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Glaciers are unique indicators of climate change. While global-scale glacier decline in recent decades has been15

attributed to anthropogenic forcing
1
, direct links between human influence on climate and years of extreme glacier16

mass loss have not been documented. Here we address this gap by applying event attribution methods
2

to calculate17

the anthropogenic influence on extreme glacier mass-loss years at a regional scale, targeting the highest observed mass-18

loss years (2011 and 2018) across New Zealand’s Southern Alps. We simulate glacier mass balance using temperature19

and precipitation from multi-model
3

and single-model
4

ensembles of climate model output. We show that measured20

extreme mass-loss was at least 6 times (in 2011) and 10 times (in 2018) (>90% confidence) more likely to occur with21

anthropogenic forcing than without. This increased likelihood is driven by present-day temperatures ⇠1.0
�
C above22

the pre-industrial average
3–5

, confirming a connection between rising anthropogenic greenhouse gases, warming tem-23

peratures, and high annual ice loss. Glaciers will likely continue to melt and retreat under present and future climate24

conditions
6
. As warming and extreme heat events continue and intensify

7–10
, we expect more extreme glacier mass-loss25

years, with increased fingerprints of human influence in the coming decades.26

Glaciers worldwide are exhibiting historically-unprecedented retreat and mass loss11. Global glacier retreat, based on27

length records spanning decades to centuries11, is often presented as evidence of anthropogenic climate change. Formal28
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Figure 1. Increasing extreme mass-loss measurements in recent decades. The number of extreme mass-loss years per
decade (blue) for the 41 glaciers with mass-balance records of at least 30 years11, compared with the number of annual
measurements from all 41 glaciers per decade (black outline, white fill). Extreme mass-loss years are defined as the 90th
percentile of negative measured mass balances from the entire time-series for each glacier.

statistical assessment has shown that centennial-scale retreat of glaciers around the world is categorical evidence of climate29

change12. However, glacier length is a result of mass balance integrated over varying timescales for glaciers with different30

response times13. The use of glacier length changes as climate indicators is further complicated by ice dynamics14. Glacier31

retreat therefore reflects climate trends occurring on different timescales, whereas mass balance directly reflects the response32

of glaciers to changes in climate14. Attribution of global glacier mass loss to anthropogenic forcing has been carried out on33

decadal timescales, providing evidence of long-term climate change1. However, the previously employed attribution methods34

do not accurately resolve each individual region1. The methods also require long-term records of mass-balance measurements1,35

but records over 30 years are currently available for only 41 glaciers worldwide, and are almost exclusively in the Northern36

Hemisphere11. Using long-term records for attribution also dampens extreme mass-loss years that have become more prevalent37

in recent decades (Fig. 1).38

Event attribution2 — using model simulations with and without human-induced forcings to calculate the anthropogenic39

influences on extreme events — has previously been applied to extreme climate events including heat, drought, and rainfall8, 15.40

Application of event attribution methods to annual glacier mass change will facilitate the ongoing assessment of human impacts41

on global glacier change. This is especially important as glacier retreat will likely accelerate in the future6, 16–18, contributing to42

sea level rise6, 16–18 and impacting water resources, biodiversity, ecosystems, and human societies10, 19, 20. Here, we establish43

a method for attribution of extreme glacier mass-loss years to natural or anthropogenic forcings. This is done by simulating44

glacier mass balance using General Circulation Model (GCM) output for natural and anthropogenically-influenced climate45

scenarios, and comparing simulation results with direct and proxy mass-balance measurements.46

To assess the anthropogenic influence on glacier mass loss, we simulate specific mass balance using data from a multi-model47
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ensemble of 16 Coupled Model Intercomparison Project Phase 5 (CMIP5) models3 (Fig. S.6) and a single-model ensemble with48

34 members from the Community Earth System Model Large Ensemble (CESM)4. Using the two model ensembles provides49

a more robust calculation of attribution21, as CMIP5 accounts for variations across models, and CESM accounts for model50

internal variability and initial conditions. Climate influenced only by natural forcings, referred to herein as the natural world, is51

represented by simulations that include radiative forcing at pre-industrial levels and natural variability. Natural-world climate is52

defined as April 1901 – March 2005 in HistorialNat CMIP5 scenarios3, and the CESM 1800-year control run, used from April53

of year 1 – March of year 18004. Representative concentration pathway (RCP) 8.5 simulations, which include natural variability54

and anthropogenic forcings, represent the present, anthropogenically-modified climate, referred to herein as the present world.55

Present-world climate is defined as April 2006 – March 2026 in RCP8.5 for both CMIP5 and CESM3, 4. As we are calculating56

anthropogenic influences on extreme mass loss occurring in the present day, the natural-world ensembles represent climate57

without anthropogenic forcing, not past climate. Therefore, the glacier geometry in our simulations is fixed for present-day58

geometry. To quantify the role of anthropogenic forcings we compare the probability of extreme measured glacier mass loss59

occurring in the natural world, with the probability of occurrence in the present world. We assess uncertainties using suites of60

model parameters, and by including the inherent model uncertainty. Confidence intervals, the 5th and 95th percentiles, are61

calculated by bootstrapping the simulation output. We use the Intergovernmental Panel on Climate Change (IPCC) likelihood62

scale to present findings within the 5th and 95th percentiles that are ’very likely’, defined as >90% probability22. See Methods63

and Supplemental Information for full methodology.64

We apply this method to New Zealand glaciers (Fig. S.1), which provide a rare record of glacier change in the Southern65

Hemisphere23, and that have had two years in the past decade with especially high mass loss23–25. Mass balance is measured66

directly for only two New Zealand glaciers, Brewster Glacier (since 2005)24, and Rolleston Glacier (since 2011)25 (Fig. S.1).67

Both mass balance records show that 2011 and 2018 were extreme mass-loss years11. Indirect mass-balance measurements68

from Brewster Glacier, Rolleston Glacier, and eight additional glaciers (beginning 1977 – 1980) show that 2011 and 2018 were69

the two of the highest mass-loss years on record23. These measurements were obtained through oblique aerial photos that are70

taken at the end of each summer to record the end-of-summer-snowline elevation26, referred to herein as the snowline. We use71

the snowline as a proxy for the equilibrium line altitude and therefore mass balance14.72

We find that probability of extreme mass loss occurring increases in a climate with anthropogenic forcing for the two73

glaciers with direct mass-balance measurements (Figs. 2a,b & 3). High mass loss measured at Brewster Glacier in 2011 has a 074

– 0.8% chance of occurring in any given year in a natural world, but 0.2 – 14% chance of occurring in the present world with75

an anthropogenically-modified climate (Figs. 2a & 3). Mass loss of Brewster Glacier was even greater in 2018 than in 2011.76

Mass loss equal to or exceeding 2018 measured mass balance has a 0 – 0.2% chance of occurring in a natural world, and 0 –77

5.9% chance of occurring in the present world with anthropogenic forcing (Figs. 2a & 3). The high mass losses measured78

at Rolleston Glacier have <0.1 – 5.9% (in 2011) and <0.1 – 2.1% (in 2018) chances of occurring in the natural world, while79

similar or greater mass-loss years for Rolleston Glacier have a 1.4 – 36% (in 2011) and 0.3 – 23% (in 2018) chance of occurring80
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in a climate with anthropogenic forcing (Figs. 2b & 3). Probabilities are presented as the 5th – 95th confidence levels. The81

broader probability distribution for Rolleston Glacier mass balance (Fig. 2b), compared to Brewster Glacier mass balance (Fig.82

2a), is due to the higher standard error in the Rolleston Glacier model calibration, which is incorporated in the probability83

distributions as the inherent model uncertainty (see Methods for details).84

By comparing the probability of measured mass loss occurring in the present world with the probability of measured85

mass loss occurring in the natural world, we calculate the increase in likelihood of extreme mass loss occurring due to human86

influence (Fig. 3). Measured mass loss at Brewster Glacier is at least 14 times (in 2011) and at least 23 times (in 2018) (>90%87

confidence level) more likely to occur in a climate influenced by anthropogenic forcing (Fig. 3). Measured mass loss at88

Rolleston Glacier in 2011 is at least 6 times (>90% confidence level) more likely to occur with anthropogenic forcing, and in89

2018 is at least 10 times (>90% confidence level) more likely to occur with anthropogenic forcing (Fig. 3). For both years of90

extreme mass loss for Brewster Glacier, there are scenarios within the 5 – 95% confidence levels where measured mass balance91

does occur in the present world, but does not occur at all in the natural world. There are also scenarios, within the uncertainties,92

for 2018 where the extreme mass loss does not occur in the present world.93

Extreme high snowlines, an indirect indicator of extreme mass loss, are also more likely to occur in the present climate94

compared with the natural climate for Brewster and Rolleston Glaciers (Fig. 2c,d). For Brewster Glacier, extreme mass loss is 495

– 14 times (in 2011) and 4 – 16 times (in 2018) more likely to occur with anthropogenic forcing (Fig. 3). For Rolleston, extreme96

mass loss is 4 – 12 times (in 2011) and 4 – 11 times (in 2011) more likely to occur with anthropogenic forcing. However,97

for both glaciers there is a larger increase in likelihoods of mass loss attributed to anthropogenic forcing when mass-balance98

measurements, compared with snowline measurements, are used (Fig. 3). For example, considering mass loss at Brewster99

Glacier in 2018, measured mass loss is an average of 350 times, and at least 23 times (>90% confidence level), more likely to100

occur with anthropogenic forcing. Conversely, the extreme high snowline in 2018 is only an average of 8 times, and at least 4101

times (>90% confidence level), more likely to occur with anthropogenic influence (Fig. 3).102

While snowlines can provide an estimate of anthropogenic influence, simulating snowlines with a temperature-index model103

excludes small-scale processes that influence snowlines. Snowlines are subject to local influences, including avalanches, and104

other processes not captured in the mass-balance model used here. In our model calibrations, approximately one standard105

deviation, or ⇠70%, of mass balance measurements fall within the simulated mass balance parameter suite. However, only106

⇠50% of snowline measurements fall within the simulated snowline parameter suite, showing that snowlines are not simulated107

as accurately as mass balance. The dampened likelihood calculated with snowline measurements highlights that snowlines are108

not a perfect proxy for mass balance. Extreme mass-loss years at Brewster Glacier have snowlines within 8 ± 5 m elevation109

of each other, but differences in measured mass balance of almost 0.5 m w.e. (28%) (Table S.4), reflecting previous work110

that shows the relationship between snowlines and mass balance is nonlinear24. Furthermore, the 2011 snowline at Rolleston111

Glacier is higher (indicating more mass loss) than the 2018 snowline, while the measured mass balance shows higher mass112

loss in 2018 by ⇠0.4 m w.e. (20%) (Table S.4). However, snowlines are an established proxy for mass balance14, 27, and they113
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Figure 2. Annual Brewster and Rolleston Glacier mass-balance and snowline probability distributions. Annual
mass-balance probability distributions for Brewster Glacier (a) and Rolleston Glacier (b), and annual snowline probability
distributions for Brewster Glacier (c) and Rolleston Glacier (d), for natural (black) and present (red) ensembles including
CMIP5 and CESM. Bold lines show the mean probabilities calculated using a suite of model parameters, with shading showing
the range of probabilities within the suite. Measured 2011 and 2018 mass balances and snowlines are marked with dashed lines.
The blue shading shows the uncertainty associated with the mass-balance measurements. For Brewster Glacier these are -1.7 ±
0.2 m w.e. in 2011 and -2.2 ± 0.3 m w.e. in 2018. Uncertainties for Rolleston Glacier are not quantified, so we use an
estimated uncertainty of 0.3 m w.e., which is the mean annual uncertainty for Brewster Glacier measurements from 2005 –
201524. Axes on (c) and (d) are different, due to differences in glacier size and elevation range. Note that bin size does not
influence the attribution calculations, and that in the snowline calculation, simulated snowlines below the minimum glacier
elevation are set to the minimum glacier elevation, and those above the maximum glacier elevation are set to the maximum
glacier elevation, these distributions are then expanded after including the inherent model error (see Methods for details).
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Figure 3. Probabilities and likelihoods of glacier mass loss with natural and anthropogenic forcing. Top: The
probability of high mass loss occurring in natural and present worlds, and the increase in likelihood (ratio of present probability
to natural probability). Values highlighted in red are discussed in detail in the text. Mean values are presented, with the
5th–95th percentile confidence intervals shown in parentheses. The uncertainty in measured mass balance is also included in
mass balance probability and likelihood calculations. The quantifiable uncertainties in snowline elevations is negligible (<1 m).
Bottom: The increase in likelihood of glacier mass loss occurring with anthropogenic forcing. Error bars show the 5th–95th
percentile confidence intervals. Arrows indicate an increase in likelihood of over 80 times. Note the y axis starts at 1,
corresponding to no change in likelihood. There is no measurement from Salisbury Glacier in 2011.
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provide estimates of inter-annual mass-balance changes for more glaciers than field-based measurements could feasibly include.114

The agreement between mass balance and snowlines, that high mass loss is more likely with human influence (Fig. 3), shows115

that snowlines can be useful for estimating anthropogenic influence on extreme glacier mass loss when direct measurements are116

not available.117

We therefore apply the same analysis to eight glaciers where only snowline measurements are available. All eight of the118

glaciers show an increase in probabilities and likelihoods of extreme mass loss occurring with anthropogenic forcing (Figs. 3,119

4). The differences in annual snowline probability distributions (Fig. 4) are largely influenced by differences in glacier size and120

elevation range. Increases in likelihood of high snowlines occurring with anthropogenic forcing range from an average of 3121

times (Glenmary Glacier, 2011) to 11 times (Salisbury Glacier, 2018 and Vertebrae12 Glacier, 2011) (Fig. 3).122

Changes in glacier mass balance depend on changes in accumulation and melt, which are largely driven by temperature123

and precipitation variations14. Previous work has shown that New Zealand glacier mass balance is largely influenced by air124

temperatures, which reflect regional sea surface temperatures and atmospheric circulation patterns, with precipitation being125

less important in driving mass changes28. In our experiment setup, we use temperature and precipitation differences from the126

GCM ensembles between natural and present worlds, which are adjusted using a regional reanalysis. In the temperature data,127

averaged for the ten glacier domains, present-world temperatures are 1.0�C (0.4 – 1.7�C across ensemble members) higher128

than natural-world temperatures (Fig. S.6). This difference in adjusted temperature between natural and present worlds is129

equal to the change in measured New Zealand temperatures over the last century of +1.00±0.25�C5. The precipitation data130

shows increasing precipitation in the present world in 45 of the 50 climate models (Fig. S.6). In our mass-balance calculation,131

precipitation is only included in the accumulation calculation. Increasing precipitation therefore leads to either more positive132

mass balance if temperatures are below 1�C, or no change in mass balance if temperatures are equal to or above 1�C29 (see133

Methods for description). Therefore, it is the temperature increase in the present-world simulations, not precipitation, that134

drives the increase in likelihood of extreme annual mass loss occurring with anthropogenic forcing.135

We have provided a framework for calculating the influence of natural and anthropogenic forcing on annual glacier mass136

loss or mass gain at a regional scale. This framework can be replicated elsewhere for glaciers with direct mass-balance records.137

For attribution of mass change over a single year, this framework only requires climate data, and short-term mass-balance data138

for calibration of the mass-balance model. It can therefore be applied to glaciers worldwide, instead of being limited to glaciers139

with long-term mass-balance records that are largely situated in the Northern Hemisphere. We show that snowlines can be140

used to get a broader picture of anthropogenic influence when mass-balance measurements are not available. However, direct141

mass-balance measurements provide more accurate attributions, as 1) snowlines are not a perfect proxy for mass balance, and 2)142

simulating snowlines with a temperature-index model does not capture all of the small-scale processes that influence snowlines.143

Our results show that extreme annual glacier mass loss is much more likely to occur with anthropogenic forcing. For the144

two New Zealand glaciers with direct mass-balance measurements, we show that extreme mass-loss was at least 6 times (in145

2011) and 10 times (in 2018) (>90% confidence) more likely to occur with anthropogenic influence than without. The increase146
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Figure 4. Annual snowline probability distributions. Annual snowline probability distributions for natural (black) and
present (red) climate ensembles including CMIP5 and CESM, ordered in decreasing glacier elevation range from a) through h).
Bold lines show the mean probabilities calculated using a suite of model parameters, with shading showing the range of
probabilities within the suite. Measured 2011 and 2018 snowlines are marked with dashed lines. Note that axes are different,
due to differences in glacier size and elevation range.
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in likelihood of mass loss occurring with anthropogenic influence is driven by modern temperatures ⇠1�C above pre-industrial147

levels5, highlighting the connection between warming caused by humans and large annual ice loss. As global temperatures148

continue to rise to 1.5�C or more above pre-industrial levels over the coming decades9, both the frequency and magnitude of149

extreme annual mass loss will likely increase, along with the associated anthropogenic signal.150

Methods151

Figure S.2 shows an overview of the methods and input data used in this work.152

Glaciological input data. Snowline elevations have been documented annually at the end of summer (March – April)14 for153

50 glaciers in the Southern Alps, which started between 1977 and 1980 for different glaciers, using oblique aerial photography26.154

From those 50 glaciers, we analyzed the two glaciers with measured mass-balance data, as well as eight others with only155

snowline measurements. The eight snowline glaciers were selected as those that provided the best spatial coverage of the156

Southern Alps, had the most continuous records, and are the largest, as some of the 50 glaciers are now nonexistent23.157

Digital elevation models (DEMs) and orthophoto mosaics, generated using structure from motion photogrammetry30, are158

used to define the glacier geometry and snowline elevations. Structure from motion photogrammetry involves using automated159

feature-matching software to overlap multiple photos — taken for this study using handheld Nikon D800E cameras from a160

small plane — and generate accurate and precise 3-D models of each glacier. The models are georeferenced using locations of161

each image, which are captured using a GNSS mounted in the plane, and synchronized with the cameras to capture the image162

timing at better than 1 x 10-3 s resolution30. We can also georeference orthomosaics and DEMs from images taken previous163

years with no image locations30. This is done by matching the images that have no locations with images of the same glacier164

that have locations using structure from motion photogrammetry. Snow and ice in all images is masked, so that only the stable165

bedrock defines the matches, resulting in georeferenced images that originally had no locations.166

The images used to define glacier geometry were collected in March 2018. Orthophoto mosaics are 0.1 – 0.5 m resolution,167

and DEMs were interpolated to 10 m resolution. DEM vertical errors are 0.3 – 1.7 m, largely depending on the image coverage168

of each glacier30. To define glacier geometry, we used DEMs and orthomosaics generated exclusively from 2018 images to169

most accurately calculate attributions for the mass loss. DEMs and orthomosaics generated from 2011 images are less accurate170

because fewer images were taken in 2011, and no image locations were collected. Attribution calculations for mass loss in171

2011 are also done on the less-accurate 2011 DEM, and the results are near identical to using the more accurate 2018 DEM172

(see Glacier geometry section in Supplemental Information). We also used the Landcare Research 25 m Digital Elevation173

Model, interpolated to 10 m, to calculate shading for radiative forcing over each glacier domain, which requires spatial coverage174

beyond structure from motion photogrammetry DEMs.175

For each glacier, we calculated 2011 and 2018 mean snowline elevations by manually digitizing snowlines (the boundary176

between snow and ice) on 2011 and 2018 orthophoto mosaics, respectively (Fig. S.3). 2018 orthomosaics were generated using177

2018 images and 2018 image locations. 2011 orthomosaics were generated using 2011 images, and then georeferenced through178

9



matching with the 2018 images, with snow and ice masked out30. We then found the mean elevation of the identified snowline179

points on the 2018 DEM, as the 2011 DEM is less accurate because fewer images were taken in 2011 and no image locations180

were collected.181

Measured mass balance data from Brewster24 and Rolleston25 Glaciers are the basis for calculating extreme mass loss182

probabilities in 2011 and 2018, and for model calibration. Both mass balance surveys involve point measurements of snow183

depth (from probing) at the end of the accumulation season (November/December), and point measurements of melt (from184

stakes drilled into the ice) at the end of the ablation season (March/April). For Brewster Glacier, the mean standard deviation185

over the published record (2005 – 2015) is 300 mm w.e.24. Uncertainties are unquantified for Rolleston Glacier, so we use186

estimated uncertainties of 300 mm w.e. from Brewster Glacier. Snowline elevation measurements beginning in 198123 were187

used to calibrate the modeling of snowline elevations. These snowline elevations were calculated in previous work23 by188

manually transcribing the snowline from oblique photographs onto a base map, digitizing the maps, and using the total ablation189

area and the glacier’s area–altitude curve to calculate the mean ELA.190

Positive degree day model. Glacier specific mass balance31 was simulated using a grid-based positive degree-day model,191

with an additive radiation term in the calculation for total melt32. Melt (M) was calculated following:192

M = MT T +MR(1�a)Q (1)

using daily positive temperature (T ), a temperature melt factor (MT ; mm d-1 �C-1), radiation melt factor (MR; m2 mm W-1
193

d-1), albedo (a), and incoming shortwave radiation (Q; W m-2). Accumulation was calculated as the total daily precipitation194

when mean daily temperature is less than 1�C. The model was run on a daily time step over the 10 m-resolution DEM, with195

specific mass balance calculated as the mean for all grid cells containing the glacier.196

Shortwave radiation (Q) was calculated on an hourly time step, which was then averaged for each day. Q and its two197

components, direct radiation and diffuse radiation, were calculated33. Q is a function of top-of-the-atmosphere insolation34,198

zenith and azimuth angles of the sun, surrounding topography35, and cloudiness. Cloudiness was parameterized36 by calculating199

a daily cloud factor as the ratio of measured incoming radiation37 to clear-sky potential incoming radiation. Albedo (a) was200

modeled using a fresh snow albedo of 0.85 and ice albedo of 0.3538, following the equation a = p1 � p2log10Ta
39, where Ta is201

the accumulated daily positive temperature since snowfall, p1 is the albedo of fresh snow, and p2 is a parameter coefficient for202

exponentially decreasing albedo, set here to 0.11239.203

We also calculated the snowline to assess the anthropogenic influence on mass loss for glaciers without measured mass-204

balance data. Snow water equivalent was calculated daily as snow water equivalent of the previous day, plus any daily205

accumulation and minus any daily melt. If this equation results in a negative snow water equivalent, it is then set to 0. The206

snowline was then calculated at the end of the mass-balance year as the mean elevation of all grid cells with snow water207

equivalent between 15 and 150 mm. This range was defined for simulated snowlines to be comparable with measured snowlines.208
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Differences in glacier size and elevation range influence the snowline probability distributions (Figs. 2c,d & 4). Because209

measured snowlines cannot be quantified when they are above or below the glacier, we imposed a similar restriction on210

simulated snowlines — those that fell below the minimum glacier elevation were set to the minimum glacier elevation, and211

those that fell above the maximum glacier elevation were set to the maximum glacier elevation. As a result, glaciers with small212

elevation ranges have higher probabilities that their simulated snowlines will be above or below the glacier. This distribution is213

especially prominent for Rolleston Glacier (Fig. 2d), where there is >50% likelihood that the snowline in the natural simulations214

will be at the lowest glacier elevation, and >40% likelihood that the snowline in the present simulations will be at the highest215

glacier elevation.216

Regional climate data. We used daily temperature, precipitation, and shortwave radiation from the New Zealand Virtual217

Climate Station Network (VCSN) data37, 40, 41 with a spatial resolution of 0.05�. For each glacier, we used climate data from218

the VCSN grid box that includes the center of the glacier. Temperature was scaled with elevation to the structure from motion219

photogrammetry 10 m DEM with seasonal lapse rates for maximum and minimum daily temperatures41, which we then used to220

calculate mean daily temperature.221

Model calibration. Model calibration is required for the temperature and radiation melt factors, because the degree-day222

model does not capture all of the complex glacier dynamics and mass-balance processes. Brewster Glacier is the only glacier in223

this study with weather station data. Comparison of weather station data collected from below Brewster Glacier (2004 – 2008)224

with VCSN climate for the same period showed VCSN temperature should be reduced by 1.25�C, and precipitation should225

be increased by a factor of 1.3 to match the weather station data41, 42. An adjustment to VCSN temperature and precipitation226

is required for all glaciers except Brewster Glacier, because the gridded meteorological data is not accurate enough on the227

high-resolution glacier domains41. For the calibrations, we performed grid searches to identify parameter combinations resulting228

in the lowest annual root mean square errors (RMSE) compared with measured mass balance or snowlines. In addition to using229

the annual RMSE for model calibration, we also compare the mean of each measured series with the mean of each modeled230

series, adding a second objective in the calibration43. We refer to this error in the calibration setup and results as the ’series231

mean error’. For all glaciers, we use all parameter combinations where the annual RMSE is less than the minimum annual232

RMSE +50% of the minimum annual RMSE, and the series mean error is also less than +50% of the minimum annual RMSE.233

This resulted in 9 – 46 parameter combinations for each glacier. Additional details on the setup of the calibrations (Table S.1)234

and the calibration results (Table S.2, Fig. S.4, Fig. S.5) are in the Supplemental Information.235

GCM climate data. For attribution calculations, we used monthly precipitation and 2 m surface air temperature from236

two different ensembles of General Circulation Model (GCM) output. First, we used a multi-model ensemble: one ensemble237

member (r1i1p1) for 16 different GCMs (listed in Fig S.6) that are all part of CMIP53. The 16 CMIP5 GCMs were selected238

as all CMIP5 GCMs with monthly HistoricalNat, Historical, and RCP8.5 simulations. These GCMs, each developed by239

different scientific groups, simulate global climate for different experiments, including the RCP8.5, historical, and HistoricalNat240

simulations used here3. Natural climate was defined as HistoricalNat simulations April 1901 – March 2005. Present climate241
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with natural and anthropogenic forcing was defined as RCP8.5 April 2006 – March 20268. RCP8.5 was selected because it242

is the RCP scenario that global emission rate is closest to as of 201844, 45. Additionally, the choice of RCP scenario is less243

important in the early 21st century when other sources dominate model spread, as the runs are initialised in 200646. Second, we244

used a single-model ensemble: 34 ensemble members from the CESM Large Ensemble4. The CESM Large Ensemble is made245

of one GCM that is run for 34 ensemble members, each with small differences in initial conditions to capture model internal246

variability4. For CESM, natural climate was defined as the fully-coupled 1,800 year-long control run, using March of the first247

year through April of the last year to simulate 1,799 mass-balance years. Present climate was defined as April 2006 – March248

2026 from each RCP8.5 ensemble member. For both the HistoricalNat simulations and the CESM control run, these natural249

climates are defined by greenhouse gas concentrations at pre-industrial levels3, 4.250

The low spatial resolution of GCM simulations (ranging from 0.90�x1.25� to 2.81�x2.81�) leads to systematic biases251

between GCM output and VCSN data. Because of these biases, instead of driving the glacier model directly with GCM output,252

there are methods of removing GCM biases while keeping GCM variability47–49. We used the ’delta change method’47, 48 with253

the higher-resolution VCSN climate to remove GCM biases. We calculated monthly GCM-adjusted temperature (Tmon) and254

precipitation (Pmon) following:255

Tmon(x,y, t) = TVCSN(x,y, ¯tm)+(TGCM(x,y, t)�TGCMbase(x,y, ¯tm))

Pmon(x,y, t) = PVCSN(x,y, ¯tm)⇤ (PGCM(x,y, t)/PGCMbase(x,y, ¯tm))
(2)

where TVCSN(x,y, ¯tm) is monthly mean VCSN temperature at (x,y) for the 36-year period 1980 – 2015, TGCM(x,y, t) is256

monthly GCM temperature at (x,y) for each month t (past or present scenarios), and TGCMbase(x,y, ¯tm) is monthly mean GCM257

base temperature at (x,y), calculated from natural climate simulations 1961 – 1990.258

The delta change method gives monthly adjusted temperature and precipitation, however, calculated glacier mass balance259

can be significantly influenced by the temporal resolution50, 51. We therefore used VCSN data and GCM-adjusted climate to260

calculate daily variability for temperature (Tday) and precipitation (Pday) adjusted from previous work52, following:261

Tday(x,y, t) = (Tmon(x,y, tm)�TVCSN(x,y, tm))+TVCSN(x,y, td)

Pday(x,y, t) = (Pmon(x,y, tm)/PVCSN(x,y, tm)) ·PVCSN(x,y, td)
(3)262

where TVCSN(x,y, td) is daily VCSN temperature, being added to the difference between the monthly mean GCM-adjusted263

temperature (Tmon) and monthly mean VCSN temperature (PVCSN(x,y, tm)). For VCSN climate, both daily and monthly, we264

used the 36-year period 1980 – 2015. For GCM past climate scenarios that are longer than 36 years, the VCSN period was265

added to the GCM-adjusted climate in a repeating cycle. Daily adjusted precipitation was calculated in the same way as266

temperature, except for the precipitation adjustment being multiplicative, where temperature is additive.267
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To test this method, we compared the sum of degree days over 1980 – 2004 calculated for VCSN with those calculated for268

the Historical CMIP5 GCM simulations with the imposed daily variability. The 16 GCMs have a smaller sum of degree days269

than VCSN by an average of 1.1%, with individual GCMs ranging from 0.5 – 1.8% fewer degree days than VCSN over the270

24-year period. Because the difference between degree day sums between GCMs and VCSN is low, we do not perform any271

additional bias adjustment.272

Uncertainties. Uncertainties include 1) model parameters, 2) the inherent model uncertainty, and 3) the measured mass273

balance uncertainties. The quantifiable snowline uncertainty is very low (<1 m). The larger errors associated with the snowline,274

including manually identifying the snowline and local processes, are unquantified. Uncertainties in model parameters are275

quantified using a suite of parameters for each glacier in the attribution calculations, with 9 – 46 parameter combinations used276

for each glacier (Fig. S.4). We included the inherent model error in the attribution calculation. For each modeled mass balance277

(or snowline elevation) value, we redefined that value as 100 values with a Gaussian distribution with the standard deviation278

of the model standard error. This was done to distribute the uncertainty of each modeled value. The mean probabilities and279

likelihoods presented in Fig. 3 are the mean values of all modeled mass balance years, and including the suite of parameters280

and inherent model error.281

We estimated the 5th – 95th percent confidence intervals using bootstrapping methods. For each parameter suite and climate282

scenario, half of all years were randomly sampled with replacement, and this was done 10,000 times8. The mass balance283

uncertainties were also included when calculating the 5th – 95th percent confidence levels.284

Data availability. CMIP5 GCM output is available from public repositories, including https://esgf-node.llnl.gov/search/cmip5/.285

CESM output is available from the CESM/UCAR repository at http://www.cesm.ucar.edu/projects/community-projects/LENS/data-286

sets.html. VCSN data is available from https://data.niwa.co.nz//home. See Table S.4 for 2011 and 2018 mass-balance and287

snowline measurements. Snowlines through 2015 are available from National Institute of Water and Atmospheric Research288

(NIWA) at https://sirg.org.nz/about/annual-end-of-snummer-snowline-survey/. Global glacier mass-balance data in Fig. 1 is289

available from the World Glacier Monitoring Service.290

Code availability. All code is available from https://github.com/lvargo13/glacier_attribution291
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