we are not able to incorporate the ordinal of a new

tracker until we see d(x) decrease by one and we can only do this once we

see m(p) decrease by one. Hence between the stage the old tracker became

useless and the stage the new tracker becomes useful, many A changes could

occur, and we had no way to know in advance how many such A changes

could occur. Then it is quite possible that these A changes ‘use up’ some

of the ordinal that we included to count D changes; clearly this will not

work. We could ask whether we could enumerate numbers into D until we

see m(p) decrease by one. Since m(p) has been incorporated into d(x), once

this happens we are able to incorporate the ordinal bound of the new tracker.

But for this to work we must wait until this has happened before we certify

the computation Γ(A,D, x). But we need to see ΨW (A,D,W, p) = fk(p)

each time we enumerate a number into D. We are not guaranteed that

this will happen enough times to decrease m(p) by one before we certify the

computation Γ(A,D, x). So it is evident that this strategy cannot work.

This leads us to consider that not every totally ω-c.a. degree has a maxi-

2.3. MAXIMAL TOTALLY ω2-C.A. DEGREES IN UPPER CONES 15

mal totally ω2-c.a. degree above it. So we instead attempt to prove that there

is a c.e. set degT (A) such that it is totally ω-c.a. and there is no maximal

totally ω2-c.a. degree above. To do this we build A such that degT (A) is

totally ω-c.a. and for every c.e. set W , if degT (A ⊕W) is totally ω2-c.a. we

build a set QW not below A ⊕W such that degT (A ⊕W ⊕ QW) is totally

ω2-c.a., this ensures degT (A⊕W) is not maximal totally ω2-c.a.

Now our strategy is to exploit the problem discussed above. For every

functional Ψ, we need to ensure Ψ(A,W,QW) is ω2-c.a. if degT (A ⊕W) is

totally ω2-c.a. So for each x < ω we need to define an ordinal of the form ω ·
m(x)+k(x) that will bound the number of injures Ψ(A,W,QW) may sustain.

The strategy is to build a shadow functional Γ(A,W) and if Γ(A,W) is ω2-

c.a. then we need to work towards making Ψ(A,W,QW) ω2-c.a. Then we can

use the fact that Γ(A,W) is ω2-c.a. and appoint trackers to track the A and

W changes below the use of a Ψ(A,W,QW) computation. Notice that while

QW is empty then making an ω2-computable approximation for Ψ(A,W,QW)

is easy because we can just copy the ordinal of the tracker. But if a number

goes into QW then we need a new tracker. Now we enumerate numbers into

QW to achieve diagonalisation Θ(A,W) 6= QW for all functionals ∆. Hence

we will be able to bound how many enumerations into QW could injure a

Ψ(A,W,QW , x) computation. But now the ordinal of the tracker is ω2, of the

form ω · d(z) + b(z), and this could be larger than the ordinal of the previous

tracker. To deal with this we decrease m(x) by one to allow us to define a

new large k(x); then we are able to define k(x) = d(z). Now after we do

this suppose there is a W change injuring the computation Ψ(A,W,QW , x),

then we need to decrease our ordinal, but this means we need to see d(z)

decrease by one, it is not enough that b(z) decreases by one. So the strategy

is to ‘beat’ the ordinal ω · d(z) + b(z) down until we see d(z) decrease by

one. We do this by starting an attack by enumerating γ(z) into A. Each

time we do this we force the ordinal of the tracker to decrease; we do this

until we see d(z) decrease by one, as desired. We are able to do this because

we can wait until this process is finished before certifying the computation

16 CHAPTER 2. MAXIMALITY

Ψ(A,W,QW , x). This is because if Γ(A,W) is not ω2-c.a. then we no longer

need to make Ψ(A,W,QW) ω2-c.a.

The strategy to build QW such that QW is not below A⊕W is to ensure

that QW 6= Θ(A,W) for every functional Θ. We appoint a follower q and

if Θ(A,W, q)[s] = 0 then we enumerate q into QW . Now suppose we enu-

meration q into QW at stage s. It is possible some number enters A or W

below θs(q) at a stage t > s, then this injures the computation Θ(A,W, q).

Now at a stage r > t this computation will recover, but it is possible that

Θ(A,W, q)[r] = 1; hence our diagonalisation attempt has failed. Then we

need to cancel the current follower and appoint a new follower q1. We re-

peat the above strategy and enumerate q1 into QW at a stage where we see

Θ(A,W, q1) = 0. But now it is possible that we need to cancel q1 and ap-

point a new follower q2. To ensure we have successfully diagonalised we need

to know that this does not happen infinitely often. So we build a shadow

functional ∆Θ(A,W) and appoint an anchor, p. This anchor serves many

followers and we ensure δ(p) ≥ θ(q) where q is the current follower. Then

if we need to appoint a new follower then this is because the computation

Θ(A,W, q) was injured; hence ∆Θ(A,W, p) was also injured. Now recall that

we only need to successfully diagonalise if degT (A ⊕ W) is totally ω2-c.a.;

thus we can assume ∆Θ(A,W, p) is ω2-c.a. Then this anchor ensures only

finitely many followers are appointed.

This is the basic strategy for an attempt to prove that there is a totally

ω-c.a. degree such that no degree above it is maximal totally ω2-c.a. This

leads to a rather complicated construction so first we consider a construction

based on this but for a single c.e. set W . Such a construction proves Theorem

1.6.

For a given W we build a set A such that degT (A) is totally ω-c.a. and

degT (A ⊕ W) is not maximal totally ω2-c.a. To ensure degT (A) is totally

ω-c.a. we meet the following set of requirements for all functionals Φ:

• NΦ: If Φ(A) is total then Φ(A) is ω-c.a.

If degT (A⊕W) is not ω2-c.a. then we are done; otherwise we show degT (A⊕

2.3. MAXIMAL TOTALLY ω2-C.A. DEGREES IN UPPER CONES 17

W) is not maximal totally ω2-c.a. by building Q such that degT (A⊕W ⊕Q)

is totally ω2-c.a. and Q 6≤T A ⊕ W . To ensure Q 6≤T A ⊕ W we build a

shadow functional ∆Θ(A,W) for every functional Θ with the aim that either

∆Θ(A,W) is not ω2-c.a. or Θ(A,W) 6= Q. So we need to meet the following

set of requirements:

• RΘ: If Θ(A,W) is total then either Θ(A,W) 6= Q or ∆Θ(A,W) is not

ω2-c.a.

Now let 〈f i〉 be the sequence that lists all ω2-c.a. functions. Then we have

the following set of subrequirements:

• RΘ,k: ∆Θ(A,W) 6= fk where fk is the kth ω2 c.a. function, along with

its approximation 〈fks , oks〉.

Nodes working for subrequirement RΘ,k is called a child of the node working

for requirement RΘ. Children will be spread down the tree below its parent.

If all subrequirements are met then ∆Θ(A,W) is not ω2-c.a.; hence we have

met requirement RΘ. Otherwise, a particular subrequirement RΘ,k will show

that ∆Θ(A,W) = fk and also give us a tidy (ω2 + 1)-computable approxi-

mation 〈fk, ok〉. This node will then work towards meeting the requirement

that Θ(A,W) 6= Q.

Now we also need to ensure that degT (A⊕W⊕Q) is totally ω2-c.a., we do

this by building a shadow functional ΓΨ(A,W) for every functional Ψ with

the aim that either ΓΨ(A,W) is not ω2-c.a. or Ψ(A,W,Q) is ω2-c.a. So we

meet the following set of requirements:

• PΨ: If Ψ(A,W,Q) is total then either ΓΨ(A,W) is not ω2-c.a. or

Ψ(A,W,Q) is ω2-c.a.

Similar to the R requirements, we have the following subrequirements:

• PΨ,k: ΓΨ(A,W) 6= fk where fk is the kth ω2 c.a. function, along with

its approximation 〈fks , oks〉.
Nodes working for subrequirement PΨ,k is called a child of the node working

for requirement PΨ. Children are spread down the tree below its parent. If

all subrequirements are met then ΓΨ(A,W) is not ω2-c.a.; hence we have met

18 CHAPTER 2. MAXIMALITY

requirement PΨ. Otherwise, a particular subrequirement PΨ,k will show that

ΓΨ(A,W) = fk and also give us a tidy (ω2 + 1)-computable approximation

〈fk, ok〉. This node will then work towards meeting the requirement that

Ψ(A,W,Q) is ω2-c.a.

The basic module is as discussed above, if there is a Q change that injures

a Ψ(A,W,Q, x) computation then we appoint a new tracker for x. Now if

there is a W change we need to start an attack to ‘beat’ the ordinal of the

tracker down a multiple of ω. Since we only need to ensure Ψ(A,W,Q)

is ω2-c.a. if A ⊕W is totally ω2-c.a., we are able to wait for this attack to

finish before issuing the next ordinal in our ω2-computable approximation for

Ψ(A,W,Q). Now we also need to show that A is totally ω-c.a. We do this

in a similar way as how we create the ωω-computable approximation in the

previous discussion. Since the start of an attack is triggered by a W change

we lift the use large at this stage and continue to define it large throughout

the length of the attack and this will ensure a Φ(A, y) computation can be

protected. Now the ordinal for the tracker is of the form ω · d(z) + b(z), so

the number b(z) gives a bound for how many numbers will enter A during

an attack. Note that the bound for a subsequent attack is not revealed until

the previous attack has finished. Now notice that because we are making

Φ(A) ω-c.a. but A⊕W is totally ω2-c.a. we are only able to incorporate the

b(z) part of the ordinal for a tracker of x. Therefore we must update which

Φ(A, y) computations need to be protected after each attack.

To meet the requirement that Q 6≥T A ⊕ W we appoint followers and

diagonalise against Θ(A,W) for every functional Θ. To ensure we succeed

we build a shadow functional ∆Θ(A,W) and appoint an anchor. Now we only

need to succeed if A⊕W is ω2-c.a. so we can use the fact that ∆Θ(A,W) is

ω2-c.a. to ensure finitely many followers are appointed. We must be careful

of which Ψ(A,W,Q) computations we allow a q enumeration to injure. So

we will need to cancel followers not only after a failed diagonalisation but

also when we are in danger of injuring a Ψ(A,W,Q) computation that must

be protected. The anchor allows us to do this without the risk of needing to

2.3. MAXIMAL TOTALLY ω2-C.A. DEGREES IN UPPER CONES 19

do this infinitely often; this will be discussed in more detail in the following

chapter.

One feature of this construction is that there are nodes with potentially

infinitary action. Although all attacks are finite, since they are bound by

b(z), action to ensure Ψ(A,W,Q) is ω2-c.a. means we need to act for infinitely

many x for each Ψ; hence we may need to enumerate infinitely many numbers

into A at a node working for this requirement. Therefore we are not able

to initialise nodes extending a node working for such a requirement. Notice

that an A change below a protected Φ(A, y) during an attack could cause us

to start injuring a computation we should be protecting, but we are able to

set up the construction so that this does not happen.

Another feature is that the tree of strategies is complicated. It is common

to have every node of the same length working for the same requirement but

this is not the case in this construction. We will have parents that measure

totality and build a functional and then each parent has many children who

measure length of agreement between their parents functional and a particu-

lar ω2-c.a. function. First notice that we do not need to place more children

below the outcome that guess that the functional is indeed equal to fk. Simi-

larly since we have successfully met all P and R requirements if degT (A⊕W)

is not totally ω2-c.a. We don’t need to place another parent node until we

have seen confirmation that the current parents functional is in fact ω2-c.a.

Since we are only considering a single c.e. set W , we are able to completely

avoid having another parent node between a parent and its child. This is of

great use because then every parent knows that the functionals above it on

the tree are in fact total and they have enough information to keep their use

above computations they must protect. This will be discussed further in the

next chapter.

In section 2.1 we mentioned that in some constructions it is possible

that the infinite outcome is on the true path but the measured functional

is not total and the reason that this did not happen in the construction

discussed in this construction is because we are able to succeed in making

20 CHAPTER 2. MAXIMALITY

D α-c.a. Now in this construction, the functionals Θ(A,W) and Ψ(A,W,Q)

are not necessarily ω2-c.a. Therefore even though the infinite outcome of the

nodes that measure these functionals may be on the true path the functionals

themselves may not be total; this is a 0′′′ feature. An example of how this is

problematic is because we need to cancel followers when a follower may injure

a protected Ψ(A,W,Q) but if Ψ(A,W,Q) is not actually total then this may

prevent this requirement from succeeding. Therefore we need to introduce

nodes that will be spread down the tree below its parent that will measure

lim inf dom Ψ(A,W,Q). We will discuss this further in the next chapter.

Chapter 3

Theorem

Now we detail the construction to prove Theorem 1.6. We build a set A for a

given W such that degT (A) is totally ω-c.a. and degT (A⊕W) is not maximal

totally ω2-c.a. To ensure A has the desired properties we meet the following

set of requirements:

• NΦ: If Φ(A) is total then Φ(A) is ω-c.a.

• PΨ: If Ψ(A,W,Q) is total then either it is ω2-c.a. or ΓΨ(A,W) is total

and not ω2-c.a. Subrequirements:

– PΨ,k: ΓΨ(A,W) 6= fk where fk is the kth ω2 c.a. function, along

with its approximation 〈fks , oks〉
• RΘ: Θ(A,W) 6= Q or ∆Θ(A,W) is not ω2-c.a. Subrequirements:

– RΘ,k: ∆Θ(A,W) 6= fk where fk is the kth ω2 c.a. function, along

with its approximation 〈fks , oks〉

3.1 Glossary

Here we give a glossary of terms that will be used in this chapter as well as

the following chapter. These terms will be introduced during the technical

discussion.

• π is a node working for an NΦ requirement.

21

22 CHAPTER 3. THEOREM

• τ is a node working for a PΨ requirement. A daughter of τ works for

requirement PΨ,k for some k < ω. A son of τ is a ζk node for some

k < ω.

• ρ is a node working for a PΨ,k requirement. τ is the parent of ρ is τ

works for requirement PΨ.

• η is a node working for an RΘ requirement. A daughter of η works for

requirement RΘ,k for some k < ω. A son of η is an ξk node for some

k < ω.

• µ is a node working for an RΘ,k requirement. η is the parent of µ is η

works for requirement RΘ.

• trs(ρ, x) is the tracker for (ρ, x) at stage s. We sometimes use the

notation trs(x) when it is clear which ρ this refers to.

• acs(µ) is the anchor for µ at stage s and fls(µ) is the follower for µ at

stage s.

• pros(µ) is a set of (ρ, x) that µ protects.

• pros(ρ̂, x̂) is a set of (ρ, x) that (ρ̂, x̂) protects.

• 〈fαs , oαs 〉s<ω is the ordinal approximation given by an α node, where α

is either a µ or ρ node. oρs(z) has the form oρs(z) = ω · dρs(z) + bρs(z).

• ΓΨ(A,W) = Γτ (A,W) = Γρ(A,W) and Ψτ (A,W,Q) = Ψρ(A,W,Q)

if τ works for requirement PΨ and ρ is a daughter of τ . Similarly

∆Θ(A,W) = ∆η(A,W) = ∆µ(A,W) and Θη(A,W) = Θµ(A,W) if η

works for requirement RΘ and µ is a daughter of η.

• Is(ρ, x) is a set of elements from ω such that x is the least element in

the set and every other x′ ∈ Is(ρ, x) has been declared taken over by x

at some stage t < s.

• Cs(ρ) is the set of inputs x that have been established and not taken

over for ρ. C0(ρ) = ∅ and then at each stage ρ ∞ is accessible, a new

3.1. GLOSSARY 23

input x is established. As inputs are taken over we remove them from

Cs(ρ) so this set contains the least input from every interval for ρ.

• When (ρ, x) is invented means the first tracker for x has been appointed,

we call this tracker the original tracker for x, denoted orig(x).

• (ρ, x) is established once there has been a ρ-expansionary stage since

the invention of x.

• We call (ρ, x) corrupted while the tracker of x is not the original tracker

of x. This happens when a µ node enumerates a number into Q.

• (ρ, x) fully corrupted means there has been a ρ-expansionary stage after

the corruption of x, this means the ordinal for the new tracker has been

revealed.

• If (ρ, x) is uncorrupted then the new tracker, that was appointed after

corruption, has been replaced by the original tracker. Then happens

when there is a relatively small A or W change that allows us to use

the orginal tracker after corruption.

• Suppose x is corrupted. Then the corrupting µ is the µ node that

enumerated a number into Q at the stage x is declared corrupted. The

corrupting q is the number that the corrupting µ enumerated into Q.

• We declare (ρ, x) to start an attack at the start of the stage. We say

(ρ, x) is fully in an attack once there has been a τ -expansionary stage

during the attack. Note that Γτ (A,W, tr(ρ, x)) ↑ while (ρ, x) is in an

attack but not yet fully in an attack.

• ψρs(Is(ρ, x)) = max{ψρs(x) : x ∈ Is(ρ, x)}

• Define #t to be the largest number used by the construction at stage

t.

• prec(α) is the set of τ such that there is ζk ↑� α where ζk is a son of

τ .

24 CHAPTER 3. THEOREM

• A node µ believes Ψτ (A,W,Q) is total if µ � ρ∞ where ρ is a daughter

of τ .

• A node µ believes dom Ψτ (A,W,Q) = k if µ � ζk ↑ where ζk is a son

of τ .

• When τ carries out a request or passes a request on to some τ̂ we say

that it acts on the request.

• (ρ, x) requires protection from µ at stage s if x ∈ Cs(ρ), (ρ, x) is not

currently in an attack and one of the following holds:

– ρ ∞ � µ

– ρ is to the left of µ and µ believes Ψρ(A,W,Q) is total

– ρ is to the left of µ and µ believes dom Ψρ(A,W,Q) = k and

Is(ρ, x) ⊆ k

3.2 Technical Discussion

First consider the requirement RΘ. If Θ(A,W) is not total then we have met

the requirement, otherwise we build a functional ∆Θ(A,W). If Θ(A,W) is

total and ∆Θ(A,W) is ω2-c.a. then we need to enumerate a set Q such that

Θ(A,W) 6= Q. A node on the tree of strategies working for requirement RΘ

is denoted η. η guesses whether Θ(A,W) is total by looking at the length of

dom Θ(A,W). η nodes have two outcomes, one that believes dom Θ(A,W)

goes to infinity and the other believes dom Θ(A,W) is finite. Below the

finite outcome we do not need to act for this requirement as if this is the

correct outcome then we have met the requirement. At stages that we believe

the infinite outcome we need to build an initial segment of the functional

∆Θ(A,W). Below the infinite outcome we need to guess if ∆Θ(A,W) is

ω2-c.a. This gives subrequirements RΘ,k which guess whether ∆Θ(A,W) =

fk or not, where fk is the kth ω2 c.a. function. The nodes working for

subrequirements are called children of η and are denoted µ. µ nodes have

two outcomes, one that believes ∆Θ(A,W) = fk and the other believes

3.2. TECHNICAL DISCUSSION 25

∆Θ(A,W) 6= fk. Now notice that children of η are only on the tree below

the infinite outcome of η. Also notice that below the outcome of child node

that believes ∆Θ(A,W) = fk we do not need to place any more children of η.

Now at stages where we believe that ∆Θ(A,W) is ω2-c.a., which is indicated

by the infinite outcome of a µ node, we need to ensure that Θ(A,W) 6= Q.

To diagonalise we appoint a follower q and then at stages s where we see

Θ(A,W, q)[s] = 0, we enumerate q into Q. Now suppose we enumerated q

into Q at stage s because Θ(A,W, q)[s] = 0. Notice that if there is an A or

W change below the use θs(q) after stage s, the computation Θ(A,W, q)[s] is

injured, so it is possible that Θ(A,W, q) = 1; hence our diagonalisation has

failed. If this happens we appoint a new follower and make another attempt

to diagonalise. Now to guarantee that diagonalisation is successful we need

to ensure that only finitely many followers are appointed. To do this we

appoint an anchor p which will serve many followers and use the fact that

∆Θ(A,W) is ω2-c.a. So when we define the computation ∆Θ(A,W, p) we

define it with use at least θ(q), where q is the current follower. Now when we

enumerate q into Q because we have seen Θ(A,W, q)[s] = 0, if here is an A

or W change below the use of this computation then it is also below the use

of the computation ∆Θ(A,W, p). Now since ∆Θ(A,W) is ω2-c.a., the ordinal

of the ω2-computable approximation must decrease. This can only happen

finitely many times; hence only finitely many followers are appointed and the

last follower must be successful.

Now consider the requirement PΨ. Similar to the R requirements, if

Ψ(A,W,Q) is not total then we have met the requirement, otherwise we

build a functional ΓΨ(A,W). Then if Ψ(A,W,Q) is total and ΓΨ(A,W)

is ω2-c.a. then we need to show that Ψ(A,W,Q) is also ω2-c.a. A node

on the tree of strategies working for requirement PΨ is denoted τ . A τ

node guesses whether Ψ(A,W,Q) is total or not by looking at the length

of dom Ψ(A,W,Q). These τ nodes work in the same way as the η nodes.

At stages that we believe the infinite outcome we need to build an initial

segment of the functional ΓΨ(A,W). Then below the infinite outcome we

26 CHAPTER 3. THEOREM

need to guess if ΓΨ(A,W) is ω2-c.a. So similar to the R requirements, we get

subrequirements guessing whether ΓΨ(A,W) = fk or not. Nodes working for

these subrequirements are called children of τ and are denoted ρ. ρ nodes

have two outcomes similar to µ nodes. If ΓΨ(A,W) is ω2-c.a. then there

is a ρ node which guesses ΓΨ(A,W) = fk. Then this ρ node gives us an

ω2-computable approximation 〈fρs , oρs〉. So for each z < ω there is an ordinal

oρs(z) with the form ω · dρs(z) + bρs(z). Now to show Ψ(A,W,Q) is ω2-c.a. we

need to define an ω2-computable approximation for Ψ(A,W,Q). For each

x < ω we need to define a non-increasing sequence of ordinals oΨ
s (x) of the

form ω ·mΨ
s (x) + kΨ

s (x) such that if Ψ(A,W,Q, x)[s + 1] 6= Ψ(A,W,Q, x)[s]

then oΨ
s+1(x) < oΨ

s (x). To do this we appoint a tracker for each x < ω,

tr(x), once we have appointed a tracker for x we say x has been invented.

When we first issue an ordinal to x we say x has been established. Fix x

and let z be the tracker of x. First assume Q is empty. When we define the

computation ΓΨ(A,W, z) at stage s we define it with use at least ψs(x). Now

if Ψ(A,W,Q, x)[s + 1] 6= Ψ(A,W,Q, x)[s], then there has been some change

below the use ψs(x). Since γs(z) ≥ ψs(x) and Q is empty, it follows that

ΓΨ(A,W, z)[s+ 1] 6= ΓΨ(A,W, z)[s]; hence oρs+1(z) < oρs(z). Then we see that

we can just follow the ordinal of the tracker. So if we define mΨ
s (x) = dρs(z)

and kΨ
s (x) = bρs(z) then this gives us an ω2-computable approximation for

Ψ(A,W,Q).

So now we need to consider how R requirements enumerating numbers

into Q affect the P requirements. Fix x and let z be the tracker of x.

Suppose at stage s an R requirement enumerates its follower q into Q and

q < ψs(x). Now Ψ(A,W,Q, x)[s+ 1] 6= Ψ(A,W,Q, x)[s] but it could be that

ΓΨ(A,W, z)[s+ 1] = ΓΨ(A,W, z)[s] and ψs+1(x) > γs+1(z). Then the current

tracker is useless, so we need to appoint a new tracker z′ and we declare that

x is corrupted. Now this new tracker has an ordinal oρs(z
′) = ω ·dρs(z′)+bρs(z

′).

But it is quite possible the dρs(z
′) > dρs(z), so we cannot just follow the ordinal

of the new tracker like our previous strategy. Instead, when x gets corrupted

we decrease mΨ(x) by one and this allows us to define a new large value for

3.2. TECHNICAL DISCUSSION 27

kΨ(x), so we define kΨ(x) = dρ(z′). Now consider what happens if there is

a W change below ψ(x). Now oρ(z′) must have decreased since this change

was also below γ(z′) but it could be that dρs(z
′) has not changed. But now

kΨ(x) = dρ(z′) and we need to see a decrease in kΨ(x). So we begin an attack

where we lift the use γ(z′) to be large and enumerate this into A. Each time

we do this we will see the ordinal oρ(z′) decrease, so eventually we will see

dρ(z′) decrease and this gives us the decrease in kΨ(x) that we needed.

Now suppose x has been corrupted and let orig(x) be the original tracker

for x. If there is a stage t such that ΓΨ(A,W, orig(x))[t] ↑ then we are able

to once again define the use of this computation to be at least the use ψ(x);

hence we can use orig(x) as the tracker for x once again. If this happens then

we call x uncorrupted. Once x is uncorrupted then we decrease mΨ(x) by

one and define kΨ(x) to be bρ(orig(x)) and go back to following the ordinal

of the original tracker as discussed while Q was empty. We can continue to

do this until there is another stage where a number enters Q below ψ(x).

To meet the N requirements we first need to guess whether Φ(A) is total

or not, we do this in the same way as the P and R requirements. If Φ(A) is

not total then we are done with the requirement, otherwise we need to show

that Φ(A) is ω-c.a. First consider the interaction of only one P requirement

with an N requirement. Now when y is established, at stage s, we can see

the ordinal, os(tr(x)) = ω · ds(tr(x)) + bs(tr(x)), for established inputs x.

Now if x has already been corrupted then if there is a W change an attack

could start and this attack puts at most bs(tr(x)) numbers into A. Since

this number has been seen by y when it was established we can allow injury

from this attack. Notice that if we did let an attack beat the ordinal all

the way down y has no idea how many injuries this could cause because

at stage s all it can incorporate into its ordinal is bs(tr(x)); hence we can

see that is important that we stop attacking once d(z) has decreased by one.

Once this attack finishes we cannot let any future (ρ, x) attack injure Φ(A, y)

because we had not seen the bound for any future (ρ, x) attacks when y was

established.

28 CHAPTER 3. THEOREM

Consider the interaction between two P requirements. We only start

an attack when there is a W change; hence we need to be able to control

how one P requirement could cause an A enumeration that could injure the

computation of another P requirement. Now recall that since we are done if

A⊕W is not totally ω2-c.a. which allows us to be able avoid having another

parent node on the tree between a parent and its child. Hence if ρ̂ � ρ ∞
then τ̂ � ρ∞. This is very useful because this way τ̂ can see that Γ(A,W) is

totally ω2-c.a. So during an attack it can define a set of inputs that it must

protect, denote this set by pro(ρ̂, x̂). Now if there is an A or W change below

ψ(x) then we get to lift γρ̂(ẑ) to be large at the next τ̂ -expansionary stage.

Since τ̂ � τ ∞ then we have seen Ψ(A,W,Q, x) recover; hence we can ensure

γρ̂(ẑ) > ψ(x). We can lift γρ̂(ẑ) to be large when this happens because τ̂

can see that Γ(A,W) is totally ω2-c.a.; hence we know this happens finitely

often and so this cannot send the use to infinity.

A τ node guesses whether Ψ(A,W,Q) is total by measuring the length

of the domain. But notice that it could be that dom Ψ(A,W,Q) goes to

infinity but there could be an input with unbounded use. If this happens

then Ψ(A,W,Q) is not total. In this situation it is clear that Γ(A,W) will

not be ω2-c.a. Above we discussed that along the path containing the finite

outcome of all the children of a P or R requirement shows that A⊕W is not

totally ω2-c.a. but this is not entirely true since it could be that Ψ(A,W,Q)

is actually not total due to the reason above. Therefore we see we also need

nodes that check whether there is an input with unbounded use; this is a

0′′′ feature of the construction. We cannot measure this using a single node

(unless we allow nodes with ω+2 outcomes [10]), so we spread nodes, denoted

ζk, down the tree each measuring whether the computation Ψ(A,W,Q, k)

converges or not for a fixed k. We call these nodes sons and the children

discussed previously are referred to as daughters. We place son nodes down

with k increasing as we go down the tree; hence we are also able to determine

the least point where Ψ(A,W,Q) diverges. Notice that R requirements will

also need to have sons nodes on the tree. Similarly they will measure whether

3.2. TECHNICAL DISCUSSION 29

the computation Θ(A,W, k) converges or not for a fixed k.

Now back to considering the interaction between the R and P require-

ments. We need to decrease m(x) by one each time a number enters Q below

ψ(x). Then we need to know how many times this can happen when we

established x. Let η be a node working for an R requirement and let τ be a

node working for a P requirement. Let µ and ρ be children of η and τ respec-

tively. When x is established it can look to see which µ � ρ∞ currently have

followers appointed and then this could tell us how many times we need to

decrease m(x) by one. For this to work we need to make sure that these are

the only enumerations into Q that can injure Ψ(A,W,Q, x). First consider

the case where η � ρ ∞. Suppose µ is not allowed to injure Ψ(A,W,Q, x),

then µ needs to protect (ρ, x). Now η � ρ ∞ so η knows Γ(A,W) is ω2-c.a.

Then we are able to define δ(p) ≥ γ(z) because we know that this cannot

drive the use to infinity. Now whenever ∆(A,W, p) ↑ we are able to appoint

a new large follower. So now whenever there is a change below γ(z), we are

able to appoint a new large follower; hence we can ensure q > ψ(x). Now

consider µ to the right of ρ ∞. Now due to the way we arrange the tree,

η must extend a child of τ . If η extends a daughter of τ , then η believes

Γ(A,W) is total so we are able to protect (ρ, x). But if η extends a son of τ ,

then η believes that dom Ψ(A,W,Q) = k. In this case we are able to protect

(ρ, x) if x < k. If x ≥ k then we are not able to protect because we cannot

define δ(p) ≥ γ(z) as this would drive δ(p) to infinity.

So consider the case where η believes that dom Ψ(A,W,Q) = k and

x ≥ k. If η is correct then the computation Ψ(A,W,Q, x) changes infinitely

often. We want to set things up so that the enumeration by µ does not

corrupt Ψ(A,W,Q, x). Now notice that µ is only accessible at a stage where

there has been a change in this computation and µ is initialised at every

ρ-expansionary stage (this is because µ is to the right of ρ). Then an enu-

meration by µ is invisible to ρ because this will only happen along with

some other change since the last ρ-expansionary stage. So when it comes to

the ordinal counting the Q change is invisible. But notice that Γ(A,W, z) ↓

30 CHAPTER 3. THEOREM

at the stage µ enumerates q into Q. Then although the Q change did not

cause a problem with the counting, the Q change still renders the current

tracker useless; hence this enumeration still corrupts x. Now since the com-

putation Ψ(A,W,Q, x) changes infinitely often there are also infinitely many

stages such that Γ(A,W, z)[s] ↑. So the strategy is to wait for a stage where

Γ(A,W, z)[s] ↑ and then at this stage we can enumerate q into Q. This en-

sures that we do not need to replace the tracker because we are able to define

Γ(A,W, z) after the Q change. To do this µ sends a request token to τ at

the stage µ sees Θ(A,W, q)[s] = 0. Then at the next τ -expansionary stage

such that there has been a change in the computation Ψ(A,W,Q, x) since

the last τ -expansionary stage then τ enumerates q into Q for µ and we leave

Γ(A,W, z)[s] ↑. Notice that if µ is correct then we must eventually see a

change in the computation Ψ(A,W,Q, x), so we will eventually successfully

enumerate q into Q. So when a new follower for µ is appointed after an

enumeration into Q or after initialisation, we define a set pro(µ) containing

all (ρ, x) such that x has already been established and either µ extends some

daughter of τ or µ extends a son of τ and x < k. Notice that when we have

multiple P requirements τ may need to pass the request on to another τ̂

node if τ believes dom Ψτ̂ (A,W,Q) = k̂.

When we first appoint the anchor for µ, p, we define the set of protected

(ρ, x), pros(µ). We redefine the set of protected (ρ, x) at any stage we appoint

a new follower due to a failed diagonalisation attempt (this is a stage where

we see an A or W change below δ(p) and the current follower is in Q). At

stages where we redefine pros(µ) we include all established (ρ, x) such that

ρ ∞ � µ. Now we also halt and initialise weaker nodes when we do this. So

notice that every time a protected set for any µ is defined, there is a different

least element for every (ρ, x) such that ρ ∞ � µ. Now when µ enumerates a

number into Q at stage s, for each ρ such that ρ ∞ � µ, we can declare the

least x such that (ρ, x) /∈ pros(µ) to be corrupted and x can take over all

established x′ > x. Then because this least x is unique to this enumeration,

every x is only corrupted once. We choose to declare the least unprotected x

3.3. TREE OF STRATEGIES 31

to be corrupted even when q > ψ(x), to ensure x is only declared corrupted

once. Also notice that if x is the least corrupted by an enumeration by µ at

stage s then x was invented at the stage pros(µ) was defined.

Consider two P subrequirements such that (ρ, x) is currently in an attack,

ρ̂ � ρ ∞, x̂ is corrupted and (ρ̂, x̂) /∈ pros(ρ, x). Suppose (ρ, x) enumerates

a number into A at stage s. (ρ̂, x̂) /∈ pros(ρ, x) so x̂ was established after

pros(ρ, x) was defined. Note that nodes to the right of ρ are initialised at

every stage γ(z) is lifted large. Now x̂ is corrupted at stage s so the µ that

corrupts x̂ must be accessible during the (ρ, x) attack; hence µ is to the right

of ρ. This means that µ is initialised at every stage γ(z) is lifted large. Since

prot(µ) was defined at the stage x̂ was invented, it follows that γ(z) was

last lifted large before x̂ was established. Notice that this means the number

that (ρ, x) enumerates into A at stage s is relatively small to (ρ̂, x̂). So if we

define the use of γρ̂(tr(x̂)) to be large at the first τ̂ -expansionary stage after

x̂ was invented, then the enumeration at stage s uncorrupts x̂. Now notice

that by doing this if there is ever an A change below ψ(x) while corrupted,

this A change must be small enough to uncorrupt x.

z acts as a tracker for x when γs(z) ≥ ψs(x). So notice that z could act as

a tracker for many x. We just need to ensure that ΓΨ(A,W) is total, so we

need to ensure z is the tracker for finitely many x. So now we consider z as a

tracker for an interval rather than for a single input. Corruption and attacks

are actions that can only happen finitely often for each x so we choose these

stages to allow use to increase the size of the interval z acts as a tracker

for. Each interval has a least element, we call all other inputs in the interval

taken over by the least element.

3.3 Tree of Strategies

Consider a parent node (τ or η), below the finite outcome the parent does

not have any children and below the infinite outcome we will start assigning

nodes to be children of this parent node, alternating between daughters and

32 CHAPTER 3. THEOREM

sons. We call a parent node closed below the finite outcome of the parent as

well as below the infinite outcome of a daughter and the divergent outcome

of a son. Once the parent is closed, we stop assigning nodes to be children

of this parent and we move to the next parent, alternating between τ and η.

We need to ensure there is a node working for every NΦ on every path, so to

do this we assign every node of even length to work for an N requirement.

3.3.1 Assigning Requirements

List all functionals in order type ω. Then we assign requirements by induc-

tion. Let λ be the root of the tree. Assign λ to working for requirement PΨ

where Ψ is the first functional on the list. Now let β be the longest node

such that β ≺ α and β is not a node working for NΦ. Then we assign a

requirement to α as follows:

Let α be a node of length l, then if l is odd then let γ be the longest

node such that γ ≺ α and γ is a node working for NΦ̂. Now assign α to

work for requirement NΦ, where Φ is the next functional on the list after Φ̂.

Otherwise find which of the following cases apply:

Case 1. β is a node working for PΨ.

• If β ∞ � α, then let α be a node working for requirement PΨ,0.

• If β fin � α, then let α be a node working for requirement RΘ where

Θ = Ψ.

Case 2. β is a node working for PΨ,k.

• If β ∞ � α, then let α be a node working for requirement RΘ where

Θ = Ψ.

• If β fin � α, then let α be a ζk node, son of PΨ.

Case 3. β is a ζk node, son of PΨ.

• If β ↑� α, then let α be a node working for requirement RΘ where

Θ = Ψ.

• If β ↓� α, then let α be a node working for PΨ,k+1.

3.3. TREE OF STRATEGIES 33

Case 4. β is a node working for RΘ.

• If β ∞ � α, then let α be a node working for requirement RΨ,0.

• If β fin � α, then let α be a node working for requirement PΨ where

Ψ is the next functional on the list after Θ.

Case 5. β is a node working for RΘ,k.

• If β ∞ � α, then let α be a node working for requirement PΨ where Ψ

is the next functional on the list after Θ.

• If β fin � α, then let α be a ξk node, son of RΘ.

Case 6. β is an ξk node, son of RΘ.

• If β ↑� α, then let α be a node working for requirement PΨ where Ψ

is the next functional on the list after Θ.

• If β ↓� α, then let α be a node working for RΘ,k+1.

3.3.2 Types of Nodes

There are seven types of nodes. These have been discussed in the technical

discussion; here we give a summary of the action each node takes.

Nodes working for requirement NΦ are denoted π and have outcomes

∞ < fin. π nodes measure the length of the domain of Φ(A). At π ∞
stages we establish a new input y. When y is established we define the first

ordinal for the ω-computable approximation for Φπ(A, y).

Nodes working for requirement RΘ are denoted η. η nodes have outcomes

∞ < fin. η nodes measure the length of the domain of Θ(A,W) and at

stages where η believes Θ(A,W) is total it will define an initial segment

of ∆η(A,W). η also checks whether any of its children need their current

follower replaced by a new one. Note that we need to do this at η because

we need to define δ(p) ≥ θ(q), where p is the anchor and q is the follower.

Nodes working for requirementRΘ,k, denoted µ, are called daughter nodes,

placed on the tree below its parent η. µ nodes have outcomes ∞ < fin. µ

nodes have an anchor p = acs(µ) and a follower q = fls(µ) and enumerate

34 CHAPTER 3. THEOREM

numbers into Q to diagonalise. If µ extends the divergent outcome of a son

of τ , µ will send a request for the enumeration of a follower into Q instead of

doing the enumeration itself. When we appoint the first follower for µ we de-

fine the set of (ρ, x) that µ must protect, pro(µ). Then at stages we appoint

a new follower after a previous enumeration we redefine this set. When we

enumerate a number into Q we declare (ρ, x) that are not protected by µ to

be corrupted.

ξk nodes are called sons of η. A ξk node measures whether Θη(A,W, k)

converges or diverges. ξk nodes have outcomes ↑<↓.

Nodes working for requirement PΨ are denoted τ and have outcomes

∞ < fin. A τ node measures the length of the domain of Ψ(A,W,Q). At

stages where τ believes Ψ(A,W,Q) is total it will define an initial segment

of Γτ (A,W). τ also has the job of dealing with requests from µ nodes below

the divergent outcome of a son of τ .

Nodes working for requirement PΨ,k, denoted ρ, are called daughter nodes,

placed on the tree below the infinite outcome of its parent τ . ρ nodes have

outcomes ∞ < fin. At ρ-expansionary stages a new input, x, is invented,

this means we give x a tracker trs(x), this is the first tracker for x which

we also denote orig(x). At the next ρ-expansionary stage x is established,

at this stage we define the first ordinal for the ω2-computable approximation

for Ψ(A,W,Q, x), oΨ
t (x). So z = trs(x) means z is the tracker for x at

stage s, but also the tracker for all inputs that have been taken over by x.

When an input is taken over by x, it is added to the interval I(x). So at

stage s, z is the tracker for all inputs in Is(x). For action on the interval

I(x) we refer to action on the least input in that interval. Cs(ρ) denotes

the collection of these inputs that have been established but not taken over.

While x is corrupted (ρ, x) will start an attack if there is a W change below

ψ(I(x)). While (ρ, x) is in an attack it will define the set of (ρ̂, x̂) that (ρ, x)

must protect, pro(ρ, x); this will be updated after each enumeration into A.

Now notice we only update the ordinal for x, oΨ
s (x), at ρ-expansionary stages.

This means that when x is declared corrupted, we do not decrease the ordinal

3.4. CONSTRUCTION 35

until the next ρ-expansionary stage. So if there is a W change below ψs(I(x))

between the stage x is declared corrupted and the next ρ-expansionary stage

we do not need to start an attack. At the first ρ-expansionary stage after

x is declared corrupted we declare x to be fully corrupted. Note that we do

not see the ordinal for the new tracker until x has been declared to be fully

corrupted. Similarly, we do not see the new ordinal after finishing an attack

until the next ρ-expansionary stage after the attack was declared finished.

We declare a (ρ, x) attack to be finished at a τ node, so we will not see the

new ordinal until the next ρ-expansionary stage; hence we do not want to

start another attack between the stage the attack is declared finished and

the next ρ-expansionary stage.

ζk nodes are called sons of τ . A ζk node measures whether Ψτ (A,W,Q, k)

converges or diverges. ζk nodes have outcomes {↑, ↓} with ↑<↓.

Note that we may assume that all computations we define have non-

decreasing use.

3.4 Construction

At the beginning of each stage s we check if any (ρ, x) needs declaring un-

corrupted or needs to start an attack. Let ρ be a node working for re-

quirement PΨ,k and let x be such that x ∈ Cs(ρ) and x is corrupted. If

Γρ(A,W, orig(x))[s] ↑, then define trs+1(ρ, x) = orig(ρ, x) and declare x to

be uncorrupted.

If (ρ, x) has not been uncorrupted then let u = ψρs−1(Is−1(ρ, x)). (ρ, x)

wants to attack if all of the following hold:

• Ws−1 � u 6= Ws � u

• (ρ, x) is not currently in an attack

• (ρ, x) is fully corrupted

• (ρ, x) was not in an attack at the last ρ-expansionary stage

If (ρ, x) wants to attack and there is no (ρ̂, x̂) to its left that wants to attack,

then declare (ρ, x) to begin an attack.

36 CHAPTER 3. THEOREM

If an attack has been started or an x has been declared uncorrupted

then halt the stage and initialise all nodes to the right of ρ ∞. For each

such (ρ, x) declare all established x′ > x taken over by x. Formally, define

Cs+1(ρ) = {y ≤ x : y ∈ Cs(ρ)} and for established z ≥ x, Is+1(z) = {y ∈
Is(w) : w ∈ Cs(ρ) and w ≤ x}, and for z < x Is+1(z) = Is(z).

If the stage has not been halted then let the collection of accessible nodes

δs be an initial segment of the tree of strategies. δs is defined by recursion;

the root of the tree is in δs, then the action of each node defines the next

accessible node.

If a π node is accessible at stage s. Let t < s be the last stage π ∞
was accessible, t = 0 if there was no such stage. If dom Φπ(As) < #t then

π fin is accessible; otherwise π ∞ is accessible. If π ∞ is accessible, then

declare the least y that has not already been established to be established.

If a τ node is accessible at stage s. Let t < s be the last τ -

expansionary stage, t = 0 if there was no such stage. If dom Ψτ (A,W,Q)[s] <

#t then τ fin is accessible; otherwise s is a τ -expansionary stage.

If s is a τ -expansionary stage and there is a request token on τ from a µ

node, then µ � ζk ↑ for some son, ζk, of τ . If ∆µ(A,W, p)[s] ↑ then cancel

the request. If the request has not been cancelled and the computation

Ψτ (A,W,Q, k)[t] does not hold at stage s, then:

• If prec(τ) = ∅ then carry out the request by enumerating q = fls(µ)

into Qs+1. Declare (ρ, x) corrupted if ρ ∞ ≺ µ, x ∈ Cs(ρ) and (ρ, x) /∈
pros(µ). For each ρ let x be the least declared corrupted, then declare

all established x′ > x taken over by x. If (ρ, x) has been declared

corrupted and has not been taken over, then define a new large tracker

trs+1(ρ, x) for x, halt and initialise all nodes weaker than µ ∞.

• Otherwise move the request token to the longest τ̂ ∈ prec(τ), halt and

initialise all nodes weaker than µ ∞.

If the stage has not been halted, then let ρ be a daughter of τ and z =

3.4. CONSTRUCTION 37

trs(ρ, x) for x ∈ Cs(ρ). If Γτ (A,W, z)[s] ↑ then do the first of the following

that applies:

• If (ρ, x) is not in an attack then:

– If x was invented at stage t, define Γτ,s+1(As,Ws, z) = s with large

use.

– Otherwise define Γτ,s+1(As,Ws, z) = s with use ψρs(Is(ρ, x)).

• Let r be the stage (ρ, x) began its attack. If dρr(z) > dρs(z) then define

pros+1(ρ, x) to be the empty set, declare the (ρ, x) attack to be finished

and define Γτ,s+1(As,Ws, z) = s with use ψρs(Is(ρ, x)).

• If (ρ, x) was not in an attack at stage t (the last τ -expansionary stage),

then declare (ρ, x) to be fully in an attack and define Γτ,s+1(As,Ws, z) =

s with large use and define pros+1(ρ, x) to be the set of (ρ̂, x̂) such that

x̂ ∈ Cs(ρ̂) and ρ̂ ∞ ≺ τ , halt and initialise all nodes to the right of

ρ ∞.

• If (ρ, x) enumerated a number into A at stage t, then define pros+1(ρ, x)

to be the set of (ρ̂, x̂) such that x̂ ∈ Cs(ρ̂) and ρ̂ ∞ ≺ τ , and define

Γτ,s+1(As,Ws, z) = s with large use, halt and initialise all nodes to the

right of ρ ∞
• if there is some (ρ̂, x̂) ∈ pros(ρ, x) with tracker trt(ρ̂, x̂) = ẑ such that

the computation Γρ̂(A,W, ẑ))[t] no longer holds at stage s, or x̂ has been

uncorrupted between stages t and s, then define Γτ,s+1(As,Ws, z) = s

with large use, halt and initialise all nodes to the right of ρ ∞.

• Otherwise define Γτ,s+1(As,Ws, z) = s with use γt+1(z).

For z < t if Γτ (A,W, z)[s] ↑ and z is not a tracker for any daughter of τ , then

define Γτ,s+1(As,Ws, z) = 0 with use 0. If the stage has not been halted then

let τ ∞ be accessible.

If a ρ node working for requirement PΨ,k is accessible at stage s.

Let t < s be the last ρ-expansionary stage, t = 0 if there is no such stage. If

∀z < #t, Γτ (A,W, z)[s] = fρs (z) and oρs(z) < ω2, then s is a ρ-expansionary

stage; otherwise ρ fin is accessible.

38 CHAPTER 3. THEOREM

Suppose s is a ρ-expansionary stage. Let x ∈ Cs(ρ) and let z = trs(x).

Then do the following:

• If (ρ, x) was either corrupted at stage t then declare x to be fully

corrupted.

• If (ρ, x) is in an attack then enumerate γs(z) into As+1, halt the stage

and initialise all nodes to the right of ρ ∞.

If the stage has not been halted then invent a new input by letting x+ 1 be

least such that trs(x+ 1) ↑ then define a new large tracker for x+ 1. Define

orig(ρ, x + 1) = trs+1(x + 1). If x + 1 > 0 then declare x established and

define Cs+1(ρ) = Cs(ρ) ∪ {x} and Is(x) = {x}. Let ρ ∞ be accessible.

If a ζk node, son of τ , is accessible at stage s. Let t < s be the last

ζk ↑ stage, t = 0 if there is no such stage. If the computation Ψτ (A,W,Q, k)[t]

does not hold at stage s then let ζk ↑ be accessible; otherwise let ζk ↓ be

accessible.

If an η node is accessible at stage s. Let t < s be the last η-

expansionary stage, t = 0 if there is no such stage. If dom Θ(A,W)[s] < #t

then η fin is accessible; otherwise s is an η-expansionary stage.

Suppose s is an η-expansionary stage. If ∆η(A,W, p)[s] ↑ and p < s is

not the anchor of any daughter of η, then define ∆η,s+1(As,Ws, p) = 0 with

use 0. Otherwise, if ∆η(A,W, p)[s] ↑ and p = acs(µ) for µ a daughter of η,

then let q = fls(µ) and do the first of the following that applies:

• If q ∈ Qs then cancel the follower q, appoint a new large follower, and

leave ∆η(A,W, p) ↑. Define pros+1(µ) to be the set of (ρ, x) such that

(ρ, x) needs protection from µ at stage s. Halt and initialise all nodes

weaker than µ ∞.

• If q < ψρs(Is(ρ, x)) for some (ρ, x) ∈ pros(µ) then cancel the follower

q and appoint a new large follower and leave ∆η(A,W, p) ↑. Halt and

initialise all nodes weaker than µ ∞.

• Otherwise define ∆η,s+1(As,Ws, p) = s with use θs(q). Note that we do

not halt the stage.

3.4. CONSTRUCTION 39

If the stage has not been halted then let η ∞ be accessible.

If a µ node working for requirement RΘ,k is accessible at stage s.

Let t < s be the last µ-expansionary stage, t = 0 if there is no such stage. If

∀p < #t, ∆η(A,W, p)[s] = fµs (p) and oµs (p) < ω2, then s is a µ-expansionary

stage, otherwise µ fin is accessible. If s is a µ-expansionary stage then:

• If acs(µ) ↑ then define a new large anchor and a new large follower.

Define pros+1(µ) to be the set of (ρ, x) such that (ρ, x) needs protection

from µ at stage s. Halt and initialise all nodes weaker than µ ∞.

• Let q = fls(µ). If q /∈ Qs, Θ(A,W, q)[s] = 0 and prec(µ) = ∅, then

enumerate q into Qs+1. Declare (ρ, x) corrupted if ρ ∞ ≺ µ, x ∈ Cs(ρ)

and (ρ, x) /∈ pros(µ). For each ρ let x be the least declared corrupted,

then declare all established x′ > x taken over by x. If (ρ, x) has been

declared corrupted and has not been taken over, then define a new large

tracker, halt and initialise all nodes weaker than µ ∞.

• If q /∈ Qs, Θ(A,W, q)[s] = 0 and prec(µ) 6= ∅, then send a request

token for µ to the longest τ ∈ prec(µ), halt and initialise all nodes

weaker than µ ∞.

If the stage has not been halted then let µ ∞ be accessible.

If a ξk node, son of η, is accessible at stage s. Let t < s be the last

ξ ↑ stage, t = 0 if there is no such stage. If the computation Θη(A,W, k)[t]

does not hold at stage s, then let ξk ↑ be accessible; otherwise let ξk ↓ be

accessible.

3.4.1 Verification

First note that if (ρ, x) ∈ pros(α) then τ ∞ � α, so ψρs(Is(ρ, x)) ↓; hence the

uses defined in the construction exist.

Lemma 3.1. Let µ be a node working for requirement RΘ,k with parent η.

For all stages s, if q = fls(µ) is defined then p = acs(µ) is also defined, and

if ∆η(A,W, p)[s] ↓ then Θη(A,W, q)[s] ↓ and θs(q) ≤ δs(p).

40 CHAPTER 3. THEOREM

Proof. The anchor only becomes undefined at initialisation. Note that at

the first µ-expansionary stage after initialisation an anchor and a follower is

appointed. Then at any stage at which a new follower is appointed either a

new anchor is also appointed or the anchor is already defined.

Suppose ∆η(A,W, p)[s] ↓ and let t < s be the stage at which this compu-

tation was defined, and u be the use of this computation. Then stage t is an

η-expansionary stage, so Θη(A,W, q)[t] ↓. The computation ∆η(A,W, p) has

not changed between stages t and s so As � u = At � u and Ws � u = Wt � u.

At stage t, u was defined so that u ≥ θt(q); hence As � θt(q) = At � θt(q) and

Ws � θt(q) = Wt � θt(q). Then it follows that the use of Θη(A,W, q)[t] has

not changed, so Θη(A,W, q)[s] ↓ and θs(q) ≤ δs(p).

Lemma 3.2. Let τ be a node working for requirement PΨ. Let s be the

stage a request is carried out and t ≤ s be the stage τ acts on the request,

then there are no τ -expansionary stages between stage t and stage s.

Proof. If prec(τ) = ∅ then τ carries out the request; hence s = t and we

are done. So we suppose prec(τ) 6= ∅, then at stage t, τ passes the request

to a node τ̂ which has a son, ζ̂k̂, with ζ̂k̂ ↑� τ . Then τ is only accessible at

ζ̂k̂ ↑ stages, so there has been a change in the computation Ψρ̂(A,W,Q, k̂)

between two τ stages. Then while τ̂ has the request any such changes would

cause the request to be acted on, and when this happens the stage is halted.

Let t0 be the stage τ̂ acts on the request, then there are no τ -expansionary

stages between stage t and t0. If t0 = s we are done; otherwise it is passed to

some τ ′. Let t1 be the stage τ ′ acts on the request; then we repeat the same

argument to find there are no τ̂ stages between stage t0 and t1. If t1 = s then

since every τ stage is a τ̂ stage we are done. Continue this argument, since

prec(τ) is finite and the request is carried out at stage s, tn = s for some n;

hence there are no τ -expansionary stages between stage t and stage s.

Lemma 3.3. For all stages s, (1), (2), and (3) hold.

(1) Let ρ be a node working for requirement PΨ,k with parent τ . Let z =

trs(ρ, x) for x ∈ Cs(ρ). Suppose (ρ, x) is not in an attack at stage s and

3.4. CONSTRUCTION 41

Γτ (A,W, z)[s] ↓. Let t be the stage the computation Γτ (A,W, z)[s] was

defined. Then Qt � ψt(It(x)) = Qs � ψt(It(x)) and for all x̂ ∈ Is(ρ, x),

Ψ(A,W,Q, x̂)[s] ↓ and ψs(Is(ρ, x)) ≤ γs(z).

(2) Let µ be a node working for requirement RΘ,k and let q = fls(µ).

Suppose ρ is a node such that ρ ∞ to the left of µ such that x ∈
Cs(ρ) and (ρ, x) /∈ pros(µ). If q is enumerated into Qs+1 at stage s

and q < ψρs(Is(ρ, x)), then either (ρ, x) is in an attack at stage s or

Γτ (A,W, tr(x))[s] ↑.

(3) Let µ be a node working for requirement RΘ,k, and let p = acs(µ) and

q = fls(µ). If q /∈ Qs and there is a (ρ, x) ∈ pros(µ) such that

q < ψρs(Is(ρ, x)), then ∆η(A,W, p)[s] ↑ and q is not enumerated into

Qs+1 at stage s.

Proof. We prove the lemma by simultaneous induction on the stage s. Clearly

at s = 0, (1), (2) and (3) hold. So let s > 0 and suppose (1), (2) and (3)

hold for all stages t < s.

Consider (1) at stage s. Suppose Qt � ψt(It(x)) 6= Qs � ψt(It(x)). Then

at stage r ∈ [t, s) some µ enumerated its follower q into Qr+1 and q < ψt(x).

Note that Γρ(A,W, tr(x))[r] ↑ at a stage r where a new tracker is appointed.

Therefore z = trs(x) = trt(x) and so x has not been corrupted between

stages t and s. Then since x ∈ Cs(ρ) it is also the case that x has not

been taken over between stages t and s. Recall that by the construction, if

µ � ρ∞ and (ρ, x) /∈ pror(µ) then x is either corrupted or taken over; hence

either (ρ, x) ∈ pror(µ) or µ is to the right of ρ ∞. Now note that an attack

is only declared finished at a stage where Γρ(A,W, z) ↑. Then it follows that

since (ρ, x) is not in an attack at stage s, it is also the case that (ρ, x) is not

in an attack at any stage r such that r ∈ [t, s]. (3) holds at stage r; hence

(ρ, x) /∈ pror(µ). (2) holds at stage r; hence either Γρ(A,W, tr(x))[r] ↑
or (ρ, x) is in an attack at stage r. But (ρ, x) is not in an attack at any

stage r such that r ∈ [t, s] and Γρ(A,W, tr(x))[r] ↓, a contradiction. Hence

42 CHAPTER 3. THEOREM

Qt � ψt(It(x)) = Qs � ψt(It(x)). Let u be the use of the computation

Γτ (A,W, z)[s]. At stage t, the use u was defined to be ψt(It(x)) so (A,W,Q)t �

ψt(It(x)) = (A,W,Q)s � ψt(It(x)). Then it follows that for all x̂ ∈ Is(x),

Ψ(A,W,Q, x̂)[s] ↓ and ψs(Is(x)) ≤ γs(z). Thus (1) holds at stage s.

Consider (2) at stage s. First, if (ρ, x) is in an attack at stage s then

we are done. So suppose (ρ, x) is not in an attack at stage s. Let τ be

the parent of ρ and let r0 be the stage pros(µ) was defined. Notice that µ

is initialised at every ρ-expansionary stage; hence x was established before

stage r0. (ρ, x) /∈ pros(µ); therefore either µ believes dom Ψρ(A,W,Q) = k′

and Ir0(x) 6⊆ k′, or µ lies to the right of τ ∞.

Case 1. µ lies to the right of τ ∞. Then µ is initialised at every τ -

expansionary stage; hence we do not see any Ψτ (A,W,Q) computations re-

cover while q is the follower of µ. Let r1 be the stage q is appointed. At stage

r1, q is appointed to be large; therefore for all x′ such that Ψτ (A,W,Q, x
′)[r1] ↓,

q > ψr1(x
′). If there are any changes below the use of any of these computa-

tions while q is the follower for µ then they do not recover until after stage

s. So it follows that for all x′ such that Ψτ (A,W,Q, x
′)[s] ↓, q > ψs(x

′). So

it is not possible to have q < ψρs(Is(ρ, x)) at stage s.

Case 2. µ believes dom Ψρ(A,W,Q) = k′ and Ir′(x) 6⊆ k′. Now τ ∈
prec(µ) so prec(µ) 6= ∅. Therefore enumeration of q into Qs+1 at stage

s is carried out by a request token at some τ̂ (note that it could be that

τ̂ = τ). Let t ≤ s be the stage τ acts on the request and r < t be the

stage τ receives the request. Then stage t is the first τ -expansionary stage

after a change in the computation Ψρ(A,W,Q, k
′)[r]. Notice that if there is

a stage t > r′ such that Ir′(x) 6= It(x) then µ is initialised; hence Is(x) 6⊆ k′.

Now let x′ be the least element in the interval It(k
′). Suppose (ρ, x′) is in

an attack at stage t. Note that µ is not initialised between stages r0 and

s, so this attack started before stage r0. Then at the last ρ-expansionary

stage a number is enumerated into A and all established inputs greater

than x′ are taken over by x′. Then x = x′, but an attack can only be

declared finished at τ -expansionary stages, and by Lemma 3.2 there are no

3.4. CONSTRUCTION 43

τ -expansionary stages between stage t and s; hence if (ρ, x′) is in an attack

at stage t then (ρ, x) is in an attack at stage s, a contradiction. Then (ρ, x′)

is not in an attack at stage t, and (1) holds at stage t, so it follows that

ψt(k
′) ≤ γt+1(trt+1(x′)) ≤ γt+1(trt+1(x)). Then the change in the compu-

tation Ψρ(A,W,Q, k
′)[r] between stages r and t causes Γρ(A,W, tr(x))[t] ↑.

t is the first τ -expansionary stage after stage r; at this stage the request is

acted on and we do not define Γρ(A,W, tr(x))[t]. Γρ(A,W, tr(x))[s] is only

defined at τ -expansionary stages, and by Lemma 3.2 there are no such stages

between stage t and stage s; hence Γρ(A,W, tr(x))[s] ↑.

Consider (3) at stage s. Suppose at stage s there is a node µ with follower

q and anchor p, and there is a (ρ, x) ∈ pros(µ) such that q < ψρs(Is(ρ, x)).

If ∆µ(A,W, p)[s] ↑ and prec(µ) 6= ∅ then the enumeration is carried out

by a τ node acting on a request, but since ∆µ(A,W, p)[s] ↑ the request will

be cancelled; hence q is not enumerated into Qs+1. If ∆µ(A,W, p)[s] ↑ and

prec(µ) = ∅ then q is enumerated into Qs+1 at an η-expansionary stage, but

∆µ(A,W, p)[s] ↑ and there is a (ρ, x) ∈ pros(µ) such that q < ψρs(Is(ρ, x)),

so q will be cancelled before it can be enumerated into Qs+1. Therefore it

suffices to show that ∆µ(A,W, p)[s] ↑.
So suppose ∆µ(A,W, p)[s] ↓ and let t be the stage this computation was

defined. Let r0 be the stage pros(µ) was defined, and let r1 be the stage

q was appointed (note that r0 ≤ r1). x was established before stage r1

and τ ∞ � η, so it follows that q > ψρr1(Ir1(x)). Notice that at stage t,

∆µ(A,W, p)[t] ↑. If q < ψρt (It(x)) we would not define ∆µ(A,W, p)[t + 1],

instead we would cancel q, but q = fls(µ); hence q > ψρt (It(x)). Then at

stage t we define ∆µ(A,W, p)[s] with use θ(q), and since θ(q) ≥ q it follows

that δs(p) > ψρt (It(x)). Now at stage s, q < ψρs(Is(x)) so Qt � ψ
ρ
t (It(x)) 6=

Qs � ψ
ρ
t (It(x)). Let µ̂ be the node that enumerates its follower q̂ into Qr+1

at stage r ∈ [t, s). Notice q /∈ Qs and q = fls(µ) = flt(µ), so µ̂ 6= µ.

Now µ has not been initialised between stages t and s; hence µ̂ is weaker

than µ. Let r2 be the stage that pror(µ̂) was defined. Notice r2 > r1

because µ̂ is initialised when q is appointed. Now this means x was already

44 CHAPTER 3. THEOREM

established at stage r2. If (ρ, x) ∈ pror(µ̂), r < s so (3) holds at stage r;

hence q̂ is not enumerated intoQr+1. But q̂ is enumerated intoQr+1; therefore

(ρ, x) /∈ pror(µ̂). But x was established before stage r2, so µ̂ lies to the right

of ρ ∞, µ̂ believes dom Ψρ(A,W,Q) = k′ and Ir2(ρ, x) 6⊆ k′. Now (2) holds

at stage r, so either (ρ, x) is in an attack at stage r or Γρ(A,W, z)[r] ↑.
Suppose (ρ, x) is in an attack at stage r. Since (ρ, x) ∈ pros(µ), (ρ, x)

was not in an attack at stage r0; hence this (ρ, x) attack starts at stage r3 ∈
(r0, r). Notice that this attack is prompted by a W change below ψ(I(x)), as

discussed above δs(p) > ψρt (It(x)) and the computation ∆µ(A,W, p)[s] was

defined at stage t; hence this attack was started before stage t. Now if µ was

to the right of ρ ∞ then it would be initialised at stage r3 but r3 ∈ (r0, r) so

µ � ρ ∞ and hence η � ρ ∞. Then there are no η-expansionary stage until

the attack is finished. (ρ, x) is still in an attack at stage r; hence t > r, but

this is a contradiction because r ∈ [t, s). Therefore Qt � ψ
ρ
t (It(x)) = Qs �

ψρt (It(x)) and so q > ψρs(Is(x)).

Therefore if q < ψρs(Is(x)) then ∆µ(A,W, p)[s] ↑ and q is not enumerated

into Qs+1 at stage s.

Lemma 3.4. Let ρ be a node working for requirement PΨ,k and let x ∈
Cs(ρ). Let µ be a node working for requirement RΘ,k, and let q = fls(µ).

Suppose q is enumerated into Qs+1 at stage s. If (ρ, x) is not in an attack,

q < ψs(Is(ρ, x)) and Γτ (A,W, tr(x))[s] ↓, then µ � ρ∞ and (ρ, x) /∈ pros(µ).

Proof. If (ρ, x) ∈ pros(µ) then by Lemma 3.3 (3), q is not enumerated into

Qs+1, a contradiction.

If (ρ, x) /∈ pros(µ) and µ is to the right of ρ ∞, then µ is initialised at

every ρ-expansionary stage; hence x was established before q was appointed.

But Γτ (A,W, tr(x))[s] ↓ and (ρ, x) is not in an attack; this is a contradiction

to Lemma 3.3 (2).

Lemma 3.5. Let ρ be a node working for requirement PΨ,k and let x ∈ Cs(ρ).

Suppose x is declared corrupted at stage s. If at stage t > s, (ρ, x) is

3.4. CONSTRUCTION 45

not in an attack, and some µ enumerates a follower q into Qt+1 such that

q < ψt(It(ρ, x)) and Γτ (A,W, tr(x))[t] ↓, then x is taken over at stage t.

Proof. (ρ, x) was declared corrupted at stage s. Then at stage s some µ̂

enumerated its follower q̂ into Qs+1, such that µ̂ � ρ ∞ and x was the

least input for ρ such that (ρ, x) /∈ pros(µ̂). At stage t > s, µ enumerates

q into Qt+1 such that q < ψt(It(ρ, x)) and Γτ (A,W, tr(x))[t] ↓. It follows

from Lemma 3.4 that µ � ρ ∞. The stage is halted when a protected set is

defined; hence pros(µ̂) and prot(µ) were defined at different stages; call these

stages r̂ and r respectively. x was the least input that was not yet established

at stage r̂. If r > r̂ then since µ � ρ ∞, a new input has been established

since stage r̂; hence x has already been established at stage when we define

prot(µ) at stage r; hence (ρ, x) ∈ prot(µ), but this contradicts Lemma 3.3

(3). Now suppose r < r̂. Let x′ be the least input for ρ that was not yet

established at stage r. µ̂ � ρ ∞, so r̂ is a ρ-expansionary stage; hence at

stage r̂ a new input is established. So x′ 6= x. Then x is not the least input

that is not in pros(µ); hence at stage t, x is taken over.

Lemma 3.6. Let ρ and ρ̂ be nodes working for requirements PΨ,k and PΨ̂,k̂

respectively. Let x ∈ Cs(ρ) and x̂ ∈ Cs(ρ̂), with trackers z and ẑ respectively.

Let (ρ̂, x̂) be in an attack at stage s, and let t be the stage the (ρ̂, x̂) attack

is finished. If (ρ, x) ∈ pros(ρ̂, x̂) then x is not corrupted at stage r ∈ [s, t).

Proof. (ρ, x) ∈ pros(ρ̂, x̂) so ρ ∞ ≺ ρ̂. x is corrupted by the enumeration of

a follower of µ, q, into Qr+1 at stage r such that µ � ρ ∞. Then consider

the following cases:

Case 1. µ � ρ̂ ∞. Then µ is not accessible during the (ρ̂, x̂) attack;

hence x is not corrupted at stage r ∈ [s, t).

Case 2. µ ∞ ≺ ρ̂ or µ is to the left of ρ̂. Then when x is corrupted at

stage r, ρ̂ is initialised causing the attack to stop; hence t = r.

Case 3. µ is to the right of τ̂ . (ρ, x) ∈ pros(ρ̂, x̂), so x was already es-

tablished at the stage pros(ρ̂, x̂) was defined and at this stage µ is initialised.

Now if x was corrupted after stage s then the corrupting q was appointed

46 CHAPTER 3. THEOREM

after stage s, but x ∈ Cs(ρ) so (ρ, x) ∈ pror(µ) and so x is not corrupted

after stage s.

Case 4. µ � τ̂ ∞ and µ is to the right of ρ. Then q was appointed at a

τ̂ -expansionary stage. Consider the stage pros(ρ̂, x̂) was defined. Then at the

last τ̂ -expansionary stage before we define pros(ρ̂, x̂) either (ρ̂, x̂) was not in

an attack or (ρ̂, x̂) enumerated a number into A. Then µ was initialised at this

stage. µ � τ̂ ∞ so pror(µ) was defined after (or at) the stage pros(ρ̂, x̂) was

defined, but x was already established at this stage; hence (ρ, x) ∈ pror(µ)

and so x is not corrupted after stage s.

Therefore x is not corrupted at stage r ∈ [s, t).

Lemma 3.7. Let ρ be a node working for requirement PΨ,k with parent τ .

Let z = trs(ρ, x) for x ∈ Cs(ρ). For all stages s such that (ρ, x) is in an attack,

if Γτ (A,W, z)[s] ↓ then for all (ρ̂, x̂) ∈ pros(ρ, x), Γρ̂(A,W, tr(ρ̂, x̂))[s] ↓ and

γs(z) ≥ γρ̂s (trs(ρ̂, x̂)).

Proof. Let s be the least counterexample. At stage s, Γτ (A,W, z)[s] ↓ and

there is some (ρ̂, x̂) ∈ pros(ρ, x) with tracker ẑ, such that Γρ̂(A,W, ẑ)[s] ↑ or

γs(z) < γρ̂s (ẑ). Let t be the stage at which the computation Γτ (A,W, z)[s]

was defined, and let u be the use of this computation. pros(ρ, x) is only

redefined when Γτ (A,W, z) is defined, so pros(ρ, x) = prot(ρ, x). (ρ̂, x̂) ∈
pros(ρ, x), so τ̂ ∞ ≺ τ ; hence t is a τ̂ -expansionary stage. Then at stage t,

Γρ̂(A,W, trt(x̂))[t] ↓.
If u was defined to be large at stage t, then γt(z) ≥ γρ̂t (trt(x̂)). If u was

not defined to be large, then it was defined to be γr(z) where r < t is the last

τ -expansionary stage. s is the least counterexample, so at stage r γr(z) ≥
γρ̂r (trr(x̂)). Note that by Lemma 3.6, x̂ has not been corrupted between

stages r and t. Since u was not defined to be large, it is also the case that x̂

has not been uncorrupted between stages r and t; hence trr(x̂) = trt(x̂). If

γρ̂r (trt(x̂)) 6= γρ̂t (trt(x̂)) then the computation Γρ̂(A,W, tr(ρ̂, x̂))[r] no longer

holds at stage t; hence we would define the use to be large, a contradiction. So

at stage r, γρ̂r (trt(x̂)) = γρ̂t (trt(x̂)), then it follows that γt(z) ≥ γρ̂t (trt(ρ̂, x̂)).

3.4. CONSTRUCTION 47

Now the computation Γτ (A,W, z)[s] was defined at stage t, so At � u =

As � u and Wt � u = Ws � u. u = γt(z) ≥ γρ̂t (trt(x̂)), so it follows that

the computation Γρ̂(A,W, trt(ρ̂, x̂))[t] has not changed between stage t and

stage s. By Lemma 3.6, x̂ has not been corrupted between stages t and s.

u ≥ γρ̂t (trt(x̂)) > γρ̂t (orig(x̂)) therefore x̂ has not been uncorrupted between

stages t and s; hence trt(ρ̂, x̂) = trs(ρ̂, x̂) = ẑ. Then Γρ̂(A,W, ẑ)[s] ↓ and

γs(z) ≥ γ ρ̂s (ẑ).

Lemma 3.8. Let µ be a node working for requirement RΘ,k. Let s and

t > s be successive µ-expansionary stages with p = acs(µ) = act(µ). Let

u = δs(p). If At � u 6= As � u or Wt � u 6= Ws � u, then oµt (p) < oµs (p).

Proof. At stage r ∈ (s, t), ∆η(A,W, p)[r] ↑, then at the next η-expansionary

stage r′ ∈ (r, t], ∆η(A,W, p)[r
′] = r′.

∆η(A,W, p)[s] ≤ s < r′ = ∆η(A,W, p)[r
′] ≤ ∆η(A,W, p)[t]

so ∆η(A,W, p)[s] 6= ∆η(A,W, p)[t]. s and t are µ-expansionary stages, so

∆η(A,W, p)[s] = fµs (p) and ∆η(A,W, p)[t] = fµt (p), then fµs (p) 6= fµt (p);

hence oµt (p) < oµs (p) since 〈fµs , oµs 〉 is an ω2-computable approximation.

Lemma 3.9. Let µ be a node working for requirement RΘ,k. µ sends finitely

many requests and enumerates finitely many followers into Q while a partic-

ular p is the anchor.

Proof. Suppose there are finitely many µ-expansionary stages. A request is

sent at a µ expansionary stage; hence only finitely many requests are sent. If

prec(µ) = ∅ then a follower is enumerated into Q at a µ-expansionary stage;

hence only finitely many followers are enumerated into Q. If prec(µ) 6= ∅
then a follower is enumerated into Q when a request is carried out. There

are only finitely many requests sent and only one follower can be enumerated

into Q per request; thus finitely many followers are enumerated into Q.

Now suppose there are infinitely many µ-expansionary stages. Now if p is

eventually cancelled, clearly only finitely many request are sent and finitely

48 CHAPTER 3. THEOREM

many followers are enumerated into Q while p is the anchor. So suppose

p is never cancelled. Then µ is not initialised while p is the anchor. Once

a follower has been enumerated into Q, a new follower is appointed only if

there is a stage t where ∆µ(A,W, p)[t] ↑. Note that when a new follower is

appointed, the stage is halted. A follower is enumerated at a µ-expansionary;

this stage is also an η-expansionary stage, so ∆µ(A,W, p)[s] ↓ at the stage a

follower is enumerated into Q. But infinitely many followers are enumerated

into Q, so after each stage s where a follower is enumerated into Q, there is a

stage t where ∆µ(A,W, p)[t] ↑. Let r be the first µ-expansionary stage after

stage t and let u = δs(p). Then At � u 6= Ar � u or Wt � u 6= Wr � u, and by

Lemma 3.8, oµt (p) < oµs (p). There are infinitely many of these stages; then

it follows that the ordinal oµ(p) decreases infinitely often, but 〈fµs , oµs 〉 is an

ω2-computable approximation, so this is a contradiction. Therefore finitely

many numbers are enumerated into Q. Suppose µ sends infinitely many

requests. Then only finitely many of these requests are carried out by the

previous argument. µ is not initialised while p is the anchor, so these requests

are cancelled due to ∆µ(A,W, p) ↑. Then we can follow the same argument

as above to show that this cannot happen as 〈fµs , oµs 〉 is an ω2-computable

approximation.

Lemma 3.10. Let µ be a node working for requirement RΘ,k. Then while

a particular p is the anchor for µ, there are finitely many stages such that

pros(µ) 6= pros+1(µ).

Proof. If p is eventually cancelled, then clearly pro(µ) can only be redefined

finitely many times while p is the anchor. So let p be the anchor of µ that

is never cancelled. While p is the anchor for µ, pro(µ) gets redefined at a

stage s where ∆η(A,W, p)[s] ↑ and fls(µ) ∈ Qs. Notice that this means that

a new follower is appointed at every stage that pro(µ) gets redefined while p

is the anchor. Then by Lemma 3.9, finitely many followers are enumerated

into Q while p is the anchor; hence ∆η(A,W, p)[s] ↑ and fls(µ) ∈ Qs, finitely

often. Therefore we redefine pro(µ) at finitely many stages.

3.4. CONSTRUCTION 49

Lemma 3.11. Let ρ be a node working for requirement PΨ,k with parent τ ,

such that ρ ∞ is initialised finitely often. Then for all x there exists a stage

t such that for all s > t, Is(ρ, x) = It(ρ, x).

Proof. First note that the interval I(ρ, x) can only be redefined to be larger

than it previously was. Suppose there are finitely many ρ-expansionary

stages. Notice that finitely many inputs are ever established. Then there

are only finitely many x′ that could be added to the interval I(ρ, x); hence

it cannot change infinitely often.

Now suppose there are infinitely many ρ-expansionary stages. Then

Γτ (A,W) is ω2-c.a. Suppose there is some x such that the interval I(ρ, x)

changes infinitely often. ρ is initialised finitely often, so let r be the last stage

that ρ is initialised. Then after stage r, x will change trackers at most three

times (one when x is established, one when it is corrupted, and then back to

the original tracker if x is ever uncorrupted). So let z be the last tracker for

x. Now the interval I(ρ, x) increases infinitely often, so the use ψs(Is(ρ, x))

will go to infinity. By Lemma 3.3 (1), for all stages s such that z = trs(x),

γs(z) ≥ ψs(Is(ρ, x)). z is the last tracker of x (and is never cancelled), so the

use γs(z) must go to infinity. But this contradicts that Γτ (A,W) is ω2-c.a.

Therefore there cannot be an x such that its interval I(ρ, x) changes infinitely

often.

Lemma 3.12. Let µ be a node working for requirement RΘ,k with parent

η. At all stages s at which p = acs(µ), there are finitely many followers

appointed.

Proof. If p is eventually cancelled then certainly only finitely many followers

are appointed while p is the anchor. So let p be an anchor that is never

cancelled. While a particular p is the anchor, a new follower is appointed at

an η-expansionary stage s, where ∆η(A,W, p)[s] ↑ and either fls(µ) ∈ Qs or

q < ψρs(Is(ρ, x)) for some (ρ, x) ∈ pros(µ). Notice that if there are finitely

many η-expansionary stages, then clearly only finitely many followers are

appointed. So suppose there are infinitely many η-expansionary stages. At

50 CHAPTER 3. THEOREM

each η-expansionary stage such that ∆η(A,W, p)[s] ↑ and fls(µ) ∈ Qs, we

appoint a new follower. Then it follows that if this happens infinitely often,

µ could enumerate infinitely many followers into Q while p is the anchor,

a contradiction to Lemma 3.9. By Lemma 3.10, since p is never cancelled,

pros(µ) eventually stabilises. Let pro(µ) be the last protected set defined

for µ while p is the anchor. Note (ρ, x) ∈ pro(µ), ρ ∞ is either to the left of

µ or ρ ∞ ≺ µ. µ is initialised finitely often since p is never cancelled, so it

follows that ρ is also initialised finitely often. Then by Lemma 3.11, for each

(ρ, x) ∈ pro(µ) the interval Is(ρ, x) eventually stabilises. Let I(x) be the last

interval defined for (ρ, x) while p is the anchor. Now if (ρ, x) ∈ pro(µ) then

either µ believes Ψτ (A,W,Q) is total or µ believes dom Ψρ(A,W,Q) = k′

for some k′, and Ir(ρ, x) ⊆ k′ where r is the stage pro(µ) was defined. We

consider each case separately.

Case 1. (ρ, x) ∈ pro(µ) and µ believes Ψτ (A,W,Q) is total, where τ is

the parent of ρ. Then there is a daughter of τ , ρ̂, such that ρ̂ ∞ � µ. Note

that it could be that ρ = ρ̂. There are infinitely many η-expansionary stages,

so ρ̂ ∞ is accessible infinitely often; hence Ψτ (A,W,Q) is total. Therefore

the use ψρ(I(x)) eventually stabilises; hence for (ρ, x) ∈ pro(µ) such that µ

believes Ψτ (A,W,Q) is total, we see q < ψs(Is(ρ, x)) finitely often.

Case 2. (ρ, x) ∈ pro(µ), µ believes dom Ψρ(A,W,Q) = k′ for some k′,

and Ir(ρ, x) ⊆ k′ where r is the stage pro(µ) was defined. Notice that if there

is a stage t > r such that Ir(x) 6= It(x), then µ would be initialised. But

the assumption is that p is not cancelled after stage r; hence Ir(x) = I(x).

Now suppose we see fls(µ) < ψρs(Is(ρ, x)) at infinitely many η-expansionary

stages. Let x′ be the least input in the interval I(x) such that the use ψs(x
′)

increases infinitely often. Ir(x) ⊆ k′ so x′ < k. Then by the assignment

of requirements, there is a brother of ρ, ζx′ such that ζx′ ↓� µ. If the

use ψ(I(x)) increases infinitely often then there must be infinitely many ζx′

stages where the computation Ψρ(A,W,Q, x
′) has changed; hence there are

infinitely many ζx′ ↑ stages. µ is initialised at every ζx′ ↑ stage, but µ is only

initialised finitely often, a contradiction.

3.4. CONSTRUCTION 51

Therefore only finitely many followers are appointed while p is the anchor

of µ.

Lemma 3.13. Suppose η is accessible infinitely often and initialised finitely

often, then either η ∞ or η fin is accessible infinitely often and initialised

finitely often.

Proof. Suppose there are finitely many η-expansionary stages, then since η

can only halt the stage at η-expansionary stages, η fin is accessible infinitely

often. Nodes extending η ∞ are accessible finitely often and η is initialised

finitely often, so η fin is initialised finitely often.

Now suppose there are infinitely many η-expansionary stages, but finitely

many η ∞ stages, so let s be the stage such that for all t > s, t is not an

η ∞ stage. Anchors are only appointed at µ-expansionary stages, so after

stage s no daughter of η is accessible. Then after stage s there are no new

anchors appointed for any daughter of η. η must halt the stage infinitely

often (in particular infinitely often after stage s). When η halts the stage, a

new follower for some daughter of µ is appointed. Then since no new anchors

are appointed and there are finitely many daughters of η with anchors, there

is some µ such that a new follower is appointed infinitely often. But this is a

contradiction to Lemma 3.12. Hence η halts the stage finitely often, so there

are infinitely many η ∞ stages. Since η is initialised finitely often and halts

the stage finitely often, η ∞ is initialised finitely often.

Lemma 3.14. Suppose µ is accessible infinitely often and initialised finitely

often, then either µ ∞ or µ fin is accessible infinitely often and initialised

finitely often.

Proof. Suppose there are finitely many µ-expansionary stages. Then since

µ can only halt the stage at a µ-expansionary stage, µ fin is accessible

infinitely often. Since nodes extending µ ∞ are accessible finitely often and

µ is initialised finitely often, µ fin is initialised finitely often.

Now suppose there are infinitely many µ-expansionary stages. µ is ini-

tialised finitely often, so there is an anchor that is never cancelled; let p be

52 CHAPTER 3. THEOREM

this anchor. µ halts the stage if µ enumerates its follower into Q or sends

a request token. By Lemma 3.9, this happens finitely often; hence µ halts

the stage finitely often. So µ ∞ is accessible infinitely often and since µ is

initialised finitely often, µ ∞ is initialised finitely often.

Lemma 3.15. Let ρ be a node working for requirement PΨ,k. Let s and

t > s be successive ρ-expansionary stages, and let x ∈ Cs(ρ). Suppose z =

trs(ρ, x) = trt(ρ, x) and let u = γs(z). If At � u 6= As � u or Wt � u 6= Ws � u,

then oρt (z) < oρs(z).

Proof. At stage r ∈ (s, t), Γ(A,W, z)[r] ↑, then at the next τ -expansionary

stage r′ ∈ (r, t] Γ(A,W, z)[r′] = r′. Γ(A,W, z)[t] ≥ Γ(A,W, z)[r′] and r′ >

Γ(A,W, z)[s], so Γ(A,W, z)[t] 6= Γ(A,W, z)[s]. s is a ρ-expansionary stage so

Γ(A,W, z)[s] = fρs (z), and t is also a ρ-expansionary stage so Γ(A,W, z)[t] =

fρs (t), then fρs (z) 6= fρt (z), hence oρt (z) < oρs(z).

Lemma 3.16. Let ρ be a node working for requirement PΨ,k, then for all

x only finitely many attacks are started for (ρ, x) while a particular z is the

tracker for x.

Proof. Fix x; if z is the tracker of x for finitely many stages, then clearly

only finitely many attacks are started for (ρ, x) while z is the tracker. So

let z be the tracker for x for infinitely many stages. For an attack started

at stage r, it is declared finished at stage s when we see dρs(z) < dρr(z), so

oρs(z) < oρr(z). Note that (ρ, x) does not start another attack until there has

been a ρ-expansionary stage after the previous attack was declared finished.

Now if (ρ, x) starts infinitely many attacks while z is the tracker, then every

one of these attacks started must be declared finished. Then we must see

oρs(z) decrease infinitely often, but this ordinal is from the ω2-computable

approximation of fρ so this cannot happen. Hence for all x only finitely

many attacks are started for (ρ, x) while a particular z is the tracker for

x.

Lemma 3.17. Let ρ be a node working for requirement PΨ,k, and x ∈ Cs(ρ),

then ρ enumerates finitely many numbers into A during each (ρ, x) attack.

3.4. CONSTRUCTION 53

Proof. Suppose not. Then there is a (ρ, x) attack such that ρ enumerates

infinitely many numbers into A. Enumerations happen at ρ-expansionary

stages, so by Lemma 3.15 we see the ordinal oρ(z) decrease after each enu-

meration. Then if (ρ, x) enumerates infinitely many numbers into A we must

see this ordinal decrease infinitely often, but this ordinal is from the ω2-

computable approximation of fk so this cannot happen. Hence ρ enumerates

finitely many numbers into A during each (ρ, x) attack.

Lemma 3.18. Suppose τ is accessible infinitely often and initialised finitely

often, then either τ ∞ or τ fin is accessible infinitely often and initialised

finitely often.

Proof. Suppose there are finitely many τ -expansionary stages. τ halts the

stage only at τ -expansionary stages; hence τ halts the stage finitely often, so

τ fin is accessible infinitely often. τ is initialised finitely often and τ ∞ is

accessible finitely often, so τ fin is initialised finitely often.

Now suppose there are infinitely many τ -expansionary stages but finitely

many τ ∞ stages. τ halts the stage if it acts on a request or defines γρ(z)

large during a (ρ, x) attack, where z = tr(x) and ρ is a daughter of τ .

Let t be the last stage τ ∞ was accessible. Since there are finitely many

τ ∞ stages, finitely many sons ζk are visited, and there are finitely many ζk ↑
stages for each son ever visited. A request is sent to τ only at ζk ↑ stages,

but there are finitely many of these so τ deals with finitely many requests;

hence τ acts on a request finitely often.

Then since τ halts the stage infinitely often, γρ(z) large infinitely often

during a (ρ, x) attack. Now since there are only finitely many τ ∞ stages,

only finitely many daughters are ever visited; hence only finitely x are ever

established. By Lemma 3.16, each of these only start finitely many attacks.

Then there is a particular (ρ, x) attack where γρ(z) is defined large infinitely

often. Now there are no ρ-expansionary stages after stage t, so after stage t,

γρ(z) is defined large because there is some (ρ̂, x̂) ∈ pro(ρ, x) such that the

computation Γρ̂(A,W, ẑ) has changed since the last τ -expansionary stage.

Now pro(ρ, x) is only redefined after an enumeration into A; hence pro(ρ, x)

54 CHAPTER 3. THEOREM

does not change after stage t. Then there is a particular (ρ̂, x̂) ∈ pro(ρ, x)

such that the computation Γρ̂(A,W, tr(ρ̂, x)) has changed since the last τ -

expansionary stage infinitely often. Now the tracker for x̂ can only change

finitely often so there is some tracker ẑ such that there are infinitely many

A or W changes below γρ̂(ẑ). By Lemma 3.15, every time there is an A

or W change below γ(ẑ) the ordinal oρ̂(ẑ) must decrease. Now ρ̂ ∞ �
τ , so Γρ̂(A,W) is ω2-c.a. But oρ̂(ẑ) decreases infinitely often, so this is a

contradiction.

Therefore τ halts the stage finitely often, so there are infinitely many τ ∞
stages.

Lemma 3.19. Suppose ρ is accessible infinitely often and initialised finitely

often, then either ρ ∞ or ρ fin is accessible infinitely often and initialised

finitely often.

Proof. Suppose there are finitely many ρ-expansionary stages. Then ρ only

halts the stage at ρ-expansionary stages, so ρ halts the stage finitely often;

hence ρ fin is accessible infinitely often. Since ρ is initialised finitely often

and ρ ∞ is accessible finitely often, then ρ fin is initialised finitely often.

Now suppose there are infinitely many ρ-expansionary stages but there

are only finitely many ρ∞ stages. New x are established only at ρ∞ stages,

so only finitely many (ρ, x) are established. Let t be the last ρ ∞ stage.

Only µ such that µ � ρ ∞ can corrupt x; hence no x is corrupted after

stage s. So a new tracker is only appointed if an x is uncorrupted; hence the

tracker for each x changes at most once after stage t. By Lemma 3.16, each

established x starts finitely many attacks. It follows from Lemma 3.17 that

each (ρ, x) attack puts finitely many numbers into A. There are only finitely

many established x and finitely many attacks for each x; hence ρ enumerates

finitely many numbers into A. Therefore ρ halts the stage finitely often; thus

there are infinitely many ρ ∞ stages.

Lemma 3.20. The true path is infinite.

3.4. CONSTRUCTION 55

Proof. Suppose there are only finitely many stages at which we define the

collection of accessible nodes. Then since nodes are accessible finitely often,

only finitely many (ρ, x) are ever established. After the last stage nodes are

accessible no attack can be declared finished, so after this stage an attack

can start for each (ρ, x) at most once. There are finitely many (ρ, x) so

only finitely many attacks are ever started, but then the stage halts without

defining the accessible nodes finitely often, a contradiction. So there are

infinitely many stages at which we define the collection of accessible nodes.

Then by Lemma 3.13, 3.14, 3.18 and 3.19, the true path is infinite.

Lemma 3.21. Let ρ and ρ̂ be nodes working for requirements PΨ,k and PΨ̂,k̂

respectively. Let x ∈ Cs(ρ) and x̂ ∈ Cs(ρ̂) with trackers z and ẑ respectively.

Suppose (ρ, x) is in an attack at stage s. If (ρ̂, x̂) is in an attack at stage s

and ρ̂ is to the right of ρ ∞, then γ ρ̂s (ẑ) > γρs (z).

Proof. Notice that every stage such that γρ(z) is defined large, ρ̂ is intialised.

Let t be the stage γρ(z) was last defined large. Then γρt+1(z) = γρs (z). Now

let r be the stage (ρ̂, x̂) was declared fully in an attack. ρ̂ was initialised at

stage t, so r > t; hence γρ̂r (ẑ) > γρr (z) = γρt+1(z). Now γρ̂s (ẑ) ≥ γρ̂r (ẑ) and

γρt+1(z) = γρs (z); hence γρ̂s (ẑ) > γρs (z).

Lemma 3.22. Suppose y is established for π at stage s. Suppose a (ρ, x)

attack causes a number to enter A below ϕt(y) at stage t > s. If π is not

initialised then ρ � π ∞.

Proof. Clearly if ρ is to the left of π then π gets initialised at stage t. Suppose

ρ ∞ � π or ρ is to the right of π. Let r be the stage (ρ, x) is declared fully

in an attack. Notice that π is not accessible between stages r and t. If y

was not established at stage r then it will not be established until after stage

t; hence r > s. ϕt(y) ↓ so it follows that ϕr(y) ↓ and ϕt(y) = ϕr(y). At

stage r, γr+1(z) is defined with large use, so γr(z) > ϕr(y). Since the use

is non-decreasing it follows that γt(z) > ϕt(y), a contradiction. Therefore if

a (ρ, x) attack causes a number to enter A below ϕt(y) at stage t > s then

ρ � π ∞.

56 CHAPTER 3. THEOREM

Lemma 3.23. Let π be a node working for requirement NΦ and let ρ be a

node working for requirement PΨ,k with parent τ . Let z be the tracker for

x. Suppose ρ � π ∞. Let r be a stage γρr+1(z) is defined to be large. If

Φ(A, y)[r] ↓ then for all stages s > r during this attack As � ϕr(y) = Ar �

ϕr(y).

Proof. Let s + 1 be the least counterexample. Then at stage s some (ρ̂, x̂)

enumerated γ ρ̂s (ẑ) into A and γρ̂s (ẑ) < ϕr(y). Notice that (ρ̂, x̂) 6= (ρ, x)

because s + 1 is the least counterexample so ϕr(y) = ϕs(y) and γρr+1(z) >

ϕr(y). Now at stage s, (ρ, x) is still in its attack; hence either ρ̂ is to the

right of ρ∞ or ρ̂∞ � ρ. If ρ̂∞ � ρ then by the assignment of requirements

ρ̂ ∞ � τ . Thus the (ρ̂, x̂) attack started after stage r. If ρ̂ is to the right

of ρ ∞ then ρ̂ was initialised at stage r; thus the (ρ̂, x̂) attack started after

stage r.

Let r′ be the stage (ρ̂, x̂) was declared fully in an attack. At stage r′ we

define γρ̂r′+1(ẑ) to be large. Since r′ > r, γ ρ̂r′+1(ẑ) > ϕr(y). Since γρ̂(ẑ) is

non-decreasing, so it follows that γρ̂s > ϕr(y), a contradiction.

Lemma 3.24. Let π be a node working for requirement NΦ and let ρ be a

node working for requirement PΨ,k with parent τ . Let z be the tracker for x

and let s be the stage y was established. Suppose τ � π ∞. Suppose (ρ, x)

started an attack or enumerated a number into A at stage r > s. Then for

all stages t > r during this attack, if Γρ(A,W, z)[t] ↓ then γt(z) > ϕt(y).

Proof. Let r′ be the next τ -expansionary stage after stage r. Then at stage r′

we define γρr′+1(z) is defined to be large. Now τ � π ∞ and y is established;

hence Φ(A, y)[r′] ↓. Then by Lemma 3.23, for all stages t > r′ during this

attack At � ϕr′(y) = Ar′ � ϕr′(y). Then ϕr′(y) = ϕt(y). Now γρr′+1(z) >

ϕr′(y); hence γρr′+1(z) > ϕt(y). γρ(z) is non-decreasing so it follows that

γρt (z) > ϕt(y). Now between stages r and r′, Γρ(A,W, z)[t] ↑. Therefore we

are done.

Lemma 3.25. Suppose (ρ, x) is in an attack at stage s. Let z = trs(x) and

3.4. CONSTRUCTION 57

oρs(z) = ω · dρs(z) + bρs(z). Then during this attack, (ρ, x) enumerates at most

bρs(z) numbers into A after stage s.

Proof. Enumeration into A happens at ρ-expansionary stages so by Lemma

3.15, each time we enumerate a number into A during this attack we will

see the ordinal oρt (z) decrease. Let t be the first ρ-expansionary stage after

(ρ, x) has enumerated bρs(z) numbers into A since stage s. Then we have

seen the ordinal oρs(z) decrease bρs(z) many times. So oρt (z) ≤ oρs(z)− bρs(z) =

ω · dρs(z) + bρs(z) − bρs(z) = ω · (dρs(z) − n) + bρt (z) for some n > 0. Hence

dρt (z) < dρs(z), so the attack is declared finished and (ρ, x) will not enumerate

any more numbers into A for this attack.

Lemma 3.26. Let ρ and ρ̂ be nodes working for requirements PΨ,k and PΨ̂,k̂

respectively. Let x ∈ Cs(ρ) and x̂ ∈ Cs(ρ̂) with trackers z and ẑ respectively.

Suppose x is corrupted, (ρ̂, x̂) is in an attack at stage s, and ρ̂ is to the right

of ρ ∞. Let r be the last ρ-expansionary stage. If γ ρ̂s (ẑ) < γρs (z) then either

x was corrupted at stage r or (ρ, x) was in an attack at stage r.

Proof. Let s be the least counterexample. Note that the last ρ-expansionary

stage r is before the stage that the (ρ̂, x̂) attack started, and x is neither

corrupted nor uncorrupted during the (ρ̂, x̂) attack as these actions would

initialise ρ̂. γρ̂s (ẑ) < γρs (z), so by Lemma 3.21, (ρ, x) is not in an attack at

stage s.

As in the argument for Lemma 3.21, if ρ̂ was to the right of τ ∞ then

γρ̂s (ẑ) > γρs (z); hence ρ̂ � τ ∞. Let t be the stage the computation

Γρ̂(A,W, ẑ)[s] was defined. Note that this means (A,W)t � γρ̂s (ẑ) = (A,W)s �

γρ̂s (ẑ). Now if γρ̂s (ẑ) was defined to be large then γρ̂t (ẑ) > γρt (z) because

τ̂ � τ ∞, but then it would follow that γ ρ̂s (ẑ) > γρs (z); hence we did not

define γ ρ̂s (ẑ) to be large at stage t. Then it was defined to be γρ̂r0(ẑ) where r0

is the last τ̂ -expansionary stage before stage t.

Suppose (A,W)r0 � γ
ρ
r0

(z) 6= (A,W)s � γρr0(z). Let r1 ∈ [r0, s) be the least

stage such that (A,W)r0 � γ
ρ
r0

(z) 6= (A,W)r1+1 � γρr0(z).

58 CHAPTER 3. THEOREM

Suppose Wr0 � γρr0(z) 6= Wr1+1 � γρr0(z). Now (ρ, x) does not start an

attack at this stage because it would initialise ρ̂. If there is a W change

while (ρ, x) is corrupted but we do not start an attack, then either x was

corrupted at the last ρ-expansionary stage or (ρ, x) was in an attack at the

last ρ-expansionary stage. Stage r was the last ρ-expansionary stage so the

Lemma holds.

Now suppose Wr0 � γρr0(z) = Wr1+1 � γρr0(z). Then it must be that

Ar0 � γρr0(z) 6= Ar1+1 � γρr0(z). Then this was cause by a (ρ′, x′) attack

enumerating a number into A at stage r1. Now this ρ′ cannot be to the left

of ρ̂ as then ρ̂ would be initialised at stage r1. But then ρ′ is to the right

of ρ ∞ and r1 < s; hence the Lemma holds at stage r1 and so either x was

corrupted at stage r or (ρ, x) was in an attack at stage r, so we are done.

Now suppose (A,W)r0 � γ
ρ
r0

(z) = (A,W)s � γρr0(z). If γρ̂s (ẑ) < γρs (z) then

γρ̂r0(ẑ) < γρr0(z). s is the least counterexample so the Lemma holds at stage

r0; hence either x was corrupted at stage r or (ρ, x) was in an attack at stage

r, so we are done.

Lemma 3.27. Let ρ and ρ̂ be nodes working for requirements PΨ,k and PΨ̂,k̂

respectively. Let x ∈ Cs(ρ) and x̂ ∈ Cs(ρ̂) with trackers z and ẑ respectively.

Suppose x is corrupted and ρ ∞ � ρ̂. If (ρ, x) /∈ pros(ρ̂, x̂) and (ρ̂, x̂)

enumerates γρ̂s (ẑ) into A at stage s then x is uncorrupted.

Proof. ρ ∞ � ρ̂ and (ρ, x) /∈ pros(ρ̂, x̂) so x was established after the stage

pros(ρ̂, x̂) was defined. x is corrupted so µ is to the right of ρ̂ ∞. Then

µ is initialised at every stage γρ̂(ẑ) is defined large. Let t be the last stage

γρ̂t+1(ẑ) is defined large. Now µ is initialised at stage t; hence q is appointed

after stage t. µ � ρ ∞ so x is invented after stage t. Let r be the first

τ -expansionary stage after x is invented, γρr (orig(x)) is defined large; hence

γρr (orig(x)) > γρ̂t+1(ẑ). Now γρr (orig(x)) ≤ γρs (orig(x)) and γρ̂t+1(ẑ) = γρ̂s (ẑ)

so it follows that γρ̂s (ẑ) < γρs (orig(x)). Therefore x is uncorrupted.

Lemma 3.28. Let π be a node working for requirement NΦ. Let r be the

stage y is established. Let ρ be a node working for requirement PΨ,k. Suppose

3.4. CONSTRUCTION 59

τ ∞ � π ∞ � ρ. Suppose either x was declared fully corrupted at stage

t > r or (ρ, x) was declared to have fully finished an attack at stage t > r. If

(ρ, x) wants to attack at stage s > t then Φπ(A, y)[s] ↓.

Proof. Let s be the least counterexample. Let s0 < s be the last π ∞ stage.

Then since Φπ(A, y)[s] ↑, some (ρ̂, x̂) enumerated a number into A at stage

t1 ∈ [s0, s) such that γρ̂t1(ẑ) < ϕt1(y). Notice that by Lemma 3.22, ρ̂ � π ∞;

hence t1 = s0. τ ∞ � π ∞ � ρ so by the assignment of requirements,

τ̂ � ρ ∞ or ρ̂ is to the right of ρ ∞.

In the latter case, stage t is a ρ-expansionary stage so ρ̂ is initialised at

stage t. Let t0 be the stage that (ρ̂, x̂) attack starts. Now x̂ was established

after stage t; hence x̂ was declared fully corrupted at stage t′ ∈ (r, t0). By s

is the least counterexample and s > t0 so it follows that Φπ(A, y)[t0] ↓. Then

by Lemma 3.23, γ ρ̂t1(ẑ) > ϕt1(y), a contradiction.

Then τ̂ � ρ ∞. By Lemma 3.24, y was established after (ρ̂, x̂) was

declared fully in an attack. Then the (ρ̂, x̂) was declared fully in an attack

before stage t. Now suppose we are in the case where x was declared fully

corrupted at stage x at stage t. Note that the stage (ρ̂, x̂) is declared fully in

an attack is a ρ-expansionary stage; hence x was corrupted during the (ρ̂, x̂)

attack. Then it follows that µ is to the right of ρ̂. Therefore x was established

after the last stage γρ̂(ẑ) was defined large; hence (ρ, x) /∈ prot1(ρ̂, x̂). Then

by Lemma 3.27, x is uncorrupted at stage t1. Therefore (ρ, x) does not want

to attack at stage s, a contradiction.

Now consider the case that (ρ, x) was declared to have fully finished an

attack at stage t. Now notice that τ̂ is not accessible during the (ρ, x) attack;

hence γρ̂(ẑ) was last defined large before the (ρ, x) attack starts. Let t2 + 1

be the stage the (ρ, x) attack starts. Now consider the following cases:

Case 1. (ρ, x) ∈ prot2(ρ̂, x̂). Then by Lemma 3.7, γρ̂t2(ẑ) > γρt2(z). But

at stage t2 + 1 there is a W below γρt (z) prompting the start of an attack.

But this change is also below γ ρ̂t2(ẑ) and causes the use to be lifted large at

the next τ̂ -expansionary stage. But then the use γρ̂(ẑ) is lifted large after the

(ρ, x) attack and hence also after y is established. Therefore γρ̂t1(ẑ) > ϕt1(y),

60 CHAPTER 3. THEOREM

a contradiction.

Case 2. (ρ, x) /∈ prot1(ρ̂, x̂). Then by Lemma 3.27, x is uncorrupted at

stage t1. Therefore (ρ, x) does not want to attack at stage s, a contradiction.

Lemma 3.29. Every NΦ requirement is met.

Proof. Fix Φ. The true path is infinite and every infinite path on the tree of

strategies has a node working for requirement NΦ; let π be the node on the

true path working for NΦ. If Φ(A) is not total then we are done, so suppose

Φ(A) is total. Then we need to show Φ(A) that is ω-c.a. by defining an

ω-computable approximation. At each π ∞ stage we establish a new input y

by giving it an ordinal as follows. Let s first π ∞ stage after y is established,

then define

oΦ
s (y) = n+

∑
(ρ,x)∈B(y)

bρs(x)

where: B(y) is the set of (ρ, x) such that x ∈ Cs(ρ) is fully corrupted and

τ ∞ � π ∞ � ρ; n is the number of ρ such that (ρ, x) is in an attack at

stage s, Γρ(A,W, tr(x))[s] ↓ and the parent of ρ, τ , is such that τ � π ∞.

By Lemma 3.24, the only (ρ, x) with τ � π ∞ that can injure Φ(A, y) are

in an attack at stage s and Γρ(A,W, tr(x))[s] ↓. Also by Lemma 3.24, such

ρ can only injure Φ(A, y) at most once. At stage s there are n such (ρ, x)

in an attack and each of these can only injure Φ(A, y) at most once; hence

Φ(A, y) can be injured by such enumerations at most n many times.

By Lemma 3.22, the only (ρ, x) that can injure Φ(A, y) extend π ∞. We

have just dealt with the case where τ � π ∞, so all that is left is the case

where τ ∞ � π. Now suppose at stage t > s, x is declared fully corrupted or

(ρ, x) is declared to have fully finished an attack. By Lemma 3.28, if (ρ, x)

wants to attack at a stage t′ > t, then Φ(A, y)[t′] ↓; then by Lemma 3.23, it

follows that for all stages r during this attack γρr (trr(x)) > ϕr(y).

Then the only (ρ, x) with τ ∞ � π ∞ � ρ ∞ that can injure Φ(A, y) at

stage t are such that x was declared fully corrupted at a stage r < s; hence

3.4. CONSTRUCTION 61

they are in the set B(y). After this attack is declared finished, by Lemma 3.28,

for all stages r during any attack started after this stage γρr (trr(x)) > ϕr(y).

Therefore, by Lemma 3.25, each (ρ, x) ∈ B(y) can injure Φ(A, y) at most

bρs(z) times.

So the ordinal defined above is the maximum possible number of enumer-

ations into A below φ(y). Therefore this is the maximum number of changes

to the computation Φ(A, y). Hence we have an ω-computable approximation

for Φ(A) as desired.

Lemma 3.30. Let η be a node working for requirement RΘ. If Θ(A,W) is

total and η is on the true path then ∆η(A,W) is total.

Proof. Θ(A,W) is total so there are infinitely many η-expansionary stages.

At an η-expansionary we leave ∆Θ(A,W, p) undefined only if p is an anchor

for some µ and we appoint a new follower, but by Lemma 3.12 for each p

this happens finitely often. So lim sups ∆Θ(A,W)[s] goes to infinity. Now we

need to check that the use is bounded for all p. Suppose p is eventually not

an anchor for any daughter of η. Then ∆Θ(A,W, p) is eventually defined with

use 0; hence the use of such p is bounded. So now suppose p is an anchor for

µ, a daughter of η, and p = acs(µ) for infinitely many stages. Now by Lemma

3.12, there are only finitely many followers appointed while p is the anchor.

Let q be the last follower appointed and let t be the stage q is appointed.

Then if ∆Θ(A,W, p)[s] is defined at stage s > t, its use is defined to be θs(q).

θs(q) has bounded use because Θ(A,W) is total. Therefore ∆Θ(A,W, p) has

bounded use for all p; hence ∆Θ(A,W) is total.

Lemma 3.31. Let τ be a node working for requirement PΨ. If Ψ(A,W,Q)

is total and τ is on the true path then ΓΨ(A,W) is total.

Proof. Since Ψ(A,W,Q) is total, there are infinitely many τ -expansionary

stages. At each τ -expansionary stage we defined a longer initial segment of

ΓΨ(A,W), so lim sups dom ΓΨ(A,W,)[s] goes to infinity. If z is eventually

not a tracker of any x for any daughter of τ then ΓΨ(A,W, z) is defined with

62 CHAPTER 3. THEOREM

use 0, so the use of such z is bounded. Now consider z which is the tracker

for some x for some daughter of τ , ρ, for infinitely many stages. Suppose

there is a stage t such that for all s > t, (ρ, x) is not in an attack at stage

s. A computation ΓΨ(A,W, z) defined at stage s > t is defined with use

ψρs(Is(ρ, x)). Since z is never cancelled, ρ is initialised finitely often, so by

Lemma 3.11 the interval I(x) must stabilise. Ψ(A,W,Q) is total so the use

ψs(x
′) for every x′ ∈ I(x) is bounded; hence the use of ΓΨ(A,W, z) is bounded

for such z. So now consider that there is no such stage t, then by Lemma

3.16 it must be that there is some attack that is never finished. During an

attack a number is enumerated into A at every ρ-expansionary stage, then

by Lemma 3.17 there are finitely many ρ-expansionary stages. So let t be

the last ρ-expansionary stage. Now pros(ρ, x) is only redefined after an A

enumeration by (ρ, x), but there are no ρ-expansionary stages after stage t;

hence for all s, r > t, pros(ρ, x) = pror(ρ, x). Now for (ρ̂, x̂) ∈ pros(ρ, x),

ρ̂ ∞ ≺ τ , so ρ̂ ∞ is also initialised finitely often. Then the tracker for

(ρ̂, x̂) is only change finitely often; let ẑ be the last tracker. ρ̂ ∞ is also

accessible infinitely often; hence for all (ρ̂, x̂) ∈ pros(ρ, x), Γρ̂(A,W) is ω2-

c.a., so the computation Γρ̂(A,W, trs(ρ̂, x̂)) changes finitely often. For each

(ρ̂, x̂) ∈ pros(ρ, x), ẑ is the last tracker so x̂ is never uncorrupted while ẑ is

the tracker. Then the use is defined to be large due to the uncorruption of

some protected x̂ finitely often. Then it follows that there is a stage r such

that at every stage s > r where we define the computation ΓΨ(A,W, z)[s],

we define it with use γr(z). Hence the use of ΓΨ(A,W, z) is bounded for all

z, and therefore ΓΨ(A,W) is total.

Remark. If there is no node on the true path that works for requirement

PΨ̂, then there is some node α working for requirement PΨ or RΘ on the true

path such that every son and daughter of α has been assigned a node on

the true path. Recall that we say a parent is been closed below the infinite

outcome of a daughter or the divergent outcome of a son. Also recall that

we stop placing children on the tree once the parent has been closed. Then

if α has infinitely many sons and daugters on the true path then the finite

3.4. CONSTRUCTION 63

outcome of every daughter of α and the convergent outcome of every son of

α is on the true path. Without loss of generality, let α be a node working for

requirement PΨ. Then it follows that Ψ(A,W,Q) is total. Then by Lemma

3.31, ΓΨ(A,W) is total. Since the finite outcome of every daughter of α is

on the true path, ΓΨ(A,W) is not ω2-c.a.; then A⊕W is not totally ω2-c.a.

This means that for all functionals Ψ and Θ, requirements RΘ and PΨ are

met immediately, so we are done.

So suppose A⊕W is totally ω2-c.a. Then every parent node is eventually

closed; hence there is a node on the true path working for every PΨ and RΘ

requirement. The following lemmas will use this assumption.

Lemma 3.32. Every RΘ requirement is met.

Proof. Fix Θ. A⊕W is totally ω2-c.a. and the true path is infinite, so there

is a node η on the true path working for RΘ. If Θ(A,W) is not total then

we are done. So suppose Θ(A,W) is total. Then η ∞ is on the true path,

and by Lemma 3.30 ∆Θ(A,W) is total. Since A ⊕W is totally ω2-c.a. and

∆Θ(A,W) is total, ∆Θ(A,W) is ω2-c.a. Then since the true path is infinite

there must be a daughter of η, µ, such that µ ∞ is on the true path. Then

µ is initialised finitely often; hence it has finitely many anchors, so let p be

the last anchor. By Lemma 3.12 only finitely many followers are appointed,

so let q be the last follower appointed.

If Θ(A,W, q) = 0, then there is a µ-expansionary stage s such that

Θ(A,W, q)[s] = 0 after q is appointed. q is the last follower, so there is

a stage where µ will either enumerate q into Qs+1 or send a request. If this

request was cancelled at stage r then it is cancelled because ∆η(A,W, p)[r] ↑.
Let t be the next η-expansionary stage after the request was cancelled. If

there was some (ρ, x) ∈ prot(µ) such that q < ψρt (It(x)) then a new follower

is appointed, but q is the last follower so this does not happen. Then an-

other request to enumerate q into Q will be sent. ∆Θ(A,W) is total so we

will only cancel the request finitely many times. So there is a request sent

that is never cancelled. Then µ is not accessible until the request is carried

64 CHAPTER 3. THEOREM

out. There are infinitely many µ-expansionary stages; hence the request is

eventually carried out, so q ∈ Q.

Θ(A,W, q)[s] = 0 prompting the enumeration of q into Q. Then since

Θ(A,W, q) = 1, there is some stage t > s such that either As � θs(q) 6= At �

θs(q) or Ws � θs(q) 6= Wt � θs(q). By Lemma 3.1, δs(p) ≥ θs(q), so it is also

the case that either As � δs(p) 6= At � δs(p) or Ws � δs(p) 6= Wt � δs(p). So

there is an η-expansionary stage after stage r > s where ∆Θ(A,W, p)[r] ↑ and

q ∈ Qr; this prompts the appointment of a new follower, but this contradicts

that q is the last follower appointed. Therefore if Θ(A,W, q) = 1 then q /∈ Q.

So we have shown that diagonalisation is successful, Θ(A,W) 6= Q; hence

requirement RΘ is met.

Lemma 3.33. Every PΨ requirement is met.

Proof. Fix Ψ. A⊕W is totally ω2-c.a. and the true path is infinite, so there is

a node τ on the true path working for RΨ. If Ψ(A,W,Q) is not total then we

are done, so suppose Ψ(A,W,Q) is total. Then by Lemma 3.31, ΓΨ(A,W)

is total. A ⊕W is totally ω2-c.a. so there is a daughter of τ , ρ, such that

ρ∞ is on the true path. Since ρ∞ is on the true path, every x is eventually

established, so now we show that there is an ω2-computable approximation

for Ψ(A,W,Q).

Now we define αt(x) = ω · mt(x) + kt(x). ρ is initialised finitely often

so consider the stages after the last initialisation. Now let s be the first ρ-

expansionary stage after x is established, and let z0 = trs(ρ, x) = orig(ρ, x).

Then define ms(x) = dρs(z0) + 2 and ks(x) = bρs(z0). For stages r where x is

not corrupted define mr+1(x) = mr(x) and kr+1(x) = bρr(z0).

Suppose x is corrupted. Let t be the first ρ-expansionary stage after

corruption and let z1 be the new tracker. Then define mt+1(x) = mt(x)− 1

and kt+1(x) = dρt (z1).

If x is uncorrupted. Let t be the first ρ-expansionary stage after uncor-

ruption, and define mt(x) = mt−1(x)− 1 and kt(x) = bρt (z0).

For stages r while x is corrupted define mr+1(x) = mr(x) and kr+1(x) =

dρr(z1).

3.4. CONSTRUCTION 65

Now define

oΨ
s (x) =

∑
y≤x

αs(y)

Suppose x has not been taken over. While x uses its original tracker it

just follows the ordinal of its tracker. By Lemma 3.4, if a number enters Q

below the use ψ(I(x)) then x is either taken over or declared corrupted and

by Lemma 3.5 x is taken over if another number enters Q below ψ(I(x)).

Therefore while x uses its original tracker there are no numbers entering Q;

hence this ordinal works while x is not corrupted. Now if x gets corrupted

or uncorrupted then we need to decrease m(x) by one. By Lemma 3.5 we

will only need to do this a maximum of two times hence ms(x) = dρs(z0) + 2

gives us enough room to count for these changes.

Now suppose x is corrupted. Note that we declare a new ordinal at

the next ρ-expansionary stage, so if there are multiple changes between ρ-

expansionary stages we only need to account for one of these changes. Also

note that we do not need to worry about any changes during a (ρ, x) attack

because wait until the first ρ-expansionary stage after the attack is finished

before declaring a new ordinal.

If there is an A change below ψ(I(x)) at some stage t while (ρ, x) is not

in an attack then by Lemma 3.3 (4) and Lemma 3.7 this must come from

the attack of some (ρ̂, x̂) such that (ρ, x) /∈ prot(ρ̂, x̂). Now it is the case that

either ρ̂ � ρ ∞ or ρ̂ is to the right of ρ ∞. In the latter case, it follows from

Lemma 3.26 that either x was corrupted at stage r or (ρ, x) was in an attack

at stage r, where r is the last ρ-expansionary stage before the computation

Γρ(A,W, tr(x))[s] was defined. Then we do not need to declare a new ordinal

until the next ρ-expansionary stage; hence we can charge the decrease to the

case that holds. In the case that ρ̂ � ρ ∞ then since (ρ, x) /∈ prot(ρ̂, x̂),

by Lemma 3.27, when (ρ̂, x̂) enumerates a number into A at stage t, x is

uncorrupted.

By Lemma 3.5, if there is a Q change below ψ(I(x)) while x is corrupted

then x is taken over by some x′ < x.

If there is a W change below ψ(I(x)), then we start an attack for (ρ, x)

66 CHAPTER 3. THEOREM

at some stage t. Since there are infinitely many ρ-expansionary stages this

attack eventually finishes. Then there is a stage r such that dρr(z1) < dρt (z1),

and since kt(x) = dρt (z1), we have kr(x) < kt(x); hence we see a decrease in

α(x).

Suppose x has been taken over by some x′. Now if there is a change

below ψ(x) then there is a change below ψ(I(x′)). Therefore by the above

argument, we see a decrease in α(x′). x can only be taken over by x′ < x

and α(x′) has been included in oψ(x) for x′ < x; hence if x is taken over and

there is a change below ψ(x) then there is a decrease in oψ(x) as required.

Therefore this definition of oψ gives us an ω2-computable approximation

for Ψ(A,W,Q).

Chapter 4

Extending Results

In the previous chapter we showed that for a given c.e. set W we can uni-

formly find a totally ω-c.a. c.e. set A such that A⊕W is not maximal totally

ω2-c.a. Now in this chapter we will discuss the modifications to the construc-

tion from the previous chapter that are required to show that for given c.e.

sets W0 and W1 we can uniformly find a totally ω-c.a. c.e. set A such that

both A⊕W0 and A⊕W1 are not maximal totally ω2-c.a. From this it follows

that there is no computable g such that for all m, if Wm is totally ω-c.a.

then either Wm ⊕Wg(m,0) or Wm ⊕Wg(m,1) is maximal totally ω2-c.a. In the

second section of this chapter we will discuss the problems that arise when

we try to extend to three c.e. sets.

Note that for this section we will refer to the fixed c.e. sets as Wi and

refer to the c.e. set that ρ and ρ̂ work for as W and Ŵ respectively. So W

and Ŵ range over the fixed c.e. sets Wi. It will be specified whether W = Ŵ

or W 6= Ŵ during the discussion.

4.1 Two c.e. sets

First recall the structure of the tree for a single W ; we were able to ensure

that there were no parent nodes between any given parent and a child of

this parent. Recall that we were able to do this because if A ⊕ W is not

67

68 CHAPTER 4. EXTENDING RESULTS

totally ω2-c.a. then we are done with all P and R requirements; hence we

are able to wait for a node that guesses that Γ(A,W) is ω2 (or similarly

for Θ(A,W)) before working on the next requirement. But now notice that

while it remains true that if A ⊕W is not totally ω2-c.a. then we are done

with all PΨ,W and RΘ,W requirements, we still need to meet PΨ,Ŵ and RΘ,Ŵ

requirements, where W 6= Ŵ . Hence we must continue placing PW1 and RW1

requirements even while we have not yet closed a parent working for a PW0

or RW0 requirement. Hence between a parent and child for some PW0 or RW0

requirement it is possible that there is a parent working for a PW1 or RW1

requirement. But notice that we are still able to maintain this property for

parents and children working with the same W .

Let τ and τ̂ be nodes working for requirements PΨ,W and PΨ̂,Ŵ respec-

tively. Let ρ and ρ̂ be children of τ and τ̂ respectively. Now in the case

where W = Ŵ it remains true that if τ ∞ � ρ̂ ∞ then ρ ∞ � τ̂ ∞. But

now if W 6= Ŵ then the configuration τ ∞ � τ̂ ∞ � ρ̂ ∞ � ρ is possible.

Note that the configuration τ ∞ � τ̂ ∞ � ρ ∞ � ρ̂ is not possible because

we are able to restart τ̂ below ρ ∞. So consider we have the case where

τ ∞ � τ̂ ∞ � ρ̂ ∞ � ρ. Now at some stage (ρ, x) could start an attack

and so at the next τ -expansionary stage the use will be lifted large. Before

the stage γρ(z) is lifted large it is possible that there is a Ŵ change prompt-

ing a (ρ̂, x̂) attack. Notice that because τ ∞ � τ̂ when we lift γρ(z) large

Ψτ̂ (A, Ŵ ,QŴ , x̂) ↑, hence the (ρ, x) attack could injure this computation.

Note that ρ̂ ∞ � ρ so we are not able to wait until the (ρ, x) attack is fin-

ished before certifying the new Ψτ̂ (A, Ŵ ,QŴ , x̂) computation. Now consider

the following cases:

Case 1: x was fully corrupted after x̂ was fully corrupted. Now the

length of the (ρ, x) attack, bρ(z), was revealed after x̂ was fully corrupted.

So (ρ̂, x̂) cannot deal with injury from any (ρ, x) attacks. Now notice that

we can see kρ̂(x̂) at the stage x is fully corrupted and this number represents

the maximum number of attacks (ρ̂, x̂) could carry out. So we are able to

incorporate this number into our new value for kρ(x). Now if there is a Ŵ

4.1. TWO C.E. SETS 69

change prompting the start of a (ρ̂, x̂) attack during the (ρ, x) attack then

we are at risk of the (ρ, x) attack injuring (ρ̂, x̂) which we cannot allow, so we

abort the (ρ, x) attack. Now we are able to do this because we incorporated

kρ̂(x̂) into kρ(x) so although we did not see dρ(z) decrease we are able to

charge the decrease to the (ρ̂, x̂) attack. We can do this because ρ̂ ∞ � ρ so

the (ρ̂, x̂) attack will be finished at the next ρ-expansionary stage. Then at

the next ρ-expansionary stage kρ̂(x̂) will have decreased by one, so this gives

us the required decrease in kρ(x).

Case 2: x was fully corrupted before x̂ was fully corrupted and x was

established after x̂ was established. When we establish x we can see x̂ because

it has already been established, then we are able take x̂ into account when we

define mρ(x). Then when x̂ is corrupted we can decrease mρ(x) by one. Now

at the next ρ-expansionary stage x̂ is fully corrupted; hence we are essentially

back in the first case and are able to incorporate kρ̂(x̂) into kρ(x). So in this

case we can allow (ρ̂, x̂) attacks to abort (ρ, x) attacks.

Case 3: x was fully corrupted before x̂ was fully corrupted and x was

established before x̂ was established. In this case notice that due to the

relative strength of the corrupting numbers it must be that x̂ was actually

established after x was fully corrupted. Recall that this is because µ initialises

all weaker nodes when a new follower is appointed. Then this means when

x̂ is established it has access to an upper bound for how many attacks (ρ, x)

can do. So x̂ can incorporate this bound into mρ̂(x̂). Then every time (ρ, x)

attack we are able to decrease mρ̂(x̂) by one and incorporate the length of

attack into kρ̂(x̂); this allows (ρ̂, x̂) to actually be able to take the injury from

any (ρ, x) attack. However notice that when a (ρ, x) attack starts it may not

finish; it may be aborted by some (ρ′, x′). Then after it is aborted it may

start another attack but it still has the bound on the length of the attack

as the first attack because it did not finish, so it is possible dρ(z) has not

decreased by one. So in this case we do not need to decrease mρ̂(x̂) again;

hence what we actually need to do is decrease mρ̂(x̂) by one every time a

new bound for the length of attack, bρ(z), is revealed. Notice that every

70 CHAPTER 4. EXTENDING RESULTS

time this happens we will have seen dρ(z). Therefore all that is required is

to incorporate dρ(z) into mρ̂(x̂) and decrease mρ̂(x̂) each time we see dρ(z)

decrease. This allows us to always be able to take the injury from the next

(ρ, x) attack.

As discussed, a (ρ, x) attack will abort a (ρ̂, x̂) attack if ρ̂ � ρ∞, W 6= Ŵ

and either x was established before x̂ was established or x was fully corrupted

before x̂ was fully corrupted (note that this is equivalent to the condition that

x was established before x̂ was fully corrupted; this is due to the relative

strength of the corrupting numbers). So notice that we do not abort attacks

that work with the same W ; this is because we know we do not need to as

shown in the construction in Chapter 3. This does cause careful treatment

when it comes to defining the ordinal approximation for PΨ requirements,

but does not affect the construction.

Now an important thing to note is that although it is possible to get the

configuration η ∞ � τ ∞ � ρ∞ � µ this is only possible if η and τ work for

different W . This means that µ enumerates numbers into QW while τ works

with oracle QŴ (W 6= Ŵ); hence enumerations by such a µ do not affect τ

and ρ. Therefore it is still the case that a µ node can only cause injury to ρ

such that ρ ∞ � η. Note that we still require requests to take care of injury

from the right. Since R and P requirements only interact if they work for

the same W , these interactions work the exact same way as in the previous

construction and require no modification.

But now we will notice that two W affects the interaction between N and

P requirements. Let ρ and ρ̂ be nodes working for requirements PΨ,W0,k and

PΨ̂,W1,k̂
respectively. Now suppose we have the configuration:

τ ∞ � π ∞ � ρ ∞ � τ̂ ∞ � ρ̂

Suppose (ρ̂, x̂) is in an attack and Γρ̂(A,W, ẑ) ↓ at the stage y was established;

hence it is possible that γρ̂(ẑ) < ϕ(y). Then at the next ρ̂-expansionary stage,

the enumeration into A injures Φπ(A, y). Then before the next π ∞ stage it

is possible that there is a W change prompting the start of a (ρ, x) attack. If

4.1. TWO C.E. SETS 71

(ρ, x) starts this attack then since τ ∞ � π, the use γρ(z) will be lifted large

before we see Φ(A, y) recover. So now (ρ, x) could injure the computation

Φπ(A, y). Notice that this is not necessarily a problem; as long as y could

see the length of this attack when it was established, it is ok for this attack

to injure it. However if (ρ, x) was fully corrupted or finished an attack after

y was established, then we cannot allow (ρ, x) to injure the computation

Φπ(A, y). Notice this is a significant difference from the construction we had

in the previous chapter, because we were able to argue that if (ρ, x) was fully

corrupted or finished an attack after y was established, then at any later

stage where (ρ, x) wants to start an attack, Φπ(A, y) ↓ (shown in Lemma

3.28)).

To protect (π, y) computations we are not allowed to injure we define a

guarded set, grd(ρ, x). We define this when x is fully corrupted and then

redefine it every time (ρ, x) finishes an attack. Then if there is a W change

prompting (ρ, x) to start an attack but there is some (π, y) ∈ grd(ρ, x) such

that Φπ(A, y) ↑, we do not let (ρ, x) start an attack. But now how do we

count this? We still need to decrease the ordinal oΨ(x) because there has

been a W change; since we have not started an attack we need to count this

in a different way. So clearly we need some way to bound how many times

we may need to prevent a (ρ, x) attack due to Φπ(A, y) ↑ for some guarded

(π, y). To do this we investigate what could have caused this to happen.

Let (π, y) ∈ grds(ρ, x) and suppose Φπ(A, y)[s] ↑. Then this was caused

by an enumeration into A at stage t; let (ρ̂, x̂) be responsible for this enumer-

ation. Now if τ̂ � ρ ∞ then τ̂ � π ∞, hence the number (ρ̂, x̂) enumerated

into A at stage t was defined before y was established and (ρ̂, x̂) has been in

an attack since then. Suppose grds(ρ, x) was defined due to the corruption of

x. Then µ must be to the right of ρ̂ and hence was last initialised when (ρ̂, x̂)

lifted the use γρ̂(ẑ) large. Therefore the number enumerated into A at stage

t is small enough to uncorrupt x. So in this case we are fine. Now suppose

grds(ρ, x) was defined due to finishing an attack. Then since (ρ̂, x̂) was in

an attack during a (ρ, x) attacks, (ρ, x) attacks do not abort (ρ̂, x̂) attack;

72 CHAPTER 4. EXTENDING RESULTS

hence x̂ was fully corrupted before x was established. Now notice that this

means that x can see the bound for how many attacks (ρ̂, x̂) can do, then as

discussed above this allows us to incorporate kρ̂(x̂) into mρ(x); hence every

time (ρ̂, x̂) starts an attack we can incorporate bρ̂(ẑ) into kρ(x). Then we are

able to count the prevented attack against this single enumeration by (ρ̂, x̂).

Now we need to consider the case where τ̂ ∞ � ρ. Now recall that to

injure Φπ(A, y) it must be that ρ̂ � π ∞ (shown in Lemma 3.22). In this

case notice that the argument does become a bit more complicated because

it could be that the (ρ̂, x̂) attack actually started after y was established. So

suppose (ρ̂, x̂) is not in an attack at the stage y was established. Then an

enumeration by some (ρ′, x′) caused (ρ̂, x̂) to begin injuring Φ(A, y). Now the

key is that since there are only two W , then it must be that τ ′ � ρ∞ and so

τ ′ � π∞; hence (ρ′, x′) was in an attack when y was established. Moreover ρ′

must work with the same W as ρ. This means (ρ′, x′) cannot injure Φπ(A, y)

when (π, y) ∈ grd(ρ, x) because otherwise we would contradict Lemma 3.28.

Therefore, if (ρ′, x′) causes (ρ̂, x̂) to start injuring Φπ(A, y), then this happens

before grds(ρ, x) is defined. Then we are able to use the argument above to

show that x̂ was corrupted before x was established and hence we are able

to count for the attack we must prevent.

We believe that a construction with the following modifications to the

construction detail in Chapter 3 will work:

Tree of strategies. The idea for the the tree of strategies is to take

two versions of the tree from the previous chapter, one working for W0 and

one for W1, and then interweave them together. However then to avoid the

configuration τ ∞ � τ̂ ∞ � ρ ∞ � ρ̂ we will also need to restart nodes. So

below the infinite/divergent outcome of child nodes we can restart all parent

nodes between it and its parent.

Guarding Set. Define grd(ρ, x) to be the collection of (π, y) such that

π ∞ � ρ and y has been established. This is first defined when x is fully

corrupted and then redefined each time a new bρ(z) is revealed (each time

we see dρ(z) decrease). Then when there is a W change prompting an attack

4.2. THREE C.E. SETS 73

we first check whether there is some (π, y) ∈ grd(ρ, x) such that Φπ(A, y) ↑;
if so then we do not start an attack and say this attack was prevented and

otherwise we start an attack.

Aborting attacks. When (ρ, x) starts an attack, we abort any (ρ̂, x̂)

such that W 6= Ŵ , ρ̂ � ρ ∞ and either x was established before x̂ was

established or x was fully corrupted before x̂ was fully corrupted.

Now the guarding set ensures N requirements can be met with the same

ordinal definition as in the previous construction (Lemma 3.29). Aborting

attacks ensures each (ρ, x) can take any A injuries that cannot be avoided.

Then as discussed we are able to count for attacks that are prevented and

aborted; hence we are able to meet P requirements. Note that the ordinal

definition for P requirements will be much more complicated than in the

previous construction.

4.2 Three c.e. sets

Now we ask: what happens when we consider three c.e. sets, W0, W1 and

W2? Consider the discussion in the previous section about how we are able

to prevent (ρ, x) attacks from starting if the computation of a guarded (π, y)

is undefined. The key difference is that now it is possible to have the config-

uration:

τ ′ ∞ � τ̂ ∞ � τ ∞ � π ∞ � ρ ∞ � ρ̂ ∞ � ρ′

The naive strategy is to argue that because (ρ, x) would have aborted

the attack of all (ρ̂, x̂) that extend ρ ∞ and were that were fully corrupted

after x was established, then if (ρ, x) wants to start another attack later at

a stage where Φπ(A, y) ↑, then some (ρ̂, x̂) that was fully corrupted before

x was established must have enumerated a number into A since the stage it

finished its last attack. Then we are able to count for this prevented attack

as we did above. This is in fact true, but the problem is that we must

ensure that we have not already counted towards this enumeration. So what

we actually need to show is that this enumeration happened since the last

74 CHAPTER 4. EXTENDING RESULTS

stage a (ρ, x) attack was prevented. This would work if we are able to abort

attacks whenever there is a W change prompting a (ρ, x) attack regardless of

whether we actually begin this attack or not; however this does not always

work. Now to see this we consider the configuration above and the order of

events shown in the timeline in figure 4.1 on page 77. x is established at the

start of an arc labelled x and fully corrupted at the end of this arc. An arc

labelled (ρ, x) attack means this attack started at the start of this arc and

finished at the end.

Clearly we do not want to start the last (ρ, x) attack, because (π, y) ∈
grd(ρ, x) and Φπ(A, y) ↑. So if this attack starts it could injure this compu-

tation, but the length of this attack was revealed after y was established since

it finished an attack after y was established. So we definitely need to abort

this attack, but the question is: how do we count this? Notice that we are

able to abort an attack for every enumeration into A due to (ρ′, x′), but we

already used this enumeration to abort an attack. Now since ρ̂ � ρ ∞ and

x̂ was fully corrupted after x was fully corrupted, (ρ, x) attacks abort (ρ̂, x̂)

attacks. Then if we let (ρ, x) abort attacks at the stage we prevented its

attack, then we would not have a problem because (ρ̂, x̂) would no longer be

in an attack injuring (π, y). But now how would (ρ̂, x̂) count for this aborted

attack? (ρ, x) attacks can abort (ρ̂, x̂) attacks because when x̂ is fully cor-

rupted x has already been fully corrupted; hence it is able to incorporate

kρ(x) into its kρ̂(x̂). Now when the first (ρ, x) attack is prevented it is due

to the (ρ′, x′) enumeration. This was counted because x′ was fully corrupted

before x was established so we were able to incorporate kρ
′
(x′) into mρ(x);

hence we decreased mρ(x) when the (ρ′, x′) attack started so that the length

of the attack bρ
′
(z′) can be incorporated into kρ(x). So the enumeration into

A causes bρ
′
(z′) to decrease which gives us a decrease in kρ(x). Now notice

that this kρ(x) is different from the kρ(x) that (ρ̂, x̂) was able to incorporate

into its kρ̂(x̂); hence we cannot abort the (ρ̂, x̂) attack unless (ρ, x) actually

begins an attack. Then the timeline on page 77 is possible; (ρ̂, x̂) could do

another enumeration that again injures Φπ(A, y), followed by a W change

4.2. THREE C.E. SETS 75

prompting a (ρ, x) attack and we need to prevent this attack if Φπ(A, y) has

not yet recovered. Now this could happen for the whole length of the (ρ̂, x̂)

attack; hence a (ρ, x) attack may need to be aborted up to bρ̂(ẑ) many times.

So the question is: can we take this into account? When was bρ̂(ẑ) revealed?

Now (ρ̂, x̂) carries out an attack before y is established, so bρ̂(ẑ) is revealed

at the first ρ̂-expansionary stage after this attack has finished. Now recall

that since x′ was corrupted before x was established, we decrease mρ(x) by

one each time dρ
′
(z′) decreases. When this happens we get to choose a new

kρ(x); we do this so that we can incorporate bρ
′
(z′) into kρ(x). So notice

that when this happens we could also incorporate anything else we want;

in particular we can incorporate bρ̂(ẑ) into kρ(x) as well. But we can only

do this when we have seen dρ̂(ẑ) decrease and it is possible that given the

timeline above this has not happened after (ρ̂, x̂) finishes its attack; hence

the bρ̂(ẑ) that we are able to incorporate is the length for a different attack

and is small compared to the length of the attack that we need to count

against. Now naively we may argue that since the (ρ′, x′) attack was aborted

by that (ρ̂, x̂) attack we had a way to count this, so kρ̂(x̂) decreased at the

first ρ′-expansionary stage after the (ρ̂, x̂) attack finished. Then at this stage

the new bρ̂(ẑ) has been revealed and so if we incorporate kρ̂(x̂) into mρ(x)

instead of just dρ
′
(z′), we could at this stage decrease mρ(x) by one and

incorporate bρ̂(ẑ) as desired. Suppose we do this and now we explain why

this fails.

First recall that (ρ̂, x̂) attacks are able to abort (ρ′, x′) attacks because

x′ was able to take x̂ into account when it is established; hence at the stage

x̂ is fully corrupted we can decrease mρ′(x′) by one and incorporate kρ̂(x̂)

into kρ
′
(x′). Now notice that we incorporated kρ̂(x̂) into mρ(x) at the stage

x was established, but this was before the stage x̂ was fully corrupted; hence

at this stage kρ̂(x̂) has not yet been incorporated into kρ
′
(x′). Then while

we are able to abort the (ρ′, x′) attack because we can charge the decrease

to kρ̂(x̂), we are not able to decrease mρ(x) by one. So it is important that

we only decrease mρ(x) only when dρ
′
(z′) decreases.

76 CHAPTER 4. EXTENDING RESULTS

Therefore notice that this sequence of events is in fact a problem; we must

prevent a (ρ, x) attack if there has been a (ρ̂, x̂) enumeration injuring (π, y),

but there is no way for (ρ, x) to incorporate a bound for this into its ordinal.

Then if we do not prevent such attacks, we are not guaranteed to meet all

NΦ requirements, and if we prevent such attacks then we are not guaranteed

to meet all PΨ requirements.

Clearly the modifications discussed in the two c.e. sets case will not be

enough for three c.e. sets. It is not yet clear to us what modifications are

required to make this work. If this is true then it seems a construction to

prove it will need new ideas. But this situation is concrete enough that it

could be exploited in order to attempt to prove the negation. For the negation

we prove that given a totally ω-c.a. degree, there is a maximal totally ω2-c.a.

degree above it. Notice that due to Theorem 1.6 and the discussion about

the two c.e. set case above, such a construction will require us to build three

sets, one of which will be a maximal totally ω2-c.a. degree above the given

totally ω-c.a. degree.

4.2. THREE C.E. SETS 77

(ρ′, x′) attack

starts

(ρ′, x′) attack

aborted

(ρ′, x′) attack

starts

y established

γρ
′
(z′) → A

Φ(A, y) ↑
(ρ̂, x̂) attack

starts

γ ρ̂(ẑ) → A

Φ(A, y) ↑

(ρ, x) wants to

start an attack.

Attack prevented

γρ̂(ẑ) → A

Φ(A, y) ↑
(ρ, x) wants to

start an attack

x̂

x′ x

(ρ̂, x̂) attack (ρ, x) attack

no π ∞ stages
no π ∞ stages

no π ∞ stages

Figure 4.1: Timeline showing a possible interaction between three P require-

ments and an N requirement.

78 CHAPTER 4. EXTENDING RESULTS

Bibliography

[1] Arthur, K., Downey, R., and Greenberg, N. Maximality and

collapse in the hierarchy of -c.a. degrees. Computability (Feb. 2021),

134.

[2] Downey, R., and Greenberg, N. A hierarchy of Turing degrees :

a transfinite hierarchy of lowness notions in the computably enumerable

degrees, unifying classes, and natural definability. Princeton University

Press, Princeton, New Jersey, 2020.

[3] Downey, R., Greenberg, N., and Weber, R. Totally ω-

computably enumerable degrees and bounding critical triples. Journal

of Mathematical Logic 07, 02 (2007), 145171.

[4] Downey, R., Jockusch, C., and Stob, M. Arry nonrecursive sets

and multiple permitting arguments. Lecture Notes in Mathematics Re-

cursion Theory Week (1990), 141173.

[5] Epstein, R. L., Haas, R., and Kramer, R. L. Hierarchies of

sets and degrees below 0′. In Logic Year 1979–80 (Berlin, Heidelberg,

1981), M. Lerman, J. H. Schmerl, and R. I. Soare, Eds., Springer Berlin

Heidelberg, pp. 32–48.

[6] Ershov, Y. L. A hierarchy of sets. i. Algebra and Logic 7, 1 (Jan.

1968), 25–43.

79

80 BIBLIOGRAPHY

[7] Ershov, Y. L. On a hierarchy of sets, II. Algebra and Logic 7, 4 (July

1968), 212–232.

[8] Ershov, Y. L. On a hierarchy of sets. III. Algebra and Logic 9, 1 (Jan.

1970), 20–31.

[9] Shoenfield, J. R. On degrees of unsolvability. Annals of Mathematics

69, 3 (1959), 644–653.

[10] Shore, R. A. A non-inversion theorem for the jump operator. Annals

of Pure and Applied Logic 40, 3 (Dec. 1988), 277–303.

