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Abstract

Every spacetime is defined by its metric, the mathematical object which
further defines the spacetime curvature. From the relativity principle, we
have the freedom to choose which coordinate system to write our met-
ric in. Some coordinate systems, however, are better than others. In this
text, we begin with a brief introduction into general relativity, Einstein’s
masterpiece theory of gravity. We then discuss some physically interest-
ing spacetimes and the coordinate systems that the metrics of these space-
times can be expressed in. More specifically, we discuss the existence of
the rather useful unit-lapse forms of these spacetimes. Using the metric
written in this form then allows us to conduct further analysis of these
spacetimes, which we discuss.

Overall, the work given in this text has many interesting mathematical
and physical applications. Firstly, unit-lapse spacetimes are quite com-
mon and occur rather naturally for many specific analogue spacetimes.
In an astrophysical context, unit-lapse forms of stationary spacetimes are
rather useful since they allow for very simple and immediate calculation
of a large class of timelike geodesics, the rain geodesics. Physically these
geodesics represent zero angular momentum observers (ZAMOs), with
zero initial velocity that are dropped from spatial infinity and are a rather
tractable probe of the physics occurring in the spacetime. Mathematically,
improved coordinate systems of the Kerr spacetime are rather important
since they give a better understanding of the rather complicated and chal-
lenging Kerr spacetime. These improved coordinate systems, for exam-
ple, can be applied to the attempts at finding a “Gordon form” of the Kerr



spacetime and can also be applied to attempts at upgrading the “Newman-
Janis trick” from an ansatz to a full algorithm. Also, these new forms of
the Kerr metric allows for a greater observational ability to differentiate
exact Kerr black holes from “black hole mimickers”.
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Chapter 1

Introduction

1.1 Why use the concept of a curved spacetime?

Pre-relativity we believed that we lived a 3-dimensional Euclidean space
that evolved with time, that is to say: a 3-dimensional flat space where
time and space were viewed as separate quantities entirely. Not only that,
but we also believed that many quantities we measured were observer
independent such as distance and acceleration. For these quantities, what
one person measured would be exactly the same as anyone else’s measure-
ment. Velocities were relative however, but the Galilean velocity trans-
formation law was very trivial (and also not an accurate description of
physical reality). However, Einstein was able to use electromagnetism
to show that some of these quantities (such as distance and acceleration)
are observer dependent, each observer will measure a quantity relative
to their frame of reference, but these different values are equivalent; if
transformed correctly between frames. Thus, we find that there exists no
preferred frame, no preferred observer. Around the same time, Hermann
Minkowski proposed the concept of spacetime. Instead of viewing space
and time to be separate objects, we view them to be both part of a larger
object, spacetime. A 4-dimensional Euclidean (for now) space, with 3 spa-
tial dimensions and one temporal, where time and space are now on, more
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2 CHAPTER 1. INTRODUCTION

or less, equal footing. These ideas are the basis of special relativity.

However, it turns out that that there do exist some observer indepen-
dent quantities in special relativity, the most important being the space-
time interval between two events in spacetime, defined as follows:

I = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 . (1.1.1)

We notice that this looks like the 3-dimensional form of Pythagoras’ the-
orem if we neglect the first term on the right hand side of the equation.
Indeed this is the line element which defines the metric of flat spacetime
(the idea of a metric will be expanded on later). Thus, equation (1.1.1)
gives the squared ‘distance’ between two separated events in flat space-
time. Since equation (1.1.1) is observer independent, this quantity must
be a fundamental property of the spacetime itself. Hence, we can use the
structure of spacetime itself to define quantities that can be measured by
observers in that spacetime. This is one of the ideas that led Einstein to
formulate general relativity, using the structure of a curved spacetime to
define gravitational fields in that spacetime.

So, we can use fundamental properties of a spacetime to define measur-
able quantities in our spacetime, but how does considering a curved space-
time correlate with gravity? This connection comes from the Equivalence
Principle. The Equivalence principle can be stated as follows: ”one cannot
distinguish between gravitational and inertial forces”. The building blocks for
this principle can even be seen in the Newtonian theory of gravity, which
states that the gravitational force an object experiences is proportional to
its inertial mass, this is called the universality of free fall. Einstein then
took this idea and the relativity principle to form the equivalence princi-
ple. We can visualise this principle through the following thought exper-
iment: if we were in a small, closed box with no windows, we wouldn’t
be able to tell if we were being accelerated towards the ‘floor’ of the box
due to the gravity of a massive object or if we were in a vacuum and expe-
riencing acceleration due to rocket boosters on the box which accelerates
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us at the same rate that the gravitational field of the object would. Hence,
these two physical systems are equivalent. Now the interesting part comes
when we consider the propagation of light in these two systems.

Consider we are in a box being accelerated due to rocket boosters, fur-
thermore, imagine we have a laser in this box. We turn on the laser and we
find that the path that the light takes, as viewed by us in our accelerating
box, is a curved line. Hence, in a gravitational field, light must also follow
curved lines. However, from Fermat’s principle, we know that the path
that light follows between two points is the path of least time connecting
those two points. In Euclidean space, the path of least time between any
two points is a straight line. But, in a gravitational field, we see that light
does not follow a “straight line” as observed by us in the box. Hence,
we must conclude that space (and hence spacetime) is curved in regions
where observers experience a gravitational field.

The ideas that spacetime is curved in regions where observers experi-
ence a gravitational field and that we can define measurable quantities via
intrinsic properties of the spacetime itself are the core tenets of general rel-
ativity. We use the properties of a curved spacetime, namely the metric, to
define ‘gravitational fields’ on our spacetime. More specifically, the curva-
ture of spacetime causes the paths that particles travel along (geodesics) to
be curved, which is how we view particles to move within a gravitational
field.

We now focus on the mathematical framework required to properly
express these ideas. This framework is the topic of differential geometry.
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Chapter 2

Fundamentals

2.1 Spacetime as a 4-dimensional manifold

Before we can construct the interesting quantities that allow us to define
gravitational fields, we must begin by giving a precise notion of what we
mean by ’spacetime’. We start by defining a topological space.

Definition 2.1.1 (Topological Space)
A topological space (E , T ) is a set E with a collection T of open subsets of
E (called the topology on E) such that:

1. The union of an arbitrary number of subsets in T , is in T . i.e. If
Oα ∈ T for all α, then

⋃
α

Oα ∈ T .

2. The intersection of a finite number of subsets in T is in T . i.e. If
O1, O2, ..., On ∈ T , then

n⋂
i=1

Oi ∈ T .

3. The set E and the empty set ∅ is in T .

Next we define a Hausdorff topological space.

5



6 CHAPTER 2. FUNDAMENTALS

Definition 2.1.2 (Hausdorff)
A topological space (E , T ) is Hausdorff if for every pair of distinct points
p, q ∈ E , p 6= q, we can find open sets Op, Oq ∈ T , such that: p ∈ Op, q ∈ Oq

and Op ∩ Oq = ∅. That is to say, for every distinct pair of points p, q ∈ E ,
there exists two open sets each containing one (and only one) of the points
which do not overlap.

We now define the notion of a locally Euclidean space.

Definition 2.1.3 (Locally Euclidean Space)
A topological space (E , T ) is locally Euclidean if the following condition
is satisfied: ∀x ∈ E , ∃O ∈ T and ∃n ∈ Z+ such that: x ∈ O, ∃X ⊂ Rn and
∃ homeomorphism f : O ↔ X . That is to say, for every point in E there
exists an open neighbourhood around it which can be mapped 1 to 1 and
bi-continuously to a subset of Rn, i.e. there exists a region surrounding
each point in E that ‘looks like’ a segment of an n-dimensional Euclidean
space.

We are now very close to being able to properly define a manifold, but we
must first define charts, atlases and the notion of a connected topological
space.

Definition 2.1.4 (Chart)
A chart (O, f, U) on an open subset O ∈ T is a set U ∈ Rn, with a homeo-
morphism f : O ↔ U = f(O).

Chart is a mathematical term but physicists typically call these objects a
coordinate system. Charts are simply maps between open sets O ∈ T and
subsets U of Rn, in this way we can identify O as a segment of Rn.
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Figure 2.1: The map fi maps an open subset Oi ∈ T to an open subset
Ui ⊂ Rn.

Definition 2.1.5 (Atlas)

An atlas is a collection of charts that covers the entire locally Euclidean
space E .

Definition 2.1.6 (Connected Topological Space)

A topological space (E , T ) is connected iff E and ∅ are the only sets in T
that are both open and closed.

Alternatively, a connected space is a space that is not the union of two or
more disjoint open spaces. We shall assume that spacetime is connected,
this is because if spacetime were disconnected, then the only segment of
spacetime that we would be interested in is the segment we live in. Hence,
we can disregard the other segments, then we are left with a connected
spacetime.
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We are now ready to define a manifold.

Definition 2.1.6 (Manifold)

A manifoldM is a locally Euclidean space such that:

1. M is connected.

2. M has the same dimension everywhere.

3. M is Hausdorff.

4. M has at least one countable atlas.

By countable atlas, we mean that every chart in the atlas can be put into a 1
to 1 correspondence with the set of natural numbers, N.

We can now see that spacetime can be defined as a 4-dimensional man-
ifold. This structure of spacetime allows us to define vectors, tensors and
later the notion of curvature on the spacetime itself, which is paramount
to the formulation of general relativity.

2.2 Vectors, dual vectors and tensors

Let M be a manifold of dimension n. We define a curve h(λ) on the
manifold M to be a map h : R → M. Notice, h(λ) is a parametric
curve, parametrised by λ, i.e. different values of λ represent different
points along the curve h. Given a chart (O, f, U) we can construct the map
f ◦ h(λ) : R → Rn, such that xa(λ) = f ◦ h(λ) = f(h(λ)) ∈ f(U) ⊂ Rn.
The upper index a in xa(λ) denotes the various components of xa(λ) and
ranges a ∈ N : 0 ≤ a ≤ n (since xa(λ) is simply just a vector in Rn). The
object xa(λ) can be seen as the ‘collection of coordinates corresponding to
points along the curve h(λ)’.
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Figure 2.2: Given a coordinate system, the object xa(λ) can be seen as the
‘collection of coordinates corresponding to points along the curve h(λ)’.

Consequently, the tangent vector of xa(λ) is denoted as:

T a =
dxa

dλ
. (2.2.1)

Our choice of parametrisation is arbitrary, we may choose to reparametrise
our curve h(λ)→ h(λ̄). If we do so, then by the chain rule we find:

T̄ a =
dxa

dλ̄
=
dλ

dλ̄

dxa

dλ
=
dλ

dλ̄
T a . (2.2.2)

If we now wish to change our coordinate patch U to Ū (via f̄ ◦ f−1 :

f−1(U)→ f̄(U)), then via the multi-variable chain rule, we find:

T̄ a =
dx̄a

dλ
=

n∑
b=1

∂x̄a

∂xb
dxb

dλ
=

n∑
b=1

∂x̄a

∂xb
T b . (2.2.3)
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Hence, once given a vector in one particular coordinate system, we can
transform it to any other coordinate system (this is similar to transforming
vectors under a change in basis). We can also define vectors via equation
(2.2.3), any mathematical object that transforms via equation (2.2.3) under
a change in coordinates, is a vector.

Tangent vectors are defined at one point p ∈ M, the set of all tangent
vectors at the point p called the tangent space at p is denoted as Vp.

We can also make the correspondence between vectors and directional
derivatives. Let F denote the set of all C∞ functions (i.e. continuously
differentiable functions) fromM to R. We can define the vector v at point
p ∈M to be a map v : F → R which satisfy the following properties:

1. Linearity: v(af + bg) = av(f) + bv(g) for all f, g ∈ F and a, b ∈ R.

2. Leibnitz rule: v(fg) = f(p)v(g) + g(p)v(f) for all f, g ∈ F .

Hence, we can write v =
∑n

a=1 v
a∂a (where ∂a ≡ ∂/∂xa). Furthermore, the

vectors ∂a form a basis of Vp, therefore we see that Vp has the structure of a
vector space via the conditions stated above. Notice that since ∂a are basis
vectors, we denote their components with subscripts.

For every vector space V , there exists a dual vector space V ∗ whose el-
ements are maps from V into R, i.e. for va ∈ V and wa ∈ V ∗, wava =

w(v) ∈ R. We now look at a couple simple examples of dual vectors. For
Rn the dual to a column vector is a row vector, via matrix multiplication,
the product of a column vector and a row vector produces a scalar. In
quantum mechanics vectors in a Hilbert space define the possible states of
our physical system, we typically denote these vectors by kets |α〉 where
α is some parameter which defines that possible state. The corresponding
dual vector to this ket is a bra 〈α|, these objects are the foundations of bra-
ket notation (or bracket notation, to this day we have no idea where the c
went...). We notice that for each vector there is a corresponding dual vec-
tor, in fact there exists an isomorphism between any vector space V and its
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corresponding dual vector space V ∗, for example in Rn we can transform
a column vector to a row vector (and vice-versa) via transposition and for
bra-ket notation, we can transform a ket into a bra (and vice-versa) by tak-
ing the Hermitian conjugate.

Taking the tangent space at point p ∈M, Vp, we can construct the dual
vector space, Vp∗, whose elements are denoted aswa where the lower index
a again denotes the various components of wa and ranges a ∈ N : 0 ≤ a ≤
n. Using upper and lower indices allow us to differentiate between vectors
and dual vectors (note: the isomorphism between Vp and V ∗p will be shown
in due time). We now give more precise definitions of dual vectors in the
dual vector space Vp∗. Let φ(p) be a map fromM into R. Then given a chart
(O, f, U) we can write φ(xa) which means φ ◦ f−1 : f(O) = U ⊆ Rn → R.
Then we can write the components of the dual vector wa as:

wa =
∂φ

∂xa
. (2.2.4)

If we now wish to change our coordinate patch U to Ū (via f̄ ◦ f−1 :

f−1(U)→ f̄(U)), then via the multi-variable chain rule, we find:

w̄a =
∂φ

∂x̄a
=

n∑
b=1

∂xb

∂x̄a
∂φ

∂xb
=

n∑
b=1

∂xb

∂x̄a
wb . (2.2.5)

Hence, once given a dual vector in one particular coordinate system, we
can transform it to any other coordinate system. Similar to before we can
also define dual vectors via equation (2.2.5), any mathematical object that
transforms via equation (2.2.5) under a change in coordinates, is a dual
vector.

Now that we have introduced vectors and dual vectors we can now con-
sider maps on vectors and dual vectors, more specifically we can now de-
fine tensors. Let V be a finite dimensional vector space and let V ∗ be its
corresponding dual vector space. Then a tensor of type (k, l) is a multilin-
ear map

T : V ∗ × ...× V ∗︸ ︷︷ ︸
k

×V × ...× V︸ ︷︷ ︸
l

→ R .
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That is, given l vectors and k dual vectors, T maps these into real numbers
and if we fix all but one vector or dual vector, T is a linear map on this
variable. We will denote a tensor of type (k, l) as T a1a2...ak b1b2...bl here (as
before) the indices denote the various components of the tensor and range
from 0 to n (the dimension of our vector space). Tensors can be viewed as
a generalisation of scalars, vectors and matrices. A tensor of type (0, 0) is
a scalar, a tensor of type (1, 0) is a vector, a tensor of type (0, 1) is a dual
vector and a tensor of type (1, 1), (2, 0) and (0, 2) are matrices (note: while
these all represent matrices, they all transform differently under a change
in coordinate basis as we shall see). Similar to vectors and matrices, we
can define some operations on tensors. Firstly, outer products, given two
tensors say T of type (k, l) and T ′ of type (k′, l′) we can construct a new
tensor S via the outer product S = T ⊗ T ′ denoted as:

Sa1...ak+k′ b1...bl+l′ = T a1a2...ak b1b2...blT
′ak+1ak+2...ak+k′

bl+1bl+2...bl+l′
. (2.2.6)

The second operation we can perform is contraction. Let T (k, l) denote the
set of all tensors of type (k, l), then contraction is the map C : T (k, l) →
T (k − 1, l − 1) defined as

CT = T a1...ak−1
b1...bl−1

=
n∑
i=0

T a1...i...ak b1...i...bl (2.2.7)

here we choose one upper index and one lower index (not necessarily in
the same index location, i.e. we can contract the ith upper index with the
jth lower index for all 0 ≤ i ≤ k and 0 ≤ j ≤ l) then we sum over all
tensors with their corresponding indices evaluated as component i. To get
a better understanding of this, we look at the simple example where T is
just a matrix, a tensor of type (1, 1) T ab, if we contract over a and b we get

CT = T aa =
n∑
i=0

T ii = T 0
0 + T 1

1 + ...+ T nn ≡ Tr[T ] . (2.2.8)

Hence, we see that contraction on this tensor is the same as taking the
trace of the matrix. So, we can generalise this to say that contraction on a
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general tensor T a1a2...ak b1b2...bl is similar to taking the trace over some upper
index ai and some lower index bj . Notice in equation (2.2.8) we have used
the notation T aa =

∑n
i=0 T

i
i, this is known as the Einstein summation con-

vention. When we see the same symbol in the top index and lower index
of a tensor (e.g. T aa) or tensor product (e.g. wava), it is assumed that we
are summing over that variable.

If we now wish to change our coordinate patch U to Ū (via f̄ ◦ f−1 :

f−1(U)→ f̄(U)), then we know that vectors transform as

v̄a =
∂x̄a

∂xb
vb

while dual vectors transform as

w̄a =
∂xb

∂x̄a
wb .

hence, we can “bootstrap” this to tensors of type (k, l) as

T̄ a1...ak b1...bl = T a
′
1...a

′
k
b′1...b

′
l

∂x̄a1

∂xa
′
1
...
∂x̄ak

∂xa
′
k

∂xb
′
1

∂x̄b1
...
∂xb

′
l

∂x̄bl
. (2.2.9)

Like with vectors and dual vectors, equation (2.2.9) can be used as the defi-
nition of a tensor, i.e. any mathematical object that transforms via equation
(2.2.9) under a change in coordinates, is a tensor.

Much like with matrices, we can think of tensors as being symmetric or
anti-symmetric. As a reminder, a symmetric matrix satisfies the property
Mij = Mji while an anti-symmetric matrix satisfies the property Mij =

−Mji. For simplicity let us first consider a tensor of type (0, 2), we can
define symmetric parts and anti-symmetric parts of the tensor as follows,
for the symmetric part

T(ab) =
1

2
(Tab + Tba) (2.2.10)

while for the anti-symmetric part

T[ab] =
1

2
(Tab − Tba) . (2.2.11)
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A totally symmetric tensor of type (0, 2) satisfies the property T(ab) = Tab

or equivalently T[ab] = 0 and via equation (2.2.11) Tab = Tba, while a totally
anti-symmetric tensor of type (0, 2) satisfies the property T[ab] = Tab or
equivalently T(ab) = 0 and via equation (2.2.10) Tab = −Tba as stated above.
More generally, for a tensor of type (0, l) we have for the symmetric part

T(a1...al) =
1

l!

∑
π

Taπ(1)...aπ(l) (2.2.12)

while for the anti-symmetric part

T[a1...al] =
1

l!

∑
π

δπTaπ(1)...aπ(l) (2.2.13)

where we are summing over all permutations (π) of 1, ..., l and δπ is 1 for
every even permutation and −1 for every odd permutation.

We are now ready to define arguably the most important tensor in gen-
eral relativity, the metric tensor. The mathematical definition of a metric
and the physicists’ definition of a metric (which we will use here) differ
slightly.

In mathematics a metric is a function d : X ×X → R≥0 which satisfies the
following conditions:

1. d(x, y) = 0⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y)

we see that this implies that d(x, y) ≥ 0 for all x, y ∈ X . However, in gen-
eral relativity we consider metrics where the metric can be less than zero
and hence the first and third condition stated above doesn’t necessarily
hold for all x, y ∈ X , however the second condition, the symmetry con-
dition, still holds. Physically, the metric defines the distance between any
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two events in our curved spacetime. If we consider a Euclidean 3-space
(i.e. no time) via Pythagoras’ theorem we have

ds2 = dx2 + dy2 + dz2 = δab dX
adXb (2.2.14)

where dXa = (dx, dy, dz)T and written as an array

δab =

1 0 0

0 1 0

0 0 1


ab

. (2.2.15)

If we consider a Euclidean spacetime, via equation (1.1.1) we have

ds2 = −dt2 + dx2 + dy2 + dz2 = gab dX
adXb (2.2.16)

where dXa = (dt, dx, dy, dz)T and written as an array

gab =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


ab

. (2.2.17)

The type (0, 2) and symmetric tensor gab is called the metric tensor and is
defined by the equation

ds2 = gab dX
adXb (2.2.18)

and in the examples above we see once given the infinitesimal line element
of any spacetime, we can “read off” the components of the metric tensor.
Once we have a metric, we can define the inverse metric denoted as gab,
where gab gab = n (where n is the dimension of the manifold) and gab g

bc =

δa
c (where δac is the Kronecker delta) . We can calculate the inverse metric

by writing the metric as an array and then finding the matrix inverse.
The metric not only gives us the infinitesimal squared distance be-

tween any two events in our spacetime, but also is the isomorphism that
takes vectors in our tangent space Vp to dual vectors in our dual tangent
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space V ∗p , and vice-versa, via tensor product. For example, we can trans-
form a vector into a dual vector via va = gab v

b and we can transform a dual
vector into a vector via wa = gabwb. Furthermore, we can use the metric
tensor to raise and lower indices of tensors of arbitrary type. For example
T abc = gad gce Td

be.

2.3 Curvature

We now begin to discuss the notion of curvature in our spacetime. We
normally find the curvature of a line or surface by embedding it in a
higher dimensional space. For example, we can view the curvature of a
2-dimensional surface by embedding it in a 3-dimensional space, this is
the way that curvature is found in usual multi-variable calculus. How-
ever in general relativity, our spacetimes are usually not embedded within
a higher dimensional space. We could take that route if we wanted to, but
this would prove to be more complicated than necessary since we would
have to construct more mathematical objects in higher dimensions (that
are not physical objects nor have any known physical relevance). Hence,
we define curvature in our spacetime by constructing mathematical ob-
jects within the spacetime itself. This is an interesting problem, how can
observers in a curved space measure the curvature of that space without
relying on higher dimensions? We define curvature by looking at how vec-
tors transform when parallel propagated along curves within our space-
time.

To see how parallel propagated vectors can define curvature, imagine
a flat 2-dimensional plane with a circle on its surface. If we have a tangent
vector to the circle at any point and parallel propagate it around the cir-
cle (this means moving the vector without changing its direction, we can
think of this as ‘picking up’ the ‘base’ of the vector and moving it along
the curve), then we find that when the vector returns to its original posi-
tion, it is pointing in the same direction, i.e. the vector is unchanged when
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parallel propagated around the curve.

(a) Parallel propagation on a

flat surface

(b) Parallel propagation on the

surface of a sphere

Figure 2.3: Examples of parallel propagation of vectors on various sur-
faces.

But now imagine a 3-dimensional sphere like the Earth for example
(the Earth is really an oblate spheroid, but in this case we will ignore this
fact), furthermore, imagine a tangent vector at the equator of the sphere
pointing towards one of the poles as shown in figure 2.3. Now if we paral-
lel propagate this vector to the pole, then we parallel propagate the vector
back to the equator along a curve that is perpendicular to the first curve
of propagation and finally propagate the vector along the equator back to
its starting location on the sphere, we will find that the vector is now per-
pendicular to the original vector. Hence, curvature on a manifold can be
viewed as a measure of the failure of a vector to return to its original value
when parallel propagated along a closed loop in the manifold. However,
an equivalent description of curvature is that curvature can be viewed as
the failure of successive derivative operators to commute. Hence, we will
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define curvature in this method, which we will then see is intrinsically
linked to parallel propagation.

We start by defining a derivative operator on our manifold. A covariant
derivative operator ∇a (note: although we use a lower index, ∇a is not
really a dual vector, however it is convention to write it in this manner) is
an operator which satisfies the following conditions:

1. Linearity:

∇c(αA
a1...ak

b1...bl + βBa1...ak′
b1...bl′

) = α∇cA
a1...ak

b1...bl + β∇cB
a1...ak′

b1...bl′

for all A ∈ T (k, l), B ∈ T (k′, l′) and α, β ∈ R.

2. Leibnitz rule:

∇e(A
a1...ak

b1...blB
c1...ck′

d1...dl′
) =∇e(A

a1...ak
b1...bl)B

c1...ck′
d1...dl′

+ Aa1...ak b1...bl(∇eB
c1...ck′

d1...dl′
)

for all A ∈ T (k, l) and B ∈ T (k′, l′).

3. Commutativity with contraction:

∇dCT = ∇d(A
a1...c...ak

b1...c...bl) = ∇dA
a1...c...ak

b1...c...bl = C(∇dT )

for all T ∈ T (k, l)

4. Consistency with directional derivatives:

v(f) = va∇af

for all f ∈ F (see page 10) and all va ∈ Vp.

5. Torsion free:
∇a∇bf = ∇b∇af

for all f ∈ F (note: there is no direct physical need for our theory
to include torsion. However, in string theory and some other al-
ternate/modified theories of gravity, this condition is not imposed
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which implies the existence of a tensor T abc which is anti-symmetric
in b and c such that ∇b∇cf − ∇c∇bf = T abc∇af called the torsion
tensor. But here we will assume this tensor to be zero).

We now derive the action of the covariant derivative operator ∇a on a
vector in our spacetime. We use the notation as shown on page 10 where
we represent a vector by v = vaea ∈ Vp, where ea is the collection of basis
vectors of Vp and va is a collection of scalar functions. Acting on v, we have

∇bv = ∇b(v
aea) = (∇bv

a)ea + va∇bea . (2.3.1)

However, when acting on a scalar function f , we define

∇af ≡ ∂af . (2.3.2)

Hence we have
∇bv = (∂bv

a)ea + va∇bea . (2.3.3)

Now, in our curved spacetime, the tangent space at p ∈M, Vp, is a distinct
vector space from the tangent space at q ∈ M, Vq where q 6= p. Hence, the
basis vectors in Vp will be different from those in Vq, they change through-
out the manifold. However, they change in a very precise manner, they
change under the action of parallel transport. Hence, it is sufficient to
know the basis vectors of Vp at some point p ∈ M then via parallel trans-
port we can find the basis vectors of Vq for any other point q ∈ M. This is
all well and good, but how do we mathematically formulate this notion?
Given a curve h(λ) with tangent T a, a vector va is parallel transported
along the curve h(λ) if the following condition is satisfied

T a∇av
b = 0 . (2.3.4)

This shows us if a vector is parallel transported but does not give the com-
ponents of the transported vector. For our basis vectors, we can transport
these vectors along v, or equivalently we can transport these vectors along
each coordinate and sum these transformations. That is, we calculate

∇bea = Γcabec . (2.3.5)
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Where Γcab is the Christoffel symbol, which can be used to calculate basis
vectors after they have been parallel propagated throughout the manifold.

Figure 2.4: We define the Christoffel symbol by how basis vectors trans-
form when parallel propagated along a coordinate curve in our manifold.

As shown in figure 2.4, the first index of the Christoffel symbol denotes
the various components of vector ∇bea, the second index tells us which
basis vector is being transported and the third index tells us along which
coordinate the basis vectors are being transported along.

Now that we know how basis vectors transform when parallel prop-
agated along some curve in our manifold, and moreover how to calcu-
late the covariant derivative of our basis vectors, we can define how the
derivative operator acts on a vector v. We have

∇bv = (∂bv
a)ea + va∇bea

= (∂bv
a)ea + vaΓcabec

= (∂bv
a)ea + Γacbv

cea

(2.3.6)

where to get from the first line to the second we used the definition of how
∇b acts on our basis vectors, equation (2.3.5), and from the second to the
third line we made the index substitution a↔ c. Now, to recast this in our
usual index notation, we notice that ∇bv is itself a vector. Hence we write
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∇bv as (∇bv)a = ∇bv
a ⊗ ea = (∇bv

a)ea. Hence, we have

(∇bv
a)ea = (∂bv

a)ea + Γacbv
cea (2.3.7)

therefore

∇bv
a = ∂bv

a + Γacbv
c . (2.3.8)

Which now gives the action of the derivative operator on a vector va ∈ Vp.
Now to calculate the action of the derivative operator on some dual

vector wa we calculate the action of ∇b on the scalar function vawa (for
some arbitrary vector va). That is

∇b(v
awa) = ∇b(v

a)wa + va∇bwa . (2.3.9)

But since vawa is a scalar function, we also have

∇b(v
awa) ≡ ∂b(v

awa) = ∂b(v
a)wa + va∂bwa (2.3.10)

hence

∇b(v
a)wa + va∇bwa = ∂b(v

a)wa + va∂bwa . (2.3.11)

Recall that∇bv
a = ∂bv

a + Γabcv
c, so we find

(∂bv
a + Γabcv

c)wa + va∇bwa = ∂b(v
a)wa + va∂bwa (2.3.12)

hence

va∇bwa = va∂bwa − Γabcv
cwa . (2.3.13)

In the second term on the right hand side of the equation above the a

index is being summed over and hence can be replaced with any other
index label. So we will make the index substitution a↔ c and also use the
fact that Γabc is symmetric in its lower two indices. Hence

va∇bwa = va∂bwa − Γcabv
awc (2.3.14)

⇒ ∇bwa = ∂bwa − Γcabwc . (2.3.15)
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We can then “bootstrap” this construction to define the action of the
derivative operator on a tensor of arbitrary rank

∇cT
a1...ak

b1...bl = ∂cT
a1...ak

b1...bl +
k∑
i=1

ΓaimcT
a1...ai−1m ai+1...ak

b1...bl

−
l∑

j=1

ΓmbjcT
a1...ak

b1...bj−1m bj+1...bl .

(2.3.16)

Now we have defined the action for the derivative operator in terms
of the partial derivative operator and the Christoffel symbol. However,
we don’t yet know the components of the Christoffel symbol, making our
definitions useless at this stage. However, given a conjecture (which shall
be proven later in the text), we can relate the components of the Christoffel
symbol to various components of the metric (more so, the derivatives of
the components).

Conjecture 2.3.1

∇a gbc = 0 . (2.3.17)

Using this conjecture and using equation (2.3.16), we find

∇a gbc = ∂a gbc − Γdab gdc − Γdac gbd = 0 (2.3.18)

hence

Γcab + Γbac = ∂a gbc . (2.3.19)

We are free to relabel indices, hence by using the following index substi-
tution a→ b and b→ a, we get

Γcba + Γabc = ∂b gac (2.3.20)

and using the index substitution a→ c, b→ a and c→ b, we get

Γbca + Γacb = ∂c gab . (2.3.21)
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If we add equations (2.3.19) and (2.3.20) then subtract equation (2.3.21),
and using the fact that Γabc is symmetric in its lower two indices, we get

2Γcab = ∂a gbc + ∂b gac − ∂c gab (2.3.22)

hence

Γcab =
1

2
gcd(∂a gbd + ∂b gad − ∂d gab) . (2.3.23)

Therefore, given a metric, we can calculate the components of the Christof-
fel symbol and hence the action of the derivative operator on any tensor.

As stated above, curvature can be viewed as the failure of successive co-
variant derivative operators to commute. Now that we have properly de-
fined derivative operators on our spacetime, we are now ready to properly
define curvature in our spacetime.

Let ∇a be a derivative operator and let wa be a dual vector, then we
have

[∇a,∇b]wc = (∇a∇b −∇b∇a)wc = ∇a∇bwc −∇b∇awc (2.3.24)

via equation (2.3.16) (and after simplifying) this is equivalent to

[∇a,∇b]wc = (∂aΓ
d
cb − ∂bΓdca + ΓdmaΓ

m
cb − ΓdmbΓ

m
ca)wd . (2.3.25)

We notice that the object inside the brackets is an algebraic operator, not
a differential operator. Also, it can be verified that this object transforms
via equation (2.2.9), so this object is indeed a tensor of type (1, 3) called the
Riemann curvature tensor, denoted Ra

bcd, defined as

[∇a,∇b]wc = Rd
cabwd . (2.3.26)

Using equation (2.3.25) and realising that this equation holds for all wd we
find

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + ΓamcΓ

m
bd − ΓamdΓ

m
bc (2.3.27)
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hence, given a spacetime with a metric we can calculate the curvature of
the spacetime itself. We are beginning to realise our goal to define gravi-
tational fields via intrinsic properties of the spacetime. However, we have
more formalism to introduce before we can fully realise our goal.

The Riemann tensor has a few useful symmetry properties:

1. Rabcd = −Rbacd = −Rabdc .

2. Rabcd = Rcdab .

3. Ra[bcd] = 0 .

4. ∇[eR
a
|b|cd] = Ra

b[cd;e] = 0 .

We have introduced some new notation in the fourth property above.
The vertical bars around the b index in ∇[eR

a
|b|cd] indicate that we anti-

symmetrise over the e, c and d index, but not the b index. Another new
piece of notation is ∇cT

a1...ak
b1...bl = T a1...ak b1...bl;c , this is just notation,

there is no new mathematics going on here. We also note that we will
also sometimes use the notation ∂cT

a1...ak
b1...bl = T a1...ak b1...bl,c to denote a

partial derivative acting on a tensor.
We now show that the Riemann tensor is directly related to the failure

for a vector to return to its initial value when parallel transported along
a closed loop in our manifold. Let p ∈ M and let s be a 2-dimensional
surface through p with coordinates x and y. Let p be at the coordinate
values (0, 0) then let va be a vector in Vp and we now parallel transport that
vector along the curve given by the coordinate values (0, 0) → (0,∆y) →
(∆x,∆y)→ (∆x, 0)→ (0, 0) for ∆x > 0 and ∆y > 0 as shown in figure 2.5.
Now let wa be some arbitrary dual vector field and we now calculate the
change in vawa along the curve. In the first part of the curve, given by the
change in coordinate values (0, 0)→ (0,∆y) we have

δ(vawa)1 = ∆y ∂y(v
awa)|(0,∆y/2) (2.3.28)
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here we have evaluated the derivative at the midway point so that our
expression is valid to second order in ∆y.

Figure 2.5: We see that a vector will fail to return to its initial value when
parallel propagated along a closed loop in a curved manifold.

Via the fourth property of the derivative operator (see page 18), we can
write

δ(vawa)1 = ∆y Y b∇b(v
awa)|(0,∆y/2)

= ∆y vaY b∇bwa|(0,∆y/2)

(2.3.29)

where Y a is the tangent vector to curves of constant y and since va is be-
ing parallel propagated along the curve (0, 0) → (0,∆y) with tangent Y a

by definition Y b∇bv
a = 0. We can do very similar constructions to find

δ(vawa)2, δ(vawa)3 and δ(vawa)4 along the entire curve. However, if we
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now sum the first and third contribution, we find

δ(vawa)1 +δ(vawa)3 = ∆y (vaY b∇bwa|(0,∆y/2)−vaY b∇bwa|(∆x,∆y/2)) (2.3.30)

which goes to zero as ∆x → 0. We can do a similar construction when
we sum the second and fourth contributions. This shows that the total
change in vawa, δ(vawa), along the curve is zero to first order in ∆x and
∆y. So to find the change in δ(vawa) along the curve, we must calculate
the second order contributions. We shall look at the δ(vawa)1 + δ(vawa)3

contribution. To find the second order term, we firstly consider the curve
x = ∆x/2, now we parallel transport both va and Y b∇bwa along this curve
from (0,∆y/2) to (∆x,∆y/2). To first order in ∆x, va is invariant under
this transformation. However, to first order in ∆x, Y b∇bwa will differ by
the amount ∆xXc(Y b∇bwa). Hence, to second order in ∆x and ∆y, we
have

δ(vawa)1 + δ(vawa)3 = −∆x ∆y vaXc(Y b∇bwa) . (2.3.31)

Doing a similar construction for δ(vawa)2 + δ(vawa)4 and then summing all
contributions, we find the total change to be

δ(vawa) = ∆x∆y va[Y c∇c(X
b∇bwa)−Xc∇c(Y

b∇bwa)]

= ∆x∆y vaY cXb(∇c∇b −∇b∇c)wa

= ∆x∆y vaY cXbRd
abcwd .

(2.3.32)

Now, given that we initially chose a specific vector va, to have this hold for
all wa we must assert that

δva = ∆x∆y vdY cXbRa
dbc . (2.3.33)

So, we see that a vector will fail to return to its initial value when parallel
propagated along a closed curve in our manifold if Ra

bcd 6= 0, as we origi-
nally postulated at the beginning of our discussion on curvature.
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We can also construct some other useful quantities from the Riemann ten-
sor. If we contract over the first and third indices we construct the Ricci
tensor, Rab , given by

Rab = Rc
acb (2.3.34)

via the second symmetry property of the Riemann tensor (see page 24), we
see that Rab = Rba, i.e. the Ricci tensor is symmetric. Now if we were to
contract the Ricci tensor, we produce the Ricci scalar

R = Ra
a . (2.3.35)

We can also produce the Weyl tensor, Cabcd, which is defined as (for mani-
folds with dimension n ≥ 3)

Cabcd = Rabcd +
2

(n− 1)(n− 2)
Rga[cgd]b−

2

n− 2
(ga[cRd]b− gb[cRd]a). (2.3.36)

We note that Cabcd is trace free, that is to say, if we contract over any of the
indices in Cabcd we get zero.

2.4 Geodesics

In section 1.1 we briefly discussed Fermat’s principle, which states that
when light travels from one point to another, it will always take the path
of least time. We can think of this path as the “straightest possible path”
between those two points, this type of path is called a geodesic. In flat space,
the path of least time between any two points is clearly just a straight line
connecting those two points. However, in curved space, this is no longer
the case. We now discuss how to calculate geodesics in curved space.

In the last section, we discussed that when a vector va is parallel trans-
ported along a curve with tangent T a, the following condition holds by
definition

T a∇av
b = 0 (2.4.1)
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using equation (2.3.8) we find

T a∂av
b + T aΓbacv

c = 0 (2.4.2)

and if the curve is parameterised by the affine parameter λ, then

dvb

dλ
+ ΓbacT

avc = 0 . (2.4.3)

Aside: an affine parameter is a parameter such that dvb

dλ
+ ΓbacT

avc = 0.
If we did not choose an affine parameter then we would instead have
dvb

dλ
+ ΓbacT

avc ∝ vb. For simplicity we choose to use an affine parameter. If
the curve is traced out by the motion of a massive particle, then the affine
parameter we use is the proper time measured by the particle along its
trajectory, τ . If the curve is traced out by the motion of a massless particle,
we shall see, that we cannot use proper time to parameterise the curve, we
instead use an arbitrary parameter λ, which then we shall pick λ such that
it is an affine parameter.

Now, a geodesic is defined as a curve whose tangent, T a, is parallel
transported along itself, that is to say

T a∇aT
b = 0 (2.4.4)

then by equation (2.4.3)

dT b

dλ
+ ΓbacT

aT c = 0 . (2.4.5)

But, as previously stated, the components of a tangent vector of a curve
parameterised by the parameter λ is given by

T a =
dxa

dλ
(2.4.6)

hence
d2xb

dλ2
+ Γbac

dxa

dλ

dxc

dλ
= 0 . (2.4.7)

Equation (2.4.7) is called the geodesic equation. A curve with position
vector xa(λ) is a geodesic iff it satisfies equation (2.4.7).
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Given a curve with tangent vector T a, we can calculate the length of
the curve by the following equation

l =

∫ √
gabT aT b dλ . (2.4.8)

However, since the metric is not positive definite, we cannot guarantee
that gabT aT b ≥ 0, but this does not pose a problem as we will show, in fact
we can categorise geodesics by the sign of gabT aT b. A geodesic is timelike if
gabT

aT b < 0 everywhere along the curve, a geodesic is null if gabT aT b = 0

everywhere along the curve and a geodesic is spacelike if gabT aT b > 0

everywhere along the curve. Now, if the geodesic is a curve traced out
by particle in our spacetime, then the tangent vector T a = dxa/dλ is just
the 4-velocity of the particle va. From special relativity, we know that the
norm of the 4-velocity is given by

gab v
avb = vava = γ(||~v||)(−c2 + ~v · ~v) (2.4.9)

where ~v is the 3-velocity of the particle and we have temporally not set
c = 1. Now, for timelike curves gabT aT b < 0 ⇒ v < c , so the types of
particles that travel along timelike geodesics are massive particles. For
null curves gabT aT b = 0 ⇒ v = c , so the types of particles that travel
along null geodesics are photons, hence null geodesics are light rays. For
spacelike curves gabT aT b > 0⇒ v > c , so the types of particles that travel
along spacelike geodesics are tachyons, which as of this writing have no
solid evidence to support their existence. Hence, we will only consider
timelike and null geodesics.

For null geodesics, the length of the geodesic is zero. This is equivalent
to saying that photons experience no change in their proper time along
their trajectory. For timelike geodesics, equation (2.4.8) is undefined, hence
we cannot define the length of a timelike curve. However, we can define
the proper time elapsed along the curve

τ =

∫ √
−gabT aT b dλ (2.4.10)



30 CHAPTER 2. FUNDAMENTALS

hence the above equation gives the the amount of the particle’s proper
time that has elapsed along the particle’s trajectory.

Now, our choice of parametrisation is arbitrary, we may choose to reparametrise
our curve by changing parameter λ→ λ̄. Then by equation (2.4.10) we find

τ =

∫ √
−gabT̄ aT̄ b dλ̄

=

∫ √
−gab

dλ

dλ̄
T a
dλ

dλ̄
T b dλ̄

=

∫ √
−gabT aT b

dλ

dλ̄
dλ̄

=

∫ √
−gabT aT b dλ .

(2.4.11)

Hence, the proper time elapsed along the curve is invariant under a change
in parametrisation, which is exactly what we expect. It does not mat-
ter how our trajectory is mathematically formulated, the proper time we
would experience along our trajectory will never change as long as the
trajectory itself does not change.

Above we alluded to the fact that the paths that inertial particles travel
along are indeed geodesics, we now prove this statement. This is really
just a generalisation of Fermat’s principle and the principle of least action
to curved space. We wish the extremise the proper time taken along a
curve, to do so we make use of the variational method using the Euler-
Lagrange equation. Consider the Lagrangian

L =

√
−gab

dxa

dλ

dxb

dλ
(2.4.12)

and the following Euler-Lagrange equation

d

dλ

∂L
∂(dxc/dλ)

− ∂L
∂xc

= 0 . (2.4.13)

Now
∂L
∂xc

=
1√

−gabvavb

(
∂gab
∂xc

)
dxa

dλ

dxb

dλ
(2.4.14)
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also

∂L
∂(dxc/dλ)

=
1√

−gabvavb

(
gab

dxa

dλ
+ gab

dxb

dλ

)
=

2√
−gabvavb

gab
dxa

dλ

(2.4.15)

here we have used the fact that gab is symmetric. Now we differentiate
equation (2.4.15) with respect to λ

d

dλ

[
2√

−gabvavb
gab

dxa

dλ

]
=

d

dλ

[
2√

−gabvavb

]
gab

dxa

dλ

+
2√

−gabvavb
d

dλ

[
gab

dxa

dλ

]

=
2

(−gabvavb)3/2

d

dλ

[
gab

dxa

dλ

dxb

dλ

]
gab

dxa

dλ

+
2√

−gabvavb
d

dλ

[
gab

dxa

dλ

]
.

(2.4.16)
However, we are deriving the equation of motion for inertial particles,
hence these particles are non-accelerating. Because of this, the norm of the
tangent vector to a geodesic is invariant along the curve. That is to say

d

dλ
(gabv

avb) = 0 (2.4.17)

where va is the tangent vector to the trajectory of our particle. We also
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have

d

dλ

[
gab

dxa

dλ

]
= 2 gab

d2xa

dλ2
+ 2

dgab
dλ

dxa

dλ

= 2 gab
d2xa

dλ2
+ 2

∂gab
∂xc

dxa

dλ

dxc

dλ

= 2 gab
d2xa

dλ2
+ 2

∂gac
∂xb

dxa

dλ

dxb

dλ

= 2 gab
d2xa

dλ2
+
∂gac
∂xb

dxa

dλ

dxb

dλ
+
∂gac
∂xb

dxa

dλ

dxb

dλ

= 2 gab
d2xa

dλ2
+
∂gac
∂xb

dxa

dλ

dxb

dλ
+
∂gbc
∂xa

dxa

dλ

dxb

dλ

= 2 gab
d2xa

dλ2
+

(
∂gac
∂xb

+
∂gbc
∂xa

)
dxa

dλ

dxb

dλ

(2.4.18)

here we have been extremely explicit and clear about what we are doing,
we are only relabelling indices here. So, equation (2.4.16) simplifies to

d

dλ

[
2√

−gabvavb
gab

dxa

dλ

]
=

1√
−gabvavb

(
2 gab

d2xa

dλ2

+

(
∂gac
∂xb

+
∂gbc
∂xa

)
dxa

dλ

dxb

dλ

)
(2.4.19)

then combining equations (2.4.13), (2.4.14) and (2.4.18), we find

0 =
d

dλ

∂L
∂(dxc/dλ)

− ∂L
∂xc

=
1√

−gabvavb

(
2 gab

d2xa

dλ2
+

(
∂gac
∂xb

+
∂gbc
∂xa

)
dxa

dλ

dxb

dλ
−
(
∂gab
∂xc

)
dxa

dλ

dxb

dλ

)
= gab

d2xa

dλ2
+

1

2

(
∂gac
∂xb

+
∂gbc
∂xa
− ∂gab
∂xc

)
dxa

dλ

dxb

dλ

= gab
d2xa

dλ2
+ Γcab

dxa

dλ

dxb

dλ

= gcd
d2xc

dλ2
+ Γdab

dxa

dλ

dxb

dλ

=
d2xc

dλ2
+ gcdΓdab

dxa

dλ

dxb

dλ

=
d2xc

dλ2
+ Γcab

dxa

dλ

dxb

dλ
(2.4.20)
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which is just the geodesic equation (equation (2.4.7)). To get from line 3 to
4 of equation (2.4.20) we just used the definition of Γcab , equation (2.3.23).
Hence, we see that geodesics extremise the proper time of a curve in space-
time. By Fermat’s principle and the principle of least action, we see that
all curves traced out by the motion of inertial particles in our spacetime
must be geodesics.

At this stage, we can now prove equation (2.3.17). All inertial particles
travel along geodesics as shown above, so by definition we have

aa = vb∇bv
a = 0 (2.4.21)

since the tangent to the world line of a particle is the 4-velocity of the par-
ticle. Hence, particles traveling along geodesics have zero 4-acceleration,
i.e. they are non-accelerating. Because of this, as above, we have

d

dλ
(gabv

avb) = 0 (2.4.22)

where va is the tangent vector to some arbitrary geodesic. Expanding, we
get (

dgab
dλ

)
vavb + gab

(
dva

dλ

)
vb + gabv

a

(
dvb

dλ

)
= 0 . (2.4.23)

Via the chain rule, we have

dgab
dλ

=
∂gab
∂xc

dxc

dλ
≡ (∂c gab)v

c (2.4.24)

and from the geodesic equation we also have

dva

dλ
= −Γabcv

bvc . (2.4.25)

Therefore, we now have the consistency condition

∂c(gab)v
avbvc − gdbΓdacvavbvc − gadΓdbcvavbvc = 0 . (2.4.26)

hence
∂c gab − Γdac gdb − Γdbc gad = 0 (2.4.27)
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where by comparing this to equation (2.3.16), we see this condition is
equivalent to

∇c gab = 0 (2.4.28)

which is equation (2.3.17).

We now give another example showing that if the Riemann tensor is non-
zero, our manifold is indeed non-Euclidean and hence curved. Consider
a family of geodesics γs(λ), where the parameter “s” allows us to differen-
tiate between the different geodesics in the family. We can construct a 2-
dimensional sub-manifold which is spanned by the geodesics in γs(λ), we
denote this sub-manifold as Σ. Furthermore, we can construct a basis of Σ

by the vector field T a = ∂
∂λ

which is tangent to the geodesics and the vector
field Xa = ∂

∂s
which physically represents the infinitesimal displacement

between nearby geodesics, Xa is also called the deviation vector. Recall
that since T a is tangent to the family of geodesics, is satisfies the equation

T a∇aT
b = 0 . (2.4.29)

Now, since T a and Xa are coordinate vector fields, they commute. That is
to say that T a and Xa satisfy the following condition

[X,T ]a ≡ Xa∇aT
b − T a∇aX

b = 0 (2.4.30)

hence
T a∇aX

b = Xa∇aT
b . (2.4.31)

Physically, the quantity va = T b∇bX
a represents the change in the de-

viation vector along the geodesics, i.e. the relative velocity of a nearby
geodesic. Hence the quantity

aa = T c∇cv
a = T c∇c(T

b∇bX
a) (2.4.32)

physically represents the relative acceleration of a nearby geodesic. We
can show that the relative acceleration of nearby geodesics is proportional
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to the Riemann tensor:

aa = T c∇c(T
b∇bX

a)

= T c∇c(X
b∇bT

a)

= (T c∇cX
b)(∇bT

a) +XbT c∇c∇bT
a

= (Xc∇cT
b)(∇bT

a) +XbT c∇c∇bT
a

= (Xc∇cT
b)(∇bT

a) +XbT c∇b∇cT
a −Ra

dcbX
bT cT d

= Xc∇c(T
b∇bT

a)−Ra
dcbX

bT cT d

= −Ra
dcbX

bT cT d .

(2.4.33)

Where we have used the Leibnitz rule in lines 3 and 6 and we have used
the definition of the Riemann tensor is line 5 of the above equation. Equa-
tion (2.4.33) is known as the geodesic deviation equation or the Jacobi
equation. Hence we see that if the Riemann tensor is non-zero, the geodesic
deviation equation implies that initially parallel geodesics fail to remain
parallel, i.e. Euclid’s fifth postulate fails. Since Euclid’s fifth postulate
fails, our spacetime is non-Euclidean, i.e. curved. This is yet another ex-
ample showing that the Riemann tensor does indeed correlate to curvature
in our spacetime.

2.5 Einstein’s equation

In the previous sections we found that space is curved where we observe
a gravitational field and we introduced the mathematical framework re-
quired to describe curvature in our spacetime. We are now ready to use
this framework to describe Einstein’s theory of gravity. Einstein’s theory
basically states that spacetime is a 4-dimensional manifold with a metric
gab (or multiple metrics if the manifold is split into distinct patches) with
Lorentzian signature, which satisfies Einstein’s equation. We now moti-
vate Einstein’s equation, which relates the curvature of spacetime with
the mass-energy present within the spacetime.
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Firstly, we require a tensorial definition of the mass-energy present within
the spacetime, this is because curvature is defined via tensors, hence equal-
ity between the curvature and mass-energy would require that the mass-
energy be defined as a tensor quantity. An obvious candidate for this
quantity is the stress-energy-momentum tensor Tab , or the stress-energy
tensor for short. The stress-energy tensor is defined as follows. Consider
an observer with 4-velocity va, then Tabv

avb physically represents the en-
ergy density, ρ, as measured by this observer. If the vector xa is orthogonal
to va then−Tabxavb physically represents the flux of mass along xa (i.e. the
momentum density along xa), the quantity Tabxaxb represents the normal
stress (or pressure) and finally if ya is also orthogonal to va and ya 6= xa,
then Tabxayb represents the shear stress.

Now to relate the curvature to the mass-energy, we appeal to Poisson’s
equation. Given a scalar potential φ, Poisson’s equation states

∇2φ = 4πρ . (2.5.1)

Writing this with our tensor notation, we get

∂a∂aφ = 4πTabv
avb . (2.5.2)

However, we can use Newtonian theory to relate our curvature to our
potential φ. In the Newtonian theory of gravity, the tidal acceleration of
two nearby objects is given by −(~x · ~∇)~∇φ, or in tensor notation

aa = −xb∂b∂aφ (2.5.3)

but from equation (2.4.33) we see that

aa = −Ra
dcbx

bvcvd . (2.5.4)

Hence equality of these two equations yields

∂a∂aφ = Rc
acbv

avb = Rabv
avb (2.5.5)
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therefore yielding the tentative field equation

Rabv
avb = 4πTabv

avb

⇒ Rab = 4πTab .
(2.5.6)

Historically, this was the first field equation that Einstein proposed. How-
ever, this field equation has a problem when one considers energy con-
servation in the spacetime. Firstly, consider the stress-energy tensor of a
perfect fluid in a spacetime with metric gab given by

Tab = ρvavb + P (gab + vavb) (2.5.7)

the equation of motion of the perfect fluid is

∇aTab = 0 (2.5.8)

which imply the following equations:

va∇aρ+ (ρ+ P )∇ava = 0 (2.5.9)

(ρ+ P )va∇avb + (gab + vavb)∇aP = 0 . (2.5.10)

If we go to flat space and take the non-relativistic limit where P � ρ,
va = (1, ~v) and v dP/dt� |~∇P |, the above equations reduce to

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (2.5.11)

ρ

[
∂~v

∂t
+ (~v · ~∇)~v

]
= −~∇P , (2.5.12)

which is just conservation of mass and Euler’s equation respectively. Hence,
we can interpret equation (2.5.8) as the energy conservation condition.

Since equation (2.5.8) always holds, we should expect that ∇aRab = 0.
However, examination of the Bianchi identity (which is the fourth sym-
metry property of the Riemann tensor; see page 24), shows this is not the
case. The Bianchi identity states that

∇[eR
a
|b|cd] = 0 (2.5.13)
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if we contract the first and third index of the Riemann tensor we find

∇[cR
a
|b|ad] = ∇aR

a
bcd +∇dRbc −∇cRbd = 0 (2.5.14)

then if we raise the index d via the metric and then contract over b and d,
we get the twice contracted Bianchi identity

∇aR
a
c +∇bR

b
c −∇cR

b
b = ∇a(2R

a
b −R) = 0 (2.5.15)

or equivalently (and most commonly written as)

∇aGab = 0 (2.5.16)

where
Gab = Rab −

1

2
Rgab (2.5.17)

is the Einstein tensor.
Finally, we see that while ∇aGab = 0, ∇aRab = −1

2
∇bR. Hence the field

equationRab = 4πTab implies that∇bR = 0, or equivalently that T = T aa is
constant throughout the universe, which implies that density is constant
throughout the universe. However, there is a simple fix to this problem. If
we consider the field equation

Gab = Rab −
1

2
Rgab = 8πTab (2.5.18)

then when we take the covariant derivative, both sides both give zero,
hence upholding energy conservation. Equation (2.5.18) is called Einstein’s
equation and is the equation we were looking for which relates the mass-
energy within the spacetime to the curvature (note that here we have set
the speed of light, c, and the Newtonian gravitational constant, GN , equal
to 1). If we rearrange this for Rab specifically in terms of the stress-energy
tensor, we find

Rab = 8π

(
Tab −

1

2
Tgab

)
(2.5.19)

where T = T aa is the trace of the stress-energy tensor. For this text, we
will focus on solutions to the vacuum Einstein equation. That is, Einstein’s
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equation with no mass-energy present within the spacetime. In this case,
equation (2.5.19) reduces to

Rab = 0 . (2.5.20)

We have now introduced the fundamentals of Einstein’s theory of gen-
eral relativity. We now begin our analysis of various spacetimes and their
properties by looking at the Schwarzschild solution.
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Chapter 3

The Schwarzschild solution

3.1 Introduction to the Schwarzschild solution

The Schwarzschild solution was derived by Karl Schwarzschild in 1916,
just one year after Einstein published his formulation of general relativity
in 1915. One can show via Birkhoff’s theorem that the Schwarzschild solu-
tion is the unique spherically symmetric solution to the vacuum Einstein
equation. In this text we will not derive the Schwarzschild solution, if one
wishes to view the full derivation, we refer the reader to General Relativ-
ity, Wald, 1984. Here, we will just state the metric. In Hilbert’s coordinates,
the metric is given by the line element

ds2 = −
(

1− 2m

r

)
dt2 +

1

1− 2m/r
dr2 + r2dθ2 + r2 sin2 (θ) dφ2 (3.1.1)

here m is a parameter proportional to the mass of the central object, given
by

m =
2GNM

c2
(3.1.2)

where M is the physical mass of the central object and GN is the Newto-
nian gravitational constant. Note that m has units of length. This space-
time physically represents a spherically symmetric (i.e. non-rotating) ob-
ject with mass parameter m and no other matter present within the space-

41
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time (if we wanted to include other matter sources, we would have to
instead solve the full Einstein equation, equation (2.5.18), which dramat-
ically increases the complexity of the problem). Hence, the above metric,
equation (3.1.1), can be used to model non-rotating planets, stars and black
holes. This solution is most often correlated with black holes however. To
see this correlation, we conduct further examination of this metric.

By examining equation (3.1.1) we see the metric is singular at two dis-
tinct values of r, one at r = 0 and the other at r = 2m. However, we
are interested in points that also reside within the radial position r = 2m.
However, the singularity at r = 2m means that all geodesics will termi-
nate at r = 2m. So if we wish to probe what happens when r < 2m by
constructing geodesics that begin with radial component values r > 2m

then allowing these geodesics to pass r = 2m into the region r < 2m, we
have to rid ourselves of the singularity at r = 2m first, which we shall now
do.

3.2 Coordinate systems of Schwarzschild

In the previous section we saw that the Schwarzschild metric is singular at
radial coordinate values of r = 0 and r = 2m. If we compute a curvature
scalar such as:

RabcdRabcd =
48m2

r6
(3.2.1)

we see that this scalar is infinite as r → 0 but is finite for r = 2m. This
shows that there exists a true physical singularity at r = 0 but the singu-
larity at r = 2m is but a coordinate singularity. We can rid ourselves of this
coordinate singularity by a coordinate transformation.

Let t̄ = t+f(r), then dt̄ = dt+ df(r)
dr
dr. Substituting this into the original

metric, equation (3.1.1), we get

ds2 = −
(

1− 2m

r

)(
dt̄− df(r)

dr
dr

)2

+
1

1− 2m/r
dr2 +r2dθ2 +r2 sin2 (θ) dφ2.

(3.2.2)
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Let
df(r)

dr
=

1

1− 2m/r

√
2m

r
(3.2.3)

then the new metric becomes (dropping the bar from t̄):

ds2 = −
(

1− 2m

r

)
dt2 +2

√
2m

r
dtdr+dr2 +r2dθ2 +r2 sin2(θ)dφ2 . (3.2.4)

Here we see that the metric components are no longer singular at r = 2m,
the only singularity occurs at r = 0 where the physical singularity is. This
new set of coordinates we have adopted here is called Painlevé-Gullstrand
coordinates, which then expresses the metric in Painlevé-Gullstrand form.

Now, we consider radial geodesics where we limit movement of our
test particle to purely radial movement. That is dθ = dφ = 0, so our metric
simplifies to

ds2
rad = −

(
1− 2m

r

)
dt2 + 2

√
2m

r
dtdr + dr2 . (3.2.5)

If we further consider null geodesics where ds2 = 0, then we find

−
(

1− 2m

r

)
dt2 + 2

√
2m

r
dtdr + dr2 = 0 (3.2.6)

that is (
dr

dt

)2

+ 2

√
2m

r

dr

dt
−
(

1− 2m

r

)
= 0 (3.2.7)

solving for dr/dt we have

dr

dt
= −

√
2m

r
± 1 . (3.2.8)

We have two solutions here, if we look at points where r > 2m we see that
if we take the positive root, we have dr/dt > 0 so this represents outgoing
light rays, whereas if we take the negative root, we have dr/dt < 0 so this
represents incoming light rays. Now we look at points where r < 2m, for
outgoing light rays we see that dr/dt < 0 for r < 2m and for incoming
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light rays we also see that dr/dt < 0 for r < 2m. This physically means
that when light passes the radial coordinate r = 2m, it will continue to
fall towards the physical singularity at r = 0 no matter if it is outgoing
or incoming. That is, light cannot go above the radial component value
r = 2m once it has passed it, that light is then trapped within the region
where r < 2m. We can physically interpret this as a sphere surround-
ing the singularity which once an observer passes through, cannot return
above this sphere. We call this the event horizon. Hence, we see that this
metric can be used to represent a sphere with radius 2m which no object,
not even light, can escape once it enters. This is, by definition, a black hole.

The new form of the metric given above, equation (3.2.4), has some other
rather useful qualities. Firstly, the spatial part of the metric (i.e. the 3-
dimensional metric where we “throw away” the time components, also
called the 3-metric) is just flat space written in spherical coordinates. This
makes analysis of the 3-dimensional spatial hyper-surfaces of this space-
time trivial. Furthermore, the metric is given by

gab =


−
(
1− 2m

r

) √
2m
r

0 0√
2m
r

1 0 0

0 0 r2 0

0 0 0 r2 sin2(θ)


ab

(3.2.9)

while the inverse metric is given by

gab =


−1

√
2m
r

0 0√
2m
r
−
(
1− 2m

r

)
0 0

0 0 1
r2

0

0 0 0 1
r2 sin2(θ)


ab

. (3.2.10)

Notice that both the metric and inverse metric are non-singular matrices
with finite elements for r 6= 0 and θ 6= nπ where n ∈ N. Here we also see
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that the tt component of the inverse metric is gtt = −1, we call this condi-
tion unit lapse. This condition is rather useful when calculating geodesics
of our spacetime. More notably, the “rain” geodesics of the Schwarzschild
geometry become rather easy to calculate. Consider the vector field

V a = −gab∇bt = −gta =

(
1;−

√
2m

r
, 0, 0

)
(3.2.11)

where the corresponding dual vector field is

Va = −∇at = (−1; 0, 0, 0) . (3.2.12)

Hence, gabV aV b = V aVa = −1, so V a is a timelike vector field with unit
norm. This vector field has zero 4-acceleration

Aa = V b∇bV
a = −V b∇b∇at = −V b∇a∇bt = V b∇aV

b =
1

2
∇a(V

bVb) = 0

(3.2.13)
therefore the integral curves of V a are timelike geodesics. More specifi-
cally, the integral curves given by

dxa

dτ
=

(
dt

dτ
;
dr

dτ
,
dθ

dτ
,
dφ

dτ

)
=

(
1;−

√
2m

r
, 0, 0

)
(3.2.14)

are timelike geodesics. We can trivially integrate 3 of these equations

t(τ) = τ ; θ(τ) = θ∞; φ(τ) = φ∞ (3.2.15)

thus t is just the proper time of these geodesics, while θ∞ and φ∞ are the
original (and permanent) values of the θ and φ coordinate respectively for
these geodesics. As for the last equation, we have

1

2

(
dr

dt

)2

=
m

r
. (3.2.16)

Therefore, these geodesics mimic a particle with zero initial velocity falling
towards a mass (m) from spatial infinity.
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3.3 ISCOs and photon orbits of Schwarzschild

We now focus our attention on the innermost stable circular orbits, or IS-
COs, of the Schwarzschild solution. Here we will use the Schwarzschild
metric in Hilbert’s coordinates, equation (3.1.1), this is because while the
Painlevé-Gullstrand coordinates did rid us of the singularity at r = 2m, it
introduced another metric component, the dtdr term as seen in equation
(3.2.4). Since, we are only considering geodesics above r = 2m, we will use
the original coordinates since in those coordinates the metric is diagonal,
which will make the analysis easier in this case.

There are two symmetries present in the Schwarzschild geometry: time
translation symmetry and spherical symmetry. These symmetries give rise
to two Killing vectors (see appendix A): the time translation Killing vector
ξa = (−1; 0, 0, 0) and the spherical symmetry Killing vector ψa = (0; 0, 0, 1).
As shown in appendix A, we can construct conserved quantities from
these Killing vectors. Here our two conserved quantities are, energy

E = gabξ
adx

b

dλ
= −

(
1− 2m

r

)
dt

dλ
(3.3.1)

and angular momentum

L = gabψ
adx

b

dt
= r2 sin2(θ)

dφ

dλ
. (3.3.2)

With completely no loss of generality (since our spacetime is spherically
symmetric), we may choose to conduct our analysis at the equator. That
is to say, at the fixed angular coordinate θ = π/2 ⇒ dθ/dλ = 0. The
timelike/null condition (equation (2.4.9)), gives

gab
dxa

dλ

dxb

dλ
= −

(
1− 2m

r

)(
dt

dλ

)2

+
1

1− 2m/r

(
dr

dλ

)2

+ r2

(
dφ

dλ

)2

= ε

(3.3.3)
where

ε =

{
−1 massive particle, i.e. timelike geodesic

0 massless particle, i.e. null geodesic.
(3.3.4)
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Treating equations (3.3.1), (3.3.2) and (3.3.3) as a linear system of equations,
we can solve for dr/dλ:

dr

dλ
= ±

√(
1− 2m

r

)(
ε− L2

r2

)
+ E . (3.3.5)

This equation is what we would expect for a particle with unit mass in
usual 1-dimensional, non-relativistic mechanics, under the influence of the
following potential:

V (r) = E2 −
(
dr

dλ

)2

=

(
1− 2m

r

)(
L2

r2
− ε
)

(3.3.6)

we can then use the features of this potential to find the location of the
timelike ISCO and innermost circular photon orbit (or photon ring).

In the null case where ε = 0, the potential reduces to

V0(r) =
L2

r2

(
1− 2m

r

)
. (3.3.7)

The photon ring will occur at the extrema of the potential, when dV0(r)/dr =

0. That is, when
dV0(r)

dr
=

(6m− 2r)L2

r4
= 0 (3.3.8)

which has solution

r = 3m . (3.3.9)

To check the stability of this orbit, we calculate d2V0(r)/dr2 and evaluate it
at the photon ring location at r = 3m. Which gives

d2V0(r)

dr2

∣∣∣∣
r=3m

=
(6r − 24m)L2

r5

∣∣∣∣
r=3m

= − 2L2

81m4
(3.3.10)

which is always negative. Hence null geodesics at the photon ring location
are unstable. Therefore, any massless particle traveling along a geodesic
which falls below r = 3m, will spiral in towards the physical singularity
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at r = 0.

In the timelike case where ε = −1, the potential reduces to

V−1(r) =

(
1− 2m

r

)(
L2

r2
+ 1

)
. (3.3.11)

Taking the derivative of the potential we find

dV−1(r)

dr
=

(6m− 2r)L2 + 2mr2

r4
. (3.3.12)

Here we cannot simply set dV−1(r)/dr = 0 and solve directly for r since
this would yield a function in terms of L, i.e. r(L). In order to find the
ISCO location in terms of the properties of the spacetime itself, we instead
solve dV−1(r)/dr = 0 for L instead. This yields

L(r) = ±
r
√

(r − 3m)m

r − 3m
. (3.3.13)

The ISCO will occur when dL/dr = 0, more explicitly, when

dL(r)

dr
= −
√
m

2

(r − 6m)

(r − 3m)3/2
= 0 (3.3.14)

which is satisfied when
r = 6m . (3.3.15)

To check the stability of this orbit, we calculate d2V−1(r)/dr2

d2V−1(r)

dr2
=

6(r − 4m)L2 − 4mr2

r5
(3.3.16)

using our expression for L(r), equation (3.3.13), we have

d2V−1(r)

dr2
=

2m(r − 6m)

r3(r − 3m)
. (3.3.17)

Now, at r = 6m we see that the second derivative is zero, however for
points just above 6m, the second derivative is positive and for points just
below 6m, the second derivative is negative. This shows that the ISCO
is like a saddle point, if the particle is perturbed to point above 6m, it
will tend to move back to the ISCO location, whereas if it is perturbed
to a point below 6m, it will tend to spiral towards the event horizon and
further towards the physical singularity at r = 0.



Chapter 4

The Kerr solution

4.1 Introduction to the Kerr solution

The Kerr solution is a generalisation to the Schwarzschild solution, where
we now allow our central mass to rotate. This generalisation however,
is highly non-trivial and this solution is arguably one of the most com-
plex, physically relevant, exact solutions to the vacuum Einstein equa-
tion. It was discovered in 1963, that is 47 years after the discovery of the
Schwarzschild solution in 1916. In the original coordinates that Kerr wrote
this metric, it reads:

ds2 =(r2 + a2 cos2(θ))(dθ2 + sin2(θ)dφ2)

+ 2(du− a sin2(θ)dφ)(dr − a sin2(θ)dφ)

−
(

1− 2mr

r2 + a2 cos2(θ)

)
(du− a sin2(θ)dφ)2

(4.1.1)

where a = J/mwhere J is the angular momentum of the central mass (m).
However, this coordinate system is rather difficult to physically analyse.
The most common coordinate system that this metric is written in is the
Boyer-Lindquist coordinate system

ds2 = −
(

1− 2mr

ρ2

)
dt2 − 4mar sin2(θ)

ρ2
dtdφ+

ρ2

∆
dr2 + ρ2dθ2 + Σ sin2(θ)dφ2

(4.1.2)

49
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where ρ =
√
r2 + a2 cos2(θ), ∆ = r2 + a2 − 2mr and Σ = r2 + a2 +

2mra2 sin2(θ)/ρ2. Note that our definition of Σ differs from the most com-
mon definition which is Σ = r2 + a2 cos(θ), however we find the defini-
tion above more useful. As we can see, this metric is considerably more
complex than the Schwarzschild metric. Hence, some physical quantities
derived from this metric will be stated as opposed to derived in this text,
with reference to the relevant derivation.

4.2 Unit-lapse versions of the Kerr spacetime

In section 3.2 we showed that the Schwarzschild solution admits a unit-
lapse form of the spacetime metric. Recall, a metric is unit lapse if the
following condition is satisfied: gtt = −1. A typical metric can be written
in the following form (using the ADM foliation):

gab =

[
−N2 + (hijvivj) −vj

−vi hij

]
ab

; gab =

[
−N−2 −vjN−2

−viN−2 hij − vivjN−2

]ab
(4.2.1)

Now, the general form of a metric which is unit-lapse can be written as
follows:

gab =

[
−1 + (hijvivj) −vj

−vi hij

]
ab

; gab =

[
−1 −vj

−vi hij − vivj

]ab
(4.2.2)

where hij = [hij]
−1 and vi = hijvj . Also note that spacetime indices a, b, c, d

run 0...3 while spatial indices i, j run 1...3. We call hij the spatial metric or
the 3-metric and physically represents the metric of the spatial hypersur-
faces of constant t. vi is called the flow vector and is the negative of what is
typically called the shift vector. So here we can see that the unit-lapse con-
dition is equivalent to the condition that N → 1. Written as a line element,
a unit-lapse form of a spacetime can be written as

ds2 = −dt2 + hij(dx
i − vidt)(dxj − vjdt) . (4.2.3)
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As we saw for the Schwarzschild solution in section 3.2, once the metric
has been put into unit-lapse form the rain geodesics of the spacetime can
be easily calculated.

Before we perform any coordinate transformations on the Kerr metric, we
must know which transformations we can perform and how these trans-
formations affect the metric. The Kerr spacetime contains two symmetries:
time translation symmetry and axial symmetry. Hence from appendix A,
these symmetries give rise to two Killing vectors:

ξa = (−1; 0, 0, 0); ψa = (0; 0, 0, 1) . (4.2.4)

Since our spacetime contains symmetries, to be useful, our coordinate
transformations should preserve these symmetries. This restricts our choice
of transformations to be of the form

t→ t̄ = t+ T (r, θ); φ→ φ̄ = φ+ Φ(r, θ); (4.2.5)

(r, θ)→ (r̄, θ̄) = (r̄(r, θ), θ̄(r, θ)) . (4.2.6)

However, for now, we will only consider transformations on the t and φ

coordinates. Then we find

dt→ dt̄ = dt+ Trdr + Tφdφ; dφ→ dφ̄ = dφ+ Φrdr + Φφdφ . (4.2.7)

We then find our Jacobi matrix to be

Jab =
∂x̄a

∂xb
=


1 Tr Tφ 0

0 1 0 0

0 0 1 0

0 Φr Φφ 1


a

b

; det(Jab) = 1 . (4.2.8)
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4.2.1 Temporal-only transformations

For now, we’ll only consider temporal-only coordinate transformations.
Our Jacobi matrix reduces to

Jab =
∂x̄a

∂xb
=


1 Tr Tφ 0

0 1 0 0

0 0 1 0

0 0 0 1


a

b

. (4.2.9)

Transforming the inverse metric into the new coordinate system, we get

ḡab = Jac J
b
d g

cd . (4.2.10)

More specifically, the gtt component transforms as

ḡtt = J tc J
t
d g

cd = gtt + 2Ti g
ti + Ti Tj g

ij = −N−2(1 + viTi)
2 + hijTi Tj .

(4.2.11)
Hence, to force the unit-lapse condition (ḡtt = −1), we have to solve the
partial differential equation (PDE):

− 1 = gtt + 2Ti g
ti + Ti Tj g

ij (4.2.12)

or equivalently

− 1 = −N−2(1 + viTi)
2 + hijTi Tj . (4.2.13)

While the unit-lapse condition does simplify the process of calculating the
rain geodesics of a given spacetime, there is a price to pay. Enforcing unit-
lapse typically complicates the flow vector and the 3-metric. For the flow
vector we have

v̄i = −ḡti = −J tc J id gcd = −J tt J it gtt−J tt J ij gtj−J tk J it gkt−J tk J il gkl .

(4.2.14)
However for temporal only transformations we have J tt = 1, J it = 0,
J ti = Ti and J ij = δij , then our flow vector reduces to:

v̄i = −gti − J tj gij =
vi

N2
− Tj

(
hij − vivj

N2

)
= vi

(
1 + Tjv

j

N2

)
− hijTj .

(4.2.15)
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Furthermore, the 3-metric transforms as:

h̄ij = ḡij = Jai J
b
j gab = gij + git Tj + gjt Ti + gtt Ti Tj (4.2.16)

which implies

h̄ij = hij − vi Tj − Tivj − (N2 − (hklv
kvl))Ti Tj . (4.2.17)

Hence, we see that while enforcing the unit-lapse condition is useful in
some situations, it carries the cost of complicating the flow vector and 3-
metric significantly.

4.2.2 Azimuthal-only transformations

Given that by enforcing the unit-lapse condition, the 3-metric and flow
vector has now been significantly complicated, we now wish to conduct
further transformations to simplify these objects while retaining unit-lapse.
Let us assume our metric is in unit-lapse form, we now use our freedom
to transform the φ coordinate in order to simplify the 3-metric and flow
vector. Leaving t fixed and transforming the φ coordinate, we have

Jab =
∂x̄a

∂xb
=


1 0 0 0

0 1 0 0

0 0 1 0

0 Φr Φθ 1


a

b

. (4.2.18)

Now, the tt component of the inverse metric has not changed during this
process since

ḡtt = J tc J
t
d g

cd = gtt . (4.2.19)

The flow vector is not invariant under this transformation

v̄i = −ḡti = −J tc J id gcd = −J tt J it gtt−J tt J ij gtj−J tk J it gkt−J tk J il gkl .

(4.2.20)
However, here we have J it = 0 = J ti, hence

v̄i = −J ij gtj = J ij v
j = vi + (0, 0,Φrv

r + Φθv
θ)i . (4.2.21)
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That is, the r and θ components on the flow vector are invariant, but the φ
component is not v̄φ = vφ + Φrv

r + Φθv
θ. Hence, we can use the freedom

in choosing our φ coordinate such to simplify the φ component of the flow
vector. However, as we saw for enforcing unit-lapse, simplifying the met-
ric in one regard typically complicates the metric in another regard. In this
case, the 3-metric is transformed too in this process and, as a consequence,
is typically complicated. For the inverse 3-metric we have:

ḡrr = grr; ḡrθ = grθ; ḡθθ = gθθ; (4.2.22)

ḡrφ = grφ + grrΦr + grθΦθ; ḡθφ = gθφ + gθrΦr + gθθΦθ; (4.2.23)

ḡφφ = gφφ + (gφrΦr + gφθΦθ) + (grrΦ2
r + 2grθΦrΦθ + gθθΦ2

θ). (4.2.24)

Hence, we see that simplifying the flow vector, does indeed complicate
3-metric. However, our arguments here have been quite general, we now
look at applying these techniques to the Kerr spacetime specifically to find
unit-lapse forms of the metric.

4.2.3 Boyer-Lindquist-rain metric

In Boyer-Lindquist coordinates the Kerr metric reads

(ds2)BL = −
(

1− 2mr

ρ2

)
dt2−4mar sin2(θ)

ρ2
dtdφ+

ρ2

∆
dr2+ρ2dθ2+Σ sin2(θ)dφ2

(4.2.25)
where, as before, ρ =

√
r2 + a2 cos2(θ), ∆ = r2 + a2 − 2mr and Σ = r2 +

a2 + 2mra2 sin2(θ)/ρ2. Written as an array

(gab)BL =


−1 + 2mr

ρ2
0 0 −2mar sin2(θ)

ρ2

0 ρ2

∆
0 0

0 0 ρ2 0

−2mar sin2(θ)
ρ2

0 0 Σ sin2(θ)


ab

. (4.2.26)

where
det[(gab)BL] = −ρ4 sin2(θ) (4.2.27)
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as we would expect. The inverse metric as written as an array is given as

(gab)BL =


−1 + 2mr(r2+a2)

ρ2∆
0 0 −2mar

ρ2∆

0 ∆
ρ2

0 0

0 0 1
ρ2

0

−2mar
ρ2∆

0 0 1−2mr/ρ2

∆ sin2(θ)


ab

. (4.2.28)

Hence we see that the Kerr metric in this form is not unit-lapse since
(gtt)BL 6= −1. Recall, to put this metric into unit-lapse form we solve

− 1 = −N−2(1 + viTi)
2 + hijTiTj . (4.2.29)

For this metric we have viTi = 0. Hence, this equation reduces to

N−2 − 1 = hijTiTj . (4.2.30)

More explicitly
2mr(r2 + a2)

ρ2∆
=

∆

ρ2
T 2
r +

1

ρ2
T 2
θ . (4.2.31)

Thence
2mr(r2 + a2)

∆
= ∆T 2

r + T 2
θ . (4.2.32)

This equation has the following solution

Tθ = 0; Tr = ±
√

2mr(r2 + a2)

∆
. (4.2.33)

Hence, we see that T (r, θ) is independent of θ and therefore

T (r) = ±
∫ √

2mr(r2 + a2)

∆
dr . (4.2.34)

Thence

t̄ = t+ T (r); dt̄ = dt+ Trdr; dt = dt̄− Trdr . (4.2.35)

If we suppress the overbar and take the Boyer-Lindquist form of the Kerr
metric and make the replacement

dt→ dt∓
√

2mr(r2 + a2)

∆
dr (4.2.36)
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our resulting metric will then be in unit-lapse form. Notice that here we
have two roots, hence we have to be careful as to which root we choose to
take as one corresponds to a black hole and the other a white hole. If we
retrospectively check, then we find that the negative root corresponds to
the black hole, which we desire. The resulting metric is then

(ds2)BL-rain =−
(

1− 2mr

ρ2

)(
dt−

√
2mr(r2 + a2)

∆
dr

)2

− 4mar sin2(θ)

ρ2
dφ

(
1− 2mr

ρ2

)(
dt−

√
2mr(r2 + a2)

∆
dr

)

+
ρ2

∆
dr2 + ρ2dθ2 + Σ sin2(θ)dφ2 .

(4.2.37)

Therefore, our covariant metric (gab)BL-rain is given by

(gab)BL-rain =


−1 + 2mr

ρ2
gtr 0 −2mar sin2(θ)

ρ2

gtr grr 0 grφ

0 0 ρ2 0

−2mar sin2(θ)
ρ2

grφ 0 Σ sin2(θ)


ab

(4.2.38)

where

gtr =

(
1− 2mr

ρ2

) √
2mr(r2 + a2)

∆
(4.2.39)

grr =
ρ2

∆
−
(

1− 2mr

ρ2

)
2mr(r2 + a2)

∆2
(4.2.40)

grφ =
2mar sin2(θ)

ρ2

√
2mr(r2 + a2)

∆
(4.2.41)

and where we still have

det[(gab)BL-rain] = −ρ4 sin2(θ) . (4.2.42)
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The inverse metric is now relatively simple and is given by

(gab)BL-rain =


−1

√
2mr(r2+a2)

ρ2
0 −2mar

ρ2∆√
2mr(r2+a2)

ρ2
∆
ρ2

0 0

0 0 1
ρ2

0

−2mar
ρ2∆

0 0 1−2mr/ρ2

∆ sin2(θ)



ab

. (4.2.43)

Hence, we see that we have succeeded in putting our metric into unit-lapse
form. However, this has come at a cost. The flow vector is now given by

(vi)BL-rain =

(
−
√

2mr(r2 + a2)

ρ2
, 0,

2mar

ρ2∆

)
(4.2.44)

which by comparison to equation 4.2.28 is more complex than the flow
vector in the usual Boyer-Lindquist coordinate system. Also note that
for the rain geodesics dθ/dt = 0, hence θ(t) = θ∞ is constant along the
geodesics. Furthermore(

dφ

dr

)
BL-rain

=
dφ/dt

dr/dt
= − a

√
2mr

∆
√
r2 + a2

. (4.2.45)

Thence, for these geodesics

φ(r) = φ∞ +

∫ ∞
r

a
√

2mr̄

∆
√
r̄2 + a2

dr̄ . (4.2.46)

4.2.4 Eddington–Finkelstein-rain metric

The Eddington–Finkelstein coordinate system is the original coordinate
system that Kerr wrote his solution in, which is given as

ds2 =(r2 + a2 cos2(θ))(dθ2 + sin2(θ)dφ2)

+ 2(du− a sin2(θ)dφ)(dr − a sin2(θ)dφ)

−
(

1− 2mr

r2 + a2 cos2(θ)

)
(du− a sin2(θ)dφ)2 .

(4.2.47)
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However, as previously stated, this coordinate system is rather hard to
physically interpret. We can make a slight change to these coordinates
to transform them to the “advanced Eddington–Finkelstein” coordinate
system via the transformation

u = t+ r, du = dt+ dr, (4.2.48)

hence our metric becomes

(ds2)ad-EF =− dt2 + dr2 − 2a sin2(θ)drdφ+ ρ2dθ2 + (r2 + a2) sin2(θ)dφ2

+
2mr

ρ2
(dt+ dr − a sin2(θ)dφ)2 .

(4.2.49)

In these coordinates, our covariant metric (gab)ad-EF is given as
−1 + 2mr

ρ2
2mr
ρ2

0 −2mar
ρ2

sin2(θ)
2mr
ρ2

1 + 2mr
ρ2

0 −a(1 + 2mr
ρ2

) sin2(θ)

0 0 ρ2 0

−2mar
ρ2

sin2(θ) −a(1 + 2mr
ρ2

) sin2(θ) 0 Σ sin2(θ)


ab

.

(4.2.50)
While the inverse metric is given by

(gab)ad-EF =


−1− 2mr

ρ2
2mr
ρ2

0 0
2mr
ρ2

∆
ρ2

0 a
ρ2

0 0 1
ρ2

0

0 a
ρ2

0 1
ρ2 sin2(θ)


ab

. (4.2.51)

We can see, this metric is not in unit-lapse form. To force this condition,
we have to solve

− 1 = gtt + 2Tig
ti + TiTjg

ij . (4.2.52)

More specifically

− 1 = −
(

1 +
2mr

ρ2

)
+ 2Tr

2mr

ρ2
+

∆

ρ2
T 2
r +

T 2
θ

ρ2
(4.2.53)
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Which simplifies to

0 = −2mr + 4mrTr + ∆T 2
r + T 2

θ (4.2.54)

which has the solution

Tθ = 0; Tr =
−2mr ±

√
(2mr)2 + 2mr∆

∆
=
−2mr ±

√
2mr(r2 + a2)

∆
.

(4.2.55)
As before, we have to be careful to choose the root which corresponds to
a black hole rather than a white hole. Now, Tr can be recast in a slightly
different form

−2mr ±
√

2mr(r2 + a2)

∆
=
−2mr ±

√
2mr(r2 + a2)

∆

−2mr ∓
√

2mr(r2 + a2)

−2mr ∓
√

2mr(r2 + a2)

=
−2mr

−2mr ∓
√

2mr(r2 + a2)

=
2mr/(r2 + a2)

2mr/(r2 + a2)±
√

2mr/(r2 + a2)

=

√
2mr/(r2 + a2)√

2mr/(r2 + a2)± 1

= ±
√

2mr/(r2 + a2)

1±
√

2mr/(r2 + a2)
.

(4.2.56)

Therefore, T (r, θ) is independent of θ and we have

T (r) = ±
∫ √

2mr/(r2 + a2)

1±
√

2mr/(r2 + a2)
dr (4.2.57)

Hence to put the metric into unit-lapse form we make the coordinate trans-
formation (here we suppress the overbar)

dt→ dt∓
√

2mr/(r2 + a2)

1±
√

2mr/(r2 + a2)
dr . (4.2.58)
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Therefore, our metric, which we shall call the Eddington-Finkelstein-rain
metric (or EF-rain), becomes

(ds2)EF-rain =−

(
dt∓

√
2mr/(r2 + a2)

1±
√

2mr/(r2 + a2)
dr

)2

+ dr2 − 2a sin2(θ)drdθ + ρ2dθ2 + (r2 + a2) sin2(θ)dφ2

+
2mr

ρ2

(
dt+

[
1∓

√
2mr/(r2 + a2)

1±
√

2mr/(r2 + a2)

]
dr − a sin2(θ)dφ2

)2

.

(4.2.59)

Which simplifies to

(ds2)EF-rain =−

(
dt∓

√
2mr/(r2 + a2)

1±
√

2mr/(r2 + a2)
dr

)2

+ dr2 − 2a sin2(θ)drdθ + ρ2dθ2 + (r2 + a2) sin2(θ)dθ2

+
2mr

ρ2

(
dt+

dr

1±
√

2mr/(r2 + a2)
− a sin2(θ)dφ

)2

.

(4.2.60)

Retrospectively, we can check that the upper sign corresponds to a black
hole, hence we have

(ds2)EF-rain =−

(
dt−

√
2mr/(r2 + a2)

1 +
√

2mr/(r2 + a2)
dr

)2

+ dr2 − 2a sin2(θ)drdθ + ρ2dθ2 + (r2 + a2) sin2(θ)dθ2

+
2mr

ρ2

(
dt+

dr

1 +
√

2mr/(r2 + a2)
− a sin2(θ)dφ

)2

.

(4.2.61)

The covariant metric in these coordinates is given by

(gab)EF-rain =


−1 + 2mr

ρ2
gtr 0 −2mar

ρ2
sin2(θ)

gtr grr 0 grφ

0 0 ρ2 0

−2mar
ρ2

sin2(θ) grφ 0 Σ sin2(θ)


ab

(4.2.62)
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where

grr = 1 +
a2 sin2(θ)(2mr/ρ2)

(r2 + a2)
(

1 +
√

2mr/(r2 + a2)
)2 ; (4.2.63)

gtr =
2mr/ρ2 +

√
2mr/(r2 + a2)

1 +
√

2mr/(r2 + a2)
; (4.2.64)

grφ = −a sin2(θ)

(
1 + 2mr/ρ2 +

√
2mr/(r2 + a2)

1 +
√

2mr/(r2 + a2)

)
. (4.2.65)

The inverse metric is

(gab)EF-rain =



−1

√
2mr/(r2+a2)

ρ2
0

√
2mra2/(r2+a2)

ρ2
(

1+
√

2mr/(r2+a2)
)

√
2mr/(r2+a2)

ρ2
∆
ρ2

0 a
ρ2

0 0 1
ρ2

0√
2mra2/(r2+a2)

ρ2
(

1+
√

2mr/(r2+a2)
) a

ρ2
0 1

ρ2 sin2(θ)



ab

.

(4.2.66)
Hence, this metric has been put into unit-lapse form. However, there is a
cost to this, the flow vector has now been complicated

(vi)EF-rain = −

√2mr(r2 + a2)

ρ2
, 0,

√
2mra2/(r2 + a2)

ρ2
(

1 +
√

2mr/(r2 + a2)
)
 .

(4.2.67)
Furthermore, for rain geodesics, we have dθ/dt = 0 hence θ(t) = θ∞ is
conserved along the geodesic. Also, we have(

dφ

dr

)
EF-rain

=
dφ/dt

dr/dt
=

a

(r2 + a2)
(

1 +
√

2mr/(r2 + a2)
) . (4.2.68)

Hence

φ(r) = φ∞ −
∫ ∞
r

a

(r̄2 + a2)
(

1 +
√

2mr̄/(r̄2 + a2)
) dr̄ . (4.2.69)
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4.2.5 Adjusting the flow vector

We have used our freedom in our choice of time coordinate to put our
metrics into unit-lapse form, we now use the freedom in our choice of
azimuthal coordinate to simplify the flow vector vi. In general, under a
change in in azimuthal coordinate our flow vector transforms as vφ →
v̄φ = vφ + Φrv

r + Φθv
θ. However, for both the BL-rain and EL-rain metrics

we have vθ = 0. Hence in this case, we have vφ → v̄φ = vφ + Φrv
r. Further-

more, for the BL-rain and EL-rain metrics, the only angular dependence
in the vr and vθ terms arises from the common factor 1/ρ2. Therefore, this
indicates that we can eliminate vφ entirely by choosing a suitable transfor-
mation of the φ coordinate φ̄ = φ + Φ(r). Hence, we will use this freedom
in our choice of φ coordinate to derive the Doran form of the Kerr metric
from the BL-rain, EF-rain and the EF metrics.

The Doran form of the Kerr metric is one of the most common unit-
lapse forms of the Kerr metric and is given as

(ds2)Doran =− dt2 + ρ2dθ2 + (r2 + a2) sin2(θ)dφ2

+

{
ρ√

r2 + a2
dr +

√
2mr

ρ
(dt− a sin2(θ)dφ)

}2

.
(4.2.70)

The covariant metric is given by

(gab)Doran =


−1 + 2mr

ρ2

√
2mr
a2+r2

0 −2mar sin2(θ)
ρ2√

2mr
a2+r2

ρ2

r2+a2
0 −a

√
2mr
a2+r2

sin2(θ)

0 0 ρ2 0

−2mar sin2(θ)
ρ2

−a
√

2mr
a2+r2

sin2(θ) 0 Σ sin2(θ)


ab

(4.2.71)
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with inverse metric

(gab)Doran =


−1

√
2mr(a2+r2)

ρ2
0 0√

2mr(a2+r2)

ρ2
∆
ρ2

0 a
ρ2

√
2mr
a2+r2

0 0 1
ρ2

0

0 a
ρ2

√
2mr
a2+r2

0 1
(a2+r2) sin2(θ)



ab

. (4.2.72)

Hence, we see that this metric is indeed unit-lapse.
Let us start from the BL-rain (inverse) metric, given by

(gab)BL-rain =


−1

√
2mr(r2+a2)

ρ2
0 −2mar

ρ2∆√
2mr(r2+a2)

ρ2
∆
ρ2

0 0

0 0 1
ρ2

0

−2mar
ρ2∆

0 0 1−2mr/ρ2

∆ sin2(θ)



ab

(4.2.73)

where the flow vector is given by

(vi)BL-rain =

(
−
√

2mr(r2 + a2)

ρ2
, 0,

2mar

ρ2∆

)
. (4.2.74)

If we choose

Φr = −
(
vφ

vr

)
BL-rain

=
a

∆

√
2mr

r2 + a2
; Φ(r) =

∫
a

∆

√
2mr

r2 + a2
dr (4.2.75)

then v̄φ → 0. However, by equations (4.2.22) - (4.2.24), we see that the 3-
metric will now be complicated via this transformation. But by conducting
this transformation, the BL-rain (inverse) metric now becomes

(gab)Doran =


−1

√
2mr(a2+r2)

ρ2
0 0√

2mr(a2+r2)

ρ2
∆
ρ2

0 a
ρ2

√
2mr
a2+r2

0 0 1
ρ2

0

0 a
ρ2

√
2mr
a2+r2

0 1
(a2+r2) sin2(θ)



ab

. (4.2.76)
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Hence, starting from the BL-rain metric, we can transform the metric into
Doran form. This implies that starting from the Boyer-Lindquist form of
the Kerr metric, we can transform the metric into Doran form via the fol-
lowing coordinate transformations:

dt→ dt−
√

2mr(r2 + a2)

∆
dr , (4.2.77)

dφ→ dφ− a

∆

√
2mr

r2 + a2
dr . (4.2.78)

If we now start from the EF-rain (inverse) metric, which is given as

(gab)EF-rain =



−1

√
2mr/(r2+a2)

ρ2
0

√
2mra2/(r2+a2)

ρ2
(

1+
√

2mr/(r2+a2)
)

√
2mr/(r2+a2)

ρ2
∆
ρ2

0 a
ρ2

0 0 1
ρ2

0√
2mra2/(r2+a2)

ρ2
(

1+
√

2mr/(r2+a2)
) a

ρ2
0 1

ρ2 sin2(θ)



ab

(4.2.79)
where the flow vector is given by

(vi)EF-rain = −

√2mr(r2 + a2)

ρ2
, 0,

√
2mra2/(r2 + a2)

ρ2
(

1 +
√

2mr/(r2 + a2)
)
 .

(4.2.80)
If we choose

Φr = −
(
vφ

vr

)
EF-rain

= − a/(r2 + a2)

1 +
√

2mr/(r2 + a2)
(4.2.81)

such that
Φ(r) = −

∫
a/(r2 + a2)

1 +
√

2mr/(r2 + a2)
dr , (4.2.82)

then v̄φ → 0. However, as we saw for the BL-rain metric, this transforma-
tion complicates the 3-metric. After conducting this transformation, our
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EF-rain inverse metric now becomes

(gab)Doran =


−1

√
2mr(a2+r2)

ρ2
0 0√

2mr(a2+r2)

ρ2
∆
ρ2

0 a
ρ2

√
2mr
a2+r2

0 0 1
ρ2

0

0 a
ρ2

√
2mr
a2+r2

0 1
(a2+r2) sin2(θ)



ab

. (4.2.83)

Hence, starting from the EF-rain metric, we can transform the metric into
Doran form. This implies that starting from the advanced Eddington-
Finkelstein form of the Kerr metric, we can transform the metric into Do-
ran form via the following coordinate transformations:

dt→ dt−
√

2mr/(r2 + a2)

1 +
√

2mr/(r2 + a2)
dr , (4.2.84)

dφ→ dφ− a/(r2 + a2)

1 +
√

2mr/(r2 + a2)
dr . (4.2.85)

However, the Kerr metric was originally written in Eddington-Finkelstein
coordinates as

ds2 =(r2 + a2 cos2(θ))(dθ2 + sin2(θ)dφ2)

+ 2(du− a sin2(θ)dφ)(dr − a sin2(θ)dφ)

−
(

1− 2mr

r2 + a2 cos2(θ)

)
(du− a sin2(θ)dφ)2 .

(4.2.86)

This metric can be transformed into Doran form by firstly transforming to
advanced Eddington-Finkelstein coordinates, then to Doran coordinates
via the following transformation

du→ dt+
dr

1 +
√

2mr(r2 + a2)
, (4.2.87)

dφ→ dφ+
a dr

r2 + a2 +
√

2mr(r2 + a2)
. (4.2.88)
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4.2.6 Natário metric

There exists yet another unit-lapse form of the Kerr metric, the Natário
form. If we start from Boyer-Lindquist coordinates and make the follow-
ing coordinate transformation

dt→ dt− 2mr(r2 + a2)

∆
, (4.2.89)

dφ→ dφ+ Φrdr + Φθdθ , (4.2.90)

then the resulting metric is

(ds2)Natário = −dt2 +
ρ2

Σ
(dr − v dt)2 + ρ2dθ2 + Σ sin2(θ)(dφ+ δdθ − Ωdt)2 .

(4.2.91)
Notice that the temporal coordinate transformation above just takes the
Kerr metric in Boyer-Lindquist form to the Boyer-Lindquist-rain metric,
the azimuthal transformation however, is different from what we have
seen for the Doran metric. Here Natário chose to set

(vφ)Natário = Ω =
2mra

ρ2Σ
. (4.2.92)

This choice then causes the form of Φ(r, θ) to be rather complicated. More
specifically

Φ(r, θ) =
(vφ)Natário − (vφ)BL-rain

(vr)BL-rain
=

(vφ)Natário − (vφ)BL-rain

(vr)Natário
, (4.2.93)

we could then substitute these known variables and explicitly integrate,
but this exercise doesn’t give too much relevant information. The quantity

v = −2mr(r2 + a2)

ρ2
, (4.2.94)

is tractable, however the quantity

δ(r, θ) = −a2 sin(2θ)

∫ ∞
r

vΩ

Σ
dr̄ , (4.2.95)
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is not. More explicitly

δ(r, θ) = −a2 sin(2θ)

∫ ∞
r

2mar̄
√

2mr̄(r̄2 + a2)[
(r̄2 + a2)(r̄2 + a2 cos2(θ)) + 2 sin2(θ)ma2r̄

]2 dr̄ ,

(4.2.96)
this integration then gives incomplete Elliptic integrals. However, we no-
tice that the quantity δ(r, θ) is present in the metric, hence this implies
the existence of incomplete Elliptic integrals in the metric components. This
makes the Natário metric rather troublesome to work with since we are
then working with implicit metric components rather than explicit com-
ponents.

The covariant metric is given as

(gab)Natário =


−1 + ρ2v2

Σ
−ρ2v

Σ
−δΣ sin2(θ)Ω −Σ sin2(θ)Ω

−ρ2v
Σ

ρ2

Σ
0 0

−δΣ sin2(θ)Ω 0 ρ2 + δ2Σ sin2(θ) δΣ sin2(θ)

−Σ sin2(θ)Ω 0 δΣ sin2(θ) Σ sin2(θ)


ab

(4.2.97)
with determinant

det[(gab)Natário] = −ρ4 sin2(θ) (4.2.98)

as we expect. The inverse metric is

(gab)Natário =


−1 −v 0 −Ω

−v Σ
ρ2
− v2 0 −Ωv

0 0 1
ρ2

− δ
ρ2

−Ω −Ωv − δ
ρ2

1
Σ sin2(θ)

+ δ2

ρ2
− Ω2


ab

(4.2.99)

hence the metric is unit-lapse, as advertised.

4.2.7 General unit-lapse form of the Kerr metric

We can now see that we can quite easily create an infinite number of unit-
lapse forms of the Kerr metric by giving a general representation of the
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Kerr metric in unit-lapse form. To do this, we just have to start with any
of the pre-existing unit-lapse forms of the Kerr metric (be it BL-rain, EF-
rain, Doran, or Natário) then make the coordinate transformation φ→ φ−
Φ(r, θ) for some arbitrary function Φ(r, θ), while leaving the t coordinate
unchanged. That is to say, in the line element, we make the following
replacement

dφ→ dφ− Φrdr − Φθdθ . (4.2.100)

As an example, we shall do this replacement for the Doran form of the
Kerr metric. We get

(ds2)General =− dt2 + ρ2dθ2 + (r2 + a2) sin2(θ)(dφ− Φrdr − Φθdθ)
2[

ρdr√
r2 + a2

+

√
2mr

ρ
(dt− a sin2(θ)(dφ− Φrdr − Φθdθ))

]2

.

(4.2.101)

We shall write

(gab)General = (gab)Doran + ∆1(gab) + ∆2(gab) (4.2.102)

where the first and second order shifts (linear and quadratic in gradients
of Φ respectively) are given by

∆1(gab) = sin2(θ)


0 2mar

ρ2
Φr

2mar
ρ2

Φθ 0

2mar
ρ2

Φr 2a
√

2mar
r2+a2

Φr a
√

2mar
r2+a2

Φθ −ΣΦr

2mar
ρ2

Φθ a
√

2mar
r2+a2

Φθ 0 −ΣΦθ

0 −ΣΦr −ΣΦθ 0


ab

(4.2.103)
and

∆2(gab) = Σ sin2(θ)


0 0 0 0

0 Φ2
r ΦrΦθ 0

0 ΦrΦθ Φ2
θ 0

0 0 0 0


ab

= Σ sin2(θ)ΦaΦb . (4.2.104)
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We can now simply invert (gab)General to find (gab)General. We write

(gab)General = (gab)Doran + ∆1(gab) + ∆2(gab) (4.2.105)

where the first and second order shifts are given by

∆1(gab) =
1

ρ


0 0 0

√
2mr(r2 + a2)Φr

0 0 0 ∆Φr

0 0 0 Φθ√
2mr(r2 + a2)Φr ∆Φr Φθ 2a

√
2mr
r2+a2

Φr


ab

(4.2.106)
and

∆2(gab) =
∆Φ2

r + Φ2
θ

ρ2


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


ab

. (4.2.107)

A coordinate transformation of this form is the most general coordinate
transformation we can perform while: retaining unit-lapse, preserving
axial-symmetry, and retaining the usual oblate spheroidal coordinates (r, θ,

φ).

4.3 Painlevé-Gullstrand form of the Kerr metric

We now look at the possibility of the existence of a Painlevé-Gullstrand
form of the Kerr metric. Recall, a metric is in Painlevé-Gullstrand form
if it has unit-lapse and if the 3-metric is diagonal. In the last section we
analysed many unit-lapse forms of the Kerr metric. However, they all had
one thing in common, the 3-metrics of all the above mentioned unit-lapse
forms of the Kerr metric are not diagonal. Hence, the question is: can we
diagonalise the 3-metric of one of these unit-lapse forms of the Kerr met-
ric to yield the Painlevé-Gullstrand form of the Kerr metric? A classical
mathematical result due to Darboux is that the 3-metric of a manifold can
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be diagonalised under some mild conditions. This seems to suggest that
this may be applicable to the Kerr metric, yielding the desired result. A
metric has 10 independent components, by enforcing unit-lapse and re-
quiring the 3-metric to be diagonal, we enforce 4 conditions on the metric
while leaving 6 degrees of freedom in the metric components. This naively
seems plausible to enforce such conditions on the Kerr metric.

In section 4.2.2 we saw that azimuthal-only transformations leave the
gtt component of the inverse metric invariant. If fact, if we were to make
any general spatial coordinate transformation (that is leaving the time co-
ordinate unchanged), then the gtt component of the inverse metric will be
invariant under this transformation. So our tactic in attempting to con-
struct a Painlevé-Gullstrand form of the Kerr metric is to assume our met-
ric is already in unit-lapse form, then make a general spatial coordinate
transformation and demand the off-diagonal components of the 3-metric
to be zero, then solve for the analytic functions which gives this coordinate
transformation. We start by looking at a general azimuthal only coordinate
transformation.

4.3.1 Azimuthal-only coordinate transformation

We shall make a general azimuthal only coordinate transformation, while
leaving the r and θ coordinates unchanged. So we have

r = r̄; θ = θ̄; φ = φ̄+ Φ(r̄, θ̄) (4.3.1)

therefore

dr = dr̄; dθ = dθ̄; dφ = dφ̄+ Φr̄dr̄ + Φθ̄dθ̄ . (4.3.2)

Hence, we can write the 3-metric as

ds2 =grr(r̄, θ̄)dr̄
2 + gθθ(r̄, θ̄)dθ̄

2 + gφφ(r̄, θ̄)(dφ̄+ Φr̄dr̄ + Φθ̄dθ̄)
2

+ 2grφ(r̄, θ̄)dr̄(dφ̄+ Φr̄dr̄ + Φθ̄dθ̄) .
(4.3.3)
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Hence, the off-diagonal components are

gr̄φ̄ =grφ(r̄, θ̄) + gφφ(r̄, θ̄)Φr̄ (4.3.4)

gθ̄φ̄ =gφφ(r̄, θ̄)Φθ̄ (4.3.5)

gr̄θ̄ =Φθ̄(gφφ(r̄, θ̄)Φr̄ + grφ(r̄, θ̄)) . (4.3.6)

We now demand all of these components to vanish. That is, we demand
the following equations to hold

E1 : grφ(r̄, θ̄) + gφφ(r̄, θ̄)Φr̄ = 0 (4.3.7)

E2 : gφφ(r̄, θ̄)Φθ̄ = 0 (4.3.8)

E3 : Φθ̄(gφφ(r̄, θ̄)Φr̄ + grφ(r̄, θ̄)) = 0 . (4.3.9)

Now, we know that gφφ 6= 0, hence, from E2 we have Φθ̄ = 0. This guar-
antees that E3 is satisfied. However, this implies that Φ(r̄, θ̄) → Φ(r̄), so
from E1 we have

dΦ(r̄)

dr̄
= − grφ(r̄, θ̄)

gφφ(r̄, θ̄)
(4.3.10)

This equation is consistent iff the RHS is a purely a function of r̄, that is if

∂θ̄

(
grφ(r̄, θ̄)

gφφ(r̄, θ̄)

)
= 0 . (4.3.11)

However, note that we left the r and θ coordinates unchanged, hence this
condition is equivalent to

∂θ

(
grφ(r, θ)

gφφ(r, θ)

)
= 0 . (4.3.12)

However, via inspection of the BL-rain, EF-rain and Doran metrics, we
find(

grφ(r, θ)

gφφ(r, θ)

)
BL-rain

=
2mar

√
2mr(r2 + a2)

∆ρ2Σ
(4.3.13)(

grφ(r, θ)

gφφ(r, θ)

)
EF-rain

=− a

Σ

(
1 + 2mr/ρ2 +

√
2mr/(r2 + a2)

1 +
√

2mr/(r2 + a2)

)
(4.3.14)(

grφ(r, θ)

gφφ(r, θ)

)
Doran

=− a

Σ

√
2mr

r2 + a2
. (4.3.15)
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Recall that ρ =
√
r2 + a2 cos2(θ), ∆ = r2 + a2 − 2mr and Σ = r2 + a2 +

2mra2 sin2(θ)/ρ2. Hence there is θ dependence in both ρ and Σ. There-
fore, the consistency condition in equation 4.3.12 is not satisfied. Hence,
we cannot construct a Painlevé-Gullstrand form of the Kerr metric via a
azimuthal-only coordinate transformation.

4.3.2 Polar-only (r, θ) coordinate transformation

We shall now conduct a polar-only coordinate transformation, that is trans-
form the (r, θ) while keeping the φ coordinate unchanged. So we have

r = G(r̄, θ̄); θ = H(r̄, θ̄); φ = φ̄ (4.3.16)

therefore

dr = Gr̄dr̄ +Gθ̄dθ̄; dθ = Hr̄dr̄ +Hθ̄dθ̄; dφ = dφ̄ . (4.3.17)

Hence, we can write the 3-metric as

ds2 =grr(G(r̄, θ̄), H(r̄, θ̄))(Gr̄dr̄ +Gθ̄dθ̄)
2

+ gθθ(G(r̄, θ̄), H(r̄, θ̄))(Hr̄dr̄ +Hθ̄dθ̄)
2

+ gφφ(G(r̄, θ̄), H(r̄, θ̄))dφ̄2

+ 2grφ(G(r̄, θ̄), H(r̄, θ̄))(Gr̄dr̄ +Gθ̄dθ̄)dφ̄ .

(4.3.18)

To simplify our notation, we shall write gij(G(r̄, θ̄), H(r̄, θ̄)) → gij(r̄, θ̄).
The off-diagonal components of the 3-metric are

gr̄φ̄ =grφ(r̄, θ̄)Gr̄ (4.3.19)

gθ̄φ̄ =grφ(r̄, θ̄)Gθ̄ (4.3.20)

gr̄θ̄ =grr(r̄, θ̄)Gr̄Gθ̄ + gθθ(r̄, θ̄)Hr̄Hθ̄ . (4.3.21)

We now demand all of these components to vanish. That is, we demand
the following equations to hold

E1 : grφ(r̄, θ̄)Gr̄ = 0 (4.3.22)

E2 : grφ(r̄, θ̄)Gθ̄ = 0 (4.3.23)

E3 : grr(r̄, θ̄)Gr̄Gθ̄ + gθθ(r̄, θ̄)Hr̄Hθ̄ = 0 . (4.3.24)
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Now, we know that grφ 6= 0, hence, from E1 we have Gr̄ = 0 and from E2

we have Gθ̄ = 0. This implies that G(r̄, θ̄) is constant. Therefore, it not a
good choice of coordinate, so we have an inconsistency. Hence, we cannot
construct a Painlevé-Gullstrand form of the Kerr metric via a polar-only
coordinate transformation.

4.3.3 Axisymmetry preserving coordinate transformation

We now look at the most general coordinate transformation we can per-
form while retaining the axisymmetry present in the Kerr spacetime. This
coordinate transformation is of the form

r = G(r̄, θ̄); θ = H(r̄, θ̄); φ = φ̄+ Φ(r̄, θ̄) (4.3.25)

therefore

dr = Gr̄dr̄ +Gθ̄dθ̄; dθ = Hr̄dr̄ +Hθ̄dθ̄; dφ = dφ̄+ Φr̄dr̄ + Φθ̄dθ̄ .

(4.3.26)
Hence, we can write the 3-metric as

ds2 =grr(G(r̄, θ̄), H(r̄, θ̄))(Gr̄dr̄ +Gθ̄dθ̄)
2

+ gθθ(G(r̄, θ̄), H(r̄, θ̄))(Hr̄dr̄ +Hθ̄dθ̄)
2

+ gφφ(G(r̄, θ̄), H(r̄, θ̄))(dφ̄+ Φr̄dr̄ + Φθ̄dθ̄)
2

+ 2grφ(G(r̄, θ̄), H(r̄, θ̄))(Gr̄dr̄ +Gθ̄dθ̄)(dφ̄+ Φr̄dr̄ + Φθ̄dθ̄) .

(4.3.27)

To simplify our notation, we shall write gij(G(r̄, θ̄), H(r̄, θ̄)) → gij(r̄, θ̄).
The off-diagonal components of the 3-metric are

gr̄φ̄ =grφ(r̄, θ̄)Gr̄ + gφφ(r̄, θ̄)Φr̄ (4.3.28)

gθ̄φ̄ =grφ(r̄, θ̄)Gθ̄ + gφφ(r̄, θ̄)Φθ̄ (4.3.29)

gr̄θ̄ =grr(r̄, θ̄)Gr̄Gθ̄ + gθθ(r̄, θ̄)Hr̄Hθ̄ + gφφ(r̄, θ̄)Φr̄Φθ̄

+ grφ(r̄, θ̄)[Φr̄Gθ̄ +Gr̄Φθ̄] .
(4.3.30)
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We now demand all of these components to vanish. That is, we demand
the following equations to hold

E1 : grφ(r̄, θ̄)Gr̄ + gφφ(r̄, θ̄)Φr̄ = 0 (4.3.31)

E2 : grφ(r̄, θ̄)Gθ̄ + gφφ(r̄, θ̄)Φθ̄ = 0 (4.3.32)

E3 : grr(r̄, θ̄)Gr̄Gθ̄ + gθθ(r̄, θ̄)Hr̄Hθ̄ + gφφ(r̄, θ̄)Φr̄Φθ̄

+ grφ(r̄, θ̄)[Φr̄Gθ̄ +Gr̄Φθ̄] = 0 .
(4.3.33)

So we have 3 partial-differential equations (PDEs) involving 3 unknown
functions, hence (assuming these PDEs are solvable), we should be able
to analytically solve for these functions. But let us consider the following
linear combination of equations

1

gφφ(r̄, θ̄)
(Gθ̄ E1−Gr̄ E2) . (4.3.34)

That is
GθΦr̄ −Gr̄Φθ = 0 . (4.3.35)

We notice that this looks like the cross product between two vectors and
moreover this cross product vanishes. More explicitly, the following cross
product vanishes

(Φr̄,Φθ̄)× (Gr̄, Gθ) = 0 . (4.3.36)

This means that
(Φr̄,Φθ̄) ∝ (Gr̄, Gθ) . (4.3.37)

Which has the solution

Φ(r̄, θ̄) = W (G(r̄, θ̄)) (4.3.38)

where W (G) is some arbitrary function of G(r̄, θ̄). We now substitute this
solution back into E1 and E2

E1′ : Gr̄(r̄, θ̄)[grφ(r̄, θ̄) + gφφ(r̄, θ̄)W ′(G(r̄, θ̄))] = 0 (4.3.39)

E2′ : Gθ̄(r̄, θ̄)[grφ(r̄, θ̄) + gφφ(r̄, θ̄)W ′(G(r̄, θ̄))] = 0 . (4.3.40)
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There are two sets of solutions for this system of equations. The first is that
both Gr̄ = 0 and Gθ̄ = 0, however, this would imply that G is constant,
which not be a good choice of coordinate. Hence, we must enforce the
second solution. That is, we enforce

grφ(r̄, θ̄) + gφφ(r̄, θ̄)W ′(G(r̄, θ̄)) = 0 . (4.3.41)

That is

W ′(G(r̄, θ̄)) = − grφ(r̄, θ̄)

gφφ(r̄, θ̄)
. (4.3.42)

Rewriting this condition in our original coordinate system, this condition
reads

W ′(r) = − grφ(r, θ)

gφφ(r, θ)
. (4.3.43)

Now recall that we have(
grφ(r, θ)

gφφ(r, θ)

)
BL-rain

=
2mar

√
2mr(r2 + a2)

∆ρ2Σ
(4.3.44)(

grφ(r, θ)

gφφ(r, θ)

)
EF-rain

=− a

Σ

(
1 + 2mr/ρ2 +

√
2mr/(r2 + a2)

1 +
√

2mr/(r2 + a2)

)
(4.3.45)(

grφ(r, θ)

gφφ(r, θ)

)
Doran

=− a

Σ

√
2mr

r2 + a2
. (4.3.46)

Where there is θ dependence in both ρ and Σ. Hence, equation 4.3.43 can-
not be satisfied, we cannot have a function purely of r be equal to some
function of both r and θ. Since this condition cannot be satisfied, there
exists no coordinate transformation which diagonalises the 3-metric of a
unit-lapse form of the Kerr metric while retaining both unit-lapse and ax-
isymmetry. Therefore, there does not exist a Painlevé-Gullstrand form of
the Kerr metric.



76 CHAPTER 4. THE KERR SOLUTION



Chapter 5

The Lense-Thirring spacetime

5.1 Introduction to the Lense-Thirring spacetime

It took 47 years after the discovery of the Schwarzschild solution to dis-
cover the Kerr solution, the exact solution to Einstein’s equation that de-
scribes a rotating central mass in a vacuum. However, it was not the first
spacetime to model this physical system. Just 2 years after the discovery
of the Schwarzschild solution Josef Lense and Hans Thirring discovered
an approximate solution to the vacuum Einstein equation that describes a
rotating central mass in a vacuum at large distances from the central mass.
The Lense-Thirring spacetime is a slow rotation approximation to the Kerr
solution, however even for rapid rotation, Lense-Thirring approximates
Kerr at large distances (large r). The Lense-Thirring metric is most com-
monly written as follows

ds2 =−
[
1− 2m

r
+O

(
1

r2

)]
dt2 −

[
4J sin2(θ)

r
+O

(
1

r2

)]
dtdφ

+

[
1 +

2m

r
+O

(
1

r2

)] [
dr2 + r2(dθ2 + sin2(θ)dφ2)

] (5.1.1)

where J is the angular momentum of the rotating object. This metric is
rather useful for a few reasons. Firstly, it is much easier to use this met-
ric that the rather complex Kerr solution (we can already notice that the

77
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metric components of the Lense-Thirring metric are much simpler than
the metric components of the Kerr metric). Secondly, since there exists no
Birkhoff theorem for axisymmetric solutions in 3+1 dimensions, the Kerr
solution will not perfectly describe any physical rotating star or planet in
the universe considering these objects will typically possess non-trivial
mass multipole moments. Hence, the Kerr solution will only be a good
model in the asymptotic regime, which is where the Lense-Thirring space-
time approximates Kerr.

Unlike the Kerr solution, the Lense-Thirring spacetime does admit a
Painlevé-Gullstrand form of its metric. We now modify the metric given
in equation (5.1.1) to generate a Painlevé-Gullstrand form of the metric.
Consider the following modification

ds2 =−
(

1− 2m

r

)
dt2 −

[
4J sin2(θ)

r
+O

(
1

r2

)]
dtdφ

+
dr2

1− 2m/r
+ r2(dθ2 + sin2(θ)dφ2) .

(5.1.2)

Notice that this metric approaches equation (5.1.1) for large r and further-
more notice that for J = 0, this modified version of the Lense-Thirring
metric reduces to Schwarzschild for large r. We now “complete the square”
(foreshadowing the tetrad discussion below)

ds2 =−
(

1− 2m

r

)
dt2 +

dr2

1− 2m/r

+ r2

(
dθ2 + sin2(θ)

(
dφ−

[
2J

r3
+O

(
1

r4

)]
dt

)2
)

.

(5.1.3)

Here the azimuthal components have been put into partial Painlevé-Gull-
strand form, that is: gφφ(dφ− vφdt)2 = gφφ(dφ−ωdt)2. Now to put the t− r
plane into Painlevé-Gullstrand form we make the following coordinate
transformation

dt→ dt+
1

1− 2m/r

√
2m

r
dr . (5.1.4)



5.1. INTRODUCTION TO THE LENSE-THIRRING SPACETIME 79

Doing so then yields

ds2 =− dt2 +

(
dr +

√
2m

r
dt

)2

+ r2

(
dθ2 + sin2(θ)

(
dφ−

[
2J

r3
+O

(
1

r4

)]
dt

)2
)

.

(5.1.5)

Notice that now the 3-metric of equation (5.1.5) is flat. We now discard the
O(1/r4) terms, that is, we now have the explicit metric

ds2 = −dt2 +

(
dr +

√
2m

r
dt

)2

+ r2

(
dθ2 + sin2(θ)

(
dφ− 2J

r3
dt

)2
)

.

(5.1.6)
Notice that for J = 0, this metric reduces to the Schwarzschild solution
in Painlevé-Gullstrand coordinates exactly and for large r this metric ap-
proaches equation (5.1.1).

From equation (5.1.6), the covariant metric is given by

gab =


−1 + 2m

r
+ 4J2 sin2(θ)

r4

√
2m
r

0 −2J sin2(θ)
r√

2m
r

1 0 0

0 0 r2 0

−2J sin2(θ)
r

0 0 r2 sin2(θ)


ab

(5.1.7)

while the inverse metric is given by

gab =


−1

√
2m
r

0 −2J
r3√

2m
r

1− 2m
r

0
√

2m
r

2J
r3

0 0 1
r2

0

−2J
r3

√
2m
r

2J
r3

0 1
r2 sin2(θ)

− 4J2

r6



ab

. (5.1.8)

Hence, the metric is in unit-lapse form, as advertised.

5.1.1 Tetrad

A tetrad (or vierbein) is essentially an orthonormal basis defined on our
manifold. Therefore, most tensors defined on our manifold become more
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simplified when written in a tetrad basis. When we write a tensor using
a tetrad basis, we will write the corresponding labels of the indices with
overhats, for example â, b̂ ∈ {t̂, r̂, θ̂, φ̂}. Let ηâb̂ = diag(−1, 1, 1, 1). Then
a covariant tetrad (or co-tetrad) eâa, will satisfy the following condition
gab = ηâb̂e

â
ae
b̂
b. By examining equation (5.1.6), an obvious choice for a

suitable co-tetrad is

et̂a = (1; 0, 0, 0); er̂a =

(√
2m

r
; 1, 0, 0

)
(5.1.9)

eθ̂a = r(0; 0, 1, 0); eφ̂a = r sin(θ)

(
−2J

r3
; 0, 0, 1

)
. (5.1.10)

We note that a tetrad basis is not unique. This is because the metric is in-
variant under a local Lorentz transformations Lâb̂ on the co-tetrad/tetrad
indices. However, we have picked this particular tetrad since it is well
adapted to the coordinate system we have chosen. Once we have a co-
tetrad, we can solve for the contravariant tetrad (or just tetrad) by using
the following condition eâa = ηâb̂e

b̂
bg
ba. Therefore, our tetrad is given by:

et̂
a =

(
1;−

√
2m

r
, 0,

2J

r3

)
; er̂

a = (0; 1, 0, 0) (5.1.11)

eθ̂
a =

1

r
(0; 0, 1, 0); eφ̂

a =
1

r sin(θ)
(0; 0, 0, 1) . (5.1.12)

We note the last three tetrad vectors given above are exactly the tetrad
vectors we would get for flat Euclidean 3-space written in spherical coor-
dinates. Therefore, for this tetrad, all of the non-trivial physics lies within
the first tetrad vector et̂a. This tetrad is rather simple in form, this is what
motivated us to “complete the square” above, not taking that step com-
plicates the tetrad significantly. As stated before, tensors defined on our
manifold become more simplified when written in a tetrad basis. Hence,
we shall give some tensors and curvature invariants written in our tetrad
basis.
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5.1.2 Curvature tensors

As previously stated, the Lense-Thirring metric is not an exact solution to
the vacuum Einstein equation, it is an approximate solution. This means
that the Lense-Thirring spacetime is not Ricci flat, that is Rab 6= 0. The
Ricci scalar in the Lense-Thirring spacetime is given as

R =
18J2 sin2(θ)

r6
. (5.1.13)

Hence, we see as r → ∞, R → 0. The Ricci tensor in the tetrad basis is
given by Râb̂ = eâ

aeb̂
bRab, and is explicitly given as

Râb̂ = R


−1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1


âb̂

. (5.1.14)

Therefore, as r → ∞, Râb̂ → 0. This shows us that the Lense-Thirring
metric approaches an exact solution of the vacuum Einstein equation at
large distances. To show that this approximates Kerr, we would have to
conduct a Taylor series expansion of the metric components of Kerr. We
would then see at large r, the components of the Lense-Thirring metric
and the components of the Kerr metric are approximately equal (however,
we shall not explicitly conduct this calculation in this text).

Now, the Einstein tensor in the tetrad basis is given by Gâb̂ = eâ
aeb̂

bRab,
and is explicitly given as

Gâb̂ =
R

2


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3


âb̂

. (5.1.15)

Notice the interesting pattern of minus signs and zeros in both the Ricci
and Einstein tensors. However, these tensors are rather simple. The Weyl
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and Riemann tensors on the other hand, are rather complex and tedious
to calculate.

The Weyl tensor in the tetrad basis is given by Câb̂ĉd̂ = eâ
aeb̂

beĉ
ced̂

dCabcd.
The terms quadratic in J are given by

Ct̂r̂t̂r̂ = −2Ct̂θ̂t̂θ̂ = −2Ct̂φ̂t̂φ̂ = 2Cr̂θ̂r̂θ̂ = 2Cr̂φ̂r̂φ̂ = −Cθ̂φ̂θ̂φ̂

= −2m

r3
− 12J2 sin2(θ)

r6
= −2m

r3
− 2

3
R .

(5.1.16)

The terms linear in J are given by

1

2
Ct̂r̂θ̂φ̂ = Ct̂θ̂r̂φ̂ = −Ct̂φ̂r̂θ̂ =

3J cos(θ)

r4
(5.1.17)

Ct̂r̂r̂φ̂ = −Ct̂θ̂θ̂φ̂ = −3J sin(θ)

r4
(5.1.18)

Ct̂r̂t̂φ̂ = −Cr̂θ̂θ̂φ̂ =
3J sin(θ)

√
2m/r

r4
. (5.1.19)

The Riemann tensor in the tetrad basis is given by Râb̂ĉ̂ = eâ
aeb̂

beĉ
ced̂

dRabcd.
The terms quadratic in J are given by

Rt̂r̂t̂r̂ = −2m

r3
− 27J2 sin2(θ)

r6
= −2m

r3
− 3

2
R (5.1.20)

Rt̂φ̂t̂φ̂ = −Rr̂φ̂r̂φ̂ =
m

r3
+

9J2 sin2(θ)

r6
=
m

r3
+

1

2
R . (5.1.21)

The terms linear in J are given by

Rt̂r̂θ̂φ̂ = 2Rt̂θ̂r̂φ̂ = −2Rt̂φ̂r̂θ̂ =
6J cos(θ)

r4
(5.1.22)

Rt̂r̂r̂φ̂ = −Rt̂θ̂θ̂φ̂ = −3J sin(θ)

r4
(5.1.23)

Rt̂r̂t̂φ̂ = −Rr̂θ̂θ̂φ̂ =
3J sin(θ)

√
2m/r

r4
. (5.1.24)

And the terms independent of J are given by

Rt̂θ̂t̂θ̂ = −Rr̂θ̂r̂θ̂ =
1

2
Rθ̂φ̂θ̂φ̂ =

m

r3
. (5.1.25)

While these tensors are rather complex, they are much simpler when writ-
ten in the tetrad basis as written here.
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5.1.3 Curvature invariants

As previously mentioned, the Ricci scalar of the Lense-Thirring spacetime
is given as

R =
18J2 sin2(θ)

r6
(5.1.26)

also the Ricci invariant is

RabR
ab = 3R2 . (5.1.27)

Notice that for J → 0, both of these quantities vanish. This is exactly what
we expect since for J → 0, the Lense-Thirring metric, equation (5.1.6),
reduces to the Schwarzschild metric written in Painlevé-Gullstrand coor-
dinates.

For the Weyl invariant we find

CabcdC
abcd =

48m2

r6
− 144J2(2 cos2(θ) + 1)

r8
+

864J2 sin2(θ)

r9
+

1728J4 sin4(θ)

r12

=
48m2

r6
− 144J2(3− 2 sin2(θ))

r8
+

48m

r3
R +

16

3
R2

=
48m2

r6
− 432J2

r8
+

16

3

(
1 +

3m

r

)
R +

16

3
R2 .

(5.1.28)

For the Kretschmann scalar we find

RabcdR
abcd = CabcdC

abcd +
1728J4 sin4(θ)

r12
= CabcdC

abcd +
17

3
R2 . (5.1.29)

Notice that for both of these scalars, for J → 0, these both reduce to their
known values in Schwarzschild, as we expect.

5.2 Petrov type

Finding solutions to Einstein’s equation is considerably difficult in the ab-
stract. Einstein’s equation is equivalent to a system of 10 coupled, non-
linear, partial differential equations (there are 10 independent equations
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because both Rab and Tab are symmetric). Such a system is considerably
complicated and generally does not admit explicit solutions. However,
there are various methods one can use to generate solutions to Einstein’s
equation. If the spacetime we are trying to solve for has a considerable
degree of symmetry, then some of the PDEs in Einstein’s equation degen-
erate, thus simplifying the system. The resulting system of PDEs may then
admit a solution. One measure of the degree of symmetry in a spacetime
is the Petrov type (or Petrov classification) of the spacetime. The Petrov
type of spacetimes classifies the degree of symmetry in a spacetime by
the algebraic symmetry present in the Weyl tensor of that spacetime. We
shall not go into the details of the analysis of the algebraic symmetry of
the Weyl tensor, but just simply state an important conclusion. Generally,
there exists up to 4 distinct null vectors ka where the following condition
holds:

kbkck[eCa]bc[dkf ] = 0 . (5.2.1)

The null vectors which satisfy the above equation are called principal null
directions. While these principal null directions are in general distinct, if
there exists symmetry in the spacetime, some of these principal null di-
rections can coincide, that is, they can become degenerate. Spacetimes
with degenerate principal null directions are called algebraically special
spacetimes. These spacetimes can use the degeneracy of the principal null
directions to cause degeneracy in the system of PDEs present in Einstein’s
equation which can then allow a solution to be generated. Spacetimes are
classified by the number of degenerate principal null directions as shown
in table 5.1.

So to find the Petrov type of a spacetime, one can solve for all principal
null directions of that spacetime, which can be rather tedious. However,
as shown in pages 49 and 50 of the “Exact solutions” book by Stephani et
al [84], we can find the Petrov type by a much simpler method. Consider
the mixed Weyl tensor Cab

cd. This tensor is antisymmetric in the index
pairs [ab] and [cd]. Hence, we can think of this tensor as a 6× 6 real matrix
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CA
B by making the correspondence A ←→ [ab] and B ←→ [cd]. This

matrix CA
B will be asymmetric (i.e. not symmetric). Then by finding the

eigenvalues of this matrix, we can find the Petrov type of the spacetime in
question.

Petrov
Type

Description Mathematical Condition

I
Not algebraically special; 4 distinct

principal null directions
kbkck[eCa]bc[dkf ] = 0

II
One pair of degenerate
principal null directions

kbkcCabc[dke] = 0

D
Two pairs of degenerate
principal null directions

kbkcCabc[dke] = 0

(two solutions)

III
Set of three degenerate

principal null directions
kcCabc[dke] = 0

N
All four principal null directions

are degenerate
kcCabcd = 0

O The Weyl tensor vanishes Cabcd = 0

Table 5.1: Petrov classification of various spacetimes.

For our Lense-Thirring spacetime, we calculate the mixed Weyl tensor in
the tetrad basis, C âb̂

ĉd̂ , and then make the correspondence A←→ [âb̂] and
B ←→ [ĉd̂] via the following scheme:

1↔ [1̂2̂]; 2↔ [1̂3̂]; 3↔ [1̂4̂]; 4↔ [3̂4̂]; 5↔ [4̂2̂]; 6↔ [2̂3̂] .

(5.2.2)
We now define some useful quantities

Ξ1 =
3J sin(θ)

r4
; Ξ2 = −m

r3
− 6J2 sin2(θ)

r6
; Ξ3 =

3J cos(θ)

r4
. (5.2.3)
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For our Lense-Thirring spacetime, the 6× 6 matrix CA
B is given by

CA
B =



−2 Ξ2 0 −Ξ1

√
2m
r

−2 Ξ3 −Ξ1 0

0 Ξ2 0 −Ξ1 Ξ3 0

−Ξ1

√
2m
r

0 Ξ2 0 0 Ξ3

2 Ξ3 Ξ1 0 −2 Ξ2 0 −Ξ1

√
2m
r

Ξ1 −Ξ3 0 0 Ξ2 0

0 0 −Ξ3 −Ξ1

√
2m
r

0 Ξ2


.

(5.2.4)
Notice that the trace of this matrix vanishes, as we should expect since
the Weyl tensor has zero trace. Also notice that this matrix has the partial
symmetry

CA
B =

[
SR SI

−SI SR

]
(5.2.5)

where SR and SI are symmetric 3× 3 matrices.
The matrix CA

B has 6 distinct eigenvalues, more specifically 3 complex
conjugate pairs. If we define the fourth quantity

Ξ4 =

(
1− 2m

r

)
9J2 sin2(θ)

r8
=

(
1− 2m

r

)
Ξ1

2 (5.2.6)

then we can write the 6 distinct eigenvalues of CA
B as

Ξ2 + iΞ3; −1

2
(Ξ2 + iΞ3)±

√
9

4
(Ξ2 + iΞ3)2 − Ξ4 ; (5.2.7)

and

Ξ2 − iΞ3; −1

2
(Ξ2 − iΞ3)±

√
9

4
(Ξ2 − iΞ3)2 − Ξ4 . (5.2.8)

Since there exists 6 distinct eigenvalues, this implies that the Jordan canon-
ical form of CA

B is trivial, hence our form of the Lense-Thirring spacetime
is Petrov type I. Note that while the Petrov type of a spacetime is indepen-
dent of the coordinate system it is written in, we have made modifications
to the usual form of the spacetime hence the distinction made above.
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We now consider some special cases:

• On the rotational axis, θ = 0. So we have Ξ1 = Ξ3 = 3J
r4

, Ξ2 = −m
r3

and Ξ4 = 0. Then the 6 distinct eigenvalues of CA
B reduce to

{λ(θ = 0)} =

{
−m
r3
± i3J

r4
, −m

r3
± i3J

r4
; −2

(
−m
r3
± i3J

r4

)}
.

(5.2.9)
Hence, the 6 on-axis eigenvalues ofCA

B are degenerate, we have two
sets of twice repeated eigenvalues.

• On the equator, θ = π
2
. So we have Ξ1 = 3J

r4
, Ξ2 = −m

r3
− 6J2

r6
, Ξ3 = 0

and Ξ4 =
(
1− 2m

r

)
9J2

r8
. Then the 6 distinct eigenvalues ofCA

B reduce
to

{λ(θ = π/2)} =

{
Ξ2, −

1

2
Ξ2 ±

√
9

4
Ξ2

2 − Ξ4

}
. (5.2.10)

Hence we have twice-repeated degenerate eigenvalues ofCA
B on the

equator.

• For J = 0 we have Ξ1 = Ξ3 = Ξ4 = 0 and Ξ2 = −m
r3

. Then the 6
distinct eigenvalues of CA

B reduce to

{λ(J = 0)} =

{
−m
r3
, −m

r3
, −m

r3
, −m

r3
;

2m

r3
,

2m

r3

}
. (5.2.11)

This is exactly the repeated eigenvalue structure we expect for the
Schwarzschild solution where we have a set of four times repeated
eigenvalues and a set of twice repeated eigenvalues.

While the eigenvalues of CA
B are degenerate on-axis, on the equator and

in the non-rotating limit where J → 0, in general, the 6 eigenvalues are
distinct. Hence, the Lense-Thirring spacetime is of Petrov type I.

5.3 Rain geodesics

As we saw in section 3.2, writing the Schwarzschild metric in Painlevé-
Gullstrand form allowed for simple analysis of the rain geodesics. This



88 CHAPTER 5. THE LENSE-THIRRING SPACETIME

effect carries over to the Lense-Thirring spacetime now that the metric has
now been written in Painlevé-Gullstrand form. Consider the vector field

V a = −gab∇bt = −gta =

(
1;−

√
2m

r
, 0,

2J

r3

)
(5.3.1)

where the corresponding dual vector field is

Va = −∇at = (−1; 0, 0, 0) . (5.3.2)

Hence, gabV aV b = V aVa = −1, so V a is a timelike vector field with unit
norm. This vector field has zero 4-acceleration

Aa = V b∇bV
a = −V b∇b∇at = −V b∇a∇bt = V b∇aV

b =
1

2
∇a(V

bVb) = 0

(5.3.3)
therefore the integral curves of V a are timelike geodesics. More specifi-
cally, the integral curves given by

dxa

dτ
=

(
dt

dτ
;
dr

dτ
,
dθ

dτ
,
dφ

dτ

)
=

(
1;−

√
2m

r
, 0,

2J

r3

)
(5.3.4)

are timelike geodesics. We can trivially integrate 2 of these equations

t(τ) = τ ; θ(τ) = θ∞ (5.3.5)

thus t is just the proper time of these geodesics, while θ∞ is the original
(and permanent) value of the θ coordinate for these geodesics. Further-
more, we have

1

2

(
dr

dt

)2

=
m

r
. (5.3.6)

Therefore, these geodesics mimic a particle with zero initial velocity falling
towards a mass (m) from spatial infinity. As for the final equation, we have

dφ

dr
=
dφ/dτ

dr/dτ
= − 2J/r3√

2m/r
= − 2J√

2m
r−5/2 (5.3.7)

which can be integrated to find

φ(r) = φ∞ +
4J

3
√

2m
r−3/2 (5.3.8)
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where φ∞ is the value of the φ coordinate evaluated at spatial infinity for
these geodesics. Notice the relatively clean result that rotation of the cen-
tral mass will cause particles traveling along these rain geodesics to be
deflected.

5.4 On-axis geodesics

On-axis we have either θ = 0 or θ = π, in either case dθ/dt = 0. Also, since
we are working on-axis, we can choose to conduct our analysis at any fixed
value of φ and hence let dφ/dt = 0 without any loss of generality. Hence,
we only consider the t − r plane. In this case our Lense-Thirring metric
reduces to

(ds2)On-axis = −dt2 +

(
dr +

√
2m

r
dt

)2

. (5.4.1)

Hence the contravariant metric and inverse metric (respectively) are given
by

(gab)On-axis =

 −1 + 2m
r

√
2m
r√

2m
r

1


ab

; (gab)On-axis =

 −1
√

2m
r√

2m
r

1− 2m
r


ab

.

(5.4.2)
These metrics are exactly the same as the metrics of the Schwarzschild
solution written in Painlevé-Gullstrand coordinates and limited to the t−
r plane. Hence, the on-axis geodesics of our Lense-Thirring spacetime
will be the same as in the Schwarzschild solution. We will carry out the
full calculation for completeness. For the on-axis null geodesics we have
gab(dx

a/dt)(dxb/dt) = 0, hence

− 1 +

(
dr

dt
+

√
2m

r

)2

= 0 . (5.4.3)

Therefore we have
dr

dt
= −

√
2m

r
± 1 . (5.4.4)
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For the on-axis timelike geodesics we have gab(dxa/dt)(dxb/dt) = −1, hence

(
dt

dτ

)2
−1 +

(
dr

dt
+

√
2m

r

)2
 = −1 . (5.4.5)

From the results in appendix A, we can construct a conserved quantity
from the time translation Killing vector ξa = (1; 0, 0, 0)a → (1, 0)a, this
quantity is given by

k = gabξ
a

(
dxb

dτ

)
= ξa

(
dxa

dτ

)
. (5.4.6)

Therefore (
dt

dτ

)((
−1 +

2m

r

)
+

√
2m

r

dr

dt

)
= k . (5.4.7)

If we eliminate dt/dτ , we find

k2

−1 +

(
dr

dt
+

√
2m

r

)2
 = −

((
−1 +

2m

r

)
+

√
2m

r

dr

dt

)2

. (5.4.8)

This is a quadratic equation in dr/dt, which solving yields

dr

dt
= −

√
2m

r

k2 − 1 + 2m/r

k2 + 2m/r
± k

√
k2 − 1 + 2m/r

k2 + 2m/r
. (5.4.9)

In the limit where k → ∞, this reproduces the result for on-axis null
geodesics, more specifically the result presented in equation (5.4.4). In
the limit where r →∞, we have

lim
r→∞

(
dr

dt

)
= ±

√
1− 1

k2
. (5.4.10)

This gives us a physical interpretation of the quantity k since now we have

k =
1√

1−
(
dr
dt

)2

∞

(5.4.11)

which is the asymptotic “gamma factor” for the on-axis geodesic.
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5.5 Generic equatorial non-circular geodesics

On the equator we have θ = π/2, hence dθ/dt = 0. Since we’re on the
equator we only consider the t− r − φ hypersurface, therefore our metric
reduces to

ds2 → −dt2 +

(
dr +

√
2m

r
dt2

)2

+ r2

(
dφ− 2J

r2

)2

. (5.5.1)

Therefore

gab →


−1 + 2m

r
+ 4J2

r4

√
2m
r
−2J

r√
2m
r

1 0

−2J
r

0 r2


ab

(5.5.2)

so the inverse metric becomes

gab →


−1

√
2m
r

−2J
r3√

2m
r

1− 2m
r

√
2m
r

2J
r3

−2J
r3

√
2m
r

2J
r3

1
r2
− 4J2

r6


ab

. (5.5.3)

5.5.1 Non-circular equatorial null geodesics

For these null geodesics we will parameterise the curve xa(λ) by some
arbitrary affine parameter λ. The null condition gab(dx

a/dt)(dxb/dt) = 0

then reads

− 1 +

(
dr

dt
+

√
2m

r

)2

+ r2

(
dφ

dt
− 2J

r3

)2

= 0 . (5.5.4)

We can construct two conserved quantities from the time translation Killing
vector ξa = (1; 0, 0, 0)a → (1; 0, 0)a and the azimuthal Killing vector ψa =

(0; 0, 0, 1)a → (0; 0, 1)a, which are

ξa
dxa

dλ
= k; ψa

dxa

dλ
= k̃ . (5.5.5)
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More explicitly

dt

dλ

(
−1 +

2m

r
+

4J2

r4
+

√
2m

r

dr

dt
− 2J

r

dφ

dt

)
= k (5.5.6)

and
dt

dλ

(
−2J

r
+ r2dφ

dt

)
= k̃ . (5.5.7)

Then if we eliminate dt/dλ, we find

k̃

(
−1 +

2m

r
+

4J2

r4
+

√
2m

r

dr

dt
− 2J

r

dφ

dt

)
= kr2

(
dφ

dt
− 2J

r3

)
. (5.5.8)

Now, we can solve this equation for either dr/dt or dφ/dt, then substi-
tute this back into equation (5.5.4) to give a quadratic for either dφ/dt or
dr/dt. We can solve for these quadratics explicitly, however these results
are rather messy. But, these quadratics become much simpler if instead we
give an asymptotic expansion in terms of inverse powers of r. These re-
sults are still physically relevant since recall that the Lense-Thirring space-
time is a large distance approximation.

Solving for dr/dt we find

dr

dt
= −

√
2m

r
P (r)±

√
Q(r) (5.5.9)

where P (r) and Q(r) are given by

P (r) = 1− k̃2

k2r2
+O

(
1

r5

)
; Q(r) = 1−

(
1− 2m

r

)
k̃2

k2r2
+O

(
1

r5

)
.

(5.5.10)
Similarly, for dφ/dt we find

dφ

dt
=

(
2J

r3
− k̃

kr2

)
P̃ (r)±

√
2m

r

k̃

kr2

√
Q̃(r) (5.5.11)

where P̃ (r) and Q̃(r) are given by

P̃ (r) = 1− 2k̃(Jk +mk̃)

k2r3
+O

(
1

r4

)
;

Q̃(r) = 1− k̃2

k2r2
− 2k̃(Jk +mk̃)

k2r3
+O

(
1

r5

)
.

(5.5.12)
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Overall, these results are tractable. However, the fully explicit results are
rather messy, asymptotic expansions does help remedy this.

5.5.2 Non-circular equatorial timelike geodesics

Overall, our analysis here will be very similar to our analysis of non-
circular equatorial null geodesics, but with some deviations. Firstly, we
parameterise our curve xa(τ) by the proper time parameter τ . The time-
like normalisation condition gab(dxa/dt)(dxb/dt) = −1 then reads(

dt

dτ

)2
−1 +

(
dr

dt
+

√
2m

r

)2

+ r2

(
dφ

dt
− 2J

r3

)2
 = −1 . (5.5.13)

We can again construct two conserved quantities from the time translation
Killing vector ξa = (1; 0, 0, 0)a → (1; 0, 0)a and the azimuthal Killing vector
ψa = (0; 0, 0, 1)a → (0; 0, 1)a, which are

ξa
dxa

dτ
= k; ψa

dxa

dτ
= k̃ . (5.5.14)

More explicitly

dt

dτ

(
−1 +

2m

r
+

4J2

r4
+

√
2m

r

dr

dt
− 2J

r

dφ

dt

)
= k (5.5.15)

and
dt

dτ

(
−2J

r
+ r2dφ

dt

)
= k̃ . (5.5.16)

If we eliminate dt/dτ in these two equations, we find

k̃

(
−1 +

2m

r
+

4J2

r4
+

√
2m

r

dr

dt
− 2J

r

dφ

dt

)
= kr2

(
−2J

r3
+ r2dφ

dt

)
.

(5.5.17)
If we eliminate dt/dτ in the timelike normalisation condition (equation
(5.5.13)), we find

k̃

−1 +

(
dr

dt
+

√
2m

r

)2

+ r2

(
dφ

dt
− 2J

r3

)2
 = −

(
−2J

r
+ r2dφ

dt

)2

.

(5.5.18)
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Now, we can solve this equation for either dr/dt or dφ/dt, then substi-
tute this back into equation (5.5.18) to give a quadratic for either dφ/dt or
dr/dt. We can solve for these quadratics explicitly, however, similar to the
null geodesics, these results are rather messy. So we instead give these
quadratics an asymptotic expansions in terms of inverse powers of r.

Solving for dr/dt, we find

dr

dt
= −

√
2m

r
P (r)±

√
Q(r) (5.5.19)

where P (r) and Q(r) are given by

P (r) = 1− 1

k2
+

2m

k4r
+O

(
1

r2

)
; Q(r) = 1− 1

k2
+

2m(2− k2)

k4r
+O

(
1

r2

)
.

(5.5.20)
Similarly, for dφ/dt we find

dφ

dt
=

(
2J

r3
− k̃

kr2

)
P̃ (r)±

√
2m

r

k̃

kr2

√
Q̃(r) (5.5.21)

where P̃ (r) and Q̃(r) are given by

P̃ (r) = 1− 2m

k2r
+O

(
1

r2

)
; Q̃(r) = 1− 1

k2
+

2m(2− k2)

k4r
+O

(
1

r2

)
.

(5.5.22)
Similar to the non-circular equatorial null geodesics, while the explicit re-
sults are integrable, they are rather messy. However, writing these results
in terms of asymptotic expansions does help remedy this.
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5.6 ISCOs and photon orbits in the equatorial

plane

Recall the line element for the Painlevé-Gullstrand of the Lense-Thirring
spacetime is given by

ds2 = −dt2 +

(
dr +

√
2m

r
dt

)2

+ r2

(
dθ2 + sin2(θ)

(
dφ− 2J

r3
dt

)2
)

.

(5.6.1)
Now consider a tangent vector to a null or timelike geodesic, parame-
terised by some arbitrary affine parameter λ, we have

gab
dxa

dλ

dxb

dλ
=−

(
dt

dλ

)2

+

(
dr

dλ
+

√
2m

r

dt

dλ

)2

+ r2

((
dθ

dλ

)2

+ sin2(θ)

(
dφ

dλ
− 2J

r3

dt

dλ

)2
)

.

(5.6.2)

Now without loss of generality, we can distinguish between the two phys-
ically interesting cases (timelike and null) by defining:

ε =

{
−1 massive particle, i.e. timelike geodesic

0 massless particle, i.e. null geodesic.
(5.6.3)

Such that gab(dxa/dλ)(dxb/dλ) = ε. Now, we consider geodesics on the
equatorial plane, that is, we fix θ = π/2 such that dθ/dλ = 0. Physically,
these geodesics represent circular orbits confined to the equatorial plane
only. The timelike/null condition then reads:

−
(
dt

dλ

)2

+

(
dr

dλ
+

√
2m

r

dt

dλ

)2

+ r2

(
dφ

dλ
− 2J

r3

dt

dλ

)2

= ε . (5.6.4)

This spacetime has time translation symmetry and axial symmetry and
hence possesses the time translation Killing vector ξa = (1; 0, 0, 0)a and the
azimuthal Killing vector ψa = (0; 0, 0, 1)a. From these Killing vectors we
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can construct two conserved quantities, the energy and angular momen-
tum of a test particle (respectively), which are given as

E =

(
−1 +

2m

r
+

4J2

r4

)
dt

dλ
+

√
2m

r

dr

dλ
− 2J

r

dφ

dλ
; (5.6.5)

L = r2dφ

dλ
− 2J

r

dt

dλ
. (5.6.6)

But we can treat equations (5.6.4), (5.6.5) and (5.6.6) as a system of equa-
tions in the three unknowns dt/dλ, dr/dλ, and dφ/dλ. That is, we can
analytically solve for dr/dλ as a function of r, E, L, and ε only. Which
yields

dr

dλ
= ±

√(
E +

2JL

r3

)2

−
(

1− 2m

r

)(
L2

r2
− ε
)

. (5.6.7)

Similar to what we saw in section 3.3, this equation is what we would
expect for a particle with unit mass in usual 1-dimensional, non-relativistic
mechanics, under the influence of the following potential

V (r) = E2 −
(
dr

dλ

)2

=

(
1− 2m

r

)(
L2

r2
− ε
)

+E2 −
(
E +

2JL

r3

)2

(5.6.8)

We can then use the features of this potential to solve for the radial posi-
tions of the innermost stable circular orbit (ISCO) and photon ring of our
spacetime. Also notice that in the limit J → 0, the potential reduces to that
of Schwarzschild (equation (3.3.6)). Now we consider two cases, the null
case where ε = 0 and the timelike case where ε = −1. We start our analysis
with the null case.

5.6.1 Null orbits

For the null case where ε = 0, our potential reduces to

V0(r) =

(
1− 2m

r

)
L2

r2
− 4EJL

r3
− 4L2J2

r6

=
L(L(r − 2m)r3 + 4J(JL+ Er3))

r6
.

(5.6.9)
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Now, the photon ring of our spacetime occurs at the extrema of the po-
tential where dV0(r)/dr = 0. That is, the coordinate value of r where we
have

dV0(r)

dr
= −2L

r7

(
Lr4 − 3(Lm+ 2EJ)r3 − 12J2L

)
= 0 (5.6.10)

however, this equation has no analytic solution. But we can obtain an
analytic solution if we solve both V0(r) = E2 and dV0(r)/dr = 0 simultane-
ously. That is, we simultaneously solve the following for r

Lr4 − 3(Lm+ 2EJ)r3 − 12J2L = 0 ; (5.6.11)

E2r6 − L2r4 + 2L(Lm+ 2EJ)r3 + 4J2L2 = 0 . (5.6.12)

Eliminating E from these equations yields

r5 − 6mr4 + 9mr3 + 72J2m− 36rJ2 = 0 . (5.6.13)

(Notice that L has also been eliminated in this process). Now we rear-
range:

r3(r − 3m)2 = 36J2

(
1− 2m

r

)
r (5.6.14)

Therefore

(r − 3m) = ±
6J
√

1− 2m/r

r
(5.6.15)

Thence

r = 3m±
6J
√

1− 2m/r

r
(5.6.16)

which is still exact. However, we now iterate to find the value of r which
corresponds to the photon ring location purely in terms of the parameters
which are present in our spacetime. At lowest order:

r = 3m+O(J) (5.6.17)

Thence, iterating

r = 3m±
6J
√

1− 2/3

3m
+O(J2) (5.6.18)
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And finally

r = 3m± 2J√
3 m

+O(J2) . (5.6.19)

Now, in the limit J → 0, the photon ring location reduces to its known lo-
cation in Schwarzschild, as we expect. Furthermore, for the Kerr solution,
the photon ring occurs at:

rKerr = 2m

[
1 + cos

(
2

3
cos−1

(
± J

m2

))]
. (5.6.20)

Conducting a Taylor series expansion around J = 0, yields

rKerr(J → 0) = 2m

(
3

2
± J√

3 m2
+O(J2)

)
= 3m± 2J√

3 m
+O(J2) .

(5.6.21)

This is exactly the photon ring location in the Lense-Thirring spacetime.
This then shows that in the slow-rotation limit, the Kerr solution does in-
deed reduce to Lense-Thirring as we expect.

As for the stability of these orbits, we calculate the second derivative
of the potential V0(r), which gives

d2V0(r)

dr2
= −6L

r8

(
28J2L+ 4(mL+ 2EJ)r3 − Lr4

)
. (5.6.22)

Notice that here we cannot simply eliminate L as in our previous analysis.
We instead solve dV0(r)/dr = 0 for L, which yields

L = − 6EJr3

12J2 + 3mr3 − r4
. (5.6.23)

Then substituting this back into equation (5.6.22) we get

d2V0(r)

dr2
= − 72E2J2(r4 + 36J2)

r2(12J2 + 3mr3 − r4)2
, (5.6.24)

which is negative for all values of r, therefore all circular equatorial null
geodesics are unstable. This means that any photon traveling along a
geodesic that passes through the photon ring will continue to spiral to-
wards the event horizon and eventually the singularity at r = 0.
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5.6.2 ISCOs

In the timelike case where ε = −1, our potential becomes

V−1(r) =

(
1− 2m

r

)(
1 +

L2

r2

)
− 4EJL

r3
− 4L2J2

r6
. (5.6.25)

The derivative of this is given by

dV−1(r)

dr
=

2

r7

(
mr5 − L(Lr4 − 3(Lm+ 2EJ)r3 − 12J2L)

)
(5.6.26)

where, like the null case, has no analytic solution. But if we solve both
V−1(r) = E2 and dV−1(r)

dr
= 0 simultaneously, we can begin to form an

analytic solution. That is to say, we solve the following equations simulta-
neously for r:

mr5 − L(Lr4 − 3(Lm+ 2EJ)r3 − 12J2L) = 0 ; (5.6.27)

(E2 − 1)r6 + 2mr5 − L2r4 + 2L(Lm+ 2EJ)r3 + 4J2L2 = 0 . (5.6.28)

Solving for E gives

E = −mr
5 − L2r4 + 3mL2r3 + 12J2L2

6JLr3
. (5.6.29)

Then if we substitute this back into (5.6.28) we find

r3(3L2m− L2r +mr2)2 − 36J2L2(L2 + r2)(r − 2m) = 0 . (5.6.30)

This equation states that there exist many circular timelike orbits. How-
ever, unlike for null orbits, L is not eliminated, therefore we cannot an-
alytically solve for the ISCO location yet. The second derivative of the
potential is given by

d2V−1(r)

dr2
= − 2

r8

(
2mr5 − 3L2r4 + 12L(mL+ 2EJ)r3 + 84J2L2

)
,

(5.6.31)
then substituting our expression for E

d2V−1(r)

dr2
= − 2

r8
(L2(r4 + 36J2)− 2mr5) . (5.6.32)
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The condition that defines an extremal circular orbit is d2V−1(r)
dr2

= 0, that is

(L2(r4 + 36J2)− 2mr5) = 0 . (5.6.33)

Using this and our condition for a circular orbit, equation (5.6.30), now we
can eliminate L, which gives

mr6(r − 6m)2 = 72J2(r2 +mr − 10m2) + 1296J4(2r − 5m) (5.6.34)

Thence

(r − 6m)2 =
72J2r3(r2 +mr − 10m2) + 1296J4(2r − 5m)

mr6
(5.6.35)

Thence

r = 6m± 6J

mr3

√
2r3(r2 +mr − 10m2) + 36J2(2r − 5m) (5.6.36)

which is still exact. However, we now iterate to find the value of r which
corresponds to the ISCO location purely in terms of the parameters which
are present in our spacetime. At lowest order:

r = 6m+O(J) (5.6.37)

Thence, iterating

r = 6m+
4
√

2√
3

J

m
+O(J2) . (5.6.38)

Note that when J → 0, the ISCO simplifies to its known location in Schwar-
zschild. Furthermore, for the Kerr solution, the known exact location of
the ISCO occurs at:

rKerr = m
(

3 + Z2 ±
√

(3− Z1)((3 + Z1 + 2Z2)
)

(5.6.39)

where

Z1 = 1 + 3
√

(1− x2)
(

3
√

(1 + x) + 3
√

(1− x)
)

; Z2 =
√

3x2 + Z2
1 (5.6.40)

and
x = J/m2 . (5.6.41)
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Conducting a Taylor series expansion around J = 0 we find

rKerr(J → 0) = 6m+
4
√

2√
3

J

m
+O(J2) . (5.6.42)

this is exactly ISCO location in the Lense-Thirring spacetime. This then
shows that in the slow-rotation limit, the Kerr solution does indeed reduce
to Lense-Thirring as we expect.

5.7 Killing tensor and Carter constant

Finding a non-trivial Killing tensor in a spacetime is a difficult process
as Killing tensors do not arise from the symmetries of the spacetime like
Killing vectors do. In fact, there is yet no general algorithm that generates
a non-trivial Killing tensor for any given spacetime. However, as shown
in [85,86], a non-trivial Killing tensor can be generated if the inverse metric
can be written in a very particular form. For the Painlevé-Gullstard form
of the Lense-Thirring spacetime, we find

Kab =


4J2 sin2(θ)

r2
0 0 −2Jr sin2(θ)

0 0 0 0

0 0 r4 0

−2Jr sin2(θ) 0 0 r4 sin2(θ)


ab

. (5.7.1)

It is then easy to check that ∇(cKab) = 0, thus proving that Kab as given
above is indeed a Killing tensor. Note that in spherical symmetry (i.e. as
J → 0), we have

Kab =


0 0 0 0

0 0 0 0

0 0 r4 0

0 0 0 r4 sin2(θ)


ab

. (5.7.2)

Which is just the non-trivial Killing tensor in Schwarzschild. As shown
in appendix A, we can construct conserved quantities from Killing vec-
tors and furthermore from Killing tensors. The conserved quantity that
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is constructed from the non-trivial Killing tensor of a spacetime is called
the Carter constant (we say non-trivial since the metric is always a Killing
tensor and admits the conserved quantity ε via gabvavb = ε).

The Carter constant of our Lense-Thirring spacetime is given by

C = Kab
dxa

dλ

dxb

dλ
= r4

[(
dθ

dλ

)2

+ sin2(θ)

(
dφ

dλ
− 2J

r3

dt

dλ

)2
]

. (5.7.3)

We now have 4 conserved quantities defined by the following equations:

E = ξa
dxa

dλ
=

(
1− 2m

r
− 4J2 sin2(θ)

r4

)
dt

dλ
−
√

2m

r

dr

dλ
+

2J sin2(θ)

r

dφ

dλ
;

(5.7.4)

L = ψa
dxa

dλ
= r2 sin2(θ)

dφ

dλ
− 2J sin2(θ)

r

dt

dλ
; (5.7.5)

ε = gab
dxa

dλ

dxb

dλ
=−

(
dt

dλ

)2

+

(
dr

dλ
+

√
2m

r

dt

dλ

)2

+ r2

[(
dθ

dλ

)2

+ sin2(θ)

(
dφ

dλ
− 2J

r3

dt

dλ

)2
]

;

(5.7.6)

and of course the definition of the Carter constant above.
These equations can be greatly simplified:

L = r2 sin2(θ)

(
dφ

dλ
− 2J

r3

dt

dλ

)
; (5.7.7)

C = r4

(
dθ

dλ

)2

+
L2

sin2(θ)
; (5.7.8)

ε = −
(
dt

dλ

)2

+

(
dr

dλ
+

√
2m

r

dt

dλ

)2

+
C
r2

; (5.7.9)

E =

(
1− 2m

r

)
dt

dλ
−
√

2m

r

dr

dλ
+

2J

r3
L . (5.7.10)

Notice that for any given non-zero values of C and L, equation (5.7.8) then
gives a range of forbidden azimuthal angles. Since we require that dθ/dλ
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be real, equation (5.7.8) then implies the following condition:(
r2 dθ

dλ

)2

= C − L2

sin2(θ)
> 0 ; (5.7.11)

=⇒ θ > sin−1

(
L√
C

)
. (5.7.12)

Thus giving a range of forbidden azimuthal angles.
Now, we have 4 equations (5.7.10), (5.7.7), (5.7.9) and (5.7.8) and 4 un-
known functions dt/dλ, dr/dλ, dθ/dλ and dφ/dλ. So, we can solve for each
unknown function analytically, giving:

dt

dλ
=
Er4 + 2LJr ±

√
2mrX(r)/r3

r3(2m− r)
; (5.7.13)

dr

dλ
= ±

√
X(r) ; (5.7.14)

dθ

dλ
= ±

√
L2/ sin2(θ)− C

r2
; (5.7.15)

and

dφ

dλ
=

L

r2 sin2(θ)
+

2EJr4 + 4LJ2r ± 2J
√

2mrX(r)/r3

r6(2m− r)
, (5.7.16)

where X(r) is a sextic polynomial given by

X(r) = (E − 2JL/r3)2 − (1− 2m/r)(−ε+ C/r2) . (5.7.17)

Via equation (5.7.14), we have

λ(r) = λ0 +

∫ r

r0

dr̄√
X(r̄)

. (5.7.18)

We cannot explicitly integrate this equation in closed form, hence this re-
lation cannot be inverted to find r(λ). But, we can still attempt to integrate
our equations in terms of r. From equations (5.7.13) and (5.7.14), we find

dt

dr
=

1

1− 2m/r
±
√

2m/r(E − 2JL/r3)

(1− 2m/r)
√
X(r)

. (5.7.19)
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Therefore

t(r) = t0 +

∫ r

r0

(
1

1− 2m/r̄
±
√

2m/r(E − 2JL/r̄3)

(1− 2m/r̄)
√
X(r̄)

)
dr̄ . (5.7.20)

Hence

t(r) = t0 + r − r0 + 2m ln

(
r − 2m

r0 − 2m

)
±
∫ r

r0

(√
2m/r(E − 2JL/r̄3)

(1− 2m/r̄)
√
X(r̄)

)
dr̄ .

(5.7.21)
As before, we cannot explicitly integrate this equation in closed form.

In contrast, for our equation involving θ, we firstly define the critical
angle θ∗ given as sin2(θ∗) = L2/C. Then via equation (5.7.15), we find

d cos(θ)

dλ
= ∓

√
C sin2(θ)− L2

r2

= ∓
√
C
√

sin2(θ)− sin2(θ∗)

r2

= ∓
√
C
√

cos2(θ∗)− cos2(θ)

r2
.

(5.7.22)

Rearranging

d cos(θ)√
cos2(θ∗)− cos2(θ)

= ∓
√
C dr

r2
√
X(r)

. (5.7.23)

Then via the chain rule

d cos−1

(
cos(θ)

cos(θ∗)

)
= ±
√
C dr

r2
√
X(r)

. (5.7.24)

We now integrate, giving

cos−1

(
cos(θ)

cos(θ∗)

)
= cos−1

(
cos(θ0)

cos(θ∗)

)
±
√
C
∫ r

r0

dr̄

r̄2
√
X(r̄)

(5.7.25)

where θ0 is some arbitrary initial angle. Rearranging for cos(θ) gives

cos(θ) = cos(θ∗) cos

(
cos−1

(
cos(θ0)

cos(θ∗)

)
±
√
C
∫ r

r0

dr̄

r̄2
√
X(r̄)

)
. (5.7.26)
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Hence

cos(θ) = cos(θ∗)

{(
cos(θ0)

cos(θ∗)

)
cos

(
√
C
∫ r

r0

dr̄

r̄2
√
X(r̄)

)

± sin

(
cos−1

(
cos(θ0)

cos(θ∗)

))
sin

(
√
C
∫ r

r0

dr̄

r̄2
√
X(r̄)

)}
.

(5.7.27)

Hence

cos(θ) = cos(θ∗)

{(
cos(θ0)

cos(θ∗)

)
cos

(
√
C
∫ r

r0

dr̄

r̄2
√
X(r̄)

)

±

√
1−

(
cos(θ0)

cos(θ∗)

)2

sin

(
√
C
∫ r

r0

dr̄

r̄2
√
X(r̄)

) .

(5.7.28)

Finally

cos(θ) = cos(θ0) cos

(
√
C
∫ r

r0

dr̄

r̄2
√
X(r̄)

)

±
√

cos2(θ∗)− cos2(θ0) sin

(
√
C
∫ r

r0

dr̄

r̄2
√
X(r̄)

)
.

(5.7.29)

This shows that cos(θ) oscillates in the range cos(θ) ∈ [− cos(θ∗),+ cos(θ∗)].
Since θ0 is some arbitrary initial angle, without any loss of generality we
can can choose θ0 = θ∗. Which then gives

cos(θ) = cos(θ∗) cos

(
√
C
∫ r

r∗

dr̄

r̄2
√
X(r̄)

)
(5.7.30)

which can be inverted to give θ(r).
Finally we consider the ordinary differential equation (ODE) for dφ/dλ.

Which is
dφ

dλ
=

L

r2 sin2(θ)
+

2J

r3

dt

dλ
. (5.7.31)

Thence
dφ

dr
= ± L√

X(r) r2 sin2(θ)
+

2J

r3

dt

dr
. (5.7.32)
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Recall that
dt

dr
=

1

1− 2m/r
±
√

2m/r (E − 2JL/r3)

(1− 2m/r)
√
X(r)

, (5.7.33)

so we have

dφ

dr
= ± L√

X(r) r2 sin2(θ)
+

2J

r3

(
1

1− 2m/r
±
√

2m/r (E − 2JL/r3)

(1− 2m/r)
√
X(r)

)
.

(5.7.34)
Integrating

φ(r) = φ0 ±
∫ r

r0

L√
X(r̄) r̄2 sin2[θ(r̄)]

dr̄ +

∫ r

r0

2J

r̄3

1

1− 2m/r̄
dr̄

±
∫ r

r0

2J
√

2m/r(E − 2JL/r̄3)

r̄3(1− 2m/r̄)
√
X(r̄)

dr̄ .

(5.7.35)

Now, one of these terms can be explicitly integrated in closed form∫ r

r0

2J

r̄3

1

1− 2m/r̄
dr̄ =

J

2m2

{
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

}
. (5.7.36)

So, in general we have

φ(r) = φ0 +
J

2m2

{
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

}
± L

∫ r

r0

1√
X(r̄) r̄2 sin2[θ(r̄)]

dr̄ ± 2J

∫ r

r0

√
2m/r(E − 2JL/r̄3)

r̄3(1− 2m/r̄)
√
X(r̄)

dr̄ .

(5.7.37)

By introducing a fourth constant of the motion we have made our equa-
tions of motion integrable. Note that while these equations of motion (gen-
erally) cannot be analytically integrated in closed form, they can, in princi-
ple, be integrated via numerical methods, hence they are integrable in the
technical sense. In order to analytically integrate the equations of motion
in closed form, we have to impose further conditions.
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5.8 Carter constant zero

Our equations greatly simplify if the Carter constant is zero. Firstly, if
C = 0 then via

C = r4

(
dθ

dλ

)2

+
L2

sin2(θ)
(5.8.1)

we see that both L = 0 and dθ/dλ ≡ 0, which implies that θ(r) = θ0 is
constant. Furthermore, our equation for X(r) simplifies drastically, giving

X(r) = E2 + ε

(
1− 2m

r

)
. (5.8.2)

Analysing the form of this equation suggests that it would be useful to
split our analysis of geodesics with zero Carter constant into the geodesics
of photon and the geodesics of massive particles.

5.8.1 Photons with Carter constant zero

Given that the Carter constant is zero, for photons, we have the following
conditions:

C = 0; L = 0; θ(r) = θ0; X(r) = E2. (5.8.3)

Via equation (5.7.18), we find

λ(r) = λ0 +

∫ r

r0

dr̄√
X(r̄)

= λ0 +

∫ r

r0

dr̄

E
= λ0 +

r − r0

E
(5.8.4)

and furthermore

t(r) = t0 + r − r0 + 2m ln

(
r − 2m

r0 − 2m

)
±
∫ r

r0

√
2m/r̄

1− 2m/r̄
dr̄ . (5.8.5)

We can integrate this explicitly to find

t(r) = t0 + r − r0 + 2m ln

(
r − 2m

r0 − 2m

)
±

{
2(
√

2mr −
√

2mr0) + 2m ln

(
1−

√
2m/r

1 +
√

2m/r

1 +
√

2m/r0

1−
√

2m/r0

)}
.

(5.8.6)
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Finally we have

φ(r) = φ0 +
J

2m2

{
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

}
± 2J

∫ r

r0

√
2m/r̄

r̄3(1− 2m/r̄)
dr̄ .

(5.8.7)

Which we can integrate explicitly to find

φ(r) = φ0 +
J

2m2

{
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

}
± 2J

{
1

2m2

[√
2m

r
−
√

2m

r0

]
+

1

6m2

[(
2m

r

)3/2

−
(

2m

r0

)3/2
]

+
1

4m2
ln

(
1−

√
2m/r

1 +
√

2m/r

1 +
√

2m/r0

1−
√

2m/r0

)}
.

(5.8.8)

These equations are rather complex but fully explicit. We also note that in
the limit where r → r0 our equations of motion have sensible limits.

5.8.2 Massive particles with Carter constant zero

The form ofX(r) suggests that we should split our analysis into two parts,
firstly where E = 1 since in this case X(r) simplifies significantly to 2m/r

and secondly where E 6= 1. Physically, the geodesics with E = 1 represent
particles that begin their trajectory with zero initial velocity. We can gain
additional insight if we appeal to Newtonian gravity. In Newtonian grav-
ity, particles withE = 0 will follow elliptic orbits, particles withE < 0 will
follow parabolic orbits and particles with E > 0 will follow hyperbolic or-
bits.

For E = 1, we have the following conditions:

C = 0; L = 0; θ(r) = θ0; X(r) =
2m

r
. (5.8.9)
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So we have

λ(r) = λ0 +

∫ r

r0

dr̄√
X(r̄)

= λ0 +

∫ r

r0

dr̄√
2m/r̄

= λ0 +
1

3

√
2

m

(
r3/2 − r3/2

0

)
.

(5.8.10)

Recall that in general we have

t(r) = t0 +r−r0 +2m ln

(
r − 2m

r0 − 2m

)
±
∫ r

r0

√
2m/r̄(E − 2JL/r̄3)

(1− 2m/r̄)
√
X(r̄)

dr̄ (5.8.11)

So given the conditions stated above where E = 1 and L = 0, we have

t(r) = t0 + r − r0 + 2m ln

(
r − 2m

r0 − 2m

)
±
∫ r

r0

√
2m/r̄

(1− 2m/r̄)
√

2m/r̄
dr̄

= t0 + r − r0 + 2m ln

(
r − 2m

r0 − 2m

)
±
∫ r

r0

dr̄

(1− 2m/r̄)

= t0 + r − r0 + 2m ln

(
r − 2m

r0 − 2m

)
±
(
r − r0 + 2m ln

(
r − 2m

r0 − 2m

))
.

(5.8.12)

However, notice that when we take the minus sign we get t(r) = t0, which
is unphysical. Hence, here we are forced to take the plus sign, yielding

t(r) = t0 + 2

(
r − r0 + 2m ln

(
r − 2m

r0 − 2m

))
. (5.8.13)

Now solving for φ(r) we have

φ(r) = φ0 +
J

2m2

(
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

)
± 2J

∫ r

r0

√
2m/r̄(E − 2JL/r̄3)

r̄3(1− 2m/r̄)
√
X(r̄)

dr̄

(5.8.14)
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thence

φ(r) = φ0 +
J

2m2

(
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

)
± 2J

∫ r

r0

dr̄

r̄3(1− 2m/r̄)

(5.8.15)

so we have

φ(r) = φ0 +
J

2m2

(
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

)
± J

2m2

(
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

) (5.8.16)

The ± sign here does makes physical sense. The ± indicates if the particle
is moving with or against the rotation of the central mass, plus if it moves
with and minus if it moves against. If the particle moves against the rota-
tion, according to (5.8.16), we find that the φ coordinate is constant along
the geodesic.

Now, For E 6= 1, we have the following conditions:

C = 0; L = 0; θ(r) = θ0; X(r) = E2 − 1 +
2m

r
. (5.8.17)

So we have

λ(r) = λ0 +

∫ r

r0

dr̄√
X(r̄)

= λ0 +

∫ r

r0

dr̄√
E2 − 1 + 2m/r̄

= λ0 +
r
√
E2 − 1 + 2m/r − r0

√
E2 − 1 + 2m/r0

E2 − 1

− m

(E2 − 1)3/2
ln

(
r(E2 − 1 +m/r +

√
E2 − 1 + 2m/r)

r0(E2 − 1 +m/r0 +
√
E2 − 1 + 2m/r0)

)
(5.8.18)

If we conduct a Taylor series expansion around E = 1, we find

λ(r) =
1

3

√
2

m

(
r3/2 − r3/2

0

)
+O(E − 1) . (5.8.19)
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So in the limit where E → 1, our expression for λ(r) reduces to (5.8.10), as
we expect.

For our expression for t(r) is now given by

t(r) = t0 + r − r0 + 2m ln

(
r − 2m

r0 − 2m

)
+

∫ r

r0

E
√

2m/r̄

(1− 2m/r̄)
√
E2 − 1 + 2m/r̄

dr̄

= t0 + r − r0 + 2m ln

(
r − 2m

r0 − 2m

)
+

2E
√

2m

E2 − 1

(
r

√
E2 − 1 +

2m

r
− r0

√
E2 − 1 +

2m

r0

)

+ 2m ln

(
2E
√
m−

√
2r(E2 − 1 + 2m/r)

2E
√
m+

√
2r(E2 − 1 + 2m/r)

)

+ 2m ln

(
2E
√
m+

√
2r0(E2 − 1 + 2m/r0)

2E
√
m−

√
2r0(E2 − 1 + 2m/r0)

)
.

(5.8.20)

If we conduct a Taylor series expansion around E = 1, we find

t(r) = t0 + 2

(
r − r0 + 2m ln

(
r − 2m

r0 − 2m

))
+O(E − 1) . (5.8.21)

So in the limit where E → 1, our expression for t(r) reduces to (5.8.13), as
we expect.

Now lastly, for our expression for φ(r) is now given by

φ(r) = φ0 +
J

2m2

(
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

)
± 2J

∫ r

r0

E
√

2m/r̄

r̄3(1− 2m/r̄)
√
E2 − 1 + 2m/r̄

dr̄ .

(5.8.22)
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Explicitly, we have

φ(r) = φ0 +
J

2m2

(
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

)
± J

2m2

[
1

E
ln

(
2E
√
m−

√
2r(E2 − 1 + 2m/r)

2E
√
m+

√
2r(E2 − 1 + 2m/r)

)

+
1

E
ln

(
2E
√
m+

√
2r0(E2 − 1 + 2m/r0)

2E
√
m−

√
2r0(E2 − 1 + 2m/r0)

)

+
E2 − 3

2
ln

(
2
√
m−

√
2r(E2 − 1 + 2m/r)

2
√
m+

√
2r(E2 − 1 + 2m/r)

)

+
E2 − 3

2
ln

(
2
√
m+

√
2r0(E2 − 1 + 2m/r0)

2
√
m−

√
2r0(E2 − 1 + 2m/r0)

)

+
√

2m

√E1 − 1 + 2m/r

r
−

√
E2 − 1 + 2m/r0

r0

 .

(5.8.23)

If we conduct a Taylor series expansion around E = 1, we find

φ(r) = φ0 +
J

2m2

(
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

)
± J

2m2

(
ln

(
1− 2m/r

1− 2m/r0

)
+

2m

r
− 2m

r0

)
+O(E − 1) .

(5.8.24)

So in the limit where E → 1, our expression for φ(r) reduces to (5.8.16), as
we expect.

Overall, while these equations of motion are rather lengthy, they are
fully explicit and yield the required limits when we let E → 1.

5.9 General circular orbits

Now that we have an expression for the Carter constant, we now have
enough constants of the motion to integrate more general geodesics such
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as the geodesics that correspond to general circular orbits in our space-
time. That is, circular orbits that are no longer constrained to the equato-
rial plane. Since we are dealing with circular orbits, we fix our r coordinate
to some fixed value r = r0, which implies that dr/dλ = 0. This condition
simplifies our 4 constants of the motion:

L = r2
0 sin2(θ)

(
dφ

dλ
− 2J

r3
0

dt

dλ

)
; (5.9.1)

C = r4
0

(
dθ

dλ

)2

+
L2

sin2(θ)
; (5.9.2)

ε = −
(

1− 2m

r0

)(
dt

dλ

)2

+
C
r2

0

; (5.9.3)

E =

(
1− 2m

r0

)
dt

dλ
+

2J

r3
0

L . (5.9.4)

Solving for dt/dλ shows that it is constant

dt

dλ
=
E − 2JL/r3

0

1− 2m/r0

. (5.9.5)

Hence, we find that we also have the constraint

ε = −(E − 2JL/r3
0)2

1− 2m/r0

+
C
r2

0

(5.9.6)

which implies (
ε− C

r2
0

)(
1− 2m

r0

)
= −

(
E − 2JL

r3
0

)2

. (5.9.7)

However, via equation (5.7.17) this constraint implies that X(r0) = 0.

The two remaining equations of motion are

dφ

dλ
=

2J

r3
0

E − 2JL/r3
0

1− 2m/r0

+
L

r2
0 sin2(θ)

(5.9.8)

and
dθ

dλ
=

1

r2
0

√
C − L2

sin2(θ)
. (5.9.9)
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Slightly modifying our previous derivation of equation (5.7.29), we find
the solution to equation (5.9.9) to be

cos(θ(λ)) = cos(θ0) cos

(√
C λ− λ0

r2
0

)
±
√

cos2(θ∗)− cos2(θ0) sin

(√
C λ− λ0

r2
0

)
.

(5.9.10)

which is equivalent to

cos(θ) = cos(θ∗) cos

(
cos−1

(
cos(θ0)

cos(θ∗)

)
±
√
C λ− λ0

r2
0

)
. (5.9.11)

Now to solve equation (5.9.8), qualitatively, we assert that

sin(θ) = A sin(B + Eλ) (5.9.12)

where A and B are arbitrary constants. So we have∫
dλ

sin2 θ
=

∫
dλ

(A sin(B + Eλ))2
= −cot(B + Eλ)

A2E
. (5.9.13)

Thence

φ = φ0 +
2J

r3
0

E − 2JL/r3
0

1− 2m/r0

(λ− λ0)− L

cos(θ2
∗)
√
C

cot

(
sin−1

(
sin(θ0)

cos(θ∗)

))
+

L

cos(θ2
∗)
√
C

cot

(
sin−1

(
sin(θ0)

cos(θ∗)

)
±
√
C
λ− λ0

r2
0

)
.

(5.9.14)

Some of these equations of motion are rather complicated, but they sim-
plify significantly in special cases. We now analyse one such case.

5.9.1 Circular orbits with L = 0

We now consider the special case where L = 0. In doing so, our equations
of motion simplify further to(

dφ

dλ

)
=

2J

r3
0

E

1− 2m/r0

(5.9.15)



5.9. GENERAL CIRCULAR ORBITS 115

and (
dθ

dλ

)
=

√
C

r2
0

. (5.9.16)

So we have

φ = φ0 +
2J

r3
0

E

1− 2m/r0

(λ− λ0); θ = θ0 +

√
C

r2
0

(λ− λ0). (5.9.17)

The periodicities of the above equations are related since

ε = − E2

1− 2m/r0

+
C

r2
0

(5.9.18)

and from equation (5.9.5), we now also have

dt

dλ
=

E

1− 2m/r0

(5.9.19)

therefore we find

φ = φ0 +
2J

r3
0

(t− t0); θ = θ0 +

√
C(1− 2m/r0)

Er2
0

(t− t0). (5.9.20)

Overall, we have seen that once we are given the Carter constant of a
spacetime, the geodesic equations become integrable. Hence, we can then
solve for a myriad of different types of physically interesting geodesics.
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Chapter 6

Conclusions

In the first few chapters we set out the mathematical framework to de-
scribe Einstein’s theory of general relativity, this framework was that of
differential geometry. We started by describing the structure of spacetime
as a 4-dimensional manifold, this structure allowed us to define vectors,
dual vectors and tensors in our spacetime. We then developed the notion
of a derivative operator in this manifold, we used the non-commutativity
of the derivative operator to define curvature on our manifold which is
represented by the Riemann tensor Ra

bcd. We used this notion of cur-
vature to show that the paths that particles travel along, geodesics, are
curved when the Riemann tensor is non-zero (i.e. in a curved spacetime).
We used this idea of geodesics being curved due to the curvature of space-
time as a description of gravity. Instead of describing gravity via a force
between massive objects, we say that the presence of mass-energy in our
spacetime causes our spacetime to be curved which then causes geodesics
to be curved. The field equation that relates the mass-energy in a space-
time to the curvature is Einstein’s equation, equation (2.5.18).

The first solution of the vacuum Einstein equation, equation (2.5.20),
that we studied was the Schwarzschild solution. This spacetime physi-
cally represents a massive, non-rotating, central mass in a vacuum. We
saw that this solution can be used to model non-rotating stars, planets and
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black holes. However, the metric components as written in Hilbert’s coor-
dinates were singular at two distinct values of r: r = 0 and r = 2m. But
by examination of a curvature invariant such as the Kretschmann scalar
(RabcdR

abcd) showed that the singularity at r = 0 is a true physical singu-
larly while the singularity at r = 2m is a merely a coordinate singularly.
By performing a coordinate transformation, we were able to rid ourselves
of this coordinate singularity. Furthermore, the resulting metric had two
useful qualities: the 3-metric was diagonal and the metric was unit-lapse.
This coordinate system we had now written the Schwarzschild solution in
is the Painlevé-Gullstrand coordinate system.

We then turned our attention to another solution of the vacuum Ein-
stein equation, the Kerr solution. The Kerr solution is a highly non-trivial
generalisation to the Schwarzschild solution where we allow our central
mass to rotate. This makes the physics involved significantly more diffi-
cult, in particular calculating the geodesics of the Kerr solution is consider-
ably harder than for the Schwarzschild solution. However, we saw that if
we can recast our metric in unit-lapse form, calculation of some geodesics
(notably the rain geodesics) become much simpler. There already existed
two well known unit-lapse forms of the Kerr metric: the Doran metric,
equation (4.2.70), and the Natário metric, equation (4.2.91). By analysing
the conditions for a metric to be in unit-lapse form, we were able to gen-
erate two new explicit unit-lapse forms of the Kerr metric: the Boyer-
Lindquist-rain metric, equation (4.2.37), and the Eddington-Finkelstein-
rain metric, equation (4.2.37). We were also able to show that there exists
a general infinite class of unit-lapse forms of the Kerr metric. We then
wished to simplify the Kerr metric further by diagonalising the 3-metric
of a unit-lapse form of the Kerr metric to then put the Kerr metric into
Painlevé-Gullstrand form. We attempted to do this by assuming our met-
ric was already in unit-lapse form, then we made a general coordinate
transformation that retained both unit-lapse and axisymmetry and then
demanded the off diagonal components of the 3-metric to vanish. How-
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ever, we found a consistency condition that could not be satisfied, equa-
tion (4.3.43). Hence, there does not exist a Painlevé-Gullstrand form of the
Kerr metric.

Lastly, we analysed the Lense-Thirring spacetime. The Lense-Thirring
spacetime is an approximate solution to the vacuum Einstein equation, this
means that the spacetime is not Ricci flat, but the components of the Ricci
tensor go to 0 as r →∞. The Lense-Thirring spacetime approximates Kerr
for slow rotations (J → 0) and at large distances (r → ∞). This space-
time has useful advantages over the Kerr spacetime. Firstly, the Lense-
Thirring metric is much simpler than the Kerr metric, hence further analy-
sis of the spacetime is much simpler in the Lense-Thirring spacetime. Sec-
ondly, the Lense-Thirring metric can be put into Painlevé-Gullstrand form,
equation (5.1.6). It is useful to note that while the Lense-Thirring space-
time is an approximate solution to the vacuum Einstein equation, there ex-
ists no Birkhoff theorem for axisymmetric solutions in 3 + 1 dimensions.
Hence, the Kerr solution does not perfectly describe any physical rotating
star or planet in the universe, due to the non-trivial mass multipole mo-
ments of these objects. The Kerr solution will only approximately model
these objects at large distances (i.e. large r), which is where the Lense-
Thirring spacetime approximates Kerr. We then used this new form of
the Lense-Thirring spacetime to generate a rather simple tetrad, which al-
lowed us the express curvature tensors in a simple form. This new form
of the metric allowed the geodesics of the spacetime to be calculated in a
simple manner. We calculated a large array of geodesics, the now simple
rain geodesics, on-axis geodesics, general equatorial geodesics, ISCOs and
photon orbits. We also found a non-trivial Killing tensor for this space-
time, equation (5.7.1), which allowed us to generate the Carter constant,
the fourth constant of the motion. Now that we had 4 constants of the mo-
tion, this made the geodesic equations integrable. Hence, we were able to
give more explicit results for general geodesics of the spacetime. Looking
at more specific examples, such as geodesics with Carter constant zero and
general circular orbits, allowed us to give fully explicit geodesics.
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Overall, the work given herein has many interesting mathematical and
physical applications. Firstly, unit-lapse spacetimes are quite common
and occur rather naturally for many specific analogue spacetimes [37–53].
In the context of an analogue spacetime, the unit-lapse condition physi-
cally corresponds to constant signal propagation speed (for example, this
holds to a high degree of approximation for sound waves in water). Ana-
logue spacetimes are physically interesting as they give good physical in-
tuition into more complex spacetimes, for example they can be used to
help model infall and accretion. In an astrophysical context, unit-lapse
forms of stationary spacetimes are rather useful since they allow for very
simple and immediate calculation of a large class of timelike geodesics,
the rain geodesics. Physically these geodesics represent zero angular mo-
mentum observers (ZAMOs), with zero initial velocity that are dropped
from spatial infinity and are a rather tractable probe of the physics occur-
ring in the spacetime. Mathematically, improved coordinate systems of
the Kerr spacetime are rather important since they give a better under-
standing of the rather complicated and challenging Kerr spacetime, see
the discussion in reference [16]. These improved coordinate systems, for
example, can be applied to the attempts at finding a “Gordon form” of the
Kerr spacetime [54] and can also be applied to attempts at upgrading the
“Newman-Janis trick” from an ansatz to a full algorithm [55]. Also, these
new forms of the Kerr metric allows for a greater observational ability to
differentiate exact Kerr black holes from “black hole mimickers” [56–74].

The Painlevé-Gullstrand form of the Lense-Thirring spacetime metric
is a very tractable model for the vacuum regions outside rotating stars and
planets. Furthermore, if we make the replacement m → m(r), that is we
have

ds2 = −dt2 +

(
dr +

√
2m(r)

r
dt

)2

+ r2

(
dθ2 + sin2(θ)

(
dφ− 2J

r3
dt

)2
)

(6.0.1)
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the Lense-Thirring metric can be generalised to model spherically sym-
metric dark matter halos and can hence be used to approximately model
the gravitational fields of spiral galaxies. Given that the Lense-Thirring
spacetime can be applied to many astrophysically interesting situations,
and also given that the Painlevé-Gullstrand form of the Lense-Thirring
spacetime is rather easy to work with (compared to the Kerr solution), for
some astrophysically interesting situations, it may prove rather useful to
use the Painlevé-Gullstrand form of the Lense-Thirring spacetime as op-
posed to using the full Kerr solution.
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Appendix A

Killing vectors and tensors

Killing vectors and Killing tensors are incredibly useful mathematical ob-
jects that are present in all spacetimes. Knowledge of these objects is
paramount in order to conduct further analysis of these spacetimes, a good
example of this is calculating the ISCOs of various spacetimes. We start
by defining some maps on manifolds, then relate these to the symmetries
present in the spacetime and then construct the Killing vector from this
symmetry map and discuss its properties.

LetM and N be manifolds. A map φ :M→ N is a diffeomorphism iff it
is a C∞ map, 1-to-1, onto and has a C∞ inverse map φ−1. Consider a one-
parameter group of diffeomorphisms, that is, the map φt : R ×M → M.
For a fixed point p ∈ M, φt(p) : R →M is a curve, which we call an orbit
of φt which passes though p at t = 0. We then define v|p to be the tangent
vector to this curve at t = 0. Hence, we see that every diffeomorphism in
our spacetime generates a vector field v.

A diffeomorphism is an isometry if φgab = gab, i.e. if the metric is invariant
under the action of the diffeomorphism φ, then φ is an isometry. Naturally,
we can view isometries as symmetry maps on our spacetime. For exam-
ple, in flat spacetime we have a set of ten symmetry maps. We have four
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from the set of translations (one for each coordinate: t, x, y, z if we are
using Cartesian coordinates), three for rotations and three for boosts (or
Lorentz transformations), which defines the Poincaré group of symme-
try transformations in flat spacetime. In general relativity, we deal with
spacetimes which may have symmetries, but usually not all symmetries
in the Poincaré group. Above, we saw that every diffeomorphism in our
spacetime generates a vector field, hence every isometry in our spacetime
generates a vector field, which we call a Killing vector field, ξa. From the
condition φgab = gab, the necessary and sufficient condition for ξa to be a
Killing vector is if it satisfies Killing’s equation

∇aξb +∇bξa = 0 (A.0.1)

or equivalently
∇(aξb) = 0 . (A.0.2)

An extremely useful property of Killing vectors is that they generate con-
served quantities.

Proposition A.1

Let ξa be a Killing vector and let γ be a geodesic with tangent vector T a.
Then ξaT a is constant along γ.

Proof
We have

T b∇b(ξaT
a) = T bT a∇bξa + ξaT

b∇bT
a = 0 . (A.0.3)

The first term is zero due to Killing’s equation, equation (A.0.2), while the
second term is zero due to the geodesic equation, equation (2.4.4).
�

We can think of Killing vectors generating conserved quantities as Noether’s
theorem applied to general relativity. Some examples of conserved quan-
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tities are: energy, which arises from time-translation symmetry and gener-
ates the following Killing vector ξa = (−1; 0, 0, 0) and angular momentum
which arises from spherical or axial symmetry and generates the Killing
vector ψa = (0; 0, 0, 1).

We can generalise the notion of Killing vectors to Killing tensors. A Killing
tensor is a symmetric tensor of type (0, l) which satisfies the following
condition

∇(bKa1...al) = 0 . (A.0.4)

Similar to Killing vectors, Killing tensors also give rise to conserved quan-
tities.

Proposition A.2

Let Ka1...al be a Killing tensor and let γ be a geodesic with tangent vector
T a. Then Ka1...alT

a...T al is constant along γ.

Proof
We have

T b∇b(Ka1...alT
a1 ...T al) =T a1 ...T alT b∇bKa1...al +Ka1...alT

a2 ...T alT b∇bT
a1

+
l−1∑
i=2

Ka1...alT
a1 ...T ai−1T ai+1 ...T alT b∇bT

ai

+Ka1...alT
a1 ...T al−1T b∇bT

al

(A.0.5)

The first term is zero via equation (A.0.4), while the remaining terms are
zero due to the geodesic equation, equation (2.4.4).
�

However, while Killing tensors are similar to Killing vectors in this re-
spect, Killing tensors do not naturally arise from isometries in our space-
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time. However, the existence of a Killing tensor in a spacetime gives rise
to other conserved quantities in the spacetime which is extremely useful.
For example this allows us to explicitly integrate the geodesic equations in
rather complex spacetimes.

Since Killing tensors do not naturally arise from isometries in a spacetime,
there exists no algorithm for generating non-trivial Killing tensors for any
general spacetime. However, if the inverse metric of a spacetime can be
put into a particular form, then a non-trivial Killing tensor can be gener-
ated. As shown in [85, 86], if the inverse metric of an axisymmetric space-
time can be written in the following form

gab =
1

A1(r) +B1(θ)


A2(r) 0 0 0

0 B2(θ) 0 0

0 0 A3(r) +B3(θ) A4(r) +B4(θ)

0 0 A4(r) +B4(θ) A5(r) +B5(θ)


ab

(A.0.6)
note that here we are now using the following coordinate system (r, θ, φ, t).
Then, the corresponding contravariant non-trivial Killing tensor is then
given by

Kab =
1

A1(r) +B1(θ)


A2(r)B1(θ) 0 0 0

0 −B2(θ)A1(r) 0 0

0 0 K33 K34

0 0 K34 K44


ab

(A.0.7)

where
K33 = B1(θ)A3(r)− A1(r)B3(θ) (A.0.8)

K34 = B1(θ)A4(r)− A1(r)B4(θ) (A.0.9)

K44 = B1(θ)A5(r)− A1(r)B5(θ) . (A.0.10)

Hence, to find a non-trivial Killing tensor for general spacetime, we first
look if the inverse metric can be recast in the form given by equation
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(A.0.6). If so, then we generate the non-trivial Killing tensor given by
(A.0.7). Once given the contravariant Killing tensor, we can lower the in-
dices via the metric and then recast the Killing tensor in any coordinate
system via equation (2.2.9). This is the approach we used when generat-
ing the non-trivial Killing tensor of the Painlevé-Gullstrand form of the
Lense-Thirring spacetime.
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d’Einstein”,
C. R. Acad. Sci. (Paris) 173, 873–886(1921).

[12] Allvar Gullstrand,
“Allgemeine Lösung des statischen Einkörperproblems in der Ein-
steinschen Gravitationstheorie”,
Arkiv för Matematik, Astronomi och Fysik. 16 (8): 1–15 (1922).

[13] K. Martel and E. Poisson,
“Regular coordinate systems for Schwarzschild and other spherical
space-times”,
Am. J. Phys. 69 (2001), 476-480 doi:10.1119/1.1336836
[arXiv:gr-qc/0001069 [gr-qc]].

https://arxiv.org/abs/gr-qc/0001069


BIBLIOGRAPHY 133

[14] Roy Kerr,
“Gravitational field of a spinning mass as an example of algebraically
special metrics”,
Physical Review Letters 11 237-238 (1963).

[15] Roy Kerr,
“Gravitational collapse and rotation”,
published in: Quasi-stellar sources and gravitational collapse: In-
cluding the proceedings of the First Texas Symposium on Relativis-
tic Astrophysics, edited by Ivor Robinson, Alfred Schild, and E.L.
Schücking (University of Chicago Press, Chicago, 1965), pages 99–
102.
The conference was held in Austin, Texas, on 16–18 December 1963.

[16] M. Visser,
“The Kerr spacetime: A brief introduction”,
[arXiv:0706.0622 [gr-qc]]. Published in [17].

[17] D. L. Wiltshire, M. Visser and S. M. Scott,
The Kerr spacetime: Rotating black holes in general relativity,
(Cambridge University Press, Cambridge, 2009).

[18] Barrett O’Neill,
The geometry of Kerr black holes, (Peters, Wellesley, 1995). Reprinted
(Dover, Mineloa, 2014).

[19] A. J. Hamilton and J. P. Lisle,
“The River model of black holes”,
Am. J. Phys. 76 (2008), 519-532 doi:10.1119/1.2830526
[arXiv:gr-qc/0411060 [gr-qc]].

https://arxiv.org/abs/0706.0622
https://arxiv.org/abs/gr-qc/0411060


134 BIBLIOGRAPHY

[20] Joshua Baines, Thomas Berry, Alex Simpson and Matt Visser,
“Unit-lapse versions of the Kerr spacetime”,
Class. Quant. Grav. 38 (2021) 5, 055001 doi:10.1088/1361-
6382/abd071 [arXiv:2008.03817 [gr-qc]]

[21] C. Doran,
“A New form of the Kerr solution”,
Phys. Rev. D 61 (2000), 067503 doi:10.1103/PhysRevD.61.067503
[arXiv:gr-qc/9910099 [gr-qc]].
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“Painlevé-Gullstrand Coordinates for the Kerr Solution”,
Gen. Rel. Grav. 41 (2009), 2579-2586 doi:10.1007/s10714-009-0781-2
[arXiv:0805.0206 [gr-qc]].

[23] Joshua Baines, Thomas Berry, Alex Simpson, and Matt Visser,
“Darboux diagonalization of the spatial 3-metric in Kerr spacetime”,
Gen.Rel.Grav. 53 (2021) 1, 3 doi:10.1007/s10714-020-02765-0
[arXiv:2009.01397 [gr-qc]]

[24] Gaston Darboux,
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