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A B S T R A C T   

Air pollution is an increasing concern to urban residents. In response, residents are beginning to adapt their 
travel behaviour and to consider local air quality when choosing a home. We study implications of such 
behaviour for the morphology of cities and population exposure to traffic-induced air pollution. To do so, we 
propose a spatially explicit and integrated residential location and transport mode choice model for a city with 
traffic-induced air pollution. Intra-urban spatial patterns of population densities, transport mode choices, and 
resulting population exposure are analysed for urban settings of varying levels of health concern and air pollution 
information available to residents. Numerical analysis of the feedback between residential location choice and 
transport mode choice, and between residents’ choices and the subsequent potential impact on their own health 
suggests that increased availability of information on spatially variable traffic-induced health concerns shifts 
population towards suburban areas with availability of public transport. Thus, health benefits result from 
reduced population densities close to urban centres in this context. To mitigate population exposure, our work 
highlights the need for spatially explicit information on peoples’ air pollution concerns and, on this basis, 
spatially differentiated integrated land use and transport measures.   

1. Introduction 

1.1. Urbanisation, air quality and health 

The phenomenon of urbanisation is observed around the world in 
both developing and developed countries. The motivation of migration 
or relocation of residence is to seek a better life, whether from rural 
areas to the city for a better income, or from the city central areas to 
suburbs for a better lifestyle. In most cases, it might bring wealth and/or 
improvement of quality of life. Nonetheless, changing residential loca
tion might incur costs that are initially less obvious. Over recent de
cades, it has become increasingly clear that urbanisation has a negative 
impact on the environment, which can have detrimental effects on 
population health. In particular, traffic congestion in many cities has 
become a major source of air pollution. The deterioration of air quality 
and its localised effect, affects not only residents of that vicinity but also 
those passing through on their journeys to work. The long term effects 
include premature mortality. Tackling the health impact of this phe
nomenon and managing its negative impact has become one of the 

biggest challenges we are facing in this century. 
Extensive research effort has been devoted to improve and promote 

health and wellbeing of cities in recent years. In order to address the 
pertinent issues, one must look into the cause of the problems. Subop
timal urban and transport planning has been viewed as a plausible cause 
of the undesirable impact on public health (Nieuwenhuijsen, 2020). To a 
certain extent, this is not only the consequence of decisions made by the 
government through urban and transport planning, but also the choices 
made by all the city inhabitants. Their choices of where to live and work 
is a blueprint for the urban form of a city, and their residential location 
choices have most likely been made together with their transport 
choices. If we wish to promote healthier cities, urban and transport 
planning decisions must be made in view of such feedback mechanism. 
Miller (2018) highlights the importance of modelling this “feedback” 
effect of transport infrastructure investments on urban form, which must 
be considered in the evaluation and decision making process of policy 
decisions. 
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1.2. Integrated land-use transport modelling 

In recognition of the complexity of urban systems, an integrated 
approach has been adopted in urban and transport planning, known as 
Integrated Urban Models (IUMs), where transport and land-use models 
are integrated. This is a classical approach that has been applied and put 
into practice for over 50 years, developed based on robust utility/ 
discrete choice theory (Miller, 2018). As Miller reiterates in his latest 
review, ‘If the world is to have any hope of achieving some form of 
economic, social and environmental sustainability then we must do a 
better job of integrating land use and transportation system design in 
holistic and comprehensive ways.’ Miller (2018) also identifies some 
additional key policy questions that could benefit from an IUM 
approach, including: (1) air pollution impact; and (2) health impacts of 
land-use patterns and travel behaviour. 

1.3. Land-use, transport choices, air quality and health impact assessment 

Naturally, this integrated approach has extended beyond land-use 
and transport planning to model the policy impact on air quality and 
population health. To model such complex interactions, a fully inte
grated analysis might broadly involve four major modelling 
components: 

1. Land-use planning: Location choice; urban form 
2. Transport planning: Transport choice; traffic modelling 
3. Air quality analysis: Vehicle emissions; pollutant dispersion & 

concentrations 
4. Health impact analysis: Pollutant exposure; health impact 

assessment 
Depending on the purpose of a study, different combinations of 

selected components might be deployed. The integration between 
different components can be very complex in order to represent the 
complex interactive relationships between different systems. There are 
generally two kinds of models, namely, decision science and physical 
science models. Decision science models include: (1) Location choices 
made by businesses and residents modelled in land-use planning; and (2) 
Transport choices made by residents modelled in transport planning. As 
a result of their choices, the physical science of how vehicle emissions 
disperse into the atmosphere and impact on population health are 
modelled in air quality and health impact analyses. Pollutant exposure is 
a common theme in both air quality and health impact analyses, with air 
quality analysis focussing more on the environmental impact in terms of 
concentrations while health impact analysis focusses more on the spatial 
effect of the environment on population health. 

Our objective in the present paper is to integrate all of these four 
major components, including both decision and physical science models, 
to support policy analysis specifically related to air quality and the po
tential health impacts of both land-use and transport planning. Our goal 
is to be able to model such effects spatially as well as at an individual 
decision level. While the physical science components have been well 
developed, their integration with the decision science components has 
either been missing or needing improvements. What we would like to 
achieve is to integrate decision and physical sciences with our proposed 
model to represent the complexity of urban systems more realistically. 
Before we introduce our model, we first look at how different combi
nations of components have been integrated in the literature and iden
tify the knowledge gaps that need to be addressed. 

1.4. Linking transport planning & air quality models 

The linkage of transport planning models to air quality analysis has 
the longest history in the literature and has been well developed both in 
theory and in practice. Numerous models have been motivated by clear 
evidence of air pollution caused by traffic congestion resulting from 
transport choices; and the need to assess policy analysis of road network 
scenarios or schemes such as congestion pricing, speed limits, freight 

corridors, road capacity changes, etc. on the environment (e.g. Balda
sano et al., 2010; Boogaard et al., 2012; Briggs et al., 2008; Coria et al., 
2015; Mitchell et al., 2005; Namdeo and Mitchell, 2008; Lee et al., 2009; 
Tennoy et al., 2019; You et al., 2010). The linkages between the model 
components are mainly based on physical sciences. The transport 
planning model provides traffic information on flow, speed and vehicle 
types on each roadway, to the vehicle emission model; pollutant con
centrations can then be calculated based on the dispersion of vehicle 
emissions; hence population exposure to the pollutants can be estimated 
(Affum et al., 2003; Hatzopoulou and Miller, 2010). 

1.5. Linking transport planning, air quality models & health impact 
assessment 

As the awareness of poor air quality is growing, its subsequent effect 
on health has raised even stronger concern in society (HEI, 2010; Boo
gaard et al., 2019). Empirical evidence from the last two decades has 
shown that the characteristics of city, land-use and transport planning 
are directly linked with air quality, pollutant exposure, level of physical 
activity and their possible combined health impact (e.g. de Nazelle et al., 
2011, 2012; Dons et al., 2018, 2019; Oja et al., 2011; Shekarrizfard 
et al., 2015, 2020; Sider et al., 2013). Health impact assessment models 
are vital to facilitate policy analysis that can support healthier devel
opment of cities and our transportation systems. Promoting active 
modes of transport, including walking and cycling, and modal shifts 
from private vehicles to public transport, have been seen as the natural 
strategies to combat both the lack of physical activity and poor air 
quality (Nieuwenhuijsen, 2020; Sallis et al., 2016). 

To support policy analysis, health impact assessment methods have 
been developed to find out what health benefit might be achievable 
under different scenarios. For instance, Woodcock et al. (2013) applied 
an Integrated Transport and Health Impact Modelling Tool (ITHIM), 
developed from the work in Woodcock et al. (2009), to quantify the 
health impacts from transport-related physical activity as well as 
changes to air pollution. Scenarios representing different visions of 
behavioural change are formulated and the health impacts are assessed 
with ITHIM (Woodcock et al., 2013). Models such as ITHIM focusses on 
the physical science of translating a given vision such as certain desir
able level of reduction in traffic to its potential impact on health. 
Transport choices are not modelled but treated as visions. As pointed out 
in Wang and Connors (2018), a key assumption in ITHIM is that the 
reduction in road transport trips, as a result of increases in walking and 
cycling instead of car use, led to equal proportional reduction in pol
lutants attributed to transport. This assumption might not be realistic; it 
oversimplifies the relationship between traffic congestion and the 
resulting air pollution. In another study, Schepers et al. (2015) assess the 
potential health impact of investment in cycling infrastructure in a hy
pothetical city considering both the influence of changes in physical 
activity and pollutant dose. In this case, changes to mean concentrations 
are exogenously imposed for the health impact assessment. The effect of 
travel behavioural change in terms of modal shift from driving to cycling 
is not modelled. In general, health impact assessment models are not 
linked to travel behavioural models. Wang and Connors (2018) also 
emphasised the importance of modelling the localised effect of traffic on 
air quality and its subsequent effect on the vicinity for the residents as 
well as the pollutant dose during their journeys to work, depending on 
their mode choice. Wang and Connors (2018) are the first to model 
pollutant dose in this context. 

1.6. Linking urban form, transport planning & air quality models 

The impact of urban form on air quality has been well recognised in 
the literature (e.g. Borrego et al., 2006; De Ridder et al., 2008a; Marshall 
et al., 2005; Martins, 2012; Schindler and Caruso, 2014). The subject of 
many studies is to look at what might be a better urban development 
strategy for a better environment; urban sprawl and compact 
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development are often the two major strategies considered (e.g. Borrego 
et al., 2006; De Ridder et al., 2008b; Martins, 2012). For example, De 
Ridder et al. (2008a, 2008b) considered different levels of urban sprawl 
formulated as scenarios of development strategies. The classical trans
port planning model known as the four-stage model (Ortuzar and Will
umsen, 2001) is embedded in the model to provide traffic information 
on speed, flow and density for the simulations. Residential location 
choices are not modelled but treated as a given level of sprawl in 
different scenarios. In other words, this assumes structures which are not 
derived from underlying urban processes. Only Schindler and Caruso 
(2014) have modelled the impact of urban form on air pollution and 
exposure, where urban form is based on residential location choices. 

Empirical studies have shown that residents are concerned about air 
pollution exposure (Gatersleben and Uzzell, 2000) and indeed air 
quality and traffic conditions are two influential factors affecting resi
dential location choices (Guo and Bhat, 2004). This might impact on 
urban form formation due to altered residential location choices. Thus, 
there is a feedback effect between urban form and pollution. Schindler 
et al. (2017) are the first to model how air quality might impact resi
dential location choice in a linear city; Schindler and Caruso (2018) 
increased the spatial complexity of urban form to two dimensions. 
However, transport choices are not modelled as commute by car is 
assumed to be the only mode of transport (Schindler and Caruso, 2014; 
Schindler et al., 2017; Schindler and Caruso, 2018; Schindler and Car
uso, 2021). 

1.7. Modelling the co-evolution of residential and transport choices with 
consideration of air quality and health impact 

As Nieuwenhuijsen (2020) illustrated in the health impact assess
ment framework, we will need both urban design and behavioural 
change to create pathways to healthier cities. To ensure the design of 
policies will give us pathways to success, one must understand the co- 
evolution of land-use and transport as a result of behavioural change 
over time. Behavioural change is, to a certain extent, the pathway to 
success. With growing concern of poor air quality and its impact on 
health, there is a need to investigate how such concern might impact on 
residential location choice and subsequently on urban form, traffic, air 
quality and health. Our research questions are: 

1. If residents are concerned about the health impact of air quality, 
how would this impact on their residential location choice? 

2. How would their residential and transport choices impact on 
their own health and the health of others? 

3. How would the urban form co-evolve with transport choices? 
4. How would the air quality and health impacts co-evolve with the 

urban form and transport choices? 
Question 1 has been addressed by (Schindler et al., 2017; Schindler 

and Caruso, 2021), while Question 2 has been partially addressed by 
Wang and Connors (2018). In this paper, we are addressing Questions 1 
and 2 together, and making the first step for Questions 3 and 4. The key 
contribution of this paper is, therefore, on modelling the feedback be
tween choices as well as the interaction of residents’ choices with the 
environment and their own health. 

To model behavioural change, we will need explicit linkages be
tween decision and physical sciences to model all of the following: 

1. the trade-offs faced by residents who have a portfolio of desires 
and concerns; 

2. the feedback between residential location, transport choices and 
congestion; and 

3. the feedback between the residents’ choices and the subsequent 
impact on their own health. 

We propose a joint urban-transport equilibrium model to help un
derstand what the urban form and transport choices might be at one 
point in time as a result of the interactions. This is the first step to help 
understand how the urban form might co-evolve with transport choices 
in the future. 

2. The model 

2.1. An overview of the two-stage game theoretical model 

Our model must capture the feedback in the decision making process 
between the longer-term residential location choice and day-to-day 
transport choices. In order to do so, we propose a two-stage game 
theoretical approach to model this process in a bi-modal linear mono
centric city (LMC) as in Wang and Connors (2018) depicted in Fig. 1, 
where residents are distributed continuously along the city. Two modes 
of transport, rail and private vehicles, are available from any point along 
the city to a common destination, the Central Business District (CBD), 
represented by one end of the city. Residents will walk or cycle to the 
nearest station if they choose to take the train. Residents living close to 
the station, typically within 1 km, will walk, while those living a bit 
further away (say within 5 km) will cycle. There is also the alternative to 
walk/cycle directly to the CBD, without using train or car. If they choose 
to drive, they will join the highway at the location of their residence. 

The first stage of the game represents the longer-term residential 
location choice, which can be at any point along the city, while the 
second stage represents the day-to-day transport choices, which is the 
mode choice between rail and driving. This two-stage game theory based 
decision process is depicted in Fig. 2. 

2.1.1. Stage-1 Residential location choice 
At any time, residents might consider to move or stay where they are. 

Their objective is always to maximise the aggregate utility associated 
with living at the selected location. In other words, they will move only 
if they can find another location with a higher aggregate utility of living 
there. The factors affecting this aggregate utility include: consumption 
of housing space and composite (non-housing) good, generalised 
transport cost for commute, health impact at residence and during 
commute. An urban equilibrium is reached when no one can improve 
the utility of their residential location choice by unilaterally moving to 
another location given the choices of all other residents. 

2.1.2. Stage-2 Transport mode choice 
Wang and Connors (2018) propose a multi-objective approach to 

model the transport equilibrium, i.e. a bi-modal three-objective user 
equilibrium (TUE) model, based on the simultaneous consideration of 
three objectives: (1) minimise travel time; (2) maximise travel time 
reliability; and (3) minimise monetary cost. When faced with the two 
alternatives, car or train, a user will consider the monetary cost along
side the departure time at which they will need to leave in order to 
achieve their desired arrival time reliability. The equilibrium principle 
behind TUE is that no user can improve any one of the three objectives 
without sacrificing the other two objectives, given the choices of all 
other users. At each location, the equilibrium modal split can be all 
different and it will follow this equilibrium condition. There are three 
possible outcomes: (1) all residents from this location will use rail; (2) all 
residents from this location will use car; and (3) some residents will use 
rail and some will use car. For details of the mathematical formulation of 
this TUE model, please refer to Wang and Connors (2018). 

2.1.3. Residential location & transport mode choices and pollutant dose 
analysis 

In order to perform transport mode choice and air quality analysis, 
we need to start with the distribution of origins and destinations. In this 
case, we have only one destination (i.e. work in the CBD) and the dis
tribution of origins depends on residential location choices. Given the 
distribution of residents’ locations, Wang and Connors (2018)’s TUE 
model is effectively a spatial model of all transport choices made by each 
resident along the corridor. It enables not only the analysis of localised 
effect of their transport choices at each location, but also the effect on 
each resident’s pollutant dose during their journey to work. Once the 
transport choices of each resident at different locations are determined, 
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vehicle emissions along the city can be predicted. Followed by applying 
a pollutant dispersion model, pollutant concentration level at each res
idential location can be calculated. Based on the concentration distri
bution, each resident’s mode choice, the travel time on each leg of their 
journey to work, and the pollutant dose during commute can be calcu
lated. The estimates of the pollutant dose at the residence and the 
pollutant dose during commute can now become the proxy variables 
measuring the potential health impact of each resident’s location choice 
as well as their transport choices. Together with the residential location 
choices made throughout the city, we can then determine the spatial 
distribution of both doses as a result of each resident’s choices. This 
pollutant dose analysis process is illustrated in Fig. 2. 

2.1.4. Joint urban-transport equilibrium 
When both the urban equilibrium and transport equilibrium condi

tions are met, there will be no incentive for any resident to move to a 
different location or change their mode choice. In other words, a joint 
urban-transport equilibrium is achieved when the two following con
ditions are met: 

1. Urban equilibrium – No one can improve the utility of their 
residential location choice by unilaterally moving to another location 
given the location choices of all other residents; and 

2. Transport equilibrium – No one can improve any one of the 
three criteria: (1) travel time; (2) travel time reliability; or (3) monetary 
cost without sacrificing any of the other two criteria by unilaterally 
changing their mode choice given the transport choices of all other 
residents. 

2.2. The modelling components 

From our literature review, it appears that air quality is one of the 
influential factors affecting residential location choice while transport 
policies such as congestion pricing, speed limits, etc. are policy in
struments to induce behavioural change that affects air quality and its 
subsequent impact on health. Therefore, we postulate that pollutant 
doses at residence and during commute are factors affecting residential 
location choice. The assumption is that doses at residence and during 
commute are proxy variables representing the perceived impact on 
health of the combined lifestyle choice of where to live and how to 
travel; how they travel is determined based on the three most important 
objectives identified in the transport planning literature, namely, travel 
time, travel time reliability and monetary cost. Pollutant doses are 
determined based on the combined residential location and transport 
choices throughout the city. Details of the model components, the input 
and output of each component, and the linkages between them are 
explained as follows and visualised in Fig. 3. 

2.2.1. Residential location choice model 
Population distribution is endogenous and modelled based on resi

dential location choices of identical households. Households derive 
utility from consuming housing space and a composite good, but 
disutility from exposure at their residential location and during the 
commuting journey: 

U = κZ(r)1− αH(r)αER(r)− βEC(r)− γ (1) 

H(r) is the consumption of housing space as a function of the distance 
to the centre r, with population density at r normalised to 1/H(r). Z(r) is 
the consumption of the composite good (non-housing). Every household 
is exposed to a level ER(r) at the residential location and to a pollutant 
dose level EC(r) during the commuting journey. Households value 
housing space by α but dislike being exposed to localised pollution at the 
residential local by β and during the commuting journey by γ. κ ≡ (1 −
α)α− 1α− α is a simplification constant used for convenience. Hence, Eq. 
(1) expresses the trade-off households make in their location choice, 
between housing space, goods consumption and potential health im
pacts from traffic-induced air pollution. 

Households have income Y available to spend on location-dependent 
housing rent R(r), the composite good Z(r) and mode-choice dependent 
commuting costs T(r) to the CBD. 

Y ≥ H(r)R(r)+Z(r)+T(r) (2) 

The average exposure during the commuting journey EC for a 
household residing at location r is a function of the local mode share and 
mode-specific pollutant doses 

EC(r) = (pC(r)DC(r)+ pT(r)DT(r) )/(pC(r)+ pT(r) ) (3)  

where pC(r) and pT(r) are the shares of households commuting by car and 
by train (plus walking or biking) respectively at location r, with pC(r) +
pT(r) = 1 as given by the travel mode choice model. 

DC(r) or DT(r) is the dose of pollution concentration taken up 
depending on the transport mode. The dose along a journey to work is 
expressed by the pollution concentration being breathed in during the 
journey. 

The pollutant dose [in μg] is a function of pollutant concentration c at 
a location r, duration d of exposure, and breathing rate b depending on 
the type of activity i. Activities are commuting by car, by train, by bike/ 
walking, and being at home. 

Di(r) = c(r)di bi (4) 

The pollutant dose taken up at the residential location can be 
expressed as 

ER(r) = DR(r) = c(r)dR bR (5)  

where DR(r) is the pollutant dose at the residential location given by (4) 
for residential activity, that is the local pollution concentration c at the 
residential location, breathing rate while being at home bR and time 
spent at the residential location dR (considering mode-choice dependent 

Fig. 1. A schematic design of a linear monocentric city as considered in this work, taken from Wang and Connors (2018).  
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travel time). 

2.2.2. Transport mode choice model 
Transport mode choice is based on the bi-modal TUE model proposed 

in Wang and Connors (2018); the key concepts are briefly presented 
here. Travellers trade-off three objectives: (1) minimise travel time; (2) 
maximise travel time reliability; and (3) minimise monetary cost. For 
walking, cycling and train, the travel time is distance-based and has 
(fixed) reliability of 95%. Car travel suffers from congestion, having a 

travel time distribution whose mean and variance increase with the 
volume of car traffic. 

Each user has their own desired level of reliability (i.e. the proba
bility of arriving at the destination on time), which is uniformly 
distributed between 50% and 95% at every location throughout the 
LMC. Desired arrival time reliability infers a necessary departure time, 
and hence the associated travel time budget (TTB) can be computed (Lo 
et al., 2006). Individuals trade-off TTB and monetary cost according to 
the travel time budget surplus (TBS) concept (Wang and Ehrgott, 2018). 

Fig. 2. A two-stage game theoretical approach for a joint urban-transport equilibrium.  
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For any given price (monetary cost), an individual will have a maximum 
TTB that they would be willing to spend; this is captured by the indif
ference curve for this individual, along which the alternatives are 
equally attractive. 

TBS is the maximum TTB minus the required TTB for the desired 
level of reliability. Individuals choose the option with the highest TBS, 
so that equilibrium is reached when no individual can improve their TBS 
by switching mode. This is called the travel time budget surplus max
imisation three-objective user equilibrium (TBSmaxTUE) condition. 

The equilibrium modal split is specific to each location. Fig. 4 shows 
rail with fixed 95% reliability and positive TBS. The necessary TTB for 
car depends on the individual’s desired reliability, with i% giving the 
same TBS as rail. Individuals with desired reliability <i will choose car, 
and the rest will choose rail. 

Given the demand distribution throughout the city, TBSmaxTUE 
provides the transport equilibrium solution for the system, i.e. the modal 
split between rail and car at each location. 

2.2.3. Pollutant dose analysis 
Based on the spatial distribution of the residents and modal split at 

each location from transport equilibrium analysis, we can derive the link 
flow, average speed and travel time on all modes (including not only car 
and rail, but also the access modes, walking and cycling). We can then 
proceed to a three-stage analysis as illustrated in Fig. 2 adopted from 
Wang and Connors (2018): 

1. Vehicle Emission Prediction – modelling emission rates for the 
road based on traffic flow and average vehicle speed (Rilett and Bene
dek, 1994). 

2. Pollutant Dispersion – modelling air pollutant concentrations 

from road emission rates and surface meteorology (Dirks et al., 2002, 
2003). This determines the local pollutant concentration at each resi
dential location. 

Fig. 3. Model flow of the joint urban-transport equilibrium model, including inputs and outputs of each model components and feedback links.  

Fig. 4. Both car and rail have positive modal shares (taken from Wang and 
Connors (2018)). 
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3. Pollutant Dose Prediction – modelling pollutant dose from air 
pollution concentrations and the travel time along each link on the 
commute including the active (walking/cycling) component, following 
Dirks et al. (2012) as explained in Eq. (3) and (5). 

Thus, we will be able to estimate the individual pollutant dose, by 
aggregating the pollutant dose on different modes (including access/ 
active modes, i.e. walking and cycling) during the journey to work. 

2.3. Joint urban-transport equilibrium solution algorithm 

As explained and visualised in Fig. 2, there is a feedback loop be
tween the residential location choice model, the transport mode choice 
model and the pollutant dose analysis. Given the transport equilibrium 
as explained in Section 2.2.2, the joint urban-transport equilibrium can 
be obtained as follows. 

In urban equilibrium all households get the same utility u assuming 
migration is free and households are identical. The boundary of the city 
rf and the total population N are assumed to be fixed in the closed city. 
Households choose a residential location where they can maximise their 
utility expressed in Eq. (1), subject to the average pollutant dose during 
the commuting journey of all transport modes according to the local 
modal split, the pollutant dose at the residential location, the rent and 
housing profile, and the budget constraint. 

We assume that the dose, physical activity and transport monetary 
cost for a residential location is an aggregate function of these perfor
mance parameters by mode, weighted by the current modal split. This 
means that an individual considers the possible performances of the two 
modes and would assess the aggregate performance according to the 
current modal split at this location. This reflects the possibility of in
dividuals to change their mode choice on a low temporal scale, while a 
general mode split at a location can be observed on a larger temporal 
scale. 

The urban equilibrium is defined by the functions Z(r), H(r), R(r), 
pollutant dose levels ER(r) and EC(r) given by the transport model, and 
the land allocation condition R(r) = max {Ψ(r),RA}. RA is the constant 
agricultural rent beyond the city boundary rf and Ψ(r) is the land bid rent 
given by 

Ψ(r) = max
Y − T(r) − Z(r)

H(r)
s.t.N =

∫ rf

0
n(r)dr (6) 

In the following, we drop r for conciseness where it causes no 
confusion. 

2.3.1. Consumption 
Households’ demand functions for housing H and the composite 

good Z at each residential location are derived from the maximisation 
problem (6) 

Z = (1 − α)(Y − T) (7)  

H = αu*1/αEβ/α
R Eγ/α

C (Y − T)1− 1/α (8)  

where u* = u(Z,H,ER,EC) is the endogenous utility reached by all 
households at all locations in equilibrium. Eq. (8) shows that households 
compensate higher pollutant doses and higher transport costs with 
increased housing consumption or lower rent payments. A stronger 
aversion to exposure, ceteris paribus, also increases housing consump
tion, highlighting the trade-off households make when deciding where 
to live. 

2.3.2. Population density 
Since we assume that all residential space at a location is occupied 

and normalised to 1, we have n = 1/H, and thus the population density n 
can be expressed as 

n = α− 1u*− 1/αE− β/α
R E− γ/α

C (Y − T)1/α− 1 (9) 

Population density is thus a function of residential preferences (α, β, 
γ), pollutant doses (ER,EC), income (Y), transport costs (T), and the 
endogenous utility level (u*). Given the closed city framework, the 
population constraint N =

∫
0
rfn(r)dr must hold. 

2.3.3. Land rent 
Under Cobb-Douglas preferences housing expenses are equal to the 

share of income spent on housing minus commuting costs: RH = α(Y −
T). With Eq. (8) we can derive the land rent as a function of income, 
transport costs, pollutant doses at the residential location and during the 
commuting journey, residential preferences, and the endogenous utility 
level: 

R = u*− 1/α
(Y − T)1/αE− β/α

R E− γ/α
C (10) 

Land rent at the city boundary R(rf) is then 

R
(
rf
)
= RA = u*− 1/α (

Y − T
(
rf
) )1/αER

(
rf
)− β/αEC

(
rf
)− γ/α (11)  

2.3.4. Equilibrium utility 
Since the fringe distance rf is assumed to be fixed and the rent at the 

urban boundary equals the agricultural rent such that R(rf) = RA, we can 
use Eq. (11) to derive the endogenous utility level u* which all house
holds have to obtain no matter their location or mode choice 

u* =
(
Y − T

(
rf
) )

R− α
A ER

(
rf
)− βEC

(
rf
)− γ (12) 

This property shows as expected that utility is positively related to 
income, but negatively to transport costs, agricultural rent, and 
pollutant doses at home and during the commute. With the pollution 
concentration from traffic at the city boundary being the lowest within 
the city (only background concentration or non-traffic related pollu
tion), ER(rf) can be assumed constant. Thus, we can show that traffic- 
induced residential exposure does not change the population at the 
city boundary. T(rf) and EC(rf), however, depend on the distribution of 
households and modal splits in the city. Thus, these two model com
ponents alter the population density at the city boundary. 

3. Numerical analysis 

3.1. Process, scenarios and parameters 

We analyse the described continuous model numerically, by splitting 
the interval r ∈ [0,L] representing the city space into X discrete elements 
so that dr = L/X. 

The numerical analysis is initialised with a uniform population dis
tribution of n(r) = N/X. For each location, the transport mode choice is 
calculated as explained in Section 2.2.2, returning the modal split by 
location. Based on the modal split, vehicle emissions are calculated and 
their dispersion obtained as pollutant concentrations per location. 
Depending on the average modal split per location, the average dose per 
commute to the CBD is calculated for each location. Also, doses at res
idential locations are estimated. Given this information about the po
tential dose per residential location - during the commute and/or at the 
residency - bid rents and utilities per location are obtained as explained 
in Section 2.3. A household residing at a location with the lowest utility 
in the current iteration moves to a location with the highest utility. In 
case several locations meet these criteria, households and locations are 
drawn randomly from this subset. Based on the updated population 
distribution, mode choices are updated and the entire process is 
repeated until convergence, i.e. differences in utilities across locations 
are smaller than a given threshold value. For further details on the 
mathematical formulation of the mode choice model, the reader is 
referred to Wang and Connors (2018). 

The model allows to consider any primary traffic-induced pollutant. 
We model carbon monoxide (CO), a major non-reactive primary 
pollutant that results from incomplete oxidation of carbon in 
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combustion and impacts human health. 
We numerically analyse four scenarios with fixed population N: (i) 

the benchmark case, where residents do not express any concern related 
to air pollution (neither exposure at the residential location nor during 
the commute); (ii) residents are concerned about residential exposure; 
(iii) residents consider both residential and commuting exposure in their 
decision-making process; and (iv) travellers only consider their exposure 
during the commute to work. The numerical results of these scenarios 
are depicted in Figs. 5 to 11. 

Table 1 lists the model parameters and Table 2 shows the parameter 
values that change across scenarios. Default model parameters were 
chosen based on those used for the model with car travel only in 
Schindler et al. (2017) and the transport choice model in Wang and 
Connors (2018), which themselves selected model parameters based on 
literature where applicable and to suit the chosen set of comparative 
scenarios. 

3.2. Results 

In the following, we present the results of our numerical analysis, 
including aggregate results across scenarios (Table 3) and spatial pat
terns of the scenarios. Note that these results are valid for the specified 
parameter space, in particular where households’ preferences for 
housing space are always higher than their aversion to localised 
pollution.1 

3.2.1. Population distribution 
Fig. 5 shows the population distribution as a function of distance to 

the CBD (located at r = 0) for the different scenarios. Without any 
pollution-related concerns (benchmark, red dashed line), population 
density is highest in locations close to the CBD and the train station 
located at r = 0, followed by locations close to other train stations 
located at r = 5; 10; 20). In general, population density decreases with 
distance to the centre. Locations close to train stations are attractive 
locations due to travel time, reliability, and travel costs (see also Wang 
and Connors (2018)); thus, we find population clusters around these 
transport stations. 

Fig. 5. Population distribution as a function of distance to the CBD depending 
on households’ residential preferences (β and γ); train stations are located at 
distances 0;5;10 and 20 (circled). 

Fig. 6. Car mode share as a function of distance to the CBD depending on 
households’ residential preferences (β and γ) - changes for all scenarios relative 
to the benchmark scenario. Train stations are located at distances 0;5;10 and 
20 (circled). 

Fig. 7. The flow of biking and walking (active transport modes) as a function of 
distance to the CBD depending on households’ residential preferences (β and γ) 
- changes for all scenarios relative to the benchmark scenario. Train stations are 
located at distances 0;5;10 and 20 (circled). 

Fig. 8. CO doses at residential locations as a function of distance to the CBD 
depending on households’ residential preferences (β and γ); train stations are 
located at distances 0;5;10 and 20 (circled). 

1 This is a reasonable assumption; Schindler et al. (2017) have discussed 
analytically boundary conditions for their residential location choice model to 
yield qualitatively different results. Due to analytical intractability in our in
tegrated location and mode choice model this is beyond the scope of this paper. 
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As households are concerned about being exposed to traffic-induced 
air pollution at the residential location (β > 0, increased line width), 
central locations become less attractive residential locations while lo
cations near the city boundary attract more households. Households 
compensate the higher CO doses in central locations by demanding more 
housing space in order to receive the same utility as elsewhere in the 
city; thus, compared to the benchmark scenario we find lower popula
tion densities near the centre since CO doses are lower near the city 
boundary than near the centre, and households therefore accept higher 
population densities (i.e. each household consumes less housing space) 
in suburban locations than in the benchmark case. Thus, local pollution 
externalities increase population densities in suburban locations, and 
reduce densities close to the CBD. 

Factoring a concern about exposure during the commuting trip (γ >
0, darker lines) into residential choices results in more households living 
in locations between the CBD and the train station at r = 5. In the most 
central locations, however, population densities are still lower than in 
the benchmark scenario since households compensate the commute 
exposure with increased housing space. Therefore, we observe that 
households with both types of air pollution related concern choose 

larger housing spaces, albeit in different locations away from the centre: 
residential concerns disperse population notably to suburban locations 
with public transport access; while commuting concerns concentrate 
population notably close to, but not in, the CBD. 

Fig. 9. CO doses during the commute as a function of distance to the CBD 
depending on households’ residential preferences (β and γ). Train stations are 
located at distances 0;5;10 and 20 (circled). 

Fig. 10. CO doses during the commute, experienced by households living at 
locations r km away from the CBD depending on their mode of transport and 
their residential preferences β and γ; the grey line depicts CO concentrations for 
the benchmark scenario (β = γ = 0) as a function of distance to the CBD. Train 
stations are located at distances 0;5;10 and 20 (circled). 

Fig. 11. Average CO dose experienced by all residents living at a location r km 
away from the CBD depending on households’ residential preferences (β and γ) - 
relative to the benchmark scenario; a) dose at a residential location r km from 
the CBD, b) average dose during the commute of all households living at 
location r. Train stations are located at distances 0;5;10 and 20 (circled). 

Table 1 
Model parameters.  

Parameter Description Default value 

N Number of households 9000 
si Locations of railway stations 0;5;10;20 
rf Location of the city boundary; 1 
L city length (km) 25 
X Number of discrete elements between [0,L] 50 
RA Agricultural rent (£/month) 1 
Y Household income (£/month) 2000 
DW, DB Maximum walking, cycling distance (km) 0.5;10 
fC, fT,fW,fB Speed (km/min) by car (free flow), train, walk, 

bike 
0.75;1.2;15;6 

WT Waiting time for train (min) 15 
ET Egress time (min) from station 5 
mT, mC Cost (£/km by train (ticket), by car (fuel) 0.15;0.12 
τ Willing to pay (£/km) to get free flow speed 1 
cC Road capacity (veh/h)  
TCP, TBP Parking time (min) for car, bicycle 3;4.5 
PC Cost to park car(£) 3 
c, k Burr Distribution shape parameters 10;0.7 
bR,bW,bB Breathing rate (cu.m/min) resting, walking, 

cycling 
0.012;0.024;0.036  
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3.2.2. Travel patterns 
The change in population distribution due to air pollution related 

concerns (all scenarios but the benchmark) results in more households 
travelling by car than train and/or active travel mode (Table 3). In 
particular fewer households bike or walk directly to work and more 
households commute longer distances. Yet more households travel 
actively (i.e. walk/bike) for more than 10 min (see Figs. 7;A.6). The 
average car travel speed decreases and the ratio between travel time by 
train compared to car increases relative to the benchmark scenario. 

In terms of transport mode choice, we see that all households living 
close to train stations (r = 0; 5; 10; 20) choose to commute by train (and 
walking/biking), while households near the city boundary and further 
away from train stations commute mostly by car (Fig. 6). Most house
holds near the CBD walk or bike directly to work. This pattern is quite 
constant across scenarios, with most changes observed around train 
stations and the CBD as the highway becomes more congested. Since 
fewer households live in central locations relative to the benchmark 
scenario in case of high β, we observe more car travellers commuting 
from more distant locations relative to the benchmark. An increase in γ, 
in contrast, increases the amount of car travellers mainly in locations 
some distance away from the CBD (r = 4; 6; 9). 

Fig. 7 shows the flow of walkers and bikers as a function of distance 
to the CBD. Active modes of transport are chosen by households who live 
close enough to the CBD to directly walk or bike to work, and by 
households to get to the nearest train station. Thus, we see a cluster of 
active commuters around train stations and the CBD. It is interesting to 
note that across scenarios, we observe a drop in active modes (hence an 
increase in car use) in central locations as households are more con
cerned about exposure to air pollution, especially about exposure during 
the commute. In contrast, such concerns result in increased flows of 
active commuters around suburban train stations. This spatial tension 

between car and active commuters needs to be considered in policy 
design to avoid unintentional consequences, as further discussed in 
Section 4. 

3.2.3. CO doses 
Residents are exposed to different CO doses depending on the vari

ations in CO concentrations across the city, where they live, and the 
different breathing rates and journey times dependent on the different 
transport modes. 

Interestingly, on aggregate, the CO concentration increases relative 
to the benchmark in all scenarios, with a maximum for RC2 (Table 3). A 
stronger aversion lets households compensate CO doses with the con
sumption of more housing space and, therefore, shifts more households 

further away from the CBD (see Fig. 5 and the trade-off in the utility 
function2 in Eq. (1)), resulting in longer commuting distances and hence 
increased emissions. The more congested highway also amplifies CO 
concentrations in the city. Since fewer households are biking/walking 
directly to the CBD (where CO concentrations are highest), total CO dose 
for this group is lower. 

Fig. 8 shows the average dose households are exposed to at resi
dential locations, as a function of distance to the CBD. Doses decrease 
with distance to the CBD, with steeper reductions in locations which are 
far away from train stations. This is due to varying commuting times 
across locations, depending on commuting mode and distance to the 
CBD. Since households move further away from the centre as they are 
more concerned about being exposed at their residential locations, 
travel distances are increased and, in turn, pollution concentrations and 
CO doses are increased in locations around the CBD. 

This generally follows the pattern of CO concentrations, which 
decrease with distance to the centre. All households are commuting to 
the CBD, thus emission concentrations are highest close to the centre. 
However, since households who live close to the centre walk or bike to 
work, CO concentrations almost stagnate in central locations. Similarly, 
many households living close to train stations bike or walk to the sta
tions, and, therefore, do not contribute to emissions. Hence, there is few 
variation around the locations of train stations. When households factor 
health concerns due to traffic-induced air pollution into their location 
choice, we see slightly increased CO concentrations in particular in 
central locations due to increased travel distances as more households 
live in suburban locations. 

Table 2 
Households’ residential preferences per scenario;’B′: benchmark, no exposure 
concerns, ‘R’: only concerns about exposure at the residential location,’RC’: 
concerns about both residential and commuting exposure,’C’: only concerns 
about commuting exposure.   

Description B R RC C 

α Preference for housing 
space 

0.2 
[B] 

0.2 0.2 0.2 

β Aversion to exposure 
at the residential 
location 

0 0.02;0.10 
[R1] 

0.10 [RC1] 0 [C1] 

γ Aversion to exposure 
during the commute 

0 0 [R2] 0.02;0.10 
[RC2] 

0.02;0.10 
[C2]  

Table 3 
Aggregate results for the seven scenarios; the scenario with the maximum value per row is marked in bold.   

B R1 R2 RC1 RC2 C1 C2 

Travel patterns 
Car commuters 4182.555 4214.123 4351.749 4393.877 4507.987 4223.091 4392.645 
Train commuters 4817.445 4785.877 4648.251 4606.123 4492.013 4776.909 4607.355 
Commuters ≥ 10 min active 471.953 472.047 501.549 517.637 524.562 484.795 531.516 
Commuters active travel only 2950.733 2777.199 2264.758 2192.501 1916.217 2864.233 2540.266 
Average speed car [km/min] 1.228 1.219 1.174 1.168 1.149 1.223 1.199 
Ratio average time train/car 2.253 2.231 2.129 2.109 2.049 2.236 2.154  

CO doses [μg] 
CO concentration 18.067 19.303 24.255 24.643 25.926 18.397 20.141 
Max. CO dose (residential) 0.052 0.053 0.056 0.057 0.060 0.053 0.057 
Max. CO dose (commute) 0.001 0.001 0.002 0.002 0.002 0.001 0.002 
Max. CO concentration 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
CO dose active travel only 50.184 48.072 42.218 41.713 38.585 49.746 48.186  

Population exposure [μg] 
residential 0.890 0.950 1.189 1.208 1.269 0.906 0.991 
commute 0.025 0.027 0.034 0.036 0.040 0.026 0.032 
Utility 2.226 2.403 3.219 3.717 6.546 2.586 4.634  

2 Note that the preference for housing space consumption is always higher 
than the aversion to pollution in this numerical example (Table 2). 
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The total (aggregate) CO concentration varies across scenarios. The 
benchmark scenario yields the lowest total CO concentration (18 μg), 
while the scenario with the strongest concern about both exposure 
during the commute and at the residential location yields the highest 
total concentration in the city (25.9 μg). 

Looking at the spatial pattern of CO doses during the commuting trip 
(Fig. 9), we see that maximum doses are experienced by households 
living some distance away from the CBD, and not by households living 
closest to the CBD. This is because central households directly walk or 
bike into the CBD and, therefore, spend less time commuting; at the 
same time, however, they are exposed to highest emission concentra
tions while having increased breathing rates due to their active mode of 
transport. A short commute offsets these high concentrations, a longer 
commute, however, leads to increased doses; hence the peak at distance 
r = 2. 

Lowest doses are found at locations somewhat close to the CBD, but 
where households commute by car. These households have a relatively 
short commute and a low breathing rate, and therefore experience only 
low doses. Fig. 10 illustrates well the trade-off between active 
commuting mode (hence higher breathing rate), commuting time, and 
emission concentrations as a function of distance to the CBD. These re
sults highlight how CO doses vary per residential location and per 
transport mode, and across scenarios. 

The benchmark scenario yields the lowest CO doses at a residential 
location, with the most pronounced differences found in central loca
tions (Figs. 9 and 10) and among active commuters. 

3.2.4. Population exposure 
Looking at population exposure gives another interesting perspec

tive. Residential population exposure is obtained by multiplying CO 
doses at a residential location by the number of households living there 
(Fig. 11a). Commuting population exposure is obtained similarly by 
multiplying the average CO dose during the commuting journeys of 
households living at a location by the number of households (Fig. 11b). 

On aggregate, total population exposure (both residential and 
commute) is highest in RC2, followed by RC1, and lowest in the 
benchmark scenario. 

We see that households’ health concern in location choice has the 
most prominent effect in central locations (Fig. 11). The benchmark 
scenario (no concern) results in highest population exposure in central 
locations due to highest population and CO concentrations there. Resi
dential exposure concern leads households to shift towards locations 
further away from the CBD, and therefore to avoid locations with 
highest emission concentrations. In case of concerns about exposure 
during the commute, more people choose locations somewhat close to 
the CBD, and hence accept higher doses at residential locations while 
reducing commuting time and, therefore, the time being exposed. A 
concern about exposure at home leads more households to choose sub
urban locations, resulting in increased travel distances by car, hence 
higher emissions and hence higher CO doses in central locations. Fig. 11 
illustrates the tension between exposure and emissions, as increased 
total CO concentrations can result in reduced population exposure in 
some locations due to households avoiding to live in locations with 
maximum concentrations. 

4. Discussion 

4.1. Contributions of an integrated transport and residential location 
choice model and a call for integrated policy responses 

Developing an integrated transport and residential location choice 
model provides a more realistic intra-urban density pattern than a model 
which assumes all households commute by car as for instance proposed 
by (Schindler et al., 2017; Schindler and Caruso, 2021). We still observe 
a clear distance effect in that densities generally drop with distance to 
the centre (in line with urban economic theory). In addition, population 

clusters emerge around train stations and near the city centre. In com
parison to a uniform population distribution (e.g. Wang and Connors, 
2018), such an integrated model can show that the pollutant dose due to 
the commuting journey can actually be lowest for households that live 
close to the CBD and choose to make the short commuting trip by car. 

4.2. Active transport helps to reduce emissions city-wide at the cost of 
individuals’ health in central locations 

Households which live close enough to the CBD to walk or bike are 
actually prone to higher doses due to higher breathing rates in active 
modes of transport while being exposed to the highest pollution con
centrations in the city. Thus, although encouraging active transport 
modes within the city has great potential to reduce emission concen
trations in particular in central city areas, and thus benefits the wider 
city population, these households are actually the subpopulation which 
experiences highest pollutant doses. Given that population densities are 
highest in central locations, this is of great concern and our work shows 
that if residents are aware of this tension, central locations will be less 
populated. 

Literature discusses how different commuting modes contribute to 
and expose households to different pollution concentrations (e.g. Briggs 
et al., 2008). Although in this paper we do not account for differences in 
pollutant doses inside or outside vehicles, the model considers the 
differing breathing rates depending on the commuting mode. More 
active modes of transport (biking, walking) increase doses due to higher 
breathing rates (e.g. Wang et al., 2018). In central locations where 
pollution concentrations are high, this results in elevated doses for 
active travellers. In areas with low pollution concentrations, however, 
such as around train stations in suburban locations, an active mode of 
transport contributes to lower levels of population exposure. As visible 
in Fig. 11, there is a steep change in population exposure at the location 
3 km from the CBD. Encouraging active modes of transport in suburban 
locations (more than central locations) can promote population health 
outcomes. 

Households choosing to live near the city boundary in contrast, 
experience relatively low doses despite their longer commute. This 
subpopulation is responsible for highest contributions to emission con
centrations as they pass all other locations on their commute to work, 
exclusively travel by car, and cover the longest distance. Although they 
experience elevated pollution concentrations themselves while working 
in the CBD during the day, and therefore, might consider it in their 
location choice, fringe locations are still the most attractive locations for 
them. Discouraging car travel from the city edge would be beneficial for 
all urban dwellers. This could be incentivised by offering public trans
port at the city boundary (i.e. a train station in this model). In reality, 
however, a train station is unlikely to mark a city boundary; instead, it 
will encourage further residential development beyond the train station, 
with many households deciding to travel all the way to the CBD by car. 

4.3. The spatiality of air pollution concern is important 

Further, we find that a concern of exposure to air pollution at the 
residential location tends to increase population dispersion to suburban 
locations, especially with access to public transport; whereas concern of 
exposure during the commute tends to concentrate populations closer to 
the CBD. The tension between those spatially differentiated concerns 
impacts residents’ decisions, and therefore urban form and transport 
mode share. 

Despite the mentioned differences resulting from the place of expo
sure concern (i.e. at home versus during the commute), we also find 
synergies. A trend is visible towards lower population densities in cen
tral locations but higher densities in locations in fair proximity to the 
CBD and public transport, independent of the place of origin of health 
concerns. Thus, urban policies can be designed with mutual benefits. 
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4.4. Policy interventions need to consider spatially varying impact of 
behaviour changes 

With increased information available to city dwellers on (real time) 
emission concentrations, often differentiating between areas across the 
city, it is important for urban planners and other decision makers to 
consider the effect of such information availability on people’s de
cisions. As visible from our results, increased awareness about spatially 
varying pollution concentrations can actually increase inequality among 
subpopulations within an urban area. Although in our model all 
households express the same degree of concern about traffic-induced air 
pollution, the households which move to suburban locations are less 
prone to negative health outcomes than inner city dwellers. Yet, sub
urban households are for a large part responsible for increased pollution 
concentrations. This knowledge can be used by decision makers to 
design measures which lead households to internalise such spatial 
heterogeneity. 

4.5. Decision-makers: beware of unintended consequences 

Finally, our results highlight the need for decision-makers to 
consider unintended consequences of potential remedies: First, 
increased concern to exposure during the commute ironically tends to 
increase car use since exposure to pollution is lowest for car travellers 
even though they contribute most to emissions. Second, our analysis 
shows that air pollution-aware residents (both at the residential location 
and during the commute) who attempt to best manage their residential 
location and transport mode choices as individuals might actually 
deteriorate air quality at the city level. Hence, decision makers are 
advised to pay close attention to how to communicate with residents 
when aiming to raise their awareness regarding air pollution concerns. 

5. Conclusion 

This paper has presented an integrated residential location and 
transport mode choice model in a city with traffic-induced air pollution. 
We explored how behavioural changes might impact population expo
sure to air pollution. With increasing availability of (real time) infor
mation about air pollution concentrations and often also their spatial 
variability within urban areas, it becomes important for urban and 
transport planners and decision makers to consider the effect of such 
information on household behaviour. Adaptive policy design depending 
on the level of concern about health outcomes due to traffic-induced air 
pollution and underlying spatial heterogeneity of pollution sources and 
population exposure is key to respond to this contemporary urban issue. 

With the spatially explicit and integrated urban model, we show that 

integrated urban and transport policies are needed to mitigate exposure 
to traffic-induced air pollution. Such policies need to consider residents’ 
choices towards less populated central areas but increasingly attractive 
fringe areas. 

We also show that policy responses might need to target different 
locations of a city or a combination of locations depending on whether 
residents are concerned about exposure at home and/or during the 
commute. Availability of such spatially relevant information would be 
key for designing appropriate policy responses for a given local context. 

Our analysis further reveals the tension between impacts of behav
iour changes on exposure versus emissions (pollution concentration), 
individual versus city outcomes, and exposure at home versus during the 
commute. While a household who is concerned about exposure during 
the commute, for instance, decides to commute by car to reduce their 
own commuting exposure, this might increase the total pollution con
centration in the city, and thus downgrade the situation for the city as a 
whole, and potentially even that household at their residential location. 
Policy responses therefore require careful understanding of these ten
sions to address this trade-off, which likely varies across cities and local 
contexts. Low emission zones or electric vehicles might possibly help to 
turn this vicious cycle into a virtuous one, with less pollution making 
active travel more attractive. 

This modelling framework offers the potential to further explore 
effects of transport and land use policy on residential and transport 
mode choice in a city with traffic-induced air pollution. It also sets the 
foundation for studying alternative modes of transport, such as e-bikes, 
and their effects on both urban structure and transport mode choice. 
Recent studies (e.g. Klingen and Ommeren, 2020) provide indications 
that increased ambient ozone levels (to which CO and NOx are pre
cursors) reduce biking speeds. This would be an interesting extension to 
the presented model. Further, it would be interesting to alter the city 
layout (e.g. train stations, city length) and explore how this might 
impact household behaviour and spatial patterns of exposure. An 
implementation of the model in a 2D modelling environment would 
allow for further discussion on the effect of local (neighbourhood) 
characteristics of urban form beyond distance effects. 
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Fig. A.1. Emission concentration of CO as a function of distance to the CBD; train stations are located at distances 0;5;10 and 20 (circled).  

Fig. A.2. Average CO dose experienced by all residents living at a location r km away from the CBD depending on households’ residential preferences (β and γ); a) 
dose at a residential location r km from the CBD, b) average dose during the commute of all households living at location r.  
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Fig. A.3. Car mode share as a function of distance to the CBD depending on households’ residential preferences (β and γ).  

Fig. A.4. Change in the amount of car travellers relative to the benchmark scenario and as a function of distance to the CBD depending on households’ residential 
preferences (β and γ). 

Fig. A.5. Change in the amount of train (incl. active) travellers relative to the benchmark scenario and as a function of distance to the CBD depending on households’ 
residential preferences (β and γ).  
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Fig. A.6. The flow of biking and walking (active transport modes) as a function of distance to the CBD depending on households’ residential preferences (β and γ).  
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