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Abstract 

Three manuscripts form the basis of this dissertation exploring the effect of drought and 

climate on agriculture in New Zealand. The first manuscript examines the effects of droughts 

on agricultural profitability and farms' business performance indicators across dairy and 

sheep/beef land-uses in New Zealand. This study applies a fixed effect panel regression model 

using financial and agricultural data at the firm level from Statistics New Zealand's 

Longitudinal Business Database (LBD) over 2007-2016. The analysis shows that, on average, 

a recent drought increases revenue and profit from dairy farming.  

The second manuscript explores regional differences in the impacts of drought events in New 

Zealand between 2007-2016. Dramatically different climatic conditions across New Zealand 

regions motivated this work. The study finds that Waikato and Taranaki's dairy farms – the 

main dairy producers- positively affected by drought event. This effect is potentially associated 

with drought‐induced higher milk prices. The positive impacts of drought are no longer 

identifiable once the model control for milk prices. Whereas sheep/beef farms' gross income 

and profit were negatively affected by droughts across most sheep/beef farming regions. The 

analysis also reports that there is no relationship between the persistent impact of drought 

events and farms' income and profits, on average, over three years. 

The third manuscript estimates the Ricardian approach to examine how climate differences 

affect farmland values in New Zealand. This study applies the spatial first differences (SFD) 

method that compares climate differences to land value differences between adjacent 

neighbours to eliminate the omitted variables bias. This work estimates the effect of climate on 

overall rural land-uses and various land-uses between 1993 and 2018. The SFD estimation 

shows that warmer conditions are associated with higher capital values. There is also a positive 

relationship between farmland values and dryer soils. These relationships are likely due to 

causal effects of factors tied to climate such as agricultural productivity, the value of land 

improvements (tied to climate), and amenity values associated with residential uses. 
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Introduction 

Changes in New Zealand climatic conditions are projected to include increasing 

temperatures and drier conditions in the North Island and east of the South Island. In line with 

these effects, the frequency and intensity of summer drought are expected to increase in the 

next decades. However, summer drought events are not only a projected phenomenon under 

future climate but are already a challenge under current climatic conditions. As experienced in 

2013, for example, drought can have severe and costly impacts on agricultural production.  

Drought is generally defined as a prolonged period of abnormally low precipitation, leading 

to water shortages. Drought can be defined based on different perspectives—meteorological, 

hydrological, agricultural, or socioeconomic (American Meteorological Society 1997). In this 

work, we focus on agricultural drought. Drought differs from most other natural hazards 

because of its slow onset and prolonged duration, so it is often difficult to determine the start, 

duration and end of a drought event (Parry et al, 2016). While drought has wide-ranging effects 

on all sectors, the agricultural sector is particularly vulnerable as it is highly dependent on 

precipitation and evapotranspiration. Therefore, any climatic change, such as drought, can 

strongly affects agricultural productivity and consequently land values in different regions of 

New Zealand. 

New Zealand’s economy relies heavily on its natural environment: the agricultural and 

forestry sectors contribute significantly to export earnings (more than half of New Zealand’s 

total export income) and a sizeable proportion of New Zealand’s total land is used for primary 

production (agriculture, forestry, and horticulture). 

New Zealand has experienced several major droughts during the last few decades. The 2013 

drought affected the whole of the North Island and the West Coast of the South Island and was 

one of the most extreme on record in New Zealand. According to the Ministry for Primary 

Industries (MPI), its impact on the economy was estimated to be at least $1.3 billion, and it 

affected 20,000 farmers. The 2013 drought was estimated to have caused GDP to drop by 0.6% 

(Kamber et al. 2013).    

Despite the importance of this issue, little work has been done on the impact of drought and 

climate on agriculture in New Zealand. Tweedie and Spencer (1981) estimated the effects of 

weather on agricultural production. Wallace and Evans (1985) examined the effect of annual 

climate variability on expected farm outputs, inputs, and profits. Tait et al (2005) looked at the 
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effects of climate variability on dairy production. In a macroeconomic study, Kamber et al. 

(2013) investigated the economic impact of the 2013 drought event.  

This dissertation comprises three complementary empirical studies that provide insights into 

how drought events and changes in climatic conditions impact New Zealand agriculture. 

Information gaps in the economic impact of drought and climate literature motivated this work. 

The first empirical study, “Droughts and farms’ financial performance: a farm‐level study in 

New Zealand”, examines the impacts of droughts on the profitability of dairy, sheep, and beef 

farms using a comprehensive administrative database of all farms in New Zealand. The study 

answers three research questions: (1) analyze the frequency, severity, and spatial spread of 

droughts; (2) investigate the effects of droughts on agricultural profitability and farms’ business 

performance; and (3) identify the most vulnerable agricultural sub-sectors in New Zealand. To 

address these questions, we apply a fixed effect panel regression model using tax and 

productivity data at the firm level, coupled with the New Zealand Drought Index. The first 

chapter looks at the whole country and assumes that impacts of drought are uniformed across 

the country, so the same drought will have the same impacts anywhere in the country. 

The second study, “Regional differences in the effects of drought events on-farm profitability 

in New Zealand”, investigate the dynamic impacts (over time) of drought on farm income and 

profits across agricultural regions using region-specific panel-data models with fixed effects. 

Spatial heterogeneity in climate, agricultural practices and climate change impacts across 

regions motivated this study. So far, there has not been an investigation of regional differences 

in drought impacts in New Zealand. In the second chapter, we argue that the coefficient of 

drought might be different across regions, so the same kind of drought would have different 

impacts in different regions. 

Regarding the effect of climate on agricultural land productivity, only one studies attempted 

to unveil the causal connection between climate and farmland values in New Zealand (Allan 

and Kerr, 2016). This is the key issue considered in the third study, “How climate affects 

agricultural land values in New Zealand”. Using the Ricardian approach of land-climate pricing 

and using property valuation data from 1993 to 2018, we examine how differences in climate 

influence the value of New Zealand agricultural land. The Ricardian method is a cross-sectional 

analysis that observes farms across different locations to determine how farms may adapt to 

different climates (Mendelson et al., 1994). The strength of the Ricardian approach is its ability 

to measure the long-run impact of climate, assuming each farmer has adapted to the climate 
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they currently live in (local climate), then the results reflect farm adaptation. We use the ‘spatial 

first differences’ method to identify causal effects when there are omitted variables. This 

method compares climate differences with land value differences between spatially adjacent 

neighbours. This work is the first Ricardian paper applied to New Zealand that overcomes the 

problem of unobserved heterogeneity using the spatial first differences method and one of the 

first few such analyses applied in the wider literature.    
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Chapter One 

 Droughts and farms’ financial performance: a farm‐level study in New Zealand 

 

 

Abstract 

We quantify the impacts of droughts in New Zealand on the profitability of dairy, sheep, and beef 

farms using a comprehensive administrative database of all farms in New Zealand. For dairy farms, 

we found that drought events have positive impacts on dairy farms’ revenue and profit in the year of 

the drought. This effect is most likely attributable to drought-induced increases in the export price of 

milk solids; as New Zealand is the market maker in this global market and almost all domestic dairy 

production is exported. All of these quantified impacts, however, are not very large suggesting that, 

at this point in time, droughts have a fairly moderate impact on New Zealand dairy and sheep-beef 

businesses. 
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1.1 Introduction 

In most places, agriculture is likely the sector worst affected by droughts. From a dairy, sheep, or 

beef farmer’s point of view, drought may lead to increasing expenditures on feed supplements for 

their livestock and consequently reduction in farm productivity and profitability, all due to reduced 

amounts of forage. As a consequence, farmers may be able to generate less income, diminishing their 

ability to service debt; and they may find it more difficult to replace capital items (e.g. machinery) 

and invest in recovery (Edwards et al. 2009). If the farmers’ capacity to finance their agricultural 

activities during recovery is limited, drought can have long term adverse implications (Lawes and 

Kingwell 2012). Ultimately, these losses flow through into downstream production in other sectors, 

and thus droughts can have a large adverse impact on the aggregate economy. 

New Zealand has experienced several major droughts during the last few decades. The 2013 

drought in particular affected the whole of the North Island and the West Coast of the South Island 

and was one of the most extreme on record in New Zealand. According to the Ministry for Primary 

Industries (MPI), its impact on the economy was estimated to be at least $1.3 billion, and it affected 

20,000 farmers. The 2013 drought was estimated to have caused GDP to drop by 0.6% (Kamber et 

al. 2013). Some North Island regions received less than half of the expected summer rainfall, and this 

led to a decrease in the number of livestock in some regions. 

There were other instances of local droughts. For example, in Northland, the worst drought 

happened in 2010 when record low rainfall levels were recorded between November 2009 and April 

2010. This led to parched soils, a drastic reduction in pasture growth as well as reductions in farm 

productivity (NIWA 2017). In 2008, the Waikato region experienced the driest January in a century. 

Severe moisture deficits continued in that year until April/May.  

A changing climate, with higher average temperatures, more extreme temperatures, and changing 

rainfall patterns—in New Zealand, mainly drier in the north and east, and wetter in the west and 

south—is expected to affect the frequency and intensity of droughts (NIWA 2015). Another report 
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concluded that under the more extreme projections, New Zealand will become more arid by 2040. 

Moreover, this report projected most parts of New Zealand, except for the West Coast of the South 

Island, will be faced with prevailing drought conditions about 5-10 percent more of the time, 

according to their mid-range projections. Their high-end projections include predictions of “greater 

than 10%” (NIWA 2011, p. 28-29).  

In this paper, we undertake an assessment of drought impacts for farms in New Zealand. Our focus 

is on dairy farming, and sheep/beef farming. Dairy contributes 3.5% to New Zealand’s total GDP, 

and sheep/beef is the second largest agricultural sector (NZIER 2017). New Zealand is one of the 

largest milk producers in the world, with more than 4.9 million dairy cows producing over 21.2 billion 

litres of milk annually (NZIER 2019). New Zealand also accounts for 5% of world sheep meat 

production and supplies over half of the global lamb exports (NZIPIM, 2019). Most dairy herds 

(72.3%) are located in the North Island, with the greatest concentration (28.7%) in the Waikato region 

(DairyNZ 2018). Most of the pasture land in these areas is not irrigated, and the Ministry for the 

Environment identified drought as one of the major constraints to pasture grazing in New Zealand 

(MfE 2001). 

Most of the existing empirical literature analyses the effects of climate-extreme events on the 

agricultural sector at the national level or at similarly high levels of aggregation. These may therefore 

underestimate the negative local impacts of adverse events on the entities most affected. The micro-

level analysis we pursue provides a more precise picture of the effects of droughts, and has a practical 

application as it provides inputs for evidence-based policy to determine the design of assistance 

policies for individual firms. 

In this study, we combine an administrative farm-level panel data from Statistics New Zealand’s 

Longitudinal Business Database (LBD) with a drought-conditions measurement tool (the New 

Zealand Drought Index) to analyze the impacts of droughts on farms' economic performance and their 
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balance sheets. Our focus is on agricultural drought. Since there is no common definition of drought, 

for this study, agricultural drought is defined as:  

“Agricultural drought links the diverse characteristics of meteorological droughts to 

agricultural impacts which focus on precipitation shortages, differences between actual and 

potential evapotranspiration, and soil moisture deficits” (American Meteorological Society 

1997, p.847). 

The objectives of this work are to (1) analyze the frequency, severity, and spatial spread of 

droughts; (2) investigate the effects of droughts on agricultural profitability and farms’ business 

performance; and (3) identify the most vulnerable agricultural sub-sectors in New Zealand1. To 

address these objectives, we apply a fixed effect panel regression model using tax and productivity 

data at the firm level, coupled with the New Zealand Drought Index.  

We found that, on average, a recent drought increases revenue and profit from dairy farming, 

potentially implying that the losses in milk productions may have been compensated by increasing 

export milk prices. However, once we control for changes in milk prices, drought events have a small 

(and mostly statistically insignificant) negative impact.  

Following that, we examine all other farm business performance indicators that might plausibly be 

affected by the negative shock, and that are available in the database for three yeasrs following 

drought events. These include interest coverage (IC), return on capital (ROC), business equity (BE), 

and debt to income (DI) ratio. If the drought had any impact on revenue or on expenses (for example 

for feed), than we would expect these variables to be affected. 

This paper is structured as follows: Section 2 provides an overview of the literature on assessing 

the risk from climate-extreme events to identify the gap in the research that we aim to fill. The 

following sections present data sources (section 3), the empirical model used (section 4), and a spatial 

 
1 This study does not consider role of adaptation in analysis because we do not have access to adaptation actions at farm 

level.  



5 

 

and temporal description of the data (section 5). The main findings are summarised in section 6, and 

we conclude in section 7. 

 1.2 Literature Review 

Some recent studies have focused on the relationship between climate-related risks, extreme 

weather, and agriculture (e.g., Schlenker and Roberts 2009; Howitt, et al. 2014, Moore and Lobell 

2014; Ali et al. 2017 ). The focus of most studies has been the impacts of changes in temperature and 

precipitation on agricultural production. For example, Schlenker and Roberts (2009) estimated the 

relationship between weather and yields for corn, soybeans, and cotton in the United States. They 

found that there is a nonlinear relationship between yields and temperature in both the cross-section 

of counties and the aggregate year-to-year time series. 

Ali et al. (2017) investigated the impacts of maximum temperature, minimum temperature, rainfall, 

relative humidity, and sunshine on major crops in Pakistan (wheat, rice, maize, and sugarcane) using 

time series data for the period 1989-2015. Kumar et al. (2011) examined the effect of monsoon 

drought on the production, demand, and prices of seven major agricultural commodities – rice, 

sorghum, pearl millet, maize, pigeon pea, groundnut and cotton - in India. Their results showed that 

drought, during the monsoon period, has an adverse effect on the agricultural sector. Yet, loss of 

production also led to an increase in the prices of agricultural commodities. Shakoor et al. (2011) 

showed a significant negative impact of rising temperatures on agricultural production and a positive 

impact of rainfall. Similar results were reported in Barrios et al. (2008) on the relationship between 

rainfall and temperature and agricultural output using cross-country data from Sub-Saharan Africa. 

However, Moore and Lobell (2014) found that agricultural profits could moderately increase under 

climate change if farmers implement adaptation measures, but could decrease in many regions if there 

is no adaptation. 

There is also an extensive literature focused on the climatological assessment of drought 

characteristics in terms of its frequency, duration, severity, and spatial extent to gain a better 
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understanding of this phenomenon (Livada and Assimakopoulos 2007; Wu et al. 2011; Spinoni et al. 

2014). Several studies investigated the spatial patterns of drought risk in order to assist agricultural-

environmental management (Vicente-Serrano and López-Moreno 2005) or identify and quantify 

drought vulnerability (Cheng and Tao 2010; Shahid and Behrawan 2008).  

A number of studies have been carried out to measure the impact of droughts on agricultural 

activities using input-output tables (Howitt et al. 2014; Wilhite 1997; Wittwer and Griffith 2010), 

farms’ business performance using data from agricultural consulting firms (Lawes and Kingwell 

2012; Kingwell and Xayavong 2017), farmers’ consumption and income using household surveys 

(Garbero and Muttarak 2013) and farms’ resilience to droughts using district-level production data 

(Birthal et al. 2015).  

Some findings from this literature are worth noting here: First, it remains difficult to adequately 

characterize droughts and there is no consensus on their definition, identification, and measurement. 

Secondly, the impacts of droughts on agricultural yield vary during their timing during the crop-

growing cycle. Thirdly, farmers use various coping strategies, so distinguishing drought impact on 

production while accounting for adaptation is not a straightforward task. 

  Research on the impacts of climate-induced extreme risks on New Zealand agriculture dates back 

about 40 years to Maunder (1968, 1971a, 1971b). Below, we describe seven studies, six of which 

looked at the historical effects of dry periods on agriculture in all New Zealand, while the remaining 

one focuses on the 1998-99 drought in Canterbury alone. These studies applied different empirical 

methods, covered different historical periods, regions, and agricultural sub-sectors. None of them 

uses the administrative micro firm/farm-level data we use here. 

Tweedie and Spencer (1981) focused on the econometric estimation of export supply functions 

over the period 1961–1978, but they also provided estimates of the effects of weather (measured in 

terms of Days of Soil Moisture Deficit - DSMD) on agricultural production. They separately 

estimated the shorter run effects, and the long-run equilibrium impacts of climate on the number of 
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animals and production of meat, milk, and wool. The results showed that climate influenced the 

slaughter rate, the milk production per cow, and the growth rate of wool. They note, though, that the 

impact on dairy production seemed low in relation to the effects of weather on other agricultural 

sectors. 

 Wallace and Evans (1985) examined the effect of annual climate variability (measured by standard 

deviations in DSMD) on expected farm outputs, inputs, and profits, using a panel database from 1950 

to 1979. They used separate series for positive and negative variations in DSMD to evaluate 

asymmetric reactions to dry and wet conditions. They observed that a deviation from normal DSMD 

in either direction negatively affected sheep farm output. Profitability differed between dry and wet 

years. In general, the effects on sheep and beef production from changes in DSMD were comparable 

to the findings in Tweedie and Spencer (1981). Wallace and Evans (1985) only examined regions 

with Class VI2 sheep farms; it is therefore expected that these farms were better adapted to address 

climate variability on sheep and beef production than similar farms in other places. 

 Forbes (1998) estimated changes in agricultural output as a result of the climatic conditions with 

data covering the period 1961 to 1998. They used the MAF Pastoral Supply Response Model (PSRM) 

on Statistics NZ's agricultural time series and found similar results to Tweedie and Spencer (1981) 

and Wallace and Evans (1985). However, Forbes (1998) presented a strong positive effect on the 

slaughter rates for adult animals. Tait et al (2005) looked at the effects of climate variability on dairy 

production, using a panel dataset from the annual Livestock Improvement Corporation Dairy 

Statistics publications. To calculate the economy-wide implications of changes in milksolids 

production they incorporate the impacts of production into a general equilibrium model. The results 

showed negative economic effects. As Tait et al. (2005) state, they find that an adverse change of one 

 
2 According to Beef & Lamb New Zealand, Class VI is defined as South Island Finishing Breeding: more extensive type 

of finishing farm, also encompassing some irrigation units and frequently with some cash cropping. Carrying capacity 

ranges from six to eleven stock units per hectare on dryland farms and over twelve stock units per hectare on irrigated 

units; mainly in Canterbury and Otago. Class VI is the dominant farm class in the South Island. 
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standard deviation can cause a reduction in milk solids production per cow by 3–4%. This was broadly 

consistent with the estimate of 2.6% by Tweedie and Spencer (1981).  

 In contrast, Kamber et al. (2013) investigated the economic impact of the 2013 drought using a 

macroeconomic model. An important contribution of this research was the weather data; they looked 

at alternative weather measures and showed that these indicators were consistent with the timing of 

recognized droughts. Furthermore, since the effect of seasonal variation can be highly significant, 

they calculate the impact of drier-than-usual March quarters when the most damaging droughts 

usually take place. Their findings indicate the 2013 drought reduced annual GDP for the full year by 

0.3%.  

From this review of previous studies, it is quite apparent that data aggregated at the regional or 

national level will not represent the full picture of impacts of climatic disasters on rural farming with 

different agroecological characteristics. Any level of aggregation would inevitably hide heterogenous 

impacts that drought events may have.  

1.3 Data sources and sample 

1.3.1 Drought Index dataset 

There is no universal definition of drought, as it can be defined based on different perspectives—

meteorological, hydrological, agricultural, or socioeconomic (American Meteorological Society 

1997). An agricultural drought, in New Zealand, is defined as a prolonged moisture deficit that has 

adverse impacts on agricultural production (NIWA 2017). A large body of literature exists on the 

diverse range of drought indicators to measure and detect drought. These drought indicators have 

been developed based on the available climate and weather data. These include: Rainfall deciles 

(Gibbs and Maher 1967); Hutchinson Drought Severity Index (HDSI) (Smith et al. 1993); Drought 

Severity Index (DSI) (Phillips and McGregor 1998); Standardised Precipitation Index (SPI) 

(Cancelliere et al. 2007; Hayes et al. 2011; Huo-Po et al. 2013); Palmer Drought Severity Index 

(PDSI) (Alley 1984; Dai et al. 2004; Palmer 1965); Potential Evaporation Deficit (PED) (Nagarajan 
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2010); Soil Moisture Deficit Index (SMDI) (Narasimhan and Srinivasan 2005; Tang and Piechota 

2009); Drought Area Index (DAI) (Bhalme and Mooley 1980); NOAA Drought Index (NDI) 

(Strommen et al. 1980); and Integrated Agricultural Drought Index (IADI) (Zhao et al. 2017).  

Given the complexity of droughts, various sources of drought-related elements such as 

precipitation, vegetation growth condition, soil moisture, and land surface temperature can be 

integrated to indicate the spatial extent and intensity of droughts (Meng et al. 2016). It is apparent 

that the aggregation of all drought-related factors depends on the availability of data. In this study, 

we utilise a new Drought Index (NZDI), developed by NIWA, to identify the onset, duration, and 

intensity of drought conditions. The index has five categories: Dry, Very Dry, Extremely Dry, 

Drought, and Severe Drought (NIWA 2017). The NZDI combines four commonly-used drought 

indicators: The Standardised Precipitation Index (SPI); Soil Moisture Deficit (SMD); Soil Moisture 

Deficit Anomaly (SMDA); and Potential Evapotranspiration Deficit (PED). 

SPI, as a universal drought indicator, is based solely on the accumulated precipitation for a given 

time period (e.g., for New Zealand, over the last 60 days), compared with the long-term average 

precipitation (30 years) for that period. This precipitation difference is "standardised" by dividing by 

the long-term standard deviation of precipitation for that period (NIWA 2017).  

SMD is measured based on daily rainfall (mm), outgoing daily potential evapotranspiration (PET, 

mm), and a fixed available water capacity (the amount of water in the soil 'reservoir' that plants can 

use) of 150 mm. SMDA may also be also defined as the difference between the current and historical 

soil moisture deficits (or difference from normal). 

PED is the difference between potential evapotranspiration (PET) and actual evapotranspiration 

(AET). As conditions get drier, there will be a difference between the amount of water that has 

actually evaporated and transpired (AET) compared to the amount of water that would be evaporated 

and transpired if all the water is available (PET). To some extent, PED is related to SMD. Once 
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sufficient water is available, SMD is small, and the PED is zero.  Conversely, when SMD is 

increasing, PED will show non-zero values. 

The daily data of the NZDI and its 4 components are available at the district level and are linked 

to our sample population by spatially joining the value of the drought index to each meshblock within 

each district.3  Our analysis uses the two highest categories of the index – ‘drought’ and ‘severe 

drought’. Since our goal is to investigate the effects of extreme events, we build new distributions of 

NZDI for extreme drought categories by looking at certain threshold values.  We note if the NZDI is 

equal to or higher than 1.75 (severe drought - SD), and if the NZDI is between 1.50 and 1.75 (drought 

- D). These are the thresholds identified by NIWA, which constructed the NZDI, based on 

international practice and the specific distribution of the NZDI. To analyze the frequency, severity 

and spatial spread of droughts, the number of SD/D days, the average value of the index for SD/D 

events and standard deviation of the index, are calculated for each district over the last 10 years. 

1.3.2 Agricultural, financial, and productivity data, and other datasets 

The main source of data is Statistics New Zealand’s Longitudinal Business Database (LBD)4, 

which combines administrative and survey data for all businesses in New Zealand. We use annual 

data for the period 2007 to 2016. Table 1 lists the datasets used in this study.  

Financial (tax) data are available at the enterprise level in the LBD, while information from the 

Agricultural Production Survey/Census (APS/APC) is collected at the farm level with a different 

geographical location identified at the meshblock level (the most detailed spatial designation 

available from Statistics New Zealand). Since we are not able to match the tax data to a specific 

geographical location for firms with multiple locations, we aggregate the data to the enterprise level 

(rather than per location). Multiple-location farms account for about 27% of dairy farms and 18% of 

 
3 Meshblocks are the smallest administrative unit used by Statistics New Zealand when collection individual and business 

information. Their size varies by the population density across the country, with more densely populated areas having 

many more meshblocks. Overall, New Zealand is divided into 46637 meshblocks in 2013. 
4 See Fabling and Sanderson, L. (2016) A Rough Guide to New Zealand's Longitudinal Business Database (2nd edition). 

Motu Economic and Public Policy Research Working Paper 16-03.  
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sheep/beef firms. There are some enterprises which occupy meshblocks in more than one territorial 

authority or regional council. These account for about 11.9% and 0.2% of multi-location firms, 

respectively, recorded by a set of territorial authorities and regional council binary variables. 

We use a map of all irrigated areas, data for which was collected in 2017 (Dark and Kashima 2017). 

To allocate an irrigated area (farm level) to a meshblock level, first, we calculate the centroid point 

of each irrigated area and then denote as irrigated any meshblock in which there is an ‘irrigated’ 

centroid (i.e. an irrigated farm).5 

1.3.3 Sample population 

Our sample population consists of enterprises (firms) with the relevant agricultural industry code 

included in both the productivity dataset and the APS/APC, and who have productive land.6 We place 

some restrictions on our sample. Firstly, dairy or sheep/beef farming must be the enterprises’ primary 

activity. Secondly, their number of deer, pigs, horses or hens must not be more than the number of 

cows if the enterprises are categorized as dairy firms; or no more dairy cows, horses, pigs, or hens 

than sheep/beef cattle if they are classified as sheep/beef firms. Thirdly, enterprises must not have 

more land allocated to forestry than to their major activity.  In addition, since the drought indicators 

are available at the district level, we also restrict our sample to single district/region enterprises. 

Lastly, it is important to consider land conversions during our study time period. Farmers might 

have switched to dairy farming because of a significant increase in dairy prices during the period of 

our study, in particular in 2014, our sample is also restricted to those farmers who did not switch or 

convert their land to other actives.7 After these restrictions, our sample contains 72,384 observations 

from 12,534 enterprises. 

 
5 To check the consistency of the irrigated land variable over time, we also compared the irrigated land to information 

from the 2002 APS. In total, irrigated enterprises accounted for one-third (32%) of our sample population. Most of the 

irrigated land was in Canterbury, followed by Otago and Marlborough regions, all located in the South Island. 

6 Dairy and sheep/beef are coded AA13 and AA12 ANSIC06 classifications in the productivity dataset, respectively. 
7 We removed the enterprises who were inactive in the previous year (i.e., changed ownership or stopped farming). 
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 1.4 Empirical Method and variables 

There are several methods for estimating the impact of droughts depending on its nature (direct or 

indirect) and the level of aggregation (farm, household, regional or economy-wide). A simple method 

to measure the effect of droughts is to calculate the deviation in crop yield in a drought year from its 

previous normal (Xiao-jun et al. 2012). In addition, linear and non-linear mathematical programming 

models have been used to simulate the economic impacts of droughts (Booker et al. 2005; Dono and 

Mazzapicchio 2010; Jenkins et al. 2003; Peck and Adams 2010). Some studies have used macro-

econometric VAR-type models to assess the damage from droughts at the national level (Kamber et 

al 2013) or at the disaggregated regional or crop levels (Quiroga and Iglesias 2009). Computable 

general equilibrium and input-output models have also been used to assess the welfare impacts of 

droughts (Martin-Ortega and Berbel 2010; Pérez y Pérez and Barreiro Hurlé 2009). 

We pursue an econometric approach to estimate the effect of drought on agricultural revenue, 

profitability, and balance sheet indicators. We estimate different specifications including a reduced-

form linear and nonlinear models in a farm fixed-effect panel regression for dairy and sheep/beef 

farming over the period 2007-2016. The regression equation we estimate is: 

𝑦𝑑𝑖𝑡 =  𝛼 + 𝛽1𝐷𝐼𝑑𝑡 +𝛽2𝐷𝐼𝑑𝑡−1 + 𝛽3𝐷𝐼𝑑𝑡−2 + 𝛽4𝐷𝐼𝑑𝑡
2 + 𝛽5𝐷𝐼𝑑𝑡−1

2 + 𝛽6𝐷𝐼𝑑𝑡−2
2  

+𝛽4𝑋𝑑𝑖𝑡 + 𝛾𝑖 + 𝜎𝑡 + 𝜀𝑑𝑖𝑡 

    (1) 

Where the dependent variables are: sale of product per hectare, operating profit per hectare, and 

balance sheet variables (see Table 2).8,9 The subscripts dit denote the district, enterprise and time, 

respectively. 𝐷𝐼𝑑𝑡 𝑎𝑛𝑑 𝐷𝐼𝑑𝑡
2  represent the linear and quadratic functional forms of the number of days 

of drought (we count the number of drought days if NZDI ≥1.5 during the summer season from 

 
8 There is multi-factor productivity data available in the dataset, but since it is imputed, it cannot measure the impacts of 

droughts. The financial data are in real dollar values, obtained by deflating all monetary quantities by the Consumer Price 

Index (CPI) based on the year 2000. 

9 we converted all observations below the 1st  percentile and above the 99th percentile to these threshold values. 
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October to March in the same financial year). As drought is a prolonged weather event whose impacts 

could carry beyond a one-year period, we also examine first and second lags of drought days 

(𝐷𝐼𝑑𝑡−1 , 𝐷𝐼𝑑𝑡−2 , 𝐷𝐼𝑑𝑡−1
2  𝑎𝑛𝑑𝐷𝐼𝑑𝑡−2

2 ). Xdit is the multi-farm indicator variable. Time invariant firm 

specific characteristics such as land quality and slope can also influence agricultural productivity. 

Meanwhile, shocks and factors changing over time such as changes in prices can also matter. 

Therefore, we control for unobserved spatial and temporal heterogeneity using firm ( 𝛾𝑖) and year 

fixed effect (σt). In some specifications, we include global milk price (Pt), instead of time fixed 

effects. Finally, εdit is the error term. We assume that errors are correlated within districts but not 

across districts, and we cluster errors around district (the level in which the drought index is 

measured).10  

We also aim to evaluate the degree to which droughts affected various categories of farms, since 

the scope and magnitude of drought differ from irrigated to non-irrigated land as well as across farms 

of different sizes. We therefore stratify the sample based on irrigated land and farm size. Farms are 

categorized as small (<1000 ha), medium (1000-3000 ha) and large (>3000 ha). 

1.5 Analysis of Drought characteristics 

Figure 1.1 depicts the frequency histogram of the New Zealand drought index. The index ranges 

from 0 to 2.5 (see Figure 1.1). A value of zero indicate that there were no drought-like conditions on 

the day or accumulated in the previous month for a particular location. The distribution is skewed 

toward the right (Figure 1.1(a)). The incidence of severe drought events, NZDI≥1.75, was rare.  

Figure 1.1(b) recalculated the frequency distribution by focusing only on the extreme events where 

the NZDI is above a 1.5 threshold value.  

To identify the most critical months for experiencing drought, in Figure 1.2, we show the frequency 

of different drought intensity categories by months across the country during 2007-2016. As shown 

 
10 We also used two-ways clustering by district and year. The results were very similar to one-way clustering. 
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in Figure 1.2, maximum frequency of severe drought (SD) event is observed in March, with 

approximately 27%, and followed by December and April.  

Drought occurrence (in the number of days) across all regions in New Zealand is shown in Figure 

1.3. Each drought intensity had a different spatial pattern during this time period. About half of the 

districts had experienced severe drought, and almost 85% of districts experienced a drought at least 

once. The North Island has experienced high-intensity droughts frequently, whereas some areas in 

the South Island have been free of droughts. The northwest of the North Island experienced the 

longest spells of severe drought with a range of 94-135 days and high severity (NZDI≥1.90). A 

significant portion of the North Island is covered of grassland populated by sheep, cattle, and deer 

farms. Most of the pasturelands are not irrigated and thus depend on rainfall. 

The percentage of districts hit by different drought intensity categories during the agricultural year 

is presented in Figure 1.4. In New Zealand, approximately 34% of districts experienced severe 

drought at least once in the year 2012/13, whereas none of the districts had SD in 2008/09, 2011/12 

and 2015/16 years. In 2012/13, drought occurred in about 52% of the districts at least once, and only 

2.5% of districts were affected by severe drought. The percentage area covered by severe drought and 

drought intensity in 2010/11 is around 42% and 30%, respectively. 

 

Figure 1. 1: (a) Frequency distribution of New Zealand Drought Index; (b) Frequency distribution of extreme 

events only (NZDI≥1.5) 
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Figure 1. 2: The frequency of drought intensities by month 
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Figure 1. 3:  Event occurrence (in days) for severe drought (SD) and drought (D) 

 

 

 

Figure 1. 4:  Frequency of districts experiencing drought conditions over time 
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1.6 Results and discussion 

Table 1.3 provides summary statistics for the data. On average, dairy farms generate greater 

revenue and operating profit per hectare, consequently, their debt-to-income ratio (interest coverage 

ratio) is smaller (higher) than the sheep/beef farms’ average ratios. The average ratio of equity to total 

assets (business equity) of the sheep/beef sector (58%) is higher than dairy sector (49%).  

Results in Tables 2 and 3, in Appendix 1.9.1, provide a comparison of performance between 

irrigated and not-irrigated firms. Average revenue and operating profit in irrigated farms are higher 

than those of unirrigated farms across industries. However, irrigated farms have a greater ratio of debt 

to income. Thus, irrigation alleviates forage availability constraints, but it increases the vulnerability 

of farms to financial risk due to an increase in debt. Irrigated dairy farms also generate a higher return 

on capital compared with sheep/beef farms.11      

Not all farms are observed every year, and we would like to verify that sample attrition is not due 

to the impact of droughts (leading farms to cease their operations). Specifically, we observe a decline 

in the number of observations in 2013. The IR10 tax form, which constitutes the source for the 

administrative data we use, changed in 2013. That change may have led to reduced reporting. But, 

there was also a very significant drought in the same year. To verify that these attritions are not related 

to drought conditions, we calculate the average attrition rate across districts for 2013. We find that 

the drop rates in some districts that are not affected by droughts are higher than the rates of 

the drought-prone districts. Put differently attrition seems to be orthogonal to drought conditions, so 

that this reduction is most likely not related to the effects of a drought. We also ran a cross-sectional 

 
11 Descriptive statistics of variables for different farm sizes are shown in Tables 4 and 5 of Appendix 1.9.1. Since large 

farms have more resources and produce more than do smaller farms, larger farms earn more revenue and profit more. In 

terms of return on capital reflecting a farmer’s efficiency where the objective is profit maximization, larger dairy farms 

have a higher return on capital across industries. By contrast, small farming businesses tend to have higher debt to income 

ratio. When looking at business equity by farm category across industries, small dairy farms have higher business equity 

(60%) than medium-size dairy farms (50%) and large dairy farms (41%) similarly for sheep/beef farms, small farms have 

the highest business equity (68%), followed by  medium farms with 61% and large farms with 50%. 
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regression with this data and show that there is no statistically significant relationship between the 

dropout rate and the number of drought days at the district level (Appendix 1.9.1 Table 6). 

We estimate equation (1) for different output variables; i.e. sale per hectare, operating profit per 

hectare and a set of balance-sheet indicators. Various specifications are considered for the estimation 

of outcome variables in our study. The first specification (model 1) includes the number of drought 

days, first and second lags of drought days and multiple-locations farm indicator while the second 

specification (model 2) also controls for unobserved temporal effects using year fixed effects; the 

third specification (model 3) includes global milk price (only for dairy farming). The fourth 

specification (model 4) includes quadratic terms of the number of drought days and its lags. We also 

run these full specifications for different sub-samples; i.e. irrigated/not-irrigated and farm size 

categories.12 The estimation results for each of the outcome (dependent) variables are discussed in 

detail in the following subsections. 

1.4.1  Sale of product per hectare 

Regression results of the impacts of drought on revenue (sale of product) are summarised in Table 

1.4.  Column (1) shows that coefficients of the number of drought day (t) is positive and statistically 

significant at 1%, and the coefficient of the first and second lags are not statistically significant. Prima 

facie, drought seems to have a significant positive effect on the revenue of the dairy sector in NZ. 

This is likely a result of a revenue offset through higher milk prices, or the positive effects in the 

current year may be due to increased stock sales. However, this positive impact is no longer 

identifiable once we add year fixed effects, thereby controlling for any change in the global price 

(column 2). Cumulatively, over the three years, droughts have no statistically observable average 

negative effect on revenue of the dairy sector, as we observe in columns 2-4. And if anything, there 

 
12 We included multi-farm and milk price variables into these additional regressions, but we are not reporting them in the 

result tables. 
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is a positive effect through higher milk prices (since NZ’s Fonterra is by far the largest actor in the 

global dairy trade market).  

As we control for global milk prices, in column (3), milk price itself has a positive and statistically 

significant impact on sales. When we use quadratic terms, in column (4), all the drought coefficients 

are insignificant, thus failing to uncover any significant non-linear relationship between dairy revenue 

and the drought days.  

Table 1.4 also shows results for sheep/beef farms (columns 5-7). Here, after controlling for year 

fixed effects, drought still has a positive/significant impact on farms’ sales, though all lagged first 

and second year indicators show no statistical significance. The contrast between columns (5) and (6) 

suggests that for sheep/beef farming, the selling of stock during drought events might be a more 

significant phenomena affecting farm sales.  

Estimates of quadratic forms of the number of drought days with 95% confidence intervals for 

sheep/beef farming (column 7) are displayed in Figure 1.5. We find some evidence of a nonlinear 

relationship between sheep/beef revenue and the number of drought days after very long droughts. 

For instance, if sheep/beef farmers experience 40 days of drought, their revenue will increase by 60% 

as sheep/beef farmers have to sell their livestock. Figure 1 (Appendix 1.9.1) shows that the number 

of lambs slaughtered in 2013 (a very dry year) increased compared to 2012 (a normal year in terms 

of rainfall).  

To explicitly investigate the impacts of drought on the irrigated and non-irrigated farms, Table 7 

in Appendix 1.9.1 presents the regression results for irrigated and non-irrigated samples separately. 

The signs of coefficients are consistent with our findings in the full sample regressions. We note that 

the coefficients in the not-irrigated farms are more pronounced than for the irrigated farms. This is a 

consistent finding, as the non-irrigated farms who are affected by droughts sell their stock, while 

those with irrigation find it easier to continue as before.  
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The regression results of the impacts of droughts on revenue per hectare by farm size are shown in 

Table 6 in Appendix 1.9.1. The coefficients of the number of drought days and its first lag for small 

and medium dairy farms are positive and statistically significant whereas for large farms are negative 

but statistically insignificant, and much smaller. Droughts have a more positive effect on small and 

medium dairy farms’ revenue. We could not find any significant differences between sheep/beef 

farms’ vulnerability to drought events across the different farm-sizes. 

1.4.2 Operating profit per hectare 

Table 1.5 provides the estimated coefficients for the same specifications as in Table 1.4, but with 

operating profit per hectare as a dependent variable. These show very similar results. For dairy 

farming, the coefficient of the current year drought days (t) is positive and statistically significant for 

the specification that does not control for the global milk price (column 1). Once we include year 

fixed effects (column 2), global milk price (column 3), and the quadratic drought term (column 4), 

all the drought results are statistically insignificant. Not surprisingly, the coefficient of milk price is 

positive and statistically significant at 1%. The operating profit of sheep/beef farms is positively 

associated with the contemporaneous drought measure after controlling year fixed effect and 

negatively with the first lag, similarly to what we observed for the sales measure in Table 1.4.  

In Table 1.6, we differentiate between irrigated and non-irrigated farms. In column (1)-(2), where 

we present the results for dairy farms, none of the drought coefficients (including the quadratic terms) 

are ever statistically significant. This suggests that except through the (positive) impact on milk 

prices, droughts do not pose a significant downside to profits. For sheep/beef farmers, in columns 

(3)-(4), we find some evidence of a positive effect on profits, probably through the sales of stock, but 

this result does not continue to hold when we add the quadratic terms, suggesting this is not a very 

significant impact. Table 1.7 reports the estimates of Table 1.5 regressions for different farm sizes. 

There is some evidence of positive coefficients of drought days in the current for medium-size farms, 

but again this result does not appear very robust, as it disappears once we include quadratic terms. 
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1.4.3 Balance-sheet indicators 

Table 1.8 provides the estimation of the impact of droughts on balance-sheet indicators: returns on 

capital, equity, debt to income ratio, and interest coverage ratio. The return on capital (column 1) 

shows a statistically significant and negative effect in the year of the drought, and for the first lag. 

The impact of drought event on the farm’s business equity is shown in column (2) and on interest 

Coverage Ratio in column (4), with statistically significant negative results for all drought indicators. 

Only in column (3), where the impact of droughts on the debt-to-income ratio is estimated, we do 

observe no negative impact. Overall, if farmers have an experience of drought conditions over three 

consecutive years, we can conclude that Farmers can face a significant financial strain. 

In the second panel of Table 1.8, we presents the effect of drought on balance-sheet indicators for 

the sheep and beef sector. Only returns on capital and interest coverage ratio are negatively and 

significantly affected by drought events in the first lag, with no statistically significant effect beyond 

that. We do observe an increase in debt levels in the year after a drought maybe suggesting farmers 

are borrowing to restock their herd.  

Table 9 in Appendix 1.9.1 represents regression results of the same balance-sheet indicators for 

irrigated/not irrigated samples by industry. Consistent with our prior findings, we conclude that the 

results for the non-irrigated and irrigated sample largely align with the results for the full sample, 

with somewhat larger point estimates for the dairy sector. There are fewer distinctions between non-

irrigated/irrigated estimates for sheep and beef farms. Regression results of balance-sheet indicators 

by farm size categories are summarized in Table 10 in Appendix 1.9.1. We find few differences in 

terms of the impacts of droughts on balance-sheet indicators among small, medium, and large farms. 

The regression results with quadratic terms of drought indicators for full, irrigated/not irrigated and 

farm size samples for both dairy and sheep/beef industries are also shown in Tables 11-13 in 

Appendix 1.9.1. 
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1.4.4 Robustness checks – alternatives to the NZDI 

We also estimated a set of regressions using alternative drought indicators to test whether our 

results are robust, since it is possible that the NZDI is simply not a reliable measure for agricultural 

drought risks. We apply two soil moisture-based drought indicators (the PED and SMD) and a 

rainfall-based indicator (SPI). The regression results of revenue per hectare, operating profit per 

hectare and balance-sheet indicators for full, irrigated/not irrigated and farm size samples for both 

dairy and sheep/beef industries are summarised in Tables 1-21 in Appendix 1.9.2.  

Our results are generally very similar to the prior findings, with limited switching in the sign of 

coefficients or in their statistical significance. There is no consistently different pattern. Our results 

appear robust and there is not much evidence for any significant impacts of drought conditions on-

farm profitability of dairy and sheep/beef farming in New Zealand over the time period we 

investigated, once milk prices are controlled for. 

In addition, we estimate the specifications of Table 1.5 with a drought intensity measure instead of 

the number of drought days. The results are consistent with our prior findings. As the treatment 

variable differently measure, only the scales of coefficients are different compared with the results in 

Table 1.5. These results are available in Table 22 in Appendix 1.9.2. 
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Figure 1. 5: Nonlinear relationship between sale and the number of drought days for sheep/beef sector 

 

 

Table 1. 1: Variables, datasets and sources 

Variables Spatial level Datasets Sources 

Farm input Farm level Agricultural Production 

Survey/Census (APS/APC) 

StatsNZ’s Longitudinal 

Business Database 

(LBD) 

Financial variables Enterprise level IR10 (Tax-filed financial 

accounts) 

Firm age, location, 

and industry 

Meshblock, 

territorial 

authorities, regional 

councils 

Longitudinal Business Frame 

(LBF) 

Drought index District level New Zealand Drought 

Monitor 

the National Institute of 

Water and Atmospheric 

(NIWA) 

Land quality Meshblock level New Zealand’s Land Resource 

Information system 

Landcare Research 

Irrigated land Farm level National Irrigated Land 

Spatial Dataset 

Ministry for the 

Environment 

Note: We use data from the APS for the time periods between 2008-2011 and 2013-2016; and data from the APC for 

the 2007 and 2012 years 

 

 

 

Table 1. 2: Farm business indicators 
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Abbreviation Indicator Definition 

OP Operating profit per hectare (Total operating income - total operating costs)/total 

area farmed 

ROC Return on capital Net income /total business capital 

DI Debt to Income Ratio Total liabilities/gross income 

BE Business equity (Total assets-total liabilities)/total assets 

IC Interest Coverage Ratio Net income/interest expense 

 

 

Table 1. 3: Descriptive statistics – by industry 

variable 

Dairy sector Sheep/beef sector 

Mean 
Standard 

deviation 
Observation Mean 

Standard 

deviation 
Observation 

Sale of product per hectare 532.88 3717.54 16218 267.34 1825.82 42471 

Operating profit per hectare 381.81 2402.49 16212 161.01 990.64 42549 

Return on capital 1.91 1.64 16212 1.63 1.75 42546 

Business equity 0.49 0.38 16209 0.58 0.48 41952 

Debt to income ratio 3.65 7.39 16092 3.82 9.90 41436 

Interest Coverage Ratio 0.90 0.43 16206 0.83 0.52 42534 

Multi farm 0.27 0.44 16266 0.171 0.38 42714 

#drought days(t) 27.51 18.10 4869 22.92 17.85 9714 

drought intensity (t) 1.65 0.32 4869 1.51 0.50 9714 
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Table 1. 4: Regression results for sale per hectare - by industry 

 

Dairy farming Sheep/beef farming 

(1) (2) (3) (4) (5) (6) (7) 

#drought days(t) 2.687*** 0.348 -0.0773 1.202 1.150 2.028* -3.312 

 
(0.703) (0.901) (1.202) (2.914) (0.946) (1.051) (2.385) 

#drought days(t-1) 2.948 0.370 2.466 1.953 0.722 0.448 -0.483 

 
(1.960) (2.196) (1.840) (2.999) (0.769) (0.628) (1.433) 

#drought days(t-2) -0.485 0.156 -1.155 -6.897 0.510 0.745 -4.719** 

 
(1.643) (1.869) (1.729) (6.792) (1.063) (1.092) (2.112) 

#drought days(t) sq - - - -0.0103 - - 0.126** 

    (0.0496)   (0.0542) 

#drought days(t-1) sq - - - -0.0366 - - 0.0271 

    (0.0508)   (0.0229) 

#drought days(t-2) sq - - - 0.129 - - 0.106** 

    (0.114)   (0.0409) 

Multi-farm -84.13 -66.79 -77.60 -66.43 38.59 39.59 41.46 

 
(98.35) (105.2) (97.86) (104.5) (61.88) (62.05) (75.96) 

Global milk price - - 2.272** - - - - 

 
  (0.904)     

year FE No Yes No Yes No Yes Yes 

Observations 13401 13401 13401 13401 33963 33963 33963 

R-squared 0.201 0.203 0.202 0.203 0.423 0.424 0.429 

Note: All specifications include firm fixed effects. Clustered Standard errors at district level in parentheses. * 

p<0.1, ** p<0.05, *** p<0.01 
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Table 1. 5: Regression results for operating profit per hectare - by industry 

 

 

Dairy farming Sheep/beef farming 

(1) (2) (3) (4) (5) (6) (7) 

#drought days(t) 2.147*** 0.262 -0.0660 1.259 0.332 0.891** -1.094 

 (0.668) (0.550) (0.647) (2.406) (0.447) (0.443) (1.126) 

#drought days(t-1) 2.353 0.634 1.966 1.719 0.152 -0.180 -0.429 

 (1.888) (1.666) (1.780) (2.331) (0.377) (0.319) (0.689) 

#drought days(t-2) -0.257 -0.103 -0.796 -4.976 0.276 0.486 -0.610 

 (1.155) (1.452) (1.159) (5.251) (0.437) (0.372) (0.759) 

#drought days(t) sq - - - -0.0154 - - 0.0421* 

    (0.0439)   (0.0243) 

#drought days(t-1) sq - - - -0.0258 - - 0.00741 

    (0.0298)   (0.0122) 

#drought days(t-2) sq - - - 0.0893 - - 0.0208 

    (0.0885)   (0.0128) 

Multi_farm -77.33 -64.68 -72.10 -64.51 19.34 21.12 20.26 

 (69.27) (74.55) (68.93) (74.03) (36.68) (36.68) (36.71) 

Global milk price - - 1.818*** - - - - 

   (0.527)     

Year FE No Yes No Yes No Yes Yes 

Observation 13398 13398 13398 13398 34041 34041 34041 

R-squared 0.259 0.260 0.259 0.260 0.476 0.476 0.476 

Note: All specifications include firm fixed effects. Clustered Standard errors at district level in 

parentheses. * p<0.1, ** p<0.05, *** p<0.01 
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                 Table 1. 6: Regression results for operating profit per hectare – by irrigated/not irrigated  

 dairy  Sheep/beef 

Not irrigated sample (1) (2)  (3) (4) 

#drought days(t) 0.481 -0.281  1.274** -0.889 

 (0.435) (1.733)  (0.535) (1.338) 

#drought days(t-1) -1.040 -0.801  -0.0381 -0.0402 

 (1.167) (2.112)  (0.410) (0.970) 

#drought days(t-2) 0.774 -0.275  0.865** -0.0519 

 (1.804) (3.689)  (0.425) (0.570) 

#drought days(t) sq - 0.015  - 0.0423 

  (0.031)   (0.0291) 

#drought days(t-1) sq - -0.004  - 0.00223 

  (0.030)   (0.0164) 

#drought days(t-2) sq - 0.019  - 0.0162 

  (0.056)   (0.0128) 

Year FE Yes Yes  Yes Yes 

Observations 9054 9054  21585 21585 

R-squared 0.481 0.188  0.490 0.490 

Irrigated sample    

#drought days(t) 0.00617 6.222  0.236 -0.509 

 
(1.113) (8.689)  (0.677) (2.011) 

#drought days(t-1) 5.479 9.040  -0.580 -0.999 

 
(6.583) (8.086)  (0.454) (0.895) 

#drought days(t-2) -3.019 -18.12  -0.434 -0.683 

 
(2.951) (18.35)  (0.886) (2.628) 

#drought days(t) sq - -0.126  - 0.0183 

  (0.180)   (0.0464) 

#drought days(t-1) sq - -0.0975  - 0.0116 

  (0.0809)   (0.0158) 

#drought days(t-2) sq - 0.287  - 0.00637 

  (0.305)   (0.0384) 

Year FE Yes Yes  Yes Yes 

Observations 4344 4344  12456 12456 

R-squared 0.300 0.301  0.450 0.450 

Note: All specifications include firm fixed effects and multi-farm variable.  Clustered Standard errors at 

district level in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 1. 7: Regression results for operating profit per hectare – by farm size  

 dairy Sheep/beef 

Small farms (2) (3) (5) (6) 

#drought days(t) -1.525 7.091 0.278 1.185 

 
(2.673) (7.446) (0.527) (1.474) 

#drought days(t-1) 4.612 3.255 -0.0809 -0.0130 

 
(6.014) (7.510) (0.317) (0.949) 

#drought days(t-2) 1.166 -16.80 0.213 0.0725 

 
(5.828) (21.87) (0.424) (1.283) 

#drought days(t) sq - -0.147 - -0.0183 

  (0.126)  (0.0210) 

#drought days(t-1) sq - 0.00758 - -0.00291 

  (0.103)  (0.0178) 

#drought days(t-2) sq - 0.333 - 0.00197 

  (0.365)  (0.0185) 

Year FE Yes Yes Yes Yes 

Observations 3006 3006 11286 11286 

R-squared 0.287 0.288 0.785 0.785 

Medium farms     

#drought days(t) 1.523* -1.432 0.522 1.356 

 
(0.821) (2.191) (0.453) (1.418) 

#drought days(t-1) -1.503 0.0845 0.439 1.709 

 
(1.489) (2.712) (1.198) (2.220) 

#drought days(t-2) -0.659 -2.585 0.344 2.458** 

 
(0.695) (3.606) (0.491) (1.167) 

#drought days(t) sq - 0.0613 13.11 12.74 

  (0.0404) (49.86) (50.03) 

#drought days(t-1) sq - -0.0278 - -0.0186 

  (0.0475)  (0.0220) 

#drought days(t-2) sq - 0.0334 - -0.0250 

  (0.0628)  (0.0249) 

Year FE Yes Yes Yes Yes 

Observations 6255 6255 7626 7626 

R-squared 0.175 0.175 0.249 0.249 

Large farms     

#drought days(t) -1.049 -1.478 1.691 -4.400* 

 
(0.845) (1.993) (1.074) (2.300) 

#drought days(t-1) 0.178 1.100 -0.265 -1.473 
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(0.512) (1.341) (0.766) (1.219) 

#drought days(t-2) -0.312 1.535 0.915 -3.462** 

 
(0.384) (1.027) (1.192) (1.594) 

#drought days(t) sq - 0.00793 - 0.131** 

  (0.0251)  (0.0580) 

#drought days(t-1) sq - -0.0171 - 0.0315 

  (0.0208)  (0.0243) 

#drought days(t-2) sq - -0.0379* - 0.0838** 

  (0.0212)  (0.0347) 

Year FE Yes Yes Yes Yes 

Observations 4137 4137 15132 15132 

R-squared 0.427 0.427 0.227 0.228 

Note: All specifications include firm fixed effects and multi-farm variable.  Clustered Standard errors at 

district level in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 

 

  



30 

 

 

Table 1. 8: Regression results for Balance-Sheet indicators - by industry 

Industry (1) (2) (3) (4) 

Dairy farming Return on capital Business equity 
Debt to income 

ratio 

 Interest Coverage 

Ratio 

#drought days(t) -0.00308*** -0.000354** 0.00417 -0.00100*** 

 
(0.000580) (0.000154) (0.00605) (0.000296) 

#drought days(t-1) -0.00113* -0.000374*** 0.00686 -0.000681** 

 
(0.000657) (0.000104) (0.00555) (0.000331) 

#drought days(t-2) -0.000410 -0.000206* 0.00123 -0.000508* 

 
(0.000686) (0.000116) (0.00538) (0.000274) 

Observations 13398 13404 13296 13392 

R-squared 0.778 0.860 0.539 0.711 

Sheep/beef farming     

#drought days(t) -0.000314 0.0000987 -0.00301 -0.000640* 

 
(0.000823) (0.000184) (0.00334) (0.000370) 

#drought days(t-1) -0.00322*** -0.000304 0.00593* -0.00139*** 

 
(0.00106) (0.000193) (0.00313) (0.000437) 

#drought days(t-2) -0.000286 -0.0000737 -0.00381 -0.000203 

 
(0.00113) (0.000138) (0.00264) (0.000466) 

Observations 34035 33480 33051 34029 

R-squared 0.806 0.858 0.712 0.737 

Note: All specifications include firm and year fixed effects.  Clustered Standard errors at district level in parentheses. 

* p<0.1, ** p<0.05, *** p<0.01 
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1.7 Conclusion 

This paper has examined the impacts of drought in New Zealand on the financial operations and 

profitability of dairy, and sheep and beef farms. Beyond revenues and operating profit, we also 

examined a set of balance sheet indicators including return on capital, business equity, debt to income 

ratio and interest coverage ratio. 

  We show that over the last ten years about half of the districts had experienced severe droughts, 

as measured by the NZDI, and almost 85% of districts were affected by more moderate droughts at 

least once. The North Island has experienced high-intensity droughts more frequently, whereas some 

areas in the South Island have been free of high-intensity droughts. Droughts occur somewhere in 

New Zealand almost every year, usually during peak summer, between December and March. 

For dairy farming, we found that current (same fiscal year) drought events have positive impacts 

on dairy farms’ revenue and operating profit; this effect is most likely attributable to drought-induced 

increases in the global price of milk solids (most of the milk in New Zealand is converted to milk 

powder and exported). Once we control for milk prices (or use year fixed effects) the drought 

measures show no impact on dairy farm revenue or operating profits. Overall, therefore, the 

experienced impact of droughts on farms’ revenue and profit appears to be quite  modest. The pasture‐

based dairy systems in NZ appear to have high levels of adaptive capacity (Lee et al, 2013). However, 

drought events do have some significant negative effect on balance sheet indicators. We also found a 

nonlinear relationship between sheep/beef revenue and the number of drought days. This implies that 

during an extended period of drought conditions, sheep/beef revenue will increase because of the 

selling of livestock.  

In general, dairy farmers ‘benefit’ more from drought events when compared to sheep/beef farms, 

as the latter sector has less impact on global prices. The immediate impact of drought in the sheep 

and beef sector is moderated by increased selling of livestock that shows up later in worsening balance 

sheet indicators. Lastly, our results do not demonstrate a very significant effect of irrigation as 
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moderating the harmful balance-sheet effects of droughts. We note that we do not examine role of 

adaptation to drought events in shaping their impacts, because we do not have any data on farmers’ 

drought adaptation strategies that will allow us to conduct such an analysis. 

Empirically, we are not able to describe what is leading to the increases in debt and servicing ratios, 

nor are we able to pin down evidence to convincingly show that the global price channel we 

hypothesise is the unique mechanism that can explain our findings. This limitation is common to non-

structural estimations, and in this case, these limitations are exacerbated because our tax record data 

is only available annually. We also do not have access to data from the corresponding lenders (mostly 

banks) to shed light on what are the reasons behind the changing in debt patterns, and what that debt 

is being used for. 

All these suggest the need for more detailed data, or more structural modelling of farm operations, 

to shed more lights on the mechanisms that lead to the impacts we have identified in our non-structural 

approach. For that, one would need to develop an analytical framework of farm production and farmer 

decision-making, and we leave that for future work. 

Our results of the impacts of droughts point to two potentially interesting policy conundrums. First, 

it seems that the market concentration and the reliance of the New Zealand farming sector on one 

major source of revenue (dairy) is important in reducing the financial vulnerability of the sector to 

droughts. Had the sector been more diversified, with less price-setting market power, the adverse 

financial impact of droughts might have been larger. Second, resilience-building measures for the 

dairy and sheep and beef sector should focus on ameliorating the longer-term deteriorations in 

balance-sheets, rather than focus on short term indicators of revenue and profit, as the latter seem not 

to be adversely affected that much. 

Another policy implication, in our view, is that it might be that the NZDI, the New Zealand Drought 

Index, is not constructed to measure the actual impact of drought on-farm operations. As such, it is 

not measuring ‘agricultural drought.’ More research resources should be directed, in our view, to 
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develop an index that is potentially more helpful in measuring these ‘dryness’ shocks as they are 

experienced by the NZ farming sector. It might even be necessary to develop two indices, one for 

each of the sectors we examined.  

Furthermore, since there is a clear variation in drought characteristics for different regions, and 

since the future projections of drought intensities and frequencies, driven by climate change, are 

different for different regions in New Zealand, exploring the regional differences in the effects of 

droughts, and the regional differences in the ways such new indices should be constructed, remain 

important areas for further research.  

  



34 

 

1.8 References 

Ali, S., Liu, Y., Ishaq, M., Shah, T., Abdullah, Ilyas, A., and Din, I. (2017). Climate Change and Its 

Impact on the Yield of Major Food Crops: Evidence from Pakistan. Foods 6, 39. 

https://www.mdpi.com/2304-8158/6/6/39 

Alley, W. M. (1984). The Palmer drought severity index: limitations and assumptions. Journal of 

climate and applied meteorology 23, 1100-1109.  

American Meteorological Society. (1997). Meteorological drought-policy statement. Bulletin of the 

American Meteorological Society 78, 847-849. 

Barrios, S., Ouattara, B., & Strobl, E. (2008). The impact of climatic change on agricultural 

production: Is it different for Africa?. Food policy 33, 287-298. 

Bhalme, H. N., and Mooley, D. A. (1980). Large-scale droughts/floods and monsoon circulation. 

Monthly Weather Review 108, 1197-1211.  

Birthal, P. S., Negi, D. S., Khan, M. T., and Agarwal, S. (2015). Is Indian agriculture becoming 

resilient to droughts? Evidence from rice production systems. Food Policy 56, 1-12. 

doi:https://doi.org/10.1016/j.foodpol.2015.07.005 

Booker, J. F., Michelsen, A. M., and Ward, F. A. (2005). Economic impact of alternative policy 

responses to prolonged and severe drought in the Rio Grande Basin. Water Resources 

Research 41, 1-15. 

Cancelliere, A., Mauro, G. D., Bonaccorso, B., and Rossi, G. (2007). Drought forecasting using the 

Standardized Precipitation Index. Water Resources Management 21, 801-819. 

doi:10.1007/s11269-006-9062-y 

Cheng, J., and Tao, J.-p. (2010). Fuzzy comprehensive evaluation of drought vulnerability based on 

the analytic hierarchy process:—an empirical study from Xiaogan City in Hubei Province. 

Agriculture and Agricultural Science Procedia 1, 126-135.  

https://www.mdpi.com/2304-8158/6/6/39
https://doi.org/10.1016/j.foodpol.2015.07.005


35 

 

Dai, A., Trenberth, K. E., and Qian, T. (2004). A global dataset of Palmer Drought Severity Index for 

1870–2002: relationship with soil moisture and effects of surface warming. Journal of 

Hydrometeorology  5, 1117-1130.  

Dairy New Zealand. (2018). Dairy Statistics. Livestock Improvement Corporation Limited & 

DairyNZ Limited.https://www.lic.co.nz/documents/450/NZ_DAIRY_STATISTICS_2017-

18-WEB-10_OCT.pdf. 

Dark, A., K.C, B., and Kashima, A. (2017). National Irrigated Land Spatial Dataset: Summary of 

methodology, assumptions and results. Ministry for the Environment, C17042-1. Aqualinc 

Research Limited. 

Dono, G., and Mazzapicchio, G. (2010). Uncertain water supply in an irrigated Mediterranean area: 

An analysis of the possible economic impact of climate change on the farm sector. 

Agricultural Systems 103, 361-370. doi:https://doi.org/10.1016/j.agsy.2010.03.005 

Edwards, B., Gray, M., and Hunter, B. (2009). A sunburnt country: the economic and financial impact 

of drought on rural and regional families in Australia in an era of climate change. Australian 

Journal of Labour Economics 12, 109 - 131. 

Forbes, R. (1998). The El Nino weather pattern and pastoral supply response forecasting. Paper 

presented to Annual Conference of the New Zealand Agricultural and Resource Society, 

Blenheim 4–5 July. 

Garbero, A., and Muttarak, R. (2013). Impacts of the 2010 Droughts and Floods on Community 

Welfare in Rural Thailand: Differential Effects of Village Educational Attainment. Ecology 

and Society 18, 1-18. doi:10.5751/es-05871-180427. 

Gibbs W.J. and Maher J.V., (1967). Rainfall deciles as drought indicators. Bureau of Meteorology 

Bulletin 48, Commonwealth of Australia, Melbourne 

Hayes, M., Svoboda, M., Wall, N., and Widhalm, M. (2011). The Lincoln declaration on drought 

indices: universal meteorological drought index recommended. Bulletin of the American 

Meteorological Society 92, 485-488.  

https://doi.org/10.1016/j.agsy.2010.03.005


36 

 

Howitt, R., Medellín-Azuara, J., MacEwan, D., Lund, J. R., and Sumner, D. (2014). Economic 

analysis of the 2014 drought for California agriculture: Center for Watershed Sciences 

University of California, Davis, CA. 

Huo-Po, C., Jian-Qi, S., and Xiao-Li, C. (2013). Future changes of drought and flood events in China 

under a global warming scenario. Atmospheric and Oceanic Science Letters 6, 8-13.  

Jenkins, M. W., Lund, J. R., and Howitt, R. E. (2003). Using economic loss functions to value urban 

water scarcity in California. Journal American Water Works Association 95, 58-70.  

Kamber, G., McDonald, C., and Price, G. (2013). Drying out: Investigating the economic effects of 

drought in New Zealand. Retrieved from Reserve Bank of New Zealand Wellington. 

Kingwell, R. S., & Xayavong, V. (2017). How drought affects the financial characteristics of 

Australian farm businesses. Australian Journal of Agricultural and Resource Economics 61, 

344-366. 

Kumar, S. N., Aggarwal, P. K., Rani, S., Jain, S., Saxena, R., and Chauhan, N. (2011). Impact of 

climate change on crop productivity in Western Ghats, coastal and northeastern regions of 

India. Current Science, 332-341.  

Lawes, R., and Kingwell, R. (2012). A longitudinal examination of business performance indicators 

for drought-affected farms. Agricultural Systems 106, 94-101. 

Lee, J.M., Clark, A.J. and Roche, J.R. (2013), Climate‐change effects and adaptation options for 

temperate pasture‐based dairy farming systems: a review. Grass Forage Sci 68: 485-503. 

doi:10.1111/gfs.12039  

Livada, I., & Assimakopoulos, V. D. (2007). Spatial and temporal analysis of drought in Greece using 

the Standardized Precipitation Index (SPI). Theoretical and applied climatology 89, 143-153. 

Martin-Ortega, J., and Berbel, J. (2010). Using multi-criteria analysis to explore non-market monetary 

values of water quality changes in the context of the Water Framework Directive. Science of 

The Total Environment 408, 3990-3997. doi:https://doi.org/10.1016/j.scitotenv.2010.03.048 

https://doi.org/10.1111/gfs.12039
https://doi.org/10.1016/j.scitotenv.2010.03.048


37 

 

Maunder, W.J. (1968). Effect of Significant Climatic Factors on Agricultural Production and 

Incomes: A New Zealand example. Monthly Weather Review 96, 39–46.  

Maunder, W.J. (1971a). Weather and Operational Decision-Making – the Challenge, in Quarterly 

Predictions. New Zealand Institute for Economic Research, September.  

Maunder, W.J. (1971b). The economic consequences of drought: with particular reference to the 

1969/70 drought in New Zealand. NZ Meteorological Service Technical Note 192. 

Meng, S., Zhang, C., Su, L., Li, Y., and Zhao, Z. (2016). Nitrogen uptake and metabolism of Populus 

simonii in response to PEG-induced drought stress. Environmental and Experimental Botany 

123, 78-87.  

Ministry for the Environment (MfE). (2001). Managing Waterways on Farms: A guide to sustainable 

water and riparian management in rural New Zealand. 

https://www.mfe.govt.nz/sites/default/files/managing-waterways [accessed 1 Dec 2019]” 

Moore, F. C., & Lobell, D. B. (2014). Adaptation potential of European agriculture in response to 

climate change. Nature Climate Change 4, 610. 

Nagarajan, R. (2010). Drought assessment. Springer Netherlands. Springer Science & Business 

Media. DOI 10.1007/978-90-481-2500-5 

Narasimhan, B., and Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit 

Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought 

monitoring. Agricultural and Forest Meteorology 133, 69-88. 

doi:https://doi.org/10.1016/j.agrformet.2005.07.012 

NIWA. (2011). Scenarios of Regional Drought under Climate Change. 

https://www.niwa.co.nz/sites/niwa.co.nz/files/slmacc_drought_sldr093_june2011.pdf  

[accessed 19 Feb 2020] 

NIWA. (2015). Are we experiencing more droughts? doi:https://www.niwa.co.nz/news/are-we-

experiencing-more-droughts. [accessed 19 Feb 2020] 

https://www.mfe.govt.nz/sites/default/files/managing-waterways
https://doi.org/10.1016/j.agrformet.2005.07.012
https://www.niwa.co.nz/sites/niwa.co.nz/files/slmacc_drought_sldr093_june2011.pdf
https://www.niwa.co.nz/news/are-we-experiencing-more-droughts
https://www.niwa.co.nz/news/are-we-experiencing-more-droughts


38 

 

NIWA. (2017). doi:https://www.niwa.co.nz/natural-hazards/hazards/droughts [accessed 19 Feb 

2020] 

New Zealand Institute of Economic Research (NZIER). (2017). NZIER report: Dairy trade’s 

economic contribution to New Zealand.  Feburary 2017. Dairy Companies Association of 

New Zealand (DCANZ). https://nzier.org.nz/static/media/filer_public/29/33/29336237-

3350-40ce-9933-

a5a59d25bd31/dairy_economic_contribution_update_final_21_february_2017.pdf [accessed 

19 Feb 2020] 

New Zealand Institute of Economic Research (NZIER). (2019). New Zealand Dairy Statistics, 

Ministry for Primary Industries. https://www.dairynz.co.nz/media/5792398/quickstats-about-

dairying-new-zealand-2019.pdf [accessed 19 Feb 2020] 

New Zealand Institute of Primary Industry Management (NZIPIM). (2019). What does the future 

look like for New Zealand lamb?. 

https://www.nzipim.co.nz/BlogPost?Action=View&BlogPost_id=7 [accessed 19 Feb 2020] 

Palmer, W. C. (1965). Meteorological drought (Vol. 30): US Department of Commerce, Weather 

Bureau Washington, DC. 

Peck, D. E., and Adams, R. M. (2010). Farm-level impacts of prolonged drought: is a multiyear event 

more than the sum of its parts? Australian Journal of Agricultural and Resource Economics 

54, 43-60. doi:10.1111/j.1467-8489.2009.00478.x 

Pérez y Pérez, L. and Barreiro‐Hurlé, J. (2009). Assessing the socio‐economic impacts of drought in 

the Ebro River Basin, Spanish Journal of Agricultural Research 7, 269 -280.  

Phillips, I. D., and McGregor, G. R. (1998). The utility of a drought index for assessing the drought 

hazard in Devon and Cornwall, South West England. Meteorological Applications 5 359-372.  

Quiroga, S., and Iglesias, A. (2009). A comparison of the climate risks of cereal, citrus, grapevine 

and olive production in Spain. Agricultural Systems 101, 91-100.  

https://www.niwa.co.nz/natural-hazards/hazards/droughts
https://nzier.org.nz/static/media/filer_public/29/33/29336237-3350-40ce-9933-a5a59d25bd31/dairy_economic_contribution_update_final_21_february_2017.pdf
https://nzier.org.nz/static/media/filer_public/29/33/29336237-3350-40ce-9933-a5a59d25bd31/dairy_economic_contribution_update_final_21_february_2017.pdf
https://nzier.org.nz/static/media/filer_public/29/33/29336237-3350-40ce-9933-a5a59d25bd31/dairy_economic_contribution_update_final_21_february_2017.pdf
https://www.dairynz.co.nz/media/5792398/quickstats-about-dairying-new-zealand-2019.pdf
https://www.dairynz.co.nz/media/5792398/quickstats-about-dairying-new-zealand-2019.pdf
https://www.nzipim.co.nz/BlogPost?Action=View&BlogPost_id=7


39 

 

Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to 

US crop yields under climate change. Proceedings of the National Academy of sciences 106, 

15594-15598. 

Shahid, S., and Behrawan, H. (2008). Drought risk assessment in the western part of Bangladesh. 

Natural Hazards 46, 391-413. doi:10.1007/s11069-007-9191-5. 

Shakoor, U., Saboor, A., Ali, I., & Mohsin, A. Q. (2011). Impact of climate change on agriculture: 

empirical evidence from arid region. Pakistan journal of agricultural sciences 48, 327-333. 

Smith, D., Hutchinson, M., and McArthur, R. (1993). Australian climatic and agricultural drought: 

payments and policy. Drought Network News 5, 11-12.  

Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., & Vogt, J. (2014). World drought frequency, 

duration, and severity for 1951–2010. International Journal of Climatology 34, 2792-2804. 

Strommen, N., Krumpe, P., Reid, M., and Steyaert, L. (1980). Early warning assessments of droughts 

used by the US agency for international development. In: Pocinki LS, Greeley RS, Slater L 

(eds). Climate and risk. The MITRE corporation, McLean, 8-37.  

Tait A.B.; Renwick, J.A. and Stroombergen, A.H. (2005). The economic implications of climate-

induced variations in milk production. NZ Journal of Agricultural Research 48, 213–225. 

Tang, C., and Piechota, T. C. (2009). Spatial and temporal soil moisture and drought variability in 

the Upper Colorado River Basin. Journal of Hydrology 379, 122-135. 

doi:http://dx.doi.org/10.1016/j.jhydrol.2009.09.052 

Tweedie, A.J. and Spencer, G.H. (1981). Supply Behaviour in New Zealand’s Export Industries. 

Reserve Bank of New Zealand Research Paper No. 31, Wellington. 

Vicente-Serrano, S. M., and López-Moreno, J. (2005). Hydrological response to different time scales 

of climatological drought: an evaluation of the Standardized Precipitation Index in a 

mountainous Mediterranean basin. Hydrology and Earth System Sciences Discussions 9, 523-

533.  

http://dx.doi.org/10.1016/j.jhydrol.2009.09.052


40 

 

Wallace, R. and Evans, L.T. (1985). Effects of climate on agricultural production and profit. Victoria 

University of Wellington Research Project on Economic Planning. Occasional Paper No 84. 

Wilhite, D. A. (1997). Responding to drought: common threads from the past, visions for the future. 

JAWRA Journal of the American Water Resources Association 33, 951-959.  

Wittwer, G., and Griffith, M. (2010). Closing the factory doors until better times: CGE modelling of 

drought using a theory of excess capacity. Paper presented at the GTAP 13th annual 

conference, Penang, Malaysia. 

Wu, Z. Y., Lu, G. H., Wen, L., & Lin, C. A. (2011). Reconstructing and analyzing China's fifty-nine 

year (1951–2009) drought history using hydrological model simulation. Hydrology and Earth 

System Sciences 15, 2881-2894. 

Xiao-jun, W., Jian-yun, Z., Shahid, S., ElMahdi, A., Rui-min, H., Zhen-xin, B., and Ali, M. (2012). 

Water resources management strategy for adaptation to droughts in China. Mitigation and 

adaptation strategies for global change 17, 923-937.  

Zhao, H., Xu, Z., Zhao, J., and Huang, W. (2017). A drought rarity and evapotranspiration-based 

index as a suitable agricultural drought indicator. Ecological Indicators 82, 530-538. 

doi:http://dx.doi.org/10.1016/j.ecolind.2017.07.024 

  

http://dx.doi.org/10.1016/j.ecolind.2017.07.024


41 

 

1.9 Appendices 

 Appendix 1.9.1: Further descriptive analysis and regression results 

Figure 1: Total lamb Slaughter Numbers 

 

Source: MPI 
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Table 1: summary of the literature 
Literature Agricultural output Ag output 

in the 

long run  

Ag 

value-

added  

NZ/regio

n GDP 

level of 

analysis 

Comment 

Tweedie 

and 

Spencer 

(1981) 

-5.8% sheep meat  

-3.9% beef  

-2.6% milk  

-2.2% wool  

13.7% 
cows  

-5.1% 
sheep  

-7.9% beef 
stock 

  Regional 
level 

Long run effects 

allow for persistent 

climate change but 
are not jointly 
estimated. 

Wallace 

and Evans 

(1985) 

-5.3% to 0% sheep (wet)  

-2.1% to -0.8% sheep 
(dry)  

-13.4% to -2.0% beef 
(wet)  

-0.8% to 2.8% beef (dry)  

 -2.4% to 
1.0% 
(wet)  

-1.5% to 

0.4% 
(dry) 

≈ 0.1% 
(rough 

estimate 

for all 
NZ) 

Regional 
level 

Ranges cover 
results over four 

South Island 
regions 

Forbes 

(1998) 

-2.1% milk  

-1.3% lamb  

-0.8% wool  

1.3% adult cattle  

5.9% adult sheep  

    Regional 
level 

Accelerated 
slaughter rate for 

adult animals would 

impact negatively 
on future output. 

Buckle et al 

(2002) 

    ≈ 0.1%  

≈ 1.0% 
for 4.2σ  

(for all 
NZ) 

National 
level 

1-2% of GDP in 
Australia for a 
‘major’ drought. 

Agriculture 

NZ and 

Butcher 

Partners 

(2002) 

-5.8% dairy  

-5.7% arable  

-4.1% livestock  

  ≈2% 

Canterbu

ry region 
GDP 

over 3 
years 

Regional 

level 

Changes relate to a 

1.5σ change in 

SMD in the first 
year and 0.9σ in the 

second year, 
Canterbury only. 

Tait et al 

(2005) 

-3% to -4%  

(milk solids)  

  -0.5% to 

-0.2% 

(for -
10% 

change 

milk 
solids) 

Regional 
level 

NZ GDP effect 
related to degree 

Kamber et 

al(2013) 

-6% milk 

-1.5% sheep 

  -0.3% to 
-0.6% 

National 
level 

Changes in rural 

industries over time 
could change the 

impact of future 
droughts. 

Source: Stroombergen et al., 2008 
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   Table 2: Descriptive statistics based on irrigated/non-irrigated categories for dairy farming 
variable irrigated sample non-irrigated sample 

 mean 
Standard 
deviation 

Observation mean 
Standard 
deviation 

Observation 

Sale of product per 
hectare 581.84 3591.43 5403 508.44 3778.86 10818 

Operating profit per 
hectare 408.32 3359.46 5400 368.57 1736.88 10809 

Return on capital 1.97 1.68 5400 1.89 1.62 10812 

Business equity 0.48 0.38 5403 0.50 0.39 10806 

Debt to income ratio 3.74 7.68 5352 3.60 7.24 10740 

Interest Coverage Ratio 0.87 0.41 5400 0.91 0.44 10809 

Multi farm 0.28 0.45 5421 0.26 0.44 10845 

 

 

Table 3:  Descriptive statistics based on irrigated/non-irrigated categories for sheep/beef farming 

variable 

irrigated sample non-irrigated sample 

mean 
Standard 
deviation 

Observation mean 
Standard 
deviation 

Observation 

Sale of product per hectare 293.89 1670.90 15780 251.51 1911.39 26688 

Operating profit per hectare 179.05 976.00 15816 150.33 999.06 26733 

Return on capital 1.55 1.71 15816 1.68 1.78 26733 

Business equity 0.58 0.49 15552 0.58 0.49 26403 

Debt to income ratio 4.19 10.65 15360 3.62 9.43 26076 

Interest Coverage Ratio 0.80 0.51 15810 0.86 0.52 26727 

Multi farm 0.17 0.38 15882 0.18 0.38 26832 
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Table 4: Descriptive statistics based on farm size categories for dairy farming  

variable 

small farms medium farms large farms 

mean 
Standard 
deviation 

Observation mean 
Standard 
deviation 

Observation mean 
Standard 
deviation 

Observation 

Sale of product 
per hectare 354.35 884.84 3459 541.02 4369.44 7551 783.67 4671.78 5205 

Operating profit 
per hectare 233.06 724.40 3462 391.82 1877.96 7545 583.61 4299.29 5205 

Return on capital 1.79 1.95 3462 1.95 1.63 7545 1.95 1.41 5205 

Business equity 0.60 0.41 3462 0.50 0.38 7542 0.41 0.36 5205 

Debt to income 
ratio 3.92 9.48 3411 3.52 7.03 7506 3.65 6.24 5178 

Interest Coverage 
Ratio 0.92 0.54 3459 0.93 0.42 7545 0.83 0.35 5202 

Multi farm 0.23 0.42 3483 0.26 0.44 7563 0.31 0.46 5220 

 

 

Table 5: Descriptive statistics based on farm size categories for sheep/beef farming 

variable 

small farms medium farms large farms 

mean 
Standard 
deviation 

Observation mean 
Standard 
deviation 

Observation mean 
Standard 
deviation 

Observation 

Sale of product 177.98 1872.29 13803 232.70 1338.33 9420 415.34 2028.12 19248 

Gross profit 109.94 939.69 13872 152.11 787.44 9429 237.91 1163.58 19248 

Return on capital 1.00 1.63 13875 1.61 1.65 9429 2.10 1.75 19245 

Business equity 0.68 0.48 13323 0.61 0.48 9387 0.50 0.49 19242 

Debt to income 
ratio 6.88 15.51 12948 2.73 7.08 9297 2.30 3.98 19191 

Interest Coverage 

Ratio 0.64 0.62 13863 0.93 0.51 9429 0.93 0.40 19245 

Multi farm 0.13 0.34 13983 0.18 0.38 9459 0.21 0.41 19272 

 

Table 6: The effect of drought on dropout rate at the district level 

 

 

 

 

 

Note: Standard errors in parentheses 

  

 

dropout rate 

# drought days 0.0121 

 

(0.0822) 

observation 65 

R-squared 0.102 
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Table 7: Regression results for sale per hectare- irrigated/not irrigated sample by industry  

 Dairy farming Sheep/beef farming 

Not irrigated sample (1) (2) (3) (4) (5) (6) 

#drought days(t) 2.166*** 0.889 0.0294 1.619 3.074** -1.783 

 (0.515) (0.740) (3.068) (1.205) (1.323) (2.479) 

#drought days(t-1) 1.442* -2.145 -1.846 1.062 0.802 0.572 

 (0.725) (2.675) (3.620) (0.913) (0.772) (1.533) 

#drought days(t-2) 0.0585 1.211 -2.246 0.765 1.610 -2.244 

 (1.941) (2.299) (6.826) (1.302) (1.298) (1.708) 

#drought days(t) sq   0.0194   0.0965* 

    (0.0481)   (0.0573) 

#drought days(t-1) sq   -0.00586   0.00784 

    (0.0550)   (0.0251) 

#drought days(t-2) sq   0.0626   0.0677* 

   (0.112)   (0.0377) 

Year FE No Yes Yes No Yes Yes 

Observations 9060 9060 9060 21540 21540 21540 

R-squared 0.148 0.150 0.150 0.414 0.415 0.415 

Irrigated sample 

#drought days(t) 3.967* -0.853 5.909 -0.274 0.288 -1.781 

 

(2.270) (1.493) (8.636) (0.961) (1.107) (3.363) 

#drought days(t-1) 7.367 6.783 9.905 -0.287 -0.483 -1.360 

 

(7.244) (6.727) (9.247) (0.857) (0.766) (1.467) 

#drought days(t-2) -2.955 -2.813 -18.88 -0.340 -1.437 -3.892 

 

(3.053) (2.821) (18.51) (1.086) (1.501) (4.506) 

#drought days(t) sq   -0.138   0.0524 

    (0.188)   (0.0791) 

#drought days(t-1) sq   -0.0899   0.0232 

    (0.108)   (0.0269) 

#drought days(t-2) sq   0.306   0.0538 

   (0.312)   (0.0669) 

Year FE No Yes Yes No Yes Yes 

Observations 4343 4343 4343 12423 12423 12423 

R-squared 0.318 0.320 0.321 0.445 0.446 0.446 

Note: All specifications include firm fixed effects and multi-farm variable.  Clustered Standard errors 

at district level in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 8: Regression results for sale per hectare-farm size sample by industry 

Farm category Dairy farming Sheep/beef farming 

small farms (1) (2) (3) (4) (5) (6) 

#drought days(t) 5.453** -2.270 6.859 0.472 0.833 2.867 

 

(2.466) (3.596) (7.288) (0.652) (0.931) (2.573) 

#drought days(t-1) 8.249* 6.762 6.591 -0.586 -0.145 -0.953 

 

(7.374) (6.196) (9.264) (0.576) (0.671) (1.581) 

#drought days(t-2) 3.289 2.852 -17.27 0.316 -0.415 -2.553 

 

(5.248) (7.341) (23.63) (0.849) (0.879) (2.707) 

#drought days(t) sq   -0.155   -0.0398 

    (0.131)   (0.0374) 

#drought days(t-1) sq   -0.0177   0.0120 

    (0.130)   (0.0228) 

#drought days(t-2) sq   0.372   0.0382 

 

  (0.400)   (0.0367) 

Year FE No Yes Yes No Yes Yes 

Observations 3006 3006 3006 11214 11214 11214 

R-squared 0.300 0.303 0.303 0.746 0.746 0.746 

Medium farms       

#drought days(t) 2.958*** 2.643* -0.243 -0.0125 0.769 1.463 

 

(0.885) (1.534) (4.185) (0.478) (0.649) (2.224) 

#drought days(t-1) 1.546* -3.235 -1.458 2.027 1.567 4.014 

 

(0.851) (3.379) (4.682) (2.482) (2.547) (4.935) 

#drought days(t-2) -2.140 -0.950 -6.732 -0.274 0.320 2.923 

 

(1.905) (1.171) (8.381) (0.289) (0.865) (1.868) 

#drought days(t) sq   0.0632   -0.0152 

    (0.0643)   (0.0373) 

#drought days(t-1) sq   -0.0334   -0.0481 

    (0.0967)   (0.0528) 

#drought days(t-2) sq   0.103   -0.0508 

   (0.143)   (0.0396) 

Year FE No Yes Yes No Yes Yes 

Observations 6258 6258 6258 7617 7617 7617 

R-squared 0.141 0.143 0.143 0.218 0.219 0.219 

Large farms       

#drought days(t) -0.137 -1.480 -2.471 2.616 4.031 -9.775** 

 

(0.399) (0.996) (2.424) (2.596) (2.785) (4.496) 

#drought days(t-1) 0.813 0.0969 1.102 1.330 0.969 -1.675 

 

(0.537) (0.802) (2.258) (1.998) (1.645) (1.941) 
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#drought days(t-2) 0.00177 -0.229 2.206 1.311 2.402 -9.138** 

 

(0.244) (0.555) (1.513) (3.054) (3.160) (3.803) 

#drought days(t) sq   0.0194   0.300** 

    (0.0324)   (0.119) 

#drought days(t-1) sq   -0.0175   0.0680 

    (0.0342)   (0.0437) 

#drought days(t-2) sq   -0.0496*   0.219** 

   (0.0275)   (0.103) 

Year FE No Yes Yes No Yes Yes 

Observations 4137 4137 4137 15132 15132 15132 

R-squared 0.396 0.400 0.400 0.227 0.228 0.230 

Note: All specifications include firm fixed effects and multi-farm variable. Clustered Standard errors at district level in 

parentheses. * p<0.1, ** p<0.05, *** p<0.01. 
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Table 9: Regression results for Balance-Sheet indicators - irrigated/not irrigated sample by industry 
  Dairy farming Sheep/beef farming 

Not irrigated sample (1) (2) (3) (4) (5) (6) (7) (8) 

 
Return on 
capital 

Business equity 
Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

Return on 
capital 

Business 
equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

#drought 
days(t) -0.00278*** -0.000462** 0.00654 

-
0.000856** 0.000768 0.000131 

-
0.000053 -0.000393 

 (0.000689) (0.000178) (0.00856) (0.000375) (0.000855) (0.000183) (0.00356) (0.000450) 

#drought 
days(t-1) -0.000796 -0.000308** 0.00974 -0.000620 

-
0.00284*** -0.00032* 0.00316 

-
0.00132** 

 (0.000862) (0.000139) (0.00607) (0.000392) (0.00107) (0.000166) (0.00346) (0.000507) 

#drought 
days(t-2) -0.000542 -0.000214 -0.00221 -0.000364 0.000103 -0.000153 -0.00178 

-
0.0000372 

 (0.000817) (0.000148) (0.00437) (0.000308) (0.00100) (0.000112) (0.00274) (0.000458) 

Observations 9051 9057 8991 9051 21582 21273 21012 21582 

R-squared 0.779 0.859 0.508 0.723 0.812 0.861 0.717 0.738 

Irrigated sample 

  
#drought 
days(t) -0.0039*** -0.000109 -0.000481 

-
0.00106** -0.00238* 0.0000476 -0.0129 

-
0.00104** 

 

(0.00142) (0.000216) (0.00827) (0.000437) (0.00128) (0.000333) (0.00918) (0.000431) 

#drought 
days(t-1) -0.00191 -0.000645*** 0.00286 

-
0.00102** 

-
0.0047*** -0.000253 0.0137 

-
0.0014*** 

 

(0.00116) (0.000175) (0.00671) (0.000473) (0.00158) (0.000441) (0.00999) (0.000418) 

#drought 
days(t-2) 0.0000237 -0.000107 0.00864 

-
0.000796* -0.000869 0.000333 -0.0125 -0.000489 

 

(0.00119) (0.000192) (0.0137) (0.000423) (0.00220) (0.000306) (0.0108) (0.000708) 

Observations 4344 4350 4308 4341 12456 12210 12042 12450 

R-squared 0.776 0.864 0.599 0.683 0.795 0.852 0.706 0.734 

Note: All specifications include firm and year fixed effects. Clustered Standard errors at district level in parentheses. * p<0.1, ** 

p<0.05, *** p<0.01  
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Table 10: Regression results for Balance-Sheet indicators - farm size sample by industry 
Farm category Dairy farming Sheep/beef farming 

small farms 

(1) (2) (3) (4) (5) (6) (7) (8) 

Return on 
capital 

Business 
equity 

Debt to 
income 

ratio 

 Interest 
Coverage 

Ratio 

Return on 
capital 

Business 
equity 

Debt to 
income 

ratio 

 Interest 
Coverage 

Ratio 

#drought days(t) -0.00220 -0.000626* 0.0158 -0.000617 0.000233 0.000246 -0.00871 -0.000273 

 

(0.00175) (0.000368) (0.0230) (0.000742) (0.000766) (0.000308) (0.00821) (0.000306) 

#drought days(t-1) -0.00178 -0.000491 0.0109 -0.000730 -0.00141* 0.0000100 0.0105 -0.000668* 

 

(0.00166) (0.000314) (0.00884) (0.000521) (0.000782) (0.000320) (0.00922) (0.000384) 

#drought days(t-2) -0.000444 -0.000222 -0.0117 
-

0.000972** -0.000751 
-

0.0000908 -0.00798 -0.0000715 

 

(0.00160) (0.000283) (0.0124) (0.000381) (0.000975) (0.000196) (0.00784) (0.000462) 

Observations 3009 3009 2958 3009 11286 10767 10458 11277 

R-squared 0.826 0.879 0.613 0.738 0.779 0.817 0.712 0.742 

Medium farms         

#drought days(t) -0.0027*** -0.0000819 0.00254 -0.000802* -0.000282 -0.000258 0.000732 -0.000395 

 

(0.000738) (0.000284) (0.0131) (0.000418) (0.00118) (0.000241) (0.00490) (0.000895) 

#drought days(t-1) -0.000946 -0.00032** 0.00674 -0.000729 -0.00342** -0.000261 0.00200 -0.00165*** 

 

(0.000831) (0.000125) (0.00772) (0.000566) (0.00148) (0.000245) (0.00515) (0.000571) 

#drought days(t-2) -0.000759 -0.000167* 0.00925 -0.000428 -0.000136 0.000179 -0.00492 -0.000177 

 

(0.000862) (0.0000978) (0.00670) (0.000426) (0.00107) (0.000173) (0.00458) (0.000408) 

Observations 6255 6255 6222 6255 7626 7590 7509 7626 

R-squared 0.768 0.857 0.503 0.700 0.786 0.870 0.636 0.686 

Large farms         

#drought days(t) -0.0033*** -0.00052** -0.00355 

-

0.00136*** -0.00199 0.0000657 -0.00242 -0.00114*** 

 

(0.00114) (0.000205) (0.00621) (0.000429) (0.00120) (0.000164) (0.00237) (0.000385) 

#drought days(t-1) -0.00150* -0.000358 0.00804 
-

0.000820** 
-

0.00357*** -0.00044* 0.00211 -0.00149*** 

 

(0.000859) (0.000268) (0.00795) (0.000367) (0.00131) (0.000241) (0.00254) (0.000428) 

#drought days(t-2) 0.000194 -0.000278 -0.0105 -0.000201 0.000419 -0.000202 -0.00026 -0.000230 

 

(0.000955) (0.000287) (0.00854) (0.000362) (0.00127) (0.000153) (0.00229) (0.000495) 

Observations 4137 4146 4116 4137 15129 15129 15087 15129 

R-squared 0.727 0.835 0.481 0.683 0.800 0.874 0.666 0.705 

Note: All specifications include firm fixed effects. Clustered Standard errors at district level in parentheses. * p<0.1, ** p<0.05, *** 

p<0.01 
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Table 11: Nonlinear regression results for Balance-Sheet indicators - full sample by industry 

Industry (1) (2) (3) (4) 

Dairy farming Return on capital Business equity 
Debt to income 

ratio 
 Interest Coverage 

Ratio 

#drought days(t) -0.00151 -0.0000935 -0.0171 0.000153 

 

(0.00155) (0.000435) (0.0110) (0.000620) 

#drought days(t-1) -0.00112 -0.000719** -0.0161 0.000479 

 

(0.00168) (0.000302) (0.0109) (0.000582) 

#drought days(t-2) 0.00211 -0.000181 -0.0312** 0.000604 

 

(0.00225) (0.000335) (0.0130) (0.000894) 

#drought days(t) sq -0.0000347 -0.00000544 0.000463*** -0.0000245** 

  (0.0000291) (0.00000900) (0.000164) (0.0000120) 

#drought days(t-1) sq -0.00000171 0.00000654 0.000481* -0.0000247*** 

  (0.0000267) (0.00000566) (0.000259) (0.00000848) 

#drought days(t-2) sq -0.0000472 -0.000000109 0.000630** -0.0000221 

 (0.0000327) (0.00000499) (0.000244) (0.0000139) 

 13398 13404 13296 13392 

Observations 0.778 0.860 0.539 0.712 

R-squared -0.00151 -0.0000935 -0.0171 0.000153 

Sheep/beef farming     

#drought days(t) -0.00154 0.000237 -0.00912 -0.000598 

 

(0.00196) (0.000328) (0.00711) (0.000650) 

#drought days(t-1) -0.00396 -0.000250 0.00157 -0.00148 

 

(0.00297) (0.000406) (0.00763) (0.000998) 

#drought days(t-2) 0.00235 0.000286 -0.00696 0.00127 

 

(0.00264) (0.000418) (0.00848) (0.000985) 

#drought days(t) sq 0.0000228 -0.00000318 0.000129 -0.00000225 

  (0.0000405) (0.00000751) (0.000123) (0.0000158) 

#drought days(t-1) sq 0.0000198 -0.00000103 0.0000971 0.00000305 

  (0.0000485) (0.00000832) (0.000113) (0.0000138) 

#drought days(t-2) sq -0.0000457 -0.00000660 0.0000663 -0.0000264* 

 (0.0000409) (0.00000630) (0.000114) (0.0000145) 

Observations 34035 33480 33051 34029 

R-squared 0.806 0.858 0.712 0.737 

Note: All specifications include firm and year fixed effects.  Clustered Standard errors at district level in parentheses. 

* p<0.1, ** p<0.05, *** p<0.01 
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Table 12: Nonlinear regression results for Balance-Sheet indicators - irrigated/not irrigated sample by industry 

  Dairy farming Sheep/beef farming 

Not irrigated 
sample 

(1) (2) (3) (4) (5) (6) (7) (8) 

 
Return on 
capital 

Business 
equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

Return on 
capital 

Business 
equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

#drought 
days(t) -0.00132 -0.000579 -0.0162 0.000618 -0.0000324 0.000123 -0.00216 -0.0000979 

 

(0.00193) (0.000589) (0.0173) (0.000886) (0.00207) (0.000305) (0.0109) (0.000695) 

#drought 
days(t-1) -0.000691 -0.000483 -0.0118 0.000842 -0.00304 -0.000478 -0.00119 -0.00106 

 

(0.00180) (0.000365) (0.0118) (0.000679) (0.00313) (0.000405) (0.00820) (0.00118) 

#drought 
days(t-2) -0.00132 -0.000426 -0.0153 0.000243 0.00258 0.0000225 0.00326 0.00157 

 (0.00261) (0.000452) (0.0135) (0.00104) (0.00286) (0.00037) (0.0105) (0.00108) 

#drought 
days(t) sq -0.0000266 0.00000237 0.000438* 

-
0.0000281* 0.0000131 -4.27e-08 0.0000348 -0.0000070 

  (0.000031) (0.0000113) (0.00024) (0.000014) (0.0000416) (0.000007) (0.00017) (0.000015) 

#drought 
days(t-1) sq 

-
0.00000429 0.00000349 0.000446 

-
0.00003*** 0.00000719 0.00000324 0.0000920 -0.0000041 

  (0.000028) (0.0000064) (0.00028) (0.000011) (0.0000498) (0.0000077) (0.000125) (0.0000155) 

#drought 
days(t-2) sq 0.0000139 0.00000402 0.000262 -0.0000126 -0.0000423 -0.00000278 -0.000080 -0.000028* 

 (0.000038) (0.0000065) (0.000208) (0.0000156) (0.0000463) (0.00000566) (0.000153) (0.0000159) 

Observations 9051 9057 8991 9051 21582 21273 21012 21582 

R-squared 0.779 0.859 0.509 0.723 0.812 0.861 0.717 0.738 

Irrigated sample 

  
#drought 
days(t) -0.00127 0.00103 -0.0155 -0.0000080 -0.00299 0.000692 -0.0222 -0.00120 

 

(0.00333) (0.000808) (0.0162) (0.000913) (0.00334) (0.000628) (0.0160) (0.00114) 

#drought 
days(t-1) -0.00150 -0.00146** -0.0122 -0.000487 -0.00672 0.000643 -0.00185 -0.00225** 

 

(0.00349) (0.000686) (0.0206) (0.00109) (0.00421) (0.000787) (0.0218) (0.00112) 

#drought 
days(t-2) 0.0114*** 0.000726 -0.0801** 0.00196 0.00372 0.000972 -0.0344** 0.00154 

 (0.00389) (0.000673) (0.0371) (0.00122) (0.00371) (0.000808) (0.0153) (0.00131) 

#drought 
days(t) sq -0.0000740 -0.0000279 0.000444 -0.0000273 0.00000996 -0.0000158 0.000238 0.00000169 

  (0.0000698) (0.0000203) (0.000299) (0.0000198) (0.0000683) (0.0000140) (0.000353) (0.0000292) 

#drought 
days(t-1) sq -0.0000074 0.0000155 0.000297 -0.0000117 0.0000572 -0.0000228 0.000383 0.0000238 

  (0.0000595) (0.0000157) (0.000416) (0.0000175) (0.0000744) (0.0000161) (0.000392) (0.0000212) 

#drought 
days(t-2) sq -0.0002*** -0.0000151 0.00175** -0.00005** -0.0000914 -0.0000154 0.000493* -0.0000406 

 

(0.0000728) (0.0000108) (0.000863) (0.0000213) (0.0000594) (0.0000129) (0.000255) (0.0000248) 

Observations 4344 4350 4308 4341 12456 12210 12042 12450 
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R-squared 0.777 0.865 0.601 0.683 0.795 0.853 0.706 0.734 

Note: All specifications include firm and year fixed effects. Clustered Standard errors at district level in parentheses. * p<0.1, ** 

p<0.05, *** p<0.01 

 

 

 

Table 13: Nonlinear regression results for Balance-Sheet indicators - farm size sample by industry 
Farm 
category Dairy farming Sheep/beef farming 

small farms 

(1) (2) (3) (4) (5) (6) (7) (8) 

Return on 
capital 

Business 
equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

Return on 
capital 

Business 
equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

#drought days(t) -0.00275 -0.000898 -0.0332 0.000814 -0.000393 0.000234 -0.0319** -0.000098 

 

(0.00577) (0.000840) (0.0345) (0.00175) (0.00162) (0.00064) (0.0149) (0.00066) 

#drought days(t-
1) -0.00484 -0.000603 0.0403* -0.00105 -0.00107 -0.0000616 -0.00329 -0.00044 

 

(0.00505) (0.000676) (0.0209) (0.00136) (0.00204) (0.000473) (0.0228) (0.00103) 

#drought days(t-
2) -0.00195 -0.0000945 -0.0249 -0.000262 0.000154 0.000125 -0.0149 0.00154 

 (0.00488) (0.000734) (0.0353) (0.00143) (0.00223) (0.000610) (0.0206) (0.00122) 

#drought days(t) 
sq 0.0000141 0.0000052 0.000967* -0.000029 0.0000121 5.71e-08 0.000474* -0.0000047 

  (0.000106) (0.000015) (0.00053) (0.000033) (0.00003) (0.000012) (0.00027) (0.0000096) 

#drought days(t-
1) sq 0.0000628 0.0000027 -0.000521 0.0000043 -0.000005 0.00000167 0.000315 -0.0000037 

  (0.000087) (0.000011) (0.00034) (0.000023) (0.000030) (0.0000074) (0.00039) (0.000016) 

#drought days(t-

2) sq 0.0000314 -0.0000022 0.000219 -0.000013 

-

0.0000163 

-

0.00000370 0.000155 -0.000029 

 

(0.000072) (0.0000097) (0.00055) (0.000025) (0.000033) (0.0000091) (0.00027) (0.000018) 

Observations 3009 3009 2958 3009 11286 10767 10458 11277 

R-squared 0.827 0.879 0.613 0.738 0.779 0.817 0.712 0.742 

Medium farms         

#drought days(t) -0.000706 0.000232 -0.0210 0.00101 0.00112 0.000184 0.00410 -0.0000982 

 

(0.00228) (0.000495) (0.0231) (0.000759) (0.00261) (0.000671) (0.0144) (0.000665) 

#drought days(t-
1) 0.000902 -0.000755 -0.0369* 0.00221** -0.0069** 0.0000362 0.0106 -0.000439 

 

(0.00260) (0.000480) (0.0189) (0.000859) (0.00337) (0.000607) (0.0151) (0.00103) 

#drought days(t-
2) 0.00233 -0.000195 -0.0354 0.00120 0.000738 0.000436 0.00131 0.00154 

 

(0.00265) (0.000426) (0.0225) (0.00119) (0.00300) (0.000699) (0.0135) (0.00122) 

#drought days(t) 
sq 

-
0.0000431 

-
0.00000640 0.000496 

-
0.00004*** -0.000033 -0.0000093 -0.000071 -0.0000046 

  (0.00004) (0.000010) (0.00035) (0.000012) (0.00005) (0.000013) (0.00023) (0.000009) 

#drought days(t-
1) sq -0.000038 0.00000820 0.00088** 

-
0.00006*** 0.0000692 

-
0.00000654 -0.000173 -0.0000037 

  (0.00005) (0.000009) (0.00040) (0.000012) (0.00005) (0.000012) (0.00024) (0.000015) 
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#drought days(t-
2) sq -0.000058 0.00000093 0.00087* 

-
0.0000328* -0.000001 

-
0.00000514 -0.000127 -0.0000290 

 (0.00004) (0.000007) (0.00044) (0.000018) (0.00005) (0.000012) (0.0002) (0.000018) 

Observations 6255 6255 6222 6255 7626 7590 7509 11277 

R-squared 0.768 0.857 0.505 0.701 0.786 0.870 0.636 0.742 

Large farms         

#drought days(t) 0.000968 0.0000886 -0.00337 -0.000909 -0.00512* 0.000186 -0.00224 -0.00192** 

 

(0.00352) (0.000912) (0.0157) (0.00105) (0.00304) (0.000469) (0.00656) (0.000869) 

#drought days(t-
1) -0.000924 -0.000434 -0.0252 -0.00125 -0.00214 -0.000264 -0.00375 -0.00101 

 

(0.00252) (0.000627) (0.0185) (0.000842) (0.00399) (0.000753) (0.00606) (0.00114) 

#drought days(t-
2) 0.00411 -0.0000616 -0.0288 0.0000959 0.00549 0.000244 -0.00751 0.00171 

 

(0.00363) (0.000715) (0.0208) (0.00105) (0.00377) (0.000569) (0.00694) (0.00118) 

#drought days(t) 

sq -0.000094 -0.0000132 -0.000004 -0.0000102 0.0000602 -0.0000029 0.000002 0.0000144 

  (0.00006) (0.000019) (0.00024) (0.0000171) (0.00005) (0.000009) (0.00011) (0.000020) 

#drought days(t-
1) sq 

-
0.0000170 0.0000006 0.000671 0.00000823 -0.000020 -0.0000035 0.000115 -0.0000072 

  (0.00004) (0.000014) (0.00044) (0.0000172) (0.00007) (0.00001) (0.00011) (0.000017) 

#drought days(t-
2) sq 

-
0.0000781 -0.0000041 0.000407 

-
0.00000526 -0.000094 -0.0000085 0.000143 -0.000036* 

 (0.00006) (0.000012) (0.00040) (0.0000187) (0.00005) (0.000009) (0.00011) (0.0000208) 

Observations 4137 4146 4116 4137 15129 15129 15087 15129 

R-squared 0.728 0.835 0.482 0.683 0.801 0.874 0.666 0.706 

Note: All specifications include firm and year fixed effects. Clustered Standard errors at district level in parentheses. * p<0.1, ** 

p<0.05, *** p<0.01 
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Appendix 1.9.2: Robustness check 

Table 1: Regression results for sale per hectare of dairy farming-full sample 
 

Note: 

All 

specifications include firm fixed effects. Clustered Standard errors at district level in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

 

 

  

indicators PE  SMD  SPI 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

#drought days(t) -1.365 -1.769* -1.734 -2.760 -2.927* -6.249 -1.590 
-

3.328** 0.712 

 

(1.665) (0.915) (2.925) (2.022) (1.642) (5.319) (1.290) (1.511) (4.866) 

#drought days(t-1) 0.212 2.799 11.56 -0.443 3.159 0.876 0.119 0.914 -3.939 

 

(1.369) (2.129) (9.835) (3.460) (3.195) (6.643) (1.576) (1.195) (5.386) 

#drought days(t-2) 0.961 -0.667 -0.234 1.371 1.543 4.372 2.314 -0.234 -8.650 

 

(1.203) (1.038) (3.023) (1.540) (1.332) (6.290) (2.463) (2.319) (6.620) 

#drought days(t) sq   -0.004   0.06   -0.05 

   (0.020)   (0.07)   (0.08) 

#drought days(t-1) 
sq   -0.131 

  
-0.02 

  
0.0833 

   (0.106)   (0.08)   (0.076) 

#drought days(t-2) 
sq   -0.004 

  
-0.07 

  
0.200 

   (0.03)   (0.15)   (0.13) 

Multi-farm -75.13 -99.59 -76.13 -70.89 -91.83 -71.80 -74.62 -103.3 -68.37 

 (122.4) (115.6) (123.0) (119.5) (112.8) (120.7) (120.8) (117.4) (113.5) 

Global milk price  2.450**   2.728***   2.455**  

 

 (0.958)   (0.980)   (0.955)  

year FE Yes No Yes Yes No Yes Yes No Yes 

Observations 12678 12678 12678 12678 12678 12678 12678 12678 12678 

R-squared 0.211 0.210 0.212 0.211 0.210 0.211 0.211 0.210 0.211 
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Table 2: Regression results for sale per hectare of Sheep/beef farming-full sample 
 

indicators PE  SMD  SPI 

NON-irrigated 
sample 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

# drought days -0.444 0.364 -1.670 0.356 1.049 2.689 0.934 1.060 1.787* 

 

(0.313) (0.366) (1.638) (0.616) (0.924) (1.616) (0.585) (0.673) (1.034) 

#drought days(t-1) 0.0229 0.0605 -0.0970 -0.252 0.220 -1.485 -0.137 -0.318 -1.968** 

 

(0.232) (0.312) (1.104) (0.501) (0.540) (1.687) (0.379) (0.313) (0.930) 

#drought days(t-2) 0.327 0.425 -0.787 1.339 1.474 -0.237 -0.224 0.225 -2.565 

 

(0.347) (0.431) (1.110) (0.933) (1.090) (1.569) (0.695) (0.792) (1.886) 

#drought days(t) sq   0.0276   -0.0293   -0.0145 

   (0.0205)   (0.0196)   (0.0237) 

#drought days(t-1) 
sq 

  0.00295   0.0322   0.0354* 

   (0.0107)   (0.0403)   (0.0208) 

#drought days(t-2) 
sq 

  0.0173   0.0364   0.0559 

   (0.0131)   (0.0316)   (0.0402) 

Multi-farm 41.71 41.85 42.87 44.05 41.33 41.55 42.67 41.75 41.59 

 (66.81) (66.89) (66.88) (66.80) (66.86) (66.92) (66.87) (66.74) (66.71) 

Year FE No Yes Yes       

Observations 33246 33246 33246 33246 33246 33246 33246 33246 33246 

R-squared 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446 

Note: All specifications include firm fixed effects. Clustered Standard errors at district level in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 
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Table 3: Regression results for sale per hectare of dairy farming -irrigated/not irrigated sample  
 

 Note: All specifications include firm fixed effects and multi-farm variable. Clustered Standard errors at district level in parentheses. 

* p<0.1, ** p<0.05, *** p<0.01 

 

  

indicators PE  SMD  SPI 

NON-irrigated sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

# drought days -1.148 -1.702 -1.991 -0.00312 -2.209 -3.991 -0.267 -0.0330 5.669 

 
(0.977) (2.391) (3.915) (0.507) (2.326) (5.317) (1.016) (1.158) (7.747) 

#drought days(t-1) 1.852 -0.0150 11.01 0.402 -5.114 -6.159 -0.557 -1.777 -8.351 

 
(2.355) (1.101) (13.30) (0.970) (5.358) (6.577) (0.703) (1.658) (7.741) 

#drought days(t-2) -1.094 1.246 1.913 -0.103 1.365 5.013 0.656 2.061 -15.55** 

 
(1.483) (1.727) (3.544) (1.330) (2.087) (8.621) (2.523) (3.093) (6.506) 

#drought days(t) sq   -0.00880   0.0394   -0.108 

   (0.0202)   (0.0722)   (0.154) 

#drought days(t-1) sq   -0.126   0.0261   0.129 

   (0.142)   (0.112)   (0.111) 

#drought days(t-2) sq   -0.0283   -0.0835   0.313** 

   (0.0408)   (0.162)   (0.137) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 8460 8460 8460 8460 8460 8460 8460 8460 8460 

R-squared 0.163 0.164 0.165 0.163 0.165 0.165 0.163 0.164 0.165 

Irrigated sample          

# drought days -1.718 -0.845 -1.789 -2.383 -3.559 -10.47 -4.682* -4.164* -6.786 

 
(1.049) (1.908) (4.100) (2.153) (3.594) (10.92) (2.789) (2.345) (5.220) 

#drought days(t-1) 2.374 0.668 12.36 6.056 6.477 17.47 4.324 5.004 5.640 

 
(1.738) (1.900) (8.567) (8.422) (7.697) (17.26) (3.976) (4.302) (7.309) 

#drought days(t-2) -1.962 0.131 -5.295 -0.186 1.368 4.663 1.711 2.610 10.46 

 
(1.547) (0.958) (4.457) (1.603) (2.084) (7.716) (1.948) (2.680) (8.944) 

#drought days(t) sq   0.0105   0.125   0.0607 

   (0.0305)   (0.138)   (0.0699) 

#drought days(t-1) sq   -0.134   -0.213   -0.0168 

   (0.108)   (0.192)   (0.0814) 

#drought days(t-2) sq   0.0503   -0.0954   -0.150 

   (0.0514)   (0.164)   (0.131) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 4218 4218 4218 4218 4218 4218 4218 4218 4218 

R-squared 0.317 0.319 0.319 0.317 0.319 0.320 0.317 0.319 0.319 
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Table 4: Regression results for sale per hectare of Sheep/beef farming-irrigated/not irrigated sample 

 Note: 

All 

specifications include firm fixed effects and multi-farm variable.  Clustered Standard errors at district level in parentheses. * p<0.1, ** 

p<0.05, *** p<0.01 

  

indicators PE  SMD  SPI 

NON-irrigated sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

# drought days -0.495 0.659 -1.866 0.642 2.144 2.724 1.560* 2.216** 2.061 

 
(0.358) (0.461) (1.972) (1.069) (1.436) (3.040) (0.891) (1.040) (1.695) 

#drought days(t-1) 0.0800 -0.151 -0.738 -0.00536 0.422 -2.060 0.286 -0.0540 -2.087* 

 
(0.263) (0.398) (1.544) (0.690) (0.761) (2.556) (0.514) (0.524) (1.085) 

#drought days(t-2) 0.575 1.016* 0.0409 2.051 2.598* 1.000 -0.0562 0.993 -0.734 

 
(0.427) (0.528) (1.203) (1.376) (1.430) (2.173) (0.801) (0.977) (1.781) 

#drought days(t) sq   0.0331   -0.0117   0.00609 

   (0.0254)   (0.0455)   (0.0436) 

#drought days(t-1) sq   0.00840   0.0510   0.0433* 

   (0.0148)   (0.0589)   (0.0253) 

#drought days(t-2) sq   0.0153   0.0343   0.0358 

   (0.0161)   (0.0524)   (0.0443) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 20913 20913 20913 20913 20913 20913 20913 20913 20913 

R-squared 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 

Irrigated sample            

# drought days -0.330 0.0826 0.0729 0.204 -0.0985 2.100 0.227 -0.0835 1.401 

 
(0.559) (0.611) (2.058) (0.764) (0.912) (2.163) (0.741) (0.557) (1.342) 

#drought days(t-1) -0.170 0.251 0.398 -0.591 -0.102 -0.951 
-

0.861** -0.596 -1.528 

 
(0.383) (0.563) (1.374) (0.484) (0.809) (2.066) (0.376) (0.410) (1.450) 

#drought days(t-2) -0.466 -0.841 -2.596 -0.133 -0.849 -4.147 -1.075 -1.464 -5.241 

 
(0.406) (0.580) (2.283) (0.596) (1.146) (2.564) (0.690) (1.265) (4.309) 

#drought days(t) sq   0.00222   -0.0355   -0.0308 

   (0.0205)   (0.0240)   (0.0217) 

#drought days(t-1) sq   -0.00222   0.0125   0.0194 

   (0.0105)   (0.0387)   (0.0314) 

#drought days(t-2) sq   0.0201   0.0634**   0.0809 

   (0.0210)   (0.0265)   (0.0717) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 12336 12336 12336 12336 12336 12336 12336 12336 12336 

R-squared 0.457 0.458 0.458 0.457 0.458 0.458 0.457 0.458 0.458 
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Table 5: Regression results for sale per hectare of dairy farming-farm size sample  
 PE SMD                                                  SPI 

small farm (1) (2) (3) (4) (5) (6) (7) (8) (9) 

# drought days 
-1.069 -1.738 -2.551 -4.528 -12.68 -29.41 -5.855 -6.196 -10.61 

 

(1.246) (4.872) (9.897) (5.305) (11.61) (31.34) (3.926) (4.596) (10.08) 

#drought days(t-1) 1.855 -2.928 5.284 9.955 7.534 14.46 5.881 4.176 0.473 

 

(1.990) (5.630) (9.711) (13.09) (9.827) (21.56) (5.176) (5.183) (7.101) 

#drought days(t-2) -0.571 4.632 2.157 0.0608 2.092 11.99 8.333 12.37 -30.04 

 

(3.041) (4.886) (8.752) (2.992) (3.793) (21.24) (7.570) (10.73) (24.30) 

#drought days(t) sq   0.00429   0.346   0.117 

   (0.0664)   (0.407)   (0.154) 

#drought days(t-1) 

sq 
  

-0.0952 
  

-0.140 
  

0.106 

   (0.129)   (0.279)   (0.0748) 

#drought days(t-2) 

sq 
  

0.0151 
  

-0.234 
  

0.751 

   (0.0730) -200.6 -176.5 (0.421) -243.5 -204.2 (0.486) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 2805 2805 2805 2805 2805 2805 2805 2805 2805 

R-squared 0.296 0.300 0.300 0.297 0.301 0.301 0.298 0.301 0.305 

medium farm          

# drought days -1.888 -3.378 -5.709 0.264 -1.394 -3.047 -0.192 0.905 8.501 

 

(1.386) (3.211) (5.059) (0.527) (2.139) (5.377) (1.193) (1.713) (10.01) 

#drought days(t-1) 2.915 0.620 19.01 0.609 -5.700 -8.197 -0.949 -2.277 -11.33 

 

(3.356) (1.765) (19.23) (0.852) (6.121) (10.33) (0.905) (2.172) (11.90) 

#drought days(t-2) -2.167 0.653 0.389 -0.645 1.702 -0.646 -2.002 -1.014 -4.278 

 

(1.555) (1.393) (4.377) (1.275) (2.371) (6.476) (1.386) (0.920) (4.459) 

#drought days(t) sq   0.0135   0.0330   -0.159 

   (0.0263)   (0.0757)   (0.182) 

#drought days(t-1) 

sq 
  

-0.206 
  

0.0548 
  

0.165 

   (0.202)   (0.141)   (0.185) 

#drought days(t-2) 

sq 
  

-0.0273 
  

0.0536 
  

0.0661 

   (0.0633) -127.1 -77.89 (0.115)   (0.0896) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 5871 5871 5871 5871 5871 5871 5871 5871 5871 

R-squared 0.158 0.159 0.160 0.157 0.160 0.160 0.157 0.159 0.160 

large farm           

# drought days -0.474** 0.952 2.906 -1.050 -0.748 -2.785 -1.044 -2.165 -2.312 

 

(0.192) (0.793) (2.247) (0.920) (0.803) (1.700) (1.578) (1.889) (3.300) 

#drought days(t-1) 0.140 0.248 1.452 -0.788 -0.351 1.615 -0.167 0.181 -1.191 
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(0.161) (0.413) (1.379) (1.440) (0.900) (3.108) (0.885) (0.834) (1.272) 

#drought days(t-2) -0.0866 -0.108 -0.937 -0.385 -0.119 -0.578 -0.0601 0.172 2.912 

 (0.147) (0.235) (1.460) (0.279) (0.607) (1.264) (0.350) (0.614) (1.829) 

#drought days(t) sq   -0.0248   0.0388*   0.00548 

   (0.0178)   (0.0220)   (0.0376) 

#drought days(t-1) 

sq 
  

-0.0162 
  

-0.0405 
  

0.0241 

   (0.0142)   (0.0546)   (0.0287) 

#drought days(t-2) 

sq   0.00678   0.00753   -0.0484 

   (0.0159)   (0.0278)   (0.0297) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 4005 4005 4005 4005 4005 4005 4005 4005 4005 

R-squared 0.396 0.400 0.401 0.396 0.400 0.400 0.396 0.400 0.401 

 Note: All specifications include firm fixed effects and multi-farm variable. Clustered Standard errors at district level in parentheses. 

* p<0.1, ** p<0.05, *** p<0.01 
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Table 6: Regression results for sale per hectare- Sheep/beef-farm size sample  
 PE SMD                                              SPI 

small farm (1) (2) (3) (4) (5) (6) (7) (8) (9) 

# drought days 
0.538 0.0969 0.261 0.171 -0.941 0.172 0.937* 0.686 3.395 

 

(0.568) (0.682) (2.218) (0.477) (0.808) (1.889) (0.557) (0.543) (2.084) 

#drought days(t-1) -0.110 -0.0273 -1.533 -0.230 -0.276 0.393 -0.143 0.400 -0.299 

 

(0.486) (0.777) (1.546) (0.572) (0.767) (2.122) (0.505) (0.526) (1.824) 

#drought days(t-2) 0.465 -0.154 0.248 1.273 -0.237 -2.402 -0.585 -1.478* -3.650 

 

(0.458) (0.579) (2.408) (1.082) (1.168) (2.819) (0.631) (0.873) (3.076) 

#drought days(t) sq   -0.00141   -0.0203   -0.0575 

   (0.0198)   (0.0250)   (0.0376) 

#drought days(t-1) sq   0.0166   -0.0164   0.0118 

   (0.0173)   (0.0308)   (0.0316) 

#drought days(t-2) sq   -0.00275   0.0455   0.0383 

   (0.0204)   (0.0505)   (0.0440) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 10974 10974 10974 10974 10974 10974 10974 10974 10974 

R-squared 0.747 0.748 0.748 0.747 0.748 0.748 0.747 0.748 0.748 

medium farm           

# drought days -0.672 0.493 -0.0728 -0.427 0.824 2.155 0.719 0.928 3.260* 

 

(0.762) (0.486) (1.920) (0.614) (0.605) (2.385) (0.690) (0.700) (1.932) 

#drought days(t-1) -0.226 -0.747 -2.456** -0.0482 0.0685 -2.723 -0.599 

-
1.158** -3.400** 

 

(0.233) (0.514) (0.951) (0.575) (0.858) (1.809) (0.588) (0.556) (1.567) 

#drought days(t-2) -0.549 -0.217 -0.815 

-
0.929** -0.736 -2.132 -0.953* 0.270 2.906** 

 

(0.406) (0.536) (0.801) (0.460) (0.726) (1.870) (0.482) (0.666) (1.288) 

#drought days(t) sq   0.00914   -0.0239   -0.0445 

   (0.0217)   (0.0469)   (0.0358) 

#drought days(t-1) sq   0.0204   0.0540*   0.0400 

   (0.0124)   (0.0302)   (0.0257) 

#drought days(t-2) sq 
  0.00973   0.0298 

  
-

0.0496** 

   (0.00736)   (0.0313)   (0.0235) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 7458 7458 7458 7458 7458 7458 7458 7458 7458 

R-squared 0.218 0.219 0.219 0.218 0.219 0.219 0.218 0.219 0.219 

large farm           

# drought days 
-

1.492** 

-
0.00377 -4.628 0.877 2.539 4.523 1.040 1.387 0.775 

 

(0.649) (0.559) (3.518) (1.281) (1.863) (3.396) (1.344) (1.531) (1.829) 

#drought days(t-1) 0.320 0.491 3.522* -0.572 0.325 -4.005 0.166 -0.0397 -2.398 
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(0.352) (0.480) (1.912) (1.397) (1.339) (3.977) (0.848) (0.766) (2.112) 

#drought days(t-2) 1.062 1.543 -3.218* 2.959 4.281 3.265 0.624 1.774 -6.804 

 (1.179) (1.319) (1.890) (2.706) (3.092) (3.363) (1.435) (1.794) (4.726) 

#drought days(t) sq   0.0706   -0.0347   0.0117 

   (0.0482)   (0.0440)   (0.0401) 

#drought days(t-1) sq 
  

-
0.0385**   0.0908   0.0567 

   (0.0191)   (0.105)   (0.0529) 

#drought days(t-2) sq   0.0629*   0.0210   0.174 

   (0.0330)   (0.0592)   (0.118) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 14814 14814 14814 14814 14814 14814 14814 14814 14814 

R-squared 0.253 0.254 0.254 0.253 0.254 0.254 0.253 0.254 0.254 

Note: All specifications include firm fixed effects and multi-farm variable.  Clustered Standard errors at district level in parentheses. * 

p<0.1, ** p<0.05, *** p<0.01 
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Table 7: Regression results for operating profit per hectare of dairy farming-full sample  
 Note: 

All 

specifications include firm fixed effects.  Clustered Standard errors at district level in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

 

 

 

 

 

 

 

 

 

indicators PE  SMD  SPI 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

#drought days(t) -0.723 
-

1.377*** -1.559 -2.197 -2.503 -4.663 -1.417 -2.319* -1.270 

 

(0.909) (0.506) (2.110) (1.774) (1.534) (4.865) (0.962) (1.207) (2.515) 

#drought days(t-1) -0.244 1.556 6.229 1.136 2.951 2.383 0.481 0.858 -1.078 

 

(0.935) (1.032) (4.370) (2.564) (3.175) (5.414) (1.044) (1.056) (2.797) 

#drought days(t-2) 0.633 -0.377 -0.439 0.575 0.940 2.412 1.848 0.0169 -5.775 

 

(0.898) (0.736) (2.006) (0.927) (0.967) (4.699) (1.945) (1.583) (5.225) 

#drought days(t) sq   0.0058   0.0488   -0.0008 

   (0.016)   (0.06)   (0.040) 

#drought days(t-1) 
sq   -0.0740   -0.0241   0.0351 

   (0.052)   (0.071)   (0.035) 

#drought days(t-2) 
sq   0.0030   -0.0450   0.138 

   (0.021)   (0.08)   (0.104) 

Multi-farm -78.49 -95.01 -78.47 -73.70 -87.38 -74.26 -77.08 -97.25 -71.73 

 (85.98) (80.99) (86.58) (84.36) (79.55) (85.32) (85.15) (82.76) (79.22) 

Global milk price  1.886***    2.203***   1.917***  

 

 (0.554)    (0.758)   (0.603)  

year FE Yes No Yes Yes No Yes Yes No Yes 

Observations 12672 12672 12672 12672 12672 12672 12672 12672 12672 

R-squared 0.265 0.264 0.265 0.265 0.264 0.265 0.265 0.264 0.265 
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Table 8: Regression results for operating profit per hectare of Sheep/beef farming-full sample  

 

Note: 

All 

specifications include firm fixed effects.  Clustered Standard errors at district level in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 

 

 

 

 

 

 

 

  

indicators PE  SMD  SPI 

NON-irrigated 
sample 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

# drought days -0.187 0.401** -0.239 -0.0255 0.434 1.764** 0.361 0.425 1.139** 

 

(0.159) (0.184) (0.682) (0.318) (0.410) (0.841) (0.282) (0.292) (0.529) 

#drought days(t-1) 0.0226 -0.0154 -0.523 -0.0640 0.150 -0.411 -0.190 -0.392** -1.067* 

 

(0.130) (0.176) (0.504) (0.306) (0.336) (1.093) (0.212) (0.170) (0.634) 

#drought days(t-2) 0.256* 0.363* -0.189 0.780** 0.847** -0.116 -0.0199 0.426 -0.110 

 

(0.148) (0.193) (0.560) (0.382) (0.420) (0.878) (0.295) (0.258) (0.828) 

#drought days(t) sq   0.00921   -0.0238**   -0.0142 

   (0.00770)   (0.0111)   (0.0105) 

#drought days(t-1) 
sq   0.00624   0.00944   0.0132 

   (0.00539)   (0.0259)   (0.0128) 

#drought days(t-2) 
sq   0.00798   0.0207   0.0107 

   (0.00568)   (0.0140)   (0.0155) 

Multi-farm 20.41 21.62 22.12 21.67 21.43 21.51 20.52 21.60 21.62 

 (39.64) (39.52) (39.52) (39.68) (39.44) (39.52) (39.62) (39.44) (39.43) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 33324 33324 33324 33324 33324 33324 33324 33324 33324 

R-squared 0.506 0.507 0.507 0.506 0.507 0.507 0.506 0.507 0.507 
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Table 9: Regression results for operating profit per hectare of dairy farming-Irrigated sample  
Note: 

All 

specifications include firm fixed effects and multi-farm variable. Clustered Standard errors at district level in parentheses. * p<0.1, ** 

p<0.05, *** p<0.01 

indicators PE  SMD  SPI 

NON-irrigated sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

# drought days -0.710* -0.616 -0.902 0.0696 -1.087 -1.066 0.296 -0.510 1.102 

 

(0.404) (1.049) (1.807) (0.361) (1.033) (2.339) (0.644) (0.650) (3.381) 

#drought days(t-1) 0.565 -0.208 4.222 0.144 -2.083 -3.412 -0.246 -0.757 -3.880 

 

(0.967) (0.507) (5.468) (0.733) (2.235) (3.410) (0.438) (0.760) (3.320) 

#drought days(t-2) -0.548 0.551 0.922 -0.264 0.416 2.847 0.784 1.403 -11.57** 

 

(0.934) (1.173) (2.196) (1.015) (1.206) (6.216) (1.836) (2.401) (4.872) 

#drought days(t) sq 
  -0.00162   

-
0.000265   -0.0209 

   (0.0115)   (0.0323)   (0.0659) 

#drought days(t-1) sq   -0.0504   0.0318   0.0659 

   (0.0582)   (0.0601)   (0.0474) 

#drought days(t-2) sq   -0.0125   -0.0549   0.229** 

   (0.0211)   (0.119)   (0.104) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 8454 8454 8454 8454 8454 8454 8454 8454 8454 

R-squared 0.196 0.198 0.198 0.195 0.198 0.198 0.195 0.198 0.200 

Irrigated sample          

# drought days -1.832 -1.014 -2.968 -2.284 -3.084 -9.204 -3.702 -2.952 -5.440 

 

(1.174) (1.709) (4.529) (2.120) (3.311) (10.48) (2.541) (1.897) (4.466) 

#drought days(t-1) 1.955 0.110 11.54 6.317 6.758 16.14 3.523 3.937 5.999 

 

(1.774) (1.621) (8.695) (8.416) (7.809) (17.74) (3.557) (3.741) (7.047) 

#drought days(t-2) -1.826 0.244 -4.089 -0.675 0.998 3.785 1.297 2.431 9.286 

 

(1.573) (0.903) (3.987) (1.405) (1.643) (7.003) (1.216) (2.429) (8.063) 

#drought days(t) sq   0.0219       

   0.0219   0.110   0.0556 

#drought days(t-1) sq   (0.0361)   (0.134)   (0.0615) 

   -0.130   -0.181   -0.0444 

#drought days(t-2) sq   (0.110)   (0.198)   (0.0756) 

   0.0387   -0.0814   -0.134 

Year FE   (0.0460)   (0.160)   (0.117) 

Observations No Yes Yes No Yes Yes No Yes Yes 

R-squared 4221 4221 4221 4221 4221 4221 4221 4221 4221 
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Table 10: Regression results for operating profit per hectare- Sheep/beef-irrigated sample  
 Note: 

All 

specifications include firm fixed effects and multi-farm variable. Clustered Standard errors at district level in parentheses. * p<0.1, ** 

p<0.05, *** p<0.01 

 

  

indicators PE  SMD  SPI 

NON-irrigated sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

# drought days -0.201 0.519** -0.212 0.0776 0.879 1.859 0.640 0.923** 1.326 

 

(0.176) (0.216) (0.811) (0.445) (0.578) (1.798) (0.403) (0.400) (0.848) 

#drought days(t-1) 0.0884 -0.0494 -0.857 0.128 0.294 -0.318 

-
0.00201 -0.297 -1.028 

 

(0.142) (0.226) (0.727) (0.421) (0.467) (1.648) (0.282) (0.266) (0.760) 

#drought days(t-2) 0.368** 0.638*** 0.190 1.014* 1.287** 0.761 0.0966 0.781** 0.716 

 

(0.184) (0.212) (0.486) (0.556) (0.525) (1.145) (0.321) (0.307) (0.765) 

#drought days(t) sq   0.0103   -0.0189   -0.00741 

   (0.00948)   (0.0267)   (0.0193) 

#drought days(t-1) sq   0.00983   0.0116   0.0142 

   (0.00770)   (0.0387)   (0.0157) 

#drought days(t-2) sq   0.00718   0.0117   0.00207 

   (0.00618)   (0.0241)   (0.0164) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 20955 20955 20955 20955 20955 20955 20955 20955 20955 

R-squared 0.531 0.532 0.532 0.531 0.532 0.532 0.531 0.532 0.532 

Irrigated sample          

# drought days -0.158 0.277 0.252 -0.0911 -0.105 1.322 0.0412 -0.133 0.831 

 

(0.384) (0.396) (1.318) (0.399) (0.537) (1.146) (0.338) (0.256) (0.732) 

#drought days(t-1) -0.204 -0.108 -0.234 -0.317 -0.0328 -0.577 

-
0.514** -0.443 -1.182 

 

(0.255) (0.313) (0.757) (0.273) (0.478) (1.239) (0.223) (0.281) (0.968) 

#drought days(t-2) -0.0939 -0.216 -0.939 0.294 -0.0626 -2.150 -0.579 -0.459 -1.485 

 

(0.304) (0.379) (1.430) (0.408) (0.710) (1.664) (0.446) (0.645) (2.441) 

#drought days(t) sq   0.00131   -0.0231*   -0.0190 

   (0.0130)   (0.0131)   (0.0127) 

#drought days(t-1) sq      0.00802   0.0144 

   0.00126   0.00802   0.0144 

#drought days(t-2) sq   (0.00650)   (0.0224)   (0.0189) 

   0.00853   0.0402**   0.0220 

Year FE   (0.0137)   (0.0177)   (0.0414) 

Observations No Yes Yes No Yes Yes No Yes Yes 

R-squared 12369 12369 12369 12369 12369 12369 12369 12369 12369 
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Table 11: Regression results for operating profit per hectare of dairy-farm size sample  
 PE SMD                                           SPI 

small farm (1) (2) (3) (4) (5) (6) (7) (8) (9) 

# drought days 
-1.486 -1.602 -3.287 -4.434 -10.94 -25.61 -4.004 -4.556 -8.303 

 

(1.334) (4.039) (9.256) (5.306) (11.04) (30.61) (3.500) (3.639) (8.184) 

#drought days(t-1) 1.569 -3.249 5.795 9.635 7.745 14.56 4.377 2.919 -0.380 

 

(2.059) (4.999) (8.115) (13.25) (10.31) (22.05) (4.619) (3.940) (6.199) 

#drought days(t-2) -0.757 4.305 1.865 -0.878 1.767 8.235 6.109 10.12 -20.54 

 

(2.515) (4.018) (6.618) (2.577) (2.773) (16.32) (5.669) (8.325) (20.05) 

#drought days(t) sq   0.0142   0.302   0.0986 

   (0.0660)   (0.401)   (0.129) 

#drought days(t-1) sq   -0.104   -0.138   0.0898 

   (0.124)   (0.272)   (0.0640) 

#drought days(t-2) sq   0.0143   -0.156   0.544 

   (0.0618)   (0.332)   (0.381) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 2805 2805 2805 2805 2805 2805 2805 2805 2805 

R-squared 0.283 0.287 0.287 0.285 0.288 0.288 0.284 0.288 0.290 

medium farm          

# drought days -1.128* -1.586 -3.462 0.186 -0.701 -1.143 0.359 0.116 2.664 

 

(0.596) (1.303) (2.109) (0.443) (1.017) (2.347) (0.736) (0.881) (4.188) 

#drought days(t-1) 1.092 0.123 8.147 0.537 -1.964 -3.560 -0.353 -0.774 -4.345 

 

(1.365) (0.815) (7.636) (0.587) (2.507) (4.657) (0.620) (0.976) (4.960) 

#drought days(t-2) -1.280 -0.0701 -0.677 -0.714 0.432 -2.245 -0.998* -0.745 -2.335 

 

(0.771) (0.734) (2.188) (1.030) (1.123) (3.938) (0.592) (0.524) (1.898) 

#drought days(t) sq   0.0167   0.00858   -0.0526 

   (0.0131)   (0.0354)   (0.0757) 

#drought days(t-1) sq   -0.0889   0.0340   0.0658 

   (0.0800)   (0.0706)   (0.0759) 

#drought days(t-2) sq   -0.00523   0.0620   0.0316 

   (0.0299)   (0.0761)   (0.0390) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 5865 5865 5865 5865 5865 5865 5865 5865 5865 

R-squared 0.186 0.189 0.190 0.186 0.189 0.189 0.186 0.189 0.189 

large farm           

# drought days 
-

0.388*** 0.647 1.770 -0.808 -0.674 -1.898 -0.970 -1.838 -2.579 

 

(0.128) (0.626) (1.835) (0.814) (0.716) (1.453) (1.339) (1.653) (2.765) 

#drought days(t-1) 0.00758 0.267 0.985 -0.602 -0.0365 1.186 -0.0763 0.250 -0.204 

 

(0.0999) (0.311) (0.933) (1.107) (0.638) (1.912) (0.543) (0.487) (0.722) 

#drought days(t-2) -0.0154 -0.0651 -0.572 -0.315 -0.101 -0.185 0.0683 0.0334 2.205 
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 (0.113) (0.150) (1.206) (0.222) (0.418) (0.974) (0.237) (0.409) (1.341) 

#drought days(t) sq   -0.0142   0.0232   0.0170 

   (0.0144)   (0.0170)   (0.0272) 

#drought days(t-1) sq   -0.00960   -0.0250   0.00750 

   (0.00927)   (0.0352)   (0.0162) 

#drought days(t-2) sq   0.00425   0.000208   -0.0389 

   (0.0129)   (0.0216)   (0.0236) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 4002 4002 4002 4002 4002 4002 4002 4002 4002 

R-squared 0.423 0.427 0.427 0.423 0.426 0.427 0.423 0.428 0.428 

 Note: All specifications include firm fixed effects and multi-farm variable. Clustered Standard errors at district level in parentheses. * 

p<0.1, ** p<0.05, *** p<0.01 
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Table 12: Regression results for operating profit per hectare- Sheep/beef-farm size sample  
 PE SMD                                           SPI 

small farm (1) (2) (3) (4) (5) (6) (7) (8) (9) 

# drought days 
0.375 0.0853 0.525 0.168 -0.413 0.520 0.209 0.0862 1.625 

 

(0.255) (0.264) (1.277) (0.287) (0.486) (1.018) (0.329) (0.338) (1.092) 

#drought days(t-1) 0.0942 0.215 -0.706 -0.00104 -0.0233 1.057 -0.145 0.142 -0.277 

 

(0.271) (0.351) (0.765) (0.306) (0.388) (1.204) (0.315) (0.283) (1.030) 

#drought days(t-2) 0.369** 0.00915 0.0233 1.020 0.255 -1.112 0.0452 -0.352 -0.977 

 

(0.182) (0.297) (1.457) (0.621) (0.712) (1.376) (0.281) (0.370) (1.830) 

#drought days(t) sq   -0.00454   -0.0169   -0.0323 

   (0.0122)   (0.0131)   (0.0213) 

#drought days(t-1) sq   0.00978   -0.0237   0.00659 

   (0.0111)   (0.0198)   (0.0190) 

#drought days(t-2) sq   0.000466   0.0287   0.0104 

   (0.0130)   (0.0231)   (0.0280) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 11046 11046 11046 11046 11046 11046 11046 11046 11046 

R-squared 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 0.789 

medium farm          

# drought days -0.264 0.502 0.522 -0.219 0.582 1.675 0.863 0.942* 2.951* 

 

(0.331) (0.360) (0.971) (0.405) (0.470) (1.242) (0.580) (0.502) (1.512) 

#drought days(t-1) -0.246* -0.665** -1.624** 0.0818 0.0739 -1.724 -0.395 -0.742* -2.086* 

 

(0.139) (0.313) (0.644) (0.408) (0.575) (1.184) (0.446) (0.429) (1.088) 

#drought days(t-2) -0.188 0.0686 -0.0846 -0.366* -0.132 -0.843 -0.440* 0.445 2.426** 

 

(0.184) (0.316) (0.486) (0.215) (0.474) (1.178) (0.245) (0.409) (0.958) 

#drought days(t) sq   0.000577   -0.0196   -0.0394 

   (0.00991)   (0.0233)   (0.0288) 

#drought days(t-1) sq   0.0111   0.0347   0.0227 

   (0.00729)   (0.0218)   (0.0186) 

#drought days(t-2) sq 
  0.00297   0.0156   

-
0.0383** 

   (0.00526)   (0.0165)   (0.0157) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 7467 7467 7467 7467 7467 7467 7467 7467 7467 

R-squared 0.247 0.248 0.248 0.247 0.248 0.248 0.247 0.249 0.249 

large farm           

# drought days -0.813** 0.237 -1.558 -0.108 0.876 2.492 0.231 0.399 0.364 

 

(0.350) (0.340) (1.301) (0.582) (0.713) (1.698) (0.520) (0.590) (0.848) 

#drought days(t-1) 0.0980 0.0965 0.852 -0.264 0.185 -1.708 -0.131 -0.395 -1.050 

 

(0.143) (0.273) (0.795) (0.877) (0.870) (2.632) (0.433) (0.373) (1.177) 

#drought days(t-2) 0.578 0.923* -1.237 1.319 1.898* 1.309 0.179 1.067* -1.757 

 (0.502) (0.530) (0.913) (1.052) (1.078) (1.690) (0.647) (0.631) (1.693) 
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#drought days(t) sq   0.0282*   -0.0285   0.000390 

   (0.0161)   (0.0234)   (0.0159) 

#drought days(t-1) sq   -0.00974   0.0388   0.0159 

   (0.00727)   (0.0702)   (0.0262) 

#drought days(t-2) sq   0.0286**   0.0121   0.0568 

   (0.0131)   (0.0246)   (0.0408) 

Year FE No Yes Yes No Yes Yes No Yes Yes 

Observations 14814 14814 14814 14814 14814 14814 14814 14814 14814 

R-squared 0.270 0.271 0.272 0.270 0.272 0.272 0.270 0.271 0.272 

Note: All specifications include firm fixed effects and multi-farm variable. Clustered Standard errors at district level in parentheses. * 

p<0.1, ** p<0.05, *** p<0.01 
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Table 13: Regression results for Balance-Sheet indicators-full sample 

  

Dairy Sheep/beef 

(1) (2) (3) (4) (5) (6) (7) (8) 

PED 

indicator 
Return on 

capital 
Business 

equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

Return on 
capital 

Business 
equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

#drought 
days(t) -0.00179 -0.000628 0.000844 -0.000126 0.00273 0.000646* -0.00575 0.000188 

  (0.00233) (0.000422) (0.0127) (0.000560) (0.00184) (0.000329) (0.00739) (0.000734) 

#drought 
days(t-1) 0.000592 -0.000195 0.00711 -0.000637* -0.0019*** -0.000228 0.0112** -0.00085*** 

 

(0.000889) (0.000117) (0.00530) (0.000356) (0.000625) (0.000151) (0.00422) (0.000307) 

#drought 
days(t-2) 0.00127 -0.0000100 -0.00293 -0.000354 0.00143 0.000157 -0.00416 0.000393 

  (0.00108) (0.000216) (0.00373) (0.000405) (0.00190) (0.000200) (0.00343) (0.000728) 

R-squared 0.791 0.866 0.557 0.720 0.810 0.860 0.715 0.739 

SMD 

indicator         

#drought 
days(t) 0.0000128 0.00000524 -0.000037 -0.000016* -0.000044* -0.0000068 0.000110 -0.0000087 

  (0.000041) (0.0000072) (0.00024) (0.000009) (0.000022) (0.0000044) (0.00014) (0.0000079) 

#drought 
days(t-1) 

-
0.00183*** -0.000163 -0.000382 -0.000678** 0.000252 0.000104 -0.00141 -0.000285 

 

(0.000606) (0.000133) (0.00451) (0.000257) (0.00118) (0.000154) (0.00277) (0.000484) 

#drought 
days(t-2) -0.0000739 -0.000123 0.00474 -0.000429 -0.0027*** -0.000116 0.00211 -0.00097*** 

  (0.000618) (0.000144) (0.00335) (0.000269) (0.000533) (0.000133) (0.00306) (0.000239) 

R-squared 0.791 0.866 0.557 0.720 0.810 0.860 0.715 0.739 

SPI indicator          

#drought 
days(t) 0.000948 0.000126 -0.00486 -0.0000457 0.000761 0.0000463 -0.007*** 0.000103 

  (0.000874) (0.000124) (0.00457) (0.000309) (0.00105) (0.000127) (0.00264) (0.000340) 

#drought 
days(t-1) -0.00179 -0.000628 0.000844 -0.000126 0.00273 0.000646* -0.00575 0.000188 

 

(0.00233) (0.000422) (0.0127) (0.000560) (0.00184) (0.000329) (0.00739) (0.000734) 

#drought 
days(t-2) 0.000592 -0.000195 0.00711 -0.000637* -0.0019*** -0.000228 0.0112** -0.00084*** 

  (0.000889) (0.000117) (0.00530) (0.000356) (0.000625) (0.000151) (0.00422) (0.000307) 

R-squared 0.791 0.866 0.557 0.720 0.810 0.860 0.715 0.739 

Observations 12672 12687 12579 12669 33321 32772 32346 33312 

Note: All specifications include firm and year fixed effects. Clustered Standard errors at district level in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 
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Table 14: Regression results for Balance-Sheet variables-irrigated/not irrigated sample of dairy farming 

  
NON-irrigated sample Irrigated sample 

(1) (2) (3) (4) (5) (6) (7) (8) 

PED indicator 
Return on 

capital 
Business 

equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

Return on 
capital 

Business 
equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

#drought days(t) -0.000563 -0.0000987 0.00321 -0.000196 -0.000002 -0.000139 0.00168 0.000385 

 (0.000719) (0.000156) (0.0050) (0.000219) (0.00144) (0.00016) (0.0058) (0.000382) 

#drought days(t-1) 
-0.000513 -0.0000727 0.011** -0.0006*** -0.000445 0.0000075 0.000130 

-
0.000548* 

 (0.000478) (0.000109) (0.0044) (0.000197) (0.00111) (0.00014) (0.0050) (0.000285) 

#drought days(t-2) 
0.000212 0.000159 -0.00179 0.000144 0.000197 -0.000187 0.00824 

-
0.0000042 

 (0.000875) (0.000110) (0.0043) (0.000220) (0.00066) (0.00015) (0.0062) (0.000328) 

R-squared 0.793 0.864 0.536 0.734 0.787 0.869 0.597 0.686 

SMD indicator 

        

#drought days(t) 
-0.00125 -0.0006*** 0.00534 -0.00092** -0.00108 

-
0.0000853 -0.00619 

-
0.00091** 

 (0.00104) (0.000247) (0.0073) (0.000365) (0.00133) (0.00024) (0.0077) (0.000361) 

#drought days(t-1) 0.00102 -0.000254 0.0134* -0.00092** 0.000280 -0.000159 0.000180 -0.000269 

 (0.000878) (0.000159) (0.0078) (0.000383) (0.00165) (0.00020) (0.0060) (0.000435) 

#drought days(t-2) 
0.00115 0.0000404 -0.00608 -0.000289 0.00193 

-
0.0000610 0.00312 -0.000549 

 (0.00130) (0.000213) (0.0042) (0.000394) (0.00190) (0.00031) (0.0095) (0.000728) 

R-squared 0.793 0.865 0.536 0.734 0.787 0.869 0.597 0.686 

SPI indicator  

        
#drought days(t) -0.00119 -0.000297 0.00115 -0.000502 -0.0027** -0.000020 -0.00111 -0.0008** 

 (0.000787) (0.000197) (0.0071) (0.000350) (0.00104) (0.000149) (0.00602) (0.000365) 

#drought days(t-1) 
-0.000144 -0.000113 0.00841* 

-
0.000599** 0.000265 -0.000237 -0.00249 -0.000159 

 (0.000766) (0.000159) (0.00457) (0.000299) (0.00144) (0.000213) (0.00531) (0.000463) 

#drought days(t-2) 0.00129 0.000177 -0.00831 0.000126 0.000165 0.000102 0.00327 -0.000377 

 (0.000995) (0.000123) (0.00513) (0.000317) (0.00169) (0.000249) (0.0115) (0.000524) 

R-squared 0.793 0.864 0.536 0.734 0.787 0.869 0.597 0.687 

Observations Yes Yes Yes Yes Yes Yes Yes Yes 

 Note: All specifications include firm and year fixed effects. Clustered Standard errors at district level in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 
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Table 15: Results for Balance-Sheet indicators-irrigated/not irrigated sample of sheep/beef farming 

  

NON-irrigated sample Irrigated sample 

(1) (2) (3) (6) (7) (8) (9) (12) 

PED indicator 
Return on 

capital 
Business 

equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

Return on 
capital 

Business 
equity 

Debt to 

income 
ratio 

 Interest 

Coverage 
Ratio 

#drought days(t) 0.0039*** 0.000289* 0.000121 0.00134*** 0.0024*** 0.00045* -0.00871 0.00061** 

 

-0.00085 -0.00016 -0.00344 -0.00033 -0.00089 -0.00023 -0.00558 -0.0003 

#drought days(t-1) -0.0012** -0.0002** 0.00648** -0.0006*** -0.00048 -2.3E-05 0.000747 5.74E-05 

 

-0.00047 -7.3E-05 -0.00246 -0.00015 -0.00101 -0.0002 -0.0058 -0.00024 

#drought days(t-2) 0.0022*** 7.86E-05 -0.00504 0.00085*** 0.00107 0.00022 -0.00319 0.000326 

 

-0.00079 -0.0001 -0.00329 -0.00025 -0.00082 -0.00023 -0.00605 -0.00029 

R-squared 0.819 0.865 0.722 0.741 0.795 0.853 0.706 0.735 

SMD indicator         

#drought days(t) 0.00148 0.000382 -0.00290 -0.0000605 -0.000667 0.000141 0.00275 -0.000517 

 

(0.00104) (0.00023) (0.00464) (0.000544) (0.00088) (0.00017) (0.00566) (0.00033) 

#drought days(t-1) -0.00115 -0.000215 0.0112* -0.000814* -0.00248* -0.000118 0.00809 -0.000513 

 

(0.000708) (0.00018) (0.00646) (0.000412) (0.00127) (0.00026) (0.00669) (0.00041) 

#drought days(t-2) 0.00120 0.000152 -0.00301 0.000325 0.00178 0.000159 -0.00652 0.000506 

 

(0.00203) (0.00024) (0.00427) (0.000783) (0.00199) (0.00021) (0.00720) (0.00067) 

R-squared 0.818 0.865 0.722 0.740 0.795 0.853 0.706 0.735 

SPI indicator           

#drought days(t) 0.000736 0.000113 
-

0.00785** -0.000220 -0.000294 0.0000420 0.00614 -0.000497 

 

(0.00131) (0.00019) (0.00310) (0.000599) (0.00103) (0.00017) (0.00598) (0.00040) 

#drought days(t-1) 
-

0.0021*** -0.000203 -0.000315 
-

0.00095*** -0.0034** 0.000142 0.000967 -0.000504 

 

(0.00064) (0.00013) (0.00268) (0.000323) (0.00128) (0.00029) (0.00752) (0.00036) 

#drought days(t-2) 0.00127 0.0000560 
-

0.0096*** 0.000329 -0.000138 0.0000348 -0.00293 -0.000394 

 

(0.00122) (0.00013) (0.00293) (0.000368) (0.00143) (0.00034) (0.0105) (0.00052) 

R-squared 0.818 0.865 0.722 0.741 0.795 0.853 0.706 0.735 

Observations 20952 20649 20391 20949 12369 12123 11955 12360 

Note: All specifications include firm year fixed effects. Clustered Standard errors at district level in parentheses * p<0.1, ** p<0.05, 

*** p<0.01 
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Table 16: Regression results for Balance-Sheet variables-small farm sample of dairy farming 

Indicators 
small farm 

(1) (2) (3) (6) 

PED indicator Return on capital Business equity 
Debt to income 

ratio 
Interest Coverage 

Ratio 

#drought days(t) 0.0000449 -0.000140 -0.00157 0.000287 

  (0.00127) (0.000243) (0.0145) (0.000456) 

#drought days(t-1) 0.000611 0.000129 0.0119 -0.000617* 

 

(0.00144) (0.000201) (0.00782) (0.000361) 

#drought days(t-2) -0.000496 0.000158 -0.00812 0.0000270 

  (0.00129) (0.000209) (0.00895) (0.000451) 

R-squared 0.840 0.887 0.627 0.750 

SMD indicator     

#drought days(t) -0.00415 -0.000395 0.00262 -0.000478 

  (0.00437) (0.00101) (0.0338) (0.00144) 

#drought days(t-1) 0.00412* -0.000309 0.0194 -0.000326 

 

(0.00209) (0.000249) (0.0123) (0.000713) 

#drought days(t-2) 0.00211 0.000300 -0.0169 -0.00137** 

  (0.00207) (0.000484) (0.0132) (0.000545) 

R-squared 0.840 0.887 0.627 0.750 

SPI indicator      

#drought days(t) -0.000539 -0.000477 -0.00947 -0.0000873 

  (0.00179) (0.000428) (0.0229) (0.000641) 

#drought days(t-1) 0.00143 0.000191 0.00664 -0.0000313 

 

(0.00166) (0.000310) (0.00976) (0.000613) 

#drought days(t-2) 0.00244* 0.000486* -0.0234* -0.0000338 

  (0.00144) (0.000265) (0.0132) (0.000554) 

R-squared 0.840 0.887 0.627 0.749 

Observations 2808 2808 2760 2802 

Note: All specifications include firm and year fixed effects. Clustered Standard errors at district level in parentheses. * p<0.1, ** 

p<0.05, *** p<0.01 

 

 

 

 

 

 

 

 

 

  



74 

 

  

Table 17: Regression results for Balance-Sheet variables-medium farm sample of dairy farming 

Indicators 
medium farm 

(1) (2) (3) (6) 

PED indicator 
Return on capital Business equity 

Debt to income 
ratio 

Interest Coverage 
Ratio 

#drought days(t) -0.000362 -0.000130 0.00635 -0.0000514 

 

(0.000976) (0.000181) (0.00537) (0.000242) 

#drought days(t-1) -0.000728 -0.000150* 0.00914** -0.000837*** 

 

(0.000538) (0.0000879) (0.00455) (0.000285) 

#drought days(t-2) 0.000437 0.0000382 0.00704 0.0000713 

 

(0.000655) (0.000149) (0.00521) (0.000223) 

R-squared 0.786 0.862 0.535 0.708 

SMD indicator 

    
#drought days(t) 0.000436 -0.000406 -0.00762 0.000979 

 

(0.00304) (0.000665) (0.0203) (0.00109) 

#drought days(t-1) -0.000328 0.0000478 -0.00140 -0.000919 

 

(0.00123) (0.000236) (0.00760) (0.000579) 

#drought days(t-2) 0.000342 0.0000585 0.00528 -0.000373 

 

(0.00161) (0.000262) (0.00788) (0.000645) 

R-squared 0.786 0.862 0.534 0.708 

SPI indicator  

    
#drought days(t) -0.00138 0.000155 0.00301 -0.000315 

 

(0.000882) (0.000247) (0.0103) (0.000407) 

#drought days(t-1) -0.000487 -0.000161 0.00628 -0.000838* 

 

(0.000829) (0.000182) (0.00440) (0.000459) 

#drought days(t-2) 0.000846 0.0000710 0.00113 -0.0000463 

 

(0.00137) (0.000141) (0.00671) (0.000399) 

R-squared 0.786 0.862 0.534 0.708 

Observations 5865 5865 5835 5865 

Note: All specifications include firm and year  fixed effects. Clustered Standard errors at district level in 

parentheses. * p<0.1, ** p<0.05, *** p<0.01 
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Table 18: Regression results for Balance-Sheet indicators-large farm sample of dairy farming 

Indicators 
large farm 

(1) (2) (3) (6) 

PED indicator Return on capital Business equity 
Debt to income 

ratio 
 Interest Coverage 

Ratio 

#drought days(t) -0.000519 -0.0000927 -0.00285 -0.0000876 

 

(0.000835) (0.000236) (0.00448) (0.000179) 

#drought days(t-1) -0.00141** 0.0000579 0.00332 -0.000292 

 

(0.000570) (0.000146) (0.00485) (0.000258) 

#drought days(t-2) -0.0000378 -0.000205 -0.00186 0.000159 

 

(0.00101) (0.000177) (0.00719) (0.000301) 

R-squared 0.732 0.841 0.486 0.689 

SMD indicator     

#drought days(t) -0.00110 -0.00103 -0.00193 -0.00111 

 

(0.00319) (0.000689) (0.0198) (0.00112) 

#drought days(t-1) -0.000585 -0.000446* 0.0143* -0.000647 

 

(0.000953) (0.000248) (0.00737) (0.000387) 

#drought days(t-2) 0.00192 -0.000427 -0.0140 0.000406 

 

(0.00158) (0.000341) (0.00841) (0.000443) 

R-squared 0.732 0.841 0.487 0.691 

SPI indicator      

#drought days(t) -0.00205** -0.000340* -0.00286 -0.00111*** 

 

(0.000966) (0.000179) (0.00487) (0.000395) 

#drought days(t-1) -0.000788 -0.000223 0.00401 -0.000238 

 

(0.000765) (0.000274) (0.00609) (0.000260) 

#drought days(t-2) 0.000394 -0.0000174 -0.0103 0.000109 

 

(0.00119) (0.000287) (0.00730) (0.000328) 

R-squared 0.732 0.841 0.486 0.691 

Observations 4002 4011 3984 3999 

Note: All specifications include firm and year fixed effects.  Clustered Standard errors at district level in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 
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Table 19: Regression results for Balance-Sheet indicators-small farm sample of sheep/beef farming 

Indicators 
small farm 

(1) (2) (3) (6) 

PED indicator Return on capital 
Business 

equity 
Debt to 

income ratio 
 Interest Coverage 

Ratio 

#drought days(t) 0.00100 0.00000696 -0.00208 0.000507* 

 

(0.000638) (0.000279) (0.00688) (0.000271) 

#drought days(t-1) -0.000592 -0.000134 0.00609 -0.000271 

 

(0.000507) (0.000164) (0.00549) (0.000211) 

#drought days(t-2) 0.0000481 0.0000532 -0.00776 0.000163 

 

(0.000428) (0.000166) (0.00503) (0.000177) 

R-squared 0.783 0.818 0.716 0.745 

SMD indicator     

#drought days(t) 0.00194 0.000400 -0.0140 0.000419 

 

(0.00171) (0.000695) (0.0191) (0.000870) 

#drought days(t-1) -0.00154** -0.000320 0.0207** -0.000860*** 

 

(0.000709) (0.000224) (0.00973) (0.000293) 

#drought days(t-2) -0.000666 -0.0000191 -0.00767 -0.000174 

 

(0.000999) (0.000256) (0.00835) (0.000448) 

R-squared 0.783 0.818 0.716 0.745 

SPI indicator      

#drought days(t) 0.000685 0.000141 -0.00125 -0.000155 

 

(0.000731) (0.000184) (0.00785) (0.000396) 

#drought days(t-1) -0.00190*** 0.0000321 0.00639 -0.000644** 

 

(0.000647) (0.000158) (0.00874) (0.000302) 

#drought days(t-2) -0.000372 -0.000247 -0.0110* -0.000107 

 

(0.000890) (0.000149) (0.00559) (0.000296) 

R-squared 0.783 0.818 0.716 0.745 

Observations 11046 10533 10224 11037 

Note: All specifications include firm and year fixed effects.  Clustered Standard errors at district level in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 
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Table 20: Regression results for Balance-Sheet indicators-medium farm sample of sheep/beef farming  

Indicators 
medium farm 

(1) (2) (3) (6) 

PED indicator Return on capital Business equity 
Debt to 

income ratio 
 Interest Coverage 

Ratio 

#drought days(t) 0.00364*** 0.000501*** -0.00183 0.00137** 

 

(0.00136) (0.000182) (0.00365) (0.000536) 

#drought days(t-1) -0.00164* -0.000102 0.00507 -0.000500** 

 

(0.000886) (0.000134) (0.00421) (0.000228) 

#drought days(t-2) 0.00253** 0.000280 -0.00498 0.000891** 

 

(0.00110) (0.000168) (0.00370) (0.000357) 

R-squared 0.790 0.874 0.640 0.687 

SMD indicator     

#drought days(t) 0.00543* 0.00000874 0.00515 0.000858 

 

(0.00314) (0.000558) (0.0164) (0.00143) 

#drought days(t-1) -0.00184** -0.0000479 0.00488 -0.00109** 

 

(0.000911) (0.000236) (0.00659) (0.000488) 

#drought days(t-2) 0.00216 0.000222 0.000401 0.000578 

 

(0.00267) (0.000215) (0.00582) (0.000935) 

R-squared 0.790 0.874 0.640 0.686 

SPI indicator      

#drought days(t) 0.000533 -0.0000493 0.000729 0.000283 

 

(0.00160) (0.000233) (0.00574) (0.000853) 

#drought days(t-1) -0.00183* 0.0000280 -0.00453 -0.00107*** 

 

(0.000954) (0.000188) (0.00531) (0.000332) 

#drought days(t-2) 0.000627 0.000346** -0.00493 0.0000727 

 

(0.00147) (0.000162) (0.00384) (0.000483) 

R-squared 0.789 0.874 0.640 0.686 

Observations 7467 7428 7350 7464 

Note: All specifications include firm and year fixed effects.  Clustered Standard errors at district level in parentheses 

* p<0.1, ** p<0.05, *** p<0.01 
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Table 21: Regression results for Balance-Sheet indicators-large farm sample of sheep/beef farming  

Indicators 
large farm 

(1) (2) (3) (6) 

PED indicator Return on capital Business equity 
Debt to income 

ratio 
 Interest 

Coverage Ratio 

#drought days(t) 0.00356*** 0.000204 -0.00327 0.00104*** 

 

(0.00101) (0.000168) (0.00250) (0.000322) 

#drought days(t-1) -0.000440 -0.000123 0.00354* -0.000312 

 

(0.000851) (0.000133) (0.00181) (0.000212) 

#drought days(t-2) 0.00354*** 0.0000650 0.0000446 0.00111*** 

 

(0.00104) (0.000136) (0.00197) (0.000301) 

R-squared 0.804 0.878 0.663 0.706 

SMD indicator     

#drought days(t) -0.0000586 0.000828** -0.00762 -0.000589 

 

(0.00254) (0.000411) (0.00467) (0.000808) 

#drought days(t-1) -0.00220** -0.000357* 0.00516* -0.000680** 

 

(0.00100) (0.000199) (0.00295) (0.000319) 

#drought days(t-2) 0.00381* 0.000320 -0.00129 0.000873 

 

(0.00225) (0.000242) (0.00328) (0.000877) 

R-squared 0.804 0.878 0.663 0.706 

SPI indicator      

#drought days(t) -0.000441 0.000160 -0.00301 -0.000646 

 

(0.00138) (0.000150) (0.00234) (0.000458) 

#drought days(t-1) -0.00290*** -0.000179 0.00192 -0.00100*** 

 

(0.000716) (0.000174) (0.00225) (0.000266) 

#drought days(t-2) 0.00157 0.0000401 -0.00644 0.000256 

 

(0.00126) (0.000186) (0.00451) (0.000434) 

R-squared 0.804 0.878 0.664 0.706 

Observations 14811 14808 14772 14811 

Note: All specifications include firm and year fixed effects. Clustered Standard errors at district level in parentheses. 

* p<0.1, ** p<0.05, *** p<0.01 
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Table 22:  Regression results for operating profit per hectare - full sample by industry using 

drought intensity measure  

  

Dairy farming Sheep/beef farming 

(1) (2) (3) (4) (5) (6) (7) 

drought intensity(t) 56.19** 47.91 21.54 430.0 -2.045 7.596 -65.73 

 
(25.31) (35.47) (24.54) (278.0) (5.342) (7.002) (42.61) 

drought intensity(t-1) 45.20 1.129 47.93 85.94 5.024 0.0113 -20.80 

 
(41.10) (18.59) (40.04) (359.8) (6.398) (6.842) (71.03) 

drought intensity(t-2) 28.16 36.68 28.02 486.8 -1.010 3.298 -64.34 

 (27.21) (35.28) (26.38) (450.8) (5.191) (6.164) (68.69) 

drought intensity(t) sq    -217.5   43.42* 

    (139.3)   (24.61) 

drought intensity(t-1) sq    -54.24   13.09 

    (207.5)   (42.38) 

drought intensity(t-2) sq    -254.6   39.16 

    (236.2)   (38.82) 

Multi_farm -69.71 -67.49 -68.40 -68.21 20.00 21.13 21.05 

 (69.79) (74.81) (69.69) (74.67) (36.62) (36.65) (36.66) 

Global milk price   1.516***     

   (0.394)     

Year FE No Yes No Yes No Yes Yes 

Observation 13398 13398 13398 13398 34041 34041 34041 

R-squared 0.259 0.261 0.259 0.261 0.476 0.476 0.476 

Note: All specifications include firm fixed effects. Clustered Standard errors at district level in parentheses. * p<0.1, 

** p<0.05, *** p<0.01 

  



80 

 

 

Chapter Two 

 Regional differences in the effects of drought events on farm profitability in New 

Zealand 

 

 

 

Abstract 

This paper estimates the impact of drought (defined by the New Zealand Drought Index) on farm 

income and profits across the main agricultural regions in New Zealand. Our empirical strategy relies 

on region-specific panel-data models with fixed effects. We find that outcomes vary across regions 

and land uses. The main dairy regions (Waikato and Taranaki) have experienced significant positive 

impacts, likely resulting from drought‐induced higher milk prices. In contrast, sheep/beef farms’ 

gross income and profit were negatively affected by droughts across most sheep/beef regions. Across 

all regions, our estimations also show that drought events do not have any observable persistent 

impact on farm income and profits, on average, over three years.  
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2.1 Introduction 

In recent years, researchers have paid more attention to the economic impact of drought in 

New Zealand. The East Coast had a drought from 2015 to 2017, and large-scale adverse drought 

events in 2013 and 2020 affected the entire North Island plus the top half of the South Island (Tasman, 

Marlborough, Kaikoura, and North Canterbury). Researchers have used supporting climate model 

projections that predict more frequent and severe droughts in the future as climate change progresses 

(Mullan, Sood, Stuart, New Zealand, & Ministry for the Environment, 2018). 

Drought is generally defined as a prolonged period of abnormally low precipitation, leading to 

water shortages. Drought differs from most other natural hazards because of its slow onset and 

prolonged duration, so it is often difficult to determine the start, duration and end of a drought event 

(Parry et al., 2016). While drought has wide-ranging effects on all sectors, the agricultural sector is 

particularly vulnerable as it is highly dependent on precipitation and evapotranspiration. Low 

precipitation combined with above-average temperatures results in low soil moisture levels. 

Prolonged soil moisture deficits damage crops and pastures, with adverse effects on revenues from 

crop and livestock sales, production costs, possibly farm profit, and rural communities (Kuwayama, 

Thompson, Bernknopf, Zaitchik, & Vail, 2019).  

Drought events are considered the world’s costliest natural hazards, costing economies an 

estimated US$6–8 billion every year, and affecting more households than any other natural disaster 

(Wilhite, 2000). Adverse impacts of a drought are determined by the severity of the hazard, and by 

the vulnerability of a sector or activity. Because of the spatial variability of agricultural production 

systems, vulnerability to the same drought event will vary, as will drought-related impacts across 

regions (Parsons, Rey, Tanguy, & Holman, 2019).  

Many papers address the relationship between agricultural outcomes and weather elements, such 

as temperature and precipitation, using different approaches. These studies' primary purpose is to use 

these estimated relationships to predict future climate change impacts on agriculture showing how 

vulnerable the agriculture sector is to changing climate. For example, Mendelsohn et al. (1994) 

introduce a hedonic approach where farmland values are a function of temperature, precipitation, 

geographical and socio-economic variables. They simulated how farmland values would differ under 

climate change in the U.S, finding highly nonlinear impacts and that vary by geography and season. 

Deschênes and Greenstone (2007) applied a different approach to exploit the effects of year-to-year 

weather fluctuations on yields and profit in the U.S. They concluded that the impacts of climate 

change would be neutral or probably positive due to adaptation. Schlenker and Roberts (2009) 

estimated the relationship between weather and yields for corn, soya, beans, and cotton in the United 
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States. They found that there is a nonlinear relationship between yields and temperature. Other similar 

studies exploring the relationship between climate change and agriculture have also concluded that 

climate impacts are driven mainly by a rise in temperature (e.g., Buckle et al. 2002; Schlenker et al. 

2006; Sanghi and Mendelsohn 2008;).  

Most studies investigate ex post estimates of the economic cost of droughts on the agricultural 

sector. Kulshreshtha et al. (2003) assessed the economic costs of the 2001–2002 drought for Canada's 

regional and national economy, estimating a C$3.65 billion loss in gross domestic product (GDP) and 

23,777 jobs. Horridge et al. (2005) estimated the impact of the 2002–2003 drought using a CGE 

(computable general equilibrium) model for Australia. They showed that this drought event caused 

an overall reduction of Australian GDP by 1.6 percent: 1 percent was directly related to the 

agricultural sector, and the remaining 0.6 percent was due to multiplier effects. Kamber et al. (2013) 

examined the economic impact of the 2013 drought in New Zealand using the vector autoregression 

(VAR) framework. They indicated that the 2013 drought decreased annual GDP by 0.3 percent. 

Howitt et al. (2014, 2015) and Medellín-Azuara et al. (2016) applied an economic optimization model 

of crop choice to estimate the economic impact of drought in Californian agriculture. These authors 

found that the drought years resulted in $2 billion losses in crops, $553 million losses in dairy and 

livestock and additional groundwater pumping costs ($1.3 billion), and lost jobs (43,000) over 2014, 

2015, and 2016. In a recent analysis (García-León et al., 2021), the direct and indirect impacts of 

drought hazards were accounted for using a combined agronomic-economic approach for the Italian 

economy between 2001 and 2016. They showed economic losses of droughts ranged between €0.55 

and €1.75 billion over that period. 

Apart from the prior ex post studies, which focus on drought-induced economic losses to the 

agricultural sector for entire drought events, a few studies focus on exploring the impacts of marginal 

increases in drought characteristics (frequency, intensity and duration) on the agricultural outputs. 

For example, Birthal et al. (2015) examined the impacts of changes in frequency, severity and spread 

of droughts on rice in India. Kingwell and Xayavong (2017) explored how the incidence of drought 

(the number of drought years) affects Australia’s farm financial performance. Kuwayama et al. (2019) 

evaluated marginal increases in drought duration and intensity on crop yields in the US. Pourzand et 

al. (2020) investigated the effect of changes in drought frequency (an additional day of drought) on 

farms’ financial outcome in New Zealand. Similarly, Timar & Apatov (2020) considered the effect 

of drought intensity changes on farm output (gross output, profit per hectare, current loans and 

intermediate expenditure). Estimated drought impacts are different among this empirical evidence: a 

decrease in drought-induced losses due to improvements in farmers’ adaptive capacity (P. S. Birthal 

et al., 2015), a positive effect on dairy farm profit, which is attributed to drought-induced higher milk 
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prices (Pourzand, Noy, & Sağlam, 2020), a significant positive impact on the operating profit per 

hectare, explained by structural changes, and land-use change (Kingwell and Xayavong, 2017). 

Nevertheless, Kuwayama et al. (2019) and Timar and Apatov (2020) concluded that drought events 

usually have adverse effects. 

Most literature assessing the impact of drought only considers short-term losses in agriculture for 

the whole country. There are no available studies on regional differences in the impacts of droughts 

in New Zealand. New Zealand’s climate differs across regions so there is spatial heterogeneity in 

agricultural practices. Therefore, the same kind of drought event may have different impacts in 

different regions. Moreover, potential climate change is projected to have different impacts across 

regions in New Zealand. In this study, we aim to investigate the dynamic impacts (over time) of 

drought on farm income and profits across New Zealand’s agricultural regions between 2007 and 

2016. We use farm‐level panel data from Stats NZ’s Longitudinal Business Database (LBD), and link 

to the New Zealand Drought Index (NZDI). 

 Results of region-specific regressions show a significant positive relationship between the current 

drought event and dairy’s income and operating profit for Waikato and Taranaki – the main dairy 

farming regions. This effect is most likely attributable to drought‐induced increases in the wholesale 

milk price. We confirm this relationship by capturing farmgate milk prices in our empirical model 

and suggesting a correlation between drought events and milk prices in New Zealand. However, we 

see a reduction in sheep/beef financial outcomes due to drought conditions across most major 

sheep/beef regions (Canterbury, Hawke’s Bay, Northland, Waikato). We also find that a drought 

event did not have persistent effects on farm financial outcomes for dairy and sheep/beef farming 

over three years.  

This study is structured as follows: Section 2 describes the study area, data sources and method are 

presented in Sections 3 and 4. The following section summarises the main findings, and we conclude 

in Section 6. 

 

2.2 Study Area 

New Zealand weather differs broadly between the North and South Island. While the Far North 

district (Northland region) has subtropical weather during summer, the South Island’s alpine areas 

experience a very cold winter (–10°C). The West Coast of the South Island is the wettest area of New 

Zealand, whereas eastern areas (e.g., Canterbury region), just over 100 km away, are the driest with 

annual rainfall 400 millimetres or less. Therefore, different farming systems operate in a diversity of 
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regional and local climates. This range is from the dairy farms of the subtropical north to the far 

south’s high-country sheep farms (Kenny, 2001). The South Island’s topography and climate make it 

ideal for sheep farming, and this is the major rural activity in the South Island, with beef cattle farming 

in the hills and high country.   

New Zealand has 16 regions for local government purposes. In this study, we focus on the main 

farming regions; Northland, Waikato, Hawke’s Bay, Taranaki, Manawatū-Whanganui, Canterbury, 

Southland and Westland (see Figure 1). Major dairy production regions are Waikato, Taranaki, 

Northland, Manawatū and Westland. In 2018, most dairy herds (72.3%) were located in the North 

Island, with the greatest concentration (28.7%) in the Waikato region, followed by Taranaki, with 

14.0% of dairy herds (DairyNZ, 2019). The Waikato region is the heartland of the New Zealand dairy 

industry13 due to its favourable climate, soils, and topography. Dairying accounts for 33% of the 

national herd and 27% of production in 2018, contributing NZ$3.3b to the regional economy due to 

the scale and intensity of dairying in the region (DairyNZ, 2019). In the South Island, Canterbury 

(14%) and Southland (11%) had the most dairy cattle in 2018 (DairyNZ, 2019). Manawatū-

Whanganui had the most beef cattle (554,000), followed by the Waikato (517,000), and Canterbury 

(512,000). Manawatū-Whanganui (5.1 million), Otago (4.9 million) and Canterbury (4.4 million) 

have the most sheep and cattle (Statistics New Zealand, 2017).  

As the climate, soil and development differ across these areas, the dairying technologies employed 

may also differ. North Island dairy farms use more labour and electricity, while South Island dairying 

relies more heavily on capital and fertilizer. More dairy farms in the South Island adopt irrigation 

systems and rotary shed technology than in the North Island (Jiang, 2011). Canterbury region has the 

largest area of irrigated agricultural land in the country (64% of irrigated land), followed by Otago 

(13%) (Statistics New Zealand, 2017). 

 
13 Fonterra, the world-leading dairy products supplier, is based in Waikato region. 
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Figure 2. 1: Location of the study area. Green * indicates the study area. 

 

2.3 Data sources  

Farm-level data come from Stats NZ’s Longitudinal Business Database (LBD), which combines 

administrative and survey data for all New Zealand businesses. We link the Agricultural Production 

Survey/Census (APS/APC) to IR10 (a tax-form of a business’s financial accounts), and to the 

Longitudinal Business Frame (LBF) to identify the locations of each enterprise. The location of 

enterprises is identified by meshblock, the smallest geographic unit for which Stats NZ reports data.  

We aggregate farm-level data to the enterprise level for dairy and sheep/beef farming.  We drop those 

enterprises that have moved to another district over time.  

We identify the frequency of drought using a new Drought Index (NZDI), developed by NIWA. 

The NZDI combines four commonly used drought indicators: SPI; Soil Moisture Deficit (SMD); Soil 

Moisture Deficit Anomaly (SMDA); and Potential Evapotranspiration Deficit (PED). The index has 

five categories: Dry, Very Dry, Extremely Dry, Drought and Severe Drought (NIWA 2017). The 
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NZDI and its four components are available at a daily frequency and district levels from 2007 to the 

present. We link NZDI to our sample population by spatially joining the value of the drought index 

to each meshblock within each district, using the shapefile regarding New Zealand district boundaries 

that NIWA has used for the NZDI. Since we are interested in exploring the effects of extreme events, 

our analysis uses the two highest categories of the index: ‘Drought’ and ‘Severe Drought’. We 

calculate the number of extreme drought days if the NZDI is equal to or higher than 1.5 during the 

summer season (October to March) for each district over 10 years.  Given the data availability of the 

APS and the NZDI, our study period is from 2007 to 2016.  

2.3 Empirical method 

We first estimate region-specific regressions to identify how farm profitability changes during 

drought years compared to normal years in each region in New Zealand (eight agricultural regions). 

We run different specifications, including a reduced-form linear model in a farm fixed-effect panel 

regression for dairy and sheep/beef farming between 2007 and 2016. We also consider the lagged or 

dynamic impacts of drought in the model. The regression equation we estimate is: 

𝑦𝑑𝑖𝑡 =  𝛽1𝐷𝐼𝑑𝑡 +𝛽2𝐷𝐼𝑑𝑡−1 + 𝛽3𝐷𝐼𝑑𝑡−2 + 𝛾𝑖 + 𝜎𝑡 + 𝜆𝑡 + 𝜀𝑑𝑖𝑡    (1) 

Where the output variables are sale of product per hectare and operating profit per hectare14. The 

subscripts dit represents the district, enterprise and time, respectively. 𝐷𝐼𝑑𝑡 represent the number of 

days of drought. As drought is a prolonged weather event whose impacts could carry beyond one 

year, we also estimate first and second lags of drought days15 (𝐷𝐼𝑑𝑡−1 , 𝐷𝐼𝑑𝑡−2 ). Firm fixed-effect 

(𝛾𝑖)  results in unbiased estimates in the presence of unobserved time-invariant characteristics of 

enterprises that affect their agricultural outcomes, while year fixed-effects (𝜎𝑡) control for common 

trends that may be correlated with explanatory variables such as changes in prices. We also control 

for the fact that technologies and productivity are trending upward over time using a linear time trend 

( 𝜆𝑡) (Equation 2), instead of time fixed effects, and εdit is the error term.   

𝑦𝑑𝑖𝑡 =  𝛽1𝐷𝐼𝑑𝑡 +𝛽2𝐷𝐼𝑑𝑡−1 + 𝛽3𝐷𝐼𝑑𝑡−2 + 𝛾𝑖 + 𝜆𝑡 + 𝜀𝑑𝑖𝑡   (2) 

In another model, we capture the farmgate milk price (𝑃𝑡) only for dairy farming,  

𝑦𝑑𝑖𝑡 =  𝛽1𝐷𝐼𝑑𝑡 +𝛽2𝐷𝐼𝑑𝑡−1 + 𝛽3𝐷𝐼𝑑𝑡−2 + 𝛾𝑖 + 𝜆𝑡 + 𝛼𝑃𝑡 + 𝜀𝑑𝑖𝑡                     (3) 

 
14 The sale of product per hectare and operating profit per hectare are in real dollar values, obtained by deflating all 

monetary quantities by the Consumer Price Index (CPI) based on the year 2000. We also dropped all observations below 

the 2st percentile and above the 98th percentile for data quality purpose.  
15 We don’t have enough large time period to add more lags because NZDI data goes back to 2007. 
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Finally, we calculate the cumulative (persistent) effects of a drought event over three years by 

computing a linear combination of estimated coefficients after fitting models (1) and (2) and obtaining 

estimates for coefficients: 

𝑦𝑐𝑜𝑚 =  ∑ 𝛽𝑡                                                                                                                (4)

𝑡=3

𝑡=1

 

    Where 𝑦𝑐𝑜𝑚 is the aggregated effects of a drought event over three years and ∑ 𝛽𝑡
𝑡=3
𝑡=1  presents a 

sequence of three-lagged drought index coefficients. We calculate this combination for two models 

with year-fixed effects and time trend. 

2.4 Results 

Table 2.1 shows summary statistics for outcome variables by land-uses. On average, dairy farms 

make higher revenue and operating profit per hectare; $2714 and $2131 per hectare, respectively. 

Gross income and operating profit for sheep/beef farming are about $934 and $644 per hectare16 

across in New Zealand. Figure 2.2 illustrates the regional variations in drought events occurrence 

between 2007 to 2016. Several droughts hit main agricultural regions of the country over a varying 

number of days, including droughts in Northland (2010, 2011, 2013 and 2014), Waikato (2008, 2010, 

2011, 2013, 2014 and 2015), Hawkes Bay (2013 and 2014), Taranaki (2008, 2011, 2013 and 2014), 

Manawatu (2008, 2010, 2013, 2014 and 2015), Canterbury (2011, 2015 and 2016), Southland (2013) 

and Westland (2011 and 2013).  

Waikato and Northland are the most drought-prone regions in North Island, followed by Taranaki, 

with the highest number of drought days, while Southland experienced 60 days of drought only in 

2013. Therefore, droughts are relatively common in some regions of the country despite the 

abundance of water resources in New Zealand.  

 

Table 2. 1:  summary statistics by land uses   

    Dairy 
 

Sheep/beef 
 

  mean sd Mean sd 

 Gross income ($/ha)  2714 1581 934 933 

 Operating profit($/ha)  2131 1316 628 644 

  

  
 

 
16 We should note that the summary statistics are different from those are available in Pourzand et al. (2020) because 

in this paper, we use a more accurate agricultural land area available for our analysis. 
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Figure 2. 2: Drought event occurrence (in days) by regions, 2007-2016 

Note: The number of drought days is calculated during irrigation seasons (October to March) if NZDI ≥ 1.5. (Y-axes are 

different). Graphs display the most drought-affected regions among the main farming regions in New Zealand. 

 

We estimate Equation (1) using two output variables (sale per hectare and operating profit per – 

for dairy and sheep/beef land use. Three specifications are considered for the estimation of outcome 

variables in our study. The first specification (model 1) includes the number of drought days, first 

and second lags of drought days, and a linear time trend. The second specification (model 2) also 

includes milk price (only for dairy farming) to capture milk prices effects. The third specification 

(model 3), controls for unobserved temporal effects using year fixed effects. Therefore, we replace 

the time trend and milk prices with year fixed effects. Regression results of the marginal effect of 

drought days on gross income across different regions are summarized in Tables 2.2 to 2.9. For 

operating profit are reported in Appendix 2.7.1 Tables 1 to 8. 
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• Dairy farming  

Tables 2.2 reports regression results on gross income for Waikato, New Zealand’s dominant dairy-

producing region. Column 1 in both tables shows that the coefficient estimates of the number of 

drought day (𝑡) are positive and statistically significant at 1 per cent, indicating that an additional day 

of drought in the current year is associated with increased dairy revenue and operating profit (See 

Appendix 2.7.1 Table1). The marginal increases in gross income and operating profit for an additional 

day of drought are small, ($9.90 and $8.30 per hectare respectively), compared with average annual 

gross income and profit for dairy farming. The coefficients of the first and second lags are not 

statistically significant.  

These results can be explained if prices increase during a drought period because of decreases in 

production (see Appendix 2.7.1 Figure 1). Essentially, there will be a revenue compensate through 

higher milk prices. Column (2) serves as a check for this hypothesis by accounting for milk prices. 

As we control for milk prices, the sign and magnitude of the number of the drought days 

(𝑡) coefficient changes, though it becomes statistically insignificant, compared with column (1) (only 

time trend included). It shows that drought does not impact gross income and profit, indicating that 

drought events and milk prices are correlated in the Waikato region as a market leader. Milk price 

itself has a positive and statistically insignificant impact. In column (3), all the drought coefficients 

are no longer significant when we use year fixed-effects effects.  

Regression results of gross income for Northland are presented in Tables 2.3. The baseline model 

(column 1) shows that the number of drought days' coefficients are positive/non-significant, for both 

dependent variables. Drought lagged first-year shows up positively and statistically significant across 

two specifications. Tables 2.5 also shows similar results for Taranaki (column 1); drought in the 

current and previous year has a significant positive impact on farms’ revenue and profit. However, 

column 4 shows the positive effect disappears when we capture the milk price effect. Manawatū-

Whanganui results (Tables 2.6) show the same drought effect pattern, though the estimated 

coefficients are statistically insignificant. We find that the effects of drought days for Southland and 

Westland are consistent with our previous findings (Tables 2. 8 to 2.9). In contrast, for Canterbury 

(Tables 2.7), revenue and profit tend to be lower under drought conditions; the current drought 

coefficient is not significant, and drought lagged first-year indicator shows statistically significant at 

1 per cent.  
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• Sheep/beef farming 

 Results for sheep/beef farming (Tables 2.2 – 2.9, column 4) show that the coefficients of drought 

days (𝑡), its first and second lags are negative and mostly statistically significant across regions expect 

Taranaki, Manawatū-Whanganui, and Westland regions. This implies that gross income and profit of 

sheep/beef farms are negatively affected by drought events. During drought periods, sheep and beef 

farmers must destock at sub-optimal stock weight, or a fodder supply shortage leads to increased 

deaths among stock, and therefore reduced income from lambs. Farmers have to buy supplementary 

feed for their livestock, which affects farm profit.  

• Cumulative effects of drought events 

   Figure 2.3 displays the cumulative effects of one extra drought day on gross income per hectare 

over three years for dairy and sheep/beef farming across regions. The overall effect of a drought 

event on gross income for both land-uses is not statistically significant for all regions; except for 

dairy farming in Southland and sheep/beef in Northland. For example, the model with a linear time 

trend (the red line) shows that an additional day of drought is negatively associated with dairy farm 

gross income by approximately $3 per hectare in Southland region over three years. Figure 2.4 also 

shows the cumulative effects of one extra drought day on operating profit per hectare over three 

years across regions. We find no evidence of any significant persistent impacts of drought 

conditions on dairy and sheep/beef farming profitability across all regions. This result appears 

robust in two of our specifications. 
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                  Figure 2. 3: Cumulative effects of a drought event on gross income per hectare over three years across 

regions, for dairy and sheep/beef farming. Two specifications are included: year fixed effects (blue lines) and a linear 

time trend (red lines). Hawke’s Bay region is omitted from panel sample for dairy farming due to a small number of 

observations. 
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Figure 2. 4: Cumulative effects of a drought event on operating profit per hectare over three years across 

regions, for dairy and sheep/beef farming. Two specifications are included: year fixed effects (blue lines) and a linear 

time trend. Hawke’s Bay region is omitted from panel sample for dairy farming due to a small number of observations.  
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Table 2. 2: regression results for gross income per hectare – Waikato 

 Dairy farming Sheep/beef farming     

        (1)                 (2)            (3)            (4)            (5) 
No. drought days(t) 9.903*** -0.885 -1.917  -1.589*** 0.784 

 (2.817) (1.801) (2.006) (0.556) (1.142) 

No. drought days(t-1) 3.310 2.901* -0.146 -0.370 0.410 

 (2.079) (1.489) (0.880) (0.394) (0.667) 

No. drought days(t-2) -0.094 1.158 0.236 -0.604* -0.112 

 (1.188) (0.974) (0.627) (0.326) (0.356) 

Milk price  2.629***    

  (0.270)    

Obs. 3378 3378 3378 3642 3642 

R-squared 0.844 0.868 0.891 0.856 0.854 
Year FE No No Yes No Yes 
Time trend Yes Yes No  Yes No 

 

 

Table 2. 3: regression results for gross income per hectare -Northland 

     
     

  Dairy farming     Sheep/beef farming     
     (1)    (2)    (3)    (4)  (5) 

No. drought days(t) 1.600 -2.850** 0.349 -2.014*** -1.407** 
   (1.320) (1.282) (1.797) (0.377) (0.542) 

 No. drought days(t-1) 8.255*** 3.582** 0.093 -1.035*** 0.014 
   (1.837) (1.542) (1.241) (0.344) (0.273) 

 No. drought days(t-2) 0.840 1.872 0.360 -1.273*** -0.419 
   (1.377) (1.257) (1.251) (0.332) (0.371) 

 Milk price  1.345***    

  (0.206)    
 Obs.  1509  1509  1509  3513  3513  
 R-squared  0.859 0.843 0.859 0.846 0.848 
Year FE  No No Yes No Yes 
Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. 
 *** p<0.01, ** p<0.05, * p<0.1   
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        Table 2. 4: regression results for gross income per hectare- Hawke’s Bay17   

     Sheep/beef farming         
       (1)    (2)  

No. drought days(t) -6.557*** -4.348** 

   (2.168) (1.872) 

 No. drought days(t-1) -2.307 0.386 

   (3.643) (3.544) 

 No. drought days(t-2) -2.312 -0.187 
    (3.523) (2.429) 

 Obs.  1635  1635  
 R-squared  0.859 0.862 
Year FE  No Yes 
Time trend   Yes  No 

Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1    
 

 

 

       Table 2. 5: regression results for gross income per hectare- Taranaki   

     
     

    Dairy farming     Sheep/beef farming     
            (1)    (2)    (3)    (4)  (5) 

 No. drought days(t) 19.560*** -4.008 -4.516 1.997 0.443 
   (6.061) (4.247) (7.505) (1.325) (2.103) 

 No. drought days(t-1) 12.321** 7.150 0.998 1.787 0.249 

   (5.246) (5.404) (5.729) (1.634) (1.542) 

 No. drought days(t-2) 2.589 3.070 0.558 -1.353 -0.184 

   (4.406) (3.309) (3.359) (1.523) (1.416) 

 Milk price  2.504***    

  (0.375)    

 Obs.  852 852 852 789 789 

 R-squared  0.835 0.850 0.861 0.847 0.849 

Year FE  No No Yes No Yes 

Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1   
  

  
  

  

 
17 We remove dairy farming from our panel estimation due to a small number of observations in Hawke’s Bay region 
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                  Table 2. 6: regression results for gross income per hectare- Manawatū-Whanganui   

      
     

    Dairy farming     Sheep/beef farming     
                 (1)    (2)    (3)    (4)  (5) 

No. drought days(t) 5.756 -0.084 -2.877 0.217 1.155 
   (5.708) (5.421) (4.729) (0.972) (1.237) 

No. drought days(t-1) 0.195 0.192 1.327 1.514 0.291 
   (5.504) (3.729) (2.993) (1.125) (0.998) 

No. drought days(t-2) -0.388 -2.842 -2.390 -1.787 -0.377 
   (3.957) (3.029) (3.173) (1.179) (1.017) 

 Milk price  1.912***    

  (0.304)    
Obs.  852 852 852 3681 3681 
R-squared  0.860 0.880 0.894 0.855 0.856 
Year FE  No No Yes No Yes 
Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) 

in parentheses. *** p<0.01, ** p<0.05, * p<0.1   
  

 

 
 

  

 

       Table 2. 7: regression results for gross income per hectare - Canterbury 

     
     

 Dairy farming  Sheep/beef 

farming     
  (1)    (2)    (3)    (4)  (5) 

No. drought days(t) -9.957 12.168 12.266** -2.595* -0.597 
   (9.930) (10.984) (5.375) (1.396) (1.222) 

No. drought days(t-1) -33.452*** -13.188* 4.201 -4.718** -0.210 
   (8.444) (7.730) (5.615) (2.098) (1.521) 

No. drought days(t-2) -4.795 5.177 1.583 12.966*** 12.049** 
   (22.339) (20.886) (15.249) (4.525) (4.666) 

 Milk price  2.288***    

  (0.350)    
 Obs.  783 783 783 4902 4902 
 R-squared  0.764 0.788 0.800 0.879 0.880 
Year FE  No No Yes No Yes 
Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1   
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       Table 2. 8: regression results for gross income per hectare-Southland   

     
     

    Dairy farming     Sheep/beef farming     
  (1)    (2)    (3)    (4)  (5) 

No. drought days(t) 13.000 10.806 15.771*** -2.945 -1.177 
   (11.323) (8.047) (3.387) (3.758) (1.724) 

No. drought days(t-1) 42.042** 5.547 4.530 -1.287 -1.973 
   (15.224) (8.307) (5.903) (2.660) (1.349) 

No. drought days(t-2) 13.056** 9.447 4.024 0.771 0.700 
   (6.186) (7.483) (2.780) (1.338) (0.709) 

Milk price  3.089***    

  (0.524)    
 Obs.  426 426 426 3399 3399 
 R-squared  0.824 0.863 0.879 0.791 0.802 
Year FE  No No Yes No Yes 
Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1   
  

  

 

 

        Table 2. 9: regression results for gross income per hectare-Westland   

     
     

    Dairy farming     Sheep/beef farming     
      (1)    (2)    (3)    (4)  (5) 

No. drought days(t) 7.619 -0.569 10.138 2.442 -2.974 
   (6.308) (5.119) (6.851) (2.776) (4.197) 

No. drought days(t-1) 31.243** 9.746 -2.661 3.544 0.862 

   (11.986) (8.654) (9.523) (2.079) (3.745) 

No. drought days(t-2) 5.963 7.034 0.526 1.250 0.473 

   (6.181) (6.133) (8.077) (2.830) (3.838) 

Milk price  2.197***    

  (0.390)    
Obs.  411 411 411 255 255 
R-squared  0.751 0.785 0.829 0.919 0.918 
Year FE  No No Yes No Yes 
Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1   
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2.5 Conclusion  

Since there are different climates in different regions, agricultural practices are also different across 

regions. We therefore examined whether different regions are affected by drought events in different 

ways, as they have varying capacities to cope. With regional analysis, we can obtain a more nuanced 

and accurate assessment of the impacts of droughts rather than just average drought impacts across 

the country. Therefore, this paper focuses on the regional differences of drought effects on farm 

financial outcomes for dairy and sheep/beef farming across the main agricultural regions in New 

Zealand between 2007 and 2016. We also examine the cumulative effects of drought over three years. 

 The region-specific estimations show that drought events are associated with significant positive 

impacts on gross income and operating profit in the major dairy farming regions: Waikato and 

Taranaki. This effect is attributable to drought‐induced increases in milk price. When we capture milk 

prices, the drought measure negatively impacts dairy farm revenue or operating profits. Therefore, 

we observe that the positive impact of drought is no longer identifiable once we control for milk 

prices.  

For sheep/beef farming, we find that a drought event is associated with lower sheep/beef farm gross 

income and profit across most sheep/beef regions. Our results also show that drought effects on farm 

financial outcomes are not cumulative over time. 

Building on our results, future research could further investigate several areas of the effects of 

drought on New Zealand agriculture. For instance, evidence exists that agricultural production is 

affected by the intensity and duration of drought, and its timing in the growing season (Rivington and 

Walthall, 2012; Kuwayama et al., 2019). Given the heterogeneity of New Zealand’s regional climates, 

future work should examine whether drought characteristics are particularly damaging at a specified 

critical time during crop and livestock development across regions. In addition, future studies could 

quantify the proportion of livestock sold in response to prolonged dry conditions. Future work could 

also measure how much other on-farm practices and drought recovery assistance programs affect 

observed farm outcomes in the presence of drought. 
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2.7 Appendices 

2.7.1- additional regression results 

Figure 1: Time series of milk solid prices (cents/kg) 

 
Source: MPI  

 

 

 

Table 1: regression results for operating profit per hectare - Waikato 

   Dairy farming Sheep/beef farming     

     (1) (2) (3) (4)          (5) 

No. drought days(t) 8.370*** -0.123 -1.819 -0.411 0.806 

 (3.141) (2.204) (1.894) (0.450) (0.830) 

No. drought days(t-1) 2.662 2.219 -0.191 0.200 -0.062 

 (2.369) (1.667) (0.766) (0.278) (0.356) 

No. drought days(t-2) -0.913 0.444 -0.081 -0.504* -0.163 

 (1.237) (0.982) (0.580) (0.275) (0.241) 

Milk price  2.848***    

  (0.295)    

Obs. 3378 3378 3378 3378 3642 

R-squared 0.859 0.843 0.841 0.846 0.853 

Year FE No No Yes No Yes 

Time trend Yes Yes No Yes No 
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Table 2: regression results for operating profit per hectare - Northland    

     
     

       Dairy farming         Sheep/beef farming     
        (1)    (2)    (3)    (4)  (5) 

No. drought days(t) 3.096 -2.441 -0.268 -1.463*** -0.731 
   (1.849) (1.487) (1.939) (0.227) (0.478) 

 No. drought days(t-1) 10.427*** 4.614** -0.125 -0.074 0.269 

   (2.313) (1.778) (1.357) (0.192) (0.237) 

 No. drought days(t-2) 1.345 2.628* 0.068 -0.566** -0.122 

   (1.696) (1.516) (1.418) (0.203) (0.190) 

 Milk price  1.673***    

  (0.233)    
 Obs.  1509  1509  1509  3513  

 

 R-squared  0.859 0.843 0.808 0.846 0.830 
Year FE  No No Yes No Yes 
Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1   
 

 

Table 3: regression results for operating profit per hectare- Hawke’s Bay   

      Sheep/beef farming         
  

       (1)    (2)  
No. drought days(t)  -5.600** -2.768* 

    (2.267) (1.588) 
No. drought days(t-1)  -2.191 -1.747 
    (2.877) (1.896) 
 No. drought days(t-2)  -0.870 0.864 

    (2.900) (1.673) 
 Obs.  1635  1635  
 R-squared  0.798 0.806 
Year FE  No Yes 
Time trend   Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1    
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    Table 4: regression results for operating profit per hectare- Taranaki   

     
     

    Dairy farming     Sheep/beef farming     
          (1)    (2)    (3)    (4)  (5) 

No. drought days(t) 20.358*** -2.669 -3.556 1.528 -6.818** 
   (6.626) (5.553) (9.664) (1.385) (2.781) 

No. drought days(t-1) 14.076** 9.023* -0.722 2.117 0.228 

   (5.091) (4.814) (4.168) (1.421) (1.442) 

No. drought days(t-2) 4.206 4.677 -0.365 0.774 1.998* 

   (4.003) (2.738) (2.603) (1.179) (1.139) 

Milk price  2.446***    

  (0.410)    
Obs.  852 852 852 789 789 

R-squared  0.820 0.777 0.799 0.811 0.806 

Year FE  No No Yes No Yes 

Time trend   Yes  Yes  No  Yes  No 
 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1   

 

 

 
Table 5: regression results for operating profit per hectare- Manawatū-Whanganui   

        Dairy farming     Sheep/beef farming     
  (1)    (2)    (3)    (4)  (5) 

No. drought days(t) 4.964 -1.655 -7.200 1.132 -0.559 
   (5.397) (4.334) (4.558) (0.724) (1.000) 

No. drought days(t-1) 3.088 3.085 2.248 1.630 0.171 

   (5.752) (3.159) (2.933) (1.091) (0.730) 

No. drought days(t-2) 2.083 -0.781 -1.333 -1.137 -0.199 

   (4.356) (2.721) (3.166) (0.911) (0.678) 

Milk price  2.232***    

  (0.271)    
Obs.  852 852 852 3681  
R-squared  0.808 0.847 0.865 0.836 0.839 
Year FE  No No Yes No Yes 
Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1   
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Table 6: regression results for operating profit per hectare - Canterbury 

     
     

    Dairy farming     Sheep/beef farming     
  (1)    (2)    (3)    (4)  (5) 

No. drought days(t) -16.865* 6.300 7.054 -2.218 -0.325 
   (9.164) (9.506) (5.213) (1.461) (0.751) 

 No. drought days(t-1) -39.822*** -18.606*** -3.851 -3.840*** 0.420 

   (7.038) (5.968) (5.660) (1.268) (0.789) 

No. drought days(t-2) 6.659 17.099 11.315 0.195 -0.672 

   (24.334) (20.713) (16.283) (2.672) (1.902) 

 Milk price  2.396***    

  (0.324)    
 Obs.  783 783 783 4902 4902 
 R-squared  0.721 0.756 0.770 0.900 0.903 
Year FE  No No Yes No Yes 
Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1   
 
 

  

 
Table 7: regression results for operating profit per hectare- Southland   

     
     

    Dairy farming     Sheep/beef farming     
  (1)    (2)    (3)    (4)  (5) 

No. drought days(t) 15.623 13.262* 13.134** -2.919 -0.380 
   (10.013) (6.993) (5.662) (3.559) (1.090) 

No. drought days(t-1) 39.459** 0.186 -1.999 -0.941 -1.906 

   (16.248) (8.913) (8.647) (2.728) (1.210) 

No. drought days(t-2) 10.845 6.961 0.003 0.581 0.248 

   (7.586) (8.712) (2.264) (1.492) (0.631) 

Milk price  3.324***    

  (0.580)    
 Obs.  426 426 426 3399 3399 
 R-squared  0.682 0.759 0.787 0.794 0.814 
Year FE  No No Yes No Yes 
Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1   
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Table 8: regression results for operating profit per hectare- Westland     

     
     

    Dairy farming     Sheep/beef farming     
       (1)    (2)    (3)    (4)  (5) 

No. drought days(t) 11.761* 3.195 10.098 1.403 -3.729 
   (6.655) (5.711) (6.218) (2.584) (3.444) 

No. drought days(t-1) 33.643** 11.155 0.863 2.122 -1.140 

   (12.188) (9.601) (10.910) (1.643) (3.040) 

No. drought days(t-2) 8.672 9.794 3.862 0.772 -0.411 

   (7.461) (7.198) (5.520) (2.708) (3.494) 

Milk price  2.298***    

  (0.393)    
 Obs.  411 411 411 255 255 
 R-squared  0.669 0.718 0.781 0.894 0.893 
Year FE  No No Yes No Yes 
Time trend   Yes  Yes  No  Yes  No 

 Note: All specifications include firm fixed effects. Clustered Standard errors (district by year) in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1   
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Chapter Three 

 How climate affects agricultural land values in New Zealand 

 

 

 

 

Abstract 

This paper examines how differences in climate influence the value of New Zealand agricultural 

land. We use the Ricardian approach of land-climate pricing, using property valuation data from 1993 

to 2018. We apply the ‘spatial first differences’ method, which compares differences in climate 

between neighbours with differences in land values between neighbours. This method allows us to 

estimate the impact of long-term climate conditions on farmland values across different land-uses, 

while controlling for sources of bias associated with unobserved heterogeneity. We find that a warmer 

or drier climate is associated with higher farmland values in New Zealand. As the spatial first 

differences method accounts for unobserved heterogeneity associated with variables not related to 

climate, these associations likely represent causal effects on land values of variables tied to climate. 

Examples of such variables include agricultural productivity, the value of land improvements tied to 

climate, and amenity values associated with residential use. 

  



110 

 

3.1 Introduction 

Global warming has triggered many changes in the Earth’s climate. As the most significant 

environmental challenge, climate change is a risk to the global economy, particularly for countries 

that depend heavily on the agricultural sector like New Zealand. More frequent extreme hot 

temperatures damage crop growth, while more extreme cold temperatures benefit farmers (Schlenker 

and Roberts 2009). However, the net costs of climate change are uncertain (Tol 2009). Agriculture is 

perhaps the most sensitive and vulnerable sector to climate change because of its dependence on 

climate and weather conditions. Changes in temperature and precipitation can cause changes in 

agricultural productivity (World Bank, 2003), which can also lead to higher and more unstable prices 

(IMF and UNCTAD 2011).  

New Zealand’s economy relies heavily on its natural environment: the agricultural and forestry 

sectors contribute significantly to export earnings (more than half of New Zealand’s total export 

income) and a sizeable proportion of New Zealand’s total land is used for primary production 

(agriculture, forestry, and horticulture) (Stats NZ, 2018). The productivity of a parcel of land is 

reflected in its land value, which can differ from one parcel to another, depending on climate factors, 

soil type, fertility, and groundwater available for irrigation (Tewari et al. 2013), as well as 

improvements. 

While productivity is an important driver of variation in rural land values, the option value to 

convert to urban uses can also be a substantial contributor. Rural land areas are more attractive for 

alternative non-farm uses as urban areas grow and residential developments expand into rural areas 

(Curran-Cournane et al. 2016). Climate can potentially affect this option value as people are willing 

to pay to enjoy a better climate in, for example, warmer or drier parts of New Zealand. Thus, climate-

induced differences in land values can arise from productivity differences (including productivity 

driven by improvements) as well as from differences in amenity values. 

New Zealand regional climate models project temperature increases everywhere, and greater 

increases in the North Island than the South Island, with the greatest warming in the north-east by the 

end of the 21st century (Mullan et al. 2018). Precipitation changes vary around the country, with 

increases in the south and west, and decreases in the north and east (MfE, 2018).   

This research explores the relationship between agricultural land prices and the climate for different 

land-uses in New Zealand from 1993 to 2018 by applying the Ricardian approach to land-climate 

pricing. Using the Ricardian approach to find the relationship between land values and climate is 

difficult because of the many variables contributing to land value that are correlated with climate, 



111 

 

despite not being caused by climate differences. Omitting these variables confounds the estimation 

of the relationship between climate and land values: variables such as elevation, slope, ruggedness, 

soil quality, and distance to airports, beaches, ports, and urban centres.  

To address this concern, we use the spatial first differences (SFD) method described in 

Druckenmiller and Hsiang (2018), which compares climate differences with land value differences 

between neighbours to account for omitted variables. For them to bias our estimates, variables using 

this approach would have to have spatial differences that are incidentally correlated with spatial 

differences in climate. If any such confounding variables are present, based on the experience in 

Druckenmiller and Hsiang (2018), they are unlikely to cause bias in the resultant estimates of the 

climate-land value relationship at an economically significant scale. 

The SFD method compares each observation to a spatially adjacent neighbour when spatial data 

are dense across physical space. These comparisons account for all unobserved heterogeneity that is 

common to neighbours. The identifying assumption is that the remaining unobserved heterogeneity 

(the difference in land values between neighbours not explained by climate differences) is 

uncorrelated with climate differences.  

One advantage of the SFD approach is that estimates can be computed between neighbours defined 

in both the West-East direction and the North-South direction, to exploit different variation in land 

value and climate difference variables. Because the North-South SFD method uses different pairs of 

neighbouring meshblocks compared to the West-East method, the method provides a natural check 

for robustness. This check is helpful because spatial patterns in unobserved heterogeneity along one 

direction might be different along the other direction (Druckenmiller and Hsiang 2018). 

To our knowledge, this work is the first Ricardian paper applied to New Zealand that overcomes 

the problem of unobserved heterogeneity using the spatial first differences method, and one of the 

first few such analyses applied in the wider literature.  Therefore, we have more confidence in our 

results compared with many other Ricardian studies regarding omitted variables bias.  

Only one other work has studied the impact of climate change on farmland values in New Zealand 

(Allan & Kerr, 2016). They used a Ricardian model to estimate the effects of climate on land values 

through the profitability channel. Our analysis makes several contributions to their study. First, we 

implement the SFD model to estimate the Ricardian approach to reduce (or eliminate) omitted 

variables bias. Second, we use more recent land value data. We also estimate the effects of climate 

on overall rural land values and within various land-uses. 
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The main results from the SFD estimation show a positive relationship between farmland values 

and warmer conditions. Drier soils are also associated with higher capital values. These findings are 

robust across land-uses only for temperature, as well as computing the SFD estimates using West-

East differences versus North-South differences. These results are likely due to some combination of 

improvement values that vary as a function of the climate, agricultural productivity, and climate 

amenity value for residential uses.  

While theory linking Ricardian results to climate change is well developed for the agricultural 

productivity mechanism, uncertainty remains about how to interpret Ricardian results that are due to 

differences in improvements caused by climate differences, as well as due to climate amenity values. 

Future theoretical work could address this uncertainty as well as work to separate the relative 

importance of improvements (including land-use differences), agricultural productivity, and amenity 

values. 

This paper is structured as followed; section 2 provides an overview of the literature. The following 

sections present data sources, and the empirical model used. The main results are summarised in 

section 5, and the last section concludes. 

3.2 Literature review 

Numerous studies have evaluated the impacts of climate change on agriculture, with a particular 

focus on countries that are highly dependent on agriculture (Fuhrer et al., 2006; P. Birthal et al., 2014; 

Howitt et al., 2014; Ali et al., 2017). These studies have estimated the economic impact of climate 

change using production functions to calculate environmental damage. However, Mendelsohn et al. 

(1994) have claimed that there is a bias in the production function approach as it tends to overestimate 

the damage that arises from climate variables. This bias is because the production function omits a 

range of adaptation strategies to climate and environmental changes adopted by farmers. Mendelsohn 

et al. (1994) developed a technique called the ‘Ricardian’ approach, where, instead of analysing the 

yields of specific agricultural products, researchers analyse the sensitivity of land values to climate, 

geographic, economic and demographic factors (Mendelsohn et al. 1994). The Ricardian approach is 

a hedonic method of farmland pricing that assumes that a land parcel’s value equals the present value 

of future rents or profits generated through all activities on the farm (Schlenker et al. 2006). 

Theoretically, this approach assumes that farmland values reflect farm productivity and potential 

long-term profitability, ‘implying spatial variations in climate drive spatial variations in land-uses 

and in turn land values’ (Polsky, 2004). Notably, since the climate is considered an exogenous factor 

in the land-climate Ricardian method, the economic impact of climate change can be effectively 
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captured by variations in farmland values across diverse conditions. More importantly, this technique 

explicitly incorporates farmer adaptation by using a cross-sectional variation. 

On the other hand, as for any conceptual method, Ricardian analysis confronts a number of 

limitations. In addition to problem of omitted variables bias, the Ricardian approach does not consider 

costs associated with changing land-use, thus potentially underestimating the cost of climate change 

across time (Kelly et al. 2005).   

Another shortcoming of the Ricardian approach for valuing climate change is that it makes use of 

historical price expectations. These price explanations are unlikely to be related to cross-sectional 

differences in climate and thus would not affect the estimated land value-climate relationship in the 

Ricardian approach. However, a full evaluation of the effect of climate change on land values needs 

to account for how agricultural output prices would change due to climate change (Quiggin and 

Horowitz, 1999). Chatzopoulos et al. (2020) show that future agricultural commodity prices increase 

due to negative agroclimatic anomalies.18 Ricardian analysis also does not reflect climate-induced 

future changes in expectations regarding technology and agricultural policies.  

The Ricardian approach also counts the benefits of land improvements (including land-use change) 

caused by differences in climate but does not count the differential costs of these improvements. For 

example, a warm-climate perennial crop may take longer to establish than one in a cooler climate. 

Land prices would be higher in the warm location because of the higher value of the standing crop 

but would not account for the extra costs imposed to establish that crop. An example is an absence of 

irrigation (an important land improvement) in previous Ricardian analysis; however, some studies 

have addressed this specific issue. Schlenker et al. (2006) examine the impacts of climate change on 

US farmland values by restricting their analysis to rain-fed regions, to avoid the bias associated with 

irrigation. 

Despite these limitations, the Ricardian technique is a practical tool for estimating the potential 

effects of global climate change on agricultural land values. Extensive literature estimated the impacts 

of climate change on agricultural land values by applying the Ricardian approach across various 

countries, including the US (Mendelsohn and Nordhaus 1999; Mendelsohn et al. 2001; Quaye et al. 

2018), Canada (Reinsborough 2003), Europe (Moore & Lobell, 2014; Passel, Massetti, & 

Mendelsohn, 2017; Bozzola, Massetti, Mendelsohn, & Capitanio, 2018), South Africa (Gbetibouo & 

Hassan, 2005), Sri Lanka (Seo et al. 2005), and Pakistan (Hussain and Mustafa 2016).  

 
18 They confirm the expected inverse relationship between global stock use and international crop prices, using a partial 

equilibrium model of simulation of global agriculture. 
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These studies have broadly established a non-linear relationship between farmland values and 

temperature and precipitation. Mendelsohn and Massetti (2017) summarised that the Ricardian 

model’s estimates show that net farm revenue falls by 8–12% under global average temperature 

increases of 2◦C and precipitation increases of 7%. The Ricardian approach has also established that 

climate change impacts differ by regions. Agricultural areas in warm regions are likely to be a net 

loser, while those in cold regions may benefit. 

3.3 Data 

3.3.1 Land value data 

Data on land values come from Quotable Value New Zealand (QVNZ), which compiles 

government valuations on a three-yearly cycle for all properties in New Zealand.19 A property 

valuation includes two components: land value and improvement value, the sum of which is referred 

to as ‘capital value’. Both land and improvement value components are estimated using local property 

and construction market trends, as well as characteristics of the property. 

To construct the sample,20 we consider only rural meshblocks21 and identify the rural land within 

each meshblock using the QVNZ land-use categories. Since these property valuations are not updated 

every year, we remove all records where the farmland value does not change from the previous year. 

Hence, while most Ricardian methods are developed on cross-sectional information, our sample is a 

panel from 1993 to 2018, including spatial and temporal variation in farmland value. For data quality, 

we remove properties smaller than 5 hectares (ha),22 as well as those observations with capital values 

per ha below the 2.5% quantile and above the 97.5% quantile, 23 leaving 71,862 observations for 

analysis. We also create multiple samples – one for general agricultural land values and others for 

specific land-uses (dairy, sheep/beef, forestry, horticulture, arable/cropping, and deer farming).24 

 
19 New Zealand’s largest valuation and property services company, QVNZ conducts property valuations for tax purposes 

for around 80% of New Zealand’s Territorial Authorities (TAs) (the second tier of local government in New Zealand, 

below Regional Councils). QVNZ purchases the valuations for the other TAs from other valuation companies to compile 

a database of all properties in New Zealand. We should mention that there is no official documentation available on how 

farm valuation assessment is conducted.  As far as we understand, valuation is based on recent property sales in the area, 

as well as on land quality that can be easily assessed, and on any improvements done on the land. Since they do not use 

climate explicitly in their valuation method, there is no implication for the analysis method used here , and its results.  
20 Details are in Appendix I. 
21 QVNZ matches the property valuations database to 2006 Stats NZ meshblock boundaries. A meshblock is the smallest 

geographic unit for which statistical data is collected and processed by Stats NZ. Their size varies by population density 

across the country, with more densely populated areas having many more meshblocks. 
22 Very small properties in New Zealand tend to have very high variation in the quality of improvements. This can result 

in very large values per hectare.   
23 We remove tail observations primarily to remove data errors and properties with unusual improvements. 
24 Dairy, sheep/beef, and exotic forestry are the dominant agricultural land uses and account for around 75% of private 

rural land in New Zealand (Kerr & Olssen, 2012). 
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3.3.2 Climatic Variables 

To compute climate variables, we use the Virtual Climate Station Network (VCSN) data provided 

by the National Institute of Water and Atmospheric Research (NIWA). VCSN data predict daily 

weather in a regular grid of approximately 5 × 5km covering all New Zealand (11,491 grid points). 

The VCSN estimates daily minimum and maximum temperature, soil moisture, and spatially 

interpolates raw station observations across space using a trivariate (elevation, latitude, and longitude) 

thin plate smoothing spline model. The spatial averaging for a given day uses 100 sample points in a 

regular grid within each meshblock with the 2006 spatial layer. These 100 points cover any 

meaningful climate variation within a meshblock. For each of the 100 points, we average the weather 

data from the four nearest VCSN grid cells using bilinear interpolation to ensure climate variation in 

our data between neighbouring meshblocks, which can be small relative to the VCSN grid cells. These 

daily meshblock-level data are then averaged across 30 years (1981-2010).  

3.4 Methods   

3.4.1 Ricardian approach

The Ricardian approach is developed based on David Ricardo’s statement that land rents reflect 

farmland’s net productivity if land markets are competitive.25 Farmland values, in turn, reflect the 

present discounted value of future land rents. This method examines the impact of climate on land 

values and farm revenues. Assuming each farmer has adapted to the local climate, the estimate reflects 

farm adaptation (Mendelsohn et al. 1994). The theory assumes that farmers maximise land rents given 

the climate and other exogenous factors. The Ricardian method is a cross-sectional analysis of 

farmland values that estimates how much of the observed cross-sectional variation in land values can 

be explained by climate conditions across space (for further details on the Ricardian approach’s 

theory see Mendelsohn et al. (1994)).  

The standard Ricardian model relies on a quadratic formulation of climate (Mendelsohn et al. 

1994; Seo and Mendelsohn, 2008). Our empirical model is of the form: 

  log (𝐿𝑉𝑖𝑡) = 𝛽𝑇𝑖 + 𝜎𝑇𝑖
2 + µ𝑆𝑀𝑖 + 𝜆𝑆𝑀𝑖

2 + 𝛾𝑡 + 𝜀𝑖𝑡      (2) 

Where 𝐿𝑉𝑖𝑡 is the capital (land) values26 per hectare in meshblock 𝑖 and year t, 𝑇𝑖 and 𝑇𝑖
2 represent 

linear and non-linear terms of long-run average annual temperature, 𝑆𝑀𝑖 and 𝑆𝑀𝑖
2 capture levels and 

 
25 ‘The value of a parcel of land should reflect its potential profitability, implying that spatial variations in climate drive 

spatial variations in land uses and in turn land values’ (David Ricardo, 1772-1823). 
26 Capital and land values are inflated to real values by the 2017 Consumer Price Index (CPI). 
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quadratic terms for soil moisture respectively. 27 𝛾𝑡 is a time-fixed effect, and 𝜀𝑖𝑡 are unexplained 

variations. We use a log-linear functional form as is standard in the Ricardian studies (R. Mendelsohn 

et al., 1994; R. Mendelsohn & Dinar, 2003). 

In this paper, we use panel data to regress capital values against vectors of climate variables for a 

general agricultural sample over a study period of 1993-2018, following Massetti and Mendelsohn 

(2011). They argued that, in a cross-sectional method, short-term price shocks could be correlated 

with climate and essentially cause biased results, much like any other omitted variable. We calculate 

the Ricardian estimates for various land-uses (dairy farms, sheep/beef, forestry, horticulture,28 arable 

and deer farming) to identify how different land values in New Zealand’s agricultural sub-sectors 

respond to climate. These land-use-specific regressions explain how different types of New Zealand 

farms are affected by climatic conditions. We also test the sensitivity of the main results using land 

values as the dependent variable (i.e., omitting the improvement-value component) and using season-

specific climate variables. 

The climate difference variables may be spatially correlated, as may be the unexplained portion of 

the model (i.e., unexplained spatial differences in land values). Thus, estimates of standard errors may 

be biased downwards in the presence of this spatial autocorrelation. To partially correct for this, we 

cluster the standard errors in all specifications at the regional level. This assumes that the 

autocorrelation in these variables occurs within each region, and that statistical errors are independent 

across regions. 

3.4.2 Spatial First Differences 

The Spatial First Differences (SFD) model described in Druckenmiller and Hsiang (2018) is a 

cross-sectional research design that compares data between adjacent neighbours to identify causal 

effects in the presence of omitted variables. The identifying assumption is that spatial differences in 

relevant unobservable variables are uncorrelated with spatial differences in the climate. This 

assumption is likely to be met when spatial data are densely packed across physical space 

(Druckenmiller & Hsiang, 2018), such as meshblock-level data. Two neighbouring meshblocks have 

common characteristics and are more similar than two otherwise random meshblocks. Intuitively, the 

model classifies all neighbouring meshblocks into a two-dimensional grid, with each spatial unit 

assigned a row (channel) and column (layer) index. Within each row, differences are taken across 

adjacent columns (neighbouring meshblocks).  

 
27 We use soil moisture variable to directly measure water availability in our model. 
28 Horticulture land-use includes Berry fruits, Citrus, Flowers, Glasshouses, Kiwifruit, Market garden, Pip fruit, Stone 

fruit, Vineyard, and other horticultural uses. 
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When we restrict comparisons to neighbouring meshblocks, the influence of omitted variables 

regarding local geographical, political, and economic conditions are differenced out by the SFD 

approach (Druckenmiller & Hsiang, 2018), so we can establish whether a change in climate 

conditions causes a change in farmland values given all adaptation mechanisms and improvements. 

The estimating equation is a ‘spatially first differenced’ version of equation (2), where the ∆ operator 

applies to the difference between neighbouring meshblocks: 

 ∆log (𝐿𝑉𝑖𝑡) = ∆𝑇𝑖 + ∆𝑇𝑖
2 + ∆𝑆𝑀𝑖 + ∆𝑆𝑀𝑖

2 + 𝛾̃𝑡 + 𝜀𝑖̃𝑡 (3) 

Where ∆log (𝐿𝑉𝑖𝑡) is differences in farmland values between adjacent meshblocks within year 𝑡. 

∆𝑇𝑖 and ∆𝑆𝑀𝑖 are spatial differences in linear terms of average annual temperature and soil moisture. 

∆𝑇𝑖
2 and ∆𝑆𝑀𝑖

2 capture spatial differences in quadratic terms of average annual temperature and soil 

moisture. Druckenmiller and Hsiang (2018) mentioned that the SFD method is well-suited to capture 

non-linear effects, as quadratic terms are computed before differencing.29 We also add a year-fixed 

effect (𝛾̃𝑡) to the SFD model to potentially improve the efficiency of the model and account for time-

variant factors common to the country, which are not observed and affect spatial differences (such as 

commodity prices). 

To implement the SFD methodology, we use a shapefile for all New Zealand meshblocks obtained 

from Stats NZ and use the R package functions provided by Druckenmiller and Hsiang (2018).30 Our 

main results compute the SFD in a West-East direction, and we check robustness using SFD 

computed in a North-South direction.31  

3. 5 Empirical results and discussion 

Table 3.1 reports the summary statistics of the variables used in the SFD estimation. On average, 

agricultural land capital value was approximately $22,000 per hectare in New Zealand between 1993 

and 2018 (in 2017 dollars). Average annual temperature and soil moisture were about 12°C (ranging 

from 4.8°–16°C) and about 40mm below capacity (ranging from 92mm below to 49mm above 

capacity)32 across New Zealand. From the SFD for ln(Capital value($/ha)), we see that the standard 

deviation (S.D.) for these differences is large (almost as big as the S.D. for the level of the log (0.75 

 
 29 We construct the SFD estimator for the model log (𝐿𝑉𝑖𝑡) = 𝜶1𝑻𝑖 + 𝜶2𝑇𝑖

2 by writing ∆log (𝐿𝑉𝑖𝑡) = log (𝐿𝑉𝑖𝑡) −
log (𝐿𝑉𝑖−1,t) = 𝜶1(𝑇𝑖 − 𝑇𝑖−1)  +  𝜶2(𝑇𝑖

2 − 𝑇𝑖−1
2 ) = 𝜶1∆𝑇𝑖 + 𝜶2∆𝑇𝑖

2. The coefficient 𝜶2 maintains the same 

interpretation as in the level model.    
30 Code is available at http://www.globalpolicy.science/code 
31 Computing differences in the East-West and South-North directions yields the same estimates as the West-East and 

North-South models. 
32 The units of soil moisture in the VCSN are -mm of soil moisture deficit, using a 150mm capacity model. Soil moisture 

deficit is modelled as a function of several historical observed variables, including temperature, rainfall, and sunlight. See 

(Porteous et al., 1994) and  (Tait et al., 2006) for more details. 

http://www.globalpolicy.science/code
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vs 1)), indicating substantial variation in capital value between a meshblock and its neighbour. 

Similarly, the standard deviation of SFD of climate variables shows a surprisingly high dispersion in 

temperature and soil moisture between neighbouring meshblocks.  

The signs of the averages of the SFD variables also tell us that temperature (soil moisture) slightly 

increases (decreases) as we move from West to East along the country, as shown in Figure 3.1. 

Overall, the statistics in Table 3.1 suggest sufficient variation in the SFD variables to estimate the 

SFD regression. 

 

Table 3 1: Summary statistics 

Variable Mean St. Dev. Min             Max     

Capital value($/ha) 22,327.540 23,702.130 735.765  201,925.9 

Ln(Capital value($/ha))     9.506 1.061 6.601      12.216    

∆ln(Capital value($/ha)) (WE)*    0.004 0.745 -4.751       4.803    

Annual temperature (°C)   12.508 1.872 4.813       16.084    

∆Annual temperature (°C) (WE)*   0.009 0.333 -4.406      3.736    

Annual soil moisture (-mm deficit)   -40.356 16.832 -92.577     48.805 

∆Annual soil moisture (-mm deficit) (WE)*   -0.141 3.671 -46.954       48.434    

*  Indicates differences are computed in the West-East (WE) direction. 

 

 
 

Figure 3. 1: Spatial distribution of 30-year average annual temperature, soil moisture and average farmland 

values (1993-2018) from left to right, respectively. On average, climatic maps show warmer conditions in the North 

Island and drier conditions in the South Island. The East coast along the country experiences hotter and drier climate than 

the West coast, on average. Farm values map shows that on average farmland values tend to be higher in the North Island. 

For display purposes, farm values are winsorised at 10th and 90th percentiles. 
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Figure 3.2 shows SFD estimates of the effect of long-term climate conditions on farmland capital 

value, comparing the West-East direction (panel a) to the North-South direction (panel b). The 

vertical axis displays the log of capital values ($/hectare), and horizontal axes are annual temperature 

and soil moisture. We find a statistically significant positive relationship between annual temperature 

and farmland capital values, which is close to linear. A change in average annual temperature from 

13°C to 14°C results in a predicted capital value increase of about 232%33 in land value, holding other 

things constant.  

Similarly, drier soils are associated with higher capital values, from an annual average of around 

40mm below capacity, with a change in soil moisture from 50mm to 60mm below capacity being 

associated with an increase of approximately 15%. We do not see a substantial effect of very wet soils 

in our results. Across the range of temperature, we find that the impacts of variations in temperature 

on land values are much larger than variations of soil moisture. These findings are also consistent 

across all land-uses. The SFD estimates in the North-South model are quite consistent with those in 

the West-East model, although the SFD estimates in the West-East model are more precise. 

These results are large and surprising. Several mechanisms might lead to these results, including 

climate causing differences in the equilibrium improvements a piece of land tends to have; climate 

causing differences in agricultural productivity (though this mechanism seems unlikely for the soil 

moisture effects and the temperature effects in the upper range of the distribution); climate amenity 

values for residential uses; and potentially omitted variables that are tied to the climate (such as 

sunlight, which directly affects agricultural productivity via photosynthesis). 

If land improvements are a direct function of climate, differences in improvements can still 

determine changes in capital values. The SFD method cannot control for improvements tied to climate 

differences. However, if this mechanism is a major contributor to the climate-land value relationship, 

it poses a problem when using these results to value climate change: the climate-land value 

relationship measures only the differences in the benefits of these improvements and not the 

differences in the costs. If, for example, a warmer area tends to have more land-use in wine grapes, 

the temperature-land value relationship might look positive. Still, the positive relationship would omit 

the already-incurred costs associated with planting and growing those grapes. 

Furthermore, climate has amenity value – people are generally more willing to live in warmer and 

drier places in New Zealand – which can cause differences in option values to convert agricultural 

lands to urban use. Again, while this aspect of the climate-land value relationship may be substantial 

 
33 We convert the log differences to a percentage using (exp(log change) – 1)*100 
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in climate differences across space, it is unclear whether climate change would affect these amenities 

in the way that the climate-land value relationship suggests. 

We also run the SFD model using pure land values as the dependent variable, which omits the value 

of improvements as measured by the respective valuers. The results from these estimations are shown 

in Appendix 3.8.2 Figure 3.1. We find the same pattern for the effects of temperature and soil moisture 

on farmland land values across both West-East and North-South models, and they are very similar to 

our main results. We generally prefer the capital values only because of uncertainty about how 

improvement values are identified separately from land values. Using spatial differences in pure land 

values as the dependent variable makes it difficult to say whether spatial differences in improvements 

tied to the climate are correctly removed.  

We also investigate the effects of seasonal temperature and soil moisture on farmland values to 

check the robustness of our findings from the annual model, following Massetti and Mendelsohn 

(2011), where the Ricardian model is separately estimated by seasons of a year. Figures 1-4 (in 

Appendix 3.8.3) show the SFD estimates for the seasonal models for the West-East direction. The 

seasonal model did not produce precise estimates, probably because of multicollinearity of the SFD 

variables between seasons. Correlation matrix tables (see Appendix 3.8.3 Tables 1 and 2) show that 

differences in temperature and soil moisture across seasons are highly correlated. The SFD results of 

the seasonal specifications are also similar for both capital and land values. 

Figures 3.3 to 3.8 show land-use-specific SFD estimations of the impact of changes in annual 

climate variables on capital values for the West-East model (see Appendix 3.8.4 Figures 1-6 for the 

North-South model). The results show that the pattern of annual temperature effects is quite similar 

across land-uses, consistent with findings of the annual model. Increasing annual temperature is 

associated with higher farmland capital values for all land-uses. The reason might be New Zealand’s 

temperate climate, which suits most dairy cattle and grazing livestock (4-20°C) – above this 

temperature productivity will decline. As the annual temperature range is between 4°C and 16°C 

across the country, this temperate temperature can be beneficial for some land-uses, especially 

pasture-based livestock.  

   The pattern of soil moisture effect is different across land-uses. We see a positive relationship 

between dry soil and capital values for sheep/beef, forestry and horticulture, although it is statistically 

significant only for sheep/beef. The response of capital value to annual soil moisture is ∩-shaped for 

arable. It shows that drier soil is associated with significantly lower capital values, because soil 

moisture affects not only crop yields but also the quality of the crop. Some crops, such as wheat and 

peas, may be worthless if the plants lack water while the grain is forming. However, the protein 
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content of crops may reduce if grown in soils that are too wet.  

Horticulture requires land improvement and long-term investment to increase land values, but the 

cost of improvements is not included in land values. This might explain these results for horticulture. 

Generally, the results suggest that the overall rural land-value result for soil moisture (with drier-soil 

areas having higher land values) might be a result of differences in land-uses (i.e. improvement 

values). The land-use results do not suggest that the positive result for temperature is due to land-use 

differences tied to climate. 

Additionally, Figures 7 to 12 in Appendix 3.8.4 show the SFD estimates of annual temperature and 

soil moisture impacts on land values for different land-uses, when computed in the West-East and the 

North-South directions. Land-use-specific SFD results confirm that the patterns of the annual 

temperature and soil moisture effects on land values across land-uses are considerably robust to the 

capital value specifications for the West-East model. However, the North-South model results are 

noisier compared with the West-East model, but mostly follow the same patterns for both capital 

value and land value specifications.  
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Figure 3. 2: Capital values response to annual temperature and soil moisture, 1993-2018. Quadratic SFD 

estimates are computed in a) the West-East direction, and b) the North-South direction. The black line is the centred 

predicted values which are calculated by subtracting the mean from all observations. The blue area shows the 95% 

confidence band - are centred at the mean. Histograms present the number of observations used to estimate the response 

function. Regressions are computed on 71862 and 71491 observations for WE and NS directions, respectively. 

 

Figure 3. 3: Capital values response to annual temperature and soil moisture for dairy farming, 1993-2018. 

Quadratic SFD estimates are computed in the West-East direction. Regressions are computed on 34204 observations. See 

figure 3.2 for more details.    
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Figure 3. 4: Capital values response to annual temperature and soil moisture for Sheep/beef farming, 1993-

2018. SFD estimates are computed in the West-East direction. Regressions are computed on 13340 observations. See 

figure 3.2 for more details. 

 

Figure 3. 5: Capital values response to annual temperature and soil moisture for Forestry, 1993-2018. SFD 

estimates are computed in the West-East direction. Regressions are computed on 6174 observations. See figure 3.2 for 

more details. 
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Figure 3. 6: Capital values response to annual temperature and soil moisture for Horticulture, 1993-2018. 

Quadratic SFD estimates are computed in the West-East direction. Regressions are computed on 5459 observations. See 

figure 3.2 for more details.  

 

Figure 3. 7: Capital values response to annual temperature and soil moisture for Arable, 1993-2018. Quadratic 

SFD estimates are computed in the West-East direction. Regressions are computed on 4922 observations. See figure 3.2 

for more details. 
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 Figure 3. 8: Capital values response to annual temperature and soil moisture for Deer farming, 1993-2018. 

Quadratic SFD estimates are computed in the West-East direction. Regressions are computed on 7763 observations. See 

figure 3.2 for more details. 

 

3.6 Conclusion 

In this study, we evaluate the impact of cross-sectional differences in climate on New Zealand’s 

agricultural land values. To do this, we use Ricardian hedonic price modelling that links variation in 

capital values across space with variation in annual climate, between 1993 and 2018. We estimate the 

Ricardian approach using the ‘spatial first differences’ (SFD) method to address omitted variables 

bias. We also check robustness by computing the SFD model in the West-East and the North-South 

directions.  

Our results show that a warmer or drier climate is associated with higher capital values. These 

SFD results are quite robust across the West-East and the North-South estimates. We also confirm 

that our findings are consistent when the improvement-value element is omitted from the baseline 

model, noting that some improvement values may remain in the land-value component. SFD 

estimates for land-use-specific models support our main findings of a positive relationship between 

a hotter climate and farmland values for all land-uses. Arable land is the only land-use that clearly 

shows a different result for soil moisture, with drier soils quite clearly being associated with lower 

land values. 
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One of the primary applications of Ricardian analyses is to determine how land values might shift 

due to climate change. The standard theory underlying the Ricardian approach assumes that 

differences in land values tied to climate are due to differences in agricultural productivity. If we were 

confident that our results were primarily driven by differences in agricultural productivity, we could 

conclude that climate change would increase land values in New Zealand as temperatures warm. 

However, given that our results may be driven by differences in improvements (tied to climate) or 

climate amenities for residential use, we cannot be confident that New Zealand land values will 

increase as the climate changes. 

 Our findings indicate two directions for future work and extensions. First, further research could 

quantify how much of the land value-climate relationship is due to agricultural productivity versus 

amenity value and improvements. Second, future studies could delve deeper into theoretical 

frameworks that support the use of cross-sectional methods to understand the potential effect of 

climate change in the presence of amenity values and differences in land improvements.  
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3. 8 Appendices 

Appendix 3.8.1: Data Details 

We received two different land values datasets from QVNZ: one QV dataset contains information 

on property valuations at the meshblock level over the period 1989-201234. The most recent one 

provides valuations data at the property level from 2013 to 2018. 

 As for cleaning the former QV data, we first remove all urban uses based on QVNZ land-use 

categories. We then match this data to the TA valuation cycle provided by QVNZ and keep the 

observation that corresponds to a particular meshblock's valuation year. In the next step, we drop 

observations for which the capital value or land area or the location are missing. Finally, since in the 

early 1990s – there are undefined codes that cannot be matched to a new category code, we delete 

years below 1993.  

Regarding the recent QV dataset, we first keep observations with an old valuation year using land 

value date because updating valuations mostly happens every three years across TAs35. We then 

remove properties with zero capital values or land area after identifying rural land-uses. We aggregate 

property valuation components into meshblock level for each land-uses. Finally, we combine two QV 

datasets to build the land values sample. We also calculate the total capital value, total land values, 

total improvement values and total land area for each meshblock to create a general agricultural land 

sample.   

  

 
34 The observations are annual for year ended 30 June. 
35 we assign those valuations staring at 1st July to the following year to be consistent with the old data. We did not access updated TA 

valuation cycle. 
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Appendix 3.8.2: Additional Results – SFD estimates for land values 

 

 

Figure 1. Land values response to annual temperature and soil moisture, 1993-2018. Quadratic SFD estimates are 

computed in a) the West-East direction, and b) the North-South direction. The black line is the centred predicted values 

which are calculated by subtracting the mean from all observations. The blue area shows the 95% confidence band - are 

centred at the mean. Histograms present the number of observations used to estimate the response function. Regressions 

are computed on 71862 and 71491 observations for WE and NS directions, respectively. 
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Appendix 3.8.3: Additional Results – SFD estimates for the seasonal model 

 

Figure 1. Capital values response to seasonal temperature, 1993-2018. Quadratic SFD estimates are computed in 

the West-East direction. Regressions are computed on 71862 observations. See Appendix 3.8.2 Figure 1 for more details. 
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Figure 2. Land values response to seasonal temperature, 1993-2018. Quadratic SFD estimates are computed in the 

West-East direction. Regressions are computed on 71862 observations. See Appendix 3.8.2 Figure 1 for more details. 
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Figure 3. Capital values response to seasonal soil moisture, 1993-2018. Quadratic SFD estimates are computed in 

the West-East direction. Regressions are computed on 71862 observations. See Appendix 3.8.2 Figure 1 for more details.                                
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Figure 4. Land values response to seasonal soil moisture, 1993-2018. Quadratic SFD estimates are computed in the 

West-East direction. Regressions are computed on 71862 observations. See Appendix 3.8.2 Figure 1 for more details.                                
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Table 1: Pearson correlation matrix for differences in seasonal temperature  

 ∆Spring 

temperature 

∆Summer 

temperature 

∆Autumn 

temperature 

∆winter 

temperature 

∆Spring temperature 1 0.994 0.996 0.982 

∆Summer temperature 0.994 1 0.982 0.956 

∆Autumn temperature 0.996 0.982 1 0.993 

∆Winter temperature 0.982 0.956 0.993 1 

Note: differences are computed in the West-East (WE) direction. 

 

 

 Table 2: Pearson correlation matrix for differences in seasonal soil moisture  

 ∆Spring 

Soil moisture 

∆Summer 

Soil moisture 

∆Autumn 

Soil moisture 

∆Winter Soil 

moisture 

∆Spring soil moisture 1 0.927 0.927 0.928 

∆Summer soil moisture 0.927 1 0.978 0.776 

∆Autumn soil moisture 0.927 0.978 1 0.824 

∆Winter soil moisture 0.928 0.776 0.824 1 

Note: differences are computed in the West-East (WE) direction. 
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Appendix 3.8.4: Additional Results – SFD estimates for land-use-specific models 

 

 

Figure 1. Capital values response to annual temperature and soil moisture for dairy farming, 1993-2018. 

Quadratic SFD estimates are computed in the North-South direction. Regressions are computed on 34088 observations. 

See Appendix 3.8.2 Figure 1 for more details.    

 

  



140 

 

 

 

Figure 2. Capital values response to annual temperature and soil moisture for sheep/beef farming, 1993-2018. 

Quadratic SFD estimates are computed in the North-South direction. Regressions are computed on 13246 observations. 

See Appendix 3.8.2 Figure 1 for more details. 
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Figure 3. Capital values response to annual temperature and soil moisture for forestry, 1993-2018. SFD estimates 

are computed in the North-South direction. Regressions are computed on 6082 observations. See Appendix 3.8.2 Figure 

1 for more details. 

 

 

Figure 4. Capital values response to annual temperature and soil moisture for horticulture, 1993-2018. Quadratic 

SFD estimates are computed in the North-South direction. Regressions are computed on 5449 observations. See Appendix 

3.8.2 Figure 1 for more details. 
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Figure 5. Capital values response to annual temperature and soil moisture for arable, 1993-2018. Quadratic SFD 

estimates are computed in the North-South direction. Regressions are computed on 4889 observations. See figure 2 for 

more details. 
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 Figure 6. Capital values response to annual temperature and soil moisture for deer farming, 1993-2018. 

Quadratic SFD estimates are computed in the North-South direction. Regressions are computed on 7737 observations. 

See Appendix 3.8.2 Figure 1 for more details. 

 

 

 

Figure 7. Land values response to annual temperature and soil moisture for dairy farming, 1993-2018. Quadratic 

SFD estimates are computed in a) the West-East direction, and b) the North-South direction. Regressions are computed 

on 34204 and 34088 observations for WE and NS directions, respectively. See Appendix 3.8.2 Figure 1 for more details.  
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Figure 8. Land values response to annual temperature and soil moisture for sheep/beef farming, 1993-2018. 

Quadratic SFD estimates are computed in a) the West-East direction, and b) the North-South direction. Regressions are 

computed on 13340 and 13246 observations for WE and NS directions, respectively. See Appendix 3.8.2 Figure 1 for 

more details.  
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Figure 9. Land values response to annual temperature and soil moisture for forestry, 1993-2018. Quadratic SFD 

estimates are computed in a) the West-East direction, and b) the North-South direction. Regressions are computed on 

6174 and 6082 observations for WE and NS directions, respectively. See Appendix 3.8.2 Figure 1 for more details. 
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  Figure 10. Land values response to annual temperature and soil moisture for horticulture, 1993-2018. 

Quadratic SFD estimates are computed in a) the West-East direction, and b) the North-South direction. Regressions are 

computed on 5459 and 5449 observations for WE and NS directions, respectively. See Appendix 3.8.2 Figure 1 for more 

details.  
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Figure 11. Land values response to annual temperature and soil moisture for arable, 1993-2018. Quadratic SFD 

estimates are computed in a) the West-East direction, and b) the North-South direction. Regressions are computed on 

4922 and 4889 observations for WE and NS directions, respectively. See Appendix 3.8.2 Figure 1 for more details. 
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Figure 12. Land values response to annual temperature and soil moisture for deer farming, 1993-2018. Quadratic 

SFD estimates are computed in a) the West-East direction, and b) the North-South direction. Regressions are computed 

on 7763 and 7737 observations for WE and NS directions, respectively. See Appendix 3.8.2 Figure 1 for more details.  
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Conclusion 

The primary objective of this dissertation was to provide insights into the economic impacts of 

drought events and the climate on agriculture in New Zealand. The collection of three empirical 

studies presented in this thesis investigates the effect of drought on the whole country, regional 

differences in drought impacts, and the relationship between climate and land values. Here, we 

summarise the empirical findings, their implications, and the limitations of each study. 

First, we show that over the last ten years about half of the districts had experienced severe 

droughts, as measured by the New Zealand Drought Index (NZDI), and almost 85% of districts were 

affected by more moderate droughts at least once. The North Island has experienced high-intensity 

droughts more frequently, whereas some areas in the South Island have been free of high-intensity 

droughts. Droughts occur somewhere in New Zealand almost every year, usually during peak 

summer, between December and March. 

Chapter one quantifies the impact of an increase in the number of drought days on profitability and 

farms’ business performance for dairy and sheep & beef farming. We found that current (same fiscal 

year) drought events have positive impacts on dairy farms’ revenue and operating profit; this effect 

is most likely attributable to drought-induced increases in the global price of milk solids (most of the 

milk in New Zealand is converted to milk powder and exported). We also found a nonlinear 

relationship between sheep/beef revenue and drought events. This implies that sheep/beef revenue 

will increase from selling their livestock during an extended period of drought conditions. Overall, 

drought events would only benefit dairy farmers compared to sheep/beef farms, as New Zealand is 

the market maker in this global market. This study does not consider the role of climate adaptation in 

its analysis because we do not have access to adaptation actions at the farm level.  

Our results on impacts of drought have two policy conundrums; First, it seems that the market 

concentration and the reliance of the New Zealand farming sector on one major source of revenue 

(dairy) is actually important in reducing the financial vulnerability of the sector to droughts. Second, 

resilience-building measures for the dairy and sheep and beef sector should focus on ameliorating the 

longer-term deteriorations in balance-sheets, rather than focus on short term indicators of revenue 

and profit, as the latter seem not to be adversely affected that much. 

There is a clear variation in drought characteristics for different regions, and the future projections 

of drought intensities and frequencies, driven by climate change, are different for different regions in 

New Zealand. Exploring the regional differences in the effects of droughts on farms’ financial 

outcomes for dairy and sheep/beef farming is therefore the focus of the second chapter . The region-
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specific estimations show that drought events are associated with significant positive impacts on gross 

income and operating profit in the major dairy farming regions: Waikato and Taranaki. This effect is 

attributable to drought‐induced increases in milk price. When we capture milk prices, the drought 

measure negatively impacts dairy farm revenue or operating profits. Therefore, we observe that the 

positive impact of drought is no longer identifiable once we control for milk prices.  

The third empirical study was designed to explore the historical relationship between agricultural 

land prices and the climate in New Zealand. We evaluate how much of the observed cross-sectional 

variation in land values can be explained by climate conditions across space. We estimate the 

Ricardian approach using the ‘spatial first differences’ (SFD) method to address omitted variables 

bias.  Our results show that a warmer or drier climate is associated with higher land values.  While 

the spatial first differences method is correctly estimating the causal effects of changes in climate on 

capital values, Changes in capital values can still be determined by other drivers such as differences 

in the value of land improvements tied to climate and agricultural productivity and climate amenity 

values for residential uses. Therefore, we cannot be confident that New Zealand land values will 

increase as the climate changes. 

 To value climate change, we need to understand the productivity effects, not historical investments, 

because the Ricardian method misses the cost of historical investments. The Ricardian approach for 

valuing climate change would rely on the productivity assumption (using production function). Those 

costs of land-use change, and the costs of improvements, could confound the relationship between 

climate and land values. The Ricardian approach uses the benefits of historical land improvements, 

but we do not have their costs. This limitation of the empirical method can inflate the importance of 

differences in climate. Thus, we cannot derive any evidence-base on the implication of climate change 

on agriculture based on our results. 

Overall, this dissertation uses past drought events and applies the historical relationship between 

climate and agricultural productivity. Since this work is not a looking-forward analysis, we cannot 

reliably speculate about any future climate change implications. However, our results provide insights 

for policymakers to manage droughts now because we have information on the distribution of costs 

of drought across regions now. 

Our findings indicate several directions for future work and extensions. First, future work should 

examine whether drought characteristics are particularly damaging at a specified critical time during 

crop and livestock development across regions. Second, with the right data future studies could 

quantify the proportion of livestock sold in response to prolonged dry conditions. Third, future work 
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could measure how much other on-farm practices and drought recovery assistance programs affect 

the observed farm outcomes in the presence of drought. 

Moreover, further research could quantify how much of the land value-climate relationship is due 

to agricultural productivity, versus amenity value and improvements.  Finally, Future studies could 

also delve deeper into the theoretical frameworks that support the use of cross-sectional methods to 

understand the potential effect of climate change in the presence of amenity values and differences in 

land improvements.  

 


