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ABSTRACT 
 

To reduce the emission of carbon dioxide (CO2) from industrial ironmaking in New Zealand 

(NZ), it is proposed to perform direct reduction (DR) of NZ titanomagnetite ironsand pellets 

using H2 gas. In this thesis, the H2 reduction behaviour of pellets made from the NZ ironsand 

are examined. The aim of the thesis is to understand the reduction mechanism, and develop an 

analytical kinetic model to describe the reduction progress with time. This has been addressed 

through a series of reduction experiments in H2 gas. The overall reduction kinetics are 

examined in a Thermogravimetric analysis system (TGA); the phase evolution during reduction 

is measured by an in-situ neutron diffraction (ND) method; and the evolution of pellet- and 

particle-scale morphologies are analysed by scanning electron microscopy (SEM) of quenched 

samples. Based on the analysis of results from these experiments, the mechanism of the 

reduction is found to be adequately described by a single interface shrinking core model (SCM). 

 

Two different types of pellet are considered in this work: Ar-sintered pellets were sintered in 

an inert atmosphere to produce pellets containing mainly titanomagnetite (TTM). Pre-oxidised 

pellets were sintered in air to produce pellets containing mainly titanohematite (TTH). The 

reduction rate of both types of pellets is found to increase with reduction temperature, H2 gas 

flow rate, and H2 gas concentration. Above 1143 K, it is found that both types of pellets present 

a similar reduction rate, while below 1143 K, the reduction of pre-oxidised pellets is much 

faster than that of Ar-sintered pellets. For both pellets, the maximum reduction degree can 

reach ~97%. After complete reduction, metallic Fe coexists with other unreduced Fe-Ti-O 

phases (FeTiO3, TiO2 or pseudobrookite (PSB)/ferro-PSB), which is consistent with the 

observed reduction degree of < 100%. 

 

During reduction of both types of pellets, any TTH present is rapidly reduced first. After this 

step, TTM is then reduced to FeO, with Ti becoming enriched in the remaining unreduced TTM. 

FeO is further reduced to metallic Fe, which makes up to ~90% reduction degree. Eventually 

Ti-enrichment of the TTM leads to a change in the reduction pathway and it instead directly 

converts to metallic Fe and FeTiO3. Above ~90% reduction degree, reduction of the remaining 

Fe-Ti-O phases occurs (leading to the formation of TiO2 or PSB/ferro-PSB). 

 

The enrichment of Ti in TTM which accompanies the generation of FeO is substantially 

different from conventional non-titaniferous ores. This enrichment is confirmed by EDS-maps 
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of the particles and stoichiometric calculations of the molar fraction Ti within the TTM phase. 

This enrichment effect changes the morphology of FeO in the particles, leading to the formation 

of FeO channels surrounded by Ti-enriched TTM. 

 

At the pellet-scale, both types of pellets present a single interface shrinking core phenomenon 

at higher temperatures. Metallic Fe is generated from pellet surface with a reaction interface 

moving inwards. However, at lower temperatures this pellet-scale interface becomes less 

defined in the pellets. Instead, particle-scale reaction fronts are observed.  

 

A single interface shrinking core model (SCM) is shown to successfully describe the reduction 

of pellets for reduction degrees < ~90% at all temperatures studied. However, at reduction 

degrees > ~90% this model fails. This is attributed to the change in reaction mechanism 

required to reduce the residual Fe-Ti-O phases that remain dispersed throughout the whole 

pellet at this stage of the reaction. The single interface SCM indicates that the reduction rate of 

the Ar-sintered pellets is controlled by the interfacial chemical reaction rate. However, two 

different temperature regimes are identified.  Above 1193 K, the activation energy is calculated 

to be 41 ± 1 kJ/mol, but below 1193 K the calculated activation energy increases to 89 ± 5 

kJ/mol. This change in activation energy appears to be associated with the change of the rate-

limiting reaction from FeO → metallic Fe to TTM → FeO. By contrast, the pre-oxidised pellets 

exhibit mixed control at 1043 K, where a role is played by both the interfacial chemical reaction 

rate and the diffusion rate through the outer product layer. However, at temperatures of 1143 

K and above, the pre-oxidised pellets also exhibit interfacial chemical reaction control, with a 

single activation energy of 31 ± 1 kJ/mol, which again seems to be consistent the rate-limiting 

reaction being FeO → metallic Fe.  

 

In summary, the findings in this thesis contribute to understanding of the reduction of NZ 

ironsand pellets in H2 gas, and establish a kinetic model to describe this process. In the future, 

this information will be applied to develop a prototype H2-DRI shaft reactor for NZ ironsand 

pellets.  
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,  = Apparent effective diffusion coefficient (cm2/min) 
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𝐷𝐷50% = Average particle size (µm) 
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𝑚𝑚𝑜𝑜         = Mass of oxygen (mg) 

𝑀𝑀 = Molar mass (g/mol) 

𝑣𝑣𝑣𝑣𝑣𝑣% = Volume fraction (dimensionless) 

𝑤𝑤𝑤𝑤% = Weight percentage (dimensionless) 

𝑎𝑎𝑎𝑎% = Atomic percentage (dimensionless) 

τ = Characterisation time (50wt% metallic Fe) (min) 

𝐼𝐼(𝑋𝑋𝑎𝑎) = Interfacial chemical reaction dependence (dimensionless) 

𝐷𝐷(𝑋𝑋𝑎𝑎) = Diffusion dependence (through product layer) (dimensionless) 

𝑅𝑅 = Universal gas constant = 8.314 (J/(mol·K)) 

𝐸𝐸𝐴𝐴 = Activation energy (J/mol) 

𝑥𝑥0  = Initial stoichiometric of Ti in TTM (dimensionless) 
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δ  = Enrichment of Ti in TTM (dimensionless) 
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ΔG  = Gibbs free energy (kJ/mol) 
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Chapter 1  
Introduction 
 

1.1 Background of the study 
 

In New Zealand (NZ), large deposits of titanomagnetite ironsand are found along the west coast 

of the North Island, both onshore and offshore [1]–[4]. Ever since these deposits were found, 

they have been the only local source of iron ore for the iron/steel production, constituting an 

important mineral in NZ [5]. However, compared to internationally-found non-titaniferous 

magnetite ores, NZ titanomagnetite ironsand contains slightly less iron (Fe, ~60wt%). In 

addition, other elements such as titanium (Ti, at equivalent to ~8 wt% TiO2) and vanadium (V, 

at equivalent to ~0.5wt% V2O5) are also present in the ironsand. 

 

There are many factors highlighting the importance and advantages of utilising NZ 

titanomagnetite ironsand for steelmaking.  Firstly, it can be easily mined as it deposits as sand 

dunes along the coast [6]. More than 1.2 million tonnes of ironsand are mined annually in NZ 

[7]. Secondly, the ironsand is also regarded as a cheap source of iron units for steel making [8]. 

Aside from the local utilisation to produce iron/steel to meet the New Zealand’s national 

demand [9], the ironsand is also exported to other countries such as China, Japan and Australia 

[10]. The mining and utilisation of the ironsand not only directly contributes to New Zealand’s 

GDP, but also helps the local economy by creating jobs [11], [12].   Finally, there is also 

possible value in co-production of TiO2 and V2O5 minerals found within the titanomagnetite 

ironsand [13], [14].  

 

Despite the advantages of employing NZ ironsand, there are challenges around the ironsand 

reduction process. Due to the presence of Ti in the ironsand, the internationally dominant iron 

reduction process used in most steel industries, the Blast Furnace (BF), is not applicable [15]. 

This is because during reduction of titanomagnetite ironsand in a BF, the carbon from the coke 

combines with the Ti in the ironsand to form a slag layer which has a high viscosity. This slag 

layer does not flow well and can block the tap holes, making it difficult to withdraw the molten 

Fe and slag from the furnace.  

 

Today, NZ Steel applies a direct reduction (DR) process using coal to reduce NZ ironsand. 

This integrated ironmaking plant has the capacity to produce 650,000 tonnes molten iron per 
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year [15]. This process reduces the ironsand in two stages. The ironsand concentrate is initially 

mixed with coal and heated in the multi-hearth furnaces. The heated mixture is then blended 

with limestone and partially reduced in a rotary kiln via a solid-state carbothermic reduction 

process. Afterwards, the partially reduced product (Reduced Primary Concentrate and Char - 

RPCC) is smelted in an electric furnace, to complete the reduction process and produce molten 

iron. 

 

Although the NZ Steel process is industrially proven for the production of iron/steel from NZ 

ironsand, this solid state carbothermic process consumes lots of energy and emits a large 

amount of carbon dioxide (CO2). These emissions represent ~55% of industrial greenhouse gas 

emissions in NZ [16]. However, NZ has launched a target for net zero emissions of all 

greenhouse gases (other than biogenic methane) by 2050 [17]. This target urgently requires a 

cleaner and more sustainable iron/steel producing industry. Therefore, investigating and 

developing new alternative processes for ironsand reduction, which can enable high iron/steel 

production rates with low greenhouse gas emissions, is of great importance. 

 

In recent years, gas-based DR has become increasingly recognised as a promising alternative 

process for titanomagnetite ore reduction [18]–[20].  Gas-based DR processes do not require 

the coking process required for conventional BF ironmaking. As a result the advantages of gas-

based DR include reduced greenhouse gas emissions, reduced energy consumption and reduced 

overall capital cost  [21]–[23].  Amongst the various commercial gas-based DR processes in 

operation today, the Midrex process is one of the most developed. This process utilises lump 

or pelletised ores as the charge in a vertical shaft furnace. It reduces the ores at temperatures 

(generally at ~1173 K) below the melting point of iron (~1803 K) by using syngas or natural 

gas [24]. The final product of the reduced iron is normally referred to as sponge iron due to its 

porous structure. This is then melted in an electric arc furnace (EAF) for steel making, which 

are generally used to recycle high-quality scrap. 

 

There is also the possibility to design gas-based reduction processes which employ H2 gas as a 

reductant (instead of CO or methane). This is attracting increasing attention as a potential route 

to realise a zero-carbon footprint for the iron/steel making processes [25]–[27]. In recent times, 

NZ has been investigating heavily in H2 research and development. Today, 85% of NZ’s 

electricity is generated from renewable sources. The abundance of renewable energy could be 

used to produce ‘Green H2’ as a next generation fuel, thus help to build a robust energy platform 
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to decarbonise NZ [28]. Therefore, to fulfil the target of net zero greenhouse gas emissions 

from the iron/steel industry in NZ, a H2-based DR process has been proposed for the reduction 

of NZ ironsand. One such process could reduce pellets formed from NZ titanomagnetite 

ironsand in a vertical shaft furnace fed with H2 gas. 

 

However, when compared to the relatively comprehensive knowledge of DR characteristics of 

the conventional iron ores in CO, methane or syngas, the reduction behaviour of 

titanomagnetite ironsand pellets in H2 gas has not been fully investigated. While the presence 

of Ti is reported to affect the reduction process of the titanomagnetite ore [29], this effect is 

not fully understood. Moreover, the influence of Ti on the reaction pathway and phase 

evolution which occurs during reduction has also not been studied in detail. And finally, the 

kinetics and mechanisms for the H2 reduction of NZ ironsand pellets has not previously been 

determined. Accordingly, the work presented in this thesis aims to investigate the behaviour 

and properties of the NZ titanomagnetite ironsand pellets during direct reduction in H2 gas. It 

is hoped that conclusions drawn from this work may have implications for any future industrial 

application of this type of process
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1.2 Aim of the study 
 
The ultimate aim of this study is to understand the reduction mechanisms for NZ 

titanomagnetite ironsand pellets in H2 gas. To fulfil this aim, the following objectives have 

been set: 

 

1. To develop a pelletising approach for producing pellets (Ar-sintered and pre-oxidised), 

which are mechanically strong at high temperatures in reducing gas atmosphere; 

2. To characterise the reduction behaviours of these pellets at high temperatures; 

3. To examine the morphological changes of these pellets during reduction; 

4. To determine the phase evolution of these pellets during reduction; and 

5. To establish an analytical kinetic model to describe the reduction behaviours (2) and 

morphological changes (3), as well as analyse the phase evolutions (4) during reduction. 

 

The findings of this study should contribute to the understanding of the reductions of the NZ 

titanomagnetite ironsand pellets in H2 gas at high temperatures. 
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1.3 Structure of thesis 
The structure of the thesis is shown in Figure 1.1. 

 
Figure 1.1 – A flowchart showing the structure of the thesis 

 

As such, the following chapters are included in this thesis: 

Chapter 1: An introduction of the thesis 

Chapter 2: A survey of the existing literature, determining the knowledge gap in the reduction 

of the NZ titanomagnetite ironsand pellets 

Chapter 3: Descriptions of the experiment set ups and procedures, to achieve the objectives of 

the study of pellet reduction 

Chapter 4: The results of the reduction behaviour, phase evolution and morphological 

evolution of the Ar-sintered pellets 

Chapter 5: The results of the reduction behaviour, phase evolution and morphological 

evolution of the pre-oxidised pellets 

Chapter 6: The application of a pellet-scale shrinking-core model (SCM) to describe the 

reduction process 

Chapter 7: Analysis of the phase evolution at 1223 K, especially on the influence of Ti on the 

reaction pathway 

Chapter 8: Analysis of the phase evolution at varying temperatures, and interpretation in terms 

of findings from the SCM analysis 

Chapter 9: Conclusion of the findings from this work and recommendations for further future 

investigations 
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Chapter 2  
Literature review 
 

A reasonably large amount of literature reporting the properties of the NZ titanomagnetite 

ironsand has been published, reflecting the industrial significance of this type of ironsand. 

Driven by the demands for creating a sustainable iron/steel production industry, the volume of 

literature regarding the gas-based DR process of other iron ores, has also been increasing.  

However, studies on the gas-based DR behaviour and mechanisms of the NZ titanomagnetite 

ironsand, especially in the form of pellets, are comparatively rare.  

 

In this chapter, a literature survey is presented which examines previous related studies in order 

to provide some initial insight into the expected gas-based DR behaviour of the NZ 

titanomagnetite ironsand pellets. This work is subdivided into the following sections: 

 Section 2.1: An introduction to NZ titanomagnetite ironsand 

 Section 2.2: Pelletising process 

 Section 2.3: Kinetics of gas-based DR of iron ore 

 Section 2.4: Gas-based DR characteristics of titanomagnetite iron ores. 

 Section 2.5: Summary of the literature review 

 

2.1 An introduction to NZ titanomagnetite ironsand 
 

In NZ, titanomagnetite ironsand deposits were formed 2.5 million years ago from the erosion 

of andesitic volcanic rocks which erupted from the Taranaki volcanoes [30]–[32]. Over time, 

the ironsand was transported by ocean currents and finally deposited on beaches, forming dunes 

[33]. Currently, these ironsands are commercially mined at Taharoa and Waikato North Head. 

Many previous studies have investigated the properties of the ironsands obtained from these 

two deposits [4], [34]–[39]. Their overall chemical compositions are summarised in Table 2.1. 

In this table, some selected titanomagnetite ores from around the world are also presented for 

comparison [13], [40]–[43]. As can be seen, the titanomagnetite ores from international 

deposits have quite different chemical compositions to NZ ironsand. In NZ ironsand, the 

proportion of Fe2+ (denoted as equivalent wt% of ‘FeO’ in this table) is generally ~30wt% 

which is higher than other international ores. Moreover, the NZ ironsands also contain Ti levels 
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equivalent to about 7wt% to 8wt% TiO2, which is significantly lower than most other 

internationally reported titanomagnetite ores. 

 

Table 2.1– Chemical composition (wt%) of the NZ titanomagnetite ironsands from different 
deposits, alongside some selected international titanomagnetite ores. Note that the values 

stated in the table stand for the equivalent wt% assuming all the cations are in their 
equivalent oxide phase (i.e. Fe2+ as FeO) 

Deposit Reference FeO Fe2O3 TiO2 MgO MnO Al2O3 V2O5 Other 

Waikato 
North 
Head 

[4] 30.6 52.5 8 3.3 0.6 3.5 0.4 1.2 

[34] 30 52.4 8 3 0.6 4 0.4 1.5 

[37], [38] Total Fe: 59.3 7.9 2.8 0.6 3.6 0.5  

Taharoa 
[4] 31.9 51.5 7.9 3.2 0.7 3.3 0.4 1.1 

[36] 26.1 47.1 7.4 4 0.6 5 0.3 14.4 

China 
[13] 18.4 42.1 21.5 0.7 0.7 1.8 0.1 14.7 

[43] Total Fe: 52.3 12.9 3.1 0.3 3.1 0.3  

Indonesia [40] Total Fe: 57.3 11.4 2.7 0.4 2.9   

Russia [41] 23.3 49.4 11.3 2.4 0.1 3.7 0.7 9.1 
South 
Africa [42] 15 63.2 13.7 1.2 0.3 3.2 1.6  

 

The morphologies of the particles in NZ titanomagnetite ironsand has also been previously 

analysed [4], [34], [35], [44]. Beneficiated ironsand is typically observed to contain two 

different types of particles. Typical examples of these two types of particles in the light 

microscopy are shown in Figure 2.1 [44].  

 

 
Figure 2.1– Light microscopy images showing the two typical types of the particles found in 

the NZ titanomagnetite ironsand based on [44] 

 



 

8 
 

In NZ titanomagnetite ironsand, the majority of particles are homogeneous in appearance, as 

shown in Figure 2.1(a). These particles have been referred to as ‘uniform’ titanomagnetite 

particles as they contain mainly the titanomagnetite phase (TTM). TTM is a solid solution of 

magnetite (Fe3O4) and ulvospinel (Fe2TiO4). It has a cubic spinel structure and the 

stoichiometry can be expressed as Fe3-xTixO4. For NZ ironsand, x has a typical value of 0.27 ± 

0.02 [44].  The other type of the particles in NZ ironsand show lamellar structures within the 

homogeneous background matrix, as illustrated in Figure 2.1(b). These lamellar structures are 

typically found to be enriched in Ti compared to their surroundings, and are believed to be 

exsolved titanohematite formed by partial oxidation [45]. Titanohematite (TTH) is a solid 

solution of hematite (Fe2O3) and ilmenite (FeTiO3). It has a rhombohedral structure and its 

stoichiometry can be expressed as Fe2-yTiyO4. In both types of particles, it has been found that 

other elements such as magnesium (Mg), aluminium (Al), and manganese (Mn) are also in 

solid solution within the TTM phase. However silicon (Si) typically is only found in separate 

silicate particles [44]. 

 

To conclude, NZ titanomagnetite ironsand is compositionally different from other international 

titanomagnetite ores, and it normally contains two types of particles. These features make the 

properties of the NZ titanomagnetite ironsands unique from conventional non-titaniferous ores 

as well as from other international deposits of titanomagnetite ores.  
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2.2 Pelletising process  
 

To perform a gas-based DR process in a vertical shaft furnace, iron ore is normally charged in 

the form of pellets [46].  This requires that fines such as NZ ironsand must be consolidated into 

pellets prior to processing. Pelletisation ensures enhanced performance of the DR process, 

enabling advanced permeability for gas transport (between pellets), and faster heat transfer 

inside the furnace [47]–[50].   

 

The disc pelletising process is one of the most widely applied pelletising technologies [51], 

[52]. Figure 2.2 schematically illustrates a laboratory disc pelletiser [53]. As the disc rotates, 

feed material is charged to the bottom of the disc and water is added. When the powdered 

material makes contact with water, the nucleation of the pellet seeds starts to occur. This forms 

initial small pellets. With the addition of more feed material, the size of these pellets increases. 

By controlling the amount of feed material and pelletising time, green pellets of the desired 

size range are produced. Moreover, pelletising variables, such as the diameter of the disc 

pelletiser, the set vertical angle, the rotation speed and the amount of added water, can all affect 

the final pellet properties [51], [52].  

 

 
Figure 2.2– Schematic of a laboratory disc pelletiser based on [53] 

 

During disc pelletisation, feed particles are converted into pellets via several steps [54]. Firstly, 

the solid particles are covered by a water film, which bridges between particles and forms 

agglomerates. The movement of the disc densifies these agglomerates, leading to the 
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production of ‘green’ pellets.  It is important to note that ‘green’ pellets produced directly from 

the disc pelletiser are mechanically weak and could not survive compression under high weight 

loads in a vertical shaft reactor. Hence before reduction, the pellets are normally sintered at 

high temperature in order to develop significantly increased strength through the formation of 

sintered solid-to-solid bonds [55]. 

 

The feed material for disc pelletising in the iron/steel industries are mostly iron ore fines. In 

order to improve the process and enhance the bonding strength of both ‘green’ and ‘sintered’ 

pellets, binders are also introduced and mixed in small quantities with the iron ore fines [56]. 

The effects of mineral and organic polymer-based binders on the properties of the pellets have 

been extensively studied [57]–[64]. Some common binder materials, and their advantages and 

disadvantages to the pelletisation process are summarised in Table 2.2 [64].  

 

Table 2.2– Some common binder materials and their properties [64] 

Types of binder 
material Advantages Disadvantages 

Clay - Bentonite 

 Easily spread in the particle mixtures 
 High capacity of absorbing water 
 Smooth and uniform pellets 
 Relatively cheap 

 Adding silica to the 
pellets 

Organic – 
Carbon based 

polymers 

 Silica free  
 Can be specifically designed to meet the 

properties 
 Highly reproducible characteristics 

 Relatively high cost 

Cementitious 
binders –  

Lime 

 Silica free  
 Irreversible bonding action 
 Can be self-fluxing and readily available 

 Relatively long 
curing time 
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2.3 Kinetics of gas-based DR of iron ore 
 

Kinetic models can be used to describe the reduction rate of iron ore pellets in a gas reductant. 

Such models can help develop understanding of the rate-limiting mechanisms for reactions 

occurring between the gas reductant and solid reactant. 

 

2.3.1 Summary of the kinetic analysis 

 

Since the development of gas-based DR processes, kinetic analysis has been conducted for the 

reduction of many conventional non-titaniferous iron ores [65]–[113]. Such studies have 

simulated reductions in industrial shaft furnaces [72], [76], [79], [101], [114], as well as the 

Fluidized Bed system and Flash Reduction [84], [102], [115], [116]. For all these processes, 

CO, methane (CH4) and H2, were the most commonly studied reducing gases [65]–[113]. 

Models based on either mathematical equations or numerical simulation methods have been 

applied to determine the kinetic behaviour [106], [117]. Some studies developed a multi-stage 

mechanism that accounted for all of the separate reaction steps participating in the process [72], 

[81]. However, many other works have assumed a single overall reaction step which describes 

the whole process. In each case, kinetic analyses have been used to describe the experimental 

results and provide fundamental understanding which is important to the design of industrial 

gas-solid reaction reactors. However, compared to the studies regarding the kinetics of 

reducing the non-titaniferous iron ores, the knowledge on the mechanisms of reducing 

titanomagnetite ores was relatively scarce [19], [20], [118]–[130].  

 

This thesis considers the H2 direct reduction of ironsand pellets. Thus, the kinetic modelling of 

iron ore pellets during gas reduction requires review. A summary of critical works on this topic 

are listed in Table 2.3. It is noted that most of the studies utilised a shrinking core model (SCM) 

to describe the reduction progress of the pellet. This model will be discussed in more detail in 

Subsection 2.3.2.
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Table 2.3- Summary of key literature reporting kinetic analyses of the gas-based reduction of iron ore pellets 

Reference Ore type Experiment conditions Model type Rate-limiting step 

[77]  
Iron oxide pellets 

from Arcelor 
Mittal and LKAB 

Isothermal reduction 
from 708 K to 1183 K 

by H2-CO mixture 

A modified three-interface Shrinking 
Core Model (Fe2O3/Fe3O4; 

Fe3O4/FeO; FeO/metallic Fe) 

Interfacial chemical reaction of FeO 
→ metallic Fe 

[79]  Hematite pellets  
Isothermal reduction 

from 1123 K to 1323 K 
by H2 

Single interface (FeO/metallic Fe) 
SCM 

Interfacial chemical reaction of FeO 
→ metallic Fe 

[86] Hematite pellets  
Isothermal reduction 

from 1073 to 1273K by 
H2-CO mixture 

Single interface (FeO/metallic Fe) 
SCM 

Interfacial chemical reaction at 
beginning and then a mixed control 

(interfacial chemical reaction and pore 
diffusion of gases) and pore diffusion 

of gases at later reduction stages 

[88] Iron oxide pellet 
Isothermal reduction 

from 1073 K to 1373 K 
by H2-CO mixture gas 

A mathematical time-dependent 
model based on the grain model with 

a finite volume fully implicit 
technique 

The reaction rate of FeO is much 
slower than other iron oxide 

components 

[94]  
Hematite pellets 

from Sidor 
Steelmaking Plant 

Isothermal reduction at 
1123 K by H2, CO and 

Midrex Gas 

An approximated single interface 
(FeO/metallic Fe) Grain Model 

For H2 and CO: mix of interfacial 
chemical reaction and pore diffusion 

of gases at the beginning and then 
purely pore diffusion of gases 

For Midrex Gas: mixed control 
through the whole process 

[100] 
Hematite pellets 
from Arcelor-

Mittal 

Isothermal reduction at 
1123 K by H2-CO 

mixture gas 

Single interface (FeO/metallic Fe) 
SCM 

Interfacial chemical reaction at initial 
stage and pore diffusion of gases at 

later stage 
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Table 2.3 - Summary of key literature reporting kinetic analyses of the gas-based reduction of iron ore pellets (continued) 

Reference Ore type Experiment condition Model type Rate limiting step 

[103] Hematite pellets  

Isothermal reduction 
from 1089 K to 1477 
K by H2 with different 

flow rates 

Model type not specified  Interfacial chemical reaction of H2 gas 
with iron oxide at reaction interface 

[104] Hematite pellets 
from Sweden 

Isothermal reduction 
from 1123 K to 1273 
K by a H2-CO-N2 gas 

mixture 

Single interface numerical modelling -  
A well-developed mathematical model 

involving a series of heterogeneous 
chemical reactions, heat transfer and 

mass transfer 

First-order reactions controlled by a 
mix of interfacial chemical reaction 

and pore diffusion of gases 

[106] 

Industrial 
hematite pellets 

with 96wt% 
Fe2O3 

Isothermal reduction 
at 1073 and 1123 K 

by pure H2 

Single-interface (Fe2O3/metallic Fe) 
finite element modelling -  

2-Dimensional model in COMSOL 
Multiphysics 5.1 Software  

Mix of gas transport in gas stream and 
solid phases and interfacial chemical 

reaction in the reaction zone 

[131] Hematite pellets 
Isothermal reduction 
from 1123 K to 1323 
K by biomass syngas 

A single interface (interface not 
specified) SCM Interfacial chemical reaction 

[122]  

Indonesia 
oxidised 

titanomagnetite 
pellets with 55.5 

wt% Fe and 
equivalent 9.6 

wt% TiO2 

Isothermal reduction 
from 1073 to1273 K 

by pure H2 

A single interface (interface not 
specified) SCM 

Below 1123 K, interfacial chemical 
reaction control at the beginning of the 
reduction, then a mixed control to the 

end of the reduction; 
Above 1173 K, interfacial chemical 
reaction control at beginning of the 
reduction, then a mixed control, and 

finally pore diffusion of gases control 
at later stage 
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Table 2.3 - Summary of key literature reporting kinetic analyses of the gas-based reduction of iron ore pellets (continued) 

Reference Ore type Experiment condition Model type Rate limiting step 

[126] 

Oxidized High 
Chromium-
Vanadium-

titanomagnetite pellets 
with 59.5 wt% Fe and 

equivalent 4.5 wt% 
TiO2 

Non-isothermal reduction by H2-
CO-CO2 mixture gas 

A modified three-interface 
SCM (Fe2O3/Fe3O4; 

Fe3O4/FeO; FeO/metallic Fe) 
Not specified 

[127]  

Oxidized Vanadium-
titanomagnetite pellets 
with 45.5 wt% Fe and 
equivalent 13.4 wt% 

TiO2 

Isothermal reduction from 1223 
K to 1373 K by H2-CO mixture 

gas 

A single interface (interface 
not specified) SCM 

Interfacial chemical reaction 
control at early stage and gas 
diffusion through the product 

layer control at later stage 

[128] 

Oxidized High –
Chromium-
Vanadium-

titanomagnetite pellets 
with 59.4 wt% Fe and 

equivalent 4.5 wt% 
TiO2 

Isothermal reduction from 1223 
K to 1373 K by H2-CO mixture 

gas 

A single interface (interface 
not specified) SCM 

Mix of interfacial chemical 
reaction and gas diffusion at early 

stage and purely gas diffusion 
through the product layer control 

at later stage 

[130] 

Oxidised Vanadium-
titanomagnetite pellets 

with 54.27 wt% Fe 
and equivalent 12.5 

wt% TiO2 

Isothermal reduction from 1173 
K to 1323 K by H2-CO mixture 

gas 

A single interface (interface 
not specified) SCM 

Interfacial chemical reaction at 
early stage and gas diffusion 

through the product layer at later 
stage 
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One of the main kinetic parameters obtained from the kinetic models is the activation energy. 

It  is generally used to determine the rate of the reduction, which can optimise the reactor design 

[68], [132]. Activation energies have been determined in a number of studies reducing 

conventional non-titaniferous ores, and the values reported have varied over a large range, from 

9 kJ/mol to 120 kJ/mol [93], [96], [101], [133]–[136]. This difference in the activation energy 

has been associated with the many different experimental conditions used in different studies, 

such as: impurities in the ores [137], types of reducing gas and gas composition [98], [136], 

and pre-treatment of the ore [111]. In general, it has been reported that  reductions in H2 gas 

show a decrease in the activation energy compared to CO gas [99]. This represents another 

potential advantage of utilising H2 gas as the reducing agent. 

 

However, there are only few reports on the determination of the activation energy for the 

reduction of titanomagnetite ores in H2 gas [108], [118], [125]. These studies and the 

corresponding determined activation energies are listed in Table 2.4. The activation energy 

determined was generally within a similar range to conventional non-titaniferous ores. 

However, discrepancies in these three reports are also clear, which again are expected to be 

related to the experimental conditions applied in different works. It should be noted that, to 

date there have been no published reports determining the activation energy for gas-based 

reduction of NZ ironsand pellets.  
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Table 2.4 – Summary of key literature reporting activation energies for the gas-based 
reduction of titanomagnetite ores 

Refer-
ence Sample Experimental 

conditions Controlling step Activation 
energy 

[108] 

Titanomagnetite 
ore (~200 µm, 3 
g, 55.6 wt% Fe 
and equivalent 
11.4 wt% TiO2) 

H2-Ar gas 
mixture 

1073 K to 
1273 K 

Raw ironsand: mix of 
nucleation and growth, 1st 

order chemical reaction, and 
3-dimensional gas diffusion; 

Pre-oxidised ironsand: 
Interfacial chemical reaction 

control 

Raw ironsand: 
50 to 105 
kJ/mol; 

Pre-oxidised 
ironsand: 67 

kJ/mol 

[118] 

Titanomagnetite 
ore (~150 to 160 

µm, 100 mg, 
56.9 wt% Fe and 

equivalent 9.0 
wt% TiO2) 

H2-Ar gas 
mixture 
967 K to 
1173 K 

Interfacial chemical reaction 
for FeO + FeTiO3 → Fe + 

Ti-containing phases  
115 kJ/mol 

[125] 

Titanomagnetite 
briquette (~108 - 

422 µm, 15 g, 
55.6 wt% Fe and 
equivalent 11.4 

wt% TiO2) 

Graphite 
1423 K to 

1623 K 

Diffusion of the ions 
through the product layer  170 kJ/mol 

 

2.3.2 Single interface Shrinking Core Model (SCM) 

 

Description of the model 

As listed in Table 2.3, the shrinking core model (SCM) is the most widely applied kinetic 

model used to describe the gas-based reduction of iron ore pellets [79], [86], [100], [122], [127], 

[128], [130], [131]. Commonly, the SCM is applied by assuming only one rate-limiting reaction 

interface. Based on Levenspiel [138], the single interface SCM can be used to describe a gas-

solid reduction process which proceeds through five successive steps. The effects of these five 

steps on the gaseous reduction of a spherical pellet/particle are schematically illustrated in 

Figure 2.3. These five steps are [138]: 

Step 1: Diffusion of the reducing gas through the gas film surrounding the outer surface of the 

pellet/particle; 
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Step 2: Diffusion of the reducing gas through an outer solid product layer until it reaches the 

surface of the unreacted shrinking core. This surface is commonly referred as the 

reaction interface; 

Step 3: Chemical reaction at the surface of the shrinking core between the reducing gas and 

solid reactant, which generates both solid and gaseous products. This is commonly 

referred to as the interfacial chemical reaction; 

Step 4: Diffusion of the gaseous products back through the outer solid product layer until 

reaching the surface of the pellet/particle; 

Step 5: Diffusion of the gaseous product back through the gas film and hence into the 

surrounding gas stream. 

 

 
 

Figure 2.3 - Illustration of the five steps described by the single interface SCM for the 
reduction of a spherical iron ore (pellet/particle). Step 1 and 5 illustrate the gas diffusion in 

the gas stream; Step 2 and 4 illustrate the gas diffusion in the product layer; and Step 3 
illustrates the interfacial chemical reaction at the reaction interface [138] 

 

During reduction, the step which proceeds at the slowest rate will directly limit the reduction 

process [138]. Often, step 1 is combined with step 5 and referred to as the diffusion of gases 

through the gas film [138]. Similarly, step 2 is coupled with step 4 and referred to as the 

diffusion of gases through the product layer [138]. Therefore, in the gaseous reduction of 

spherical pellet/particle, there are usually three possible controlling mechanisms [138]: (1) the 

diffusion of gases through the gas film, (2) the diffusion of gases through the solid product 

layer and (3) the interfacial chemical reaction at the reaction front. Among these three 

controlling mechanisms, the slowest one will limit the overall reduction rate, and is referred to 

as the rate-limiting step.  
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Each controlling step leads to a different contribution of gas concentration within the 

pellet/particle. This is schematically represented in Figures 2.4 to 2.6. Note that here these 

digrams have been drawn assuming that diffusion of the reducing gas contributes to the rate-

limiting mechiansm, but diffusion due to the product gas distribution is also possible. In all the 

figures, 𝐶𝐶𝐴𝐴𝐴𝐴  represents the concentration of the reducing gas in the main gas stream; 𝐶𝐶𝐴𝐴𝐴𝐴 

represents the concentration of the reducing gas at the surface of the pellet; 𝐶𝐶𝐴𝐴𝐴𝐴 represents the 

concentration of the reducing gas at the reaction front; 𝐶𝐶𝐴𝐴𝐴𝐴  represents the equilibrium gas 

concentration at the reaction interface; R represents the radius of the pellet/particle; and r 

represents the radius of the shrinking core. 

 

 

 
Figure 2.4- Schematic illustration of the mechanism of diffusion of gases through the gas film 

(step 1 and step 5) based on [138] 
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Figure 2.5- Schematic illustration of the mechanism of diffusion of gases through the product 

layer (step 2 and step 4) based on [138] 

 

 

. 

Figure 2.6- Schematic illustration of the mechanism of the chemical reaction at the reaction 
front (step 3) based on [138] 
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Mathematical equations for the SCM 

A general gas-solid reaction can be simply expressed as [138]: 

 

 𝐴𝐴 (𝑔𝑔𝑔𝑔𝑔𝑔) + 𝑏𝑏𝑏𝑏 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ⇋ 𝑐𝑐𝑐𝑐 (𝑔𝑔𝑔𝑔𝑔𝑔) + 𝑑𝑑𝑑𝑑 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)                             (2.1) 

 

The SCM kinetic model provides mathematical equations which describe the expected 

reduction rate for each controlling mechanism in a shrinking core gas-solid reaction [138]. 

These are summarised in Table 2.5. In all the equations, 𝜌𝜌𝐵𝐵 stands for the molar density of the 

solid reactant; 𝑏𝑏  stands for the stoichiometry as listed in equation 2.1; 𝑋𝑋𝑎𝑎  stands for the 

reduction degree; 𝑘𝑘𝑔𝑔 stands for the mass transfer coefficient of gas in the gas stream; 𝑘𝑘𝑠𝑠 stands 

for the reaction rate constant; and 𝐷𝐷𝑒𝑒 stands for effective diffusion coefficient of gas in the 

product layer. 

 

Table 2.5- Mathematical equations which describe each rate-limiting step for the single-
interface SCM [138] 

Rate-limiting step Derived mathematical equation 

Diffusion of gases 
through the gas 

film 

𝑡𝑡 = 𝜌𝜌𝐵𝐵𝑅𝑅
3𝑏𝑏𝑘𝑘𝑔𝑔�𝐶𝐶𝐴𝐴𝐴𝐴−𝐶𝐶𝐴𝐴𝐴𝐴�

[1 − (𝑟𝑟
𝑅𝑅

)3] = 𝜌𝜌𝐵𝐵𝑅𝑅
3𝑏𝑏𝑘𝑘𝑔𝑔�𝐶𝐶𝐴𝐴𝐴𝐴−𝐶𝐶𝐴𝐴𝐴𝐴�

 𝑋𝑋𝑎𝑎                   (2.2) 

Diffusion of gases 
through the solid 

product layer 

𝑡𝑡 = 𝜌𝜌𝐵𝐵𝑅𝑅2

6𝑏𝑏𝐷𝐷𝑒𝑒�𝐶𝐶𝐴𝐴𝐴𝐴−𝐶𝐶𝐴𝐴𝐴𝐴�
[1 − 3(𝑟𝑟

𝑅𝑅
)2 + 2(𝑟𝑟

𝑅𝑅
)3] = 𝜌𝜌𝐵𝐵𝑅𝑅2

6𝑏𝑏𝐷𝐷𝑒𝑒�𝐶𝐶𝐴𝐴𝐴𝐴−𝐶𝐶𝐴𝐴𝐴𝐴�
 [1 −

3(1 − 𝑋𝑋𝑎𝑎)
2
3 + 2(1 − 𝑋𝑋𝑎𝑎)]                                                                            (2.3) 

 Interfacial 
chemical reaction 

𝑡𝑡 = 𝜌𝜌𝐵𝐵
𝑏𝑏𝑘𝑘𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴

[𝑅𝑅 − 𝑟𝑟] = 𝜌𝜌𝐵𝐵𝑅𝑅
𝑏𝑏𝑘𝑘𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴

 [1 − (1 − 𝑋𝑋𝑎𝑎)
1
3]                        (2.4) 

Note that: 𝜌𝜌𝐵𝐵 is the molar density of the solid reactant (mol./cm3); 𝑋𝑋𝑎𝑎stands for the reduction 
degree (dimensionless); 𝐶𝐶𝐴𝐴𝐴𝐴 is the gas concentration at the gas stream (mol./cm3); 𝐶𝐶𝐴𝐴𝐴𝐴 is the 
gas concentration at the pellet surface (mol./cm3); 𝐶𝐶𝐴𝐴𝐴𝐴 is the gas concentration at the reaction 
interface (mol./cm3); 𝑘𝑘𝑔𝑔  is the mass transfer coefficient (cm/min); 𝑘𝑘𝑠𝑠  is the reaction rate 
constant (cm/min); 𝐷𝐷𝑒𝑒  is the effective diffusion coefficient (cm2/min); 𝑅𝑅 is the pellet radius 
(cm); and 𝑟𝑟 is the shrinking core radius (cm). 
 

When utilising these equations to determine the mechanisms of a reduction process, 

experimental conditions should be correlated. For example, the mechanism of the diffusion of 

gases through the gas film can be eliminated by increasing the flow rates of the reducing gas 
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above a minimum ‘critical flow rate’. This is because increasing the flow speed of gases around 

the solid surface, increases the rate of mass transfer through the gas film [103].  

 

At the beginning of most reduction processes, diffusion of gases through the solid product layer 

is rarely a rate-limiting step, as an intact product layer has not yet been formed. However, this 

mechanism can become the rate-limiting step during later stages of reduction. The properties 

of the product layer play a significant role. If the product layer is porous, it is relatively easy 

for gas to diffuse through it, however if the product layer is dense diffusion rates can be slow 

and hence the overall reduction rate can be limited by this mechanism. 

 

Table 2.3 shows that the interfacial chemical reaction mechanism has often been identified as 

the rate-limiting step for the gas-based reduction of iron ore pellets. However, in most of these 

cases, the reduction studied involves not a single reaction but multiple reaction steps with 

intermediate phases being generated and consumed as the reaction progresses. For example, 

this is the case for the reduction of Fe2O3 (which typically proceeds via the pathway: Fe2O3 → 

Fe3O4 → FeO → Fe [77], [86], [105], [139]–[141]). Therefore, in this case it is also necessary 

to define a rate-limiting reaction step – which is the slowest reaction step taking place and 

hence defines the single interface for the shrinking core process. 

 

In summary, the single interface SCM has previously been successfully applied to the gaseous 

reduction of various types of iron ore pellets, and therefore may be relevant to the reduction of 

the ironsand pellets studied in this thesis.
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2.4 Gas-based DR characteristics of the titanomagnetite iron ores 
 

This section summarises the reduction behaviour of various titanomagnetite ores described in 

the existing literature. Firstly, the effects of pre-oxidation on the DR of the titanomagnetite iron 

ores are presented (Subsection 2.4.1). Then the effects of the experimental conditions on the 

reduction are summarised (Subsection 2.4.2), as well as the reported phase evolution during 

reduction (Subsection 2.4.3). Finally, the morphologies of the pellets during reduction is 

displayed (Subsection 2.4.4). 

 

2.4.1 The effects of pre-oxidation on the DR of the titanomagnetite iron ores 

 

It is well known that conventional hematite and magnetite ores present different reducibility, 

with hematite ores displaying a much faster reduction rate [142]. Without any pre-treatment, 

magnetite ores are seldom used directly in the industrial DR shaft furnace. Instead, magnetite 

ores are normally pre-oxidised to convert them into hematite prior to the reduction process 

[133]. This pre-oxidation of magnetite to hematite leads to a significant increase in the 

reduction rate of the ore, and this is ascribed to an increase in surface area and gas permeability 

of the particles. This is a result of micro-cracks formed during the conversion of the crystal 

structure from rhombohedral Fe2O3 to cubic Fe3O4, which occurs at the beginning of the 

reduction of the pre-oxidised ores. These micro-cracks form due to the large internal stresses 

imposed by the volume increase associated with this transformation. 

 

A similar phenomenon has also been observed in reducing pre-oxidised titanomagnetite ores, 

and this has also been attributed to the same effects caused by transformation of the crystal 

structure [143], [144]. Longbottom et al. [144] compared the reduction rates of NZ 

titanomagnetite ironsand in both raw and pre-oxidised states, using a mixture of 55vol% H2, 

35vol% CH4 and 10vol% Ar at 1023 K. Results from this work are shown in Figure 2.7. As 

can be seen, with pre-oxidation, the reduction rate of the ironsand increased greatly, and 

approached a similar rate to the reduction of conventional hematite ore. 
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Figure 2.7- Reduction degree curves of reducing NZ raw titanomagnetite ironsand, pre-
oxidised ironsand and conventional hematite ore by gas (55vol% H2, 35vol% CH4 and 

10vol% Ar) at 1023 K based on [144] 

 

In addition to investigating the effect of pre-oxidation on reduction rate, the phase evolution 

during oxidation of titanomagnetite ores has also been studied. During isothermal oxidation of 

the NZ titanomagnetite ironsand, Park et al. [143] summarised its oxidation path, as shown in 

Figure 2.8. TTM was firstly oxidised to TTH. With further oxidation, parts of TTH were 

converted to pseudobrookite (PSB, Fe2TiO5). During non-isothermal oxidation, TTM was 

found to not be directly oxidised to TTH between 873 and 1073 K; instead, an intermediate 

phase of Ti-containing maghemite was found [143]. However, this intermediate Ti-containing 

maghemite was not observed in the work of Wang et al. [145], which might be due to its 

instability and fast transition. From the work of Wang et al.  [145], it was also concluded that 

during non-isothermal oxidation, Ti gradually accumulated in the lamellar structure, while Fe 

and Al were mostly distributed in the uniform regions. 
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Figure 2.8- Isothermal oxidation path of NZ titanomagnetite ironsand in the FeO-Fe2O3-

TiO2 ternary system based on [143] 

 

A kinetic analysis of the oxidation of the titanomagnetite ore was conducted by Han et al. [20]. 

It found that with increasing temperature, the interfacial chemical reaction rate increased, and 

accordingly the O2 gas diffusion in the product layer gradually took over to rate limit the 

oxidation process [20]. 

 

To summarise, pre-oxidising titanomagnetite ores has been found to increase their reduction 

rate in reducing gases. This approach has also been shown to have an effect on NZ ironsand. 

 

2.4.2 The effects of experimental conditions on the DR of the titanomagnetite ores 

 

Within this subsection, the effects of varying experimental conditions on the reduction 

behaviour of titanomagnetite ores are discussed. Such experimental conditions include the 

types of reducing gases, reduction temperature, and the composition of the ores. Each of these 

conditions has been shown to have an effect on the reduction rate of titanomagnetite ores [129], 

[146]–[151]. 

 

For the gaseous reduction of iron ores, CO, CH4 and H2 are the most commonly studied 

reducing agents [129], [146]–[150]. Table 2.6. summarises the typical results reported for the 

reduction of titanomagnetite ores using these different gases. 

 



 

25 
 

Table 2.6- Summary of the effects of different reducing gases on the reduction of the 
titanomagnetite ore 

H2/CO 

The extent of reduction or metallization of the titanomagnetite ores increased with 
the increasing amount of reducing gases in gas mixtures (H2 in H2-Ar mixture or 
CO in CO-CO2-Ar mixture) [129], [146]–[150]. 

At 1373 K, the reduction of titanomagnetite ores containing 57.2wt% Fe and 
equivalent 7.43wt% TiO2 in a fixed bed reactor was found to proceed faster by 
using H2 than for reduction by CO [146]. 

CH4 

CH4 content in H2-CH4-Ar mixture was found to have no effect on the reduction 
rate of the NZ titanomagnetite ore containing 57.2wt% Fe and equivalent 7.42% 
TiO2 at 1173 K, but it contributed to cementite (Fe3C) formation [144]; 
However, a different paper has reported that CH4, combined with H2 and CO, 
promoted the reduction of the titanomagnetite iron ores [152] 

The cementite formation rate of the pre-oxidised NZ titanomagnetite ore was 
slower than that of the hematite ores, but it was in general more stable [153]. 

 

As summarised in Table 2.6, the reduction rate of the titanomagnetite ores by H2 gas is faster 

than when using either CO or CH4 [146]. This may be caused by the thermodynamic differences 

between the reduction reactions for the different gases, as illustrated by the Baur-Glaessner 

diagram in Figure 2.9  [154]. This diagram shows that at higher temperatures (> 843 K), the 

reduction potential of H2 gas is better than that of CO, meaning that a higher gas utilisation rate 

can be achieved. Moreover, because the reduction of iron ores by H2 gas is an endothermic 

reaction, reduction at high temperatures also further promotes the reduction rate [147]. Due to 

its low viscosity and small molecule size, H2 gas diffuses more easily than other reducing gases, 

which can also improve the reduction rate [25]. As a result, the reduction of the titanomagnetite 

ores by H2 has the fastest rate. In addition H2 gas does not cause carburization of the reduced 

iron ores, but this is observed in studies that have used CO or CH4 as the reducing agent [19], 

[143], [151], [152]. 
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Figure 2.9- The Baur-Glaessner diagram for the reduction of iron ores by both H2 and CO 

[154] 
 

In addition to the effects of using different types of reducing gases on the reduction rate, the 

concentration of the reducing gas in a gas mixture further affects the reduction progress, and 

the distribution of phases present in the reduced ores. Park et al. [147] reduced the NZ 

titanomagnetite ironsand in a laboratory fixed bed reactor using gas mixtures containing 

different ratios of CO/CO2. It was found that TTM was only completely reduced to metallic Fe 

and titanium oxides when the concentration of CO was higher than 96.5vol%. Moreover, the 

distribution of the Ti-containing phases at the end of the experiment (~90 minutes) was also 

related to the ratio of CO/CO2. Below 90vol% CO, Fe2TiO4 was the main Ti-carrying phase, 

while for 90vol% to 95vol% CO, FeTiO3 was detected in the final product. However, above 

95vol% CO, titanium oxides were observed as the only final Ti-containing phase. 

 

The effects of reduction temperature on the reduction rate of the titanomagnetite ores have also 

been investigated.  In general, the reduction rate increases with increasing temperature [129], 

[146]–[150]. Park et al. [146] investigated the temperature effects on the reduction rate of the 

NZ titanomagnetite ironsand in a fixed bed reactor using a 25vol% H2-Ar gas mixture. These 

results indicated a significant temperature dependence to the reduction process, and are shown 

in Figure 2.10.  

 

However, in previous literature, it has also been pointed out that when the reduction 

temperature becomes too high (> 1373 K), sintering of pellets or formation of low-melting-

point slags within the titanomagnetite ore may hinder the reduction process [34]. What is more, 
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in terms of the reduction of titanomagnetite pellets, higher temperatures may promote the 

sticking phenomenon which would impede further reduction [155]. 

 

 
Figure 2.10 - Temperature effects on the reduction rate of the NZ titanomagnetite ironsand 

by a 25vol% H2-Ar gas mixture based on [146] 

 

Similarly to the effects of the concentration of the reducing gas, temperature also influenced 

the distribution of the phases present in the reduced ironsand. Park et al. [146] concluded that 

after 2 hours reduction, TTM was only completely consumed at temperatures higher than 1073 

K. For other Ti-containing phases, FeTiO3 was only present in the final product at reduction 

temperatures below 1173 K. Above 1173 K, FeTiO3 was no longer detected, and instead TiO2 

appeared. 

 

In summary, literature suggests that to achieve efficient gaseous reduction of titanomagnetite 

ores, a high temperature and high concentration of reducing gas should be applied. Furthermore, 

H2 gas reductions are expected to proceed significantly more quickly than for reductions using 

CO or CH4.   

 

2.4.3 Phase evolution during DR of the titanomagnetite iron ores 

 

It is widely accepted that the reduction of Fe2O3 to metallic Fe is a multistep reaction process 

[77], [86], [105], [139]–[141]. Above 843 K, its reduction path follows: Fe2O3 → Fe3O4 → 

FeO → Fe; while below 843 K, no FeO is formed, and the reduction path follows:  Fe2O3 → 
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Fe3O4 → Fe. The reactions involved in the reduction path by using H2 gas include (where the 

gaseous phase is indicated by g and the solid phase is indicated by s): 

 

3Fe2O3(g) + H2(g) → 2Fe3O4(s) + H2O(g)                                    (2.5) 

Fe3O4(s) + H2(g) → 3FeO(s) +H2O(g)                                       (2.6) 

FeO(s) + H2(g) → Fe(s) +H2O(g)                                            (2.7) 

 

However, the reduction of TTM has been reported to be more complicated, due to the evolution 

of various Fe-Ti-O phases [118], [119], [143], [146], [147], [150], [156].  

 

The general view suggested in the previous literature, is that the reduction of the 

titanomagnetite ores in equilibrium state proceeds through the following path [146], [157], 

[158]: 

Fe3-xTixO4 → FeO + Fe2TiO4 → Fe + Fe2TiO4 → Fe + FeTiO3 → Fe + TiO2          (2.8)       

The associated reactions in this path by H2 gas include: 

 

             Fe3-xTixO4(s) + (1-x)H2(g) → 3(1-x)FeO(s) + xFe2TiO4(s)+ (1-x)H2O(g)        (2.9) 

 FeO(s)+ Fe2TiO4 (s)+ H2 (g) → Fe(s) + Fe2TiO4 (s)+ H2O (g)              (2.10) 

 Fe2TiO4(s)+ H2 (g) → Fe(s) + FeTiO3(s) + H2O (g)                                  (2.11) 

 FeTiO3(s) + H2 (g) → Fe(s) + TiO2(s) + H2O (g)       (2.12) 

 

This reaction path has been determined in the previous literature mainly through ex-situ XRD 

analysis. Park et al. [143] reduced the pre-oxidised NZ ironsand in a fixed bed by 75vol% CO 

and 25 vol% Ar gas mixture non-isothermally to 1373 K, and the ex-situ XRD results are shown 

in Figure 2.11. TTH started to be reduced to TTM at 637 K. Metallic Fe was initially detected 

at 873 K. Other Ti-containing phases (FeTiO3 and TiO2) were also found above 1073 K. On 

the other hand, FeO was not detected during the whole reduction process. Despite this 

intermediate phase not being detected, it was expected in the work that it was still generated 

from TTM but was then rapidly reduced to metallic Fe and hence measurable quantities were 

not present in the sample. However, in other studies of the titanomagnetite ores reduced 

isothermally at 1173 K [159] and 1373 K [147], FeO has been detected in partially reduced 

samples.  
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Figure 2.11- XRD patterns of the pre-oxidised NZ titanomagnetite ironsand by 75vol% CO 

and 25 vol% Ar gas mixture non-isothermally to 1373 K based on [143] 

 

Another very recent paper has reported the phase evolution of NZ titanomagnetite ironsand 

undergoing isothermal reduction in H2-Ar gas mixtures at 1223 K. These experiments were 

performed in a Fluidised Bed system by Prabowo et al. [156], and the phase evolution during 

reduction was determined by quantitative ex-situ XRD analysis of quenched samples. Typical 

results are illustrated in Figure 2.12. Contrary to the results reported by Park [143], in this 

work FeO was found to be present as an intermediate phase during the reduction of TTM. A 

further unusual feature of the results in this work was that the reduction of TTM significantly 

slowed down after FeO was observed to reach its maximum concentration. This was attributed 

to the accumulation of Ti in the remaining TTM, which could decrease the thermodynamic 

driving force for the generation of FeO [156].  
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Figure 2.12- The evolution of the amount of each detected phase of reducing NZ 

titanomagnetite ironsand by a H2-Ar gas mixture at 1223 K in a Fluidized Bed system. (a) 
80vol% H2 – 20vol% Ar; (b) 100vol% H2 based on [156] 

  

In summary, previous literature reports of phase evolution during the reduction of 

titanomagnetite ores have presented differing results and conclusions. However, it is clear that 

the existence of Ti is expected to significantly affect the phase evolution during reduction of 

TTM.  

 

2.4.4 Microstructure analysis during DR of the titanomagnetite iron ores 

 

The morphological evolution of the titanomagnetite ores during reduction has also been 

reported in a few papers. Park et al. [146] examined the microstructure of NZ titanomagnetite 

ironsand during reduction by a 25vol% H2-Ar gas mixture at 1173 K in a fixed bed reactor. 

The morphological changes are illustrated in Figure 2.13. The generation of metallic Fe was 

topochemical, with a particle-scale shrinking core formed inside the interface between the 

metallic Fe and the unreduced TTM. However, the morphologies of intermediate phases (such 

as FeO) were not reported. After completion of the reduction, metallic Fe occupied most of the 

particles. That work [146], also reported that the morphology of the metallic Fe in the fully 
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reduced ores depended on temperature. At lower temperatures, metallic Fe was observed in the 

form of feathered whiskers, but with increasing temperature, a fine structured metallic Fe was 

formed [146]. 

 
Figure 2.13- Morphology of the NZ titanomagnetite ironsand at different time points during 

reduction by a 25vol% H2-Ar gas mixture at 1173 K based on [146] 
 

In another work, Sun et al. [150] presented the morphological changes which occurred for non-

uniform particles (containing TTH) in South African titanomagnetite ores during reduction by 

a 50vol% CO-N2 gas mixture at 1223 K.  Examples of these microstructures are shown in 

Figure 2.14. In this case a shrinking core phenomenon was not observed. Instead, it seemed 

that metallic Fe was first generated at the edge of lamellar structures, and then gradually grew 

to consume the remaining unreduced areas.  

 
Figure 2.14- Morphological changes of the particles with intrusions in the South African 
titanomagnetite ores during the reduction by a 50vol% CO-N2 gas mixture at 1223 K. ƞ 

stands for metallisation degree based on [150] 
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The morphologies of pre-oxidised Chinese titanomagnetite pellets has also been reported. Li 

et al. [148] reduced these pellets using 70vol% H2-CO gas mixture at 1323 K. The 

microstructures of the pellets at each reduction stage are illustrated in Figure 2.15. A change 

in structure was observed when TTH was reduced to TTM, with damage to the particle structure 

(cracks and fractures). As the reduction progressed, metallic Fe was found to nucleate 

throughout the whole particles.  Upon the completion of the reduction, a uniform area was 

formed which was advantageous for subsequent melting process [148].  

 
Figure 2.15- Morphologies of the pre-oxidised Chinese titanomagnetite pellet at different 

stages during reduction by a H2-CO (2.5:1) gas mixture at 1323 K. (a) 0 min; (b) 1min; (c) 3 
min; (d) 5min; (e) 10min; (f) 15min; (g) 25 min; (h) 35 min; and (i) 60 min. Point 1 in (1) 

indicates metallic Fe and point 2 indicates impure oxides based on [148] 
 

To summarise, morphology evolution during gas-based DR of some types of titanomagnetite 

ores has been previously reported. Significant variation between different types of particles in 

the titanomagnetite ore have been observed. In particular, it appears that pre-oxidation of the 

titanomagnetite ores significantly affects the morphologies which occur during reduction [148].  



 

33 
 

2.5 Summary 
 

In this chapter, a literature survey was presented of the properties of the NZ titanomagnetite 

ironsand and the gas-based DR behaviour of various titanomagnetite ores. The key findings 

from these previous studies can be summarised as follows: 

 

 In NZ titanomagnetite ironsand, most of the particles are uniform titanomagnetite, but a 

small portion is non-uniform t particles with a lamellar structure (titanohematite). 

 The reduction rate of the titanomagnetite ores is usually found to be slower than that of 

conventional magnetite ores. However, pre-oxidation can significantly increase the 

reduction rate. 

 The reduction conditions affect the reduction rate of the titanomagnetite ores. In general, 

increasing either temperature and/or reductant gas concentration, causes the reduction rate 

to increase. Reduction in H2 gas is reported to procced more quickly than for the equivalent 

conditions using CO or CH4.  

 The phase evolution during reduction of titanomagnetite ores has been studied using ex-situ 

techniques such as XRD analysis. 

 Microstructure analysis during reduction of some titanomagnetite ores has been reported, 

and illustrates different features for different types of ores and particles. 

 A small number of previous works have reported kinetic analysis of the gaseous reduction 

of various titanomagnetite ores through applying a single interface SCM. In these studies, 

this model is reported to describe the experimental data reasonably well. 

 

Much of the existing literature has studied the reduction of international titanomagnetite ores. 

However, NZ titanomagnetite ironsand differs from other internationally reported 

titanomagnetite ores due to its lower Ti concentration. There is limited knowledge of the 

reduction behaviour of NZ ironsand, especially in the form of pellets. In particular: 

 

 Most of the previous literature is focused directly on gas reduction of unpelletised 

titanomagnetite ores as powders. Studies on the reduction of the pellets are rare. 

 There is limited knowledge of the mechanisms which control the reduction kinetics of NZ 

titanomagnetite pellets, and these are not fully understood. In particular, although a few 

previous studies have successfully applied a single interface SCM to describe the reduction 
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of various forms of titanomagnetite ores, the controlling reaction steps at the interface have 

not been clearly identified.  

 Morphology studies in the former literature have mostly focussed on the generation of 

metallic Fe in the particles. The morphological evolution which occurs during the generation 

and consumption of the intermediate phases (such as FeO), are seldom discussed. 

 Research on the phase evolution during reduction of ironsands and other titanomagnetite 

ores has been performed using ex-situ XRD analysis. There are limitations to this approach 

as it only provides discontinuous data, and there is the possibility for phase changes to occur 

during cooling. Therefore, an in-situ investigation of the phase evolution during the 

reduction of pellets is desired in order to more clearly understand the reaction pathway, and 

especially for analysing the fate of Ti during the reduction process.  

 

The work presented in this thesis attempts to fill in some of the missing knowledge outlined 

above. It aims to investigate the reduction behaviours of the NZ titanomagnetite ironsand 

pellets at higher temperatures, determine the phase evolution during reduction, and develop an 

analytic kinetic model which can describe the reduction progress of ironsand pellets at different 

reduction temperatures.  
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Chapter 3  
Experimental method 
 

The aim of this thesis is to obtain a comprehensive understanding of the reduction 

characteristics and mechanisms for the reduction of NZ titanomagnetite ironsand pellets in H2 

gas. To achieve this, the experimental methodology shown in Figure 3.1 was followed. The 

experimental techniques used, and their key purposes are given in Table 3.1. 

 

 
Figure 3.1 – A schematic showing the experimental methodology used in this research 

 

 This chapter is divided into the following sections: 

 Section 3.1: Summary of the properties of the experimental materials  

 Section 3.2: Description of the pelletising and sintering process of generating both the 

Ar-sintered and pre-oxidised pellets  

 Section 3.3: Establishment of the Thermogravimetric analysis (TGA) measurement 

procedure  

 Section 3.4: Description of the quenching reduction experiments 

 Section 3.5:  Description of ex-situ methods used to characterise the reduced pellets  

 Section 3.6: Description of the methodology for the reduction experiments monitored by 

in-situ neutron diffraction analysis (ND) 
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Table 3.1– The experimental techniques and their purpose for each of the methods shown in 
Figure 3.1  

 Techniques Purpose 

Sample 
preparation 

Grinding, pelletising, sintering and 
pre-oxidising To generate pellets for reduction 

Reduction 
experiment in 

H2 gas 

High temperature reduction 
experiment in TGA  

 (Mettler TA1 Thermobalance) 

To characterise the reduction 
behaviours of the pellets at high 

temperatures  

Reduction of the pellets to desired 
reduction extent and quenching to 

reserve the morphologies 

To observe the pellet and particle 
morphologies of the partially 

reduced pellets 

Reduction of the pellets while 
applying in-situ ND analysis for a 
direct measurement of the phases 

present in the pellets at each 
reduction time 

(ANSTO Wombat) 

To determine the phase evolution 
in-situ during the reduction of the 

pellets 

ex-situ 
characterisation 

experiment 

Light Microscopy 
(Nikon Eclipse LV100NDA) 

To observe the pellet morphology 
of unreduced, partially reduced and 

fully reduced pellets 

SEM - EDS 
(JEOL JSM-6490LV and Quanta)  

To observe the pellet and particle 
morphologies and identify the 
phases present in the pellets 

XRD 
(Bruker D8) 

To determine the crystalline phases 
in the pellets 
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3.1 Experimental materials – NZ titanomagnetite ironsand 
 

In this study, the material investigated was NZ titanomagnetite ironsand. The as-received 

ironsand was obtained from the Waikato North Head, NZ mine. Its composition, as determined 

using XRF analysis, is given in Table 3.2. The equivalent TiO2 content is ~8wt%.  

 

Table 3.2 – Chemical composition of the as-received NZ titanomagnetite ironsand from 
Waikato North Head mine 

FeO Fe2O3 TiO2 Al2O3 MgO  SiO2 MnO CaO V2O5 Rest LOI 

28.1 54.1 7.9 3.7 2.8 2.0 0.6 0.5 0.5 0.5 -3.0 

Note: The as-received ironsand does not actually contain wustite (FeO) or hematite (Fe2O3) 
as crystalline phases. Here, the stoichiometric notation describes the Fe2+ and Fe3+ content of 
the ironsand. The Fe2+ content of the ironsand was established using the Potassium 
Dichromate titration method based on ISO-9035 and found to be 21.9 wt% (equivalent to 28.1 
wt% FeO). The Fe3+ content was determined by subtracting the Fe2+ content from the total Fe 
content measured by XRF (after accounting for oxidation mass gain after roasting the ironsand 
sample at 1273 K). 
 

The size distribution of the as-received ironsand particles was measured using a laser-scattering 

particle size analyser (Mastersizer 3000, UK). The results are shown in Figure 3.2. As can be 

seen, most of the particles are in the range of 100 µm to 300 µm, with an average particle size 

of 200 µm. 

 

 
Figure 3.2– Size distribution of the as-received ironsand from the particle size analyser  
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3.2 Preparation and production of ironsand pellets 
 

3.2.1 Milling of the as-received ironsand 

 

The particles needed to be milled to an average particle size of <80 µm prior to pelletisation. 

This was necessary to enable pellets to be formed in the disc pelletiser, and to ensure adequate 

green strength [160], [161]. The milling was performed in water using a rolling-jar ball mill 

(Pascal Engineering UK, No. 20582). The conditions of the wet milling process are listed in 

Table 3.3. After wet milling and drying, the ironsand was then riffled to produce a 

representative small sample for particle size analysis. The size distribution of the milled 

particles depends on the time and rotation speed of the mill. The average particle size (D50%) 

after milling was measured by the laser-scattering particle size analyser. The relationship 

between the measured average particle size and the milling conditions is plotted in Figure 3.3. 

 

Table 3.3 – Conditions of wet-milling process and drying conditions after milling 

Jar 
volume  

Milling medium 
– stainless steel 

balls 

Weight of 
ironsand per 

mill  

Ball-to-
powder 

mass ratio 

Water used 
per mill  

Drying 
conditions 

5 L 7.5 kg 2 kg 3.75 : 1 0.7 L 363 K, 24 h 

 

 
Figure 3.3 – Average particle size (D50%) after wet-milling at each milling condition 
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All pellets used in this work were produced from particles wet milled at 90 rpm for 2 hours 

(D50%=32 µm) and at 30 rpm for 2 hours (D50%=73 µm). The detailed particle size 

distributions are shown in Figure 3.4(a) and (b) respectively.  

 

 
Figure 3.4 – Specific particle size distributions of the ironsand after wet milling at (a) 90 

rpm for 2 hours [162] and (b) 30 rpm for 2 hours 
 

3.2.2 Pelletising, sintering and pre-oxidising 

 

Pellets were produced from the dried milled ironsand, which was pre-mixed with 1wt% 

bentonite. The composition of bentonite used (after roasting in air), is listed in Table 3.4, as 

determined by XRF. To generate the pellets, a Lurgi-type disc pelletiser (see in Figure 3.5(a)) 

was used. This disc pelletiser has a diameter of ~35 cm and was set to an angle of 45°. During 

pelletisation, the disc pelletiser rotated at a speed of 35 rpm. At the same time, tap water was 

manually sprayed into the particle mixture until spherical ‘green’ pellets began to form. At this 

point, no further water was added, and the ‘green’ pellets were then removed from the pelletiser 

and dried in an oven at 363 K for 2 hours. Examples of the ‘green’ pellets are shown in Figure 

3.5(b). In the pelletising process, a range of pellets with diameters from 3 to 12 mm were 

obtained. In this study, mid-size pellets of a defined diameter (from 5.5 to 8.5 mm) were 

selected for various experiments. 
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Figure 3.5 – (a) A photo and schematic of the laboratory Lurgi-type disc pelletiser. Examples 
of pellets (b) directly obtained from the pelletiser (‘Green’ pellets), (c1) after sintering in Ar 

gas (Ar-sintered pellets) and (c2) after sintering in air (pre-oxidised pellets) 
 

Table 3.4 – The composition of bentonite after roasting in air, as determined by XRF [162] 

SiO2 Al2O3 Fe2O3 MgO Na2O CaO TiO2 LOI Balance 

70.2 15.5 3.6 1.7 1.6 1.5 0.1 4.7 1.1 
 

The ‘green’ pellets obtained directly from the pelletiser are generally too mechanically weak 

to be used directly in reduction experiments. Therefore, they were sintered in either Ar gas or 

air to generate either Ar-sintered or pre-oxidised pellets respectively. Examples of these pellets 

are given in Figure 3.5(c1) and (c2) respectively. These sintered pellets were used for the 

reduction experiments. 

 

Production of the Ar-sintered pellets 

Ar-sintered pellets were obtained by heating the ‘green’ pellets at 1473 K under Ar gas at a 

flowrate of 65 ml/min for 2 hours in a tube furnace. After placing the dried ‘green’ pellets in 

the hot zone of the furnace, the furnace was initially heated to 773 K at a rate of 5 K/min in Ar 
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gas. Then, it was further heated to 1473 K at a rate of 10 K/min, and kept at 1473 K for 2 hours. 

After sintering, the pellets were analysed by XRD to determine the phases present. Figure 3.6 

compares the XRD patterns from both the ‘green’ and Ar-sintered pellets. It can be seen that 

there was no significant change in the phase distribution in the pellet after sintering, with TTM 

remaining the dominant phase. It should be noted that the small TTH peaks in both pellets 

originate from the lamella within the non-uniform particles in the as-received ironsand (results 

see in Section 4.3). 

 

 
Figure 3.6 – XRD patterns obtained from ‘green’ pellets and Ar-sintered pellets following 2 

hours of heating at 1473 K in Ar gas 
 

Production of the pre-oxidised pellets 

The pre-oxidised pellets were produced by oxidative sintering of the ‘green’ pellets at 1473 K 

for 2 hours in a muffle furnace with a static air atmosphere. After placing the dried ‘green’ 

pellets in the hot zone of the furnace, it was heated to 1473 K at a rate of 10 K/min, and kept 

at 1473 K for 2 hours. These pre-oxidised pellets were also analysed by XRD to determine the 

phases present. Figure 3.7 shows and compares the XRD patterns obtained from both the 

‘green’ and pre-oxidised pellets. Following this oxidative sintering process, all of the TTM 

present in the ‘green’ pellets was fully oxidised to TTH. 
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Figure 3.7 – XRD pattern obtained from ‘green’ and pre-oxidised pellets following 2 hours 

oxidative sintering at 1473 K with a static air atmosphere [162] 
 

The reduction swelling index (RSI) at 1343 K and the compressive strength of both types of 

pellets are also determined. They are shown in Appendix A.1. 

 

It should be noted that the porosity and its effect on the reduction rate of the pellets are beyond 

the scope of the thesis. In the current experimental set up for pelletising and sintering, it is not 

practically feasible to produce pellets with different porosities without changing other 

parameters (such as the choice of binders, or sintering conditions). Instead, this study focuses 

on the pellets with controlled porosity. It is confirmed that the properties of the pellets for the 

reduction experiments are similar to each other, as shown in Section 3.3.1 experiment set up 

of the reproducibility of the reduction experiments in Figure 3.9. 
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3.3 H2 gas reduction of NZ ironsand pellets in a TGA system 
 

H2 gas reduction in a TGA system (at Callaghan Innovation) was conducted to study the 

reduction behaviours of the pellets at high temperatures. These experiments measured the 

weight loss of the pellets versus reaction time. The reduction degree was then calculated from 

the weight loss. 

 

3.3.1 Experiment set up 

 

A schematic of the experiment set up is shown in Figure 3.8. The furnace can be raised for 

loading and unloading samples. To form a sealed reaction chamber, an outer alumina sheath 

(~4.5 cm diameter) is used. Inside the chamber, an alumina crucible is placed on top of a 

vertical sheathed B-type thermocouple. The bottom of the thermocouple sheath is connected to 

a balance located outside of the furnace hot zone, which allows in-situ weight recordings during 

reduction. To ensure good contact between the pellets and the reducing gas, a capillary, acting 

as a gas inlet, is installed next to the crucible. 

 

 
Figure 3.8 – Schematic of the TGA experimental arrangement used in this work at Callaghan 

Innovation, which employed a modified Mettler (USA) TA1 Thermobalance [162] 
 

For each experimental run, a single pellet (~7 mm diameter) was used, produced from milled 

ironsand with an average particle size of 32 µm. This was placed in the middle of the crucible. 

To maintain an inert atmosphere inside the system before reduction, the chamber was first 

evacuated then backfilled with N2 gas until atmospheric pressure was reached. The furnace was 

then heated to the required experimental temperature (993 K to 1443 K) at a ramp rate of 15 
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K/min under N2 at a gas flow rate of 35 ml/min. Once the target temperature was achieved, the 

system was allowed to thermally stabilise for 10 or 30 minutes. Once stabilised, the gas flow 

was switched to 100vol% H2 gas, marking the beginning of the reduction experiment. During 

the experiment, the mass of the pellet was recorded every 1 or 10 seconds, depending on the 

reduction rate. Measurement proceeded until there was no further measurable weight loss of 

the pellet. The N2 gas was then switched back into the furnace, and the system cooled to room 

temperature at a rate of 40 K/min. Post experiment, the fully reduced pellets were characterised 

by SEM and XRD to establish the composition, microstructure and phase evolution. 

 

The reduction degree X, was calculated based on the weight loss resulting from the removal of 

oxygen in the system.  

 

For the Ar-sintered pellets, X is calculated by equation 3.1: 

 

𝑋𝑋 =  𝑤𝑤0−𝑤𝑤𝑡𝑡
0.23∗𝑤𝑤0 

∗ 100%                                                      (3.1) 
 

For the pre-oxidised pellets, X is calculated by equation 3.2: 

 

𝑋𝑋 =  𝑤𝑤0−𝑤𝑤𝑡𝑡
0.26∗𝑤𝑤0 

∗ 100%                                                      (3.2)  
 

In both equations, 𝑤𝑤0 is the initial weight of the pellet, and 𝑤𝑤𝑡𝑡 is the pellet weight after time t. 

The factors 0.23 in equation 3.1 and 0.26 in equation 3.2 stands for the total weight fraction of 

the removable oxygen in the Ar-sintered and pre-oxidised pellets respectively. (The 

determination of these values is given in Appendix A.2).  

 

At the start of each TGA run, a short delay of ~0.4 minutes was observed to occur between 

switching the flow of H2 gas into the chamber and the onset of weight loss. This delay was 

attributed to the time required for H2 gas to flow through the inlet pipe and displace N2 gas 

from the chamber. Therefore, in all of the following analyses, the onset delay time was removed 

and the time t=0 s considered to be the final data point collected before an initial weight loss 

was observed. 

 

In order to confirm the reproducibility of the reduction measurements prior to undertaking 

experiments, multiple reduction runs were performed in the TGA under identical conditions: 
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~7 mm diameter pellets, 1343 K, and a flow of 250 ml/min 100vol% H2 gas. The results are 

shown in Figure 3.9. It can be seen that all five reduction runs show very close agreement (at 

each reduction time, the mismatch of the calculated X in all the runs only shows a standard 

deviation of ~0.49 on average), providing a high degree of confidence in the reproducibility of 

the experimental method employed. This also confirms that the properties of each independent 

pellet are similar to each other. 

 

 
Figure 3.9 – Plots showing data obtained during reproducibility tests of the H2 gas reduction 

experiment performed in this work at Callaghan Innovation. Five sets of reduction degree 
data are shown, each obtained from the H2 gas reduction of similar pre-oxidised pellets 

under the same condition (1343 K, 250 ml/min, ~7 mm diameter pellets) [162] 
 

Prior to conducting reduction experiments at different temperatures, the critical flow rates of 

the experiment set up for reducing both types of pellets were determined. This was done 

through monitoring the reduction rate for a series of increasing H2 gas flow rates. The critical 

flow rate is defined as the flow rate above which there are no further effects on the reduction 

rate. Above the critical flow rate, gas mass transport effects are eliminated. The determination 

of the critical flow rate of reducing Ar-sintered and pre-oxidised pellets will be detailed in 

Sections 4.1 and 5.1 respectively. 

 

3.3.2 Experimental matrix 

 

In the TGA experiments, the effect of temperature and pellet diameter on the reduction rate 

was investigated. The reduction experiments conducted for both types of pellets in this study 

are summarised in Table 3.5. 
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Table 3.5 – Matrix of the experiments for reducing both types of pellets in H2 gas in the TGA 
system 

 
Flow 
rate / 

ml/min 
Temperature / K Pellet diameter (mm) at 

1343 K 

Ar-sintered 
pellets 980 

993 1043 1073 1093 1143 
5.5 6.5 7.5 8.5 

1193 1243 1293 1343 1443 

Pre-oxidised 
pellets 520 1043 1143 1243 1343 1443 5.5 6.5 7.5 8.5 

The pellets obtained from the highlighted reduction experiments in this table were also 
characterised by SEM and XRD to observe the morphologies and phase distribution in the final 
fully reduced pellets. 
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3.4 Microstructural analysis of reduced pellets from quenching experiment  
 
To observe the microstructure of the pellets at different reduction stages, quenching 

experiments were carried out. Quenching experiments were conducted at both VUW and UOW, 

using two different set-ups. In this experiment, partially reduced pellets with desired reduction 

degrees were obtained. These pellets were then characterised by light microscopy and SEM-

EDS analysis to establish the morphological and compositional change during reduction. 

 

3.4.1 Experiment set up 

 

Quenching experiments were conducted at VUW using a sliding furnace. A schematic of the 

experiment set up is shown in Figure 3.10. A quartz tube with an 8 mm inner diameter was 

placed inside a horizontal furnace. The furnace has four wheels, which allows it to be moved 

from one side to the other. This leads to rapid heating/cooling, depending on whether the 

sample is inside or outside the furnace cavity. The furnace temperature was controlled by an 

Omega-MSC controller. An N-type thermocouple was placed inside the quartz tube, close to 

the pellets in order to measure the sample temperature. Gases (Ar/H2) were introduced from 

one end of the tube and exhausted from the other end. 

 

 
Figure 3.10 – Schematic of the sliding furnace for obtaining the partially reduced pellets 

with desired reduction degrees at VUW 
 

For each experimental run, a single pellet (~6 mm) produced from particles with an average 

size of 73 µm was placed in the quartz tube. The position of the furnace was adjusted so that 

the pellet was placed in the hot zone. Then the furnace was heated under flowing Ar gas (340 

ml/min) to the target temperature (1023 K, 1123 K or 1223 K, corresponding to the temperature 
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in the ND reduction experiments). After stabilising at the target temperature for 5 minutes, the 

gas was switched to 100vol% H2 at a flow rate of 340 ml/min. Once the time required to obtain 

the desired reduction degree was reached, the furnace was immediately moved away from the 

sample, and H2 gas flow was switched back to Ar gas. This process ensured that the partially 

reduced pellets were rapidly cooled to room temperature to reserve the pellet/particle 

morphologies. The quenched pellet was then removed from the quenching system and weighed. 

The final reduction degree was calculated using either equation 3.1 for Ar-sintered pellets or 

equation 3.2 for pre-oxidised pellets. Afterwards, the pellet was mounted in resin and prepared 

for SEM-EDS characterisation. 

 

In addition to the ‘elapsed-time’ quenching experiments performed in the sliding furnace, some 

‘TGA-based’ quenching experiments were also conducted, using a TGA system at UOW. A 

schematic of the experiment set up is shown in Figure 3.11. An alumina crucible was attached 

to a platinum wire, which was further extended and connected to a stainless wire. This crucible 

wire set-up was connected to a measuring balance at the top of the furnace. For quenching, the 

crucible/sample was raised to the top (cold zone) of the furnace area to cool rapidly. Before the 

gases (H2 and Ar) were introduced to the furnace, they passed through drierite and ascarite to 

remove the water vapour and CO2.  

 

 
Figure 3.11 – Schematic of the TGA system for the quenching experiments performed at 

UOW. During heating and reduction, the stainless steel wire is hooked at the bottom of the 
scale so that the pellets are in the hot zone. For quenching in Ar gas, the stainless-steel wire 

is unhooked and pulled up for the pellets to cool rapidly in the cold zone 
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The experimental conditions are listed in Table 3.6. After putting three pellets in the crucible, 

they were initially flushed with Ar gas for 20 minutes. Then the furnace was heated up to the 

target temperature in Ar gas. After thermo-stabilisation for 10 minutes, the pellets were reduced 

in 100vol% H2 gas. When the desired reduction degree was reached, as indicated by the weight 

change from the scale, the crucible was moved to the cold zone and quenched in Ar gas. 

Afterwards, the pellets were taken out at room temperature and prepared for characterisation. 

The gases used in both the UOW ‘TGA-based’ experiments, and VUW-based ‘elapsed time’ 

experiments were of similar grade, and the results obtained from each method were found to 

be consistent. 

 

Table 3.6 – Experimental conditions of quenching experiment conducted in the TGA system 
at UOW 

Pellets  
Step 1: heating Step 2: reducing Step 3: quenching 

Target 
temperature 

Ar gas 
flow  H2 gas flow  Quenching 

temperature 
Ar gas 
flow 

Diameter ~6 mm, 
D50%=~73 μm 
(Particle size) 

1023 K, 1123 
K, and 1223 K 1 L/min 1 L/min ~423 K 3 L/min 

 

3.4.2 Experimental matrix 

 

The quenching experiments conducted for both types of pellets in both the ‘elapsed-time’ 

sliding furnace at VUW and the ‘TGA -based’ system at UOW are summarised in Table 3.7. 

 

Table 3.7 – Matrix of experiments for reducing and quenching both types of pellets for the 
observation of morphologies in the partially reduced pellets with desired reduction degrees 

 Ar-sintered pellets Pre-oxidised pellets 

Experiment set up 
‘TGA-based’ system at UOW 
1 L/min 100vol% H2 gas flow 

‘elapsed-time’ sliding furnace at VUW 
340 ml/min 100vol% H2 gas flow 

Temperature 
         /K 

 Reduction degree obtained 

1023 21% 50% 81% Fully 
reduced 

21% 
(1min) 

55% 
(4mins) 

79% 
(10mins) 

Fully 
reduced 

1123 21% 50% 78% Fully 
reduced 

18% 
(45s) 

56% 
(2min50s) 

80% 
(5min40s) 

Fully 
reduced 

1223 25% 54% 82% Fully 
reduced 

23% 
(30s) 

53% 
(1min40s) 

81% 
(3min20s) 

Fully 
reduced 
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3.5 Ex-situ characterisation methods  
 

XRD, light microscopy and SEM-EDS analysis (imaging characterisation) were used to 

analyse the characteristics of the as-received ironsand, unreduced pellets, partially reduced and 

fully reduced pellets. 

 

3.5.1 XRD analysis 

 

To conduct powder XRD analysis, the pellets were first crushed and ground in a mortar. The 

XRD analysis conducted in this study used a Bruker D8 Advance Diffractometer. Its set up is 

summarised in Table 3.8. After collecting diffraction patterns from the studied samples, they 

were analysed using EVA (V2) software to determine the phases present in the samples. 

Quantitative analysis was also conducted using Topas 4.2 software (see Section 3.6). 

 

Table 3.8 – Set up of the Bruker D8 XRD facility and the operation parameters 

Radiation 
source 

Beam 
height Detector Voltage and 

current Step interval Count time 
per step 

Co Kα 
(1.79026 

Angstroms) 
1 mm 

Na(Tl)l 
scintillation 

counter 

40 kV and 
15 mA 0.05° per 2θ 5 seconds 

 

3.5.2 Imaging characterisation 

 

Sample preparation 

Pellets and powders were prepared for microscopy imaging (light microscopy or SEM-EDS) 

by mounting in an epoxy resin mould. The resin applied was Struers EpoFix - a slow-curing 

transparent epoxy which has a high fluidity and long settling time to aid impregnation. The 

pellets in the uncured resin were placed in a vacuum chamber to ensure resin impregnated 

throughout the pores within the pellets. It took around 24 hours for the epoxy resin to harden.  

 

Once hardened, the mounted pellets were ground roughly to their centre planes using a series 

of silicon-carbide papers from #250 to #2000 grit. The resulting cross-section surface was 

polished by a series of diamond pastes (9 µm, 3 µm and 1 µm) to remove scratches and give a 
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final smooth and even surface. Between each grinding and polishing step, the epoxy-mounted 

pellets were washed using soap, rinsed under ethanol and dried, to remove grinding dust from 

the surface. 

 

For light microscopy, the polished pellets were directly used. For SEM-EDS analysis, the 

pellets were coated with a thin layer of carbon to provide a conductive surface. 

 

Light microscopy 

Light microscopy allows the observation of pellet-scale morphology and evolution. Light 

microscopy was conducted with a Nikon Eclipse LV100NDA optical microscope, equipped 

with a Nikon camera (AF-S Micro NIKKOR 40mm lens) and NIS-Elements photo analysis 

software.   

 

SEM-EDS analysis 

SEM-EDS analysis was undertaken mainly using two different microscopes: a FEI Quanta 450 

and a FEI Nova. Both microscopes are equipped with an EDAX detector, which was used with 

the TEAM 3.1 software to provide quantitative EDS analysis. In addition, the EDS-Line scan 

analysis (a type of analyses as seen below) was conducted using a JEOL JSM-6490LA 

electromicroscope integrated with AZtecSynergy software (Aztec 4.2).  

 

Three different types of analyses were obtained from the SEM-EDS analysis: 

 

(1). Back-scattered SEM images. These back-scattered microstructure images show the 

morphologies of cross-sectioned pellets at different reaction stages. This allowed for the 

investigation of reduction conditions on the morphologies of the fully reduced pellets, and 

revealed the morphological evolution of particles distributed from the pellet surface to the 

pellet centre.  

 

(2). EDS point/mapping analysis. This analysis was used to quantitatively determine the 

distribution of the elements at points within a back-scattered SEM image.  

 

(3). EDS-line scan analysis. This method was adopted specifically for analysing the atomic% 

O/Fe ratio as a function of the location in a partially reduced pellet. This analysis is similar to 
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the point analysis, but is conducted by scanning along a continuous line all the way from the 

pellet surface to its centre. The output of the EDS-line scan is a plot of the atomic% O/Fe ratio 

profile along the scanned line. Due to the existence of pores and impure oxides in the pellets, 

the profile normally shows noise. To remove the noise while maintaining the shape of the 

profile, post-processing using data smoothing is applied. A 50th percentile smoothing filter with 

a window of 5 picks the middle point of each rolling set of 5 data points. By using this 

smoothing method, the noise was significantly reduced while maintaining the profile shape. 

The atomic% O/Fe ratio obtained from this method were externally calibrated and then checked 

using mineral standards of Fe2O3, Fe3O4, FeO and metallic Fe. The results are shown in Figure 

3.12. As can be seen, the atomic% O/Fe ratios obtained from the mineral standards agree 

closely with the corresponding stoichiometries (stoichiometric FeO is assumed). 

 

 
Figure 3.12 – External calibration for performing the EDS-line scan analysis for the 

partially reduced pellets 
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3.6 Phase evolution during reduction of pellets from in-situ ND experiments 
 

A series of in-situ neutron diffraction (ND) experiments were performed to determine the phase 

evolution during reduction of the pellets. ND is a technique that allows direct elucidation of 

the amount of each phase generated during reduction. The principle of the method is similar to 

XRD, but compared to X-rays, neutrons can travel long distances in materials without being 

adsorbed. Their penetrating depth could reach up to several centimetres. Hence, ND technique 

allows the use of bulk materials such as the ironsand pellets. In these experiments, continuous 

diffraction patterns during reduction of the pellets across the whole process were obtained. 

Then, these diffraction patterns were converted to the concentration (weight proportion) of 

each key crystalline phase occurring during reduction for the phase evolution analysis. 

 

3.6.1 Experiment set up 

 

The in-situ ND experiments were conducted using the Wombat high-intensity diffractometer 

facility at the Australian Nuclear and Science Technology Organisation (ANSTO). Wombat 

has a large solid angle detector with position sensitive detection capabilities, enabling the 

collection of an entire diffraction pattern at once. The Wombat instrument is equipped with a 

high-temperature furnace, allowing diffraction patterns to be continuously obtained during a 

reaction. The operating parameters used in these experiments are summarised in Table 3.9. 

 

Table 3.9 – Operating parameters of the Wombat instrument at ANSTO for conducting the 
reduction experiments monitored by the in-situ ND technology 

Detector scattering angle Wavelength Exposure time 

120° 0.241 nm 30 seconds 
 

Schematics of the facility and the sample holder are shown in Figure 3.13. In each 

experimental run, four pellets (~6 mm diameter) produced from an average particle size of 73 

µm were put in a quartz tube (ID=7 mm). This tube also acted as a gas inlet. Alumina wool 

was used at one end of the tube to support the pellets and facilitate gas flow. A thermocouple 

was inserted close to the pellets, continuously measuring the sample temperature during the 

experiments. The small quartz tube was then inserted into a larger diameter tube with a closed 

end, which sealed the reaction chamber and also acted as a gas outlet. The whole assembly was 

then placed inside the hot zone of the furnace. At the start of the experiment, the samples were 
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flushed with Ar gas before heating. Once the target temperature (1023 K, 1123 K or 1223 K) 

was reached under Ar gas, the system was held at this temperature for 5 minutes to allow 

thermal stabilisation. Once stabilised, a H2 or H2-Ar gas mixture was introduced, marking the 

beginning of the reaction. At the end of each experiment, the gas was changed back to Ar and 

the samples were cooled down. Diffraction patterns were collected every 30 seconds from the 

start until the end of the experiment. The time resolution of 30 seconds was enough to provide 

sufficient counts for the diffraction pattern on the Wombat instrument. 

 

 
Figure 3.13 – Illustration of the Wombat facility [163] and a schematic of the sample holder 
 

Data analysis was then performed to convert the diffraction patterns from each time step into 

the concentration of each crystalline phase. This conversion was conducted using Topas 4.2 

software, and followed a similar peak fitting principle as described in Longbottom et al. [124]. 

The peak positions were determined by the size and symmetry of the unit cells for each phase. 

The peak widths were dominated by instrumental broadening so that the peak shape is the same 

for all phases at each diffraction angle. Peak intensity fitting was related to the scale factor, 

atom positions, site occupation and thermal vibrations. The scale factor links the peak 

generated by the fitting model to that from the actual diffraction pattern obtained from ND, 

which is used to establish a reasonable data fitting. In this work, the atom positions were fixed 

to their literature values, and 100% atom occupancy of the corresponding sites was assumed. 

In TTM, Ti only occupies octahedral Fe sites according to literature [164], so that the peak 
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intensity generated by the model for TTM is modified.  Based on previous experience, the 

thermal parameter was fixed at 0.33 to provide reasonable fittings.  

 

A typical peak-fitting result for an ND pattern is shown in Figure 3.14. The fitting was 

conducted from 2θ = 20° to 125° (No peaks are distinguished above 125°).  The background 

of the diffraction pattern was modelled by a 4th order Chebyshev polynomial regression. A 

common Thompson-Cox-Hasting pseudo-Voigt (TCHZ) peak shape was applied to all the 

possible crystalline phases, with the peak-fitting principle as described above. The scale factor 

and lattice parameter of each main crystalline phase were fitted parameters for each separate 

pattern.  

 

 
Figure 3.14 – A typical peak-fitting results of an ND pattern obtained of reducing the pre-

oxidised pellets at 1223 K at a flow of 250 ml/min 100vol% H2 gas 
 

As can be seen, the peaks of TTM, FeO, Fe and FeTiO3 phases were generally well represented 

by the fitted curves. This fitting procedure gives the final refined scale factor of each crystalline 

phase, allowing the concentration of each phase to be established. 

 

These fitted concentrations can also be converted to an overall reduction degree X, which is 

defined as the fraction of O removed from the system based on equation 3.3: 

 

𝑋𝑋 = 𝑚𝑚𝑜𝑜,0−𝑚𝑚𝑜𝑜,𝑡𝑡
𝑚𝑚𝑜𝑜,0

                                                         (3.3) 

 

where 𝑚𝑚𝑜𝑜,0 represents the mass of O in the pellets before reduction, and 𝑚𝑚𝑜𝑜,𝑡𝑡 represents the 

mass of O in the pellets after reduction at time t. However, due to the constant decrease in the 

pellets’ mass during reduction, the absolute mass of O at any time cannot be determined. 

Therefore, the mass of O in the pellet is normalised against the mass of Fe. This mass ratio, 
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O/Fe, is used to replace the mass of O in equation 3.3. This normalisation is shown by equation 

3.4. In this equation, M stands for the molar mass of each phase or element, and {𝑖𝑖} indicates 

the mass percentage (concentration) of each crystalline phase obtained from the in-situ ND 

analysis. 

 

𝑂𝑂
𝐹𝐹𝐹𝐹

=
{𝐹𝐹𝐹𝐹2𝑂𝑂3} 3𝑀𝑀𝑜𝑜

𝑀𝑀𝐹𝐹𝐹𝐹2𝑂𝑂3
+ {𝐹𝐹𝐹𝐹3𝑂𝑂4} 4𝑀𝑀𝑜𝑜

𝑀𝑀𝐹𝐹𝐹𝐹3𝑂𝑂4
+ {𝐹𝐹𝐹𝐹𝐹𝐹} 𝑀𝑀𝑜𝑜

𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹
+ {𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂3} 3𝑀𝑀𝑜𝑜

𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂3

{𝐹𝐹𝐹𝐹2𝑂𝑂3} 2𝑀𝑀𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹2𝑂𝑂3

+ {𝐹𝐹𝐹𝐹3𝑂𝑂4} 3𝑀𝑀𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹3𝑂𝑂4

+ {𝐹𝐹𝐹𝐹𝐹𝐹} 𝑀𝑀𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹

+ {𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂3} 𝑀𝑀𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂3

+ {𝐹𝐹𝐹𝐹}𝑀𝑀𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹

 

(3.4) 
 

3.6.2 Experimental matrix 

 

In the ND experiments, the effect of reduction conditions on the phase evolution were 

investigated. The parameters varied included: H2 flow rates, H2 gas concentrations and 

reduction temperature. The experiments undertaken at ANSTO in June 2017 are summarised 

in Table 3.10. 

 

Table 3.10 – Reduction experiments for both types of pellets monitored by in-situ ND 
technology and conducted under different reduction conditions. Experiments performed at 

Wombat beamline at ANSTO in June 2017 

Flow rate Temperature H2 gas concentration (vol%) in H2-Ar gas mixture (for both 
types of pellets) 

250 
ml/min 

1023 K 100% H2 75% H2 50% H2    

1123 K 100% H2 75% H2 50% H2 25% H2 10% H2  

1223 K 100% H2 75% H2 50% H2 25% H2 10% H2 5% H2 
 

To examine the effects of gas flow rate on the phase evolution for both types of pellets, 

reduction experiments were also conducted at three different flow rates (62.5 ml/min, 125 

ml/min and 250 ml/min) at 1223 K with 100vol% H2 gas.  

 

It should be noted that due to the late Australia Visa issuing for the author of this thesis, the in-

situ ND reduction experiments were conducted by a team of scientists in Australia without the 

author in attendance. However, all of the analyses in the post processing of the data were 

conducted by the author. 
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In this chapter, the experiment set ups and procedures for the pellet reductions are described. 

To conduct these reduction experiments, several different furnaces were used. To enable 

effective comparison, the temperature at the sample position in the hot zone of each furnace 

was calibrated. This calibration is shown in Appendix A.3. Similarly, the purity of the gases 

(H2, N2 and Ar) used in the experiments is also summarised in Appendix A.3. 
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Chapter 4  
Results of reducing Ar-sintered pellets in H2 gas 

 

In this chapter, a summary of experimental results obtained from reducing the Ar-sintered 

pellets in H2 gas is given. These results include: 

 Section 4.1: TGA measurements of the reduction of Ar-sintered pellets in H2 gas 

 Section 4.2: The evolution of crystalline phase during reduction determined by in-situ 

ND 

 Section 4.3: The pellet- and particle-scale morphologies which occur during reduction, 

as captured during quenching reduction experiments  

 Section 4.4: Summary of the results of reducing Ar-sintered pellets 

 

Note that in this chapter, only the experimental results obtained are reported. Discussion of the 

analysis of these results is presented in Chapters 6,  7 and  8. 

 

4.1 Reduction of the Ar-sintered pellets in the TGA system 
 

In this section, the DR characteristics of the Ar-sintered pellets in H2 gas flow were investigated. 

Key experimental variables examined were the effect of H2 gas flow rate, reduction 

temperature and pellet diameter on the pellet reduction rate.  

 

4.1.1 Determination of critical flow rate 

 

In Figure 4.1, the effect of H2 gas flow rate on the reduction of the pellets reduced at 1343 K 

is shown. The reduction progressed faster with increasing flow rate from 330 ml/min to 850 

ml/min. Further increase on the flow rate had no additional effects on the reduction rate. This 

implies that the critical flow rate of this experiment is below 850 ml/min. To ensure that mass 

transport effects in the gas stream were excluded, the highest tested flow rate of 980 ml/min 

was chosen for all the following reduction experiments. 

 

It should be noted that reducing 1 mole Fe3O4 stoichiometrically requires 4 mole of H2 gas. In 

the current experiment, 0.65 g pellet was reduced, which has a stoichiometric requirement of 

only 250 ml H2 gas. This is much less than used in these experiments. This is because excess 

H2 is needed to exceed the thermodynamic limits of the reactions. In addition, a high flowrate 
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is also required to sweep away water vapour and maintain a local [H2]/[H2O] ratio that is 

favourable to iron production. In a practical industrial process, wastage of excess H2 gas can 

be avoided by recycling unused H2 gas from the exhaust gas (after first condensing and 

removing the water vapour). This also applies to the reduction of pre-oxidised pellets reported 

in Section 5.1. 

 

 
Figure 4.1 – The effect of changing H2 gas flow rate on the reduction rate of reducing Ar-

sintered pellets (~7 mm) at 1343 K in the TGA system at Callaghan Innovation 

 

4.1.2 The effect of temperature on reduction rate 

 

Results of the TGA experiment of reducing Ar-sintered pellets in 980 ml/min flowing H2 gas 

are shown in Figure 4.2. As can be seen, the reduction rate increased with increasing 

temperatures. From 993 K to 1193 K, the reduction rate increased significantly. At 

temperatures ≥ 1193 K, the temperature effect was still present, but less significant than at 

lower temperatures. At 993 K, it took almost 110 minutes for the completion of the reduction, 

while it took less than 20 minutes at all temperatures above 1143 K. Interestingly, it was found 

that the maximum reduction degree achieved at the completion of reduction varied with 

temperature. It increased from 93.3% to 97.4% as temperature increased from 993 K to 1443 

K. The lower maximum reduction degree might result from the residual Fe-Ti-O phases. The 

evolution of these phases is further discussed in Chapters 7 and 8.  
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 Figure 4.2– The effect of temperature on the reduction rate of Ar-sintered pellets (~7mm 
diameter) in 980 ml/min flowing H2 gas from 993 K to 1443 K in the TGA system at 

Callaghan Innovation 

 

XRD analysis was performed on the fully reduced pellets obtained from selected TGA 

experiments (as shown in Table 3.5), and the results are given in Figure 4.3. From this figure 

it can be seen that, in addition to the major phase of metallic Fe (Peak A), several different 

residual Fe-Ti-O phases were also observed (Peak B to Peak D). These residual oxides were 

identified to be ilmenite (FeTiO3), rutile (TiO2), pseudobrookite (PSB-Fe2TiO5 or ferro-PSB, 

FeTi2O5), and a generic spinel phase (Peak E). The presence of these residual oxides is 

consistent with a final reduction degree of <100%. The evolution of these phases with reduction 

temperature is shown in Figure 4.4. On increasing the reduction temperature, the 

concentrations of both FeTiO3 and TiO2 decreased, while that of PSB/ferro-PSB increased. The 

spinel concentration did not change significantly with temperature. 
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Figure 4.3 - Magnified XRD diffractograms obtained from fully reduced pellets following 

reduction at each temperature from 1043 K to 1443 K. Note that the metallic Fe peak (A) is 
truncated in order to enable minor peaks to be clearly shown. The full pattern is shown in 

Figure B.1 in Appendix B.1 

  
Figure 4.4 – Changes in concentration of residual oxides (as well as metallic Fe and 

reduction degree) indicated in Figure 4.3 in the fully reduced pellet at each temperature 
from 1043 K to 1443 K. Note the error bar of each phase concentration is generated from the 

peak fitting 
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4.1.3 The effect of pellet size on reduction rate 

 

The reduction behaviour of Ar-sintered pellets with diameters ranging from 5.5 mm to 8.5 mm 

was measured at 1343 K at a H2 gas flow of 980 ml/min, and the results are plotted in Figure 

4.5. As can be seen, increasing the pellet size results in a slower reduction rate.  

 

It should be noted that ‘kinks’ were observed in the reduction degree curve above 90%. This 

has been seen in almost all the reduction experiments, which might be attributed to the 

reductions of the residual iron oxides (as established from the XRD analysis in Figure 4.3) at 

latest stages. These reactions are further discussed in Chapters 7 and 8. This suggests that 

smaller pellets may be desirable for practical DRI processes in order to deliver a faster 

reduction rate. 

 

 

Figure 4.5 – The effect of pellet size on the reduction rate for the Ar-sintered pellets reduced 
at a flow rate of 980 ml/min H2 gas at 1343 K. (Data taken in the TGA system at Callaghan 

Innovation)
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4.2 Phase evolution during H2 gas reduction of Ar-sintered pellets through 
in-situ ND measurements 

  

In this section, results obtained from in-situ ND measurements of the phase evolution during 

H2 gas reduction of the Ar-sintered pellets is described. The effects of H2 flow rate, H2 gas 

concentration and temperature on the phase evolution were investigated. 

 

The in-situ diffraction patterns obtained were converted to crystalline phase concentrations at 

each point in time during a series of reduction experiments, using the approach explained in 

Subsection 3.6.1. An example phase evolution plot is shown in Figure 4.6, which shows 

results from Ar-sintered pellet reduced at 1223 K by 100vol% H2 gas at a flow of 250 ml/min. 

Before reduction, the Ar-sintered pellets composed ~95wt% TTM and ~5wt% TTH. At the 

moment H2 gas was introduced, TTH was rapidly consumed, and a slight increase in the 

concentration of TTM was observed. After this, the concentration of TTM started to decrease, 

and FeO was detected. The concentration of FeO first rose to a peak at about 3 mins, before 

dropping back down to zero. Metallic Fe first appeared at the same time as FeO. FeTiO3 was 

detected after the concentration of FeO reached its peak. At the completion of the reduction, 

metallic Fe and FeTiO3 were the only products observed.  

 

It should be noted that compared to XRD, the ND technique gives broader peaks and higher 

background noise level. This does not allow for the identification and observation of other 

minority phases which may also be present, such as Fe2TiO4, TiO2 and PSB. This limitation of 

ND measurements will be further addressed in Subsection 4.2.4. 
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Figure 4.6– An example of the phase evolution obtained from the in-situ ND measurements 

of Ar-sintered pellets reduced at 1223 K by 100vol%H2 at a gas flow rate of 250 ml/min 
 

In the in-situ ND experiments, the key variables investigated were different H2 flow rates at 

1223 K, H2 gas concentrations at each temperature and reduction temperatures (1023 K, 1123 

K and 1223 K). In order to compare the effects of each reduction condition on the phase 

evolution, it is necessary to renormalize the time axis so that each reaction can be visualised 

within the same axis range. To do this, a characteristic time (τ) was determined for each 

reaction. This was defined as the time to reach 50wt% metallic Fe.  

 

4.2.1 The effect of H2 flow rate on the phase evolution at 1223 K 

 

1. Determining the critical flow rate for ND reduction experiments 

At 1223 K, the Ar-sintered pellets were reduced using 100vol% H2 gas at three different flow 

rates: 62.5 ml/min, 125 ml/min and 250 ml/min. Concentration curves of each crystalline phase 

obtained at each flow rate are shown in Figure 4.7. It can be seen that lower flow rate results 

in a slower reduction rate. 
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Figure 4.7 – Concentration curves of each crystalline phase during reduction of Ar-sintered 
pellets by 100vol% H2 gas at 1223 K at a flow rate of (a) 62.5 ml/min, (b) 125 ml/min, and 

(c) 250 ml/min 
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To verify whether the highest flow rate conducted in ND reduction experiments (250 ml/min) 

was conducted above the critical flow rate of these experiments, ND and TGA results were 

compared for a similar pellet (~6 mm pellet diameter and 73 µm average particle size). The 

TGA experiment was performed at 1223 K at a flow of 980 ml/min 100vol% H2 gas. (These 

conditions were known to be above the critical flow rate condition for Ar-sintered pellets in 

the TGA system at Callaghan Innovation). Reduction degree values were also calculated from 

the phase concentration curves obtained from the ND reduction experiments (using equations 

3.3 and 3.4). A comparison between the ND and TGA result is shown in Figure 4.8. As can be 

seen, the ND reduction experiments conducted at a flow rate of 250 ml/min seemed closely 

follow the reduction rate obtained in the TGA experiment at a flow rate of 980 ml/min, 

indicating this experiment took place above the critical flow rate for the ND experimental 

apparatus at the Wombat beamline. However, the ND reduction experiments conducted at 

lower flow rates (62.5 ml/min and 125 ml/min) were below the critical flow rate, meaning that 

gas mass transport effect on the phase evolution cannot be excluded. 

 

 
Figure 4.8 – Comparison between the reduction degree curve obtained from the TGA 

experiment (Callaghan Innovation) at a flow rate of 980 ml/min, and the results obtained 
from the ND reduction experiments (Wombat beamline) at three different flow rates using 

100vol% H2 gas at 1223 K 

 

2. The effect of flow rate on the in-situ phase evolution 

In Figure 4.9(a), the production rate of metallic Fe during reduction at different H2 flow rates 

are indicated. As can be seen, the generation of metallic Fe progressed faster with increasing 

flow rates. The intersection of the dashed line with each data curve shows the time, τ, at which 
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50% metallisation was achieved for each experiment. In Figure 4.9(b), a plot of the reciprocal 

of each τ (1/τ) against the respective flow rate shows a linear relationship passing through the 

origin. This linear relation implies that the generation of metallic Fe is directly proportional to 

H2 flow rate over the range of flow rates studied. Note that this linear relation also indicates 

the flow rate of 250 ml/min applied in the ND reduction experiment is just above the critical 

flow rate for the Wombat beamline. 

 

 
Figure 4.9– (a) The effect of H2 flow rate on the changes in concentration of metallic Fe 

during reduction of Ar-sintered pellets at 1223 K by 100vol% H2 at 62.5 ml/min, 125 ml/min 
and 250 ml/min. The dashed line indicates 50wt% metallic Fe. (b)  A linear relationship 

between 1/τ and flow rate. 
 

In order to compare the evolution of each crystalline phase at different H2 flow rates on a single 

coordinate axis, the x-axis was normalised (t/τ) and the data replotted, as in Figure 4.10(a) to 

(e). As can be seen, the normalised curves for TTH, metallic Fe, and FeTiO3 are highly similar 

for the different H2 flow rates tested. However, the peak level of the intermediate FeO phase 

varies significantly with different flow rates, with the maximum concentration of FeO 

increasing as the H2 flow rate decreases. Some discrepancies are also observed for the TTM 

phase at the highest flow rate. These differences are possibly attributed to the gas mass transfer 

effects. It might result in a different local H2/H2O distribution in the pellets at different H2 flow 

rates, affecting the phase evolution (especially the reduction of TTM to FeO).  
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Figure 4.10 - In-situ ND results showing the evolution of each crystalline phase during 

reduction of Ar-sintered pellets by 100vol% H2 gas at 1223 K at a flowrate of 62.5 ml/min, 
125 ml/min and 250 ml/min respectively at the Wombat beamline. Here, data is plotted in a 
single coordinate system by using a normalised dimensionless x-axis (t/τ). It should be noted 
each reduction started at t/τ=0. (a) TTH, (b) TTM, (c) FeO, (d) metallic Fe and (e) FeTiO3 

 

4.2.2 The effect of H2 gas concentration on the phase evolution at each temperature 

 

At each temperature from 1023 K to 1223 K, reductions of the Ar-sintered pellets in a 250 

ml/min flowing H2-Ar gas mixture with H2 gas concentrations ranging from 5vol% to 100vol% 

were conducted. Concentration curves for each crystalline phase during reduction at each 

condition at 1223 K are shown in Figure 4.11 as examples, while the concentration curves 

obtained at 1023 K and 1123 K are given in Appendices B.2 and B.3.  It should be noted that 
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for the reductions at lower H2 gas concentrations in Figure 4.11(a) to (c), a sudden slight drop 

in the concentration of Fe was observed with the emergence of FeTiO3. This decrease in the Fe 

concentration is to compensate the jump of FeTiO3 concentration from zero to the amount 

(~5wt%) which is above the detection threshold of the ND method. 

 

 
Figure 4.11 – Concentration curves for each crystalline phase measured by in-situ ND at the 
Wombat beamline, during reduction of Ar-sintered pellets at a flow of 250 ml/min at 1223 K 
in various H2-Ar gas mixtures. (a) 5vol% H2, (b) 10vol% H2, (c) 25vol% H2, (d) 50vol% H2, 

(e) 75vol% H2, and (f) 100vol% H2 
 

The production rate of metallic Fe at each different H2 gas concentration and temperature are 

indicated in Figures 4.12(a1) to (a3). At each temperature the generation of metallic Fe 
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progressed faster with increasing H2 gas concentration. In the same manner as before, the 

reciprocal of each τ (1/τ) is plotted against the respective H2 gas concentration in Figures 

4.12(b1) to (b3). In each case this gives a linear relationship passing through the origin. This 

shows that at each temperature, the generation of metallic Fe is directly proportional to the 

delivered flow of H2 gas.  

 
Figure 4.12–(a) The effect of H2 gas concentration on the production rate of metallic Fe 

during reduction of Ar-sintered pellets at a flow of 250 ml/min gas mixture with different H2 
gas concentrations at (a1) 1023 K, (a2) 1123 K, and (a3) 1223 K. The dashed line indicates 
50wt% metallic Fe. (b) The linear relationship between 1/τ and H2 gas concentration at (b1) 
1023 K, (b2) 1123 K, and (b3) 1223 K (Results obtained from ND experiments performed at 

the Wombat beamline) 
 

Comparisons of the evolution of each crystalline phase at each temperature and H2 gas 

concentration are shown in Figure 4.13, where the x-axis is normalised time (t/τ). As for the 

comparison among flow rates, most of the phase concentration curves are similar across all 
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different H2 gas concentrations at each temperature. However, some differences can be 

observed for both the TTM phase and FeO at 1223 K, as well as for FeTiO3 at both 1123 K and 

1223 K. A discussion of these observations is presented later in Section 7.3. 

 
Figure 4.13– The evolution of each crystalline phase during reduction of Ar-sintered pellets 
in a 250 ml/min flow gas at different H2 gas concentrations at each temperature. These data 
are plotted in single coordinates with normalised dimensionless x-axis (t/τ) at (1) 1023 K, (2) 
1123 K and (3) 1223 K. Note that the reductions started at t/τ=0 (a) TTH, (b) TTM, (c) FeO, 
(d) Metallic Fe and (e) FeTiO3 (Results from in-situ ND performed at the Wombat beamline) 
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4.2.3 The effect of temperature on phase evolution 

 

Figures 4.12 and 4.13 also allow a comparison of the effects of temperature on the phase 

evolution. As illustrated in Figure 4.12, the generation of metallic Fe under a similar condition 

was faster with increasing temperatures. In Figure 4.13, ~5wt% TTH phase in the pellets was 

consumed rapidly at the beginning of reduction in all conditions. However, temperature 

significantly affected the evolution of TTM, and especially FeO. With decreasing temperature, 

the maximum FeO concentration decreased, and at 1023 K there was no FeO detected. 

Moreover, it seems that the maximum FeTiO3 concentration also increased slightly with 

increasing temperatures. 

 

4.2.4 Limitation of in-situ ND measurements 

 

The limitation of the measurement gives an idea of the pedigree of the phase concentration data 

in the in-situ ND. As observed in Figure 4.7 and Figure 4.11, the final products of the in-situ 

ND reduction experiments were only metallic Fe and FeTiO3. Specifically, at the completion 

of the experiments, on average ~90wt% metallic Fe and 10wt% FeTiO3 presented in the 

reduced pellets. However, based on the conservation of the elements Fe and Ti in the pellets 

during reduction, ~78wt% metallic Fe and 22wt% FeTiO3 are expected in the reduced pellets 

at the completion of experiments. In addition, for almost all the concentration curves obtained, 

when TTM was no longer detected, the concentration of metallic Fe still experienced a slight 

increase while that of FeTiO3 decreased. This might indicate that FeTiO3 is likely to be further 

reduced to metallic Fe, but without the detection of other Ti-containing phases (TiO2 and PSB).  

 

In Figure 4.14, an example of an in-situ ND pattern is shown for Ar-sintered pellets near the 

completion of reduction (X=~93%). The pattern was obtained at 1223 K (as ND measurements 

were not obtained during cooling). It clearly shows that only the peaks of metallic Fe and 

FeTiO3 could be distinctively identified in the ND diffraction at this reduction degree. No other 

Ti-containing phases (TiO2 and PSB (ferro-PSB, Fe2TiO5 – FeTi2O5)) could be observed above 

the background signal at this time. 
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Figure 4.14- A typical in-situ ND pattern obtained from Ar-sintered pellets reduced to 

X=~93%. The pattern was obtained at 1223 K at a flow of 250 ml/min 100vol% H2 gas at 
the Wombat beamline.  

 

Nevertheless, crystalline TiO2 and PSB (ferro-PSB, Fe2TiO5 – FeTi2O5) were observed for 

some fully reduced pellets determined by ex-situ XRD (Figure 4.3). These fully reduced pellets 

were obtained from the TGA reduction experiment after cooling to room temperature, as 

outlined in Section 3.3. 

 

It seems that not all Ti-containing phases (such as TiO2 and PSB (ferro-PSB, Fe2TiO5 – 

FeTi2O5)) are accounted for in the ND measurement. The principle reason for this could be a 

that the small amounts of these phases are not distinguishable above the background noise level 

of the ND measurement. The scattering background of a typical ND pattern is generally higher 

than XRD. The high incoherent neutron-scattering cross section of H2 gas increases the 

background level of the ND measurements [165], thus reducing the signal to noise ratio. In 

addition, the ND measurements also gave broad peaks due to instrument broadening. Such 

broad peaks prevented an accurate calculation of the lattice constant. There is a possibility that 

the TiO2 and PSB (ferro-PSB, Fe2TiO5 – FeTi2O5)) may have formed during cooling of the 

TGA experiments. This is thought to be unlikely, as the initial sample cooling was reasonably 

rapid, with the sample temperature falling from 1443 K to < 1223 K within 30 minutes of the 

conclusion of the reduction reaction.  

.  

In Section 4.2, the phase evolution obtained from the in-situ ND measurements for the Ar-

sintered pellets is described. A discussion and analysis of these data is presented in Chapters 

7 and 8.



 

74 
 

4.3 Morphology development during H2 gas reduction of Ar-sintered 
pellets: Results from quenching experiments 

 

In this section, results of microscopy on the microstructure of the pellets at various stages 

during the reduction reaction from 1023 K to 1223 K are reported. These pellets were obtained 

from quenching experiments using a TGA system at UOW as outlined in Subsection 3.4.1. At 

each temperature, partially reduced pellets were quenched at reduction degrees of 

approximately X=~20%, 50%, 80%, and fully (maximum reduction degree as indicated in 

Figure 4.2), and then characterised to reveal their morphological evolution. These pellets were 

reduced under an equivalent condition as those reduced in the ND measurements. This is 

confirmed by a comparison of the reduction degrees of these pellets to those obtained from the 

ND reduction experiments (using equations 3.3 and 3.4). The result is shown in Figure 4.15, 

which indicates a close agreement between the two experiments. 
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Figure 4.15 - Comparisons of the reduction degrees of the quenched pellets to those obtained 
from the ND reduction experiments (equations 3.3 and 3.4) using 100vol% H2 gas at different 

temperatures (a) 1023 K, (b) 1123 K and (c) 1223 K. The quenching experiments were 
performed in a TGA system at a flow of 1 L/min H2 gas at UOW. The flow rate for the ND 

reduction experiments at Wombat beamline is 250 ml/min 
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4.3.1 Macro-morphology of the partially reduced pellets at each temperature 

 

Optical images that illustrate cross-sections of the unreduced, partially reduced, and fully 

reduced Ar-sintered pellets at each temperature are shown in Figure 4.16. A dark core and a 

bright shell were observed within each partially reduced pellet, although the interface became 

less clear with either increasing reduction degree at each temperature, or with decreasing 

temperature at similar reduction degree. 

 

Before reduction, the morphology of the Ar-sintered pellet (X=0%) was homogeneous. Note 

that the bright spots in the images is believed to be caused by the porosity in the pellets unfilled 

with resin or particles pulled out during grinding/polishing.  For the X=~20% pellets reduced 

at 1223 K, a pellet-scale interface was observed separating two parts: a dark core and a very 

thin bright shell. However, this interface was not clearly observed in the X=~20% pellets 

reduced at 1023 K or 1123 K. For the X=~50% pellets at all temperatures, a pellet-scale 

interface was observed, which had moved closer to the pellet centre than seen in the X=~20% 

pellets. For the X=~80% pellets reduced at 1023 and 1123 K, the inner core and outer shell 

could still be vaguely distinguished, but not at 1223 K. For the fully reduced pellets, a 

homogeneous morphology was observed throughout the whole pellets. However, they 

presented as significantly brighter than the original unreduced pellets. 
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Figure 4.16– Optical image showing macro-morphologies of the unreduced, partially 

reduced and fully reduced pellets. The partially and fully reduced pellets were obtained by 
reducing the Ar-sintered pellets in a flow of 1L/min 100vol% H2 gas at 1023K, 1123 K and 

1223 K in the TGA system at UOW. The red lines in each plot indicate the areas where EDS-
line scans were conducted. 
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4.3.2 Pellet-scale phase determination of the reduced pellets 

EDS-line scans were applied to identify the phases in the bright shell and dark core 

distinguished in Figure 4.16. The EDS scans were conducted along a line from the pellet 

surface to pellet centre for each investigated pellet, as indicated by the red lines in Figure 4.16. 

These results obtained along the line were expressed as an atomic% O/Fe ratio, and plotted as 

a profile along the scanned line. EDS analyses of mineral standards of Fe3O4, FeO and metallic 

Fe were used to validate the atomic% O/Fe ratio profile, as established in Subsection 3.5.2.  

 

EDS-line scan data from an unreduced Ar-sintered pellet (X=0%) is shown in Figure 4.17. The 

black square symbols indicate the obtained atomic% O/Fe ratio at each point along the line. 

The three black solid lines indicate the atomic% O/Fe ratio from the corresponding mineral 

standard. A red dashed line is drawn to highlight clustering in the measured data. These 

notations are also used in all the following figures showing the results of EDS-line scans. In 

the unreduced pellet, the atomic% O/Fe ratio was constant at all the positions along the line, 

and showed a value close to that from the mineral standard of Fe3O4. This is consistent with 

TTM being the main phase in the Ar-sintered pellets prior to reduction. It should be noted that 

some data scatter at higher atomic% O/Fe ratio is observed in this figure, and also in all the 

following figures associated with the results of the EDS-line scan. This data scatter might result 

from the voids between the particles in the pellets, which are filled with epoxy resin. If a scan 

point sits in the regions of the epoxy resin filled voids, then this point exhibited a higher O 

atomic% and lower Fe atomic%, resulting in a higher atomic% O/Fe ratio than a point located 

wholly within a particle.  It should also be noted that the electron beams from the SEM-EDS 

analysis interact with the electron clouds of the atoms, hence the EDS analysis is also not as 

accurate for light elements with fewer electrons (such as O). 

 
Figure 4.17 – Atomic% O/Fe ratio profile of a cross-sectioned Ar-sintered pellet prior to 

reduction, measured by EDS-line scan 
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The results of EDS-line scan from partially and fully reduced pellets at 1023 K, 1123 K and 

1223 K are shown in Figure 4.18, Figure 4.19, and Figure 4.20 respectively. It was found that 

at all temperatures, a similar trend in the change of the atomic% O/Fe ratio profile in the pellets 

during reduction was observed. The key features were most pronounced at 1223 K, and as such, 

these results are described below. 

 

 
Figure 4.18 - Atomic% O/Fe ratio profile measured by EDS-line scan of each partially and 

fully reduced pellet from 1023 K. (a) X=21%, (b) X=50%, (c) X=81% and (d) Fully-reduced. 
The three black solid lines in each figure indicate the atomic% O/Fe ratio obtained from the 
mineral standards of Fe3O4, FeO and metallic Fe. A dashed red line is drawn to highlight the 

trend of each profile 
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Figure 4.19 - Atomic% O/Fe ratio profile measured by EDS-line scan of each partially and 

fully reduced pellet from 1123 K. (a) X=21%, (b) X=50%, (c) X=78% and (d) Fully-reduced. 
The three black solid lines in each figure indicate the atomic% O/Fe ratio obtained from the 
mineral standards of Fe3O4, FeO and metallic Fe. A dashed red line is drawn to highlight the 

trend of each profile 

 
Figure 4.20 - Atomic% O/Fe ratio profile measured by EDS-line scan of each partially and 

fully reduced pellet from 1223 K. (a) X=25%, (b) X=54%, (c) X=82% and (d) Fully-reduced. 
The three black solid lines in each figure indicate the atomic% O/Fe ratio obtained from the 
mineral standards of Fe3O4, FeO and metallic Fe. A dashed red line is drawn to highlight the 

trend of each profile 
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The results from EDS-line scans of pellets reduced at 1223K are shown in Figure 4.20. For the 

fully reduced pellet shown in Figure 4.20(d), the atomic% O/Fe ratio has a constant value of 

~0.4 along the whole line from the pellet surface to pellet centre. This ratio is slightly larger 

than that measured from the mineral standard of metallic Fe (zero) suggesting that unreduced 

oxides (such as FeTiO3, TiO2 or PSB) are closely mixed with reduced metallic Fe. In addition, 

it might also result from the high oxygen level in the epoxy resin filled voids between the 

particles. 

 

The results of the X=25% pellet is shown in Figure 4.20(a). The pellet surface (at positions < 

~600 µm) has an atomic% O/Fe ratio ~0.5. This value is close to that obtained throughout the 

completely reduced pellets (~0.4, Figure 4.20(d)), implying that the pellet surface has already 

been reduced to metallic Fe by this time. Moving inwards towards the centre of the pellet, a 

sharp transition in the atomic% O/Fe ratio is seen at ~600 µm, where it increases to ~1.4. This 

value is similar to that in the unreduced Ar-sintered pellets (Figure 4.17), indicating that the 

inner areas of the X=25% pellet remain unreduced.  

 

For the X=54% pellet shown in Figure 4.20(b), similar atomic% O/Fe ratios are observed at 

the surface and centre, to those found in the X=25% pellet. This again implies that the surface 

has been reduced to metallic Fe, while the centre remains unreduced. However, in the case of 

X=54% pellet, the sharp transition occurs closer to the centre the pellet, at ~1000 µm, which is 

consistent with this reaction interface moving inwards over time.  

 

For the X=82% pellet shown in Figure 4.20(c), the transition between pellet surface to pellet 

centre is not as sharply defined. Metallic Fe is again likely to be present at the pellet surface (< 

2000 µm), with the atomic% O/Fe ratio being slightly below 0.5. However, at positions > 2000 

µm, there is a spread of data which is bounded by the two trend lines shown. In this central 

region, some scan points presented an atomic% O/Fe ratio of ~1.2, which corresponds to a 

possible mixture of TTM and FeO. However, other points showed a much lower ratio of ~0.5, 

which can only be achieved if metallic Fe is present. This data scattering implies the transition 

interface is no longer distinct, and instead localised metallisation might be occurring at the 

pellet centre. 

 

Overall the atomic% O/Fe ratio profiles obtained at 1223K are generally consistent with a 

single interface shrinking core process, where metallic Fe is initially generated at the pellet 
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surface and the reaction interface then moves inwards to the pellet centre. However, at the later 

stages of the reduction, the shrinking core interface is not clearly apparent and more complex 

localised reductions seem to occur instead. 

 

The atomic% O/Fe ratio line-scans for pellets reduced at 1023 K and 1123 K show similar 

features to those at 1223 K, but with more data scatter so that the transition interface was less 

well-defined. The data scatter is probably due to a broadening of the interface at lower 

temperature, and to complex reductions in the particles, which will be displayed later in back-

scattered SEM images of particle morphologies at different temperatures.  

 

4.3.3 Particle morphology of the reduced pellets at each temperature 

 

In this subsection, back-scattered SEM images are reported to show the evolving particle-scale 

micro-morphologies of phases during reduction. Based on these observations, schematic 

graphics have then been generated which illustrate the main morphological features and their 

evolutions over time. In addition, summary tables are produced to list the key features observed 

in the particle morphologies of the ‘green’ pellets, unreduced Ar-sintered pellets, partially 

reduced pellets and completely reduced pellets at each temperature. It should be noted that the 

properties of the ‘green’ pellets are similar to those in the as-received ironsand, as the 

generation of ‘green’ pellets have not been through any chemical treatment such as high 

temperature reduction/oxidation (Subsection 3.2.2). 

 

1. As-received ironsand and unreduced Ar-sintered pellets 

The morphology of the as-received NZ ironsand was characterised by light microscopy and 

SEM-EDS analysis. In both the light microscopy image (Figure 4.21(a)) and the back-

scattered SEM image (Figure 4.21(b)), two types of particles are present in the as-received 

ironsand. One type of particle appears uniform throughout, whereas the other is non-uniform 

in character and contains intrusions in the form of lamellae. In both images, the uniform 

particles are a similar colour to the regions surrounding the lamellar structures in the non-

uniform particles. However, under light microscopy, the lamellar structures are brighter than 

the surrounding regions. While they appear darker in the back-scattered SEM image, indicating 

a lower electron density (also a lower average atomic number) and indicative of higher levels 

of oxygen. The elevated oxygen content in the lamellae structure was confirmed by EDS point 
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analysis given in Table 4.1 of the points marked in Figure 4.21(b). The matrix composition in 

both the uniform and non-uniform particles (points 1 and 2 respectively) are both determined 

to contain ~24wt% O, 66wt% Fe and 4.4wt% Ti. This composition is broadly consistent with 

TTM. By contrast, the lamellar structures had significantly higher Ti content (~16wt%) and 

lower Fe content (~54wt%) (see points 3 and 4 in Table 4.1). These lamellae are expected to 

be TTH. Other elements such as Al and Mg were also observed in the matrix but were less 

concentrated in the lamellae.  

 

It is observed that most of the particles are the uniform particles in the pellets, while the non-

uniform particles account for ~10% of the total particle population. This estimated value was 

obtained from particle counting within a 5x optical image, taken at a randomly selected position 

on the cross section of a ‘green’ pellet. All incomplete particles at the edge of the image were 

excluded from the counting, as were a small number of dark silica-like gangue particles or 

particle tails smaller than ~10 µm. The remaining particles were all clearly identifiable as either 

uniform particles or non-uniform particles. A total of 203 particles were counted, of which 22 

particles were non-uniform, and 181 were uniform. 

 

 
Figure 4.21 – Micrographs of the as-received NZ titanomagnetite ironsand. (a) Light 

microscopy and (b) back-scattered SEM image. Note this figure has already been published 
in a paper from the author [162] 
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Table 4.1– EDS point analysis (wt%) from the numbered positions given in the SEM 
micrograph of the as-received ironsand (Figure 4.21(b)). Note this table has already been 

published in a paper from the author [162] 

wt% 

points O Fe Ti V Al Mg Mn O/(Fe+Ti) 

1 24.4 66.0 4.4 0.3 2.5 2.0 0.5 0.3 

2 24.3 68.4 4.5 0.3 1.7 - 0.7 0.3 

3 27.7 54.0 16.0 0.4 0.6 1.0 - 0.4 

4 27.2 55.0 16.3 0.5 - - - 0.4 

at% 

1 51.1 39.6 3.1 0.2 3.1 2.7 0.3 1.2 

2 52.0 41.9 3.2 0.2 2.2 - 0.4 1.2 

3 55.7 31.0 10.7 0.2 0.7 1.4 - 1.3 

4 55.7 32.3 11.2 0.4 - - - 1.3 
 

After sintering in Ar gas, there was no apparent change in element distribution in the pellets 

(shown in Figure 3.6). In addition, most of the particles in the Ar-sintered pellets remained 

uniform (see later in Figure 4.23(a) as an example).  

 

Since the majority of the particles in the Ar-sintered pellets are uniform particles, the following 

schematics are only focused on the morphological evolution of these particles. On the other 

hand, the morphological evolution of the non-uniform particles is only described in the 

summary table at each temperature. 

 

In the following pages, particle morphological evolution is reported for the Ar-sintered pellets 

obtained from the quenching reduction experiments at 1023 K, 1123 K, and 1223 K 

respectively. In each case, illustration of the results starts with a schematic graphic. This 

schematic graphic is constructed from the collection of representative back-scattered SEM 

images shown in Appendices B.5 to B.7. The phases observed in the particle-scale back-

scattered SEM images were initially identified by determining the elemental compositions 

using an SEM-EDS point analysis from specific representative images. An example is shown 

in Figure 4.22, with SEM-EDS point analysis data for the corresponding areas in the image 

listed in Table 4.2. Based on the analyses, it is concluded that, the grey areas indicate TTM, 

the light grey areas indicate FeO, and the bright areas indicate metallic Fe. Utilising this phase 

identification approach, key features that represent the changes in the particle morphologies 

during reduction are summarised.  
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Figure 4.22 ––An example of back-scattered-SEM images of a representative particle 

depicting the different contrast of phases observed inside individual particles within partially 
reduced pellets. The representative particle is in the region of the pellet-scale reaction 

interface of the X=54% pellets reduced at 1223 K from quenching experiment by the TGA 
system at UOW 

 

Table 4.2 – Atomic% of the corresponding areas shown in Figure 4.22 obtained from the 
SEM-EDS point analysis to identify phases, each value is an average of three points for each 

feature 

Area Fe Ti O Mg Al Phase 
identification 

Grey area 39.1 2.9 52.3 2.5 3 TTM 

Light grey 
area 41.6 2.1 50.5 3.9 1.8 FeO 

Bright area 68.8 3.1 20.5 4.8 3.3 Fe 
 

Using the information in Table 4.2, different iron oxide phases were then identified in the back-

scattered SEM images from their relative contrast. A selection of example images used as a 

key to illustrate the relationship between the schematic graphics and the original back-scattered 

SEM images are displayed in Figure 4.23 and Figure 4.24. Here, TTM shows as a grey colour 

as in Figure 4.23(a). In all cases, metallic Fe is generated from the particle surface to its centre, 

but the specific morphology is seen to vary with temperature. For example, at 1023 K (in 

Figure 4.23(c)), metallic Fe spots form a thin layer at the surface of the particles, while metallic 

Fe whiskers occupy the inner areas. However, at 1123 K (in Figure 4.23(e)), metallic Fe shows 

both a trellis structure at the particle surface and small whiskers at particle centre. Furthermore, 

at 1223 K (in Figure 4.24(c)), metallic Fe shows an intertwined channel-like structure 
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occupying almost the whole particle. It should be noted that following local reduction, the 

remaining residual oxides are illustrated as black. FeO is only observed in the particles reduced 

at higher temperatures. At 1123 K (in Figure 4.23(d)), FeO exhibits a fine and sparse trellis-

like structure. However, at 1223 K (in Figure 4.24(a) and (b)), a network of broader FeO 

channels are seen to develop within the particles. The schematics of the particle morphology 

at each temperature and reduction stage seek to illustrate all of these features, making the actual 

particle morphological evolution simpler to be displayed. It should be noted that throughout 

the following graphics, if the total amount of a phase present increases as the reduction 

progresses, more of the corresponding features are added to the diagram.  
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Figure 4.23- Examples illustrating the relationship between the schematic graphics 

constructed as a key to depict features of the particle morphologies, and the original back-
scattered SEM images. (a) unreduced Ar-sintered pellet, (b) and (c) reduced pellets at 1023 
K, and (d) and (e) reduced pellets at 1123 K.  (1) shows the morphologies of the particles 

indicated at different areas in the corresponding pellets (at left) at lower magnification, (2) 
shows the morphologies of the areas as highlighted in (1) at higher magnification, and (3) 

shows the schematic graphics illustrating the features in (2)  
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Figure 4.24 - Examples illustrating the relationship between schematic graphics constructed 
as a key to depict features of the particle morphologies, and the original back-scattered SEM 
images of reduced pellets at 1223 K. (1) shows the morphologies of the particles indicated at 

different areas in the corresponding pellets (at left) at lower magnification, (2) shows the 
morphologies of the areas as highlighted in (1) at higher magnification, and (3) shows the 

schematic graphics illustrating the features in (2) 

 

2. Particle morphologies within pellets partially reduced at 1023 K 

In Figure 4.25, a schematic graphic is shown which illustrates the morphological evolution of 

particles at different positions within the pellet during reduction at 1023 K (The original back-

scattered SEM images from which this schematic has been constructed are shown in Appendix 

B.5). As can be seen, metallic Fe is generated gradually from pellet surface to pellet centre, 

which is broadly consistent with the results obtained from the EDS-line scans shown in 

subsection 4.3.2.  
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Figure 4.25– Schematic graphic of particle morphological evolution during reduction of the 

Ar-sintered pellets at 1023 K 

 

Descriptions of the key particle-scale morphological features that observed during reduction at 

1023 K are summarised in Table 4.3
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Table 4.3– Summary of the main features of the particle morphologies in the ‘green’ pellets, unreduced Ar-sintered pellets and reduced pellets 
investigated at 1023 K 

Sc
al

e 

‘Green’ pellets 
(Ground raw particles 
pelletised with 1wt% 

Bentonite) 

Ar-sintered (‘Green’ pellets 
sintered in Ar for 2 hours at 

1473 K) 

Quenched from 1023 K, 100vol% H2, 1 L/min 

21% 50% 81% Fully 

Pe
lle

t 1. The morphologies 
of the particles are 

homogeneous. 

1. There is no obvious 
change in the morphologies 

or elements distribution. 
TTM remains as the major 

phase in the particles. 

1. It is difficult to observe a pellet-scale 
reaction interface. 

1. A pellet-scale reaction 
interface is also not clear. 

1. Similar to 50% 
#1, a pellet-scale 

reaction interface is 
vaguely observed. 

1. The morphology 
of the pellet is 

homogeneous but 
shows brighter than 

that of the 
unreduced one. 

Pa
rt

ic
le

 

2. The particle sizes 
are randomly 
distributed. 
 
3. Most particles are 
smooth at the surface 
with a light grey 
colour. 
 
4. Fine lamellar 
structure (enriched 
with Ti) can be 
observed in ~10% of 
the particles. 
 
5. A small amount of 
silicate particles 
which are smaller than 
~30 µm are present. 

2. The size distribution of the 
particles is similar to ‘Green’ 
#2. 
 
3. The morphologies are 
similar to ‘Green’ #3, but 
show evidence of sintering. 
 
4. Fine lamellar structure 
which is enriched with Ti is 
also observed, similar to 
‘Green’ #4.  

2. The size distribution of the particles is 
similar to Ar-sintered #2. 
 
3. In the surface of the particles at the 
pellet centre, metallic Fe is observed to 
form in the structure of spots directly from 
TTM. The generation of metallic Fe seems 
to follow the particle-scale shrinking core 
phenomenon. The unreduced TTM in the 
particle centre is similar to Ar-sintered #3. 
FeO is barely observed in the particles. 
 
4. In the areas closer to pellet surface, a 
similar particle morphology is observed as 
in #3, with more metallic Fe spots 
generated and a smaller unreduced TTM 
core. Moreover, metallic Fe whiskers 
starts to be found at inner areas of the 
particle. 
 
5. At the pellet surface, the particle 
morphology is similar to #4. However, 
more metallic Fe is generated, and the 
whiskers develops longer. 

2, 3, 4 and 5 are similar 
to 21% #2, 3, 4, and 5 
respectively, but with 
more metallic Fe 
observed in the particles. 
 
6. In the pellets at X=21% 
and 50%, it was found 
that the non-uniform 
particles throughout the 
whole pellets are reduced 
much faster than the 
uniform particles. The 
generation of metallic Fe 
no longer follows the 
particle-scale shrinking 
core phenomenon. 
Instead, FeO is initially 
observed at the vicinity of 
the lamellae, and then 
metallic Fe is observed 
from FeO throughout the 
whole particle. 

2, 3, and 4 is similar 
to 50% #2, 3, and 4 
respectively, but 
with more metallic 
Fe observed in the 
particles. 
 
5. At pellet surface, 
the particles are 
fully reduced to 
metallic Fe. At the 
particle surface, a 
thin layer of metallic 
Fe spots is observed. 
While at the particle 
inner areas, metallic 
Fe is observed in the 
structure of 
whiskers. 

The morphologies 
of the fully reduced 
particles throughout 
the whole pellets 
are similar to 81% 
#5. 
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3. Particle morphologies within pellets partially reduced at 1123 K 

In Figure 4.26, a schematic graphic is presented which illustrates the morphological evolution 

of particles at different positions within the pellet during reduction at 1123 K (The original 

back-scattered SEM images from which this schematic has been constructed are shown in 

Appendix B.6). A key difference to the results reported in the previous section is that at 1123 

K a fine structure of FeO was also observed. Moreover, metallic Fe was initially in the form of 

spots but gradually develop into short-sectioned trellises as reduction progressed. At the 

particle centre, metallic Fe whiskers were also observed. 

 

 
Figure 4.26- Schematic graphic of particle morphological evolution during reduction of the 

Ar-sintered pellets at 1123 K 

 

Descriptions of the key particle-scale morphological features that observed during reduction 

at 1123 K are summarised in Table 4.4.
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Table 4.4 - Summary of the main features of the particle morphologies in the ‘green’ pellets, unreduced Ar-sintered pellets and reduced pellets 
investigated at 1123 K 

Sc
al

e ‘Green’ pellets (Ground 
raw particles pelletised 
with 1wt% Bentonite) 

Ar-sintered (‘Green’ 
pellets sintered in Ar for 2 

hours at 1473 K) 

Quenched from 1123 K, 100vol% H2, 1 L/min 

21%  50%  78%  Fully 

Pe
lle

t 1. The morphologies of 
the particles are 
homogeneous. 

1. There is no obvious 
change in the 
morphologies or elements 
distribution. TTM 
remains as the major 
phase in the particles. 

1. It is difficult to observe a pellet-scale 
reaction interface. 

1. A pellet-scale 
reaction interface is 
vaguely observed. 

1. Similar to 50% 
#1, a pellet-scale 
reaction interface is 
vaguely observed. 

1.  The 
morphology of 
the pellet is 
homogeneous, 
but shows 
brighter than that 
of the unreduced 
one. 

Pa
rt

ic
le

 

2. The particle sizes are 
randomly distributed. 
 
3. Most particles are 
smooth at the surface 
with a light grey colour. 
 
4. Fine lamellar 
structure (enriched with 
Ti) can be observed in 
~10% of the particles. 
 
5. A small amount of 
silicate particles which 
are smaller than ~30 µm 
are present. 

2. The size distribution of 
the particles is similar to 
‘Green’ #2. 
 
3. The morphologies are 
similar to ‘Green’ #3, but 
show evidence of 
sintering. 
 
4. Fine lamellar structure 
which is enriched with Ti 
is also observed, similar 
to ‘Green’ #4. 

2. The size distribution of the particles is 
similar to Ar-sintered #2. 
 
3. At the pellet centre, small FeO and Fe 
spots are observed. Both the generations of 
FeO and metallic Fe follow a particle-scale 
shrinking core phenomenon. The unreduced 
TTM shows a similar morphology as in Ar-
sintered #3. 
 
4. In the areas closer to pellet surface, a 
similar particle morphology is observed as 
in #3, with more metallic Fe and FeO 
observed and a smaller unreduced TTM 
core.  
 
5. At the pellet surface, the particle 
morphology is similar to #4. However, 
Both the metallic Fe and FeO are observed 
to develop into small trellises. 

2. Similar to 21% #2. 
 
3, 4, and 5 is similar to 
21% #5. However, as 
reduction progresses, 
more metallic Fe and 
FeO in the form of 
trellises are observed 
with a gradually 
shrinking unreduced 
TTM core. 
 
6. Similar to 1023 K 
50% #6, the non-
uniform particles 
throughout the whole 
pellets are reduced 
faster than that of the 
uniform particles. 

2, 3, and 4 is 
similar to 21% #2, 
3, and 4. 
 
5. At the pellet 
surface, the 
particles are fully 
reduced to metallic 
Fe. Trellises 
metallic Fe formed 
a layer at the 
particle surface, 
while in the inner 
areas of the 
particles, metallic 
Fe whiskers are 
observed. However, 
these whiskers are 
found to be smaller 
in size as observed 
at 1023 K. 

The 
morphologies of 
the fully reduced 
particles 
throughout the 
whole pellets are 
similar to 78% 
#5. 
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4. Particle morphologies within pellets partially reduced at 1223 K 

In Figure 4.27, a schematic graphic is shown which illustrates the morphological evolution of 

particles at different positions within the pellet during reduction at 1223 K (The original back-

scattered SEM images from which this schematic has been constructed are shown in Appendix 

B.7). At this temperature, FeO was observed to form a network of broader channels. Moreover, 

the subsequent generation of metallic Fe from FeO seems to follow these channels, until finally 

metallic Fe occupies most of the particle, interspersed with the residual unreduced oxides. 

 
Figure 4.27- Schematic graphic of particle morphological evolution during reduction 

of the Ar-sintered pellets at 1223 K 

 

Descriptions of the key particle-scale morphological features that observed during reduction at 

1223 K are summarised in Table 4.5. 
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Table 4.5- Summary of the main features of the particle morphologies in the ‘green’ pellets, unreduced Ar-sintered pellets and reduced pellets investigated at 
1223 K 

Sc
al

e ‘Green’ pellets 
(Ground raw particles 
pelletised with 1wt% 

Bentonite) 

Ar-sintered (‘Green’ 
pellets sintered in Ar 

for 2 hours at 1473 K) 

Quenched from 1223 K, 100vol% H2, 1 L/min 

25%  54%  82%  Fully 

Pe
lle

t 1. The morphologies 
of the particles are 
homogeneous. 

1. There is no obvious 
change in the 
morphologies or 
elements distribution. 
TTM remains as the 
major phase in the 
particles. 

1. A pellet-scale reaction interface is observed. 
 

1. A pellet-scale reaction interface is 
observed. 

1. It is difficult 
to observe the 
pellet-scale 
reaction 
interface. 

1.  The 
morphology of 
the pellet is 
homogeneous, 
but shows 
brighter than 
that of the 
unreduced one. 

Pa
rt

ic
le

 

2. The particle sizes 
are randomly 
distributed. 
 
3. Most particles are 
smooth at the 
surface with a light 
grey colour. 
 
4. Fine lamellar 
structure (enriched 
with Ti) can be 
observed in ~10% of 
the particles. 
 
5. A small amount 
of silicate particles 
which are smaller 
than ~30 µm are 
present. 

2. The size 
distribution of the 
particles is similar to 
‘Green’ #2. 
 
3. The morphologies 
are similar to ‘Green’ 
#3, but show evidence 
of sintering. 
 
4. Fine lamellar 
structure which is 
enriched with Ti is 
also observed, similar 
to ‘Green’ #4. 

2. Similar to Ar-sintered #2. 
 
3. At the pellet centre, thin FeO channels are 
sparsely distributed. The unreduced TTM in the 
inner areas of the particles is similar to Ar-
sintered #3.  
 
4. In the particles at the pellet-scale reaction 
interface, a particle-scale shrinking core 
phenomenon is observed. In the core, FeO is 
developed into channels, and occupies most of 
the particles with unreduced TTM ‘islands’ in-
between. At the shell, metallic Fe is observed. 
It seems metallic Fe is generated along the FeO 
channels, forming a similar morphology. 
 
5. At the pellet surface, the particle morphology 
is similar to #4, however, more metallic Fe is 
generated with a smaller unreduced core. 

2. Similar to Ar-sintered #2. 
 
3. At the pellet centre, FeO channels are 
observed to occupy most of the particles. 
 
4. At the pellet-scale reaction interface, 
the particle morphology is similar to 
25% #4. 
 
5. At the pellet surface, the particles are 
fully reduced to metallic Fe. The 
morphology of the metallic Fe seems to 
follow the pattern of FeO, forming 
intertwined channels, with impure 
oxides in-between. 
 
6. The non-uniform particles are reduced 
at a similar rate to the uniform particles. 
However, their morphologies during 
reduction is similar to 1123 k 50% #6. 

2, 3, 4, and 5 is 
similar to 54% 
#2, 4, and 5. 
 

The 
morphologies 
of the fully 
reduced 
particles 
throughout the 
whole pellets 
are similar to 
82% #5. 
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4.3.4 Particle morphologies of fully reduced pellets at higher temperatures 

 

In addition to the quenching experiments conducted between 1023 K and 1223 K, completely 

reduced pellets were also produced from the TGA experiments (at Callaghan Innovation) at 

higher temperatures up to 1443 K. The particles morphologies in those fully reduced pellets 

were also characterised to examine the effects of temperature on the morphology of metallic 

Fe. It should be noted that these pellets were not quenched after complete reduction, but instead 

were subject to controlled cooling in the TGA furnace at a rate of 40 K/min. 

 

Back-scatter SEM images showing the representative particle morphologies from 1043 K to 

1443 K from the TGA experiments are shown in Figure 4.28(a) to (e). At lower temperatures 

(1043 K and 1143 K, Figure 4.28(a) and (c)), the morphology of the metallic Fe showed a 

similar structure to those observed in the partially reduced pellets investigated from quenching. 

As the reduction temperature increased, the structure of metallic Fe coarsened, forming bulbous 

clusters (Figure 4.28(d) and (e)). This is consistent with an increased mobility of Fe atoms at 

elevated temperatures. 

 

 
Figure 4.28 - Backscatter-SEM images of cross-sectioned fully reduced pellets from the TGA 

experiment (Callaghan Innovation) showing the final morphologies of particles at each 
reducing temperature studied. (a) 1043K, (b) 1143 K, (c) 1243 K, (d) 1343 K and (e) 1443 K 
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4.4 Summary 
 

In this chapter, the results of the Ar-sintered pellets reduced in H2 gas have been reported. 

Detailed discussion and analysis of these results follows in Chapters 6,  7 and  8. In general, 

it was found that the reduction rate increased with increasing temperature, H2 gas flow rates, 

H2 gas concentrations, and decreasing pellet size (studied only at 1343 K). 

 

In-situ ND measurements (Wombat beamline) during H2 gas reduction of the Ar-sintered 

pellets were performed at the Wombat facility at ANSTO, and analysed to determine the phase 

evolution during the reaction. For all the reduction conditions studied, the initial ~5wt% of 

TTH was rapidly consumed in the early reduction stages. Following this, TTM was reduced. 

FeO was only observed as an intermediate phase when the temperature was above 1123 K. 

Metallic Fe and some residual FeTiO3 were the final products observed. A characteristic time, 

τ, was defined for these experiments, which allowed comparison of the phase evolution during 

reactions which proceeded at different conditions. Reduction conditions significantly affected 

the observed evolution of FeO. At high temperature, a decreasing H2 flow rate or gas 

concentration, led to an increase in the peak concentration of FeO observed. However, as 

temperature decreased from 1223 K to 1023 K, the maximum concentration of FeO decreased, 

and there was no FeO detected at 1023 K. 

 

The evolution of pellet-scale and particle-scale morphologies within the reduced pellets were 

also investigated. From the macro-morphologies, a pellet-scale reaction interface 

distinguishing a bright shell and a dark core were observed in most of the reduced pellets. EDS-

line scans confirmed the initial generation of metallic Fe at the pellet surface and a reaction 

interface that moved towards the pellet centre over time, implying a pellet-scale single interface 

shrinking core mechanism. However, these results also imply that later stage reactions (X>80%) 

in the pellet occur after the disappearance of the shrinking core, and might be more complex 

involving particle-scale reductions, which will be discussed in more detail in Chapter 8.  

 

It should be noted that temperature significantly affected the morphological evolution of FeO 

within the pellet particles. At 1023 K, FeO was not observed, but it appeared with increasing 

temperature. At 1123 K, FeO formed fine and sparse trellis structures, while a network of 
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broader FeO channels were formed at 1223 K. The effects of the different morphology of FeO 

at different temperatures on the reduction process is further discussed in Chapters 7 and 8 . 

 

Similarly, at 1023 K and 1123 K metallic Fe formed small spots at each particle surface and 

whiskers at the particle centre. At temperatures where FeO was observed to form a network of 

channels at 1223 K, it was then reduced to metallic Fe which followed the same morphology. 

However, fully reduced pellets formed at temperatures above 1223 K, did not show a linear 

whisker or channel structure. Instead, pellets cooled from these temperatures exhibited metallic 

Fe formed into more bulbous clusters, which may reflect an increased local mobility of Fe 

atoms at elevated temperatures. 



 

98 
 

Chapter 5  
Results of reducing pre-oxidised pellets in H2 gas 

 

In this chapter, a summary of results from reducing the pre-oxidised pellets in H2 gas is 

presented. These results include: 

 Section 5.1: TGA measurements of the reduction of pre-oxidised pellets in H2 gas  

 Section 5.2: The evolution of crystalline phases during reduction determined by in-situ 

ND 

 Section 5.3: The pellet- and particle-scale morphologies which occur during reduction, 

as captured during quenching experiments 

 Section 5.4: Summary of the results of reducing pre-oxidised pellets 

 
This chapter reports only the experimental results obtained. Note that some of the contents have 

already published in a paper of the author [162]. Discussion of the analysis of these results in 

presented in Chapters 6,  7 and  8. 

 
5.1 Reduction of pre-oxidised pellets in the TGA system 
 

In this section, the DR characteristics of the pre-oxidised pellets in H2 gas flow are presented. 

Key experimental variables examined were the effect on the pellet reduction rate of: H2 gas 

flow rate, reduction temperature and pellet diameter.  

 

5.1.1 Determination of critical flow rate 

 

In Figure 5.1, the effect of H2 gas flow rate on the reduction rate of the pellets reduced at 1343 

K is shown. The reduction progressed faster when the flow rate was increased from 152 ml/min 

to 330 ml/min. However, further increase in the flow rate to 380 ml/min had no additional 

effect on the reduction rate. This indicated that the critical flow rate for this experiment was ≤ 

330 ml/min. Note that this critical flow rate is much smaller than that of reducing Ar-sintered 

pellets (≤ 850 ml/min as shown in Figure 4.1). To ensure that mass transport effects in the gas 

stream were excluded, a higher flow rate of 520 ml/min was chosen for all following reduction 

experiments on the pre-oxidised pellets.  
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Figure 5.1 – The effect of changing H2 gas flow rate on the reduction rate of reducing pre-

oxidised pellets at 1343 K. (Data taken using the TGA system at Callaghan Innovation) 

 

5.1.2 The effect of temperature on reduction rate  

 

Results of the TGA experiments in which pre-oxidised pellets were reduced in 520 ml/min 

flow of H2 gas are shown in  Figure 5.2. Experiments were performed at temperatures from 

1043 to 1443 K, at 100 K intervals. As can be seen, the reduction rate increased with increasing 

temperature, and a similar maximum reduction degree of 97% ± 0.8% was achieved at all 

temperatures. At 1043 K, it took ~40 minutes to reach the maximum reduction degree, while it 

took less than 20 minutes to achieve a similar maximum reduction at all the other temperatures. 

The reduction rate presented here is similar to that of Ar-sintered pellets above 1043 K, while 

it becomes much faster at lower temperature (compared with Figure 4.2). The reasons behind 

this phenomenon are discussed in Chapters 6 and 7. 
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Figure 5.2– The effect of temperature on the reduction rate of the pre-oxidised pellets in 520 
ml/min flowing H2 gas, at temperatures from 1043 K to 1443 K. (Data taken using the TGA 

system at Callaghan Innovation) [162] 

 

XRD analysis was performed on the fully reduced pellets obtained from each TGA experiment, 

and the results are given in Figure 5.3. From this figure it can be seen that, in addition to the 

major phase of metallic Fe (Peak A), several different residual Fe-Ti-O phases were also 

observed (Peak B to Peak D). These residual oxides were identified to be FeTiO3, TiO2, Fe2TiO5 

(PSB, or FeTi2O5 as ferro-PSB), and a generic spinel phase (Peak E). The presence of these 

residual oxides is consistent with a final reduction degree of <100%. 

 

The evolution of these residual oxides with reduction temperature is shown in Figure 5.4. On 

increasing the reduction temperature, both the concentrations of FeTiO3 and TiO2 decreased 

while that of PSB increased. The spinel concentration did not change significantly with 

temperature.  These observations are similar to those found in the Ar-sintered pellets shown in 

Figures 4.3 and 4.4. 
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Figure 5.3 – Magnified XRD diffractograms obtained from fully reduced pellets following 

reduction at each temperature from 1043 K to 1443 K. Note that the metallic Fe peak (A) is 
truncated in order to enable minor peaks to be clearly shown. The full pattern is shown in 

Figure C.1 in Appendix C.1 [162] 
 

 
Figure 5.4- Changes in concentration of residual oxides indicated in Figure 5.3 in the fully 

reduced pellet at each reduction temperature. Note the error bar of each phase concentration 
is generated from the peak fitting [162] 
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5.1.3 The effect of pellet size on reduction rate  

 

The reduction behaviour of the pre-oxidised pellets ranging from 5.5 mm to 8.5 mm were 

measured at 1343 K at a H2 gas flow of 520 ml/min, and the results are plotted in Figure 5.5. 

From this figure it indicates that, increasing pellet size results in a slower reduction rate. This 

is also similar to the pellet size effect on reduction rate of the Ar-sintered pellets at 1343 K 

above the critical flow rate (Figure 4.5), once again indicating that smaller pellets are desirable 

for practical DRI processes. 

 

 
Figure 5.5– The effect of pellet size on the reduction rate for the pre-oxidised pellets reduced 
at a flow rate of 520 ml/min H2 gas at 1343 K. (Data taken in the TGA system at Callaghan 

Innovation) [162]
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5.2 Phase evolution during H2 gas reduction of pre-oxidised pellets through 
in-situ ND experiment 

 

In this section, results from in-situ ND measurements of the phase evolution during H2 gas 

reduction of the pre-oxidised pellets are presented. The effects of H2 flow rate, H2 gas 

concentration and temperature on the phase evolution were also investigated in these 

experiments.  

 

The in-situ diffraction patterns obtained were converted to crystalline phase concentrations at 

each point in time during a series of reduction experiments, using the method outlined in 

Subsection 3.6.1. An example phase evolution plot is shown in Figure 5.6, which shows 

results from pre-oxidised pellets reduced at 1223 K by 100vol% H2 gas at a flow of 250 ml/min. 

As can be seen, before reduction, the pre-oxidised pellets were solely composed of TTH. At 

the moment H2 gas was introduced, the amount of TTH started rapidly decreasing and reached 

zero within a few minutes. As TTH was reduced, TTM and FeO started to form. The 

concentrations of both TTM and FeO first rose to a peak, before dropping back down to zero. 

Metallic Fe started to appear slightly later than FeO. Detectable levels of FeTiO3 appeared only 

after the concentration of FeO reached its peak. At the completion of the reduction, metallic Fe 

and FeTiO3 were the only crystalline products observed. Note that, due to the limitations of the 

ND technique (see Subsection 4.2.4), other expected phases (Fe2TiO4, TiO2 or PSB) were not 

detected. 

 
Figure 5.6- An example of the phase evolution obtained from in-situ ND measurements 

during reduction of pre-oxidised pellets at 1223 K by 100vol%H2 at a gas flow rate of 250 
ml/min 
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In the in-situ ND experiments, the key variables investigated were effect of H2 flow rates at 

1223 K, various H2 gas concentrations, and temperatures (1023 K, 1123 K and 1223 K). Similar 

to the Ar-sintered pellets (Section 4.2), a characteristic time (τ) was determined in order to 

compare the effects of each reduction condition on the phase evolution. This was defined as 

the time to reach 50wt% metallic Fe. 

 

5.2.1 The effect of H2 flow rate on the phase evolution at 1223 K 

 

1. Determining the critical flow rate for ND reduction experiments 

At 1223 K, the pre-oxidised pellets were reduced using 100vol% H2 gas at three different flow 

rates: 62.5 ml/min, 125 ml/min and 250 ml/min. Concentration curves for each crystalline 

phase obtained at each flow rate are shown in Figure 5.7. Slower reaction rates were observed 

at the lower flow rates.  
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Figure 5.7 – Concentration curves of each crystalline phase during reduction of pre-oxidised 
pellets by 100vol% H2 gas at 1223 K at a flow rate of (a) 62.5 ml/min, (b) 125 ml/min and (c) 

250 ml/min 
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In order to verify whether the highest flow rate achievable in the ND experiments (250 ml/min) 

was conducted above the critical flow rate, ND and TGA results were compared for similar 

pellets (~6 mm diameter and ~73 µm average particle size). The TGA experiment was 

performed at 1223 K at a flow of 520 ml/min 100vol% H2 gas. (These conditions were known 

to be above the critical flow rate condition for pre-oxidised pellets in the TGA system at 

Callaghan Innovation). Reduction degree values were also calculated from the phase 

concentration curves obtained from the ND reduction experiments (using equations 3.3 and 

3.4). A comparison between the TGA and ND results is shown in Figure 5.8. As can be seen, 

the ND reduction experiments conducted at a flow rate of 250 ml/min closely follow the 

reduction rate observed in the TGA experiment at a flow rate of 520 ml/min, indicating this 

experiment took place above the critical flow rate for the ND experimental apparatus at the 

Wombat beamline. However, the ND reduction experiments conducted at lower flow rates 

(62.5 ml/min and 125 ml/min) were likely below the critical flow rate, meaning that gas mass 

transport effect on the phase evolution cannot be excluded. 

 

 
Figure 5.8 – Comparison between the reduction degree curve obtained from the TGA 

experiment (Callaghan Innovation) at a flow rate of 520 ml/min, and the results obtained 
from the ND reduction experiments (Wombat beamline) at three different flow rates using 

100vol% H2 gas at 1223 K 

  

2. The effect of flow rate on the in-situ phase evolution 

In Figure 5.9(a), the production rate of metallic Fe in the ND experiments at different H2 gas 

flow rates are indicated. As noted above, the generation of metallic Fe was faster with 

increasing flow rates. The intersection of the dashed line with each data curve shows the time, 
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τ, at which 50% metallisation was achieved for each experiment. In Figure 5.9(b), a plot of the 

reciprocal of each τ (1/τ) against the respective flow rate shows a linear relationship passing 

through the origin. This linear relation indicates that the generation of metallic Fe is directly 

proportional to H2 flow rate over the range of flow rates studied. It should be noted that this 

linear relation also implies that the flow rate of 250 ml/min applied in the ND reduction 

experiment is just above the critical flow rate for the Wombat beamline. 

 

 
Figure 5.9 - (a) The effect of flow rate on the changes in concentration of metallic Fe during 

reduction of pre-oxidised pellets at 1223 K by 100vol% H2 gas at 62.5ml/min, 125 ml/min 
and 250 ml/min. The dashed line indicates 50wt% metallic Fe. (b) A linear relationship 

between 1/τ and flow rate 

 

In order to compare results from experiments at different H2 flow rates on a single coordinate 

axis, the x-axis was normalised to (t/τ) and the data replotted, as in Figure 5.10(a) to (e). The 

normalised curves for TTH, metallic Fe and FeTiO3, are highly similar for the different H2 flow 

rates tested. However, the peak level of the intermediate FeO varies with different flow rates, 

with its maximum concentration increasing slightly as H2 flow rate decreases. Small 

discrepancies are also observed for TTM. Similar to the effects of flow rate on the reduction of 

Ar-sintered pellets (Subsection 4.2.1), the differences might be caused by the gas transfer 

effect, which results in a different distribution of H2/H2O in the pellets at different flow rates. 
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Figure 5.10– In-situ ND results showing the evolution of each crystalline phase during 

reduction of pre-oxidised pellets by 100vol% H2 gas at 1223 K at a flowrate of 62.5 ml/min, 
125 ml/min and 250 ml/min respectively at the Wombat beamline. Here, data are plotted in a 
single coordinate system by using a normalised dimensionless x-axis (t/τ). It should be noted 
each reduction started at t/τ=0. (a) TTH, (b) TTM, (c) FeO, (d) metallic Fe and (e) FeTiO3 

 

5.2.2 The effect of H2 gas concentration on the phase evolution at each temperature 

 

At each temperature, the reduction of the pre-oxidised pellets in a 250 ml/min flowing H2-Ar 

gas mixture with H2 gas concentrations ranging from 5vol% to 100vol% was studied. 

Concentration curves for each crystalline phase during reduction at each condition at 1223 K 

are shown in Figure 5.11 as examples. The concentration curves obtained at 1023 K and 1123 
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K are given in the Appendices C.2 and C.3. An important feature to note in Figure 5.11, is 

that there is a slowdown in the consumption of TTM once the concentration of FeO has reached 

its peak, especially at lower H2 gas concentrations (Figure 5.11(a) and (b)). This observation 

is discussed in more detail later in Section 7.2. Moreover, similarly to the Ar-sintered pellets 

(Subsection 4.2.2), a sudden drop in the Fe concentration was observed when FeTiO3 started 

to be detected. 

 
Figure 5.11 - Concentration curves of each crystalline phase measured by ND at the Wombat 

beamline, during reduction of pre-oxidised pellets at a flow of 250 ml/min at 1223 K in 
various H2-Ar gas mixtures. (a) 5vol% H2, (b) 10vol% H2, (c) 25vol% H2, (d) 50vol% H2, (e) 

75vol% H2, and (f) 100vol% H2 
 

The production rate of metallic Fe at each different H2 gas concentration and temperature are 

indicated in Figures 5.12(a1) to (a3). At each temperature the generation of metallic Fe 

progressed faster with increasing H2 gas concentration. In the same manner as before, the 
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reciprocal of each τ (1/τ) is plotted against the respective H2 gas concentration in Figure 

5.12(b1) to (b3). In each case this gives a linear relationship passing through the origin. This 

shows that at each temperature, the generation of metallic Fe is directly proportional to the 

delivered flow of H2 gas. This effect of H2 gas concentration on the generation rate of metallic 

Fe is similar to that of Ar-sintered pellets (Subsection 4.2.2) 

 
Figure 5.12- (a) The effect of H2 gas concentration on the production of metallic Fe during 
reduction of pre-oxidised pellets at a flow of 250 ml/min gas mixture with different H2 gas 
concentrations at (a1) 1023 K ,(a2) 1123 K, and (a3) 1223 K.. The dashed line indicates 

50wt% metallic Fe. (b) The linear relationship between 1/τ and H2 gas concentration at (b1) 
1023 K, (b2) 1123 K, and (b3) 1223 K. (Results from the ND experiments performed at the 

Wombat beamline) 
 

The comparisons of the evolution of each crystalline phase at each temperature and H2 gas 

concentration is shown in Figure 5.13 , where the x-axis is normalized time (t/τ). As with the 

flow rate comparison, most of the phase concentration curves are seen to be highly similar 
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across all of the studied H2 gas concentrations and temperatures. However, some differences 

can be observed for TTM and FeO at 1123 K, as well as for FeTiO3 at both 1123 K and 1223 

K. A discussion of these differences is presented later in Section 7.3. 

 
Figure 5.13– The evolution of each phase during reduction of pre-oxidised pellets at a 250 
ml/min flow H2-Ar gas mixture with different H2 gas concentrations at each temperature. 

These data are plotted in single coordinates with normalised dimensionless x-axis (t/τ) at (1) 
1023 K, (2) 1123 K and (3) 1223 K. It should be noted the reductions started at t/τ=0 (a) 

TTH, (b) TTM, (c) FeO, (d) Metallic Fe and (e) FeTiO3. (Results from the ND experiments 
performed at the Wombat beamline) 
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5.2.3 The effect of temperature on the phase evolution  

 

Figures 5.12 and 5.13 also allow a comparison of the effect of temperature on the phase 

evolution. As illustrated in Figure 5.12, the generation of metallic Fe was slower at lower 

temperatures. As shown in Figure 5.13, at the beginning of reduction, TTH in the pellets was 

consumed rapidly at all temperatures. However, temperature significantly affected the 

evolution of TTM and FeO. With increasing temperature, the maximum TTM concentration 

decreased, while that of FeO increased. Moreover, it seems that the maximum concentration of 

FeTiO3 also increased slightly with increasing temperatures, especially when H2 gas 

concentration is low. It seems that at higher temperatures, H2 gas concentration might affect 

the reactions associated with FeTiO3. These reactions, and their effects on the reduction are 

discussed later in Sections 7.1 and 8.1. 

 

This section (Section 5.2) has described the crystalline phase concentration results obtained 

from the in-situ ND reduction experiments. Analysis and discussion of this data and its 

implications are presented in Chapters 7 and 8.
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5.3 Morphology development during H2 gas reduction of pre-oxidised 
pellets: Results from quenching experiments 

 

In this section, results of microscopy on the microstructure of the pellets at various stages 

during the reduction reaction from 1023 K to 1223 K are reported. These pellets were obtained 

from quenching reduction experiments using a sliding furnace at VUW as shown in Subsection 

3.4.1. To enable comparison of these results with those from the in-situ phase evolution in 

Section 5.2, these quenching experiments were conducted at a flow of 340 ml/min 100vol% 

H2 gas. This flow rate was determined to be equivalent to a flow rate of 250 ml/min in the ND 

reduction experiment. This calculation is shown in equation 5.1, ensuring the velocity of the 

gas passing the pellets is comparable at each experiment. 

 
𝑄𝑄𝑁𝑁𝑁𝑁
𝐴𝐴𝑁𝑁𝑁𝑁

= 𝑄𝑄
𝐴𝐴

                                                          (5.1) 

 

where 𝐴𝐴 = 𝜋𝜋𝑟𝑟2 denotes the area of the cross section of the reaction tube (r represents the tube 

radius: 𝑟𝑟𝑁𝑁𝑁𝑁 = 3.5 mm for ND experiment as in Subsection 3.6.1, and r = 4 mm for quenching 

experiment as in Subsection 3.4.1), and 𝑄𝑄 stands for the equivalent flow rate applied in each 

experiment.  

 

At each temperature, partially reduced pellets were quenched at reduction degrees of 

approximately X=~20%, 50%, 80% and fully reduced (~97%, the maximum reduction degree 

obtained as shown in Figure 5.2). A comparison of the reduction degrees of these pellets to 

those obtained from the ND reduction experiments (using equations 3.3 and 3.4) is shown in 

Figure 5.14. In general, a reasonable agreement was observed at each temperature. However, 

there was discrepancy at higher temperatures. This is probably attributed to the extra 

unaccounted time required to purge H2 gas out of the tube and gas lines by Ar gas at the start 

of quenching step. During this gas changing time, further reactions might occur. Moreover, due 

to a faster reduction rate at high temperatures (Subsection 5.2.3), more reductions might take 

place, but the time during which the reactions take place are not taken into consideration. As a 

result, this leads to a slightly higher reduction degree than expected at a desired time. After 

quenching, each pellet was then cross-sectioned and imaged to reveal the morphological 

evolution at that point in the reduction reaction.  
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Figure 5.14 – Comparisons of the reduction degrees of the quenched pellets to those 
obtained from the in-situ ND reduction experiments (by equations 3.3 and 3.4) using 

100vol% H2 gas at different temperatures (a) 1023 K, (b) 1123 K and (c) 1223 K. The flow 
rate for the in-situ ND reduction experiments at Wombat beamline is 250 ml/min. The flow 
rate for the quenching experiments of the sliding furnace (at VUW) is 340 ml/min, which is 
calculated by equation 5.1 to ensure an equivalent flow condition to that in ND reduction 

experiments 
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5.3.1 Macro-morphology of the reduced pellets at each temperature 

 

Optical images that show cross-sections of the unreduced, partially reduced, and fully reduced 

pre-oxidised pellets at each temperature are exhibited in Figure 5.15. A dark core and a bright 

shell were observed within each partially reduced pellet, although the interface became less 

clear with increasing reduction degree (at each temperature), or with decreasing temperature 

(at similar reduction degree). 

 

Before reduction, the morphology of the pre-oxidised pellet (X=0%) was homogeneous. Note 

that the bright spots in the images is believed to be caused by the porosity in the pellets unfilled 

with resin or particles pulled out during grinding/polishing. For the X=~20% pellets reduced at 

1223 K, a single pellet-scale interface was observed separating two parts: a dark core and a 

very thin bright shell. However, a distinct interface was not clearly observable in the X=~20% 

pellets reduced at 1023 K or 1123 K. For the X=~50% pellets reduced at all temperatures, a 

pellet-scale interface was observed, and this had moved closer to the pellet centre than seen in 

the X=~20% pellets. For the X=~80% pellets reduced at all temperatures, the inner core and 

outer shell were difficult to distinguish. For the fully reduced pellets, a homogeneous 

morphology was observed throughout the whole pellet. However, they were significantly 

brighter in colour than the original unreduced pellets. 
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Figure 5.15– Optical images showing macro-morphologies of the unreduced, partially 

reduced and fully reduced pellets. The partially and fully reduced pellets were obtained by 
reducing pre-oxidised pellets at a flow of 340 ml/min 100vol% H2 gas at 1023K, 1123 K and 
1223 K. The red lines in each plot indicate the areas where EDS-Line scans were conducted. 

The blue sectioned area in the X=~20% pellets indicate the areas where the optical 
microscopy at higher magnification were conducted 

 

According to the in-situ ND reduction experiment, TTH was reduced to TTM rapidly in the 

earliest reduction stage for all the temperatures tested. This fast reduction is difficult to observe 
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in the low magnification images shown in Figure 5.15, as there is only a small difference in 

optical contrast between TTH and TTM. Therefore, to examine this reduction, higher 

magnification optical microscopy was used to obtain images from the X=~20% pellets reduced 

at each temperature (as highlighted in blue sectioned areas in Figure 5.15). To enable 

comparison, similar images were also obtained from the Ar-sintered pellets, and the pre-

oxidised pellets prior to reduction. These results are shown in Figure 5.16. 

 

As can be seen, under light microscopy, TTM reflected a slightly brown colour (as seen in the 

unreduced Ar-sintered particles), while TTH was a brighter grey (as seen in the unreduced pre-

oxidised particles). For the pre-oxidised pellets reduced to X=~20% at 1123 and 1223 K, most 

of the particles at the pellet surface appeared a similar colour to the TTM particles, whilst the 

particles at the pellet centre, appeared similar to the TTH particles. This implies that the 

reaction of TTH to TTM proceeds inwards from the pellet surface to its centre. However, at 

1023 K, the pellet-scale TTH core was not as clear and could not be easily distinguished. In 

some cases, partially reduced individual particles could also be observed in which TTM has 

been generated at the particle surface and a clear TTH/TTM interface is apparent, moving 

inwards while retaining the particle shape. It seems that the reduction of TTH to TTM follows 

both a pellet-scale and particle-scale shrinking core phenomenon.  

 

From Figure 5.16, it seems that at X=20%, more particles have been participated in the 

reduction of TTH to TTM at lower temperatures. However, to compensate a similar weight 

loss ratio of the reductions at higher temperatures, TTM in some particles at the pellet surface 

were reduced further to FeO and metallic Fe.  This is shown later in Figures 5.25 and 5.26.  

The phenomenon of more TTM observed in the X=~20% pellets at lower temperatures is 

consistent with the concentration data measured from in-situ ND. 
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Figure 5.16– Optical microscopy images taken from the surface to centre of each pellet, 
showing morphologies of X=~20% reduced pre-oxidised pellets at each temperature. The 

areas are shown in blue sectioned areas in Figure 5.15. The pre-oxidised pellets were 
reduced in a flowing of 340 ml/min 100vol% H2 gas. Equivalent images for unreduced Ar-

sintered pellets and pre-oxidised pellets are also shown for comparison 
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5.3.2 Pellet-scale phase determination of the reduced pellets  

 

EDS-line scans were applied to determine the phases present in the bright shell and dark core 

identified in Subsection 5.3.1. The EDS scans were conducted along a line from the pellet 

surface to pellet centre for each pellet, as indicated by the red lines in Figure 5.15. These results 

were expressed as an atomic% O/Fe ratio and plotted versus position. EDS analyses of mineral 

standards of Fe2O3, Fe3O4, FeO and metallic Fe were used to validate the measured atomic% 

O/Fe ratios, as detailed in Subsection 3.5.2. 

 

The results from an EDS-line scan of an unreduced pre-oxidised pellet (X=0%) is shown in 

Figure 5.17. The black square symbols indicate the obtained atomic% O/Fe ratio at each point 

along the line. The four black solid lines indicate the atomic% O/Fe ratio from the 

corresponding mineral standards. A red dashed line is drawn to highlight clustering in the 

measured data. These notations are also used in all the following figures showing the results of 

EDS-line scans. As can be seen, in the unreduced pellet the atomic% O/Fe ratio was constant 

at all the positions along the line. The measured ratio (~1.8) is slightly higher than that of the 

Fe2O3 mineral standard (~1.5), this is likely attributed to levels of oxygen associated with the 

impure element (Ti, Al and Mg) in the pellets and the epoxy resin filled voids between particles. 

However, this is still consistent with TTH being the main phase in the pre-oxidised pellets 

before reduction. Again, as previously explained in Subsection 4.3.2, the scatter in the data at 

higher atomic% O/Fe ratio results from measurements in the regions of voids filled with epoxy 

resin. 

 
Figure 5.17– Atomic% O/Fe ratio profile of a cross-sectioned pre-oxidised pellet prior to 

reduction, measured by EDS-line scan 
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EDS-line scans from partially and fully reduced pellets at 1023 K, 1123 K and 1223 K are 

shown in Figure 5.18, Figure 5.19 and Figure 5.20 respectively. It was found that at all 

temperatures, a similar trend in the change of the atomic% O/Fe ratio profile in the pellets 

during reduction was observed. The key features were most pronounced at 1223 K, and as such, 

these results are described below. 

 

 
Figure 5.18– Atomic% O/Fe ratio profile measured by EDS-line scan of each partially and 
fully reduced pellet at 1023 K. (a) X=21%, (b) X=55%, (c) X=79% and (d) Fully-reduced. 
The four black solid lines in each figure indicate the atomic% O/Fe ratio obtained from the 

mineral standards of Fe2O3, Fe3O4, FeO and metallic Fe. A dashed red line is drawn to 
highlight the atomic% O/Fe ratio trend  
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Figure 5.19– Atomic% O/Fe ratio profile measured by EDS-line scan of each partially and 
fully reduced pellet at 1123 K. (a) X=18%, (b) X=56%, (c) X=80% and (d) Fully-reduced. 
The four black solid lines in each figure indicate the atomic% O/Fe ratio obtained from the 

mineral standards of Fe2O3, Fe3O4, FeO and metallic Fe. A dashed red line is drawn to 
highlight the atomic% O/Fe ratio trend  

 

Figure 5.20– Atomic% O/Fe ratio profile measured by EDS-line scan of each partially and 
fully reduced pellet at 1223 K. (a) X=23%, (b) X=53%, (c) X=81% and (d) Fully-reduced. 
The four black solid lines in each figure indicate the atomic% O/Fe ratio obtained from the 

mineral standards of Fe2O3, Fe3O4, FeO and metallic Fe. A dashed red line is drawn to 
highlight the atomic% O/Fe ratio trend  
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The results from EDS-line scans of pellets reduced at 1223 K are shown in Figure 5.20. For 

the fully reduced pellet shown in Figure 5.20(d), the atomic% O/Fe ratio had a constant value 

of ~0.4 along the whole line from the pellet surface to pellet centre. This ratio is slightly larger 

than that measured from the mineral standard of metallic Fe (zero). This is likely due to the 

presence of some unreduced oxides, (such as FeTiO3, TiO2 or PSB) that are closely mixed with 

the metallic Fe, and again also the oxygen contained within the epoxy resin in the voids 

between the particles. 

 

The line scan from the X=23% pellet is shown in Figure 5.20(a). At the pellet inner areas 

(positions > ~500 µm), the atomic% O/Fe ratios were ~1.7. This value was similar to, but 

slightly smaller than, that obtained in the unreduced pre-oxidised pellets (~1.8) shown in 

Figure 5.17, implying that the inner areas of the X=23% pellet almost remained unreduced. 

This is consistent with the conclusion drawn from the optical microscopy images shown in 

Figure 5.16. By contrast, near the pellet surface (positions < ~500 µm), the ratios dropped 

slightly to ~1.4. This is consistent with TTH having been reduced to TTM at the pellet surface, 

although once again the measured ratio was slightly higher than that from the mineral standard 

of Fe3O4 (~1.3).  

 

For the X=53% pellet shown in Figure 5.20(b), a sharp transition is observed between the 

ratios measured near the surface of the pellets and the ratios at the centre. At the pellet surface 

the average atomic% O/Fe ratio was ~0.6. This value was slightly higher than the fully reduced 

pellet (~0.4 as shown in Figure 5.20(d)), indicating a mixture of metallic Fe and other 

unreduced iron oxides. Moving inwards, at position of ~600 µm the ratio increased to ~1.5, 

implying that at the pellet centre TTM (perhaps mixed with FeO) is likely to be the main phase. 

This is also consistent with the ND data which indicated that TTH had been completely reduced 

to TTM by this stage of the reduction. 

 

For the X=81% pellet shown in Figure 5.20(c), similar atomic% O/Fe ratios are observed at 

the surface and centre, as those found in the X=53% pellet. This again implies that the surface 

has been reduced to metallic Fe, while the centre remains unreduced iron oxides. However, in 

the case X=81%, the transition occurs closer to the pellet centre, at ~1200 µm. This is as 

expected for a reaction interface moving inwards over time. 
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Overall the atomic% O/Fe ratio profiles obtained at 1223 K appear generally consistent with a 

single interface shrinking core process, where metallic Fe is initially generated at the pellet 

surface, and then the reaction interface (metallic Fe/iron oxides) moves inwards to the pellet 

centre.  

 

The atomic% O/Fe ratio profile for the pellets reduced at 1023 K and 1123 K show similar 

features to those at 1223 K. However, the transitions between higher and lower atomic% O/Fe 

ratio are less distinct than those observed at 1223 K. These results are similar to those obtained 

from the Ar-sintered pellets presented in Subsection 4.3.2. 

 

5.3.3 Particle morphology of the reduced pellets at each temperature 

 

In this subsection, back-scattered SEM images are presented which show the evolving particle-

scale micro-morphologies during pellet reduction. Based on these observations, schematic 

graphics have been generated which illustrate the main morphological features and their 

evolution over time. In addition, summary tables have been produced which list the key 

features observed in the particle morphologies of ‘green’ pellets (based on the results shown in 

Subsection 4.3.3), unreduced pre-oxidised pellets, partially-reduced pellets and fully-reduced 

pellets at each temperature. 

 

1. Unreduced pre-oxidised pellets 

Prior to reduction, the majority of particles within the pre-oxidised pellets were uniform in 

appearance (see later in Figure 5.22(a) as an example), and only contained TTH phase (Figure 

3.7). Non-uniform particles made up only ~15% of the total particle population (based on 

particle counting from light microscopy images using a similar approach outlined in 

Subsection 4.3.3). However, during reduction, it was found that these non-uniform particles 

showed broadly similar reduction features to those uniform ones. That being so, the particle 

features of the non-uniform particles are not described separately, instead, the schematics and 

summary tables are mainly focused on morphological evolution of the uniform particles during 

reduction. 

 

In the following pages, particle morphological evolution is reported for the pre-oxidised pellets 

obtained from the quenching reduction experiments at 1023 K, 1123 K and 1223 K respectively. 
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In each case, illustration of these results starts with a schematic graphic. This schematic graphic 

is constructed from the collection of representative back-scattered SEM images shown in 

Appendices C.5 and C.7 for each temperature. The phases observed in the particle-scale back-

scattered SEM images were initially identified by determining the elemental compositions 

using an SEM-EDS point analysis from representative images. Examples are shown in Figure 

5.21(a) and (b), with SEM-EDS point analysis data for corresponding areas in these images 

listed in Table 5.1. These data were an average of three points for each feature. Based on these 

analyses, it is concluded that, the dark grey areas indicate TTH, the grey areas indicate TTM, 

the light grey areas indicate FeO, and the bright areas indicate metallic Fe.  

 

 
Figure 5.21 – Example back-scattered SEM images of representative particles depicting the 

different contrast of phases observed inside individual particles within partially-reduced 
pellets obtained from quenching experiments by the sliding furnace at VUW. (a) A particle 
from the inner of the X=23% pellet at 1223 K. (b) a particle from the region close to the 

pellet-scale reaction interface in the X=53% pellet at 1223 K 

 

Table 5.1 – Atomic% of the corresponding areas shown in Figure 5.21 obtained from the 
SEM-EDS point analysis to identify phases. Each value is an average of three points for each 

feature 

Area Fe Ti O Mg Al Phase 
identification 

Dark grey area 33.8 3.6 57.9 2.5 2.4 TTH 

Grey area #1 37 3.7 54.1 2.5 2.7 
TTM 

Grey area #2 40 2.8 51.7 2.8 2.6 

Light grey 42.9 2.2 50.3 2.8 1.8 FeO 

Bright 65.3 2 28 2.3 2.3 Fe 
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Using the information in Table 5.1, different iron oxide phases were then identified in the back-

scattered SEM images from their relative contrast. A selection of example images is displayed 

in Figures 5.22 and 5.23, and used as a key to relate with schematic graphics (constructed to 

depict the morphology of each phase). Here, TTH shows a dark grey colour as in Figure 

5.22(a). TTM presents a grey colour, and its formation typically follows a particle-scale 

shrinking core process with the co-generation of micro-cracks. These micro-cracks have 

beneficial effects on the reduction processes, which are discussed in Section 7.3. Based on the 

back-scattered SEM images shown in Appendices C.5 and C.7, this formation of TTM has 

been observed in the pellets reduced at early stage (X=~20%) at all temperatures studied. These 

features are shown in Figure 5.22(b) (at 1223 K) as an example. Similarly, it is found that the 

fully reduced particles at each temperature also present a similar morphology. Metallic Fe has 

grown to occupy most of the particle but coexists with some impure oxides. The metallic Fe 

presents a morphology of disordered branches coming off larger central spines in the fully 

reduced particles, as shown in Figure 5.22(c) (at 1123 K) as an example.  

 
Figure 5.22 – Examples illustrating the relationship between the schematic graphics 

constructed as a key to depict features of the particle morphologies, and the original back-
scattered SEM images. (a) unreduced pre-oxidised pellets, (b) X=23% pellet reduced at 1223 
K and (c) fully reduced pellet at 1123 K. (1) shows lower magnification back-scattered SEM 

images from the respective area in the corresponding pellet (at left). (2) shows higher 
magnification back-scattered SEM images of the phase morphologies from the highlighted 

areas in (1). (3) shows the schematic graphics constructed to illustrate the key features in (2) 
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However, FeO shows different features in the particles at different temperatures. FeO is 

difficult to be observed in the particles at 1023 K. Instead, small amounts of metallic Fe are 

directly found from TTM (in Figure 5.23(a)). On the other hand, FeO is observed in the 

particles reduced at 1123 K and 1223 K, but the morphology changes with temperature. At 

1123 K, FeO nucleates throughout the whole particle (in Figure 5.23(b)), while at 1223 K, 

FeO occupies most of the particle with unreduced TTM shrinking into small ‘islands’ (in 

Figure 5.23(c)). At both temperatures, metallic Fe is initially found in small spots along FeO, 

which then slowly occupies most of the particle, again creating the morphology in Figure 

5.22(c).  

 
Figure 5.23 – Examples illustrating the relationship between the schematic graphics 

constructed as a key to depict features of the particle morphologies, and the original back-
scattered SEM images. (a) X=55% pellet reduced at 1023 K, (b) X=56% pellet reduced at 

1123 K and (c) X=53% pellet reduced at 1223 K.  (1) shows lower magnification back-
scattered SEM images from the respective area in the corresponding pellet (at left). (2) shows 

higher magnification back-scattered SEM images of the phase morphologies from the 
highlighted areas in (1). (3) shows the schematic graphics constructed to illustrate the key 

features in (2) 

The schematic graphics of the particle morphology at each temperature and reduction stage is 

to illustrate all of these features. It should be noted that throughout the following graphics, if 

the total amount of a phase present increases as the reduction progresses, more of the 

corresponding features are added to the diagram. 
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2. Particle morphologies of the partially reduced pellets from 1023 K 

In Figure 5.24, a schematic graphic is presented which illustrates the morphological evolution 

of the particles at different positions during reduction at 1023 K. (The original back-scattered 

SEM images from which this schematic has been constructed are shown in Appendix C.5). As 

can be seen, metallic Fe is generated gradually from the pellet surface to pellet centre, which 

is broadly consistent with the results obtained from the EDS-line scans shown in subsection 

5.3.2. It should be noted that although the concentration of FeO showed a maximum value of 

~10 wt% from the results of the in-situ ND (see in Figure 5.13) at X= ~32%, it is difficult to 

observe any FeO in the particle-scale back-scattered SEM images. 

 
Figure 5.24– Schematic graphic of particle morphological evolution during reduction of the 

pre-oxidised pellets at 1023 K 
 

Descriptions of the key particle-scale morphological features that occurred during reduction at 

1023 K are summarised in Table 5.2. 
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Table 5.2– Summary of the main features of the particle morphologies in the ‘green’ pellets, unreduced pre-oxidised pellets and reduced pellets 
investigated at 1023 K 

Sc
al

e 

‘Green’ pellets 
(Ground raw particles 
pelletised with 1wt% 

Bentonite) 

Pre-oxidised pellets 
(‘Green’ pellets sintered in 
air for 2 hours at 1473 K) 

Quenched from 1023 K, 100vol% H2, 340 ml/min 

21% (1min) 55% (4mins) 79% (10mins) Fully (25mins) 

Pe
lle

t 1. The morphologies 
of the particles are 
homogeneous. 

1. TTM is transformed into 
TTH. The morphologies of 
the particles are 
homogeneous. 

1. It is difficult to observe a pellet-scale reaction 
interface. 

1. A pellet-scale 
reaction interface is 
vaguely observed. 

1. A pellet-scale 
reaction interface 
is vaguely 
observed. 

1. The 
morphology of 
the pellet is 
homogeneous, 
but shows 
brighter than 
that of the 
unreduced one. 

Pa
rt

ic
le

 

2. The particle sizes 
are randomly 
distributed. 
 
3. Most particles are 
smooth at the surface 
with a light grey 
colour. 
 
4. Fine lamellar 
structure (enriched 
with Ti) can be 
observed in ~10% of 
the particles. 
 
5. A small amount of 
silicate particles 
which are smaller than 
~30 µm are present. 

2. The particle size 
distribution is similar to 
‘Green’ #2. 
 
3. The morphologies of 
most particles are slightly 
darker than in ‘Green’ #3, 
as the main phase is TTH. 
 
4. Compared to ‘Green’ #4, 
there are three different 
non-uniform particles. Two 
of them contain a higher Ti 
content: one with a blobby 
structure and the other with 
a discontinuous lamellar 
structure. The third type 
has a hatched morphology, 
which contains up to 8 to 
10wt% Mg and Al. 

2. The particle size distribution is similar to ‘Green’ 
#2. 
 
3. The morphology of the unreduced particles at the 
centre of the pellets is similar to Pre-oxidised #3. 
 
4. For the reduced particles, TTM is generated 
following both pellet and particle-scale shrinking 
core phenomena. In addition, micro-cracks are also 
observed in the particles. After TTH is reduced to 
TTM, the particles show a structure with disordered 
branches off a central spine. 
 
5. It is difficult to observe the FeO morphologies in 
the particles. 
 
6. In the particles at pellet surface, metallic Fe spots 
are observed. The generation of metallic Fe starts 
close to the cracks throughout the whole particles. 

2, 3, 4 and 5 are similar 
to 21% #2, 3, 4, and 5 
respectively. 
 
6. In the particles at the 
pellet surface, more 
metallic Fe spots are 
observed. However, 
small metallic Fe spots 
are also found in the 
particles at the centre of 
the pellet. This shows 
that, the generation and 
growth of metallic Fe 
starts from the particles 
at pellet surface and 
then to the particles at 
pellet centre, forming a 
pellet-scale gradient. 

2, 3, 4 and 5 are 
similar to 21% 
#2, 3, 4, and 5 
respectively. 
 
6. The generation 
of metallic Fe is 
similar to 55% 
#6.  Moreover, 
the particles at 
the pellet surface 
are fully reduced 
to metallic Fe. 
The generated 
metallic Fe 
seems to replace 
TTM by 
following its 
structure as in 
21% #4. 

The 
morphologies of 
the fully reduced 
particles 
throughout the 
whole pellets are 
similar to 79% 
#6. 
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2. Particle morphologies of the reduced pellets from 1123 K 

In Figure 5.25, a schematic graphic is presented which illustrates the morphological evolution 

of the particles at different positions during reduction at 1123 K. (The original back-scattered 

SEM images from which this schematic has been constructed are shown in Appendix C.6). 

The particle morphological evolution at this temperature is in general similar to that at 1023 K 

(as shown in Figure 5.24), however the morphology of FeO was observed to be very fine 

within the particles during the 1123 K reduction. 

 

 
Figure 5.25- Schematic graphic of particle morphological evolution of the pre-oxidised 

pellets reduced at 1123 K 

 

Descriptions of the key particle-scale morphological features that occurred during reduction at 

1123 K are summarised in Table 5.3. 
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Table 5.3– Summary of the main features of the particle morphologies in the ‘green’ pellets, unreduced pre-oxidised pellets and reduced pellets 
investigated at 1123 K 

Sc
al

e ‘Green’ pellets (Ground 
raw particles pelletised 
with 1wt% Bentonite) 

Pre-oxidised pellets (‘Green’ pellets 
sintered in air for 2 hours at 1473 K) 

Quenched from 1123 K, 100vol% H2, 340 ml/min 

18% (45s) 56% (2min50s) 80% (5mins40s) Fully (18mins) 

Pe
lle

t 1. The morphologies of 
the particles are 
homogeneous. 

1. TTM is transformed into TTH. The 
morphologies of the particles are 
homogeneous. 

1. Similar to 1023 K 21% #1, it 
is hard to observe a pellet-scale 
reaction interface. 

1. A pellet-scale 
reaction interface is 
observed. 

1. A pellet-scale 
reaction 
interface is 
observed. 

1.  The morphology 
of the pellet is 
homogeneous, but 
shows brighter than 
that of the 
unreduced one. 

Pa
rt

ic
le

 

2. The particle sizes are 
randomly distributed. 
 
3. Most particles are 
smooth at the surface 
with a light grey colour. 
 
4. Fine lamellar structure 
(enriched with Ti) can be 
observed in ~10% of the 
particles. 
 
5. A small amount of 
silicate particles which 
are smaller than ~30 µm 
are present. 

2. The particle size distribution is 
similar to ‘Green’ #2. 
 
3. The morphologies of most particles 
are slightly darker than in ‘Green’ #3, 
as the main phase is TTH. 
 
4. Compared to ‘Green’ #4, there are 
three different non-uniform particles. 
Two of them contain a higher Ti 
content: one with a blobby structure 
and the other with a discontinuous 
lamellar structure. The third type has 
a hatched morphology, which 
contains up to 8 to 10wt% Mg and 
Al. 

2,3, and 4 is similar to 1023 K 
21% #2, 3 and 4. 
 
5. In the particles at the pellet 
surface, FeO nucleates are 
observed. The generation of 
FeO in the particles seems to 
start close to the micro-cracks 
throughout the whole particles. 
Less FeO is observed in the 
particles at the pellet inner area. 
It seems that the generation of 
FeO presents a pellet-scale 
gradient with the particle closer 
to the pellet surface reduced 
faster than particles at pellet 
centre 
 
6. The metallic Fe spots in the 
particles is initially found from 
the fine FeO throughout the 
whole particles. 

2,3, 4, and 5 is 
similar to 18% #2, 
3, 4, and 5.  
 
6. The particles at 
the pellet surface 
are almost fully 
reduced to metallic 
Fe, which has a 
similar morphology 
as in 1023 K 79% 
#6.  
 

2,3, 4, 5, and 6 
is similar to 
56% #2, 3, 4, 5, 
and 6.  
 
 

The metallic Fe in 
the fully reduced 
particles is similar to 
1023 K Fully. 
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3. Particle morphologies of the partially reduced pellets from 1223 K 

In Figure 5.26, a schematic graphic is presented which illustrates the morphological evolution 

of the particles at different positions during reduction at 1223 K. (The original back-scattered 

SEM images from which this schematic has been constructed are shown in Appendix C.7). A 

key difference to the results presented at lower temperatures is that, at 1223 K, FeO nucleates 

developed throughout the whole particles. Moreover, the generation of metallic Fe seems to 

follow FeO as the reduction progresses. 

 

 
Figure 5.26- Schematic graphic of particle morphological evolution of the pre-oxidised 

pellets reduced at 1223 K 

 

Descriptions of the key particle-scale morphological features that occurred during reduction at 

1123 K are summarised in in Table 5.4.
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Table 5.4– Summary of the main features of the particle morphologies in the ‘green’ pellets, unreduced pre-oxidised pellets and reduced pellets 
investigated at 1223 K 

Sc
al

e 

‘Green’ pellets 
(Ground raw particles 
pelletised with 1wt% 

Bentonite) 

Pre-oxidised pellets (‘Green’ 
pellets sintered in air for 2 hours 

at 1473 K) 

Reduced and quenched from 1223 K, 100vol% H2, 340 ml/min 

23% (30s) 53% (1min40s) 81% (3mins20s) Fully (8mins) 

Pe
lle

t 1. The morphologies 
of the particles are 
homogeneous. 

1. TTM is transformed into TTH. 
The morphologies of the particles 
are homogeneous. 

1. A pellet-scale reaction 
interface is observed. 

1. A pellet-scale reaction 
interface is observed. 

1. A pellet-scale 
reaction 
interface is 
vaguely 
observed. 

1.  The morphology 
of the pellet is 
homogeneous, but 
shows brighter than 
that of the 
unreduced one. 

Pa
rt

ic
le

 

2. The particle sizes 
are randomly 
distributed. 
 
3. Most particles are 
smooth at the surface 
with a light grey 
colour. 
 
4. Fine lamellar 
structure (enriched 
with Ti) can be 
observed in ~10% of 
the particles. 
 
5. A small amount of 
silicate particles which 
are smaller than ~30 
µm are present. 

2. The particle size distribution is 
similar to ‘Green’ #2. 
 
3. The morphologies of most 
particles are slightly darker than 
in ‘Green’ #3, as the main phase 
is TTH. 
 
4. Compared to ‘Green’ #4, there 
are three different non-uniform 
particles. Two of them contain a 
higher Ti content: one with a 
blobby structure and the other 
with a discontinuous lamellar 
structure. The third type has a 
hatched morphology, which 
contains up to 8 to 10wt% Mg and 
Al. 

2. 3. and 4 is similar to 
1023 K 21% #2, 3 and 4. 
 
5. FeO is also observed in 
the particles. Compared to 
the morphology at 1123 K, 
more FeO nucleates in the 
particles at 1223 K are 
developed.  
 
6. In the particles at the 
pellet surface, the metallic 
Fe morphology is similar to 
1123 K 18% #6. The 
generation of metallic Fe is 
initially observed along 
FeO. 

2. 3. and 4 is similar to 1023 
K 21% #2, 3 and 4. 
 
5. The morphology of the 
FeO is similar to 23% #5. 
However, with a combination 
of FeO nucleates growth and 
generation of more FeO 
nucleates, FeO seems to 
occupy most of the particles 
with remaining un-reduced 
TTM shrinking to small 
‘islands’. 
 
6. The particles at the pellet 
surface are almost fully 
reduced to metallic Fe, which 
has a similar morphology as 
in 1123 K 56% #6. 

2,3, 4, 5, and 6 
is similar to 
53% #2, 3, 4, 5, 
and 6.  

The metallic Fe in 
the fully reduced 
particles is similar 
to 1023 K Fully. 
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5.3.4 Particle morphologies of the fully reduced pellets at higher temperatures 

 

In addition to the quenching reduction experiments performed between 1023 K and 1223 K, 

fully-reduced pellets were also produced from the TGA experiments at temperatures up to 1443 

K. The particle morphologies in those fully reduced pellets were also characterised to examine 

the effects of temperature on the morphology of metallic Fe. It should be noted that these pellets 

were not quenched after complete reduction, but were subject to controlled cooling in the TGA 

furnace (at Callaghan Innovation) at a rate of 40 K/min. 

 

Back-scattered SEM images showing the representative particle morphologies from 1043 K to 

1443 K from the TGA reduction experiments are shown in Figure 5.27(a) to (e). At lower 

temperatures (1043 K and 1143 K, Figure 5.27(a) and (b)), the morphology of the metallic Fe 

showed a similar structure to those observed in the partially reduced pellets investigated from 

quenching. As the reduction temperature increased, the structure of metallic Fe coarsened, 

forming more bulbous clusters (Figure 5.27(d) and (e)). This coarsening effect is similar to 

that of the Ar-sintered pellets reduced at higher temperatures (Figure 4.27(d) and (e)), which 

is attributed to an increased mobility of Fe atoms at higher temperatures.  

 

 
Figure 5.27- Back-scatter SEM images of cross-sectioned fully reduced pellets from the TGA 

experiment (Callaghan Innovation) showing the final morphologies of particles at each 
reducing temperature studied. (a) 1043 K, (b) 1143 K, (c) 1243 K, (d) 1343 K and (e) 1443 K 

[162]  
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5.4 Summary 
 

In this chapter, the results of the pre-oxidised pellets reduced in H2 gas have been reported. 

Detailed discussion and analysis of these results is presented in the following Chapters 6,  7 

and  8. Similar to the results of Ar-sintered pellets in Chapter 4, it was found that with 

increasing temperature, H2 gas flow rates, H2 gas concentrations, and decreasing pellet size 

(studied only at 1343 K), the reduction rate increased. 

 

The H2 gas reduction of the pre-oxidised pellets was monitored by the in-situ ND 

measurements at the Wombat facility at ANSTO, and the results were analysed to determine 

the phase evolution during the reaction. For the reduction conditions studied, TTH was rapidly 

consumed in the early reduction stages. Following this, TTM and FeO were both generated and 

then consumed. Metallic Fe and some residual FeTiO3 were the final products observed. A 

characteristic time, τ, was defined for these experiments, which allowed comparison of the 

phase evolution during reduction at different conditions. It was found that temperature 

significantly affected the observed evolution of TTM and FeO. As the temperature increased 

from 1023 K to 1223 K, the maximum concentration of TTM decreased, while that of FeO 

increased. 

 

Changes in the pellet and particle-scale morphologies within the pellets during reduction were 

also studied. The results of the macro-morphologies indicate a pellet-scale reaction interface in 

most of the reduced pellets. This reaction interface distinguishes a bright shell and a dark core. 

EDS-line scans confirmed the initial generation of metallic Fe at the pellet surface. A reaction 

interface was observed that moved towards the pellet centre over time, implying a single 

interface shrinking core mechanism. However, these results also imply that the later stage 

reductions in the pellet (X > 80%) occur after the shrinking core has disappeared, and the 

particle-scale effects on the reactions is likely to be pronounced, which will be analysed in 

Section 8.2. 

 

It should be noted that the reduction temperature significantly affected the morphological 

evolution of FeO. At 1023 K, it was difficult to observe FeO in the particles. With increasing 

temperature, the morphology of FeO nucleates was found at 1123 K, but gradually occupies 

most of the particles as temperature further increased to 1223 K. 
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Similarly, the metallic Fe generated in the particles at lower temperatures showed a structure 

with disordered branches coming off larger central spines. At 1223 K metallic Fe follows the 

morphology of FeO, and then slowly grows into a similar structure as observed at lower 

temperatures. However, at temperatures significantly above 1223 K, completely reduced 

pellets did not show the morphology of disordered branches. Instead, pellets quenched from 

these temperatures exhibited metallic Fe formed into more bulbous clusters. This, again, may 

reflect an increased local mobility of Fe atoms at elevated temperatures. 



 

136 
 

Chapter 6  
Kinetic analysis of reducing Ar-sintered and pre-oxidised pellets 
in H2 gas 
 

The results presented in Chapters 4 and 5 indicate that reduction of both the Ar-sintered and 

the pre-oxidised pellets in H2 gas display similar characteristics: 

1. From the TGA reduction experiments above the critical flow rate (at Callaghan Innovation) 

in Sections 4.1 and 5.1, the reduction rate of both types of pellets was found to be strongly 

dependent on the reaction temperature and pellet diameter (at 1343 K). The dependence on 

pellet diameter (at 1343 K) indicates that a pellet-scale process must in part play a role in 

controlling the reduction. 

2. From the microstructure analysis of each partially reduced pellet, only one dark core and one 

bright shell are observed (Figures 4.15 and 5.15). This is despite the reduction of both types 

of pellets being complex processes evolving multiple phases simultaneously. Moreover, 

these observations also showed that metallic Fe was first generated in the particles at the 

pellet surface, and then a reaction front progressed towards the pellet centre. Hence, for a 

simple analysis of the kinetics, it is arguable to just consider a single reaction step during 

reduction, i.e. the generation of metallic Fe from the iron oxide. This assumption has been 

successfully applied in many previous studies of the gas-based iron ore reduction (as listed 

in Table 2.3). 

 

Consequently, this chapter presents a discussion of the application of a single interface SCM 

to the reduction of both types of pellets. This model is applied to describe the experimental 

data obtained from the TGA reduction experiments of both types of pellets (Sections 4.1 and 

5.1), and hence used to determine the rate-limiting mechanism. Note this analysis is carried out 

at flow rates above the crucial flow rate, eliminating the mass transfer in the gas species as a 

rate-limiting mechanism in the SCM. The chapter is divided into the following sections: 

 Section 6.1: Determination of the rate-limiting step 

 Section 6.2: Calculation of the activation energy 

 Section 6.3: Establishment of the minimal critical pellet size for the model at 1343 K 

 Section 6.4: Evaluating the accuracy of pellet reduction rate from the model 

 Section 6.5: Summary of the kinetic analysis 

 

Note that some of the contents have already published in a paper of the author [162]. 
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6.1 Determination of the rate-limiting step using the SCM 
 

By considering only the interfacial chemical reaction and gas diffusion through the product 

layer steps in the model, equation 6.1 can be derived. (This is obtained by combining equations 

2.3 and 2.4  listed in Table 2.5). This equation assumes that each step occurs sequentially in 

series, and the slowest step, i.e. the step that requires the longest time, is regarded as the rate-

limiting step. In this case, the total time for the reaction is obtained from the sum of the times 

required for each step [138]. Note that in the following context, if it is not specified, the term 

‘diffusion’ stands for gas diffusion through the product layer. 

 

𝑡𝑡 = 1
𝑘𝑘𝑠𝑠

,  𝐼𝐼(𝑋𝑋𝑎𝑎) + 1
𝐷𝐷𝑒𝑒′

 𝐷𝐷(𝑋𝑋𝑎𝑎)                                                 (6.1)                    

where                                     𝐼𝐼(𝑋𝑋𝑎𝑎) =  1 − (1 − 𝑋𝑋𝑎𝑎)
1
3                                                     (6.2) 

and                                   𝐷𝐷(𝑋𝑋𝑎𝑎) =  1 − 3(1 − 𝑋𝑋𝑎𝑎)
2
3 + 2(1 − 𝑋𝑋𝑎𝑎)                                     (6.3) 

and                                                1
𝑘𝑘𝑠𝑠

, = 𝜌𝜌𝐵𝐵𝑅𝑅
𝑏𝑏𝑘𝑘𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴

                                                              (6.4) 

and                                           1
𝐷𝐷𝑒𝑒

, = 𝜌𝜌𝐵𝐵𝑅𝑅2

6𝑏𝑏𝐷𝐷𝑒𝑒�𝐶𝐶𝐴𝐴𝐴𝐴−𝐶𝐶𝐴𝐴𝐴𝐴�
                                                    (6.5) 

 

Here, 𝑋𝑋𝑎𝑎 = 𝑋𝑋
100�  is the reduction degree expressed as a decimal, 𝑘𝑘𝑠𝑠

,  is the apparent reaction 

rate constant, and 𝐷𝐷𝑒𝑒
,  is the apparent diffusion rate constant. 𝐼𝐼(𝑋𝑋𝑎𝑎) denotes a function which 

describes the interfacial chemical reaction dependence, and  𝐷𝐷(𝑋𝑋𝑎𝑎) denotes a function which 

describes the diffusion dependence. Other notations have been previously defined in 

Subsection 2.3.2. Equation 6.1 can be linearised by dividing both sides either by 𝐼𝐼(𝑋𝑋𝑎𝑎) or 

𝐷𝐷(𝑋𝑋𝑎𝑎) to generate equations 6.6 and 6.7.  This enables the effects of each dependence term to 

be analysed by plotting the data obtained from the TGA experiment. 

 
𝑡𝑡

𝐼𝐼(𝑋𝑋𝑎𝑎)
= 1

𝑘𝑘𝑠𝑠
,  + 1

𝐷𝐷𝑒𝑒′
 𝐷𝐷(𝑋𝑋𝑎𝑎)
𝐼𝐼(𝑋𝑋𝑎𝑎)

                      (6.6) 

𝑡𝑡
𝐷𝐷(𝑋𝑋𝑎𝑎)

= 1
𝑘𝑘𝑠𝑠

,  𝐼𝐼(𝑋𝑋𝑎𝑎)
𝐷𝐷(𝑋𝑋𝑎𝑎)

+ 1
𝐷𝐷𝑒𝑒′

                                 (6.7) 
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If linear fits are obtained by plotting 𝑡𝑡 𝐼𝐼(𝑋𝑋𝑎𝑎)�  against 𝐷𝐷(𝑋𝑋𝑎𝑎)
𝐼𝐼(𝑋𝑋𝑎𝑎)�  in equation 6.6, or 𝑡𝑡 𝐷𝐷(𝑋𝑋𝑎𝑎)�  

against 𝐼𝐼(𝑋𝑋𝑎𝑎)
𝐷𝐷(𝑋𝑋𝑎𝑎)�  in equation 6.7, then the experimental data is regarded to be well described 

by the single interface SCM. Moreover, the slope and intercept in these linear relations provide 

insights to determine the rate-limiting step, and the apparent diffusion and/or reaction rate 

constant. As such, in equation 6.6, the gradient 1 𝐷𝐷𝑒𝑒
,�  describes the relative contribution of the 

gas diffusion component to the rate-limiting step, while the y-axis intercept determines 1 𝑘𝑘𝑠𝑠,� . 

By contrast, in equation 6.7, the gradient 1
𝑘𝑘𝑠𝑠

,�  describes the relative contribution of the 

interfacial chemical reaction component to the rate-limiting step, while the y-axis intercept 

determines 1 𝐷𝐷𝑒𝑒
,� . 

 

6.1.1 Assessing the kinetics of Ar-sintered pellets 

 

Equations 6.6 and 6.7 were applied to the reduction degree data obtained from the TGA 

experiments in which the Ar-sintered pellets were reduced at a series of temperatures from 993 

K to 1443 K above the critical flow rate (raw data shown in Figure 4.2). The resulting plots 

are illustrated in Figure 6.1. The expected relationships obtained from equation 6.6 are shown 

in Figure 6.1(a) (lower temperature data) and (b) (higher temperature data). Similarly, the 

expected relationships obtained from equation 6.7 are shown in Figure 6.1(c) and (d). 

 

Taken together, these figures, present strong evidence that the single interface SCM provides 

a good description of the reduction rate over the period during which most of the reaction 

occurs. It can be seen that reasonable linear fits are obtained for all data sets between X=10% 

and X=90%. The poorer agreement observed during the very early and very late stages of the 

reaction is to be expected. During the very early (initial) stages, the reaction interface will take 

time to develop (as it is not infinitesimally thick), while any experimental measurement errors 

during this period are amplified by the ratio of a short time and a small mass loss. Similarly, 

once the reduction degree exceeds 90% (latest stage), the morphologies observed in the 

microstructure analysis have become established throughout the pellets, with the remaining 

reactions sites interspersed within the metallic Fe such that they can no longer be considered 

as a single core (Figure 5.24 to 5.26 or Appendices B.5 to B.7). In addition, reactions 

associated with residual Fe-Ti-O phases might occur at higher reduction degrees, which may 

affect the fitting of the model (in Chapter 8).  Consequently, the data obtained at both lower 
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and higher reduction degrees are not well described by the single interface SCM. This 

phenomenon of the poorer agreement at both lower and higher reduction degrees is consistent 

with the pellet-scale microstructure analysis shown in Figure 4.15– at both relatively lower 

and higher reduction degrees, the observation of the shrinking core became less apparent. 

 
Figure 6.1- Plots showing correlations of the experimental TGA data from the Ar-sintered 

pellets with the relationships expected from equations 6.6 and 6.7. Data were obtained from 
TGA experiments reducing Ar-sintered pellets (~7 mm diameter) at temperatures from 993 K 
to 1443 K above the critical flow rate. (a) Plots relating to equation 6.6 from 993 K to 1143 
K; (b) Plots relating to equation 6.6 from 1193 K to 1443 K; (c) Plots relating to equation 
6.7 from 993 K to 1143 K; and (d) Plots relating to equation 6.7 from 1193 K to 1443 K. In 
all figures, linear fits were made between X=10% and X=90%, and are shown extrapolated 

to the y-axis 
 

As shown in Figure 6.1(a) and (b), almost all the plots exhibit an approximately zero gradient 

(except at 993 K where a slight negative gradient is observed), and a non-zero positive y-axis 

intercept. This indicates that the influence on the reaction rate of gas diffusion through the 

product layer is negligible (as 1 𝐷𝐷𝑒𝑒′⁄  ≈ 0 ). With the positive y-axis intercept at all temperatures, 

it also implies that the reaction is controlled by the interfacial chemical reaction rate.  

 

This is confirmed by the linear fits shown in Figure 6.1(c) and (d), where non-zero positive 

gradients were obtained, indicating that in each case the reaction rate is at least partly controlled 
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by the 𝐼𝐼(𝑋𝑋𝑎𝑎) component. Moreover, at all temperatures, the y-axis intercept is zero, confirming 

that the diffusion coefficient can be neglected for the range of temperatures studied here, such 

that interfacial chemical reaction control is the primary rate-limiting mechanism.  

 

6.1.2 Assessing the kinetics of pre-oxidised pellets 

 

Equations 6.6 and 6.7 were also applied to analyse the experimental TGA data from reductions 

of the pre-oxidised pellets at temperatures from 1043 K to 1443 K above the critical flow rate 

(raw data shown in Figure 5.2). Following a similar approach to Subsection 6.1.1, the resulting 

plots are shown in Figure 6.2. 

 
Figure 6.2- Plots showing correlations of the experimental TGA data from the pre-oxidised 
pellets with the relationships expected from equations 6.6 and 6.7. Data were obtained from 
TGA experiments reducing pre-oxidised pellets (~7 mm diameter) at temperatures from 1043 
K to 1443 K above the critical flow rate. (a) Plots relating to equation 6.6; (b) Plots relating 
to equation 6.7. In both figures, linear fits were made between X=10% and X=90%, and are 

shown extrapolated to the y-axis [162] 
 

As before, the linearity of the plots in Figure 6.2 provides strong evidence that, for each of the 

experimentally studied temperatures, the single interface SCM provides a good description of 

the period during which most of the reaction occurs. Similarly to the Ar-sintered pellets, 

reasonable linear fits are again obtained for all data sets between X=10% and X=90%.  

 

In Figure 6.2(a), the linear fits at each temperature exhibit a non-zero y-axis intercept, but only 

the data at 1043 K exhibits a linear gradient that is appreciably more than zero (the other lines 

are all close to horizontal). This implies that at T≥1143 K the diffusion component of the rate-

limiting step is zero (as 1 𝐷𝐷𝑒𝑒′⁄  ≈ 0), meaning that the reaction is controlled dominantly by the 

interfacial chemical reaction rate at the reaction interface. However, at 1043 K, a positive 
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gradient and a non-zero intercept mean that mixed control is observed, in which both diffusion 

and interfacial chemical reaction play a role.  

 

These conclusions are confirmed by the linear fits shown in Figure 6.2(b). At all temperatures 

≥1143 K, the y-axis intercept is zero, confirming that the diffusion coefficient can be neglected 

at these temperatures, and the interfacial chemical reaction control is dominant. It is only at 

1043 K that a non-zero contribution from the diffusion component is observed. This suggests 

that porosity may be important to the kinetics of reducing pre-oxidised pellets at lower 

temperatures. Future study is needed to understand the effects of pellet porosity and density on 

the reduction rate. 

 

In this section, it is analysed that for the reduction of both types of pellets at most temperatures 

studied is controlled by the interfacial chemical reaction, only the reduction of pre-oxidised 

pellets at 1043 K shows a mixed control. Nevertheless, this appears to be different from the 

findings in the literature for the reduction of TTM pellets above 1073 K, as listed in Table 2.3 

[122], [126], [128], [130]. These reports found that gas diffusion through the product layer 

seemed to play an important role in the rate-limiting step, especially at the later stages of 

reduction. This mismatch might arise from the different reducing gases used in those 

experiments. In the previous literature [122] [126]-[128] [130], almost all the experiments 

employed a gas mixture of H2 and CO as the reducing agent. The molecules of CO and CO2 

are substantially larger than H2 and H2O molecules. Therefore, it is not surprising that gas 

diffusion through the product layer might be slower and hence limit the reduction rate.  

 

On the other hand, the rate-limiting step determined in this study is consistent with literature 

of reducing TTM ores when H2 gas is the dominant gas. Previous authors have found that 

interfacial chemical reaction rate controls the reduction process for reduction of cylindrical 

titanomagnetite pellets (equivalent ~10.77 wt% TiO2) from 1173 K to 1323 K in H2-Ar gas 

[121], or pre-oxidised ironsand (equivalent ~11.4 wt% TiO2) from 1073 K to 1273 K in H2-Ar 

gas [108]. Moreover, it was also reported that interfacial chemical reaction control becomes 

dominant with an increased ratio of H2/(CO+H2) in the reduction of spherical pre-oxidised 

titanomagnetite pellets (equivalent ~12.5 wt% TiO2) at temperatures from 1173 K to 1323 K 

[130]. This is also in line with the analysis discussed in this section, where the experimental 

data for the kinetic analysis was obtained in the reductions by 100vol% H2 gas. 
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6.2 Activation energy for the interfacial chemical reaction control step 
 

In Section 6.1, it was shown that interfacial chemical reaction is the rate-limiting step for the 

reduction of the Ar-sintered pellets at all temperatures studied (from 993 K to 1443 K), and for 

the pre-oxidised pellets at all temperatures above 1043 K. In these cases, an activation energy 

for the rate-limiting reaction can be determined using the Arrhenius equation: 

 

                                                   𝑘𝑘𝑠𝑠 = 𝐴𝐴𝑒𝑒−𝐸𝐸𝐴𝐴/(𝑅𝑅𝑅𝑅)                                                     (6.8) 

 

where 𝑘𝑘𝑠𝑠 is the reaction rate constant, 𝑅𝑅 is the universal gas constant, 𝐴𝐴 is a frequency factor 

and 𝑇𝑇 is the absolute temperature in Kelvin. However, the calculation of 𝑘𝑘𝑠𝑠  requires prior 

knowledge of 𝐶𝐶𝐴𝐴𝐴𝐴 (the concentration of the reducing gas at the reaction interface, which equals 

to 𝐶𝐶𝐴𝐴𝐴𝐴 shown in Figure 2.6). This is not easily determined. Instead, the apparent rate constant 

𝑘𝑘s
,  was applied. The relation between 𝑘𝑘s

,  and 𝑘𝑘𝑠𝑠 is shown in equation 6.4, and can be simplified 

as: 
1
𝑘𝑘𝑠𝑠

, = 𝜌𝜌𝐵𝐵𝑅𝑅
𝑏𝑏𝑘𝑘𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴

= 𝐵𝐵
𝑘𝑘𝑠𝑠

                                               (6.9) 

where 𝐵𝐵 = 𝜌𝜌𝐵𝐵𝑅𝑅 𝑏𝑏𝐶𝐶𝐴𝐴𝐴𝐴⁄ . 

 

In order to determine 𝑘𝑘s
, , equation 6.1 can be simplified to consider primarily the interfacial 

chemical reaction component:  

 

𝑡𝑡 = 1
𝑘𝑘𝑠𝑠

,  [1 − (1 − 𝑋𝑋𝑎𝑎)
1
3]                                     (6.10) 

 

By plotting t against  1 − (1 − 𝑋𝑋𝑎𝑎)
1
3 for the experimental data set obtained at each temperature, 

𝑘𝑘𝑠𝑠
,  can be obtained from the slope of each plot. The activation energy can then be obtained by 

combining equations 6.8 and 6.9, resulting in: 

 

                                      𝑙𝑙𝑙𝑙 𝑘𝑘′𝑠𝑠 =  𝑙𝑙𝑙𝑙 �𝐴𝐴
𝐵𝐵
� − 𝐸𝐸𝐴𝐴

𝑅𝑅𝑅𝑅
                                      (6.11) 

 

If it is assumed that B is approximately constant with temperature, then the activation energy 

𝐸𝐸𝐴𝐴 can be obtained by plotting ln𝑘𝑘′𝑠𝑠 against 1/T. 
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6.2.1 Reduction of Ar-sintered pellets at all temperatures 

 

In Figure 6.3, linear fits of equation 6.10 are shown to the experimental TGA data obtained 

from reductions of the Ar-sintered pellets. Here, linear fits were generated using all data for 

X<90%. The R2 values for evaluating each fit are listed in Table 6.1, and confirm close 

agreement between the fitted and experimental data in each case. The apparent reaction rate 

constant 𝑘𝑘𝑠𝑠
,  obtained at each temperature is also listed in Table 6.1. This was calculated from 

the reciprocal of the slope for each fitted line. 

 
Figure 6.3– Fitting of equation 6.10 to the experimental data obtained from reductions of the 

Ar-sintered pellets at temperatures from 993 K to 1443 K. (a) Lower temperature regime,  
from 993 K to 1143 K; (b) Higher temperature regime,  from 1193 K to 1443 K. These fits 

were performed using all data available up to X≤ 90%. Data for X>90% are highlighted by 
grey area  

 

Table 6.1– Fitted slopes, apparent reaction rate constants and R2 values for each fit in 
Figure 6.3. (H2 gas reduction of Ar-sintered pellets at temperatures from 993 K to 1443 K) 

T/K 993 1043 1073 1093 1143 1193 1243 1293 1343 1443 

Slope = 1
𝑘𝑘𝑠𝑠

,  
182.6 

±  
0.1 

124.9 
±  

0.1 

86.8 
±  

0.1 

67.1  
±  

0.1 

48.0 
±  

0.03 

20.9 
±  

0.03 

18.6  
±  

0.1 

15.0  
±  

0.02 

13.1 
±  

0.02 

10.1 
± 

0.01 

Apparent 
reaction 

rate 
constant 

ks
,  

5.5 × 
10-3 

±  
6.6 × 
10-4 

8.0 × 
10-3 
± 

3.5 × 
10-4 

1.2 × 
10-2 
± 

9.7 × 
10-4 

1.5 × 
10-2 
± 

1.0 × 
10-3 

2.1 × 
10-2 
± 

6.1 × 
10-4 

4.2 × 
10-2 
±  

1.5 × 
10-3 

5.3 × 
10-2 
±  

3.8 × 
10-3 

6.7 × 
10-2 
±  

1.7 × 
10-3 

7.7 × 
10-2 
±  

1.2 × 
10-3 

9.9 × 
10-2 
±  

6.0 × 
10-4 

R2 0.998 0.999 0.998 0.999 0.999 0.998 0.999 0.999 0.999 0.999 
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In order to calculate the activation energy, ln𝑘𝑘′𝑠𝑠 is plotted against 1/T in Figure 6.4. As can 

be seen, there is a discontinuity of the data over the whole temperature range, which is 

confirmed by conducting extra reduction experiments between each temperature at 50 K 

intervals. Accordingly, two independent linear lines are required to fit the data obtained in the 

higher and lower temperature ranges respectively. This implies that the reduction presents 

different activation energies in each temperature range. From 993 K to 1143 K, the activation 

energy calculated from the fitted blue line is found to be 89 ± 5 kJ/mol. However, from 1193 

K to 1443 K, the activation energy calculated from the fitted red line drops to 41 ± 1 kJ/mol. 

This implies that the overall rate-limiting reaction step may be different for reduction 

temperatures above or below 1193 K, which is further discussed in Section 8.1. These 

activation energies obtained for reducing the Ar-sintered pellets will be compared later with 

the one for the pre-oxidised pellets.  

 

 
Figure 6.4– Arrhenius plots for determining apparent activation energy of reducing the Ar-

sintered pellets reduced by 100vol% H2 gas from 993 K to 1443 K 
 

6.2.2 Reduction of pre-oxidised pellets above 1043 K 

 

Similar to Subsection 6.2.1, equation 6.10 was also applied to the experimental TGA data 

obtained from reducing the pre-oxidised pellets at temperatures from 1143 K to 1443 K. Linear 

fits were obtained using all data for X≤ 90%, and the resulting fits are plotted in Figure 6.5. R2 

values for each fitted line and the apparent reaction rate constant 𝑘𝑘𝑠𝑠
,  are both listed in Table 

6.2. 
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Figure 6.5- Fitting of equation 6.10 to the experimental data obtained from reductions of 

pre-oxidised pellets at temperatures from 1143 K to 1443 K. These fits were performed on all 
data to X≤ 90%. Data for X>90% are highlighted by grey area [162] 

 

Table 6.2- Fitted slopes, apparent reaction rate constants and R2 values for each fit in 
Figure 6.5 for the experimental data obtained reducing pre-oxidised pellets from 1143 K to 

1443 K [162] 

T/K 1143 1243 1343 1443 

Slope = 1
𝑘𝑘𝑠𝑠

,  18.7 ± 0.1 14.9 ± 0.1 11.4 ± 0.1 9.6 ± 0.1 

Apparent 
reaction rate 
constant k𝑠𝑠

,  

5.3 × 10-2 
± 

5.9 × 10-3 

6.7 × 10-2 
± 

4.7 × 10-3 

8.7 × 10-2 
± 

4.4 × 10-3 

1.0 × 10-1 
± 

4.2 × 10-3 

R2 0.998 0.999 0.999 0.999 

 

As before, the activation energy is calculated by plotting ln 𝑘𝑘′𝑠𝑠  against 1/T in Figure 6.6. 

However, unlike the reduction of the Ar-sintered pellets, only one fitting line is needed to 

describe the data across the full range of temperatures studied (a smaller temperature range 

compared to the Ar-sintered pellets). The activation energy is found to be 31 ± 1 kJ/mol. This 

value is comparable to that obtained for the reductions of Ar-sintered pellets above 1193 K. 
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Figure 6.6- Arrhenius plot to determine the apparent activation energy for reducing the pre-

oxidised pellets in 100vol% H2 gas at temperatures from 1143 K to 1443 K [162] 

 

In this section, the activation energies calculated for both types of pellets are found in the range 

of the established ones among various previous studies of DR of conventional non-titaniferous 

ores (10 to 120 kJ/mol) [93], [96], [101], [133]–[136], as summarised in Subsection 2.3.2. 

However, discrepancies exist from the former literature of reducing titanomagnetite ores (as 

listed in Table 2.4).  The activation energies obtained here are much lower than those reported 

by Wang et al. (50 to 105 kJ/mol) [108], Dang et al. (98 to 115 kJ/mol) [118],and Liu et al. 

(170.3 kJ/mol) [125]. This might result from a lower Ti content in the pellets, or the conditions 

of sintering/pre-oxidising applied in the reduction process in this thesis. It, again, emphasises 

the effects of experimental conditions on the activation energy, as interpreted in Subsection 

2.3.1.
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6.3 Effect of pellet diameter on the application of the model at 1343 K 
 

In the TGA reduction experiments, reduction degree curves were also obtained for both types 

of pellets with different diameters from 5.5 mm to 8.5 mm reduced at 1343 K above the critical 

flow rate (Figure 4.5 for Ar-sintered pellets and Figure 5.5 for pre-oxidised pellets). Therefore, 

these data sets were also assessed by the single interface SCM using equations 6.6 and 6.7. 

 

6.3.1 Reduction of Ar-sintered pellets of different sizes at 1343 K 

 

An investigation of the applicability of the model to the reduction degrees from different sized 

pellets (Figure 4.5) are shown in Figure 6.7. The relation in equation 6.6 is exhibited in Figure 

6.7(a) while that in equation 6.7 is shown in Figure 6.7(b). Again, the model was a good fit 

for the data for the majority of the reduction process (X=10% and X=90%). These plots show 

that both the gradients in Figure 6.7(a), and the intercepts in Figure 6.7(b) are close to zero 

for all pellet sizes, indicating that diffusion is not the rate-limiting step in any of these 

experiments. Instead, interfacial chemical reaction is found to be the dominant rate controlling 

step for the reductions of all pellet sizes at 1343 K.   

 

 
Figure 6.7- Plots showing the relation in equations 6.6 and 6.7 of the data obtained of 

reducing Ar-sintered pellet with different diameters (5.5 mm, 6.5 mm, 7.5 mm and 8.5 mm) at 
1343 K above the critical flow rate. In both figures, linear fits are shown between X=10% 

and X=90%, and are extrapolated to the y-axis. (a) Plots relating to equation 6.6; (b) Plots 
relating to equation 6.7 
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Consequently, equation 6.10 can also be applied to these data to determine 𝑘𝑘′𝑠𝑠 . This approach 

can then be used to examine the effect of the pellet size on the reduction rate at this temperature, 

by applying the definition of 𝑘𝑘′𝑠𝑠  given in equation 6.4. 

 

The resulting fits from equation 6.10 to the data are shown in Figure 6.8(a), and the values 

obtained for the slopes (1 𝑘𝑘′𝑠𝑠 ⁄ ) of each fitted line (for each pellet diameter) are listed in Table 

6.3. In Figure 6.8(b), a plot of 1 𝑘𝑘′𝑠𝑠 ⁄  against the pellet diameter from the relation in equation 

6.4 is shown. While a linear correlation is observed, this line extrapolates to intercept the x-

axis at a non-zero value of 1.5 ± 0.4 mm. This value may present a critical diameter 

corresponding to the development length of a pellet-scale reaction interface for the application 

of the model at 1343 K, which will be discussed later in this section. 

 

 
Figure 6.8– (a) Plots showing fits of equation 6.10 (interfacial chemical reaction control) to 

experimental data obtained from Ar-sintered pellets of different sizes at 1343 K above the 
critical flow rate. These fits were performed using data to X≤ 90%. Data for X>90% is 

highlighted by grey area. (b) A plot showing the linear relation between pellet diameter and 
the fitted slopes (1 𝑘𝑘′𝑔𝑔 ⁄ ) across the range of diameters studied 

 

Table 6.3– Fitted slopes and R2 values for each fit in Figure 6.8(a). (Experimental data 
obtained from H2 gas reductions of Ar-sintered pellets of different sizes at 1343 K) 

Diameter/mm 5.5 6.5 7.5 8.5 

Slope = 1
𝑘𝑘𝑠𝑠

,  8.50 ± 0.04 11.04 ± 0.02 13.06 ± 0.02 15.23 ± 0.02 

R2 0.995 0.999 0.999 0.999 
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6.3.2 Reduction of pre-oxidised pellets of different sizes at 1343 K 

 

In Figure 6.9(a) and (b), the relations of equations 6.6 and 6.7 to the data obtained from 

different sized pellets are given (raw data in Figure 5.5). Similar to the reductions of the Ar-

sintered pellets with different sizes at 1343 K, interfacial chemical reaction is also found to be 

the dominant rate controlling step for all sizes of the pre-oxidised pellets.   

 

 
Figure 6.9- Plots showing the relation in equations 6.6 and 6.7 of the data obtained of 

reducing pre-oxidised pellet with different diameters (5.5 mm, 6.5 mm, 7.5 mm and 8.5 mm) 
at 1343 K above the critical flow rate. In both figures, linear fits are shown between X=10% 
and X=90%, and are extrapolated to the y-axis. (a) Plots relating to equation 6.6; (b) Plots 

relating to equation 6.7 [162] 
 

The analysis approach used in Subsection 6.3.1 was also applied here for the pre-oxidised 

pellets. In Figure 6.10(a), the plotted fits of equation 6.10 to these data are given, and the 

resulting values obtained for each fitted slope (at each pellet diameter) are listed in Table 6.4. 

In Figure 6.10(b), a plot of 1 𝑘𝑘′𝑠𝑠 ⁄  versus the pellet diameter for the range of diameters studied 

is shown. It is again found that the correlated linear line extrapolates to a non-zero intercept on 

the x-axis, in this case equals to 2.5 ± 0.9 mm. This value is comparable to that obtained for 

the Ar-sintered pellets at 1343 K (Subsection 6.3.1). Similarly, this value might also present 

the critical minimum diameter at which a definable pellet-scale reaction interface can be 

developed at 1343 K. 
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Figure 6.10- (a) Plots showing fits of equation 6.10 (interfacial chemical reaction control) to 

experimental data obtained from pre-oxidised pellets of different sizes at 1343 K above the 
critical flow rate. These fits were performed using data to X≤ 90%. Data for X>90% is 

highlighted by grey area. (b) A plot showing the linear relation between pellet diameter and 
the fitted slopes (1 𝑘𝑘′𝑔𝑔 ⁄ ) across the range of diameters studied [162] 

Table 6.4- Fitted slopes and R2 values for each fit in Figure 6.10(a) for the experimental data 
obtained reducing pre-oxidised pellets at different sizes at 1343 K [162] 

Diameter/mm 5.5 6.5 7.5 8.5 

Slope = 1
𝑘𝑘𝑠𝑠

,  7.27 ± 0.06 9.69 ± 0.06 11.40 ± 0.04 14.91 ± 0.06 

R2 0.998 0.999 0.999 0.999 
 

As analysed in Section 6.3, the intercepts in the relation of 1 𝑘𝑘′𝑠𝑠 ⁄  versus the pellet diameter 

indicates the applicability of the model to the reductions at 1343 K. When each type of pellets 

with different sizes were reduced under identical experimental conditions, 𝜌𝜌𝐵𝐵, 𝑏𝑏, 𝑘𝑘𝑠𝑠 and 𝐶𝐶𝐴𝐴𝐴𝐴 

should all be the same. Therefore, based on the definition of 𝑘𝑘′𝑠𝑠  in equation 6.4, a simple linear 

relation which passes through the origin is expected between 1 𝑘𝑘′𝑠𝑠 ⁄  and pellet diameter. 

However, the relation between 1 𝑘𝑘′𝑠𝑠 ⁄  against the pellet diameter for both types of pellets 

extrapolated to a non-zero x-axis intercept as shown in Figure 6.8(b) and 6.10(b). This 

intercept could be considered to represent the minimum critical pellet diameter at which a 

pellet-scale shrinking core interface will occur. At diameters less than this critical value, the 

pellet might be too small to accommodate the fully developed interface width, meaning that 

the single interface SCM may no longer be applied. That being so, when the Ar-sintered pellet 

is smaller than 1.5 ± 0.4 mm, or the pre-oxidised pellet is smaller than 2.5 ± 0.9 mm, the 

reductions can no longer be described by the single interface SCM in the pellet-scale at 1343 

K. It is likely that at these smaller diameters, an alternative particle-scale model excluding a 

reaction interface in the pellets may be required to describe the reduction behaviour. However, 

such small pellets were not readily produced from the disc-type pelletiser used in this work.  



 

151 
 

6.4 Evaluating the accuracy of pellet reduction rate above the critical 
flow rate from the single interface SCM  

 

An accurate analytical description of the reduction rate of the pellets in H2 gas has potential 

industrial importance, as this can inform the design and optimisation of the new prototype 

H2-based DR reactors. Therefore, it is important to evaluate the accuracy of the model 

parameters derived in the previous sections of this chapter. This can be conducted by 

comparing the reduction degrees calculated from the fitting parameters determined from the 

model to the experimental obtained ones above the critical flow rate (Figure 4.2 and 5.2). 

 

For both types of pellets, reduction degree values could be calculated from the model using 

the fitted parameters obtained in Figures 6.2, 6.4, and 6.6. For the reductions controlled 

dominantly the interfacial chemical reaction, activation energy 𝐸𝐸𝐴𝐴  and fitted 𝑙𝑙𝑙𝑙 �𝐴𝐴
𝐵𝐵
�  (in 

Figures 6.4 and 6.6)  were used to calculate 𝑘𝑘′𝑠𝑠 by equation 6.11. The calculated  𝑘𝑘′𝑠𝑠 at each 

temperature are listed in Tables 6.5 and 6.6 for each type of pellet respectively, and these 

data show close agreement to those fitted values in Tables 6.1 and 6.2. A reduction degree 

at each time point can then be calculated using 𝑘𝑘′𝑠𝑠  in these tables by equation 6.10, and 

compared with the experimental obtained ones. On the other hand, for the reduction of the 

pre-oxidised pellets at 1043 K (mixed control), the fitted slope and intercept obtained in 

Figure 6.2 were used (listed in Table 6.6). These two fitted parameters were then applied in 

equation 6.1 to predict the time point at which a specific reduction degree is reached. The 

calculated time was then compared with experimental obtained data.  

Table 6.5 – Calculated 𝑘𝑘′𝑠𝑠 from the fitted parameters obtained in Figure 6.4 for the 
reduction of Ar-sintered pellets 

Parameters 𝐸𝐸𝐴𝐴 = 89 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚;  𝑙𝑙𝑙𝑙 �𝐴𝐴
𝐵𝐵
� = 1.1 𝐸𝐸𝐴𝐴 = 41 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚;  𝑙𝑙𝑙𝑙 �𝐴𝐴

𝐵𝐵
� = 5.5 

T/K 993 1043 1073 1093 1143 1193 1243 1293 1343 1443 

Calculated 
k′s 

5.0 × 
10-3 

8.4 × 
10-3 

1.1 × 
10-2 

1.3 × 
10-2 

2.0 × 
10-2 

4.8 × 
10-2 

5.7 × 
10-2 

6.6 × 
10-2 

7.6 × 
10-2 

9.9 × 
10-2 

Fitted k′s 
(Tables 

6.1) 

5.5 × 
10-3 
± 

6.6 × 
10-4 

8.0 × 
10-3 
± 

3.5 × 
10-4 

1.2 × 
10-2 
± 

9.7 × 
10-4 

1.5 × 
10-2 
± 

1.0 × 
10-3 

2.1 × 
10-2 
± 

6.1 × 
10-4 

4.2 × 
10-2 
± 

1.5 × 
10-3 

5.3 × 
10-2 
± 

3.8 × 
10-3 

6.7 × 
10-2 
± 

1.7 × 
10-3 

7.7 × 
10-2 
± 

1.2 × 
10-3 

9.9 × 
10-2 
± 

6.0 × 
10-4 
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Table 6.6 - Calculated 𝑘𝑘′𝑠𝑠 from the fitted parameters obtained in Figure 6.6 for the 
reduction of pre-oxidised pellets from 1143 to 1443 K, and fitted parameters obtained at 

1043 K in Figure 6.2 

Parameters 
slope = 23 min 
y-axis intercept 

= 18 min 
𝐸𝐸𝐴𝐴 = 31 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚;  𝑙𝑙𝑙𝑙 �𝐴𝐴

𝐵𝐵
� = 0.4 

T/K 1043  1143 1243 1343 1443 

Calculated k𝑠𝑠
,  - 5.3 × 10-2 6.9 × 10-2 8.7 × 10-2 1.1 × 10-1 

Fitted k′s 
(Tables 6.2)  

5.3 × 10-2 
± 

5.9 × 10-3 

6.7 × 10-2 
± 

4.7 × 10-3 

8.7 × 10-2 
± 

4.4 × 10-3 

1.0 × 10-1 
± 

4.2 × 10-3 
 

The comparison of the reduction degree between the calculated ones (from the model fitted 

parameters in Tables 6.5 and 6.6) and experimental obtained ones is shown in Figure 6.11(a) 

to (d). For both types of pellet, reasonable agreement is observed up to 90% reduction degree, 

indicating the pellet reduction kinetics broadly consistent with the single interface SCM. 

However, it should be noted that as reduction degree increases (X>80%), mismatch between 

the calculated and experimental data are observed. This mismatch at higher reduction degrees 

indicates that later stages reactions (as indicated in Chapters 4 and 5) occurring in the pellets 

which limits the applicability of the model. This will be discussed further in Chapters 7 and 

8. 
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Figure 6.11– Comparison of the model predicted and experimentally measured reduction 
degrees from the TGA reduction experiments. Reduction degree of X>90% are highlighted 
by grey area. (a) Reduction of Ar-sintered pellets from 993 K to 1143 K; (b) Reduction of 
Ar-sintered pellets from 1193 K to 1443 K [162]; (c) Reduction of pre-oxidised pellets at 

1043 K; and (d) Reduction of pre-oxidised pellets from 1143 K to 1443 K [162] 
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6.5 Summary of the kinetic analysis 
 

In this chapter, kinetic analysis of the Ar-sintered and pre-oxidised pellets has been conducted 

by a single interface SCM. This analysis was performed in terms of determining the rate-

limiting step, activation energy for the interfacial chemical reaction control step, minimum 

critical pellet size at 1343 K, and finally evaluating of the accuracy of the model to the 

experimental data. It was concluded that, for both types of pellets, the single interface SCM 

displayed a good description of the reduction progress up to X≈ 90%. Poor agreement for X>90% 

indicates that the reductions at the latest stage of reduction may involve the dispersed Fe-Ti-O 

phases detected by XRD (Figures 4.3 and 5.3) and observed in the cross-sectioned microscopy 

images (Appendices B.5 to B.7, and Appendices C.5 to C.7). The effects of these phases on 

the reduction and their relationship to the model is further discussed in Section 8.2. In order to 

compare the kinetic analysis of the two types of pellets, the findings are summarised in Table 

6.7. 

 

Table 6.7– Summary of the kinetic analysis for reducing Ar-sintered and pre-oxidised pellets 
by the pellet-scale single interface SCM 

Kinetic 
analysis 

Ar-sintered pellets Pre-oxidised pellets 

993 K - 1143 K 1193 K - 1443 K 1043 K 1143 K – 1443 K 

Rate-
limiting 

step 

Interfacial 
chemical 

reaction control 

Interfacial 
chemical 

reaction control 

Mixed control of 
chemical reaction 

and diffusion 
through the 

product layer 

Interfacial 
chemical reaction 

control 

Activation 
energy 89 ± 5 kJ/mol 41 ± 1 kJ/mol - 31 ± 1 kJ/mol 

Minimum 
critical 

pellet size 
at 1343 K 

1.5 ± 0.4 mm  2.5 ± 0.9 mm 

 

In general, pre-oxidation of the pellets increases the reduction rate, although this effect is more 

prominent at lower temperatures. As shown in Table 6.7, the activation energy for reducing 

the pre-oxidised pellets at temperatures > 1143 K is only marginally than that of the Ar-sintered 

pellets. While below 1143 K, the reduction of the pre-oxidised pellets progressed much faster 
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than the Ar-sintered pellets, but was not dominantly limited by the interfacial chemical reaction 

rate. This difference resulted from the pre-oxidation is further analysed in Section 8.1. 

 

It is interesting that at lower temperatures (<1143 K), the reduction of the Ar-sintered pellets 

remains dominantly controlled by the interfacial chemical reaction, while the reduction of pre-

oxidised pellets shows mixed control at these temperatures (with diffusion through the product 

layer also playing a role). Furthermore, though the discussion in this chapter shows that the 

single interface SCM can be successfully applied to the experimental data up to X=~90%, the 

rate controlling reaction at the single reaction interface was not identified in this chapter. To 

achieve this, a clearer understanding of effects of Ti on the phase evolution during the reduction 

is required. This is discussed in the next chapter. 
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Chapter 7  
Influences of Ti on the reduction process of the Ar-sintered and 
pre-oxidised pellets in H2 gas 
 

NZ titanomagnetite ironsand differs from non-titaniferous magnetite ores due to its relatively 

high Ti concentration. A key question is: How does this Ti concentration affect the evolution 

of phases and morphologies during reduction of the pellets in H2 gas? In this chapter, the 

influence of Ti on the reduction process is analysed. This analysis is based on the results 

obtained from the in-situ ND measurements (Sections 4.2 and 5.2), as well as the SEM-EDS 

analysis of the partially reduced pellets in both cases (Sections 4.3 and 5.3).  

 

This chapter is divided into the following sections: 

 Section 7.1: Reactions occurring during H2 gas reduction process 

 Section 7.2: Analysis of the distribution of Ti in the phases evolving during reduction 

 Section 7.3: Influences of experimental conditions on the evolution of FeO at 1223 K  

 Section 7.4: Summary of the conclusions from this chapter 

 

7.1 Reactions occurring during reduction of the pellets 
 

The reactions occurring during reduction of conventional non-titaniferous ores are well 

determined [77], [86], [105], [139], [140], and typically follow the reduction path, Fe2O3 → 

Fe3O4 → (FeO) → Fe (where the generation of FeO depends on reaction temperature, see 

Figure 2.9). However, the existence of Ti in the pellets investigated here is expected to change 

this, as there are additional possible reactions [143], [146], [147], [150], [157] (as summarised 

in the literature review in Subsection 2.4.3). Based on this previous literature knowledge, as 

well as the results presented in Chapters 4 and 5, the possible reactions which may occur 

during H2 gas reduction of both types of pellets are listed in Table 7.1. This table also notes 

evidence for or against each reaction occurring during the reduction experiments studied here, 

based on observations from the results in Chapters 4 and 5. Note that for reactions 7.1, 7.2, 

7.3, and 7.5, a functional reaction (a) is also given as a simplified illustration of the balanced 

chemical reaction (b).
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Table 7.1 – Summary table of the possible reactions occurring during reduction of the pellets, and the corresponding evidence for/against the occurrence of 
each reaction 

No. Reduction reactions Comments Evidence for/against 

Formation of TTM 

7.1a 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐻𝐻2 → 𝑇𝑇𝑇𝑇𝑇𝑇 +  𝐻𝐻2𝑂𝑂 

Reduction of TTH to TTM: 
Note that 3𝑦𝑦0 = 2𝑥𝑥0. 

(where 𝑦𝑦0 and 𝑥𝑥0 are the initial 
values in the TTH and TTM 

respectively). This happens at the 
earliest stage of reduction 

For: 
1. ND results show that TTH rapidly decreases to zero at beginning of 

reduction, with no other products generated except TTM (Figures 4.7, 
4.13, 5.7 and 5.13).  

2. Optical microscopy and SEM results show the conversion of TTH to 
TTM in the particles (Figure 5.15 and Appendices C.5 to C.7). 

3. Same reaction has been reported in previous literature: Pre-oxidised 
TTM ore (7.4 wt% TiO2) non-isothermally reduced in CO-Ar to 1373 
K [143]; Pre-oxidised TTM pellets (4.5 wt% TiO2) non-isothermally 
reduced in H2-CO-CO2 to 1500 K [128]; and Pre-oxidised TTM 
briquette (11.4 wt% TiO2) in carbothermic reduction at 1523 K [125]. 

7.1b 3𝐹𝐹𝐹𝐹2−𝑦𝑦𝑇𝑇𝑇𝑇𝑦𝑦𝑂𝑂3  + 𝐻𝐻2 → 2𝐹𝐹𝐹𝐹3−𝑥𝑥𝑇𝑇𝑇𝑇𝑥𝑥𝑂𝑂4  +  𝐻𝐻2𝑂𝑂 

Formation of FeO 

7.2a 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐻𝐻2 → 𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒 + 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐻𝐻2𝑂𝑂 
Reduction of TTM to FeO leading 
to Ti enrichment (in the remaining 

TTM): 
Note that δ>0 indicates the 

enrichment of Ti in TTM. When 
𝑥𝑥+δ=𝑥𝑥′=1, this produces Fe2TiO4 

- the end-point of this series. 

For: 
1. ND and SEM-EDS results suggest Ti enrichment in TTM must occur 

(see Subsections 7.2.1 and 7.2.2). This is consistent with a low 
solubility of Ti in FeO [35], [124], [156]. 

2. Similar effect has recently also been observed in literature on fluidised 
bed reduction at 1223 K of NZ ironsand (7.9wt% TiO2) [156]. 

7.2b 
(𝑥𝑥 + 𝛿𝛿) · 𝐹𝐹𝐹𝐹3−𝑥𝑥𝑇𝑇𝑇𝑇𝑥𝑥𝑂𝑂4 + 𝛿𝛿 · 𝐻𝐻2 → 

𝑥𝑥 · 𝐹𝐹𝐹𝐹3−(𝑥𝑥+𝛿𝛿)𝑇𝑇𝑇𝑇(𝑥𝑥+𝛿𝛿)𝑂𝑂4 +  3𝛿𝛿 · 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛿𝛿 ∙ 𝐻𝐻2𝑂𝑂 

7.3a 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐻𝐻2 → 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑂𝑂3 + 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐻𝐻2𝑂𝑂 
Reduction of TTM to FeO + 

FeTiO3: 
No clear evidence in this thesis to 

show the occurrence of this 
reaction 

Against: 
1.  SEM results show no clear evidence of FeTiO3 produced in regions 

where FeO is present. 
2.  At no time period in the ND results are the concentrations of both FeO 

and FeTiO3 going up together (Figures 4.7, 4.13, 5.7 and 5.13).  
3. However, this reaction has been proposed in previous literature: TTM 

powers (9.0 wt% TiO2) reduced in H2-Ar gas non-isothermally to 1290 
K [119], and isothermally at 1123 K [118];  

7.3b 
𝐹𝐹𝐹𝐹3−𝑥𝑥𝑇𝑇𝑇𝑇𝑥𝑥𝑂𝑂4 + (1 − 𝑥𝑥) · 𝐻𝐻2 → 

𝑥𝑥 · 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑂𝑂3 + (3 − 2𝑥𝑥) · 𝐹𝐹𝐹𝐹𝐹𝐹 +  (1 − 𝑥𝑥) ∙ 𝐻𝐻2𝑂𝑂 
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Table 7.1 – Summary table of the possible reactions occurring during reduction of the pellets, and the corresponding evidence for/against the occurrence of 
each reaction (continued) 

No. Reduction reactions Comments Evidence for/against 

Formation of Fe 

7.4 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐻𝐻2 → 𝐹𝐹𝐹𝐹 +  𝐻𝐻2𝑂𝑂 

Reduction of FeO to Fe: 
This must happen in order 
to remove FeO from the 

system 

For: 
1. ND results show the concentration of FeO goes down while 

that of Fe goes up (Figures 4.7, 4.13, 5.7 and 5.13). 
2. SEM results show the generation of Fe from FeO, by 

following FeO structure (Appendix B.7 and Appendices C.6 
to C.7). 

3. Same reaction is reported in previous literature for the 
reduction of titanomagnetite ores [118], [119], [125], [128], 
[143], [156]. 

Formation of FeTiO3 

7.5a 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐻𝐻2 → 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂3 +  𝐻𝐻2𝑂𝑂 Reduction of TTM to Fe + 
FeTiO3: 

This may happen, but 
depends on the experimental 

conditions (as these can 
decrease the thermodynamic 

driving force for the 
competing reaction 7.2 

[156]). 

For: 
1. ND results show that the concentrations of both FeTiO3 and 

Fe grow while that of TTM goes down (Figures 4.7, 4.13, 
5.7 and 5.13). 

2. It is consistent with SEM results observed at X=~80% - TTM 
being converted directly to Fe and Ti-bearing oxides 
(Appendix B.7 and Appendices C.6 to C.7). 

3. This direct reduction path has also been proposed in previous 
literature for the reduction of titanomagnetite ores [143], 
[156]. 

7.5b 
𝐹𝐹𝐹𝐹3−𝑥𝑥𝑇𝑇𝑇𝑇𝑥𝑥𝑂𝑂4 + (4 − 3𝑥𝑥) · 𝐻𝐻2 → 

𝑥𝑥 · 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑂𝑂3 + (3 − 2𝑥𝑥) · 𝐹𝐹𝐹𝐹 +  (4 − 3𝑥𝑥) ∙ 𝐻𝐻2𝑂𝑂 
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Table 7.1 – Summary table of the possible reactions occurring during reduction of the pellets, and the corresponding evidence for/against the occurrence of 
each reaction (continued) 

No. Reduction reactions Comments Evidence for/against 

Formation of other Ti-bearing oxides 

7.6 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂3 + 𝐻𝐻2  → 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 

Reduction of FeTiO3 to Fe 
+ TiO2 (either amorphous 

or crystalline):  
Potentially happens at 

latest stages of reaction 
(X>~90%) 

For: 

1. XRD shows that crystalline TiO2 was observed in some fully reduced pellets from 
TGA experiments (Figures 4.3 and 5.3). 

2. ND results show at latest stages (when FeO and TTM was no longer detected at 
X>~90%), the concentration of FeTiO3 goes down while that of Fe goes up 
slightly (Figures 4.7, 4.13, 5.7 and 5.13). 

3. This direct reduction path has also been reported in previous literature for the 
reduction of titanomagnetite ores [125], [143]. 

 

Against: 

1. No clear evidence from ND results as TiO2 was not detected (either 
amorphous/nano-crystalline, or below detection threshold). However, the phases 
present in ND cannot account for all Ti (Subsection 4.2.4). 

7.7 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑂𝑂2 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂3 → 𝐹𝐹𝐹𝐹2𝑇𝑇𝑇𝑇𝑂𝑂5 

Formation of PSB: 
Might happen at latest 

stages of reduction 
(X>~90%).  

The PSB detected may 
have the stoichiometry of 

ferro-PSB (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2𝑂𝑂5) 

For: 
1. XRD shows that crystalline PSB/ferro-PSB is observed in some fully reduced 

pellets from TGA experiments (Figures 4.3 and 5.3). 
2. This reaction has also been suggested in literature on Fluidised bed reduction of 

NZ ironsand [156].  
 
Against: 
1. No clear evidence from ND results as PSB/ferro-PSB was not observed (either 

amorphous/nano-crystalline, or below detection threshold). However, the phases 
present in ND cannot account for all Ti (Subsection 4.2.4). 

Note that reaction 7.7 only shows an indication of PSB (ferro-PSB) formation, as it was only observed in the fully reduced pellets at temperatures >1243 K (Figures 4.3 
and 5.3). This temperature is slightly higher than the highest temperature achieved in in-situ ND measurement.
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In Table 7.1, reaction 7.1 describes the reduction of TTH to TTM, which is confirmed to occur 

from the listed evidence. ND results show that for the pre-oxidised pellets, 100wt% TTH was 

rapidly reduced within a few minutes of the reduction starting. Similarly for the Ar-sintered 

pellets, the initial ~5wt% of TTH was rapidly reduced before any other reactions were observed 

to occur. Once the TTH was consumed, the remaining reaction progress appears similar for 

both types of pellets. It should be noted that due to the spatial variation in reactions taking place 

during pellet reduction, it is not generally possible to determine whether these remaining 

reaction steps occur sequentially or simultaneously. This is because multiple different reactions 

take place simultaneously at different locations within the pellet. 

Reaction 7.2 describes the generation of FeO from TTM, and the resulting enrichment of Ti 

within the remaining TTM matrix. This is also consistent with a low solubility of Ti in FeO 

[35], [124], [156]. The following subsection (Subsection 7.2) discusses evidence for this Ti 

enrichment from both ND results and SEM-EDS analysis. Note that here stoichiometric FeO 

has been assumed. This reaction is substantially different from that occurring within non-

titaniferous magnetite ores, as the continuing enrichment of Ti in the residual TTM phase 

changes its chemistry and properties (see Subsection 7.2.3).  Reaction 7.3 shows the generation 

of FeTiO3 and FeO from TTM, but there is no clear evidence for this reaction occurring in the 

pellets studied in this thesis. Reaction 7.4 shows the reduction of FeO to Fe, which must happen 

as FeO is not found within the fully reduced pellets. This reaction is the same as the final step 

in the reduction of non-titaniferous magnetite ores. Reaction 7.5 shows the direct generation of 

Fe and FeTiO3 from TTM, without the generation of the intermediate product FeO. This 

reaction may occur if the TTM reaches the end point of the solubility series (compositionally 

close to Fe2TiO4), which could possibly be caused by the enrichment of Ti (see Subsection 

7.2.3). Reactions 7.6 and 7.7 show the generation of other Ti-containing phases (TiO2 and 

PSB/ferro-PSB). These minor phases were detected in XRD patterns from final reduced pellets 

(Sections 4.1 and 5.1), but were not observed in the ND measurements, probably due to the 

limited sensitivity of that technique (Subsection 4.2.4). The formation of these minor phases 

is expected to occur at the latest stages of the reduction process (X>~90%), and may in point 

be responsible for the poor agreement with the SCM at those times, as observed in Chapter 6.  

 

The reactions listed in Table 7.1 provide a framework to consider the reduction process for 

both types of pellets. A key difference from the reduction of conventional magnetite and 

hematite ores is the Ti enrichment in residual TTM which occurs through reaction 7.2. The 

following section (Section 7.2) provides further discussion and evidence for this phenomenon.
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7.2 Analysis of the distribution of Ti in the phases evolved during reduction 
 

In this section, the distribution of Ti between the various phases present during reduction of 

both types of pellets is examined. This analysis is helpful to establish evidence for the 

determination of reaction 7.2 (in Table 7.1), and to highlight the unique features observed 

during reduction of the titanomagnetite ores. 

 

In Subsection 7.2.1,  EDS-maps of the particles are examined to illustrate the changing 

distribution of Ti in the particles during reduction at a microscopic scale.   

In Subsection 7.2.2, the in-situ ND data is used to calculate a stoichiometric estimate of the 

average Ti mole fraction (x) in the remaining TTM (Fe3−𝑥𝑥Ti𝑥𝑥O4) throughout the reaction.  

Finally, in Subsection 7.2.3 other effects of Ti on the reduction process are also discussed.  

 

7.2.1 Microstructural evidence for the enrichment of Ti in TTM during reduction 

 

1. EDS evidence for Ti-enrichment with formation of FeO 

The enrichment of Ti in TTM during reduction can be observed in the EDS-maps performed 

on pellets obtained from the quenching reduction experiments. Example results are shown in 

Figure 7.1. EDS-maps are shown from particles at the centre of Ar-sintered and pre-oxidised 

pellets, both of which had been partially reduced to X=~50% at 1223 K in 100vol% H2 gas 

above the critical flow rate (see Figures 4.15 and 5.15). Comparison of the ND and TGA results 

shows that X=~50% approximately corresponds to the maximum peak in FeO concentration. 

(see later in Figure 7.6(c) and (d)). 

 

In Figure 7.1, a back-scattered SEM image of a central particle of the X=~50% reduced Ar-

sintered pellet is shown in (a), while that of the pre-oxidised pellet is shown in (b). In both 

images, the light grey areas indicate FeO, while the darker grey areas represent TTM (as 

identified previously from Figures 4.21 and 5.21). The pre-oxidised pellet also shows small 

sub-micron voids (black) which are not observed in the Ar-sintered pellets. These are believed 

to be caused by the significant volume change accompanying the removal of oxygen from the 

pre-oxidised TTH. As can be seen, in the Ar-sintered pellets, FeO formed a channelled structure 

in the particles. However, in the pre-oxidised pellets, the channelled structure of FeO is less 

well developed. This may be a result of the micro-cracks (voids) observed in the pre-oxidised 
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particles. The effects of these micro-cracks on the reduction are further discussed in Section 

7.3. 

 

 
Figure 7.1 – Back-scattered SEM images and EDS element maps of the central particle of 

pellets partially reduced to X=~50% at 1223 K by 100vol% H2 gas. (a) Back-scattered SEM 
image of Ar-sintered pellet. (b) Back-scattered SEM image of pre-oxidised pellet. Underneath 

each SEM image, EDS-maps show the respective elemental distributions of Fe ((a1) and 
(b1)), Ti ((a2) and (b2)), Al ((a3) and (b3)) and Mg (((a4) and (b4)) 
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EDS-maps for the corresponding areas are illustrated underneath each back-scattered SEM 

image, showing the distribution of the corresponding elements. For both pellets, the light grey 

FeO regions show slightly higher Fe concentration than the surrounding areas of grey TTM. 

This is consistent with the expected relative Fe content in each of these phases. It is also clear 

that the element Ti is almost completely excluded from the light grey FeO channels. Instead it 

appears to have been expelled into the surrounding regions of unreduced grey TTM. This is 

consistent with expectation that Ti has a low solubility in FeO [35], [124], [156].  

 

The direct observation of Ti-enriched TTM around the FeO channels is consistent with the 

occurrence of reaction 7.2 (TTM → FeO + TTM-Ti enriched).  

 

In Figure 7.1(a3) and (b3), a similar phenomenon of exclusion (from FeO) and enrichment (in 

TTM) is also observed for Al, which is also present as a minor contaminant in the original 

titanomagnetite ironsand. This can similarly be explained by the low solubility of Al3+ in FeO 

[10], [166], [167]. By contrast, the element Mg is observed to be homogeneously distributed 

between the FeO and TTM areas examined in these maps ((a4) and (b4)). This is consistent 

with the higher solubility of Mg2+ in FeO [168], [169].  

 

2. Why FeO forms channelled structure in the Ar-sintered pellets 

As observed in Figure 7.1(a), FeO forms channelled structures within the TTM matrix during 

the reduction of the Ar-sintered pellets at 1223 K. This is a distinctly different morphology to 

that typically observed for non-titaniferous magnetite ores, where FeO normally develops into 

a dense layer in the particles during reduction [170]–[172]. Below, we discuss how this 

difference in morphology can be attributed to the influence of localised Ti enrichment in the 

TTM matrix, as the reduction proceeds. 

 

Kapelyushi et al. [167] have studied the reduction of Fe3O4 doped with Al2O3. During reduction 

they concluded that, Al3+ cations also needed to diffuse away from FeO into the surrounding 

Fe3O4-FeAl2O4 solid solution. It was suggested that FeO is preferably formed from the {220} 

plane of Fe3O4, and the growth of FeO was through the expansion of this plane [167]. However, 

the expulsion of Al3+ cations resulted in a particle-scale network structure of FeO [167], similar 

to the channelled structure that observed here.  
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In the case of NZ ironsand, it is Ti which is the majority substituent and so likely to be mainly 

responsible for the formation of the channel-structured FeO. Similar to Al, Ti also has a very 

low solubility in FeO [35], [124], [156]. With the nucleation and growth of FeO, Ti is rejected 

and enriched in the surrounding unreduced TTM (as confirmed in Subsections 7.2.1 and 7.2.2). 

These regions of Ti-enriched TTM will then become more difficult to reduce to FeO, as 

increasing quantities of Ti would need to be exsolved in order to allow this to occur. The local 

Ti concentration in the TTM will be highest at the ‘side-walls’ of the FeO channel, meaning 

that this restricts the growth rate of FeO in that direction and prevents merging of individual 

FeO channels. Instead, growth will prefer to occur at the tip of each channel where the Ti 

content of the surrounding TTM is lower. This makes the channel longer (but not wider), and 

eventually forms a network of channels in the particle. This growth mechanism will continue 

until all of the surrounding unreduced TTM has been sufficiently enriched with Ti that further 

formation of FeO is not possible. At that point, islands of Ti-enriched TTM will be left between 

the FeO channels. 

 

A schematic illustrating this mechanism for development of the FeO channels during reduction 

is shown in Figure 7.2. For comparison, this figure also shows the formation of FeO during 

reduction of a non-titaniferous magnetite ore. In that case there are no surrounding regions of 

Ti-enriched TTM to restrict the lateral growth of FeO. This means that the initially formed 

nuclei are able to merge with each other and finally form into a single extended region of FeO 

(Figure 7.2(a)), which is consistent with observations that have been widely described in 

previous literature [170]–[172]. 
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Figure 7.2 – Schematic showing the development of FeO into: (a) a dense structure during 

reduction of non-titaniferous magnetite ores; and (b) a channel-like structure during 
reduction of titanomagnetite ores. Note that the orange colour gradient corresponds to a 
gradient in Ti concentration. The more Ti enriched in TTM, the darker the orange colour. 

Note that this schematic is derived from [167] 
 

As noted above, some Al (3.7wt% Al2O3) is also present in the unreduced ironsand TTM, and 

this is also not soluble in FeO (see Figure 7.1). Although present at lower concentrations than 

Ti, it is likely the Al also plays a similar role in the growth mechanism described above, 

consistent with [167]. In contrast, Mg is not likely to have this effect on the morphology, as 

Mg is soluble in FeO [168], [169], and is not observed to be segregated between the FeO and 

TTM regions in the partially reduced pellets. 

 

7.2.2 Tracking the distribution of Ti between the phases observed during reduction 

 

The SEM-EDS evidence presented in Subsection 7.2.1 confirms that reduction at 1223 K via 

reaction 7.2 drives enrichment of Ti in the remaining TTM. To examine this, a calculation of 

the expected Ti mole fraction within TTM during reduction was conducted using the ND data. 

This approach assumes that the amount of total Ti present in the ND measured crystalline 

phases is constant throughout the reaction. It is also assumed that FeTiO3 contains a 

stoichiometric quantity of Ti at all times. Under these assumptions, the Ti molar fraction within 

TTM can be quantitatively calculated according to equation 7.8. This equation is obtained by 

converting the concentration of each phase to a molar ratio. There is a constant molar ratio of 
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Fe and Ti in the pellets at all times during reduction, as O is the only element which is lost to 

the gas phase. 

 

2−𝑦𝑦0
𝑦𝑦0 

=
(3−𝑥𝑥′) 𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇+𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹+𝑛𝑛𝐹𝐹𝐹𝐹+𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂3

𝑥𝑥′ 𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇+𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂3
= (3−𝑥𝑥0)

𝑥𝑥0
                                (7.8)                               

with                                                𝑛𝑛𝑖𝑖 = 𝑤𝑤𝑤𝑤%𝑖𝑖
𝑀𝑀𝑖𝑖
�                                                                (7.9) 

and                                              𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇 = 232 − 8𝑥𝑥′                                                        (7.10) 

 

Here 𝑛𝑛𝑖𝑖 indicates the molar fraction of each phase present in the pellets during reduction. 𝑤𝑤𝑤𝑤%𝑖𝑖 

is the phase concentration obtained from the ND expressed as a %, and 𝑀𝑀𝑖𝑖 represents the molar 

mass of each phase. 𝑥𝑥0 and 𝑦𝑦0 represent the solubility of Ti in TTM (Fe3−𝑥𝑥Ti𝑥𝑥O4)  and TTH 

(Fe2−𝑦𝑦Ti𝑦𝑦O3)  prior to the start of the reduction respectively. 𝑥𝑥′(equals (𝑥𝑥 + 𝛿𝛿) as listed in 

Table 7.1) is the Ti mole fraction in 𝐹𝐹𝐹𝐹3−(𝑥𝑥+𝛿𝛿)𝑇𝑇𝑇𝑇(𝑥𝑥+𝛿𝛿)𝑂𝑂4  which changes over time during 

reduction. Note that 𝑀𝑀𝑖𝑖 is a constant for each phase (assuming FeO is stoichiometric), except 

for TTM. The molar mass of TTM, 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇, decreases slightly with the enrichment of Ti as given 

in equation 7.10. 

 

The initial values, 𝑥𝑥0 = 0.26 (calculated from Table 3.2) and accordingly, 𝑦𝑦0 = 0.17, are 

closely match those previously reported for NZ ironsand by Park et al. [143].  

 

TTM is a solid solution along the binary phase from Fe3O4 (x=0) to Fe2TiO4 (x=1) by the 

replacement of Fe3+ by Ti4+, as indicated in reaction 7.11 [164], [173]. It should be noted that 

the Ti mole fraction in TTM must lie within the range of (0≤x≤1) as these represent the end 

points of the Fe3O4-Fe2TiO4 solubility series. A value of x=0 indicates no Ti content in the 

TTM phase, which is simply Fe3O4. A value of x=1 gives Fe2TiO4, which is ulvospinel. If the 

assumptions above are valid, it should not be possible to obtain a calculated value of 𝑥𝑥′>1 from 

equation 7.8. 

 

𝐹𝐹𝐹𝐹3+ + 𝐹𝐹𝐹𝐹3+ → 𝐹𝐹𝐹𝐹2+ + 𝑇𝑇𝑇𝑇4+                                        (7.11) 
 

Reaction 7.2 is expected to be most relevant during the period of each reduction when the 

concentration of FeO is growing rapidly. The largest maximum concentration of FeO was 

observed during the reduction experiments at 1223 K in 5vol% H2 – 95vol% Ar gas mixture 
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(shown in Figure 4.11(a) and Figure 5.11(a)). These reduction experiments also provide the 

most available data points for the calculation at 1223 K (as the reduction rate at these conditions 

was also the slowest). Therefore, these two data sets are shown as examples of the calculated 

value of 𝑥𝑥′  throughout the reduction using equation 7.8. Plots of the evolving value of 𝑥𝑥′ 

versus reaction time are shown in Figure 7.3 for both types of pellet. Further plots showing the 

values of 𝑥𝑥′ calculated in a similar manner for the other experimental conditions studied are 

given in Appendix D. It should be noted that this analysis approach is only achievable as a 

result of the large continuous data series obtained from the in-situ ND measurements, which 

further emphasises the advantages of this experimental technique. 

 

 
Figure 7.3– Plots showing examples of the apparent Ti enrichment in TTM calculated from 
equation 7.8, for reductions of the Ar-sintered and pre-oxidised pellets in 5vol% H2 at 1223 
K. Experiments were performed at a flow of 250 ml/min gas mixture. (a) and (c) show the 

calculated Ti mole fraction (𝑥𝑥′) in TTM against reduction time. The grey highlighted areas 
indicate when the calculated value of 𝑥𝑥′ >1. (b) and (d) show the concentration curves of 

each phase during reduction measured by in-situ ND  
 

Figure 7.3(a) and (c) show the calculated Ti mole fraction in TTM versus the reduction time, 

while (b) and (d) show the evolving concentration of each crystalline phase in the pellet on the 

same time axis. During the early stages of the reduction, a similar pattern in the change of Ti 

mole fraction (𝑥𝑥′) is observed for both types of pellets.  The relatively quick reduction of TTH 

means that 𝑥𝑥′ is ~0.26 for both pellets at the start of the reduction. Once FeO is detected, 𝑥𝑥′ 

starts to increase (as this corresponds to the reduction of TTM → FeO). At all times before 
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FeO reaches its peak, 𝑥𝑥′  is calculated to fall in the range 0 < 𝑥𝑥′< 1, as required by the 

assumptions made above. 

 

However, a significant issue with this analysis approach is illustrated by the highlighted areas 

in (a) and (c), which show that during the later stages of the reaction, the values of 𝑥𝑥′ calculated 

from equation 7.8 are > 1. This issue is also observed in the other experimental data sets 

(Appendix D), although in every reaction studied, calculated values of 𝑥𝑥′>1 only occur later 

in the reaction after the peak of the FeO has been reached. A possible explanation of this result 

is that some of the Ti, present at the start of the reaction, ‘goes missing’ from the calculation at 

later reaction times. This might be attributed to the limitation of the ND measurements that not 

all the Ti-containing phases are accounted for (as discussed in Subsection 4.2.4).  

 

Despite this concern, it can be seen that during the early stages of the reaction (while the 

concentration of FeO is still increasing) the calculated value of  𝑥𝑥′  is always <<1. This is 

consistent with the enrichment of Ti in TTM observed in the SEM-EDS images (Figure 7.2). 

  

In principle, a complementary approach to confirm the Ti-enrichment during this period could 

be to trace the peak position of TTM from the ND pattern in order to determine whether a 

systematic shift in lattice constant also occurred. However, unfortunately the peak width 

obtained in the ND experiment is too broad to enable this analysis to be performed effectively. 

 

7.2.3 The effect of Ti enrichment on the reduction of TTM  

 

The enrichment of Ti in the remaining TTM changes its chemical composition, affecting its 

subsequent reduction rate.  

 

The ND results show that as the FeO concentration reaches a peak, a clear slowdown in the 

consumption of TTM is then observed during the reduction of both types of pellets at 1223 K 

at a flow of 250 ml/min. This feature is particularly clear in the pre-oxidised pellets at lower 

H2 gas concentrations (where more data points were able to be obtained). Figure 7.4 displays 

example plots showing this slowdown for both types of pellets at 5 vol% H2 gas concentration. 

The slowdown in TTM consumption occurs shortly after the peak in FeO is observed, and is 
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believed to be due to the stabilising effect of Ti in TTM. This is expected to occur as the Ti-

enriched TTM approaches the end-point of the TTM series (Fe2TiO4). 

 

 
Figure 7.4 – Plots showing the slowdown in TTM consumption which occurs after the FeO 
concentration peak. The reduction experiments were conducted at 1223 K in a flow of 250 
ml/min by 5vol% H2 gas concentration using: (a) Ar-sintered pellets; and (b) pre-oxidised 

pellets. Data obtained from the in-situ ND measurement at Wombat beamline 
 

The slowing in reduction rate of TTM could be caused by the switching of the reaction from 

reaction 7.2 (TTM → FeO + TTM-Ti enriched) to reaction 7.5 (TTM → Fe + FeTiO3). This must 

occur once TTM-Ti enriched reaches Fe2TiO4 (i.e. x = 1), although it may occur at a lower value of 

x if the thermodynamic driving force for reaction 7.2 decreases significantly with Ti-

enrichment [156].  

 

Supporting evidence for the hypothesised switch in reaction pathway is that the TTM 

slowdown occurs shortly after the peak in FeO, and shortly before measurable levels of FeTiO3 

start to be detected (Figures 4.11 and 5.11).  Both these features are consistent with the TTM 

reaction switching to proceed via reaction 7.5. However, some care must be taken with this last 

observation, as FeTiO3 could only be detected when its concentration was above the detection 

threshold for the ND analysis. This means that the first moment at which FeTiO3 was generated 

at low levels cannot be accurately determined from these plots.   

 

To examine this hypothesis further, a simple calculation was made to understand the expected 

TTM concentration if reaction 7.2 is assumed to continue to the end point of the TTM solution 

series, Fe2TiO4 (ulvospinel). In that case reaction 7.2 may be rewritten as: 
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𝐹𝐹𝐹𝐹3−𝑥𝑥0𝑇𝑇𝑇𝑇𝑥𝑥0𝑂𝑂4 + (1 − 𝑥𝑥0) · 𝐻𝐻2 → 𝑥𝑥0 · 𝐹𝐹𝐹𝐹2𝑇𝑇𝑇𝑇𝑂𝑂4 + 3(1 − 𝑥𝑥0) · 𝐹𝐹𝐹𝐹𝐹𝐹 +  (1 − 𝑥𝑥0) ∙ 𝐻𝐻2𝑂𝑂  (7.12) 

 

Based on reaction 7.12, 1 mol TTM phase would generate  𝑥𝑥0 mol Fe2TiO4 and 3(1 − 𝑥𝑥0) mol 

FeO. It should be noted that FeO is likely to be further reduced to Fe via reaction 7.4, in which 

case 1 mole FeO produces 1 mole Fe. Therefore, a mole ratio among the solid products can be 

obtained by equations 7.13 and 7.14 (assuming other potential simultaneous reactions can be 

neglected): 

 
𝑥𝑥0

3(1−𝑥𝑥0)
= 𝑛𝑛𝐹𝐹𝐹𝐹2𝑇𝑇𝑇𝑇𝑂𝑂4

𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹+𝑛𝑛𝐹𝐹𝐹𝐹
                                                            (7.13) 

𝑛𝑛𝐹𝐹𝐹𝐹2𝑇𝑇𝑇𝑇𝑂𝑂4
𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹+𝑛𝑛𝐹𝐹𝐹𝐹

=
𝑤𝑤𝑤𝑤%𝐹𝐹𝑒𝑒2𝑇𝑇𝑇𝑇𝑂𝑂4
𝑀𝑀𝐹𝐹𝑒𝑒2𝑇𝑇𝑇𝑇𝑂𝑂4

𝑤𝑤𝑤𝑤%𝐹𝐹𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹

+𝑤𝑤𝑤𝑤%𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹

 (≈
𝑤𝑤𝑤𝑤%𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝐹𝐹𝑒𝑒2𝑇𝑇𝑇𝑇𝑂𝑂4

𝑤𝑤𝑤𝑤%𝐹𝐹𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹

+𝑤𝑤𝑤𝑤%𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹

)                  (7.14) 

 

where 𝑛𝑛𝑖𝑖 = 𝑤𝑤𝑤𝑤%𝑖𝑖
𝑀𝑀𝑖𝑖
�  stands for the molar fraction of each phase. Equation 7.13 gives a 

constant value as 𝑥𝑥0= 0.26. In equation 7.14, the ratio can be calculated from the concentration 

of each phase measured from ND at each condition. However, it should be noted that 

𝑤𝑤𝑤𝑤%Fe2TiO4 is not directly obtained from ND (as Fe2TiO4 is not detected). Instead, to make 

this calculation applicable, it is assumed that the remaining TTM at the maximum 

concentration of FeO is compositionally close to Fe2TiO4. In this case, the value of 𝑤𝑤𝑤𝑤%𝐹𝐹𝑒𝑒2𝑇𝑇𝑇𝑇𝑂𝑂4 

is replaced by the 𝑤𝑤𝑤𝑤%𝑇𝑇𝑇𝑇𝑇𝑇which was directly obtained from the ND results. If the values from 

both equations are comparable with each other, then it implies that reaction 7.2 continues with 

the remaining TTM reaching the end-points of its solution series (Fe2TiO4). The comparison is 

plotted in Figure 7.5, and a close agreement is observed for the reduction of both types of 

pellets at the lowest H2 gas concentration, suggesting that reaction 7.2 almost runs to the end 

point of the TTM solution series, and the remaining TTM is compositionally close to Fe2TiO4. 
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Figure 7.5 – Plots showing the comparison of the values between equations 7.13 and 7.14. 
Data obtained from the Wombat beamline for both types of pellets reduced at 1223 K at a 

flow of 250 ml/min 
 

As shown in Figure 7.5 for the Ar-sintered pellets, the calculated ratio is much higher than the 

theoretical one at higher H2 gas concentrations. This indicates that in these conditions, not all 

the remaining TTM present at the peak concentration of FeO is compositionally close to 

Fe2TiO4. This is supported by the observations in Figure 7.4, the slowing in the reduction rate 

of TTM at higher H2 gas concentration at 1223 K (especially for Ar-sintered ones) was not as 

marked, but nonetheless can still be observed to occur. This discrepancy in behaviour may be 

due to a slower generation rate of FeO from TTM in the Ar-sintered pellets than in the pre-

oxidised ones (discussed further in Section 7.3), and the spatial variations across the pellets for 

the overlapping of the reactions. This could lead to a period in the reduction when both 

reactions 7.2 and 7.5 were occurring simultaneously (after FeO reaches the maximum 

concentration).
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7.3 Analysis of the effects of experimental conditions on FeO evolution at 
1223 K 

 

As discussed in the previous sections, the evolution of FeO from TTM significantly affects the 

overall reduction process and the particle morphologies at 1223 K. In this section, the influence 

of varying the experimental conditions (types of pellet and H2 gas concentration) at 1223 K on 

the evolution of FeO is analysed. The effects of temperature on the FeO evolution is discussed 

in Section 8.1. The analysis here is aimed at improved understanding of the following 

observations from the in-situ ND measurements (Sections 4.2 and 5.2): 

 

 Subsection 7.3.1: Why is the maximum concentration of FeO always higher for pre-oxidised 
pellets than for Ar-sintered pellets reduced at each H2 gas concentration at 1223 K? 

 

 Subsection 7.3.2: Why does the maximum concentration of FeO vary with H2 gas 
concentration at 1223K for the Ar-sintered pellets, but not the pre-oxidised ones? 

 
7.3.1 Why the maximum concentration of FeO is larger for pre-oxidised pellets than for 

Ar-sintered ones reduced at each H2 gas concentration at 1223 K? 
 

Observation: 

In Figure 7.6, the evolution of FeO is shown for both types of pellets reduced at each H2 gas 

concentration at 1223 K. Figure 7.6(a) and (b) show FeO concentration plotted against reaction 

time, while plots (c) and (d) show the same data now plotted against calculated reduction 

degree, X. Here the overall reduction degree has been calculated according to equations 3.3 and 

3.4. Note the discontinuity in the data observable in Figure 7.6(c) is a result from the 

introduction of additional phases into the calculation of reduction degree once their 

concentration becomes higher than the detection threshold of the ND measurement (e.g.  

metallic Fe emerges at X=~8% which causes an increase of X, whilst FeTiO3 emerges at X=~65% 

with a corresponding of decrease in Fe concentration, which causes X to go backwards).  

 

It is clear from Figure 7.6(a)-(d) that the maximum concentration of FeO achieved in the pre-

oxidised pellets is always higher than that of the Ar-sintered ones at each H2 gas concentration. 

Figure 7.6(e) shows the maximum (peak) value of FeO attained in each pellet at each gas 

concentration studied. 
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Figures 7.6 (c) and (d) also clearly show that in every case FeO is present up to a reduction 

degree of X=~90%. This shows that FeO is present during the majority of the reduction process 

for both types of pellets at 1223 K. Interestingly, X=~90% is the same value that was identified 

as the maximum limit for the single interface SCM presented in Chapter 6. This implies that 

the SCM likely breaks down once all of the FeO has been consumed. 

 
Figure 7.6 – Plots showing the evolution of FeO during reduction of both types of pellets 
under various H2 gas concentrations at 1223 K at a flow rate of 250 ml/min (above the 

critical flow rate). Concentration of FeO is plotted against reduction time for: (a) Ar-sintered 
pellets; and (b) Pre-oxidised pellets. Concentration of FeO is plotted against calculated 

reduction degree X for: (c) Ar-sintered pellets and (d) pre-oxidised pellets. Plot (e) shows a 
summary plot of the maximum (peak) concentration of FeO for both types of pellets and each 
H2 gas concentration at 1223 K. Based on data obtained from the in-situ ND measurement 
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Approach and analysis: 

The evolution of FeO concentration is dependent on both its generation and consumption rate. 

This can be accordingly expressed as a mass-based rate equation: 

 
𝑑𝑑[FeO]

𝑑𝑑𝑑𝑑� = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹       (7.15) 

  

where {𝐹𝐹𝐹𝐹𝐹𝐹} stands for the concentration of FeO measured from the in-situ ND.  As listed in 

Table 7.1, the only reaction path for the consumption of FeO is reduction to metallic Fe via 

reaction 7.4. Until all of the FeO has been consumed (i.e. for X<~90%), it is reasonable to 

assume that the consumption rate of FeO can be determined by an approximation of the 

generation rate of metallic Fe (the change in the concentration of metallic Fe), such that: 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹

=  
𝑑𝑑[𝐹𝐹𝐹𝐹]

𝑑𝑑𝑑𝑑�

𝑀𝑀𝐹𝐹𝐹𝐹 
        (7.16) 

 

Here 𝑀𝑀 stands for the molar mass of each corresponding phase. This equation correlates that 1 

mol of FeO generates 1 mol of metallic Fe. The concentration of metallic Fe for both types of 

pellets is plotted in Figure 7.7. The generation rates of metallic Fe are similar for both types 

of pellets at each H2 gas concentration at 1223 K, implying similar consumption rates for FeO 

in each case. As the concentration of FeO does vary significantly between the two types of 

pellets (from Figure 7.6), this further implies that it must be the FeO generation rate which 

differs between the two types of pellets.  
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Figure 7.7 – Plots showing the concentration of metallic Fe for both types of pellets at each 
H2 gas concentration at 1223 K at an equivalent flow (250 ml/min) above the critical flow 

rate. Data obtained from the in-situ ND measurement at the Wombat beamline 
 

To visualise the generation rate of FeO for both types of pellets, equation 7.15 can be 

combined with equation 7.16  to yield: 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑑𝑑[𝐹𝐹𝐹𝐹𝐹𝐹]
𝑑𝑑𝑑𝑑� + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹 

 ≈ 𝑑𝑑[𝐹𝐹𝐹𝐹𝐹𝐹]
𝑑𝑑𝑑𝑑� + (𝑑𝑑[𝐹𝐹𝐹𝐹]

𝑑𝑑𝑑𝑑� ) ∙ (𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹
𝑀𝑀𝐹𝐹𝐹𝐹
� )                                   (7.17) 

 

In Figure 7.8, the generation rates of FeO calculated from equation 7.17 for both types of 

pellets are compared at each H2 gas concentration at 1223 K. Note that data are only shown up 

to the point at which the concentration of FeO reaches its maximum. (As it is assumed that 

during these early stages of the reduction alternative Fe-generating reactions can be neglected). 

From the plots it can be seen that in both pellets, the generation rate of FeO rises to a peak 

before decreases. This decrease is likely caused by the content change from Fe3+ to Fe2+ as 

TTM reduced to FeO, which lower the tendency of FeO formation. However, at each H2 gas 

concentration, the generation rate of FeO in the pre-oxidised pellets is consistently faster than 

that of the Ar-sintered pellets.  Furthermore, the lower the H2 gas concentration, the smaller 

the difference between the generation rate in each type of pellets. This is consistent with Figure 

7.6(e) which showed that similar maximum concentrations of FeO are observed in both types 

of pellet at the lowest H2 gas concentration. 
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Figure 7.8 – Plots showing the calculated generation rate of FeO during reduction of Ar-

sintered (red) and pre-oxidised (black) pellets at each H2 gas concentration at an equivalent 
flow (250 ml/min) above the critical flow rate. (a) 5vol% H2, (b) 10vol% H2, (c) 25vol% H2, 

(d) 50vol% H2, (e) 75vol% H2, and (f) 100vol% H2. Note that data only shown to the 
maximum concentration of FeO obtained from in-situ ND measurement at Wombat beamline 

 

In summary,  Figures 7.7 and 7.8 indicate that at high H2 gas concentration, FeO is generated 

faster in the pre-oxidised pellets than in the Ar-sintered pellets, but a similar FeO consumption 

rate is observed in both types of pellets. This results in higher maximum observed 

concentrations of FeO in the pre-oxidised pellets during reduction at 1223 K. 
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Interpretation: 

The increased generation rate of FeO in the pre-oxidised pellets may be attributed to the 

particle-scale cracks formed in these pellets as a result of the volume expansion associated with 

the transition from rhombohedral TTH to cubic TTM. (Some examples of the particle-scale 

cracks observed in these pellets are shown in Figures 5.24 and 5.26). These cracks increase 

the contact area and improve gas mobility which allows the gases to access throughout the 

whole particles, and may lead to an increase in the number of nucleation sites of FeO. In 

contrast, the Ar-sintered pellets do not contain particle-scale cracks, and so the generation and 

growth of FeO may be limited by the diffusion of species through the solid matrix. This would 

then lead to a slower generation rate of FeO in the Ar-sintered pellets than in the pre-oxidised 

pellets at each condition. This is supported by the morphology of the particles in the pellets 

shown in Figure 7.1, where more structured morphology of FeO is observed in the Ar-sintered 

pellets than in the pre-oxidised pellets. 

 

 In addition to the diffusion of reactant (H2) and product (H2O) species, Ti atoms must also 

diffuse away from the ‘side walls’ of the FeO channels (Figure 7.2) as these channels ‘thicken’. 

This diffusion of Ti within the solid matrix is further discussed below in Subsection 7.3.2. 

 

7.3.2 Why does the maximum concentration of FeO vary with H2 gas concentration at 
1223 K for the Ar-sintered pellets, but not for the pre-oxidised ones? 

 

Observation: 

The observed results which motivate this question are also displayed in Figure 7.6. For the Ar-

sintered pellets reduced at 1223 K at 250 ml/min, the maximum observed concentration of FeO 

increases with decreasing H2 gas concentration. However, this effect is much less pronounced 

for the pre-oxidised pellets. 

 

Approach and analysis: 

The morphology of FeO formed in the particles is different between the two types of pellets. 

Back-scattered SEM images showing the morphology of FeO in the Ar-sintered pellets are 

illustrated in Figure 7.9. At the centre of the X=~20% pellet (Figure 7.9(a)), FeO channels are 

present but are sparser than for particles closer to the pellet surface (Figure 7.9(b)), where FeO 

channels are developed throughout each whole particle. Once reduction has progressed to 
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X=~50% (Figure 7.9(c) and (d)), FeO channels were found to be much denser in the particles 

at both positions. This implies that the generation of FeO in the Ar-sintered pellets starts from 

channels, which gradually become denser and thicker as the reduction progresses. This is 

consistent with the schematic in Figure 7.2. 

 
Figure 7.9 – Back-scattered SEM images showing the morphology of FeO in the Ar-sintered 
pellets reduced at 1223 K with 100vol% H2 gas (above the critical flow rate) at: (a) X=~20% 

and, (b) X=~50% 
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On the other hand, in the pre-oxidised pellets at X=~20%, very small (sub-micron) FeO 

nucleates were observed throughout each whole particle (see Figure 7.10(a)). Through a 

combination of nucleate-growth and the generation of more nucleate sites, FeO eventually 

occupies the majority of the particles by the time reduction has progressed to X=~50% (Figure 

7.10(b)). 

 
Figure 7.10 - Back-scattered SEM images showing the morphology of FeO in the pre-

oxidised pellets reduced at 1223 K with 100vol% H2 gas above the critical flow rate at (a) 
X=~20% and (b) X=~50% 

 

Interpretation: 

Back-scattered SEM images were not obtained for reduction at lower H2 concentrations, and 

this makes it challenging to directly identify the cause of the increasing FeO concentration with 

decreasing H2 concentration in the Ar-sintered pellets.  However, a proposed hypothesis might 

be constructed from the different FeO morphologies observed in each type of pellets (Figures 

7.9 and 7.10), as follows: 

  

During the reduction of TTM to FeO in the Ar-sintered pellets, FeO channels are formed with 

Ti exsolved from the FeO channels and built up in the ‘side wall’ of TTM regions on either 

side of the channel (see Subsection 7.2.1). In order for the initially-formed channels to become 

broaden/thicken with further reduction, some Ti atoms must then diffuse away from the ‘side 
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walls’ through the TTM matrix. Importantly, the diffusion rate of Ti in the solid matrix should 

not be affected by the H2 gas concentration. 

 

However, H2 gas concentration will affect the generation rate of FeO (i.e. the reduction rate of 

TTM → FeO) - as shown in Figure 7.8. The generation rate of FeO increases with increasing 

H2 gas concentration. As a result, in the Ar-sintered pellets at higher H2 gas concentrations, the 

diffusion rate of Ti in the solid matrix may become comparable to the generation rate of FeO. 

The slow diffusion rate of Ti might then limit the rate at which FeO channels can thicken, 

which would slow the relative rate of FeO generation.  

 

By contrast, this mechanism should not occur in the pre-oxidised pellets, as particle-scale voids 

and micro-cracks enable FeO to nucleate throughout each whole particle. With new nucleation 

sites forming throughout the reduction process, the diffusion of Ti within the solid matrix will 

have a less significant effect on FeO growth rate (as it should not be expected to limit the 

nucleation of new FeO sites). Alternatively, Ti may diffuse into the micro-cracks, which again 

presents a less influence on the generation of FeO. This would imply that the generation rate 

of FeO is dominantly determined by the H2 gas concentration, and this is also expected to be 

the case for the FeO consumption rate. Assuming the generation and consumption rates vary 

similarly with H2 gas concentration, then similar values for the maximum observed 

concentration of FeO should also be expected for each different H2 gas concentration. This is 

consistent with the results observed for the pre-oxidised pellets reduced at 1223 K (Figure 

7.6(b) and (d)).
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7.4 Summary 
 

In this chapter, the generation of FeO in both types of pellets at 1223 K has been analysed and 

discussed, with an emphasis on understanding the influence of Ti on the observed phase 

transitions, particle morphology, and consumption rate of TTM. 

 

A set of reactions occurring during reduction of both types of pellets are proposed. Evidence 

for each reaction draws on results obtained from TGA, in-situ ND and SEM-EDS analysis. It 

is concluded that the reduction of both types of pellets follows a similar reduction path at the 

reduction conditions studied: TTH → TTM → TTM-Ti enriched + FeO → Fe + FeTiO3 → Fe + 

‘Ti-containing phases (TiO2 or PSB/ferro-PSB)’. Specifically, any TTH present is rapidly 

reduced to TTM (reaction 7.1). After this point, TTM is reduced to FeO, with Ti becoming 

increasingly enriched in the remaining TTM (reaction 7.2). FeO is then further reduced to 

metallic Fe (reaction 7.4). Later in the reduction process, the reduction of the remaining Ti-

enriched TTM appears to switch to instead form metallic Fe and FeTiO3 (reaction 7.5).  Other 

reactions, such as the generation of TiO2 (reactions 7.6) and PSB/ferro-PSB (reaction 7.7) are 

also expected to occur during the latest stage of the reduction process. 

 

The enrichment of Ti in TTM from reaction 7.2 is a key feature in the reduction of the 

titanomagnetite ironsand studied in this work, and differentiates this material from non-

titaniferous iron ores. This enrichment is confirmed by EDS-maps of partially reduced particles 

(X=~50% pellet) which show that Ti is rejected by FeO and enriched in the surrounding TTM. 

A key morphological feature of this Ti enrichment is the formation of channel-like FeO 

structures within individual particles. Moreover, the enrichment of Ti in TTM is likely the 

reason that reaction pathway switches so that TTM is directly reduced to metallic Fe and 

FeTiO3 during the later stages of the reduction process. This change of reaction pathway results 

can be observed as a slowing in the consumption rate of the remaining Ti-enriched TTM. It 

should be noted that FeO is completely consumed at X=~90%, which corresponds to the point 

at which the application of the single interface SCM breaks down (from Chapter 6). 

 

The effects of experimental conditions on the evolution of FeO in both types of pellets at 1223 

K has also been discussed. Pre-oxidation is found to increase the generation rate of FeO under 

all conditions. This is attributed to the micro-cracks and voids formed during the early 
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reduction stages of the pre-oxidised pellets. These cracks provide improved gas access to 

reaction sites, leading to the nucleation of FeO throughout each whole particle. 

 

In contrast, in the Ar-sintered pellets the maximum observed concentration of FeO is found to 

decrease with increasing H2 gas concentration. One possible explanation for this puzzling effect 

is that, at high H2 gas concentrations, the growth rate of FeO channels in the Ar-sintered pellets 

might be limited by the diffusion rate of Ti atoms away from the channel walls (i.e. within the 

Ti-enriched TTM matrix). This would lead to slower FeO generation rates in these conditions.
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Chapter 8  
The effect of temperature on the evolution of phase morphologies 
at the particle- and pellet-scale, and their relationship to the SCM 
 

In the previous chapter (Chapter 7), the progress of the reaction at a single temperature (1223 

K) has been discussed. In this Chapter, the influence of varying the reaction temperature is now 

considered, with particular respect to the morphological evolution of phases, at both the pellet- 

and particle-scale. This data is then used to identify the different rate-limiting reactions which 

appear to occur at different temperatures. A transition from pellet-scale to particle-scale effects 

is also observed with decreasing temperature. This challenges some of the underlying 

assumptions of the SCM presented in Chapter 6, and this chapter concludes with a short 

discussion of how the SCM results and morphological observations can be connected.  

 

This chapter is divided into the following sections: 

 Section 8.1: The effect of temperature on the observed levels of FeO present during 

reduction 

 Section 8.2: Comparing pellet- and particle-scale morphological evolution at different 

temperatures, and relating this to the SCM 

 Section 8.3: Limitations of the SCM at higher reduction degrees 

 Section 8.4: Summary of the discussion 

 

8.1 The effects of temperature on the evolution of FeO 
 

8.1.1 The evolution of FeO in both types of pellets at each temperature 

 

As noted previously, the generation of FeO from TTM plays an important role in determining 

the overall reaction progress. It is therefore useful to consider the effect of temperature on this 

reaction step.  

 

In Figure 8.1, plots are shown of the FeO concentration against both reduction time and 

calculated reduction degree, X, for reductions in 100vol% H2 gas at each of the three 

temperatures studied in the in-situ ND measurements (1023 K, 1123 K and 1223 K). As can be 

seen, the observed maximum concentration of FeO increases with increasing reduction 

temperature for both types of pellets. In all cases, the level of FeO detected in the Ar-sintered 



 

184 
 

pellets was significantly lower than in the pre-oxidised pellets. In fact, at 1023 K, FeO was not 

detected at all in the Ar-sintered pellets, but a small amount was still clearly seen during the 

reduction of the pre-oxidised pellet. Moreover, it should be noted that FeO is present up to a 

reduction degree of X=~90% during both the reduction of Ar-sintered pellets at 1223 K, and 

for pre-oxidised pellets above 1123 K. This is again consistent with the range of reduction 

degree over which the SCM model was found to be valid (in Chapter 6), providing further 

evidence that this model primarily describes the progress of the reduction path via FeO. 

 
Figure 8.1 - Plots showing the evolution of FeO during reduction of both types of pellets at 

each temperature in 100vol% H2 gas at 250 ml/min (above the critical flow rate). 
Concentration of FeO is plotted against reduction time for: (a) Ar-sintered pellets; and (b) 

Pre-oxidised pellets. Concentration of FeO is plotted against reduction degree, X, for: (c) Ar-
sintered pellet; and (d) pre-oxidised pellets. Plot (e) shows the maximum concentration of 

FeO observed in both types of pellets at each temperature. Data obtained from the in-situ ND 
measurements  
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In Tables 8.1 and 8.2, back-scattered SEM images of the particles at X=~50%  of both types 

of pellets are shown for each reduction temperature, along with summaries of key features from 

analysis of the SCM and in-situ ND data. It is shown in Figure 8.1(c) and (d) that X=~50% 

represents the reduction degree where the concentration of FeO is at maximum for most of the 

pellets. (Only for the reduction of pre-oxidised pellets at 1023 K, does the maximum 

concentration of FeO appear at a lower value of X=~30%). 

 

Ar-sintered pellets (Figure 8.2) 

For the Ar-sintered pellets reduced at 1023 K, FeO is barely observed in any particles 

throughout the whole pellet. At 1123 K, FeO is observed in a sparse fine structure close to the 

outer layer of metallic Fe forming in each particle. At 1223 K, FeO has fully developed into 

channelled structures throughout all of the particles (as noted in Chapter 7). These 

observations are consistent with the ND results (Figure 8.1) which show that the maximum 

FeO concentration decreases with decreasing temperature and is approximately zero at 1023 

K. 

 

The back-scattered SEM images also suggest that with decreasing temperature, the reduction 

process tends to shift from the pellet-scale towards the particle-scale. At 1223 K, a pellet-scale 

reaction interface is clearly distinguished for the reaction step of FeO → metallic Fe (EDS-line 

scan results in Figure 4.19). In the region of this pellet-scale interface, particles containing 

both metallic Fe and FeO are observed, with the generation of metallic Fe following the pre-

existing FeO channels. Particles lying outside the pellet-scale interface contain metallic Fe and 

no visible FeO, while particles inside the interface contain FeO channels and negligible 

metallic Fe. 

 

In contrast, at the lower temperature of 1023 K, particle-scale shrinking core morphologies are 

observed in particles throughout the pellet, with a particle-scale interface appearing to separate 

regions of metallic Fe and TTM (FeO barely is observed in these particles). In addition to this 

particle-scale effect, the reduction progress also appears to exhibit a pellet-scale gradient – with 

particles near the pellet surface forming metallic Fe more quickly than those particles at the 

pellet centre. This phenomenon is further discussed in Section 8.2. 
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Despite the apparent shift from the pellet-scale to particle-scale phenomena, the analysis in 

Chapter 6 showed data obtained over the entire temperature range is well fitted by a single 

interface SCM (up to X=~90%). This SCM analysis indicated interfacial chemical reaction 

control at all temperatures. 

 

Pre-oxidised pellets (Figure 8.3) 

In the pre-oxidised pellets, decreasing temperature also leads to decreasing observed levels of 

FeO. The in-situ ND showed that at 1023 K, FeO was still present with a concentration of ~6wt% 

at X=~50%.  However, this is difficult to clearly observe in the back-scattered SEM images. It 

is assumed that the small intersperse dendritic features with bright contrast (Figure 8.3, 1023 

K, back-scattered SEM image (b)) are a combination of metallic Fe and FeO. 

 

In addition, the pre-oxidised pellets appear to show a less pronounced shift from pellet-scale to 

particle-scale behaviour with temperature. Results from Chapter 6 showed that for the pre-

oxidised pellets, a single interface SCM could again be applied at all temperatures. This implied 

that interfacial chemical reaction control dominated at 1223 K, but mixed control (diffusion 

through the product layer and interfacial chemical reaction) occurred at lower temperatures. 
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Back-scattered SEM images of Ar-sintered pellets reduced at X=~50% 

1023 K 1123 K 1223 K 

   
No FeO detected from in-situ ND ~3wt% FeO measured from in-situ ND ~15wt% FeO measured from in-situ ND 

Pellet-scale single interface SCM – Interfacial chemical reaction control over the temperature 

𝐸𝐸𝐴𝐴= 89 ± 5 kJ/mol 𝐸𝐸𝐴𝐴= 41 ± 1 kJ/mol 

Figure 8.2 - Summary of in-situ ND results, rate-limiting step from SCM, and the back-scattered SEM images of particles in the Ar-sintered pellets reduced at 
X=~50% at each temperature. All the reduction experiments using 100vol% H2 gas at the flow rate above the critical flow rate 
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Back-scattered SEM images of Pre-oxidised pellets reduced at X=~50% 

1023 K 1123 K 1223 K 

   

~6wt% FeO from in-situ ND ~23wt% FeO measured from in-situ ND ~42wt% FeO measured from in-situ ND 

Pellet-scale single interface SCM  

Mixed control 
Interfacial chemical reaction control,  

𝐸𝐸𝐴𝐴= 31 ± 1 kJ/mol 

Figure 8.3 - Summary of in-situ ND results, rate-limiting step from SCM, and the back-scattered SEM images of particles in the pre-oxidised pellets reduced at 
X=~50% at each temperature. All the reduction experiments using 100vol% H2 gas at the flow rate above the critical flow rate
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8.1.2 Why does the maximum observed FeO level decrease with decreasing temperature 

 

The quantity of FeO observed in the pellets throughout the reaction is controlled by the integral 

of the net generation rate of FeO (= generation rate – consumption rate), as presented in 

equation 7.15. Figure 8.1 indicates that the net generation rate decreases as temperature 

decreases for both types of pellets. In fact, the net generation rate of FeO appears to be zero 

throughout the whole reduction at 1023 K for the Ar-sintered pellets, as FeO is barely observed 

in the particles. It could be argued that FeO might not be formed due to the thermodynamic 

limitation (temperature or gas composition in Figure 2.9). However, this seems unlikely to be 

the case here, as non-zero levels of FeO are still produced within the pre-oxidised pellets under 

the same reaction conditions. This implies that the initial production of FeO should also still 

be thermodynamically possible in the Ar-sintered pellets.  

 

It should also be noted that the minimum temperature at which FeO can be produced during 

reduction of conventional non-titaniferous magnetite ores is ~840 K (Figure 2.9), which is well 

below the lowest temperature studied here. 

 

If it is accepted that the production of FeO at lower temperatures is not thermodynamically 

prohibited, then an alternative explanation is that this effect is instead due to kinetic limitations, 

such that the reaction rate for the consumption of FeO exceeds its generation rate at these 

temperatures. This would mean that very little FeO will be observed during reaction, because 

FeO will only exist as a short-lived intermediate state during the conversion of TTM to metallic 

Fe. 

 

From the single interface SCM discussed in Section 6.1, it was found that the interfacial 

chemical reaction rate plays a role in the reduction rate of both types of pellets in the 

temperature range of 1023 K to 1223 K. The temperature dependence of a chemical reaction 

rate is determined by its activation energy. In conventional non-titaniferous magnetite ores, the 

reduction of Fe3O4 → FeO (50 kJ/mol to 77 kJ/mol [93], [174]) generally exhibits a higher 

activation energy than the reduction of FeO → metallic Fe (23 kJ/mol to 42 kJ/mol [93], [175]). 

This implies that the chemical reaction rate of Fe3O4 → FeO will decrease more rapidly with 

decreasing temperature than for FeO → metallic Fe.  
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It is likely that for titanomagnetite ores, it will also be the case that the activation energy of 

TTM → FeO is larger than that of FeO → metallic Fe. This is because the reaction for FeO → 

metallic Fe should be same as in the non-titaniferous ore reduction, while TTM → FeO is either 

similar or more thermodynamically stable than the reaction of Fe3O4 → FeO [124], [144], [147]. 

As a result, in an interfacial chemical reaction-controlled system, one would expect to find that 

with decreasing temperature, the reaction rate of TTM → FeO decreases more rapidly than that 

of FeO → metallic Fe. This will result in a lower net generation rate of FeO with decreasing 

temperature, and hence less FeO present in the pellets.  

 

Following the same logic, at a sufficiently low temperature the generation rate of FeO (TTM 

→ FeO) will become slower than its consumption rate (FeO → metallic Fe). At this 

temperature the net generation rate of FeO would then be zero at all times. This seems to agree 

with the results shown for the Ar-sintered pellets at 1023 K in Figures 8.1 and 8.2. 

 

It is also notable that for the Ar-sintered pellets, two different activation energies in different 

temperature regimes were established from the SCM analysis (Subsection 6.2.1). For 

temperatures above 1193 K, an activation energy of 𝐸𝐸𝐴𝐴= 41 ± 1 kJ/mol was obtained, but for 

temperatures below 1143 K, a significantly higher value of 𝐸𝐸𝐴𝐴= 89 ± 5 kJ/mol was determined. 

This implies a change in the rate-limiting reaction step between these two temperature regimes, 

with the reaction with the higher 𝐸𝐸𝐴𝐴 becoming the rate-limiting step at lower temperatures. This 

is also consistent with the observations in Figures 8.1 and  8.2, where TTM → FeO appears to 

be the rate-limiting reaction at temperatures <1143K, whilst FeO → metallic Fe appears to be 

the rate-limiting reaction at temperatures >1193K.  

In the pre-oxidised pellets, an activation energy of 𝐸𝐸𝐴𝐴= 31 ± 1 kJ/mol could only be identified 

for temperatures > 1143 K where interfacial chemical reaction control dominated. This value 

is similar in magnitude to the Ar-sintered pellets at high temperature, and hence broadly 

consistent with the reduction of FeO → metallic Fe [93], [175]. At temperatures below 1143 

K, mixed control was observed, indicating diffusion through the product layer occurs at similar 

rates to the chemical reaction rate. As discussed in Section 7.3, the presence of micro-cracks 

leads to a higher initial generation rate of FeO in the pre-oxidised pellets, this means that at 

1023 K FeO is still initially generated and hence able to be observed. Nonetheless, the in-situ 

ND results and back-scattered SEM images (Figure 8.3) still show a clear decreasing trend in 

the maximum concentration of FeO with decreasing temperatures.
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8.2 Comparing pellet- and particle-scale morphological evolution at 
different temperatures, and relating this to the SCM 

 

In the previous section, it is highlighted that a transition from pellet-scale to particle-scale 

reduction interface is observed as the temperature decreases. This is more complicated than the 

assumptions considered in the development of the SCM in Chapter 6, where a pellet-scale 

dependence was observed at 1343 K, and assumed to hold throughout. 

 

To help understand how the SCM is able to describe the pellet reduction progress even at low 

temperatures where particle-scale processes are occurring, schematics of the partially reduced 

pellet morphologies (both Ar-sintered and pre-oxidised) have been constructed. These are 

shown in Figures 8.4 and 8.5. These schematics show the detailed particle-scale reduction 

features at high and low temperatures, which are adopted from the graphics developed to 

describe the particle-scale SEM results (Figures 4.25 to 4.27, and Figures 5.24 to 5.26). The 

corresponding right-hand schematics. 

 

Ar-sintered pellets (Figure 8.4) 

For the Ar-sintered pellets reduced at high temperature (Figure 8.4 top), a pellet-scale reaction 

interface occurs for the reaction FeO → metallic Fe (since the reaction rate of TTM → FeO is 

faster at high temperatures (Section 8.1). This pellet-scale interface can be observed as a thin 

boundary-layer of particles which exhibit particle-scale shrinking core phenomenon. For 

particles located at the pellet-scale interface, metallic Fe is generated from the particle surface 

to the particle centre by following the pre-existing FeO channels. By contrast, at the pellet 

surface, the initial FeO channels in each particle seem to have been completely reduced to 

metallic Fe. Conversely, at the pellet centre, the FeO channels in each particle remain 

unaffected without any observable metallic Fe yet found. It is important to note that this particle 

morphological evolution is observed in the homogeneous TTM particles which accounts for 

90% of the particles in the pellets. 

 

However, at lower temperatures (Figure 8.4 bottom), the generation of metallic Fe is observed 

to occur via a particle-scale shrinking core over a wider region of the pellet, suggesting that the 

pellet-scale reaction interface has ‘broadened’. This broadening means that there is now a 

pellet-scale gradient in the reduction progress of individual particles, with the reduction of 
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particles near the pellet surface being further advanced than those nearer the pellet centre. It is 

noted that the onset of this pellet-scale ‘broadening’ occurs at a similar temperature for which 

the change in the activation energy of the reduction process was observed (i.e. < 1143 K). This 

suggests that the shift to the particle-scale shrinking core morphology is likely to be related to 

the change in the rate-limiting reaction from FeO → metallic Fe to TTM → FeO. (This is 

consistent with FeO being barely observed in the particle-scale shrinking cores at 1023 K).   

 
Figure 8.4 – Illustrative schematics of  particle-scale and pellet-scale morphologies within a 
partially reduced Ar-sintered pellet at high (top) and low (bottom) temperatures. The specific 

particle-scale features are adopted from Figures 4.25 to 4.27 



 

193 
 

A change from a pellet-scale shrinking core mechanism to a particle-scale shrinking core 

mechanism might be expected if the limiting chemical reaction rate becomes sufficiently slow. 

This is because in this case the interfacial reaction rate would be much slower than the rate at 

which gas can diffuse though the pores between particles throughout the entire pellet. This is 

consistent with the interpretation from the previous section that at low temperature TTM → 

FeO becomes the rate-limiting reaction. The high EA of this reaction means that, at low enough 

temperatures, this might be expected to become much slower than any other potential rate-

limiting reactions within the pellet. 

 

It is important to note that the SCM fitting performed in Section 6.4 provided a good 

description of reaction progress (up to 90%) even at the lowest temperatures studied. This is 

because the parameters fitted to the model (𝑙𝑙𝑙𝑙 �𝐴𝐴
𝐵𝐵
� and 𝐸𝐸𝐴𝐴 in Figures 6.4 and 6.6) were assigned 

different values for the high temperature and low temperature regimes. This means that in fact 

two entirely different models were fitted for the separate regimes in which pellet-scale 

shrinking cores (high temperature) and particle-scale shrinking cores (low temperature) are 

observed.  Whilst Section 6.3 showed that the SCM had a pellet-scale dependence at high 

temperature (1343 K), a similar investigation was not performed at lower temperatures. From 

the SEM data discussed above it seems possible that the fitted SCM obtained at lower 

temperatures might describe a particle-scale mechanism. 

 

Pre-oxidised pellets (Figure 8.5) 

Figure 8.5(a) and (b) shows similar schematics for the pre-oxidised pellets reduced at higher 

temperatures. Here, the pellet-scale reaction interface is a clear boundary between an outer 

region in which all particles contain metallic Fe, and an inner core in which no particles contain 

metallic Fe. At the reaction interface, reduction of each particle proceeds via nucleation of FeO 

and metallic Fe at multiple sites within the particle. By contrast, at lower temperatures (Figure 

8.5(c) and (d)), metallic Fe nucleates are present in particles throughout the whole pellet. In 

fact at X=~50%, metallic Fe can be observed all the way to the pellet centre which again 

suggests that the reaction interface has ‘broadened’ with decreasing temperature. Despite this, 

a pellet-scale gradient is again still observed, as the reduction progress of particles nearer to 

the pellet surface is substantially ahead of those nearer to the centre. The broadening of the 

pellet-scale reaction interface occurs at a similar temperature to the change in the SCM from 

interfacial chemical reaction control to a mixed control (as determined in Chapter 6). This 
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might suggest that the change to mixed control at lower temperature is associated with the 

increased importance of the particle-scale effects. 

 
Figure 8.5 - Illustrative schematics of  particle-scale and pellet-scale morphologies within a 
partially reduced Ar-sintered pellet at high (top) and low (bottom) temperatures. The specific 

particle-scale features are adopted from Figure 5.24 to 5.26 
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At higher temperatures (>1143 K) the SEM data shows a pellet-scale interface for the rate-

limiting reaction step (FeO → metallic Fe) which is consistent with the SCM considered in 

Chapter 6. But, in contrast to the Ar-sintered pellets, particle-scale shrinking core 

morphologies are not observed at lower temperatures. Instead the reduction of each particle 

appears to occur at multiple nucleation sites spread throughout each particle. This means that 

a particle-scale shrinking core model cannot be relevant for the pre-oxidised pellets at any 

temperature. 

 

Despite this, the pellet-scale interface is still observed to broaden at the lowest temperature. 

This suggests that at these temperatures, the reaction rates within each particle at the ‘interface’ 

become slower than the diffusion of gas between the particle pores. As a result, H2 (and/or H2O) 

is able to diffuse beyond the outermost reacting particles and hence also enable reactions in 

particles located closer to the centre of the pellet. 

 

However, whilst this interpretation can explain the broadening of the pellet-scale interface, it 

is not in agreement with the conclusion from the SCM model that the reduction of pre-oxidised 

pellets experiences mixed control at the lowest temperature. (i.e. rate of diffusion through a 

product layer and interfacial reaction rates are of similar magnitude) 

 

In order to reconcile this, it is important to note that in Chapter 6, only one dataset at the lowest 

temperature (1043 K) was fitted using the mixed-control SCM. Whilst a reasonable fit was 

obtained, this is not strong evidence that a similar function would hold at even lower 

temperatures. Furthermore, the broadening of the pellet-scale interface means that this situation 

does not really meet the underlying assumptions of the shrinking core model. In particular, the 

SCM model is derived from an assumption that there is single thin reaction interface 

experiencing a constant gas composition, which is not likely to be true for a broadened interface 

through which gas diffusion is occurring between particle pores. As a result, whilst the 

reduction progress at 1043 K can be described using a linear combination of 𝐼𝐼(𝑋𝑋𝑎𝑎) and 𝐷𝐷(𝑋𝑋𝑎𝑎) 

(as in equation 6.1), the SEM data indicates that we cannot be confident that this truly 

represents ‘mixed control’ from fully independent ‘diffusion rate through the product layer’ 

and ‘interfacial chemical reaction rate’ mechanisms.
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8.3 Limitation of the SCM at higher reduction degrees 

 

As discussed previously, the applied single interface SCM presents a reasonable mathematical 

description of the majority of the reduction data (Chapter 6), which is consistent with the 

evolution of phase morphologies at most conditions (Chapter 8). (The exception being the 

reduction of pre-oxidised pellets at 1043 K, where the SEM results do not appear to show a 

clear shrinking core mechanism). 

 

Another important point is that at X>~90%, the SCM no longer exhibits good linear fits to the 

reduction progress for either type of pellet (Section 6.1). This implies that the shrinking-core 

model breaks down at the latest stage of reduction. This may be attributed to the fact that FeO 

is completely consumed at X=~90% at most conditions measured from ND results (Figure 7.6). 

This 90% reduction degree appears to be in a close agreement with the theoretical value when 

the FeO is completely consumed during reduction of TTM/TTH. These values, based on the 

theoretical weight loss ratio between the solid reactants and products, are illustrated in Figure 

8.6. It is assumed that X=100% if TTM/TTH are completely reduced to metallic Fe and TiO2, 

then the theoretical reduction degree can be calculated at different end points. Note that X has 

already exceeded 90% at the end point of metallic Fe + FeTiO3, which confirms that only the 

evolution of Fe-Ti-O phases contributes to the reduction process at the latest stage. This is also 

consistent with the ND data that the maximum reduction degree achieved is above 90% with 

FeTiO3 existing as the product (Figures 4.11 and 5.11). 

 
Figure 8.6 – Theoretical calculation of the reduction degree X at different end points during 

reduction of TTM/TTH 
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As a result, it is expected that at the latest stages of the reduction process, reactions are only 

taking place with the residual Fe-Ti-O phases which are dispersed throughout the whole pellet. 

Supporting evidence for this interpretation includes: 

 

 In the fully reduced pellets (at maximum reduction degree), crystalline TiO2, FeTiO3, 

and PSB (ferro-PSB) are found to coexist with metallic Fe (Figures 4.3 and 5.3). This 

implies that the associated reduction of Fe-Ti-O phases must occur (as suggested in 

Table 7.1), even though only one of these phases (FeTiO3) was observed in the in-situ 

ND data. 

 SEM images of particle morphologies at the highest reduction degrees (Appendices 

B.5 to B.7, and C.5 to C.7) show that the residual Fe-Ti-O phases are established 

throughout each particle within the whole pellet. The Fe-Ti-O phases form many small 

islands (of sub-micron size), which are interspersed within the fine structure of metallic 

Fe. This means that a ‘shrinking core’ of reacting material is no longer present. 

 

As a consequence, it is not surprising that the reduction of residual Fe-Ti-O phases at X>~90% 

is not well represented by a single interface SCM. If a model is required for this late stage of 

the reduction process, then it is likely that a non-shrinking core kinetic model would be required 

to be incorporated. However, in spite of this it is expected that the analytical expression 

obtained in Chapter 6 will be sufficient for most practical purposes. Indeed, many industrial 

DRI processes terminate at a reduction degree of <~ 90% (~80% metallisation degree at NZ 

steel [176] and ~85% metallisation in most Midrex DRI plants [177]) . 
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8.4 Summary 

 

In this chapter, the effects of temperature on the evolution of FeO in both types of pellets are 

discussed. As temperature decreases, less FeO was detected.  This phenomenon can be 

explained by different activation energies for the reduction of TTM → FeO versus FeO → 

metallic Fe. If EA(TTM→FeO) is greater than EA(FeO→Fe) then with decreasing temperature, the 

chemical reaction rate of TTM → FeO will slow more rapidly than that of FeO → Metallic Fe. 

This will then lead to less FeO generated at lower temperatures. This explanation is consistent 

with the observation of two different activation energies in separate temperature regimes for 

the Ar-sintered pellets. (In the pre-oxidised pellets, no activation energy could be determined 

for the low temperature regime as only one data set is fitted using the SCM.) 

 

In addition, as temperature decreases for both types of pellets, a tendency is observed for the 

broadening of the pellet-scale reaction interface. The broadening may occur if the reaction rate 

at the ‘interface’ becomes slower than the gas diffusion between the particle pores. This enables 

H2 (and/or H2O) to diffuse beyond the outermost reacting particles, activating the reactions in 

the particles in the inner of the pellets. Despite this broadening, the reduction data obtained at 

lower temperatures can still be fitted by a single interface SCM. However, caution is needed to 

reconcile the model to the SEM results at lower temperatures. For the Ar-sintered pellets, it 

seems that the SCM might describe a particle-scale mechanism. While for the pre-oxidised 

pellets, the SCM appears not to be connected with the SEM results, where the ‘shrinking core’ 

phenomenon was not observed. By contrast, for both types of pellets reduced at high 

temperature, the SCM describes well a pellet-scale shrinking core mechanism. 

 

The breakdown of the model at X=~90% is likely to be caused by the completion of FeO. 

Afterwards, the reduction of the residual Fe-Ti-O phases occurs dispersing at each particle 

throughout the whole pellet. This no longer presents a ‘shrinking core’ mechanism. Therefore, 

a non-shrinking core model may be needed to be incorporated to describe the whole reduction 

process.  Despite this, it is expected that the SCM will be satisfactory to describe the reduction 

process for practical purposes.
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Chapter 9  
Conclusions and industrial implications 
 

In this thesis, a comprehensive analysis is presented of the DR characteristics and mechanisms 

for reduction in H2 gas of Ar-sintered and pre-oxidised pellets made from NZ titanomagnetite 

ironsand. A series of reduction experiments have been performed, analysed and discussed. In 

general, the results obtained from these reduction experiments are consistent with each other, 

and the research aims set for this work (Section 1.2) have been accomplished. In summary:  

 Ar-sintered and pre-oxidised pellets were successfully generated from a disc-pelletiser 

with the addition of bentonite and water, and reasonable values for the RSI and 

compressive strength have been measured (Section 3.2);  

 The overall reduction progress of the pellets in H2 gas at high temperatures has been 

measured in a TGA system (Sections 4.1 and 5.1), and interpreted using a single 

interface SCM (Chapter 6); 

 The evolution of crystalline phases formed during the reduction has been determined 

from in-situ ND reduction experiments at temperatures up to 1223 K (results in 

Sections 4.2 and 5.2, analysis in Chapter 7 and 8);  

 The evolution of pellet- and particle-scale morphologies has been established through 

SEM microscopy upon samples obtained from a series of quenching reduction 

experiments (results in Sections 4.3 and 5.3, analysis in Chapter 8); and 

 The morphological evolution during reduction has been compared with results from the 

single interface SCM analysis (Chapter 8), and related to apparent changes in the rate-

limiting behaviour at different temperatures.  

 

This final chapter summarises the findings form this work, and is divided into the following 

sections: 

 Section 9.1: Conclusions of this thesis 

 Section 9.2: Industrial implications 

 Section 9.3: Recommendations for future work
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9.1 Conclusions 
  

9.1.1 Key findings:  

 

This research investigated the H2-based direct reduction kinetics of the NZ TTM pellets, and 

the following knowledge gap has been filled. The activation energies are established using rate 

constants obtained from application of the SCM. The activation energies for NZ TTM ironsand 

pellets in H2 gas have not been reported in the literature. The reduction pathway has also been 

studied through an in-situ analysis, with an emphasis on the effects of Ti existence on the initial 

reduction stages. Furthermore, the establishment of the morphological evolution of the pellet 

during reduction is used to inform understanding of the kinetic model.  

 

In general, the following key findings can be concluded: 

 

 What is the DR behaviour in H2 gas of NZ ironsand pellets? 

 
The reduction of both Ar-sintered and pre-oxidised pellets presents a faster reduction rate 

with increasing temperature, H2 flow rates and H2 gas concentrations. At 1343 K it is 

also observed that decreasing the pellet diameter increases the reduction rate. The 

maximum reduction degree (~97%) of each type of pellet is achieved at 1443 K and gas 

flows above the critical flow rate. Pellets of ~7 mm diameter are fully reduced at this 

temperature within 10 minutes. While for the reduction at gas flows below the critical 

flow rate, it was found that the generation rate of metallic Fe is linearly dependent on the 

rate of H2 gas delivery. 

 

 How does the morphology of key phases evolve during reduction of the pellets? 
 

1. For the reduction of both types of pellets at high temperatures (> 1223 K), a pellet-scale 

shrinking core phenomenon is observed. Metallic Fe is initially generated at the pellet 

surface with a reaction interface then moving inwards towards the pellet centre. However, 

at lower temperatures, this pellet-scale reaction interface is less obvious. Instead, it seems 

that there is a trend which shifts from a pellet-scale process to a particle-scale one. 

Despite this, the particle-scale reactions at lower temperatures (down to 1023 K) are still 
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observed to follow a pellet-scale gradient, with the reduction of particles closer to the 

pellet surface going more quickly than those closer to the pellet centre. 

2. For the reduction of Ar-sintered pellets at 1223 K, the morphology of FeO is observed to 

form a network of intersecting channels. This is caused by the enrichment of Ti in TTM 

during reduction. These channels are then further reduced to form metallic Fe from the 

particle surface to the particle centre, which follows the same morphology. By contrast, 

in the pre-oxidised pellets, FeO and metallic Fe form many small nucleates throughout 

the whole particles. 

3. At temperatures much lower than 1223 K, metallic Fe shows either a whiskered structure 

(for Ar-sintered pellets) or a structure with disordered branches coming off larger central 

spines (for pre-oxidised pellets). At temperatures much higher than 1223 K, the final 

morphology of metallic Fe in the fully reduced particles coarsens, and forms into bulbous 

clusters in both types of pellets.  

4. Over the whole temperature range, the unreduced oxides present in the fully reduced 

particles are interspersed as fine islands within the metallic Fe structure. 

 

 What is the reaction path during reduction of the pellets? 
 
1. The phase evolution for both types of pellets is interpreted from the data measured by the 

in-situ ND method. A similar reduction path is observed for both types of pellets, and is 

summarised as TTH → TTM → TTM-Ti enriched + FeO → Fe + FeTiO3 → Fe + ‘Ti-

containing phases (TiO2 or PSB/ferro-PSB)’. TTH is initially rapidly reduced to TTM. 

Then TTM is reduced to FeO with Ti accumulating in the remaining TTM. Afterwards. 

FeO is further reduced to metallic Fe, and the remaining Ti-enriched TTM is reduced to 

metallic Fe and FeTiO3. Although not seen in the in-situ ND data, ex-situ XRD data 

shows that other Ti-containing phases (TiO2 and PSB/ferro-PSB) are also generated at 

the latest reduction stages. 

2. During this reduction path, Ti is enriched within the surrounding TTM when FeO is 

generated. This is a key feature which is substantially different from non-titaniferous iron 

ores. The enrichment of Ti in TTM is confirmed by EDS-maps of partially reduced 

particles containing FeO. The effects of this Ti enrichment on the reduction process is 

summarised in Subsection 9.1.2. 
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 What is the rate-limiting mechanism for the reduction of each type of pellet? 
 

1. A single interface SCM has successfully been applied to describe the reduction process 

at reduction degrees up to X=~90%. At higher reduction degrees a mismatch between the 

model and experimental data is observed. This is attributed to the transition which occurs 

following the complete consumption of FeO such that the remaining reduction occurs 

mainly through reaction of the residual Fe-Ti-O phases dispersed in the pellets, as 

outlined in Subsection 9.1.2. However, for many practical applications, X>90% is above 

the industrial limit, hence equations based upon the single interface SCM provide a 

reasonable description of the reduction progress. 

2. For the reduction of the Ar-sintered pellets at the temperature range studied (993 K to 

1443 K), the rate-limiting step was found to be interfacial chemical reaction. However, 

the activation energy for this reaction varied at separate temperature ranges. Above 1193 

K, the activation energy was 41 ± 1 kJ/mol, with the rate controlling reaction at the 

interface reduction being FeO → metallic Fe. Below 1193 K, the activation energy is 

found to increase to 89 ± 5 kJ/mol, which is attributed to a change in the rate controlling 

reaction to TTM → FeO. At higher temperatures, it seems that the SCM for the Ar-

sintered pellets describes a pellet-scale shrinking core mechanism. But at lower 

temperatures the SEM results suggest it is more consistent with a particle-scale shrinking 

core mechanism. 

3. For the reduction of the pre-oxidised pellets, interfacial chemical reaction was found to 

be the rate-limiting step at temperatures above 1043 K. The activation energy established 

for this reaction was 31 ± 1 kJ/mol, which also appears to be consistent with the rate-

controlling reaction being FeO → metallic Fe at higher temperatures. However, when 

the temperature dropped to 1043 K, the SCM analysis implied a mixed control 

mechanism with the rate of reduction being affected by both interfacial chemical reaction 

rates and diffusion rates through a product layer. However, it is difficult to reconcile this 

interpretation with the SEM results which showed only a broad pellet-scale gradient, and 

no clear shrinking core morphology at the particle-scale.  
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9.1.2 Key differences in the reduction of titanomagnetite ironsand pellets compared to 
non-titaniferous magnetite ores 

 

It is generally accepted that the reduction of the titanomagnetite ores is slower than that of the 

non-titaniferous magnetite [124], [144], [147]. The work presented in this thesis highlights 

several key differences in the reduction of the TTM ironsand pellets studied, compared to the 

expected behaviour of conventional magnetite. These are mainly caused by the presence of Ti 

in the initial TTM lattice. Key features observed include: 

 

1. Initially TTM is reduced to FeO, with Ti found to be enriched in the surrounding 

unreduced TTM. As the overall reduction process progresses, this Ti-enrichment causes 

the stoichiometry of the remaining TTM to be shifted towards the end-point of its 

solubility series, which is Fe2TiO4. Eventually, this changing stoichiometry leads to a 

change in the preferred reaction pathway, and the Ti-enriched TTM is instead directly 

reduced to metallic Fe and FeTiO3. This change of reaction pathway also appears to slow 

the consumption rate of TTM, although this is most noticeable only at higher 

temperatures.  

2. The existence of Ti in the original TTM lattice also affects the morphology of the FeO 

formed during reduction. In the Ar-sintered pellets, FeO forms a structure of intersecting 

channels throughout the particles, rather than a dense continuous structure as is typically 

observed for non-titaniferous magnetite ores [170]–[172]. This is caused by the Ti 

enrichment in the surrounding TTM matrix, which directs initial FeO growth to occur 

along channels, and then prevents these channels from merging. Eventually FeO forms a 

channelled network structure, which surrounds small isolated ‘islands’ of Ti-enriched 

TTM. In the pre-oxidised pellets, though FeO does not show well-structured channels, 

the ‘islands’ of Ti-enriched TTM is still observed in the particles. 

3. The redistribution of Ti during reduction results in the formation of several minor Ti-

containing phases (FeTiO3, TiO2 and PSB/ferro-PSB) during the latest stage of the 

reduction process. These residual Fe-Ti-O phases are dispersed throughout each particle 

within the whole pellets, meaning that at the latest stage of reduction (X>~90%), a 

shrinking core morphology is no longer observed. Accordingly, the single interface SCM 

is not applicable to the latest stage of reduction, which is consistent with the poor fits to 

the SCM of experimental data at X>~90%. 
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9.1.3 The effect of a pre-oxidation on reduction of the ironsand pellets 

 

At low temperatures pre-oxidised pellets are observed to be reduced faster than Ar-sintered 

pellets. However, at temperatures ≥ 1243 K there is little apparent difference between the 

overall reduction rate of each type of pellet. This similar reduction rate agrees with the 

temperature above which the rate-limiting reaction step for both types of pellet is likely to be 

FeO → metallic Fe.  The difference in behaviour at lower temperatures suggest that pre-

oxidation primarily affects the reduction rate of TTM → FeO, as this appears to be the rate-

limiting step for Ar-sintered pellets at 1023 K and 1123 K, but not for pre-oxidised pellets.   

 

The beneficial effects resulting from pre-oxidation are mainly attributed to the formation of 

micro-cracks during early stages of transforming TTH to TTM. These micro-cracks facilitate 

and assist the transport and exchange of gas to the reaction sites, and this also increases the 

number of nucleation sites for FeO.  

 

As a result, for the pre-oxidised pellets, the generation rate of FeO is faster than the Ar-sintered 

pellets at each condition studied. This is also in line with the FeO morphology developed in 

each type of pellets. For the Ar-sintered pellets, the generation of FeO occurs topochemically 

with channels developing. By contrast, in the pre-oxidised pellets, the cracks provide improved 

gas access to reaction sites, leading to the nucleation of FeO throughout each whole particle.
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9.2 Industrial implications 
 

The knowledge obtained from this research has potentially useful industrial implications. This 

study has shown that the reduction of pellets at high temperature in H2 gas can be well described 

by a single interface SCM. Moreover, at high temperatures (>1193 K) the reduction is 

dominantly controlled by the interfacial chemical reaction rate (with rate limiting reaction step 

being FeO → metallic Fe). As a result, parameters which will affect the reaction rate, such as 

temperature, initial pellet diameter, may be optimised to achieve a faster reduction process. It 

is recommended from this study that reduction of smaller pellets at 1443 K could achieve a 

faster reduction rate. However, in a practical vertical fixed-bed reactor, the permeability of the 

reactor should also be taken into consideration. The smallest pellet size may ultimately be 

dictated by the reactor permeability.  This represents a possible topic for future research. 

 

Comparing the reduction characteristics of the Ar-sintered and pre-oxidised pellets, there 

appear to be some advantages in sintering the ‘green’ pellets in air rather than in Ar gas. 

Sintering in air is relatively easier to be conducted than sintering in Ar gas, and pre-oxidation 

increases the overall reduction rate of the pellets at temperatures below 1243 K.  

 

However, it should be noted that additional oxygen is also introduced to the pellets during pre-

oxidation. Removing this extra O2 gas during reduction will increase the consumption of H2 

gas by ~11% for the generation of the same amount of metallic Fe.  

 

The successful application of the SCM can also assist in the future design of an ironsand-pellet 

shaft reactor for H2 direct reduction. However, in order to make the full use, a reaction model 

that incorporates the effect of H2/H2O on the reaction rate is also required. This should be a 

key aspect of future work (see Section 9.3). 
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9.3 Recommendations for future work  
 

The scope of the research in this thesis has been aimed at understanding the DR characteristics 

of the NZ ironsand pellets in H2 gas and determining the rate-limiting reduction mechanisms. 

While these have been thoroughly investigated in this research, further studies are 

recommended in the following aspects: 

 

 This study has investigated the reduction behaviour of small numbers of pellets (either 1 or 

4) in H2 gas. However, a future industrial process would need to reduce large quantities of 

pellets at the same time. Therefore, the performance of reducing a large number of pellets 

in a fixed bed reactor is worth further examining. This might include the investigation of 

binder combination to optimise pellets properties (such as strength and porosity), the reactor 

permeability, and measurements to determine whether sticking or degradation of the pellets 

happens during reduction. In addition, the design of future reactors will require more 

knowledge of the effect of the H2/H2O ratio on the pellet reaction rate, so this also needs to 

be measured. 

 

 Although the SCM successfully described the majority of the reduction process, it fails to 

interpret the data above 90% reduction degree. Further, at lower reduction temperatures, 

particle-scale mechanisms appear to be significant. Further work is required to develop a 

universal reduction model that incorporates both pellet-scale and particle-scale phenomena. 

 

 There is limited existing experimental data on the thermodynamic phase diagram for the Fe-

Ti-O system. Further experimental measurements of this system would help fully 

understand the phase evolution during reduction of ironsand, and in particular the driving 

force for the apparent switch in reduction pathway from TTM → FeO to TTM → FeTiO3 + 

metallic Fe. 

 

 It is also recommended to apply the knowledge obtained from this research to optimise the 

subsequent smelting process. This work has shown that many small ‘islands’ of Ti-

containing slag are formed within the metallic Fe structure during reduction. It is possible 

that during the subsequent smelting process, these Ti-containing particles could become 

entrapped within the metal and hence not properly separated.  A method will be needed to 
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ensure that these small particles can be melted and separated from the molten metallic Fe. 

This may include the mixing of slag-fluxing agents into the pellet at an earlier stage of the 

process. 
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Appendix A  
Additional information for Chapter 3 
 
A.1 Reduction swelling index (RSI) and compressive strength of sintered 

pellets 
  

1. RSI and compressive strength of Ar-sintered pellets 

 

The RSI of the pellets was obtained from measurements of the pellet volume before and after 

reduction in H2 gas based on equation A.1: 

 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑉𝑉0
𝑉𝑉0

                                                    (A.1) 

 

where 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 represents the volume of the pellet after reduction in H2 gas, while 𝑉𝑉0 is the 

volume of the pellet before reduction. Pellet volume was measured using the water immersion 

method. Several sintered pellets (diameter ~7 mm) were reduced at 1343 K for 25 minutes. 

After measuring the volumes of the pellets before and after reduction, it was found that the 

volume of the pellets had expanded on average by ~5% during the course of reduction. 

 

The determination of the compressive strength of the pellets was conducted using a parallel-

plate compression fixture in a Tinius Olsen Testing Machine, H10KT (UK). The pre-load was 

set to be 10 N with a travel speed of 0.5 mm/min. During the test, the load at which the first 

crack in the pellet appeared was regarded as the compressive strength. The results from 

compression tests of seven pellets are shown in Figure A.1. It was determined that the Ar-

sintered pellets (diameter ~7 mm) had an average compressive strength of 800 N ± 100 N per 

pellet. 
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Figure A.1– A plot showing the compressive strength of the seven sintered titanomagnetite 
pellets with an average diameter of 7 mm. The average compressive strength is found to be 

800 N per pellet 

 

2. RSI and compressive strength of pre-oxidised pellets 

 

Similar to before, the RSI and compression strength of the pre-oxidised pellets was also 

characterised. After reduction in H2 gas at 1343 K for 25 minutes, the pre-oxidised pellets 

(diameter ~7 mm) also exhibited ~5% volume expansion. The results for the compressive tests 

of the pre-oxidised pellets (diameter ~7 mm) are shown in Figure 3.9. These pellets showed 

an average compressive strength of ~1100 ± 200 N per pellet. This is slightly higher than the 

Ar-sintered pellets, indicating that oxidative sintering improved the pellet strength. 

 

 
Figure A.2 – A plot showing the compressive strength of six pre-oxidised pellets with an 
average diameter of 7 mm. The average compressive strength is found to be 1100 N per pellet 
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A.2 Calculation of the reduction degree X from TGA experiments 
 

1. Reduction of the Ar-sintered pellets 

In equation 3.1, the factor 0.23 presents the total weight fraction of removable (reducible) 

oxygen in the Ar-sintered pellets. Its determination is based on the balance of electrons during 

reduction as follows: 

 

In the as-received ironsand, there are 21.9wt% Fe2+ (from titration) and 60wt% total Fe (from 

XRF). This then gives 38.1wt% Fe3+. To reduce one atom Fe2+ into metallic Fe, two electrons 

are needed as shown below. Similarly, three electrons are needed to reduce one atom of Fe3+ 

into metallic Fe.  

 

𝐹𝐹𝐹𝐹2+ + 2𝑒𝑒−  → 𝐹𝐹𝐹𝐹                                                           (A.2) 

𝐹𝐹𝐹𝐹3+ + 3𝑒𝑒−  → 𝐹𝐹𝐹𝐹                                                       (A.3) 

 

Therefore, the average amount of electrons needed to reduce the ironsand into metallic Fe is 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  0.219×2+0.381×3
0.219+0.381

= 2.64               (A.4) 

 

These needed electrons are obtained by the removal of oxygen: two electrons are released from 

removing one atom of oxygen (𝑂𝑂2−  → 𝑂𝑂 + 2𝑒𝑒− ). Hence, the total weight fraction of 

removable oxygen in the ironsand which contains 60wt% total Fe is: 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  2.64
2

× 16.00
55.85

× 0.60 = 0.23   (A.5) 

 

Therefore, for 𝑤𝑤0  grams Ar-sintered pellets, the total weight of the removable oxygen is 

0.23 × 𝑤𝑤0 grams. 

 

2. Reduction of the pre-oxidised pellets 

In equation 3.2, the factor 0.26 presents the total weight fraction of removable (reducible) 

oxygen in the pre-oxidised pellets. Its determination is as follows: 
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On oxidative sintering, TTM in the pellets were completely converted to TTH (see Figure 3.7). 

Based on the XRF analysis of the roasted ironsand shown in Table 3.2, 84.5wt% Fe2O3 

presented. Similarly, it can assume that the pre-oxidised pellets also contain 84.5wt% Fe2O3. 

In addition, by completely reducing Fe2O3 to metallic Fe, 30% weight loss is expected from 

mass of oxygen in Fe2O3. As a result, the maximum weight loss of reducing the pre-oxidised 

pellets to metallic Fe is 0.3×0.85 (=0.26). 

 

Therefore, for 𝑤𝑤0  grams pre-oxidised pellets, the total weight of the removable oxygen is 

0.26 × 𝑤𝑤0 grams. 
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A.3 Calibration of the high temperature furnaces for the reduction 
experiments 

 

During this study, several different furnaces were used to conduct reduction experiments. To 

enable effective comparison, the temperature at the sample position in the hot zone of each 

furnace was calibrated. Temperature calibration plots for each furnace are shown in Figure 

A.3, Figure A.4, and Figure A.5 respectively,  where the set temperature of the furnace is 

plotted against the measured temperature by a thermocouple inserted at the sample (pellet) 

position. 

 

 
Figure A.3 – Temperature calibration of the TGA furnace at Callaghan Innovation for the H2 

gas reduction of the pellets at high temperatures (furnace set up shown in Figure 3.8)  
 

 
Figure A.4 – Temperature calibration of the TGA furnace at UOW for the H2 reduction and 

quenching of the pellets (furnace set up shown in Figure 3.11) 
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Figure A.5 – Temperature calibration of the high-temperature vacuum furnace in the ND 

reduction experiment 
 

The gases used for the reduction experiments were N2, Ar and H2, with the purities listed in 

Table A.1. 

 

Table A.1 – Purities of the gases used in the reduction experiment 

H2 N2 Ar 

> 99.98% > 99.99% > 99.99% 
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Appendix B  
Additional information of reducing Ar-sintered pellets for 
Chapter 4 
 
B.1 The full XRD pattern obtained from the fully reduced pellets following 

reduction at each temperature from 1043 K to 1443 K 
 

 

Figure B.1- (Left) Unmagnified XRD diffractograms obtained from fully reduced pellets (Ar-
sintered) at each reduction temperature. Note that only the Fe peak (Peak A) can be readily 
distinguished in each spectrum, such that all spectra appear broadly identical. (Right) The 

same XRD diffractograms shown on a magnified y-axis scale which allows peaks from minor 
oxide phases to be determine
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B.2 Concentration curves of each crystalline phase during reduction of Ar-
sintered pellets at each H2 gas concentration in H2-Ar gas mixtures at a 
flow of 250 ml/min at 1023 K 

 

 

Figure B.2- The concentration (wt%) curves of each crystalline phase during reduction of 
Ar-sintered pellets at a flow of 250 ml/min at 1023 K by H2-Ar gas mixtures with (a) 50vol% 

H2, (b) 75vol% H2, and (c) 100vol% H2 
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B.3 Concentration curves of each crystalline phase during reduction of Ar-
sintered pellets at each H2 gas concentration in H2-Ar gas mixtures at a 
flow of 250 ml/min at 1123 K 

 

 

Figure B.3- The concentration (wt%) curves of each crystalline phase during reduction of 
Ar-sintered pellets at a flow of 250 ml/min at 1123 K by H2-Ar gas mixtures with (a) 10vol% 

H2, (b) 25vol% H2, (c) 50vol% H2, (d) 75vol% H2, and (e) 100vol% H2 
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B.4 The characterisation of the representative particles in the Ar-sintered 
pellet prior to reduction 

 

 

Figure B.4– Back-scattered SEM images showing the particles in the Ar-sintered pellets 
before reduction. (a) uniform particles and (b) non-uniform particles 

 

Table B.1– EDS point analysis (wt%) of specified spots in the particles of Ar-sintered pellets 
(in Figure B.4, the point analysis in the dark areas were averaged) 

 

Ar-
sintered 
pellets 

Points O Fe Ti V Al Mg Mn O/(Fe+Ti) 

1 24.3 65.8 4.3 0.3 2.4 2.0 0.6 0.3 

2 24.0 66.6 4.3 0.3 2.0 2.0 0.7 0.3 

3 27.6 54.4 16.0 0.4 0.7 1.4 0.4 0.4 
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B.5 Back-scattered SEM images of the representative partially reduced Ar-
sintered pellets at 1023 K 

 

1. X=21% reduced pellet 

 

Figure B.5- Particle morphologies at different areas of the 21% pellet reduced at 1023 K: 
(a), (c), and (e) are lower magnification photos of particles at each location, while (b), (d), 

and (f) are corresponding areas at higher magnification. 
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2. X=50% reduced pellet 

3  

Figure B.6- Particle morphologies at different areas of the 50% pellet reduced at 1023 K: 
(a), (c), and (e) are lower magnification photos of particles at each location, while (b), (d), 

and (f) are corresponding areas at higher magnification. 
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3. X=81% reduced pellet 

 

Figure B.7- Particle morphologies at different areas of the 81% pellet reduced at 1023 K: 
(a), (c), (e) and (g) are lower magnification photos of particles at each location, while (b), 

(d), (f) and (h) are corresponding areas at higher magnification. 
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4. Fully reduced pellet 

 

Figure B.8- Particle morphologies at different areas of the fully reduced pellet at 1023 K: 
(a), (c), and (e) are lower magnification photos of particles at each location, while (b), (d), 

and (f) are corresponding areas at higher magnification. 
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B.6 Back-scattered SEM images of the representative partially reduced Ar-
sintered pellets at 1123 K 

1. X=21% reduced pellet 

 
Figure B.9 - Particle morphologies at different areas of the X=21% pellet reduced at 1123 
K: (a), (c), and (e) are lower magnification photos of particles at each location, while (b), 

(d), and (f) are corresponding areas at higher magnification 

 

Figure B.10 – Non-uniform particle morphologies at pellet centre of the X=21% pellet 
reduced at 1123 K at (a) lower magnification and (b) higher magnification 
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2. X=50% reduced pellet 

 

Figure B.11- Particle morphologies at different areas of the X=50% pellet reduced at 1123 
K: (a), (c), and (e) are lower magnification photos of particles at each location, while (b), 

(d), and (f) are corresponding areas at higher magnification. 
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3. X=78% reduced pellet 

 

Figure B.12- Particle morphologies at different areas of the X=78% pellet reduced at 1123 
K: (a), (c), and (e) are lower magnification photos of particles at each location, while (b), 

(d), and (f) are corresponding areas at higher magnification. 
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4. Fully reduced pellet 

 

Figure B.13- Particle morphologies at different areas of the fully reduced pellet at 1123 K: 
(a), (c), and (e) are lower magnification photos of particles at each location, while (b), (d), 

and (f) are corresponding areas at higher magnification. 
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B.7 Back-scattered SEM images of the representative partially reduced Ar-
sintered pellets at 1223 K 

 

1. X=25% reduced pellet 

 

Figure B.14- Particle morphologies at different areas of the X=25% pellet reduced at 1223 
K: (a), (c), and (e) are lower magnification photos of particles at each location, while (b), 

(d), and (f) are corresponding areas at higher magnification. 
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2. X=54% reduced pellet 

 

Figure B.15- Particle morphologies at different areas of the X=54% reduced pellet at 1223 
K: (a), (c), and (e) are lower magnification photos of particles at each location, while (b), 

(d), and (f) are corresponding areas at higher magnification. 
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3. X=82% reduced pellet 

 

Figure B.16- Particle morphologies at different areas of the X=82% pellet reduced at 1223 
K: (a), (c), and (e) are lower magnification photos of particles at each location, while (b), 

(d), and (f) are corresponding areas at higher magnification. 
 

 

 

 



 

241 
 

4. Fully reduced pellet 

 

Figure B.17- Particle morphologies at different areas of the fully reduced pellet at 1223 K: 
(a), (c), and (e) are lower magnification photos of particles at each location, while (b), (d), 

and (f) are corresponding areas at higher magnification. 
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Appendix C  
Additional information of reducing pre-oxidised pellets for 
Chapter 5 
 

C.1 The full XRD pattern obtained from the fully reduced pellets following 
reduction at each temperature from 1043 K to 1443 K 

 

 

Figure C.1- (Left) Unmagnified XRD diffractograms obtained from fully reduced pellets 
(pre-oxidised) at each reduction temperature. Note that only the Fe peak (Peak A) can be 

readily distinguished in each spectrum, such that all spectra appear broadly identical. 
(Right) The same XRD diffractograms shown on a magnified y-axis scale which allows peaks 

from minor oxide phases to be determined.
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C.2 Concentration curves of each crystalline phase during reduction of pre-
oxidised pellets at each H2 gas concentration in H2-Ar gas mixtures at a 
flow of 250 ml/min at 1023 K 

 

 

Figure C.2- The concentration (wt%) curves of each crystalline phase during reduction of 
pre-oxidised pellets at a flow of 250 ml/min at 1023 K by H2-Ar gas mixtures with (a) 50vol% 

H2, (b) 75vol% H2, and (c) 100vol% H2 

 

 

 

 

 

 

 

 

 



 

244 
 

C.3 Concentration curves of each crystalline phase during reduction of pre-
oxidised pellets at each H2 gas concentration in H2-Ar gas mixtures at 
a flow of 250 ml/min at 1123 K 

 

 

Figure C.3 - The concentration (wt%) curves of each crystalline phase during reduction of 
pre-oxidised pellets at a flow of 250 ml/min at 1123 K by H2-Ar gas mixtures with (a) 10vol% 

H2, (b) 25vol% H2, (c) 50vol% H2, (d) 75vol% H2, and (e) 100vol% H2 
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C.4 The characterisation of the representative particles in the pre-oxidised 
pellet prior to reduction 

 

 

Figure C.4 - Back-scattered SEM images showing the particles in the pre-oxidised pellets 
before reduction. (a) uniform particles. (b), (c) and (d) non-uniform particles Note this figure 

has already been published in a paper from the author [162] 

Table C.1- EDS point analysis (wt%) of specified spots in the particles of pre-oxidised pellets 
(in Figure C.4, the point analysis in the dark areas were averaged) Note this table has 

already been published in a paper from the author [162] 

Areas O Fe Ti Al Mg Mn O/(Fe+Ti) 

Particle 1 28.3 63.2 4.2 1.5 1.8 1 0.4 

Particle 2  28.5 62.6 4.3 2.0 1.9 0.8 0.4 

Dark phase in (b) 31.9 46.2 19.2 1.1 1.3 - 0.5 

Light phase in (b) 28.6 61.0 6.0 1.0 2.6 0.8 0.4 

Dark phase in (c) 29.7 53.5 13.7 1.8 1.4 - 0.4 

Light phase in (c) 28.5 62.3 5.0 1.7 1.8 0.7 0.4 

Dark phase in (d) 29.9 48.6 1.9 9.8 9.1 0.8 0.6 

Light phase in (d) 28.3 63.1 3.6 3 2.1 - 0.4 
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C.5 Back-scattered SEM images of the representative partially reduced 
pre-oxidised pellets at 1023 K 

 

1. X=21% pellet 

 

Figure C.5 - Particle morphologies at different areas of the X=21% pellet reduced at 1023 
K: (a), (c), (e) and (g) are lower magnification photos of particles at each location, while (b), 

(d), (f) and (h) are corresponding areas at higher magnification. 
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2. X=55% pellet 

 

Figure C.6 - Particle morphologies at different areas of the X=55% pellet reduced at 1023 
K: (a), (c), and (e) are lower magnification photos of particles at each location, while (b), 

(d), (f) and (h) are corresponding areas at higher magnification. 
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3. X=79% pellet 

 

Figure C.7- Particle morphologies at different areas of the X=79% pellet reduced at 1023 K: 
(a), (c), and (e) are lower magnification photos of particles at each location, while (b), (d), 

(f) and (h) are corresponding areas at higher magnification. 
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4. Fully reduced pellet 

 

Figure C.8 - Particle morphologies at different areas of the fully reduced pellet at 1023 K: 
(a), (c), and (e) are lower magnification photos of particles at each location, while (b), (d), 

and (f) are corresponding areas at higher magnification. 
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C.6 Back-scattered SEM images of the representative partially reduced 
pre-oxidised pellets at 1123 K 

 

1. X=18% pellet 

 

Figure C.9- Particle morphologies at different areas of the 18% pellet reduced at 1123 K: 
(a), (c), (e) and (g) are lower magnification photos of particles at each location, while (b), 

(d), (f) and (h) are corresponding areas at higher magnification 
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2. X=56% pellet 

 
Figure C.10- Particle morphologies at different areas of the 56% pellet reduced at 1123 K: 
(a), (c), (e) and (g) are lower magnification photos of particles at each location, while (b), 

(d), (f) and (h) are corresponding areas at higher magnification. 
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3. X=80% pellet 

 

Figure C.11- Particle morphologies at different areas of the 80% pellet reduced at 1123 K: 
(a), (c), (e) and (g) are lower magnification photos of particles at each location, while (b), 

(d), (f) and (h) are corresponding areas at higher magnification. 
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4. Fully reduced pellet 

 

Figure C.12- Particle morphologies at different areas of the fully reduced pellet at 1123 K: 
(a), (c), and (e) are lower magnification photos of particles at each location, while (b), (d), 

and (f) are corresponding areas at higher magnification. 
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C.7 Back-scattered SEM images of the representative partially reduced 
pre-oxidised pellets at 1223 K 

 

1. X=23% pellet 

 

Figure C.13- Particle morphologies at different areas of the 23% pellet reduced at 1223 K: 
(a), (c), (e) and (g) are lower magnification photos of particles at each location, while (b), 

(d), (f) and (h) are corresponding areas at higher magnification. 
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2. X=53% pellet 

 

Figure C.14- Particle morphologies at different areas of the 53% pellet reduced at 1223 K: 
(a), (c), and (e) are lower magnification photos of particles at each location, while (b), (d), 

and (f) are corresponding areas at higher magnification. 
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3. X=81% pellet 

 

Figure C.15- Particle morphologies at different areas of the 81% pellet reduced at 1223 K: 
(a), (c), (e) and (g) are lower magnification photos of particles at each location, while (b), 

(d), (f) and (h) are corresponding areas at higher magnification. 

 



 

257 
 

 

4. Fully reduced pellet 

 

Figure C.16 - Particle morphologies at different areas of the fully reduced pellet at 1223 K: 
(a), (c), and (e) are lower magnification photos of particles at each location, while (b), (d), 

and (f) are corresponding areas at higher magnification.
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Appendix D  
Additional information for Chapter 7 – Calculation of Ti 
stoichiometry in TTM during reduction 
 

D.1 Ar-sintered pellets at 1023 K 
 

 

Figure D.1– The change of Ti mole fraction during reduction of Ar-sintered pellets at each 
H2 gas content at 1023 K. (a) 50vol%, (b) 75vol%, and (c) 100vol% 
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D.2 Ar-sintered pellets at 1123 K 

 

Figure D.2– The change of Ti mole fraction during reduction of Ar-sintered pellets at each 
H2 gas content at 1123 K. (a) 10vol%, (b) 25vol%, (c) 50vol%, (d) 75vol%, and (e) 100vol% 
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D.3 Ar-sintered pellets at 1223 K 
 

 

Figure D.3– The change of Ti mole fraction during reduction of Ar-sintered pellets at each 
H2 gas content at 1223 K. (a) 5vol%, (b) 10vol%, (c) 25vol%, (d) 50vol%, (e) 75vol%, and (f) 

100vol% 
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D.4 Pre-oxidised pellets at 1023 K 
 

 

Figure D.4– The change of Ti mole fraction during reduction of pre-oxidised pellets at each 
H2 gas content at 1023 K. (a) 50vol%, (b) 75vol%, and (c) 100vol% 
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D.5 Pre-oxidised pellets at 1123 K 

 

Figure D.5– The change of Ti mole fraction during reduction of pre-oxidised pellets at each 
H2 gas content at 1123 K. (a) 10vol%, (b) 25vol%, (c) 50vol%, (d) 75vol% and (e) 100vol% 
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D.6 Pre-oxidised pellets at 1223 K 
 

 

Figure D.6– The change of Ti mole fraction during reduction of pre-oxidised pellets at each 
H2 gas content at 1223 K. (a) 5vol%, (b) 10vol%, (c) 25vol%, (d) 50vol%, (e) 75vol%, and (f) 

100vol% 
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