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Abstract

A key goal of Artificial Intelligence (AI) is to replicate different aspects of
biological intelligence. Human intelligence can accumulate progressively
complicated knowledge by reusing simpler concepts/tasks to represent
more complex concepts and solve more difficult tasks. Also, humans and
animals with biological intelligence have the autonomy that helps sustain
them over a long period.

Young humans need a long period to obtain simple concepts and master
basic skills. However, these learnt basic concepts and skills are important
to construct foundation knowledge, which is highly reusable and thereby
efficiently exploited to learn new knowledge. By relating unseen tasks to
learnt knowledge, humans can learn new knowledge or solve new prob-
lems effectively. Thus, AI researchers aim to mimic human performance
with the same ability to reuse learnt knowledge when solving a novel task
in a continual manner.

Initial attempts to implement this knowledge-transfer ability have been
through layered learning and multitask learning. Layered learning aims to
learn a complex target task by learning a sequence of easier tasks that pro-
vide supportive knowledge prior to learning the target task. This learning
paradigm requires human knowledge that may be biased, costly, or not
available in a particular domain. Multitask learning generally uses multi-
ple related tasks with individual goals to be learnt together with the hope
that they can provide externally supportive signals to each other. How-
ever, multitask learning is commonly applied to optimisation tasks that
are required to start simultaneously.



In this thesis, using the transfer of building blocks of learnt knowledge is
of interest to solve complex problems. A complex problem is one where
the solution cannot be simply enumerated in the time and computation
available, often because there are multiple interacting patterns of input
features or high dimensions in the data. A strategy for solving complex
problems is to discover the high-level patterns in the data. The high-level
patterns are ones with complex combinations of original input features
(the underlying building blocks) to describe the desired output. However,
as the complexity of building blocks grows along with the problem com-
plexity, the size of the search space for solutions and the optimal building
blocks also increases in complexity. This poses a challenge in discovering
optimal building blocks.

Learning Classifier Systems (LCSs) are evolutionary rule-based algorithms
inspired by cognitive science. LCSs are of interest as their niching na-
ture enables solving problems heterogeneously and learning them pro-
gressively from simpler subproblems to more complex (sub)problems. LCSs
also encourage transferring subproblem building blocks among tasks. Re-
cent work has extended LCSs with various flexible representations. Among
them, Code Fragments (CFs), Genetic Programming (GP)-like trees, are a
rich form that can encode complex patterns in a small and concise format.
CF-based LCSs are particularly suitable for addressing complex problems.
For example, XCSCF*, which was based on Wilson’s XCS (an accuracy-
based online learning LCS), can learn a generalised solution to the n-bit
Multiplexer problem. The above techniques provided remarkable improve-
ments to the scalability of CF-based LCSs. However, there are certain
limits in such systems compared with human intelligence, such as their
limited autonomy, e.g. the requirement of an appropriate learning order
(e.g. layered learning) to enable learning progress. Humans can learn
multiple tasks in a parallel ad hoc manner, whereas AI cannot do this au-
tonomously.



The proposed thesis is that systems of parallel learning agents can solve
multiple problems concurrently enabling multitask learning and eventu-
ally the ability to learn continually. Here, each agent is a CF-based XCS
where the problems are Boolean in nature to aid interpretability. The over-
all goal of this thesis is to develop novel CF-based XCSs that enable learn-
ing continually with the least human support.

The contributions of this thesis are three specific systems that provide a
pathway to continual learning. By reducing the requirements of human
guidance without degrading the learning performance. (1) The evolution of
CFs is nested and interactive with the evolution of rules. The fitness of CFs
called CF-fitness is introduced to guide this process. The evolution of CFs
enables growing the complexity of CFs without a depth limit to address
hierarchical features. The system is the first XCS with CFs in rule condi-
tions that can learn complex problems that used to be intractable without
transfer learning. The introduction of CF evolution allows appropriate la-
tent building blocks that address subproblems to be grouped together and
flexibly reused. (2) A new system of multitask learning is developed based
on the estimation of the relatedness among tasks. A new dynamic param-
eter helps automate feature transfer among multiple tasks, which enables
improved learning performance in supportive tasks and reduced nega-
tive influence between unrelated tasks. (3) A system of parallel learning
agents, where each is an XCS with CF-actions, is developed to remove the
requirement of a human-biased learning order. The system can provide
a clear learning order and a highly interpretable network of knowledge.
This network of knowledge enables the system to accumulate knowledge
hierarchically and focus on only the novel aspects of any new task.

The research work has shown that CF-based LCSs can solve hierarchical
and large-scale problems autonomously without (extensive) human guid-
ance. The learnt knowledge represented by CFs is highly interpretable.
This work is also a foundation for the systems that can learn continu-



ally. Ultimately, this thesis is a step towards general learners and problem
solvers.
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Chapter 1

Introduction

1.1 Scope and Context

Human intelligence is the best-known example of general intelligence.
The long-term goal of Artificial Intelligence (AI) is to replicate different
aspects of biological intelligence, especially human intelligence:

“The art of creating machines that perform functions that re-
quire intelligence when performed by people.” (Kurzweil, 1990
[76])

An agent of biological intelligence can accumulate increasingly compli-
cated knowledge by reusing simpler concepts/tasks to represent more
complex concepts and solve more difficult tasks. For example, children
take months to learn basic skills like grasping [42]. Still, they can reuse
them to develop variants of basic skills quickly [122].

Machine Learning (ML) is an aspect of AI that imitates humans’ learn-
ing abilities through experience, e.g. usually training instances in train-
ing stages, without being explicitly programmed [13]. Unlike biologi-
cal intelligence, traditional ML algorithms commonly serve only one spe-

3
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cific task. An ML system usually learns its task from scratch without the
ability to reuse useful knowledge learnt from other tasks. This necessi-
tates many trials and associated errors for a system to learn a hierarchical
and/or large-scale problem1. This limitation also results in inefficient con-
sumption of time and computation resource for large-scale and hierarchi-
cal problems.

Human beings are altricial so take years to correctly learn to recognize
patterns of signals from our senses, e.g. sounds and images, and to under-
stand highly abstract concepts. However, we eventually master the ability
to tackle unseen problems and situations by taking advantage of knowl-
edge learnt in the past from other similar or related problems. Specifically,
humans can relate new problems to learnt knowledge and solve them with
very limited numbers of trials by reusing experienced knowledge. Gener-
ally speaking, AI/ML researchers desire to build intelligent systems with
human-like abilities. In this case, ML researchers are attempting to mimic
human performance with the same ability to reuse/transfer learnt knowl-
edge when solving a novel task. In general, this ability is an important as-
pect of biological intelligence. For example, it benefits autonomous agents
(including biological intelligence) in changing behaviours flexibly among
tasks and environments [117]. Because of its efficiency in the learning pro-
cess of humans, it is a desirable feature that ML researchers are still inves-
tigating how best to integrate into machines.

Knowledge transfer was implemented in transfer learning [101]. This learn-
ing paradigm concerns the ability to reuse knowledge from a source task
to improve the performance in a target task. There are other learning
paradigms related to transfer learning as they take advantage of knowl-
edge transferred from other tasks to bootstrap the performance on a tar-
get task. Layered learning aims to learn a complex target task by learn-
ing an ordered sequence of easier tasks that provide supportive or even

1A hierarchical problem is a combination of multiple levels of simpler patterns
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prerequisite knowledge prior to learning the target task [119]. Layered
learning is highly correlated with continual learning, which is a contin-
ual process where learning occurs over time [125]. Continual learning
closely relates to how humans learn as a continual-learning agent’s ex-
periences occur sequentially without a final task. The learning process
is incremental and hierarchical. Knowledge from one task can be reused
later to solve a completely different task or set a basis for hierarchical be-
haviours/concepts.

Conversely, multitask learning generally uses multiple related tasks to be
learnt together with the hope that they can provide externally support-
ive signals to each other [29]. Unlike transfer learning, tasks in multitask
learning have no priority. An early study of multitask learning applied it
on multiple predictive supervised learning [28].

In this thesis, using the transfer of building blocks is of interest to solve
complex problems, which create large search spaces of solutions. The
search space can be large when the target problem is hierarchical and/or
large in scale because the solutions are either complex or appear in a high-
dimensional search space.

Solving complex problems requires the ability to discover the high-level
underlying patterns in the data. The high-level patterns require high-level
building blocks to reproduce the output pattern. In complex problems,
high-level building blocks can be made of lower-level building blocks (sim-
ple combinations of environment data), so can be are built in a bottom-up
manner. However, as the building block level grows along with the prob-
lem complexity or scale, the size of the solution search space also increases
rapidly. This poses a challenge in finding optimal building blocks and re-
ducing the interpretability of learnt solutions. For example, one of the
possible negative influences by increasing the complexity limit of build-
ing blocks is the increasing presence of bloat in tree-based programs [74],
where inefficient information is encoded into a solution. Bloat could lead
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to local optima and prevent the interpretability.

Evolutionary Computation (EC) is a branch of AI that mimics the Dar-
winian evolution principle to solve problems [54]. Moreover, artificial
evolution techniques are believed to be capable of designing more com-
plex behaviours than ones designed by hand (Chapter 8, [107]). An EC
algorithm generally solves a problem by evolving a population of solu-
tion candidates. The principles Darwinian evolution theories, such as nat-
ural selection and reproduction, are applied in the selection, mutation and
crossover operators of EC algorithms. These operators iteratively drive
the population to discover fitter candidates regarding a pre-defined fitness
evaluation.

EC techniques represent individuals through building blocks, such as schema
[54]. This encourages the reuse of learned knowledge across problems.
Multitask learning has been adopted in EC to mainly solve optimisation
tasks [47, 48]. However, this thesis is focused on classification tasks be-
cause this category offers latent patterns that can be identified in a reusable
form. Furthermore, optimisation problems often do not contain separable
patterns to be reused, while regression problems are inherently included
in this thesis as subproblems in classification tasks.

Learning Classifier Systems (LCSs) are the EC rule-based algorithms of
interest as this group of techniques has the unique niching property [129,
130]. This feature helps divide a problem into simpler subproblems, which
are subsets of instances that share some common characteristics, to be
solved efficiently [54, 129]. This is an efficient approach to decompose hi-
erarchical problems. Additionally, LCSs have pressures to suppress bloat
implicitly through the niche-based fitness sharing [27].

An LCS usually learns using evolutionary operators to solve a specific
task, which is often a reinforcement learning problem [121]. The rules in
traditional LCSs are in the form of “if condition then action”. Among vari-
ous implemented of LCSs, XCSs are a popularly adopted branch of LCSs
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that uses accuracy-based fitness and simplifies the concept of LCSs for ML
and robotics problems [141].

Recent work has integrated various representations into classifier condi-
tions of LCSs. Among those representations, Code Fragments (CFs) [63],
which are GP-like tree-based programs, are a rich and flexible form that
can represent complex programs. Using CFs enables rules to encode com-
plex patterns in a small and concise format. Thus, CF-based LCSs are par-
ticularly suitable for addressing complex problems. Also, LCSs’ ability
to divide-and-conquer is useful in solving complex problems. A learning
system with this ability can generalise by constructing high-level building
blocks in a bottom-up manner from low-level building blocks.

Iqbal et al. introduced XCSCFC as the first XCS that uses CFs in rule con-
ditions to target 135-bit Multiplexer problem2 through a layered learning
approach [59]. Because XCSCFC grows at most two layers to existing
CFs in a learning stage, the learning system is believed to construct CFs
with controllable amounts of bloats. XCSCF* used CFs in rule actions and
transferred CF-based ruleset functions to address n-bit Multiplexer prob-
lem [6, 7]. Compared with XCSCFC, XCSCF* can transfer knowledge from
one problem domain to other related ones. This was achieved by provid-
ing supporting simpler problems with a strict order, i.e. the curriculum,
through layered learning. This learning order (curricular order) needs to
be done manually by humans to build up the complexity of supportive
knowledge efficiently before learning the most complex logic. However,
the order requires prerequisite knowledge on the target problem, which is
not always available. XCSCF* can learn a generalised solution to the Mul-
tiplexer problems, which can solve n-bit Multiplexer problem (any scale).
Discovering the generalised patterns of a problem domain is a major de-
sirable property of ML [95].

2Multiplexer problems are Boolean problems describing Multiplexer circuits in elec-
tronics. They are interesting as they have variable interactions and are highly non-linear.
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The above techniques provided remarkable improvements to the scalabil-
ity of CF-based XCSs on the tested problem domains. However, there are
certain limitations in such algorithms compared with human intelligence,
such as their limited autonomy. This is against the self-sufficiency, one
of the design principles of AI systems that concerns the ability of the AI
system to sustain itself with full autonomy over time [107].

1.2 Motivations

The Need for External Guidance for Layered Learning and

Transfer Learning

Knowledge transfer in layered learning can bootstrap the learning perfor-
mance on later tasks in the curriculum. However, layered learning poses
a constraint when it requires external human guidance. The human guid-
ance is generally unwanted as it reduces the flexibility of the layered learn-
ing and is sometimes unavailable. Additionally, the transferring criteria
require prerequisite knowledge about the target and the source tasks, such
as statistical information in domain adaptation [99, 128]. The statistical in-
formation is not available in the case of online learning as this paradigm
only allows accessing the streaming data. For instance, XCSCFC, a lay-
ered learning approach, has been shown to be efficient in specific cases
where the reusing criteria are tailored for the problems in the learning lay-
ers [63]. Another requirement for these learning paradigms is the learn-
ing order, especially for layered learning [6]. The learning performance
may be disrupted (i.e. slowly or not converged) without a proper learning
curriculum/order. In summary, the autonomy of the learning systems in
these two learning paradigms is far from human intelligence.

Alvarez et al. managed to scale the problems by layered learning in XC-
SCF* [6]. XCSCF* avoids the intractable size of the search space of solu-
tions by dividing the target problem into smaller problems, where each
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covers an aspect of the target problem. The main limitation of XCSCF* is
the need for human intervention in the guidance for the curricular order
as well as prior knowledge of how the problem should be decomposed.
The decomposition task is done by a human instead of a machine in an
automatic manner. With an appropriate curriculum, Alvarez’s work sug-
gested that CF-based XCSs can solve large-scale and hierarchical problems
given an empirical curriculum for transferring and accumulating knowl-
edge. However, curricula are generally not available in unseen tasks.

All existing CF-based XCSs rely on layered learning to scale up the CF-
features and solve large-scale/complex problems. However, the auton-
omy is also a goal of AI for the self-sufficiency of general intelligence
[107].

Large Volume of Available Knowledge

Learning complex problems can be efficiently addressed by constructing
high-level features. However, the search space of constructing high-level
features is large and potentially intractable, such as hierarchical problems
[25], Even-parity, or Carry-one problems [63]. It is even more problematic
in the case of multitask learning, where multiple unrelated problems are
solved in parallel. The volume of learnt knowledge shared among systems
grows much faster in size and diversity than in single-task learning.

The learning process of one task may generate irrelevant knowledge in ad-
dition to only applicable and especially generalised knowledge for other
tasks in transfer learning, layered learning, and multitask learning. If irrel-
evant knowledge is transferred, it will create extra noisy information that
reduces the learning performance on the target task instead of improving
it. Thus, it is necessary to have a gate to control the transferring criteria.
Nevertheless, the general transferring criteria are not available beforehand
in online learning since there is no prerequisite information on the tasks.
Also, along with level/depth growth in features, the transferring criteria
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should be adapted appropriately.

In another viewpoint, connections among neurons in the form of axon-
synapse-dendrite are the key factor for the biological intelligence as they
help neurons communicate [106]. The neural communication enables hu-
man intelligence to link relevant knowledge, e.g. concepts and actions,
given perceived signal(s) [43, 68]. This is a critical advantage of human
brains compared with existing AI systems because, for an unending learn-
ing process, there is much more irrelevant knowledge than the relevant
one in all accumulated knowledge. Consequently, if a continual learner
has to do reasoning given a large amount of irrelevant knowledge, its per-
formance could be unresponsive or not competitive. Therefore, an intel-
ligent system should be able to provide relevant connections among its
learnt knowledge.

Both these issues lead to the motivation to achieve intelligent systems with
more flexibility (less constraints). The flexibility enables CF-based XCSs to
be generalised to address a broader range of problems. Nevertheless, this
objective have not been achieved since the existing CF-based XCSs rely on
layered learning.

1.3 Thesis Statement

Overall, this thesis is that systems of parallel learning systems, where each
system is a CF-based XCS, can solve multiple Boolean problems concur-
rently and, therefore, enable both multitask learning and continual learn-
ing for CF-based XCSs.

The system will be capable of constructing CFs that capture underlying
patterns of the data in complex problems. Capturing the underlying pat-
terns in some CFs means that the systems using such CFs can abstract
away low-level details of the data patterns. Therefore, the learning sys-
tem can address all aspects of the problem with a minimum number of
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rules. Searching the underlying patterns of a hierarchical problem using
tree-based programs (CFs) is possible [3] but also challenging. Without
customised human guidance, the search space of the underlying patterns
for hierarchical problems is usually intractable.

For learning multiple problems in parallel, a challenge is to find appropri-
ate relationships among problems. This is because no knowledge about
the target problems is available in advance. These relationships will pro-
vide connections among knowledge produced by learning the problems
so that learning new problems can refer to only relevant knowledge. This
reduces the search space and makes learning tractable.

1.4 Research Goals

The overall goal of this thesis is to improve the learning capabilities of evo-
lutionary machine learning without the need of layered learning and, thus,
to enable flexibility and autonomy in using these systems to address (mul-
tiple) classification problems. This includes introducing multitask learn-
ing and continual learning to existing CF-based XCSs. This goal is divided
into three sub-goals, as follows:

1. To provide XCS using CF-conditions with the ability to discover use-
ful high-level CFs without a human-customised sequence of learning
stages and transferring criteria (layered learning). By being useful,
CFs are supposed to capture the underlying data patterns. High-
level CFs are only required to describe complex patterns, which are
not efficiently described by low-level CFs or the traditional ternary
representation (0, 1,#) in standard XCS [141]. The following research
objective has been established to achieve this sub-goal:

• To develop a novel evolution of CFs that is nested within the
rule evolution of XCS. These two evolutionary processes inter-
act and support each other. The evolution of CFs is to start from
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the lowest-level CFs and grow higher-level CFs. This principle
is based on the assumption that the combination of the most
useful CFs usually has a higher chance of creating more useful
CFs compared with combining random CFs. The evolution of
CFs will retain the niching property of XCS.

• To introduce a subset of CFs that captures the data patterns
the best among all generated CFs as this subset has the most
relevant available information about an online-learning task.
Through this subset, the new CF-based XCS is expected to dy-
namically harvest the most up-to-date information of the prob-
lem in the form of tree patterns at any learning stage. This sub-
set is the central base to grow higher-level tree patterns. Fur-
thermore, this opens the possibilities of collaborating the learn-
ing processes of multiple online-learning tasks without prereq-
uisite knowledge about the tasks, which was done in the second
sub-goal.

Both of these two sub-goals rely on the introduction of a mea-
sure for estimating the applicability of CFs. This quantity will
be encoded in a new parameter called CF-fitness. Also, these
goals require establishing a sub-group of CFs containing CFs
with the highest CF-fitness.

• To optimise the structural efficiency of the constructed CF-based
patterns. The structural efficiency is based on the generality of
CFs, which enables classifiers using them to match accurately
with the most instances, and the structural complexity of CFs.
This efficiency eliminates bloat, which can prevent the learn-
ing system from advancing the learning process, and improves
the interpretability of the extracted solutions. Also, when fea-
ture reusabilities stack many times, this efficiency will result in
much more readable solutions.
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2. To develop a novel system of multiple XCS-based agents for multi-
task learning. Each agent is a variant of the system introduced in
the preceding sub-goal. The following research objectives have been
designated to achieve this sub-goal:

• To develop a novel method of estimating the relatedness (rela-
tionship) among learning tasks dynamically. The measurement
of this quantity is to be encoded in a parameter called “related-
ness”. This parameter represents the relationships/connections
among target tasks. The measured relationships among tasks
are expected to provide relevant connections among knowledge,
which enable appropriate reusabilities of learnt knowledge.

• To utilise the relationships among tasks to enable the ability to
automatically transfer knowledge among related tasks/systems.
This ability aims to allow the system to not only improve the
performance of agents when the tasks are mutually supportive
but also reduces the harmful transfer among unrelated tasks.

3. To develop a system of multiple XCS classifiers that is designed with
the ability to accumulate progressively more complex knowledge
through learning multiple problems with minimal external guidance.
This system learns multiple tasks continually and simultaneously.
This system is composed of multiple agents that interact indirectly
with each other through a dynamic knowledge pool. The following
research objectives have been established to achieve this sub-goal:

• To reduce the search space of rule actions (CFs in this case) by
dividing it based on the input and output types of available
functions. This property will enable generating CFs that are
verifiable.

• To bootstrap the system with a general loop skill that can inte-
grate a given sub-function to iteratively process a string input.
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This skill is an axiomatic building block that is designed to scan
the whole input signal or a latent signal for patterns defined by
a sub-function. This skill will be essential for solving hierarchi-
cal Boolean problems as it will enable the intelligent system to
shift a kernel (a sub-function) throughout the (latent) signal to
scan for patterns.

• To develop a simple stochastic method of selecting the task to
work on iteratively. This process is to allocate the computing
resource with the most promising tasks.

By targeting the ability to construct complex useful building blocks (CFs)
from simple ones without or with little human interventions, The above
goals include the ability to harness compositionality to rapidly acquire
and generalise knowledge to new tasks. Thus, this thesis will be an in-
termediate step towards human-like machine intelligence using the LCS
framework [77].

Interpretable and explainable AI are an important issue as AI is used in
real-world applications [91]. Although this is not a direct objective of this
work, LCS has the nature to encapsulate knowledge in a transparent and
interpretable manner. The ability to access learnt knowledge in the learnt
curricula as a knowledge hierarchy will enhance interpretability.

The developed systems will be evaluated using various hierarchical and
large-scale Boolean problems, as well as real-world datasets. The hier-
archical problems provide high-level patterns while the large-scale prob-
lems require the learning system to choose the right building blocks in
large search spaces. Real-world datasets will be used for the initial inves-
tigations of the potential applications of the developed systems. These
systems are compared with standard XCS [141] and existing CF-based
XCSs.
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1.5 Major Contributions

CF-based XCSs have more flexibility yet are still able to learn large-scale
and hierarchical problems. The outputs of this thesis include the follow-
ing major contributions to the fields of Evolutionary ML (EML), especially
XCSs using tree-based programs:

1. An XCS with CF-conditions, named XOF, was created that can learn
large-scale and hierarchical problems without layered learning. XOF
can learn such problems using less learning experience than XCS.
The new learning operations do not necessarily cause the system to
run slowly, even compared with XCS, which uses only ternary rep-
resentation. Parts of this contribution have been published in:

T. B. Nguyen, W. N. Browne, and M. Zhang, “Online feature-generation
of code fragments for XCS to guide feature construction,” in 2019
IEEE Congress on Evolutionary Computation (CEC). IEEE, 2019, pp.
3308–3315.

T. B. Nguyen, W. N. Browne, and M. Zhang, “Improvement of code
fragment fitness to guide feature construction in XCS,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference, ser.
GECCO 19. Association for Computing Machinery, 2019, p. 428–436.

2. The structural efficiency in the introduced XOF has been substan-
tially improved by introducing the niching method to the evolution
of CFs in XOF. The efficiency allows XOF to construct CFs that encap-
sulate the underlying data patterns efficiently. The niching method
also enables XOF to conserve the niching property in the whole sys-
tem, which was the strength of XCS previously.

Parts of this contribution have been reported in:

T. B. Nguyen, W. N. Browne, and M. Zhang. ”Constructing complexity-
efficient features in XCS with tree-based rule conditions,” in 2021
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IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021, ac-
cepted.

3. The ability to automatically estimate the appropriate probabilities of
building block (feature) sharing among Boolean classification prob-
lems is introduced in a multitask learning system using multiple
XOFs (mXOF). This system can yield relatedness/connections among
tasks based on the overlapped features. The relatedness is dynamic
and enables mXOF to automatically adjust feature sharing among
tasks in multitask (online) learning.

Parts of this contribution have been published in:

T. B. Nguyen, W. N. Browne, and M. Zhang. “Relatedness measures
to aid the transfer of building blocks among multiple tasks,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference.
Association for Computing Machinery, 2020.

4. ConCS, a system of multiple type-fitting XCSCFA agents, can learn
continually multiple problems, which may be presented to the sys-
tem at a random order or at the same time. The system can solve
increasingly more complex problems, such as n-bit Multiplexer, n-
bit Carry-one, and multiple n-bit Hierarchical Boolean problems, as
soon as it obtains all necessary building blocks through learning eas-
ier and more general problems. ConCS is the first system that can
learn continually without the need of human guidance on providing
curricular orders. In contrast, the results of ConCS can provide the
connections among learnt knowledge, which can infer the curricular
order.

This contribution has been written and submitted to:

T. B. Nguyen, W. N. Browne, and M. Zhang, “ConCS: A Continual
Classifier System for Continual Learning of Multiple Boolean Prob-
lems,” submitted to IEEE Transactions on Evolutionary Computa-
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tion. 2021.

1.6 Organisation of Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents
the literature review of related works. The common experimental design
is referred to in Chapter 3. Chapter 4 to chapter 6 present the major con-
tributions to fulfil the established research goals. Chapter 7 concludes this
thesis.

Chapter 2 provides the necessary background for this thesis. The back-
ground reviews LCSs, related evolutionary ML, and learning paradigms
with knowledge transfer. The review of LCSs includes a detailed descrip-
tion of XCS, a variety of encoding methods used in LCSs, and especially
numerous variants of XCS using tree-based programs (code fragments).
This representation will be used as the encoding method for XCS-based
systems in a later chapter as it encourages the interpretability of extracted
solutions.

Chapter 3 introduces the experimental designs for the experiments in con-
tribution chapters. Also, it gives brief introductions of the benchmark
problems used in this thesis.

In Chapter 4, several learning processes and corresponding methods are
introduced to improve the autonomy of XCS with CF-conditions. The au-
tonomy is to eliminate the need for the layered learning approach, which
includes the design of a sequence of learning stages and transfer criteria.
By introducing an evolution of CFs nested within the rule evolution of
XCS and a new parameter called CF-fitness, this approach can learn large-
scale and especially hierarchical problems in the traditional independent
learning.

Chapter 5 presents a multitask learning system that utilises the output of
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Chapter 4 to introduce an ability to adapt the feature transfer automati-
cally during the learning process. In a learning system that grows tree-
based features, this ability is essential as one-time transfer criteria are only
appropriate at one phase of the feature growth. This system is expected
to improve the learning performance and reduce the bloat in tree features
when multiple tasks are highly related. Another target of the system is to
avoid negative transfer in case of low-related tasks.

In Chapter 6, a system with the ability to learn continually is introduced.
This chapter reduces substantially the dependency on external guidance
in layered-learning systems, which is to provide a curriculum. The system
is designed to accumulate increasingly more complex knowledge through
learning more and more problems.

Chapter 7 concludes the thesis with the achieved goals. This chapter presents
the main conclusions from contribution chapters and the promising future
directions that stems from this thesis.



Chapter 2

Literature Review

This chapter provides an overview and details of the essential aspects of
Artificial Intelligence and Machine Learning. Hence, the background of
subfields of Machine Learning relevant to this work, including Transfer
Learning, Layered Learning and Multitask Learning, will be referenced.
After obtaining a broad picture of the field, an overview of Evolutionary
Computation is introduced. Then a detailed introduction and extensions
of Learning Classifier Systems, the baseline algorithms of this research,
follows. Lastly, this chapter will review and discuss existing versions of
Code Fragment-based XCSs, that will be utilised as the base frameworks
in this research.

2.1 Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) is the study of creating artificial agents that can
imitate or mimic biological intelligence (i.e. human intelligence) [30, 76].
These agents may take the form of machine learning algorithms, like neu-
ral networks and statistical analysis, or robots integrated with machine
learning algorithms [109]. According to Bellman [10], AI is:

19
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”[The automation of] activities that we associate with human
thinking, activities such as decision-making, problem-solving,
learning...”

One of the key topics in AI is how to achieve human-like intelligence,
which is considered a long-term goal of AI. AI researchers have been in-
vestigating many aspects of human intelligence to understand and inte-
grate them into AI.

Machine Learning is an aspect of AI that provides machines with the abil-
ity to learn and improve through the experience with the learning envi-
ronment(s) or data without hard-coded reasoning and decision-making
[2, 95]. A Machine Learning algorithm is capable of building its model
mainly itself through its exposure to examples. Machine Learning can be
divided into three categories based on the different types of given input
data and the expected output [113]:

• Supervised learning: the outputs are provided correspondingly with
the inputs when the agent learn the examples. The goal of super-
vised learning is to learn the function mapping the inputs to the out-
puts.

• Unsupervised learning: the provided learning examples are provided
with input data only, and the goal is to learn the patterns within the
received data. The learning results could be used for grouping simi-
lar unseen examples, initializing a supervised learning system, etc.

• Reinforcement learning (RL): the learning agent will directly inter-
act with its environment by effecting actions on the environment
given the perceived data from the environment and learn by adapt-
ing through corresponding environment feedbacks (rewards or pun-
ishments) [121]. The goal of the agent is to learn the policies that
choose the appropriate actions regarding perceived data from the
environment to maximize the future rewards it receives.
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An RL entity operates in an environment and receives streaming sensed
signals from the environment. Thus, RL is more appropriate to the work
in this thesis than supervised learning as it is closer to human-like learn-
ing than being restricted to learning a labelled training set (supervised
learning). Collecting data and splitting the dataset into a training set and
a testing set already reduces the autonomy of the AI system. Therefore,
Sutton stated that the lexicon of RL is appropriate for describing the prob-
lems faced by such cognitive systems like mobile creatures in a complex,
stochastic environment [121].

The frameworks anticipated to be used in this thesis are extended ver-
sions of XCS, integrated with an RL mechanism. Therefore, this thesis will
be focused on learning with environment feedbacks instead of instance
outputs.

2.1.1 Transfer Learning

Transfer learning (TL) is a process that applies knowledge learnt from one
or more source problems on a related target problem to improve learn-
ing performance on the target problem [101, 126]. To understand differ-
ent techniques of TL, this thesis firstly goes through the understanding
of a ”domain” and a ”task”, the components of an independent problem
learning, according to Pan and Yang [101]. A domain is composed of fea-
ture space and its marginal probability distribution, while a task includes
a label space (space of outputs) and an objective predictive function f(.).
Therefore, TL can be defined as techniques to help improve the learning
of target predictive function in the target domain using the knowledge in
the source domain and source task. In TL, the source problem and target
problem must be different in either domain or task; otherwise, it becomes
traditional a machine learning method [101, 126].

TL can be divided into three different settings regarding the availability of
labelled data in the source domain and target domain: inductive transfer
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learning, transductive transfer learning, and unsupervised transfer learn-
ing [101]. The latter two settings are not relevant and thus are not in-
cluded in this thesis. Inductive transfer learning requires labelled data (the
ground-truth of output) for both the source domain and target domain. In
this thesis, XCS and XCS-based systems, which are reinforcement learn-
ing algorithms, will be used as the main frameworks for single-step prob-
lems. Because these systems learn in reinforcement learning without the
ground-truth, the labelled data in the inductive transfer learning setting
will be converted to rewards from the environment.

On the other hand, TL can also be categorised into four approaches ac-
cording to the transfer medium [101]:

• Transfer instances: to increase the amount of data for training the
target task. The transfer strategy is to re-weight some labelled data
in the source domain and reuse them in the target domain [35, 66, 84,
94, 147].

• Transfer feature representation: to find a good feature representation
to reduce the difference between the source and target domains with
the final aim to minimize domain divergence and error in the target
task [14, 40, 67, 88, 137].

• Transfer parameters: to discover shared parameters and priors be-
tween the source and target models [44, 114]. Most models transfer-
ring parameters include a regularization framework and a hierarchi-
cal Bayesian framework, where prior distributions or model param-
eters can be shared under certain assumptions.

• Transfer relational knowledge: to map relational knowledge, which
is the relationship among variables (data input), between the source
and target domains [38, 71, 92].

The transfer medium that is the most relevant to this thesis is feature rep-
resentation as this approach is encouraged by the feature construction in
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XCSs with tree-based programs. This approach is also applicable in the
feature construction of the multitask-learning systems in this thesis.

Another transfer medium that has not been addressed the literature of
transfer learning was the functions extracted from the final solutions of
solved problems. This approach was firstly implemented in the field of
learning classifier systems by Alvarez et al. [3, 4, 6, 7]. The extracted
knowledge is encoded in the form of functions, which are available to be
reused in other tasks in layered learning.

Layered Learning

Layered learning is a hierarchical Machine Learning paradigm applied to
problems where learning a mapping from inputs to outputs is intractable
using currently available algorithms [118]. A hierarchical problem was
decomposed in a bottom-up manner into a sequence of subtasks where
each requires a learning session. For each subtask, an appropriate ma-
chine learning algorithm was used and might differ from ones for other
subtasks. The extracted knowledge at each subtask was directly fed to the
learning of the next subtask at a higher layer. The subtasks are supposed
to be correctly determined as the aspects of specific domains. The hierar-
chical decomposition was done by a human to learn several problems in
[118]. This work applied layered learning to decompose the complexity
of the activity of robotic soccer. The authors showed that their proposed
layered learning allowed the program to evolve goal-scoring behaviours
with quality analogous to the evolved outputs of standard GP, in a shorter
time.

Recently, layered learning was implemented to allow a CF-based XCS (see
section 2.3.3), XCSCF* [6, 7], to generate a generalised solution to mul-
tiplexer problems. A 6-bit multiplexer problem was decomposed into a
number of consequent basic subtasks, e.g. NAND (NotAND),OR, V alueAt,
PowerOf . All the aspects of multiplexer problems were addressed in sub-
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tasks, and only basic general operations and skills were provided with
predefined functions. The subtasks were given with ideal data sets cre-
ated with prior knowledge about the functions they should learn. The
final result of the system on multiplexer problems was claimed to be op-
timal and general to all multiplexer problems and therefore was not scale
limited.

Multitask Learning

In addition to TL, there are other subfields of Machine Learning, such as
multitask learning and continual learning, that also transfer knowledge
among tasks and domains. However, they are slightly different from TL
in several aspects. In multitask learning, more than one tasks are learnt
simultaneously, where there is no difference in priority like source and
target as in TL [29].

Because these two subfields also address the problem of transferring knowl-
edge, they would share very similar aspects and challenges. For example,
it is possible to extend a transfer learning method to apply for multitask
learning, and continual learning. In the case of this thesis work in the net-
work of functionalities and patterns, the learning paradigm of the multi-
learner system is a mix of multitask learning and continual. While lay-
ered learning was investigated in XCSCFC [60] and XCSCF* [6], multitask
learning has not been applied in any version of CF-based XCSs.

In this thesis, the target tasks in multitask learning may differ in decision-
boundary patterns. Additionally, they may have different domains be-
cause the input variables for each problem might change in size as well as
marginal distribution. When it comes to involving transferring knowledge
between binary and real-valued problems, both the problem domains and
tasks might be related but are of different categories. For example, in some
scenarios, the task providing transferred knowledge can be a regression
problem, and the task receiving the transfer is a classification problem in
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[6]. Also, one domain might be a regression problem with an input length
of one variable only while a closely related domain might have a variable
input length.

Continual Learning

In the literature of AI, there has been research that focused on learning
continually based on reusing learnt knowledge. Continual learning is the
constant development of increasingly complex behaviours; the process of
building more complicated skills on top of those already developed [112].
This concept is highly related to the definition of layered learning. Contin-
ual learning, however, is focused on the continuity and autonomy of the
learning process without a curriculum and a final task.

Another term that is mostly identical to continual learning is lifelong learn-
ing [125]. This is a machine learning approach that addresses situations
where a learner faces a stream of learning tasks. The readers interested in
continual/lifelong learning are advised to consult [125] to understand this
approach.

2.2 Evolutionary Computation

Evolutionary computation (EC) is a family of population-based problem-
solving techniques, where each individual represents a candidate solution
or a part of a whole solution to the targeted problem [74]. EC techniques
mimic the principles of Darwinian evolution theories, such as natural se-
lection and reproduction, and biological principles. Every EC technique
maintains and evolves a population of individuals. The population is
evolved using some forms of selection, mutation and crossover operators
to search for the fittest candidates regarding a pre-defined fitness evalua-
tion.

Specific EC techniques are used in traditional Learning Classifier Systems
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as well as CF-based LCSs, e.g. Genetic Algorithms (GA) and Genetic Pro-
gramming (GP). The reproduction technique crossover within GA could
be maintained, while the GP-like tree-based programs, which are CFs, are
the main representation form of the rule conditions of the framework used
in this thesis. The two common EC techniques, GA and GP, are briefly in-
troduced in the following sections.

2.2.1 Genetic Algorithms

GA is an evolutionary computation technique used to generate high-quality
solutions to optimisation and search problems and is commonly imple-
mented in the discovery components of LCSs [129, 130], the main frame-
work of this thesis. GA integrates bio-inspired operators such as muta-
tion, crossover and selection. Holland introduced schema theory to ex-
plain how evolutionary processes in GA works [54]. Schema is a template
for describing a set of positional, finite and fixed-length strings defined
using a finite set of alphabets. For example, the alphabets for representing
bit string are 0, 1, ∗, in which ‘*’ is for “wild card” and is not actual value,
then a schema “01 ∗ 1” represents both ‘0101’ and ‘0111’. A wild card or a
“don’t care” bit means its actual value could be any actual value in the set
of representing alphabets.

The normal process of GA starts with the selection of fittest individu-
als from a population by a selection operator. They are combined using
crossover and mutation operators to produce offspring which are expected
to have inherent characteristics of the parents and will be added to the
next generation. This process is believed to create offspring fitter than
parents and therefore have a better chance at surviving. The algorithm
keeps on iterating until a generation with the fittest individuals will be
found. Crossover, the operation of combining parents in reproduction, is
illustrated in Figure 2.1.

Goldberg proposed the building block hypothesis that analyses how GAs
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works because they can find good building blocks [46]. Building blocks
are just schemata with short defining lengths1 which consist of bits that
work well together. Goldberg hypothesized that, in GA, the short (defin-
ing length), low-order2, and highly fit schemata are sampled, recombined,
and resampled to form strings with potentially higher fitness. However,
Goldberg discovered a major weakness of GA that in order for the build-
ing blocks to form, there must be low epistasis among the genes, which
are interaction among the positional bits. Therefore, Estimation of Distri-
bution Algorithms with explicit “linkage learning” schemes, as a research
branch of EC, have been developed to deal with the high epistasis prob-
lems [50, 102–105].

Figure 2.1: Illustration of crossover. On the left, selected parents are com-
bined using a crossover point. The two individuals on the right are off-
spring.

2.2.2 Genetic Programming

Genetic Programming (GP) is also an EC technique that works on optimi-
sation and learning problems [74]. Each individual in the population is a
potential candidate for a complete solution for the tackling problem. To
develop population each generation, GP also reproduces by bio-inspired
operators such as selection, crossover and mutation. The process of evo-
lution in the GP population follows a similar order of steps as GA.

The distinction of GP from other EC techniques is that each individual in

1The defining length is the distance between the outermost non-wildcard symbols
2The number of non-wildcard symbols
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Figure 2.2: Example of a GP tree for the following program (sin(X6 + π)×
((X1/2.0)− (X0%X5))

the population is a computer program represented in the form of graph-
based programs. In addition to standard GP using (parse) tree programs,
there have been other variants of GP, such as cartesian GP [93], linear ge-
netic programming [16], and gene expression programming [41]. This the-
sis will use the form of tree programs for the developed systems. The so-
lution to the solving task is expected to be expressible by a predefined and
primitive set of operators, a.k.a. the function set, and a set of operands,
also called the terminal set. The program trees are composed of functions
in the internal nodes and terminals in the leaves. See Figure 2.2 for an
example of a tree program in tree-based GP.

A tree-based GP program with rich alphabet composed of the terminals
and the functions allows high complexity and flexibility of solution repre-
sentations. However, its undesirable effect is a high probability of pro-
ducing bloat, which are non-relevant structures of code without corre-
sponding increases in fitness [74]. Bloats not only consume considerable
resources but also interfere with finding better solutions, since the code
manipulation by evolutionary operators may occur in the non-relevant re-
gions. They might also prevent the solutions from generalising [133, 136].
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In addressing the problem, the usual approaches are to compromise be-
tween flexible representations and simpler optimal structures. The growth
of tree-based programs can be constrained by limiting the maximal al-
lowed depth of individual program or adding tree size punishment to
fitness measurement [87]. The other approaches to avoid bloat are to sim-
plify individual trees using numerical simplification method [70], alge-
braic simplification method [148], or using multi-objective GP system to
promote population diversity and control bloat [39].

As an ML algorithm, GP is capable of generalising, which is one of the
most desirable properties machine learning [95]. The generalisation abil-
ity is closely related to the model (tree) complexity in GP [31]. Chen et al.
[36] proposed a novel complexity measure based on the Rademacher com-
plexity and integrated into a new GP method to improve generalization.
Next, Uy et al. [132] considered semantic control as an approach to pro-
mote the generalising ability of GP for the first time. This work extended
the semantically driven crossover method in [9] to improve the semantic
crossover of real-valued tree-based programs. They defined the approxi-
mate semantic output of a subtree as a vector where each element is the
output of a point from the domain. Semantic similarity crossover allows
crossover when the distance of semantic vectors of two subtrees of the off-
spring is not greater than a user-defined threshold. The impact of semantic
control was compared against using validation sets on the generalisation.
The results on a set of real-world symbolic regression problems showed
improved performances with smaller sizes of evolved solutions by apply-
ing semantic control. The result by using semantic control is significantly
better than using validation sets on enhancing generalisation ability. The
application of semantic behaviours in reproduction is extended in [75, 97]
by geometric semantic operators. Geometric semantic operators use ge-
ometric transformations to search directly on semantic space. The gen-
eralization ability of GP was enhanced by geometric semantic operators
in [32–34, 134]. The semantic or geometric semantic behaviours will be
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investigated in this thesis work as an approach to compare the difference
and mapping between problems and solutions. Instead of modelling prob-
lems and solutions by pre-defined distributions with learnt parameters, it
would be more efficient to use semantic output vectors to represent prob-
lems and solutions.

As a form of representing conditions of rules in CF-based XCS, GP is the
carrier of knowledge to be transferred among learning systems. It is also
an integral part of mapping between target problems and extracted solu-
tions.

2.3 Learning Classifier Systems

Learning Classifier Systems (LCSs) are a family of ML algorithms follow-
ing a concept of systems inspired by Cognitive Science, Computer Science
and Biology [129]. The concept of LCSs was firstly formalised by Holland
and Rietman [55] as a cognitive system which was to replicate the pro-
cesses of cognition [20]. However, due to the complication and impracti-
cal of original LCSs, the later research in the field has focused on solving
interesting problems. The field of LCSs has also been subsumed into the
wider field of evolutionary computation. LCSs can be applied to both su-
pervised and reinforcement learning tasks, including, classification, data
mining, regression, function approximation, behaviour modelling, adap-
tive control, and more [19, 129].

All LCS algorithms follow a number of common principles and steps, as
illustrated in 2.3 [23]. Being considered as a part of evolutionary computa-
tion, each LCS also maintains and evolves a population of classifiers, also
called as rules, where all with cooperation are a solution or each is a candi-
date solution. When receiving the environment state, a subset of the pop-
ulation, called a match-set, having the conditions satisfying the received
state is selected. Then, an action is chosen to be effected on the environ-
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ment. The subset of the match set that votes the chosen action forms an
action set. If the match set is empty, then a process called covering is acti-
vated to create classifiers for the match set in a random manner. The action
set is then updated regarding the corresponding reward returned from the
environment. An LCS algorithm can have its own evolutionary crossover
as its reproduction mechanism. All the processes are executed for each
received environment state to form an iteration. The evolution of the pop-
ulation is finished when the performance of the cooperative population
on the environment reaches its maximum, or the population experiences
a pre-defined number of iterations.

Figure 2.3: General components of a Learning Classifier System

LCSs are developed with two main directions: the Pittsburgh [116] and
Michigan [15] approaches. The design of Pittsburgh classifier systems is
mainly compatible with offline learning as they produce a population of
rulesets, while Michigan classifier systems are well designed for both of-
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fline learning and online learning as they evolve a single set of rules. In
the scope of this thesis, the branch of Michigan style XCSs is of interest
because of their advantages in reinforcement learning.

There are two main types of fitness functions in Michigan classifier sys-
tems: strength-based and accuracy-based functions. The strength-based
fitness functions, such as in ZCS [140], measure fitness of a rule using the
magnitude of its predicted payoff. On the other hand, the accuracy-based
functions determine the fitness based on the accuracy of predicted payoff.
With accuracy-based fitness functions, if a classifier is consistently correct
at predicting a reward signal, it is considered fit. According to Urbanowiz
and Browne [129], accuracy not only helps in predicting the payoff from
the environment but also guides rule discovery to consistent areas of the
search space, which empirical evidence suggests are the most profitable to
breed. XCS [26, 141] is a widely adopted algorithm of Michigan approach
using an accuracy-based fitness function. XCS will be the base framework
of this thesis and one of the baselines to be compared with the resulting
systems. As a Michigan-style approach, its scalability in online learning as
it does not require any prior training set.

2.3.1 Accuracy-based Classifier Systems

XCS, an accuracy-based classifier system, is a Michigan-style LCS that
uses accuracy-based fitness function to form an evolutionary and adaptive
learning agent with a set of mutually cooperative classifiers [26, 138, 141].
Based around ZCS [140], an LCS using strength-based fitness, XCS was
first proposed by Wilson [141]. Butz and Wilson then refined the updat-
ing processes and a few parameters of XCS in [26] to improve its stability.
There are a number of key distinction of XCS from other LCS algorithms:
1. fitnesses of classifiers are measured using the accuracy of predicted re-
wards, which allows forming a complete mapping of state-actions to pre-
dicted rewards [72]; 2. XCS removes the message list from the design of
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the original LCS and therefore it is only applicable to learning Markov en-
vironments [23, 26]. XCS has been widely adopted in the field of LCSs and
investigated to integrate many rich representations into its rules.

As a Michigan-style LCS, XCS is an adaptive agent which learns by inter-
acting with the environment. XCS follows the common steps and princi-
ples of general LCSs and Michigan-style LCSs. Specifically, the learning
agent initializes an empty population in the beginning and inserting first
classifiers to the population by covering. XCS also follows the workflow
of general LCSs, where XCS stores an action set of previous iteration [A]�1

and updates its classifiers in the reinforcement learning manner. Each clas-
sifier, in the form of an expressive rule ”if condition then action”, contains
two parts: condition and action parts. Standard XCS proposed for binary
problems represents the condition part of its classifiers by a fixed-length
bitstring defined over the ternary alphabet {0, 1,#}, where # is called
wild-card or don’t care and is equivalent to the wild-card 0∗0 in schema,
and the action part by binary constants. Each classifier is measured by
three main parameters: prediction or predicted payoff p; prediction error
ε, which is an estimate of error between predicted payoff and correspond-
ing actual (average) reward from the environment; and fitness F measur-
ing how well a classifier fits in an environment. Additionally, a classifier
has an experience exp counting the number of times it is in the action set
[A], and a numerosity n referring to the number of its copies. Tradition-
ally, the population is evolved using GA operators on the positional bit-
strings.

For a complete and detailed description as well as explanations of terms,
the interested reader is directed to the original papers of XCS by Wilson
[141, 142] and the refined XCS by Butz and Wilson [26]. The operations
of the workflow of a standard XCS are illustrated in Figure 2.3 with an
iteration example in Figure 2.4. These operations are described briefly in
the following:
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• Sensing the environment: receives the current environment state s.
The current state s is usually in the form of positional fixed-length
bitstring, which is a string of binary values {0, 1}. A positional string
means the positions of variables in the string are fixed.

• Matching: all classifiers in the population are queried for match-
ing to form a match set [M ] for the current iteration. A classifier
is matched with a given state if the non-wildcard variables in the
condition are equal to ones in environment state, respectively.

• Covering: is activated to create new classifiers for the match set [M ]

and population when any action ai ∈ A, the set of all possible actions,
is missing from the match set [M ]. In covering, a random classifier is
generated by generalizing with probability p# to not only match the
current state and has the missing action ai as well as small default
main parameters.

• Action voting: calculates a prediction array PA, which predicts re-
wards for all possible actions when they are executed on the envi-
ronment. In PA, a predicted reward for an action ai is computed by
averaging the fitness-weighted predictions of all classifiers advocat-
ing ai in the match set [M ].

• Action selection and execution: action selection can be done by se-
lecting the action with highest predicted reward, in exploit mode, or
by random manner, in explore mode. In explore mode, the agent is
allowed to discover information about the environment, especially
the actions giving lower predictions and therefore build a complete
mapping of state-actions to rewards. On the contrary, in the ex-
ploit mode, the agent attempts to obtain as high rewards as possible.
Hence, this mode is used to test the performance of the agent as the
outcome of the learning process. The selected action is executed on
the environment, and a reward r is returned from the environment.
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• Updating all classifiers in action set [A]�1: updates the parameters
of all the classifiers using reinforcement learning manner. This part
plays as the local search for classifiers that are being updated.

On receiving the environment reward r, if the environment is a single-
step problem3, or the agent reaches the end of a trial4, the classifiers
in the current action set [A] is also updated. Firstly, the estimated ac-
tual reward is computed: P�1 := r�1 + γ×max(PA) for [A]�1, where
r�1 is previous reward and γ is the discount factor; and P := r for
[A]. The update process is summarised in Algorithm 2.1. In the up-

Algorithm 2.1 Updating parameters of classifiers i given an estimate of
the actual reward P

1: classifier experience expi := expi + 1

2: if expi > 1/β enough experience (β is the learning rate) then
3: update prediction error εi := εi + β(|P − pi| − εi)
4: update prediction pi := pi + β × (P − pi)
5: else
6: average prediction error εi := [εi × (expi − 1) + |P − pi|]/expi
7: average prediction pi := [pi × (expi − 1) + P ]/expi

8: if εi ≥ ε0 error is not small enough then
9: calculate accuracy ki := α × (εi/ε0)

�ν , where ν > 0, 0 < α < 1 and
ε0 is the threshold error (ε0 > 0)

10: else
11: maximum accuracy when error is small enough ki := 1

12: relative accuracy k0i := ki × ni/
∑

j2being updated[A](kj × nj).
13: fitness: Fi := Fi + β × (k0i − Fi)

dating process, the threshold 1/β for classifier’s experience exp is to

3The problem that returns the result to every iteration. New state of the learning agent
in next iteration is not related to the state and action in current iteration.

4When the agent reaches a goal and the problem restarts with a new trial, where the
state of the agent is not related to the current state and selected action.
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follow a technique called “MAM” [135]. The two hyper-parameters ν
and α in the above step 9 are used to control the degree of difference
in accuracy between classifiers with respect to ε. Besides, ε0 is for
considering all classifiers having εi < ε0 accurate and therefore their
absolute accuracy is at maximum, which is 1. For more analysis of
those hyper-parameters, the reader is advised to read [23]. The rela-
tive accuracy in step 12 is the accuracy of a classifier compared with
other classifiers in the currently updated action set. Consequently,
in the later-described deletion process, a classifier only competes to
survive with other classifiers in the same niche. This is to guaran-
tee that the fitness summations for all action sets are consistent and
approximately equal to each other. Therefore, XCS can assure equal
resources allocation among niches, which is an advantage in dealing
with imbalanced data.

• Reproduction: produces new classifiers, called offspring, to the pop-
ulation. This step usually applies GA operators, including natural
selection, crossover and mutation, in the updated action set [A] or
[A]�1 when the average experience counting from last reproduced it-
eration of the classifiers of the set passes a threshold. In the swapped
part in crossover operation, a bit is only swapped with the corre-
sponding bit in the other parent classifier when they are not the
same, i.e. both wildcard bits or both non-wildcard bits. When a
bit is switched or swapped in crossover or mutation operations, a
non-wildcard bit will be changed to a wildcard bit and vice versa.

• Deletion: assures that to the total number of classifiers, including
their copies, does not surpass the population size N . The computa-
tion of deletion vote not only remove low-fitness classifiers but also
puts pressure towards equal action set size among niches.

• Subsumption: is a step of replacing overly specific classifiers by a
more general and accurate classifier with enough experience exp >
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θsub. By replacing, a.k.a. subsuming, the numerosity of more gen-
eral and accurate classifier accumulates the numerosity of the overly
specific classifier and the overly specific classifier is removed from
the population. The subsumption is activated whenever a new clas-
sifier is added to the population, except in covering because new
classifier is the only classifier matched with the current state. Hence,
a standard XCS has two subsumption processes: GA subsumption
and action set subsumption. Subsumption contributes to biasing the
search towards more general, but still, accurate classifiers [27].

(1) 00###0:0
(2) 0###00:1
(3) 001#0#:1
(4) 00##00:0
(5) 000##1:0
(6) #0##00:1

...
(rule population)

Match set
rules                p        f
(1) 00###0:0   1000  0.7
(2) 0###00:1   300    0.1
(4) 00##00:0   1000  0.45
(6) #0##00:1   450    0.15
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Matching

sensed state
000110

Prediction array
action   prediction
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Update action set
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Figure 2.4: An example of XCS workflow in an iteration. There is no rule
discovery or covering in this workflow.

As mentioned in section 2.2.1, GA struggles to find relevant building blocks
in problems with high epistasis, such as Multiplexer and Hierarchical Boolean
problems [23]. A theoretical study has shown that XCS with optimal pa-
rameter settings can learn large-scale Multiplexer problems (70 and 135

bits) very fast [98]. However, finding optimal parameter values requires
statistical data on the target problem, which is not always available. There-
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fore, Butz et al. [22] applied Estimation Distribution Algorithms (EDAs) in
XCS to capture the interactions among input variables. EDAs were shown
to improve the performance of XCS in hierarchical problems. Butz et al.
used two variants of EDAs, i.e. ECGA [50] and BOA [102, 103] to build a
global probabilistic model of interaction among the bits from the qualified
classifiers and assign the model with the statistics of local classifiers cho-
sen from the action set to sample new classifiers. Replacing traditional GA
operators, EDAs were demonstrated to be efficient in preserving building
blocks [22]. This improved the performances of XCS in hierarchical prob-
lems, such as the 15-bit parity-count ones. However, this work based on
traditional ternary alphabet representation in XCS, which is lack of rich-
ness and flexibility.

To date, a large number of different representations have been integrated
into classifiers of LCS algorithms, especially XCS, to improve the scala-
bility of LCSs. These important representations will be introduced and
discussed in the next subsection.

2.3.2 Notable Representations Integrated in LCSs

A classifier in LCS in general and XCS, in particular, is composed of two
components: condition and action parts. Traditionally, in a binary prob-
lem, the condition part is represented by the ternary alphabet, which is
similar to schema in GA, while the action part is binary-valued. Through-
out the development of LCS, various rich encoding schemes have been in-
tegrated into the condition and action parts to improve the flexibility and
complexity of classifiers, which results in solving larger scale and more
complex problems.

2.3.2.1 Real-valued Conditions and Actions

Wilson extended standard XCS to cope with continuous input data in
XCSR [143]. The representation of classifier condition was replaced by in-
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terval predicates for each input variables respectively. For example, an
interval predicate for variable Xi is inti = (ci, si), where ci and si are
real. The interval predicates indicate that the classifier matches an in-
stance x = x0, x1, ..., xn�1 if and only if for all variable Xi with value xi,
ci − si ≤ xi < ci + si. Wilson later developed an integer-based version,
called as XCSI, where the interval predicate is represented by inti = (li, ui),
where li is the lower bound and ci is the upper bound. XCSR and XCSI
have been used as the base for many later extensions of XCS for problems
with real-valued inputs, such as real-valued classification problems.

Wilson later introduced XCSF [144] as one of the first initial XCS algo-
rithms that address the category of problems with continuous action, such
as regression problems or navigation in a continuous environment. The
classifier conditions used the interval predicates of XCSI. Wilson intro-
duces the idea of computed prediction into XCSF, where the action is omit-
ted to be dummy and prediction is an approximation to a function. The
predictions of classifiers, which is used to approximate the target function,
was represented by either ”piecewise-constant” functions or ”piecewise-
linear” functions with a weight vector. The results showed that XCSF suc-
cessfully learnt “2-line” piecewise-linear function, squared function and
sine function. Tran et al. [127] extended XCSF to have computed continu-
ous actions instead of dummy actions, named as XCSFCA [127]. XCSFCA
was similar to XCSF but instead of using linear functions for predictions,
it applied the linear combination of input on the action parts of classifiers.
XCSFCA was shown to approximate the frog problems very well with less
than 1% error in frog 1 problem and around 1% error in problem frog 2.
Lanzi and Loiacono introduced another extension of XCSF combined with
sUpervised Classifier System (UCS) [12], named as XCSCA, to be used
for problems with binary inputs and a large number of discrete actions
[81]. The action part of a classifier in XCSCA was represented by a pa-
rameterized function, where the parameters were learnt in a supervised
fashion. The results showed that XCSCA surpassed XCS in 20-bit multi-



40 CHAPTER 2. LITERATURE REVIEW

plexer problem and evolved accurate representations of actions that were
difficult challenges for standard XCS.

2.3.2.2 Neural Networks

Another trend is to integrate Neural Networks (NNs) into LCSs to com-
bine the readability of LCSs and the learning power of NN variants [18,
21, 37, 45, 52, 56, 69, 80, 89, 90, 111, 115]. Bull and O’Hara [21] introduced
neuro and neuro-fuzzy into XCS in X-NCS and X-NFCS, where they re-
place the condition-action parts of a classifier by a small feedforward NN.
The action value of a classifier is then computed as the output of its NN
with environment state input. For a classifier, another output of the NN
is used to signify the membership of the classifier in a match set. Experi-
mental results indicate that NN based XCS are capable of solving single-
step and multi-step binary problems with competitive performances. X-
NFCS, which extended X-NCS to problems with continuous actions, was
proved to be able to solve regression problems, such as root-mean-square
[21].

Representing classifiers with NNs has been also investigated in other re-
search. PANIC was the first LCS using NNs for rules, but it was applied
on a Pittsburgh-style Classifier System [45]. Lanzi and Loiacono [80] ex-
tended XCSF to use multilayer NN for approximating the predictive func-
tion in XCSFNN, which resulted in a better performance compared to
XCSF. Dam et al. [37] integrated a NN into each classifier action of UCS
to build an algorithm named NLCS. Howard et al. [56] managed to extend
further XCSF with Spiking NNs [64], the third generation of NN, for ap-
proximation function used in prediction. Experimental results indicated
that Spiking NN offers an interesting alternative to Multilayer Percep-
tron representation, in terms of solution sizes and search stability. Mat-
sumoto et al. [89] used encoder output from Deep Autoencoders [53] to
feed into XCSR. This system achieved 99.9% accuracy on Connectionist
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Bench. This approach was extended in DCAXCSR [90] to enable clas-
sifying image data, i.e. MNIST [82], with interpretable rules. Siddique
et al. [115] used UCS to create readable rules for deep features extracted
from Deep Neural Networks [83]. Through classifying between “dog” and
“cat”, the system was shown to improve the robustness against adversar-
ial attacks in deep learning.

2.3.2.3 Tree-based Programs

A branch of representations using tree-based programs is of interest be-
cause they provide flexibility and readability. Various research has been
dedicated to integrating tree-based programs into LCS [1, 3, 6, 57, 60, 63,
78, 79, 131, 140? ]. Ahluwalia and Bull [1] applied a GP-based rich encod-
ing in ZCS [140] to form an algorithm named GP-CS. GP-CS represented
the classifier actions by S-expressions. This system does not perform clas-
sification itself but generates filters for extracting features as the inputs to
classification algorithms like k-nearest neighbour.

LISP S-expressions was introduced into the classifier condition for the first
time by Lanzi and Perrucci in XCSL [79]. XCSL successfully learnt both
single-step and multi-step problems, e.g. the small scale multiplexer prob-
lems andWoods1 problem. Next, Lanzi proposed an XCS with stack-based
Genetic Programming [78], where the tree-based programs are in the form
of mathematical expression using Reverse Polish Notation. The algorithm
allowed created conditions to be syntactically incorrect and, therefore, the
search space was undesirably large. This limited the system from learning
large-scale multiplexer problems. Uwano et al. [131] recently combined
Random Forest [17] and XCS to propose a high-dimensional data mining
technique called Random Forest-based XCS. Random Forest was used to
generate branch nodes, which were considered as attributes in XCS. This
system surpassed XCS in multiple Multiplexer problems.

Ioannides and Browne [57] investigated the scaling of abstracted LCS us-
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ing combinations of ternary alphabet and S-expressions in classifier con-
ditions. This addressed an important challenge in using flexible repre-
sentations which were that the generation of good building blocks of in-
formation is infrequent. By comparing S XCS using basic operators and
S XCS1 provided domain-relevant functions for the target problem do-
main, the authors showed that the tailored functions improved learning
of multiplexers both in the sense of faster learning and generalization,
but the improvements were not significant. It was also demonstrated
that generalised solutions can be discovered through abstraction, which
was through learning on the generalized rules learnt in a ternary alpha-
bet. Later Wilson [145] represented the classifier conditions of XCSF with
genetic expression programming (GEP), which was expression trees of in-
put data. GEP provides greater insight into the regularities of the target
environment/problem compared to the traditional interval predicates, al-
though the learning process was slower and the evolved populations were
not compact. In 2012, GP-like tree-based programs were introduced into
rule conditions of XCS in the form of code fragments by Iqbal et al. [60].
Transfer learning and layered learning were then applied for the first time
in code fragments-based XCSs to reuse learnt building blocks [3, 6, 60, 63].
The code fragments-based XCSs will be the base for this thesis work and
therefore will be discussed in detail in the next subsections.

2.3.3 Code Fragment-based XCSs

The CF-based XCSs are XSCs that either integrate tree-based programs
(CFs) in rule conditions or actions. CFs enable rich and flexible represen-
tation for XCS which can technically encode any function. The limitations
of existing CF-based XCSs are parts of the motivations of this thesis.
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Figure 2.5: Example of a CF for ((D0|D1)&(!CF5))

Code Fragments

Code Fragments (CFs) were originally defined as binary trees of depth up
to two, which was set to limit tree size and therefore bloating. A binary
tree of depth two can have a maximum of seven nodes, where each could
be an internal node or terminal node, see Figure 2.5. The internal nodes
are dedicated for functions, whereas the terminal nodes are assigned with
bits/variables from environment states or other CFs. The functions in in-
ternal nodes are chosen from a pre-determined set of functions. This set
usually contains basic operators {AND,OR,NOT,NAND...} for the do-
main of binary problems and {+,−,×, /...} for symbolic regression prob-
lems. By replacing terminal nodes with other CFs, newly created CFs grow
deeper (higher-level) and have the potential to address more complex data
patterns. Integrating XCSs with CFs provides numerous solutions to prob-
lems that used to be intractable for standard XCS, such as the 135-bit mul-
tiplexer [60, 61]. Moreover, the use of CFs in terminal nodes has enabled
the reusability of learnt knowledge, which was done in transfer learning
[3, 60] and layered learning [6].

In addition to using a pre-determined set of functions in tree-based pro-
grams for LCS, Alvarez et al. [3] introduced XCSCF2 which extended the
concept of CFs to use constructed functions in the internal nodes of CFs
rather than only pre-determined functions. Constructed functions were
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inspired by the use of Automatically Defined Functions in GP [74]. A
constructed function is represented by a rule-set extracted from the final
population of an XCS learning a problem. The ruleset is evaluated in the
same way with XCS in exploit mode. The rule-set function is expected
to produce a mapping from environment states to actions that solve the
problem. Therefore, CF-based learnt functions allow any number of ar-
guments (not only 2) depending on the number of input variables of the
problems used to learn the functions. This extends the concept of CFs to
a general concept of tree-based programs, which accept any number of
terminals and theoretically can encode any function. This extension was
believed to reduce the search space of XCS and hence improve the learn-
ing process. However, XCSCF2 was only superior to XCSCFC in small
scale multiplexer problems [3].

XCSCFC - An XCS with Code-Fragment Conditions

XCSCFC [60, 63] utilize CFs in classifier conditions as a rich representa-
tion replacing the traditional ternary alphabet. The function set is con-
stant during learning and provided prior to the learning process. The set
usually contains basic operators as mentioned in the preceding subsection
about CFs. The use of CFs in classifier conditions results in an inherent
benefit of decoupling between a CF and a position within the condition.
Although Iqbal set a constant number of CFs in each classifier condition,
the number of “meaningful” CFs (non don’t care ones) varies across rules
since the number of don’t care CFs varies. The number of CFs in rule con-
ditions can be any number without the use of don’t care CFs. To embed
CFs within classifier conditions, XCSCFC extended standard XCS [26] in
the following components: the classifier matching procedure, the covering
operation, the rule discovery operation, the subsumption mechanism, and
the checking equality of two classifiers. There are two implementations of
XCSCFC, one keeps all CFs in a separate population and another simpli-
fied one maintains CFs within classifier conditions. The two versions dif-
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fer from each other in a few minor operations. The following descriptions
will be given for the later implementation.

Matching: a classifier cl from the population [P ] is said to match an envi-
ronment state s if all the CFs in its condition output 1. A CF is evaluated
by loading the symbols in the terminal nodes with corresponding values
from environment state s. A classifier condition in XCSCFC has a fixed
number n of CFs. Iqbal defined a constant don’t care CF, which is equiv-
alent to the ”don’t care” (or wildcard) bit in standard XCS. The don’t care
(wildcard) CF is set as (D0|(!D0)) to always output 1 with any environment
state.

Covering: is activated in the same way with XCS when an action is miss-
ing in the match set [M ]. This operation creates a random classifier which
is matched with the current environment state s and has the missing ac-
tion. Pdon′tCare, a similar parameter used in XCS, defines the ratio of don’t
care CFs in a classifier condition created in covering operation. The work-
flow of the covering operation is described in Algorithm 2.2.

Algorithm 2.2 XCSCFC: Covering Operation
1: initialize a cl: assign action ai, initialize condition cl.cond
2: for i=1 to n do
3: if random[0, 1) < Pdon′tCare then
4: cl.cond[i] := don’t care CF
5: else
6: val := 0

7: while val 6= 1 do
8: cf := randomly create a CF
9: val := evaluate cf

10: cl.cond[i] := cf

Rule Discovery: produces two offspring using GA operation in the action
set [A]. The crossover operation in XCSCFC is almost identical to that in
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XCS, except that the swapping of CFs between two selected classifiers is
done without checking whether the CFs are wildcard or not. This is be-
cause the two CFs to be swapped might be both non-wildcard but still
different from each other. The mutation operation in XCSCFC differs from
the one in XCS in the way of changing a wildcard CF into a non-wildcard
CF. This process is done in the same way of creating a new CF in the previ-
ously described covering operation. That is, each CF is randomly created
and evaluated until the output of the created CF is 1, then the process exits
by returning the last created CF.

Comparing the equality of two CFs: is done syntactically by matching
character by character in each node of the two CFs. The semantic compar-
ison of two CFs requires evaluation of all possible values of the symbols
in terminal nodes. Since XCSCFC allows multi-level construction of CFs,
this could lead to recursive queries of terminal nodes until reaching the
input variables/bits. Therefore, even though the semantic comparison is
accurate, it is too expensive and not implemented in XCSCFC.

Comparing the equality of two classifiers: is based on comparing condi-
tions and comparing actions. While comparing actions is straightforward,
comparing two conditions of two classifiers is based on syntactic compari-
son and not expected to be precise for the same reason causing difficulty in
semantic comparison of two CFs. Therefore, the comparison of two clas-
sifiers is simplified by comparing whether the two sets of non-wildcard
CFs in two classifiers are identical. The set comparison was based on a
comparison of two CFs in the above manner.

Subsumption: a classifier cl1 can subsume another classifier cl2 if they
share a same action and the cl1 is accurate, sufficiently experienced and
more general than cl2. Checking whether a classifier cl1 is more general
than cl2 is not done semantically because the flexibility of the functions
in two CFs does not provide a direct comparison of the sets of instances
matched by the CFs. Therefore, a classifier cl1 is more general than cl2
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if the set of non-wildcard CFs in cl1 is a subset of the corresponding set
of cl2. This is based on comparing equality of two CFs described above.
The subsumption in CF-based XCSs is very infrequent because multiple
different genotypes of CFs can actually represent a common phenotype of
a program.

XCSCFC [60] was experimentally slower than standard XCS in indepen-
dent learning of binary problems, except the overlapping niche-based prob-
lems. In independent learning, XCSCFC was slower than standard XCS
since the flexibility of CFs causes a much larger search space compared
to that in standard XCS using the ternary alphabet. The only approach to
tackle this challenge was to limit the level of CFs to 2. The generation of
CFs was based on the random creation of CFs which were guaranteed to
match only the current environment state. This method has a small proba-
bility to produce generalised CFs in complex problems with a large search
space.

XCSCFA, XCSRCFA - XCS with Code-Fragment Actions

XCSCFA [62] and XCSRCFA [61] are two versions of CF-based XCSs that
extended XCS and XCSR respectively to use CFs to replace traditional ac-
tion representation. The condition parts in XCSCFA and XCSRCFA are
identical with the corresponding parts in XCS and XCSR respectively, which
are ternary alphabet [141] and interval predicates [143]. Therefore, the op-
erations of XCS related to classifier conditions were not changed. The rule
discovery needs to apply GP-based crossover and GP-based mutation on
the action parts of parent classifiers. The comparison of CF actions also
follows syntactical comparison, similar to comparing classifier conditions
in XCSCFC. Internal nodes in CFs representing actions will apply the set
of basic binary operators {AND,OR,NOT,NAND...} for binary classifi-
cation problems (XCSCFA) and the set of numeric calculation operators
{+,−,×, /...} for symbolic regression problems (XCSRCFA).
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Experimental results showed that XCSCFA successfully solved different
complex Boolean problems, especially the overlapping and niche imbal-
ance problems. The reasons behind its power against such problems was
the inconsistent actions and the redundancy provided by the CF repre-
sentation of actions. The diverse genotypes of CF-based actions implicitly
disabled most subsumption operations.

XCSRCFA is a combination of XCSR and GP (CFs), but it was more pow-
erful than each of them. XCSRCFA is superior to GP in piece-wise func-
tion approximation problems because of its niche-based property. On the
other hand, it showed an advantage over XCSR because of its powerful
representation of actions. However, the diversity of program genotype in
CFs also implicitly disabled subsumption operation and therefore caused
undesirably large search space. Thus, the final population contains redun-
dant and inefficiently large classifier rules. XCSRCFA also could not scale
very well due to that reason.

Extending the concept of Code Fragments with XCSCF2, XCSCF3

Alvarez et al. [3] extended CFs in XCSCFC to use constructed rule-set func-
tions in the internal nodes in XCSCF2. The new concept of CFs theoreti-
cally allows encoding of any functions with any number of arguments.
This greatly increases the flexibility of CFs and also undesirably increases
the search space, which consequently limits the scalability. Therefore, Al-
varez et al. [5] later proposed an approach to compact rules of final learnt
population, named Distilled Rules, in XCSCF3. It was an effort to trans-
form the various genotypes of a program to the same rule-set with tra-
ditional ternary alphabet representation. This allows subsumption to be
possible in CF-based XCSs. Moreover, it also constrains the growth of the
search space as the problem scale increases and improves the scalability of
the proposed system. Experimental results showed that XCSCF3 can scale
to 70-bit multiplexer problems. Its scalability was not as good as an older
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CF-based XCS, which was XCSCFC [60].

Reuse of Learnt Knowledge in CF-based XCSs

By reusing learnt CFs in the manner of transfer learning, Iqbal et al. [60]
improved the learning performance of XCSCFC significantly, especially in
large-scale multiplexer problems.

The fitter CFs from smaller problems were used to create CFs in a larger-
scale problem of the same domain. The fitness of a CF was estimated by
the accuracy and fitness of sufficiently experienced classifiers containing
it. CFs from smaller-scale problems were transferred and used as termi-
nal/leaf nodes to generate CFs for higher-scale problems. The problem
domain used to test this approach was multiplexer. However, the applica-
tion of this approach is limited to problem domains where at least parts of
all the interactions among bits/variables of the domains at different scales
are maintained. For example, in the case of multiplexer domain, the pat-
terns (CFs) working with address bits in a smaller scale multiplexer can
be useful for a larger scale multiplexer. For transferring between differ-
ent problem domains or in the same domain of other problems, transfer
learning with CF-based XCSs would require the ability to transfer learnt
functions.

Reuse of learnt knowledge was also implemented in layered learning with
XCSCF* [6, 7]. XCSCF* has the same components and workflow as XC-
SCFA [62] in each learning stage of layered learning. Additionally, XC-
SCF* can transfer learnt functions in rule-set forms with the limitation of a
strict learning order. The details were given in the introduction of layered
learning in subsection 2.1.1. This approach requires human guidance in
prior knowledge of preset functions and prerequisite sub-tasks as well as
the ordering of the problem sequence.
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2.4 Chapter Summary

This chapter provided essential concepts of Artificial Intelligence and Ma-
chine Learning, as well as brief introductions of transfer learning and mul-
titask learning. As a branch of AI, EC was introduced along with its com-
mon techniques, GA and GP. LCSs in general, and XCS in particular, as the
selected base framework, were defined and explained with details about
workflows and components. A brief review of important representations
used in the prediction parameter, condition parts and action parts of XCS
classifiers was also provided.

Since CFs will be used as the representation in classifiers of XCS, the main-
stream of CF-based XCSs, e.g. XCSCFC, XCSCF2, XCSCF3, and layered
learning using XCSCF* were discussed with detailed explanations. Al-
though the generalised building blocks addressing high-level patterns within
problems were addressed as a desirable feature for generalisation, no cur-
rent approaches have tackled this challenge. The limitations of the ex-
isting works that form parts of the motivation of this research were also
discussed. A summary of these limitations are presented as follows:

• XCSCFC in traditional independent learning was slower than stan-
dard XCS due to the fact that the flexibility of CFs causes a much
larger search space compared to the ternary alphabet in standard
XCS.

• The generation of CFs was based on random creation of CFs that
guaranteed to match only current environment state. This method
was not likely to produce generalised CFs.

• Layered learning using XCSCFC was only applicable in specific prob-
lems, such as Multiplexer, because the CFs integrating the address
bits are reusable. The ability to find appropriate functions to solve
a sub-task in another problem would be a desirable feature to reuse
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knowledge in CF-based XCSs.

• Layered learning with XCSCF* needs human guidance to produce
general solutions. This is not practical in Machine Learning.

This thesis work will address these limitations.
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Chapter 3

Experimental Design

This chapter provides an overview of the problem domains and the com-
mon design used in the experiments of the contribution chapters.

3.1 General Experimental Setup

Unless stated otherwise, XCS is configured with its common settings in the
literature [26], which generally provides good performances across many
problem domains: the learning rate β = 0.2; two-point crossover with
probability χ = 0.8; the mutation probability µ = 0.04; the experience
thresholds for subsumption and deletion θsub = θdel = 20; threshold for
GA occurrence in the action set θGA = 25; the initial fitness of covered
classifiers Finit = 0.01 and the initial prediction Pinit = 10; the probability
of specificness pspec = 0.67, except for Even-Parity domain pspec = 1.0;
offset prediction error ε0 = 10; fitness exponent ν = 5; reduction of the
fitness in offspring fitnessReduction = 0.1; max reward 1000 for correct
actions and min reward 0 for incorrect actions; the threshold number of
actions in the match set that activates covering θmna = 2; and tournament
selection with a tournament size ratio 0.4 in genetic operations. Both GA
subsumption and action set subsumption are enabled. Exploration and

53
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exploitation are alternated to ensure 50% exploration rate.

XCSCFC is also used in experiments to compare the developed systems.
The parameters of XCSCFC are configured the same as the original imple-
mentation [63]. Specifically, the XCS processes and parameters of XCSCFC
are configured the same with XCS. The maximum depth added in each
learning stage is 2.

All stochastic algorithms experimented are independently run 30 times
using 30 random seeds. The learning performances of online-learning
algorithms in Boolean problems are plotted in figures, where the X-axis
describes the number of explored instances (or evaluations/generations);
and the Y-axis refers to the accuracies in exploitation. The results in these
experiments are averaged among 30 runs. In addition to the strategy of
selecting actions, the difference between the exploration and exploitation
in XCSs is the presence of genetic operations that creates new individuals
based on competitive individuals [141].

3.2 The Problems

The first benchmarks used in the experiments in this thesis are benchmark
Boolean problems because they have a measurable (countable) search space
and identifiable building blocks. Therefore, it is easy to analyse the results
and investigate the final solutions in these problems. The complexity of
tested Boolean domains is sufficient to test the learning capacity of the
developed classification systems.

The second set of benchmarks in this thesis are real-world datasets. These
are datasets from the UCI repository and are dedicated to the classification
task. The data size and the number of attributes of these datasets vary
from small dataset like UCI Zoo to relatively big one like UCI Phishing.
This set of experiments demonstrates the capability of LCSs to learn real-
world problems.
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3.2.1 Boolean Problems

The following Boolean problem domains will be used in the experiments:
the Multiplexer, Carry-one, Even-parity, and Majority-on domain, along
with their Hierarchical combinations. Also, the subproblems supporting
those problems are introduced in Chapter 6. These problem domains are
diversified in characteristics and tested in varied scales. The diversity of
problem domains enables the experiments to demonstrate different as-
pects of the tested systems.

3.2.1.1 The Multiplexer Domain

The Multiplexer problem domain is inspired by the multiplexer logic cir-
cuit in electronics. In Multiplexer domain, the bitstring input contains
data bits and address bits. The address bits are equivalent to the selec-
tor in multiplexer circuits, where their values determine which data bit
(data channel) is connected to the single output. Thus, if there are k ad-
dress bits, their 2k possible values correspond to 2k data bits. Specifically,
the address-bit value is equal to the index of the connected data bit. The
total length of the input is n = k+ 2k. An example of the 6-bit Multiplexer
problem is depicted in Figure 3.1.

6-bit Multiplexer

 1       1       0       0 

Condition

0       1

: Action

:     1

Address (A) Data bits (D)

 A0      A1    D0     D1     D2     D3

Figure 3.1: 6-bit Multiplexer problem showing the address bits (A0, A1)
and the data bits (D0, D1, D2, D3) of the condition, this distinction is not
provided to the learning system.
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The Multiplexer domain is challenging and interesting because it has epis-
tasis and is highly non-linear. The search space of the problem is also ad-
equate enough to show the benefits of the proposed work. For example,
the search space of the 135-bit Multiplexer problem consists of 2135 combi-
nations, which is immensely beyond enumerated search [73].

3.2.1.2 The Carry-one Domain

The Carry-one domain is the set of problems that checks whether the ad-
dition of two numbers, in the form of binary numbers, carries one in the
addition of the highest-level bits of the two numbers. Binary numbers are
represented by bitstrings. The input of Carry-one problems is a bitstring
resulted from concatenating the two bitstrings representing the two binary
numbers to be added. Figure 3.2 illustrates how a bitstring is calculated to
output for Carry-one problem. The division point of the two numbers is
not known to the learning system.

1 1 0 0 0 1 0 1

1 1 0 0 0 1 0 1+

   1 1 0 0
   0 1 0 1
 ------------
1 0 0 0 1

+

Input

Output

Figure 3.2: A sample of the 8-bit Carry-one problem.

Carry-one problems are problems with overlapped niches. This poses a
challenge for XCS to discriminate between optimal rules and over-general
ones, especially in large-scale problems. Moreover, the niches of this prob-
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lem domain are highly variable in size. The ability to balance between
niches is essential in this problem domain.

3.2.1.3 The Even-parity and Majority-on Domains

The Even-parity problem outputs True when the number of 1 in the input
bitstring is even, and False otherwise. For traditional XCS with ternary al-
phabet representation, Even-parity is a hard problem as it is against all the
generality pressures in XCS. A correct solution of XCS for an Even-parity
problem must contain a full map of instance space, which is highly ineffi-
cient. This is because the niches of Even-parity problems are fragmented
into instance level.

The Majority-on problem is a Boolean problem that checks whether the
majority of bits in the input bitstring is 1 or not. The expected output is
True when the summation of all bits of the input is greater than the half of
the input length, and False otherwise. The Majority-on domain has highly
overlapped niches. An over-general rule can easily dominate and replace
optimal rules in many overlapped subset niches.

3.2.1.4 The Hierarchical Boolean Domains

A Hierarchical problem is a two-layer combination of 3-bit Even-parity
problems in the low layer and a Boolean problem in the high layer [23].
Figure 3.3 demonstrates the 15-bit Hierarchical Majority-on problem and
how the output is computed. The 15 bits are divided into 5 non-overlapped
chunks of 3 bits. Each chunk, as a 3-bit Even-parity problem, produces a
latent feature. These latent features are concatenated into a 5-bit hierarchi-
cal input, which is passed to a 5-bit Majority-on problem. The output of
this layer is the final output of the 15-bit Hierarchical Majority-on prob-
lem. Other Hierarchical problem domains are created in the same way to
result in two-layer problems.

The search spaces of the Hierarchical problem domains are fragmented
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1 0 0 1 0 1 0 0 0 0 1 0 1 1 1

100 101 000 010 111

0 1 1 0 0

Input

Even-
parity

( sum(0,1,1,0,0) > [5/2] )
= False (0) Output

Figure 3.3: An example of the 15-bit Hierarchical Majority-on problem.

because of the low-layer Even-parity problem. Capturing the underlying
patterns of a Hierarchical problem requires discovering two different sets
of patterns nested together. Therefore, Hierarchical Boolean problems are
generally more complex and challenging compared with previously men-
tioned Boolean domains at the same scales.

3.2.2 Real-world Datasets

The real-world datasets used in the experiments are UCI Zoo, UCI SPECT,
and UCI Phishing datasets. The purpose of using these datasets is to eval-
uate the epistasis and interactions of variables in learnt solutions. This en-
ables analysing the knowledge connections among solutions within one
task and across tasks. These datasets have binary and nominal attributes.
As the systems in this thesis are dedicated to the classification task with bi-
nary attributes, nominal attributes are converted to binary attributes using
one-hot encoding. Table 3.1 summaries these three datasets. The detailed
description of these datasets can be found on the website of UCI machine
learning repository.
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Table 3.1: Real-world datasets used for testing. Attributes that are not
binary/Boolean are either nominal or numeric with limited values.

Datasets
#Input

Attributes
#Boolean (binary)

Attributes
#Instances #Classes

UCI Zoo 16 15 101 7
UCI SPECT 22 22 267 2

UCI Phishing 30 22 2456 2

3.3 Chapter Summary

Boolean problems are chosen as the primary benchmark problems in this
thesis because they are scalable, and their solutions are verifiable. Real-
world datasets are mostly designed for single-task problems while our
thesis is focused on learning continually. It is desirable to create real-
world datasets for continual learning to investigate the future research of
the work in this thesis.
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Chapter 4

Online Feature-Generation of
Code Fragments for XCS to Guide
Feature Construction

In complex classification problems, constructed features with rich discrim-
inative information can simplify decision boundaries. For example, deep
features enables classifying visual objects efficiently with only a shallow
fully connected network [83]. This effect was due to the fact that rich fea-
tures can enable classifying with compact and reliable decision bound-
aries in such problem domains. CFs produce Genetic Programming-like
(GP-like) tree features that can represent decision boundaries effectively
in XCS. However, the trade-off for the richness and flexibility results in an
undesirable increase of the search space of useful CFs. This is due to that
the number of possible tree combinations is exponentially proportional to
the tree depth, which is correlated with the representation flexibility.

XCSCFC used CFs in rule conditions of XCS and layered learning to trans-
fer CFs from small-scale problems to large-scale problems [63]. By solv-
ing problems with progressively increasing scales, XCSCFC was the first
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LCS that can solve 135-bit Multiplexer problem accurately. However, us-
ing transfer learning in a sequence requires investigating the criteria for
selecting transferred CFs along with constructing learning stages.

Therefore, this chapter introduces a novel model extension, called Online
Feature-generation (OF), that allows automatically constructing high-level
useful CFs in problems with large search spaces. The OF module enables
evolving features (CFs) through a dynamic Observed List (OL) of CFs. This
extension enables a method for estimating the worth of CFs to identify
the patterns in the problem. Therefore, it improves the construction of ap-
plicable high-level features. An XCS with OF, called XOF, aims to solve
the tested large-scale and hierarchical Boolean problems within fewer in-
stances compared with XCS and XCSCFC in non-transfer learning scenar-
ios. A main contribution of this work is to formalise a system that can au-
tonomously discover complex underlying patterns of hierarchical Boolean
problems. This system creates an internal evolution of CFs that, together
with the evolution of rules, mutually support each other through a link by
a novel CF parameter, the CF-fitness. The OF extension can be a frame-
work to grow the complexity of any representation other than CFs.

The following sections describe in detail two implementations of XOF. The
first initial implementation proposes to use the OL to contain the highest
CF-fitness CFs. The second version of XOF develops the niching prop-
erty for CFs. These sections also discuss several different methods of esti-
mating the CF-fitness, the parameter to represent the applicability of CFs.
Each implementation will be validated through comparison experiments
with XCS, XCSCFC, and other machine learning algorithms in real-world
problems.
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4.1 XOF - The Initial Implementation

4.1.1 Introduction

Feature selection, extraction and construction are essential parts of classi-
fication. The decision boundaries may easily become complex and over-
fitted when using raw or low-level features in hierarchical and large-scale
problems, such as the Hierarchical Even-parity problem [23]. Another ap-
proach is to construct high-level features with discriminatory information
in order to assist in finding generalised and accurate decision boundaries
[83].

Using the ternary alphabet {0, 1,#} to represent its classifier conditions,
XCS initially can only have the conjunctive “AND” to connect the orig-
inal input features in rule conditions. This conjunctive cannot provide a
rich set of patterns for the conditions that can simplify the decision bound-
aries in the latent feature space and thus limits the scalability. Therefore,
research has sought to extend the condition representations in XCS to ex-
pand its learning ability.

Code Fragments (CFs) provide rich and flexible features because they can
produce a wide range of possible patterns linking features to classes. Hence,
CFs can be used to find applicable high-level features, which describe the
hidden underlying patterns within the problem domain. Useful high-level
features may result in compact and robust decision boundaries, which
have fewer rules in the population of XCS, in classification tasks. For
instance, “XOR” operation can combine several rules using one CF as
shown in Figure 4.1.

However, CFs also pose a challenge when constructing and selecting high-
level features. The number of possible combinations of nodes to gener-
ate CFs increases exponentially with the depth of CF trees. Thus, search
spaces can become intractable in complex problems that require high-level
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Figure 4.1: An example of a rule using the XOR logic to capture two
ternary rules: {10 : 1} and {01 : 1}.

features for compact and accurate decision boundaries. However, the ex-
isting methods to generate or transfer CFs between problems are only
guided by the current environment state [63]. This guidance has lim-
ited probabilities of producing useful high-level features across a problem
set.

This work aims to provide XCS using CF-conditions the capability to ef-
ficiently discover useful high-level CFs without a customised sequence of
layered learning or sacrificing computation time. The ultimate goal is to
make XCS using CF-conditions a capable online learning system. First,
it is important to define the applicability of CFs. As CFs constitute rule
conditions, the applicability of CFs can be defined as their possibility to
construct high-fitness classifiers. Based on this sense of CF applicability,
another evolution of CFs that interacts with the rule evolution is proposed.
The evolution of CFs selects and grows CFs with the highest applicabil-
ity. The sub-goal is that the evolution of CFs will rely on the evolution
of classifiers and also support it to accelerate the learning process of XCS.
The idea of CF evolution is implemented through two key components:
an “Observed List” (OL) that dynamically collects a set of the most appli-
cable CFs and a new parameter, called CF-fitness, to estimate the appli-
cability of CFs. This implementation is grouped in an extension to XCS
with CF-conditions, called Online Feature-generation (OF). XCS with CF-
conditions that use the OF module is termed as XOF.
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The objectives of this work are as follows:

• To optimise/limit the search space of tree features without losing the
necessary building blocks by growing CFs locally around the OL.
This is based on the premise that higher-level features should encap-
sulate the highly relevant lower-level features. The search space of
CFs is guided from the initial lowest-level CFs to grow higher-level
CFs based on the OL.

• To introduce a measure to estimate the applicability of CFs, a new
parameter called CF-fitness or the fitness of CFs. This parameter and
(rule) fitness are the link that connects the evolution of classifiers
and the evolution of CFs. By its definition, CF-fitness can guide the
learning system to prioritise applicable CFs for building rule condi-
tions. On the contrary, updated information from classifier fitness
can be forwarded to evaluate CF-fitness since CFs interact with the
environment through classifiers containing them.

• To investigate whether focusing the search around the OL (depth
search), instead of the whole search space (breadth search), can im-
prove the evolution of classifiers without increasing the tendency to
be trapped in local optima.

XOF will be experimented on multiple Boolean problems, including Mul-
tiplexer, Carry-one, Majority-on, and Even Parity problems. These ex-
periments evaluate the pattern discovery and retention abilities of XOF.
XOF will be compared with both XCS and XCSCFC in the independent
learning paradigm, without any support of transfer learning, to inves-
tigate the learning performance of XOF as an independent classification
system.
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4.1.2 The Novel XCS with the Online Feature-generation

for CF-Conditions

The Online Feature-generation (OF) module introduces evolutionary meth-
ods to construct high-level CF features for XCS. A pool of CFs is evolved
in the OF, where the rules are equivalent to CFs’ environment. It can be
interpreted as this evolution is nested within the evolution of classifiers as
the CFs interacts directly with classifiers. The evolving population in OF
is a CF population storing all in-use CFs. The central component of the
CF population is the Observed List (OL), which is a subset with the most
preferable CFs. XOF directs the search of applicable CFs and CF construc-
tion locally within the OL. The processes and components of the Online
Feature-generation are shown in Figure 4.2.

Figure 4.2: Online Feature-generation.

The OF includes the evolution of CFs and interacts with classifiers/rules
in two processes. First, the OF returns a CF when covering or mutation
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requests a new CF for a rule condition. Second, the CFs were updated
when the classifiers’ fitness was updated. While information flows from
the CF evolution to the rule evolution in the first interaction, the second
interaction is to forward information oppositely.

4.1.2.1 CF-fitness: The Applicability of CFs

A new parameter, called CF-fitness (the fitness of CF)s, is the key to con-
nect between the CF evolution and the rule evolution. It is designed to
describe the applicability of CFs. The applicability of a CF is its ability to
produce high-fitness classifiers by constituting their conditions. A high-
fitness classifier in XCS learning paradigm is also an accurate and general
rule, which can cover a big niche (with many instances) [24]. Thus, CF-
fitness can describe the ability of CFs to produce accurate and generalised
classifiers. With this assertion, it can bootstrap covering and reproduction
processes, and updating the OL, see Section 4.1.2.2. The CFs with high CF-
fitness will be prioritised to be selected in classifier conditions in covering
and mutation.

In this work, a method for estimating the applicability of CFs is devel-
oped to define CF-fitness based on the fitness of classifier(s) containing the
CF. CF-fitness can be estimated indirectly from the environment response
through the classifier fitness as follows:

cf.cf fitness :=
cl.fitness

length of cl.condition
, (4.1)

where cf is a CF in cl.condition, and the length of a rule condition is the
number of CFs within it.

There are several theoretical reasons for this estimation. To begin with, be-
ing correlated with the classifier fitness means CF-fitness correlates with
the accuracy, the numerosity and size of the niche covered by the classifier
[23]. Therefore, this estimation could provide insight into the applicability
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of CFs. Furthermore, this estimation favours CFs constructing classifiers
with shorter condition lengths. As a result, accurate classifiers with short
rule conditions that can cover large niche are supposed to contain highly
discriminative features, or CFs with high CF-fitness. This is desirable in
our systems as the estimation creates an innate tendency to shorten classi-
fiers and growing towards higher-level features that are more applicable
to the target problem.

A useful high-level CF can not always guarantee that all classifiers con-
taining it have high fitness because the CF might be misused by randomly
combining with other incompatible CFs in rule conditions. Therefore,
two different ways of updating CF-fitness are proposed and discussed in
the following subsections. Both methods update the CF-fitness using the
Widrow-Hoff learning rule [120] with a learning rate βcf . βcf is smaller
than the learning rate β for other parameters as the CF-fitness is more fre-
quently updated. The initial CF-fitness is 0.01 for base CFs. The base CFs
need non-zero CF-fitness in the beginning since they are initially assumed
to have common small applicability. Also, this is required for Roulette
Wheel selection (Figure 4.2) to advance in the beginning of the learning
process. Meanwhile, the initial CF-fitness of constructed CFs simply starts
from the value of 0. Because constructed CFs appear in at least one rule
condition as they are created in covering and mutation, their CF-fitness
will be lifted from 0 as soon as the classifier containing it updates.

Update CF-fitness by Promising Classifier’s Fitness

This approach allows all “promising” classifiers containing a CF to update
the CF-fitness of the CF. As the update mechanism relies on Promising-
classifiers’ Fitness (PF), the system using it is abbreviated as XOF-PF. A
promising classifier means that it is “nearly” an accurate classifier. Specif-
ically, its error is no greater than ε0 = 10 (max reward is 1000) and its
experience is at least than θcf = 10. These values are more relaxed than
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corresponding ones for subsumers [26], which enable picking up promis-
ing classifiers earlier. Each time a classifier that satisfies the “promising
criteria” updates its fitness, it will also update the CF-fitness of all CFs
contained in the condition of the classifier.

Update CF-fitness by Best Classifier’s Fitness

The CF-fitness can be updated using just the containing classifier with
the highest fitness. This is designed to estimate the CF-fitness at the best
known performance of the CF. As it uses the fitness of the classifier with
the highest fitness to update CF-fitness, it is called Best-classifier’s Fitness
(BF) and the whole system is abbreviated as XOF-BF. This strategy is theo-
retically expected to preserve CFs that are only good in small niches. The
update method of classifier fitness always checks whether the fitness of
a classifier has become greater than the fitness of best classifiers of CFs
contained in the classifier.

Criteria are required for a classifier to be a possible source of updating
CF-fitness because bad combinations of useful CFs may occur before good
classifiers are created. However, as only the best classifier is used, the cri-
teria can be relaxed to bootstrap the process of updating CFs. Experiments
show that following thresholds, ε0 = 10 and θcf = 100, result in good per-
formances in most problems. These values are used in the experiments in
Section 4.1.3.

4.1.2.2 The Observed List of CFs

The Observed List (OL) is a subset of the CF population (more details in
4.1.2.3) and is designed to contain the most applicable CFs based on their
CF-fitness. The main contribution of the OL is to focus the search for useful
high-level CFs. Specifically, the system grows high-level CFs by combin-
ing CFs from the OL and add newly constructed CFs to the CF population.
The update mechanism of the OL is expected to add high CF-fitness CFs
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to the OL and remove low CF-fitness CFs from it. The OL is limited in size
with the original purpose of avoiding a too large search space of new CFs.
However, the growth of the OL is slow enough not to have adverse influ-
ence on the learning performance. Hence, the size limit (NOL) is ranged
from 3 to 10 times the length of data inputs as these are sufficient to avoid
removal of CFs from the OL before reaching 100%.

Updating the OL

The OL is updated every θOL = 500 iterations by the Algorithm 4.1. θOL is
chosen empirically large to avoid too frequent changes in the search space
of useful CFs. In each update, only one CF can be added to the OL. If the
size of the OL exceeds NOL, the lowest CF-fitness CF is removed from the
OL before adding a new one. A tournament selection method will choose
a CF based on the CF-fitness to add to the OL. The OL starts with the
base CFs of all the original data features. Though they initially have no
appearance in promising classifiers, the starting OL enables the learning
process to advance in the beginning. Thus, the CF-fitness of all CFs is
padded with 1 to allow roulette wheel selection to function.

4.1.2.3 Managing CFs

As described in Section 4.1.2, a population of CFs is maintained to track
all in-use CFs without the root node function NOT and the base CFs rep-
resenting the features of environment states. Every negated version of a
CF, which is the CF added with a root function NOT, and the CF itself are
linked with each other and share the same parameters. The base CFs with
depth zero are the initial elements of the CF population and the OL at the
beginning of the learning process. They are kept throughout the learning
process to allow the learning system to recover from local optima although
the evolution of rules might eliminate all rules containing (some of) them.
Conversely, an online created CF can be entirely deleted from the CF pop-
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Algorithm 4.1 Updating the observed list. The unobserved cfs are the CFs
in the CF population that is not in the OL.

List all positive CF-fitness CFs not contained in the OL
Rank them by descending order of CF-fitness in an unobserved cfs
Rank all the remaining CFs in the OL in descending order of CF-fitness
in ranked ol
if size(OL) >= NOL then

Remove last item of ranked ol from the OL and add it to
unobserved cfs

if size(unobserved cfs) > 0 then
Select 1 CF cfnewOL from unobserved cfs using tournament selection

based on the CF-fitness
for cf in the OL do

if cf can subsume cfnewOL then
Add cfnewOL to cf.subsumees

else if cfnewOL subsumes cf then
Add cf to cfnewOL.subsumees

add cfnewOL to the OL

ulation and the OL once neither itself nor its negated CF is used in any
rule. Each newly created CF will be compared with all existing CFs in the
population. This, combined with the methods in comparing and generat-
ing CFs, can mostly avoid adding CFs with the same structure, including
swapped inputs, more than once to the CF population.

Avoiding repeated CFs makes computing CFs and updating CF-fitness of
CFs more efficient. All in-use CFs are computed once with the results
saved afterwards. The results can be reused for computing CFs that have
the computed CFs as branches. This saves the system from recomputing
CFs in different rules or processes of the learning cycle. Also, estimating
CF-fitness of a CF is more robust and centralised on the CF as almost all of
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its appearances in rule conditions are used to update the CF-fitness.

Comparison between CFs

There are two types of comparisons between CFs. One is the compari-
son between two CFs that have already been added to the CF population.
This case happens in crossover and classifier subsumption. The other is
to compare two CFs where at least one of them is newly generated and
thus has not been added to the CF population. In both cases, OF enables
highly accurate comparisons between two CFs with little computation ef-
fort (see exception outlined below). For the first case, checking identity
(i.e. a Python reference in this implementation) of CFs is sufficient since
all CFs added to the CF population are checked for equality. In the second
case, the comparison is to check only the top layer of two CFs. Compari-
son returns equal if two CFs have the same root function and the same set
of inputs. This becomes trivial since the OF allows adding only one layer
on top of existing CFs in generating new CFs. There is a chance that the
second case can return “not equal” while two CFs are actually the same.
It can happen when an existing CF (cfold) is already in the CF popula-
tion, and a CF representing a branch of the cfold was deleted in advance.
The lower-level or base features might again grow to replicate the deleted
branch, thus duplicating cfold. The efficiency of these comparisons is ver-
ified in our experiments as there are hardly any repeated CFs in the final
CF population.

Subsumption between two CFs

The possibility of subsumption is a benefit of using the XOF. It is used
to remove redundant CFs in covering and genetic operations. The sub-
sumption between two CFs is defined in the sense of comparing the sets
of matched instances. A CF cfa can subsume another CF cfb if the set of
instances matched cfa is a subset of cfb. This means that when cfa outputs
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1 (True), the cfb will always output 1. Therefore, in a rule condition, if cfa
exists, cfb is redundant and can be safely removed from the rule condition
to avoid inefficient structures.

To check for subsumption, XOF utilises the OL as the equivalence to the
data attributes in XCS [26]. Since, on request, the OL will either select an
existing CF or generate a new CF with only one layer added, almost all
CFs in the CF population, except for the incompetent ones, can be repre-
sented by converted ternary rules based on the OL. These converted rules
are produced by Algorithm 4.2. Based on the CF rules, instead of iterating
through all instances to compare the sets of matched instances, the sub-
sumption of two CFs becomes comparing two sets of converted ternary
rules. Also, comparing converted rules simply resembles to comparing
classifiers in the classifier subsumption.

Algorithm 4.2 Generating ternary rules based on the OL for cfi
1: if cfi.function = NOT then
2: Back to step 1 to find rules for cfi.terminals[0], toggle all output of

rules found
3: if cfi in the OL then
4: id := index of cfi in the OL
5: return rule: (...#1#...|1), condition 1 at id
6: else
7: if both terminals of cfi in the OL then
8: create rules based on the ruleset of cfi.function
9: else

10: return no rule (can’t subsume)

Constructing New CFs

XOF requests CFs in covering and mutation. In this implementation, the
CF population can return an existing CF from the OL by roulette wheel
selection based on the CF-fitness or generate a new CF with probability
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pnewCF = 0.1. The small probability 0.1 for generating new CFs is empir-
ically selected to stabilise the search space of CFs because this probability
can balance the learning of existing CFs and creating new ones in most
problems. Creating too many new CFs and using them instead of existing
CFs may prevent discovering the best combination of existing CFs, which
result in a poor evolution of CFs. In contrast, if this probability is too small,
the growth of constructed CFs will be too slow.

The proposed systems exploit CF-fitness with roulette wheel selection of
two sub-nodes cf0 and cf1 in the first step of generating new CFs. The gen-
erating process is described in Algorithm 4.3. A new CF is composed of a
function randomly selected from a fixed function set including only three
binary operators Sf = {AND,OR,XOR} and two CFs selected from the
OL. Depths of CFs are accumulated through layer growth. When travers-
ing from the root node to leaf nodes of a CF, each function except for NOT
will increase the depth of the CF by 1.

The random-negation method generates CFs by combining the strategies
of using the simplified fs and randomly adding function NOT. These strate-
gies work in harmony to cover all possible structures of CFs, including
ones equivalent to using {NAND,NOR,NOT-XOR}. Furthermore, this
method enables more efficient generating of CFs. Firstly, the use of the
CF population without the root node function NOT saves the system from
creating CFs with repeated NOT functions, a source of redundancy in ex-
isting CF-based XCSs [3, 60]. Also, toggling output by adding NOT to
satisfy the current environment state prevents the process from having to
repeat until getting output 1 [60]. Lastly, since the function set fs has only
three functions, the search space of CFs was divided into 2 coupled spaces,
one having CFs without root function NOT saved in the CF population
and one containing CFs with root function NOT. Moreover, a CF and its
negated CF share the same parameters. As a result, the method explicitly
reduces the search space size of CFs by a half.
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Algorithm 4.3 Generating a new CF given state s and existing CFs in the
condition cl.condition using random negation.

1: roulette wheel selection of cf0 and cf1 from the OL
2: if cf0.depth = max depth or cf1.level = max depth then
3: Back to step 1

4: if random[0, 1) < 0.5 then
5: cf0 :=!cf0

6: if random[0, 1) < 0.5 then
7: cf1 :=!cf1

8: Randomly select a function fi from the function set Sf
9: Create a CF cfnew by the selected function and CFs

10: cfnew.depth = max(cf0.depth, cf1.depth) + fi.level

11: Compute output value val with given state s
12: if val = 0 then
13: cfnew :=!cfnew

14: for cfexisting in the cl.condition do
15: if cfnew = cfexisting then
16: Back to step 1

17: for cfexisting in the cl.condition do
18: if cfnew subsumes cfexisting then
19: remove cfexisting from cl.condition

20: else if cfexisting subsumes cfnew then
21: return no CF
22: return cfnew

4.1.2.4 Genetic Operations

Since the representation of CFs decouples the positions of CFs in classi-
fier condition, the fixed length classifier condition and positional processes
like GA operators [60, 63] are not necessarily appropriate. XOF no longer
needs built-in “don’t care” CFs as it allows rule conditions to have varied
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lengths. The probability of specificity pspec is used similarly with standard
XCS in covering. If the random number is smaller than pspec, the system
requests a CF. Otherwise, no CF is added. A maximum length of classifiers
is generally set to be twice the number of input data bits to encourage the
flexibility in condition length.

The crossover and mutation operators [63, 141] in existing CF-based XCSs
are not applicable for variable-length conditions. Instead, the proposed
crossover swaps two randomly selected CFs from parent conditions. The
offspring are then mutated by a mutation process inspired by mutation
operator of GP, depicted in Algorithm 4.4. Our experiments suggested
that a high probability of mutation µ = 0.9 and low crossover rate χ =

[0.1, 0.3] can accelerate the performance convergence of the system. This is
anticipated as mutation can exploit the useful data from CF-fitness. Using
high mutation rate is expected as this operation promotes the evolution of
CFs. Also, crossover by swapping CFs does not contribute much to the
learning process because the CF-base rule conditions do not preserve the
attribute positions as in ternary alphabet representation. The final step of
genetic operations is to remove redundant CFs by checking subsumption
between CFs within each offspring condition.

Algorithm 4.4 Mutation operation on one offspring cl.
1: if random[0, 1) < µ then
2: randomly select a CF cfi at pmutate = [random[0, 1) ×
length(cl.condition)]

3: if random[0, 1) < 0.5 then
4: remove cfi from condition of this cl

5: if random[0, 1) < 0.5 then
6: add another CF to this cl.condition at pmutate

7: if random[0, 1) < 0.5 then
8: toggle cl.action
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4.1.3 Experimental Setups and Results

XOF-PF and XOF-BF are compared with XCS and XCSCFC on five Boolean
problem domains to compare their performances with corresponding re-
sults of XCSCFC as well as standard XCS: Multiplexer, Majority-on, Even-
Parity, Hierarchical Multiplexer and Hierarchical Majority-on. The perfor-
mances on the 70-bit Multiplexer problem are averaged from 10 runs only
due to time consumption. All the tested approaches were implemented in
Python except for XCSCFC in C++. Therefore, time consumption can only
be direct comparisons among XCS and XOF systems, although it is re-
ported that XCSCFC consumes more time than XCS for the same problem
and settings when they were both implemented in C++ [4]. XOF-BF is also
tested with several real-world datasets, i.e. UCI Zoo, UCI SPECT heart and
UCI Phishing Websites datasets. These datasets are chosen as they have bi-
nary or nominal attributes, with a range of number of features, classes and
instances. The details of datasets can be seen from Chapter 3.

4.1.3.1 Experimental Design

XCS is configured with subsumption in GA only, except for the Majority-
on problems. In this domain, all subsumption is disabled to reduce over-
general rules enable higher performance. XOFs (XOF-PF and XOF-BF) use
almost the same settings for the XCS part, except for the crossover rate
χ = 0.2 and the mutation rate µ = 0.9 (see Section 4.1.2.4 for justification).
XOFs also share many other settings. The learning rate of CFs βcf = 0.001

for XOF-PF and XOF-BF is chosen empirically to balance the evolution of
rules and CFs in most problems. If this rate is higher, the dynamics of
constructing CFs becomes faster, which could result in unstable CF-fitness
and hurt the performance of rules. Maximum condition length is twice
the number of data attributes and is only equal to that number in 70-bit
Multiplexer problem. Maximum depth for CFs is five layers. The only
subsumption in the genetic operations is enabled with very strict criteria:
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θsub = 50 and εsub = 0.0001 (error threshold for subsumption) as the effect
of subsumption is not investigated in this work. The maximum sizes of
the OL in all experiments are varied from 3 to 10 times the number of data
attributes as dependent on the problem domain. The criteria for classifiers
to be a source for CF-fitness of CFs within the classifier conditions use the
same θsub = 10 and different εcf with 10 for XOF-PF and 100 for XOF-BF.
The population sizes are equal for all approaches in each experiment.

The experiments for real-world problems are executed in supervised learn-
ing. XCS-based systems are online-learning algorithms and not truly de-
signed for supervised learning. To investigate the performance in super-
vised learning, XOF can only access the instances from the training set
during training with enabled exploration. Performance is reported on the
result of XOF, which are configured to disable exploration and rule up-
dates, on the separated testing set. For Zoo and SPECT heart datasets,
the performance of all tested algorithms is determined by 10-fold cross-
validation. UCI Zoo and UCI SPECT heart are both experimented using
10-fold cross validation for all approaches. XOF-BF will be compared with
XCS and other popular machine learning algorithms. Among them, re-
sults of Random Forest are reported with the batch size of 200, which is
generally the best result among several batch sizes tested.

4.1.3.2 Results on Multiplexer Problems

The Multiplexer domain requires learning systems to prioritise features
related to address bits over data bits because CFs for address attributes
generally can be reused in different niches. XOF-PF and XOF-BF learn
much faster than other approaches in both problems. In the 37-bit Multi-
plexer problem, the numbers of iterations needed for the two approaches
to reach 100% accuracy in most runs are less than 400,000 iterations (Fig-
ure 4.3a). Also, all runs solve the problem in 1,000,000 iterations. In 70-bit
Multiplexer problem, XOF-BF is slightly better than XOF-PF since all runs
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of XOF-BF reach 100% as shown in Figure 4.3b. Both the final accuracies
of XOF-PF and XOF-BF are higher than others and statistically significant
based on the Wilcoxon signed rank test with p−value < 0.05 (see Table
4.1).
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Figure 4.3: Performances on Multiplexer problems.

4.1.3.3 Results on Majority-on Problems

In this problem domain, useful CFs in one niche can have a high chance of
being useful in other niches. Therefore, using CF-fitness can be beneficial
in the learning performance. Figures 4.4 show the learning performance
of the tested systems. XCS in general settings is discussed to have lim-
ited performances on overlapped problems and thereby has lowest perfor-
mances in Majority-on domain [58]. XCSCFC is better than XCS because of
its inherent redundancy. Without such redundancy, however, all the XOFs
have relatively equivalent performances and end up at higher accuracies
than XCS and XCSCFC.
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Figure 4.4: Performances on Majority-on problems.

4.1.3.4 Results on Even-Parity Problems

The Even-Parity domain can be solved by only one straight decision bound-
ary, i.e. two tree-based correct XCS’ classifiers (prediction 1000), if any one
of the optimal high-level features is found (see Figure 4.9). It is noted that
generalisation is not possible in the ternary alphabet. This means that mul-
tiple niches are gradually replaced by more general accurate-rules during
the evolution of CFs. When finding the optimal high-level feature, CFs can
be reused among niches. XCS cannot learn these problems even though
pspec = 1.0 because XCS needs large population sizes and the mutation
will flip random specified bits to create over-general rules. This problem
domain also returns intractable search spaces to XCSCFC when learning
without transfer learning.

In both problems, XOF-PF lags behind XOF-BF in the later learning phase
of 11-bit problem because one run did not progress as it fluctuated around
50% accuracy (see Figure 4.5). The accuracy of XOF-BF on the 13-bit prob-
lem is significantly higher than others (see Table 4.1).
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Figure 4.5: Performances on Even-Parity problems.

4.1.3.5 Results on Hierarchical Problems

Tested problems are 15-bit Hierarchical Majority-on and 18-bit Hierarchi-
cal Multiplexer problems. When dealing with hierarchical problems, the
approaches should be able to extract useful high-level CFs to achieve sim-
ple and tractable decision boundaries. XOF-PF and XOF-BF are shown in
Figure 4.6 to be efficient in generating not only high-level but also appli-
cable CFs. Most runs of XOF-BF reach 100% accuracy for 15-bit Hierarchi-
cal Majority-on and 18-bit Hierarchical Multiplexer problems (29/30 and
24/30 respectively). The two systems reach the highest accuracies that are
statistical significance compared with XCS and XOF (see Table 4.1). Opti-
mal features representing lower-level Even-Parity bit-chunks are generally
discovered among runs of both the approaches, as the first two CFs shown
in Figure 4.7.

4.1.3.6 Time Consumptions by XOFs

XOF-PF and XOF-BF both consumed remarkably less time to finish all the
enabled iterations than XCS in many problems, except for 18-bit Hierarchi-
cal Multiplexer and 13-bit Even-Parity problems, see Table 4.2. This is be-
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Figure 4.6: Performances on Hierarchical problems.

Figure 4.7: A sample classifier with highest numerosity (349) in one run
of XOF-BF for 18-bit Hierarchical Multiplexer: action 0, prediction 1000,
error 0, fitness 0.462.

yond our expectation as these two algorithms use tree-based programs for
feature construction. In terms of time for reaching 100% accuracy, XOF-PF
and XOF-BF further eclipse XCS. Time consumption for XOF also demon-
strates that XOF can run more quickly compared with XCS in the majority
of experiments. In conclusion, the extension OF alone can greatly optimise
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Table 4.1: Accuracy comparisons on the Boolean problems. The results of
XOF-PF and XOF-BF are bold if they have statistically significant differ-
ences from other approaches (not from each other) based on The Wilcoxon
signed rank test with p−value < 0.05. p−value is corrected using Bonfer-
roni correction.

Problems XCS XCSCFC XOF-PF XOF-BF

37-bit

Multiplexer
100%

93.0±
10.6%

100% 100%

70-bit

Multiplexer

70.0±
21.9%

n/a 99.72±0.44% 100%

9-bit

Majority-on

99.4±
0.18%

99.8±
0.15%

99.99± 0.04% 99.997± 0.018%

11-bit

Majority-on

98.6±
0.14%

99.7±
0.08%

99.96± 0.04% 99.98± 0.03%

11-bit

Even-Parity

65.0±
0.6%

49.9±
0.5%

98.31± 9.26% 100%

13-bit

Even-Parity

56.9±
0.5%

50.1±
0.5%

99.97± 0.14% 100%

15-bit

H.Majority-on

96.39±
0.25%

n/a 99.97±0.10% 99.998± 0.010%

18-bit

H.Multiplexer

50.9±
0.7%

n/a 99.86±0.52% 99.76± 0.90%

the computation time in XOFs as discussed below.

XOF-BF had more stable performance across 30 runs of all experiments.
Therefore, only XOF-BF was used in later experiments on real-world datasets.

4.1.3.7 Results on Real-world Problems

XOF-BF is compared with well-known approaches in three benchmarks
to evaluate the ability of XOF-BF in real-world classification tasks. It per-
forms well on small data set like UCI Zoo but falls behind others on UCI
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Table 4.2: Average time consumptions in minutes of the tested approaches.
Each approach is measured with running time (RT) and solving time (ST).
Solving time is the duration when all runs can reach 100% accuracy within
the maximum iterations. XCSCFC is not listed as it is implemented in C++
while others are implemented in Python.

Problems
XCS XOF-PF XOF-BF

RT ST RT ST RT ST

37-bit Multiplexer 34.52 26.90 34.35 18.67 33.46 17.66

70-bit Multiplexer 4821. n/a 3683. n/a 3552. 2932.

9-bit Majority-on 11.57 n/a 11.18 n/a 10.67 n/a

11-bit Majority-on 143.3 n/a 96.38 n/a 91.95 n/a

11-bit Even-Parity 71.88 n/a 58.2 n/a 59.8 45.0

13-bit Even-Parity 156.9 n/a 340.8 n/a 354.4 329.6

15-bit Hierarchical Majority-on 422.7 n/a 224.3 n/a 209.2 n/a

18-bit Hierarchical Multiplexer 98.98 n/a 259.5 n/a 259.0 n/a

Table 4.3: Results on real-world problems in supervised learning mode.
Algorithms Zoo SPECT Phishing

XCS 96.8± 1.3% 80.15± 0.90% 95.42± .21%
Naı̈ve Bayes 95.05% 76.0% 94.06%

SVM 92.08% 83.1% 95.50%

MLP 95.91± 0.42% 80.1± 1.16% 98.17± 0.09%

C4.5 92.08% 82.4% 97.2%

Random Forest 96.07± 0.65% 83.12± 0.53% 98.43± 0.26%

XOF-BF 97.72± 0.70% 81.65± 1.45% 95.14± 0.22%
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Figure 4.8: A sample rule learned by XOF-BF (left) and a sample tree by
Random Forests on UCI Zoo dataset (right). D11 is fins, D3 is milk, D8 is
breathes.

SPECT and UCI Phishing websites data sets, especially Random Forests,
see Table 4.3. This could be due to the fact that XCS-based systems were
designed for online learning instead of supervised learning, where algo-
rithms like Random Forests can look at a batch of many instances or the
whole training set at once to learn about the statistics of training data.
However, the learned knowledge by Random Forests is harder to read as
they are larger in tree size and require scanning all trees to determine the
whole rule. On the contrary, the knowledge provided by XOF-BF is gen-
erally more straightforward to understand. This is due to that XOF-BF’s
rules only cover their own niches instead of being used for any instance
as in Random Forests. This enables solving problems with a limited maxi-
mum tree depth of five layers. Compared with genetic programming trees,
rules produced by XOF-BF are also simpler (Figure 4.8) for the same rea-
son.
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4.1.4 Discussion

The OF and the new CF-fitness contribute to the computation reduction
of the two XOFs. First, XOF can reuse the computed outputs of lower-
level CFs to compute higher-level CFs that contain the computed CFs as
branches. Second, growing CFs around the OL enables subsumption of
classifiers, subsumption of CFs, the comparison between CFs and updat-
ing CF-fitness to be low cost in computation. Lastly, new CF-fitness im-
proves the convergence of accuracy, and thereby reduces the time con-
sumed by XOFs. In general, XOF-BF has slightly better performances than
XOF-PF. The CF-fitness estimated by the fitness of the best-containing clas-
sifier would reflect better the applicability of CFs. XOF-BF also consumes
a little less time than XOF-PF since the update of CF-fitness only occurs
with the best-containing classifier.

The results of XCSCFC in the experiments were not good as the support
from transfer learning or layered learning is mandatory for XCSCFC to
achieve a good performance in difficult problems.

4.1.5 Summary of the Initial Implementations of XOF

This work introduces the Online Feature-generation module for XCS with
CF-conditions that enables growing high-level CFs without the need of a
sequence of learning stages. The new system (XOF) evolves a CF popu-
lation in addition to the rule population. The two evolutionary processes
support each other. The rule evolution translates the environmental feed-
back into the feedback for CFs in the form of rule fitness. On the contrary,
CF-fitness improves the rule evolution by assisting rule construction in
prioritising CFs with high CF-fitness. XOF successfully discovered high-
level patterns in the tested Boolean problems as well as real-world prob-
lems despite of the large search spaces of CFs. High-level patterns are
constructed by growing from CFs in the OL. This strategy in XOF-BF does
not lose the necessary building blocks, which results in higher accuracy
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than XCS and other approaches in tested problems.

Two methods of estimating the CF-fitness were developed to conquer the
large search spaces of tree-based features. The proposed systems, XOF-PF
and XOF-BF, learn large-scale and hierarchical problems in fewer itera-
tions than XCS and XCSCFC, which search in the search spaces of origi-
nal data features and tree-based features respectively using equivalent GA
search techniques. The new CF-fitness successfully combine local search
of applicable features and global search of the rule-based population.

Even though using tree-based features, both implementations of XOF con-
sume less time than XCS to solve problems in most benchmarks. They di-
rect the learning process effectively to reach 100% accuracy more quickly.
Overall, XOF-BF is the most efficient approach. It runs the most efficiently
in terms of both time and algorithmic iterations in most tested problems,
but still achieves the best performances. In conclusion, XOF-PF and XOF-
BF succeed in assigning the new CF-fitness with the applicability of CF
features to provide rules with rich discriminative information.

XOF can also be considered as a framework to grow high-level features,
which can be in any flexible representation instead of tree-based programs.
Although the combination operation to create higher-level features might
need an adaptation to the representation, other process and especially the
fitness to estimate the applicability of constructed features could be gener-
alised with ease. This opens the opportunity to work with other problems
using appropriate representations.

In the next section, constructed CFs are analysed in terms of their effi-
ciency in encapsulating the underlying patterns of the problem with min-
imal structural complexity. This goal motivated the addition of a niching
property to the evolution of CFs. This property was not covered in this sec-
tion, although this niching is a unique feature of XCS that distinguishes it
from other machine learning approaches.
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4.2 Niching Method for CFs and CF-fitness for

Structural Efficiency

A major goal of machine learning is to create techniques that abstract away
irrelevant information. The generalisation property of standard Learning
Classifier Systems (LCSs) removes such information at the feature level
but not at the feature interaction level. CFs introduced feature manipula-
tion to discover important interactions, but they often contain irrelevant
information, which causes structural inefficiency. XOF, introduced in the
previous section, uses CFs to encode building blocks of knowledge about
feature interaction. This section aims to optimise the structural efficiency
of CFs in XOF. Two measures to improve constructing CFs are proposed to
achieve this goal. Firstly, a new CF-fitness update estimates the applicabil-
ity of CFs to the problem while also considering the structural complexity.
The second measure is a niche-based method for generating CFs.

These approaches were tested on Even-parity and Hierarchical problems
as they require highly complex combinations of input features to capture
the data patterns. The results show that the proposed methods signifi-
cantly increase the structural efficiency of CFs, the ability to capture gen-
eralised patterns using minimal tree structures. This results in faster learn-
ing performance in the Hierarchical Majority-on problem. Furthermore, a
user-set depth limit for CF generation is not needed as the learning system
will not adopt higher-level CFs once optimal CFs are constructed.

4.2.1 Introduction

It is considered that abstracting away irrelevant information improves the
explainability of complex learned knowledge. A popular representation
for encoding knowledge that encourages the explainability of learned knowl-
edge is tree-based programs, such as Genetic Programming trees [74]. How-
ever, the problem of bloat in learned trees inhibits their explainability and
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hurts the performance of the system [87]. It can be inefficient computa-
tionally and disrupts rule discovery by including poor building blocks of
knowledge in recombination operators. In case of continual learning [125]
or layered learning [118], the accumulated knowledge can suffer from ex-
ponentially increasing inefficiency in complex trees as the learning system
continues to deal with more and more complex problems.

An XOF is a system that grows high-level CFs based on a set of the most
applicable CFs that are included in an Observed List (OL). XOF can learn
hierarchical and large-scale problems by capturing the data patterns in
CFs. However, its constructed trees also contain bloat due to the panmictic
crossover of CFs in the OL. The general learning process of an XOF, when
addressing a hierarchical problem, is to generalise from small niches, i.e.
some specific cases, to larger niches by combining the building blocks from
the small niches. Figure 4.9 illustrates the relationship between the lower-
level CFs in less generalised rules and the higher-level CFs in more gen-
eralised rules that can replace all the more specific rules. The higher-level
CFs here are shown to combine the lower-level CFs to create CFs that can
capture a superset niche. This heuristic suggests that high-level (abstract)
features can be generated by combining local features from one of more
specific cases (smaller niches). Hence, a niching method for CFs can be
beneficial for the generalising process of XOF.

Niching of classifiers is a unique advantage of LCSs. Previous implemen-
tations of XOF have not included any niching property for constructing
CFs. All CFs in the OL and in the CF population are grouped together
without any discrimination among niches. If the information that a CF in
the OL performs the best in the current niche or another niche is avail-
able, the learning system can avoid combining CFs from unrelated niches,
which was the likely cause of the non-optimal trees with bloat. It is hy-
pothesised that prioritising the most applicable CFs in a niche in covering
and genetic operations can be beneficial to the learning performance as
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!(...!((!(!(D0xD1)xD2))xD3)x....xD10) : 1/0
niche: matched all odd (not even) parity instances (half instance space)

!(!(D0xD1)xD2), ..., D10 : 1/0
niche: 1111...1 |  0011...1 | 0101...1 | 1001...1

!(D0xD1), D2, ..., D10 : 1/0
niche: 1111...1 |  0011...1

D0, D1, D2, ..., D10 : 1/0
niche: 111...1

Niches

Figure 4.9: An example of generalising from a smallest niche to the largest
one in a hierarchical problem (11-bit Even-parity problem) by XOF.× is the
abbreviation forXOR. ‘,’s separate CFs in a condition:action binary classi-
fier effecting 1 or 0. ! isNOT . The generalising process benefits from grow-
ing from lowest-level CFs (D0, D1, ..., D10) to more complex ones gradually,
i.e. (D0×D1), (!(D0×D1)×D2), ..., (!(...!(!(!(D0×D1)×D2)×D3)×...×D10)).

well avoiding bloat in constructed CFs.

This work proposes two novel methods to combat bloat in CFs. Accord-
ingly, the objectives of this section are as follows:

1. To develop a new generalised CF-fitness measure, which is to esti-
mate the applicability of CFs in creating high-fitness classifiers, to
emphasise the efficiency of CF structures. This objective includes in-
vestigating the criteria based on the structural efficiency of CFs to
select the most applicable CFs to the task accordingly.

2. To introduce a niche-based method for adjusting CF-fitness of CFs in
the OL.

3. To introduce a new niche-based method for updating the OL that can
collect necessary building blocks (CFs) from all niches.
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4. To investigate the influence of the new CF-fitness and the two niche-
based methods for CFs on the structural efficiency of constructed CFs
and the learning performances of XOF.

5. To analyse further the influence of the CF evolution on the learning
performance of XOF.

The system will be tested on complex problems that require building hi-
erarchical features to capture the patterns of data. Benchmark problems
include Even-parity, Hierarchical Multiplexer, and Hierarchical Majority-
on problems [23] because these Boolean problems require accurate hierar-
chical combinations of input attributes. These combinations must match
with the data patterns of these problems to carry the maximal discrimina-
tive information of the problems. As a result, constructing such combina-
tions can reduce the search space of rules in XOF. However, finding accu-
rate complex combinations in CFs is challenging due to the large search
space.

4.2.2 Niche-based CF-fitness using Rule-Fitness Rate

The term “complexity” of CFs, which estimates the structural complex-
ity of CFs, is introduced to improve the structural efficiency of CFs. Be-
cause CFs here are binary trees (without considering negation, i.e. func-
tion NOT , as a separated node and adding complexity), the number of
function nodes (internal nodes) is always 1 less than the number of leaf
nodes. Thus, the complexity of a CF is defined as the number of leaf nodes,
which are the amount of input information involved in evaluating the CF.
Accordingly, the complexity of a rule is the accumulated complexity of all
CFs in its condition.

According to section 4.1 (the initial implementation), the CF-based XCS
targets to generate highly applicable tree-based features. Therefore, the
structural efficiency of a CF is its capability to construct high-fitness rules
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with the least rule complexity. The rule complexity is defined as the total
complexity of all CFs in its condition cl.complexity =

∑
cf2cl.condition cf.complexity,

where cf.complexity is the total leaf nodes of cf . A new term, called the
“fitness rate” of a classifier, is defined as the fitness per unit of classifier
complexity:

cl.f rate =
cl.f

cl.complexity
, (4.2)

to estimate the CF-fitness of all CFs within the classifier. The CF-fitness
of a CF based on the rule-fitness rate of the classifier (containing the CF)
rewards higher CF-fitness on the CF that can construct accurate and more
generalised rules using the least input information. Thus, this CF-fitness
is termed as Generalised CF-fitness (GCFF). At this point, this CF-fitness
has similar goals with the rule fitness of traditional XCS. The additional
benefit is that CF-based conditions enable more complex patterns with
the same input attributes compared with XCS, which can result in larger
niches.

Accordingly, the OL gathers CFs from the conditions of the classifiers with
the highest fitness per complexity unit in the action set of XCS (see Section
4.2.4). The updates of CF-fitness also follow the Widrow-Hoff learning
rule [120] based on the classifier with the highest fitness per complexity
unit containing the CF:

cf.f += βcf × ( max
cljcf2cl.condition

cl.f

cl.complexity
− cf.f), (4.3)

where βcf is the learning rate of CF-fitness. This CF-fitness represents the
highest fitness per complexity unit of a rule among rules having the CF,
therefore called rule-fitness rate. In short, the OF module evaluates gen-
erated CFs based on their efficiency of CFs in using binary functions to
combine the input attributes to produce accurate and generalised classi-
fiers.
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4.2.3 Niche-based Calibration of CF-fitness

The part of the OF module that associates with the learning processes of
XCS, i.e. covering and genetic operations, is the CF generation by either se-
lecting an existing CF or constructing a new one. As this process relies on
CF-fitness, a niching method for CFs needs to be implemented for at least
the CF-fitness. A niching method is developed to calibrate the CF-fitness
of a CF based on the performance of the CF on the current niche. This
method is designed to create boundaries between niches to prevent contin-
ual undesirable sharing of CFs. While sharing knowledge among niches
is generally beneficial in many problems, undesirable transfers of CFs be-
tween niches can hold back the discovery of optimal building blocks for
each niche.

The niching method calibrates the CF-fitness in three cases to estimate a
local CF-fitness for the CF. First, if a CF has its best classifier matched in the
current action set (the definition of the best classifier of a CF is discussed
later in this paragraph), this CF is known to perform the best in this niche.
In this case, the OF uses its CF-fitness directly. The second case is when
a CF never appears in any classifier in the current action set. The system
obviously has no data on its actual performance in this niche. This niching
method estimates the local CF-fitness of this CF naı̈vely with a constant
rate of 0.1 of its global CF-fitness. The third case lies between the first two
edge cases when a CF does appear in at least one classifier in this local
niche, but its best classifier is not the best overall. The estimated local
CF-fitness of this CF is as follows:

cf.flocal = cf.f × cf.local best classifier.f

cf.best classifier.f
, (4.4)

where the cf.local best classifier is the “best” classifier containing the CF
in the current action set [A], and the cf.best classifier is its global “best”
classifier in the whole rule population [P ]. It is noted that the definition of



94 CHAPTER 4. ONLINE FEATURE-GENERATION

classifier being the “best” for a CF varies according to the CF-fitness. In
XOF-BF, it is the highest-fitness classifier containing the CF. Because this
niching method will be tested in the system that stacks this method with
generalised CF-fitness, the quality of classifier is based on this new CF-
fitness. Specifically, classifiers selected for Equation 4.4 are the ones with
the highest rule-fitness rate:

cf.local best classifier = arg max
cl2[A]jcf2cl.condition

cl.f/cl.complexity, (4.5)

cf.best classifier = arg max
cl2[P ]jcf2cl.condition

cl.f/cl.complexity, (4.6)

4.2.4 The Niche-based Observed List Update

This section describes a new niche-based OL update that simplifies XOF’s
processes and thereby eliminates a number of hyper-parameters. Also,
the remaining hyper-parameters can still control the pace of the evolution
of CFs, such as the learning rate for CF-fitness βcf . Instead of periodical
updates, the system updates the OL in every exploiting iteration with two
processes. The first process is to collect the CFs in the conditions of the
classifiers that best represent the action sets. For example, when using the
CF-fitness in Section 4.2.2, the classifiers satisfying the following criteria
will be used to collect the CFs for the OL:

cl.f/cl.complexity > 0.9× max
cl2[A]

cl.f/cl.complexity, (4.7)

where 0.9 represents the selectivity of the OL. This value is empirically
chosen among high values to compress the OL size. The second process
is to remove CFs in outdated classifiers in the current niche that do not
satisfy Eq. 4.7. This step could remove necessary building blocks of other
niches in case of the problems with overlapping niches. However, as we
place the OL update before genetic operations, the removed necessary CFs
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in other niches are always added back. This method is to collect all neces-
sary building blocks in all niches.

4.2.4.1 Using XOF in Layered Learning

Although XOF is developed to be a learning system that can learn inde-
pendently without any form of transfer learning, there is no restriction that
prevents using XOF in transfer learning or layered learning as XCSCFC.
XOF can even facilitate the transfer of CFs further with CF-fitness.

Transferring Criteria

The transferring criteria consider numerous aspects. First, only CFs in ex-
perienced and accurate classifiers, i.e. cl.experience >= 25 and cl.error <

θ0, are the candidates for possibly being transferred as irrelevant CFs are
not expected to have high applicability in the destined problem. Sec-
ondly, CFs are selected by their scores based on the accumulated struc-
tural efficiencies in classifiers to choose the highest-ranked CFs for trans-
ferring:

cf.score =
∑

cf2cljcl.experience�θGA^cl.error<θ0

cl.fitness/cl.complexity (4.8)

Since cl.fitness already includes the numerosity information, the score
does not need to take into account the numerosity. However, the more
appearances of a CF in filtered classifiers, the more score it gets allocated.
Lastly, the transferred CFs should not create noisy and irrelevant patterns
on the target problem.

Based on the above principles, only a predefined maximum number of CFs
with the highest scores are transferred. The maximum numbers of trans-
ferred CFs in each transferring step were chosen as the problem scale of the
pre-transfer learning stage. This is because the Multiplexer domain does
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not require latent tree features and, thus, transferring more than original
features is not necessary. Also, only CFs with substantial scores compared
with the highest score are selected: cf.score >= arg maxcf cf.score/10 (10

is arbitrarily chosen). When transferring between problems at scales from
20 bits, the later criterion is normally met first.

Initialised CF-fitness of Transferred CFs

XOF can take advantage of the scores of the transferred CFs in CF-fitness.
Initialising CF-fitness appropriately can accelerate the learning performance
of XOF. The CF-fitness of CFs is initialised to be correlated with their scores
and to maintain the ratio between the scores of the transferred CFs and
the non-transferred base CFs, which will be created again in the trans-
ferred problem. As the initial CF-fitness of the non-transferred base CFs is
0.01, initialised CF-fitness of transferred CFs was transformed linearly us-
ing the rate scorebase/0.01, where scorebase was the average of the scores of
the non-transferred base CFs. Also, it is important to avoid being stuck in
early learning phase by assigning too high scores on transferred CFs. We
limited the maximum initial CF-fitness of transferred CFs to a naı̈ve upper-
bound 1.0. Hence, the initialised CF-fitness of transferred CFs is:

cf.fitness =
(scoremax − scorebase)× rangelimited

rangescore
+ 0.01, (4.9)

where rangescore = max({cf.score|cf ∈ transferred CFs})− scorebase,
(4.10)

and rangelimited = min(0.99, rangescore × 0.01/scorebase) (4.11)

4.2.5 Experiments

4.2.5.1 Generality Rate to Estimate the Structural Efficiency of CFs

To test the ability of XOF to generate complexity-efficient CFs, the struc-
tural efficiency of the CFs in the highest-fitness classifiers are tracked and
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evaluated. Also, the evaluation should be the least niche-biased to assess
the ability of solutions to cover the whole problem. Thus, the classifiers
for collecting CFs for tracking the structural efficiency are gathered from at
most one classifier per action set. These classifiers also need to be accurate
and experienced to avoid irrelevant estimation of performance, such as the
high structural efficiency of an inaccurate general rule cl.experience ≥ θGA

and cl.error ≤ ε0 [26].

This estimation of structural efficiency is still somewhat niche-biased be-
cause any niche with no experienced and accurate classifiers has no con-
tribution to the estimated structural efficiency. This case is common when
the classification accuracy has not reached 100%, but does not occur oth-
erwise. Even after achieving 100% accuracy, the estimation of the CF-
structural efficiency can still be niche-biased if the estimation is not weighted
by niche size. However, precise measurement requires that niche sizes are
known, which leads to deep knowledge of the problem. Due to being
naı̈ve about the tested problems, the evaluation will approximate the evo-
lution of structural efficiency of the highest-fitness classifiers by averaging
them among niches where experienced and accurate classifiers are avail-
able.

Having the representative classifiers to collect the most applicable CFs of
the tested problem, a method to estimate the structural efficiency of these
CFs is needed. Since these CFs are from experienced and accurate clas-
sifiers, the other aspect of efficiency is only the generality. Therefore, the
structural efficiency should involve the generality and complexity. The
“generality rate” of these classifiers to evaluate the structural efficiency of
a classifier is tracked:

cl.generality =
cl.matches

cl.matches+ cl.no matches
, thus (4.12)

cl.generality rate =
cl.generality

cl.complexity
, (4.13)
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where cl.matches and cl.no matches respectively track the numbers of times
classifier cl matches and does not match all instances since it was created,
and therefore the part cl.matches/(cl.matches + cl.no matches) provides
the generality of classifier cl as it tracks the probability that classifier cl
matches any instance. The generality rate of classifiers estimates their effi-
ciency in using cl.complexity complexity units (CF structures) to produce
accurate classifiers with the highest generality.

4.2.5.2 Experimental Design

This section includes a comparison of XOF and the two newly imple-
mented features with XOF itself and XOFs with one of the two features.
There are two criteria for comparisons: the learning performance as well
as the discovery of complexity-efficient CFs. In this work, the existing CF-
fitness focusing on shortening rule conditions is abbreviated as Shortening
CF-fitness (SCFF) and the niching method for CFs as Niching CFs (NCF).
Thus, in addition to the existing version named XOF-BF, experiments will
include three new other approaches abbreviated as XOF-SCFF, XOF-GCFF,
and XOF-GCFF-NCF within this work. All of these new systems use the
simplified OL update in Section 4.2.4.

All parameters of all tested versions of XOF are configured equally except
for the rule population size and stopping iteration. A general configura-
tion of XOF is used in these experiments: the learning rate for rule pa-
rameters β = 0.2 and the learning rate for CFs βcf = 0.001; the crossover
rate is χ = 0.2; the mutation rate is µ = 0.9; the experience thresholds for
deletion is θdel = 20; the initial fitness of covered classifiers are Finit = 0.01;
the probability of specificness pspec = 0.25 with maximum rule-condition
length set at twice the number of original input attributes; and the experi-
ence thresholds for subsumption θsub = 50. All three newly implemented
versions of XOF have no limit on the OL size and a redundantly high limit
on the CF depth, i.e. the maximum depth is 20.
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4.2.5.3 Results on 11-bit Even-parity Problem

The population sizes for all systems on this problem were equal to 8000

classifiers, which enabled XOF-BF to converge. The learning graphs of
tested approaches in this experiment were not substantially different ex-
cept for the convergence phase, see Figure 4.10a. XOF-SCFF and XOF-BF
had a slight advantage in the early phase. In 30 runs of the three new sys-
tems in this work, there was always one or two runs that were stuck at 50%

accuracy. The reason for being stuck was that the evolution of CFs creates
an extra force to push the evolution of rules further to the local optima.
Also, this Even-parity problem already poses a high probability of local
optima for XCS as the probability of finding correct rules in XCS is very
low. All inaccurate rules have the same accuracy of 50%, including the
simplest rules and the rules with genotypes near the accurate ones. These
stuck runs always ended up with the domination of a few very short rules
(with only one CF in its conditions). The high rule-numerosity and short
rule conditions (few CFs) caused the CFs in these rules to achieve high CF-
fitness and thereafter pushed these rules to earn more numerosity through
genetic operations.

All three systems discovered CFs with significantly more efficient struc-
tures than ones by XOF-BF. The system with the niching method for CFs
evolved the most optimal CFs (Figure 4.10b), although there were two
stuck runs in most of the tested experience (1,000,000 instances), which
had very low generality rate. The evolved CFs of this system reached near
the optimal generality rate for this problem. The optimal generality rate is
equivalent to the generality rate of the most generalised classifier in Fig-
ure 4.9. This classifier has the generality of 0.5 as it matches half of all
instances. Also, its complexity is 11 for 11 leaf nodes. Hence, its generality
rate is 0.5/11 = 0.04545, which is the optimal generality rate here.
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Figure 4.10: Results on 11-bit Even-parity problem.

4.2.5.4 Results on Hierarchical Problems

The 18-bit Hierarchical Multiplexer and 18-bit Hierarchical Majority-on
problems are used to evaluate the generality rate of the tested approaches.
These two problems pose relatively large search spaces as their hierarchy
adds complexity to the data patterns. To capture these complex patterns,
constructed CFs need to cover all 6 non-overlapped three-successive-bit
chunks with 3-bit Even-parity problems. An optimal CF that can cover a
chunk, say (D3, D4, D5), has to use XOR in all function nodes except for
any arbitrary negation, such as (!((!D3)×D4))×D5). Such CFs can match
half of all possibilities for the three bits and the other half by its negated
version, which is not counted as a distinct construction in XOF because
each CF has one corresponding negated version.

All systems in these two experiments had the same population size of
20,000. The learning performances of all approaches are no substantially
different from one another in the 18-bit Hierarchical Multiplexer problem,
see Figure 4.11a. In the 18-bit Hierarchical Majority-on problem, two XOFs
with the SCFF, XOF-SCFF and XOF-BF, did not converge to 100% accuracy,
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Figure 4.11: Results on 18-bit Hierarchical Multiplexer problem.

while the two XOFs using the GCFF, XOF-GCFF and XOF-GCFF-NCF, did
(see Figure 4.12a). The niching CFs also improves the learning perfor-
mances of XOF in both experiments.

In these two experiments, XOF with niching CFs (XOF-GCFF-NCF) yielded
the most optimal CFs among the tested versions of XOF (Figures 4.11b
and 4.12b). The evolution of CFs in XOF-BF again was stuck, plus it con-
tained the most bloated CFs. Table 4.4 illustrates a few samples of CFs
in the OLs of three tested systems. This table includes learnt CFs related
to chunks without optimal CFs to demonstrate the difference of the influ-
ence by the two CF-fitness. SCFF, the CF-fitness focusing on shortening
rule conditions, rated the two non-optimal CFs (!((!D14)×D13))∧D12 and
(!((!D14) × D13)) ∨ D12 much higher CF-fitness than the lower-level CFs
!((!D14)×D13) and D12. The two latter CFs were the ones that can be com-
bined to construct optimal CFs for the 3-bit Even-parity problem (on three
bits (D12, D13, D14)). Although the patterns of the two former CFs did not
generalise more than the lower-level ones on the 3-bit Even-parity prob-
lem, these higher-level CFs still had higher CF-fitness because they can
produce rules with shorter conditions and the same patterns. This pro-
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Figure 4.12: Results on 18-bit Hierarchical Majority-on problem. The be-
ginning parts of generality rates are omitted because over-general (inac-
curate) rules that are temporarily accurate and experienced can create un-
reliable estimation.

cess even hindered discovering the optimal CFs for this 3-bit Even-parity
chunk because the higher-level CFs have greater probability to be selected
in constructing CFs. Meanwhile, GCFF, the generalised CF-fitness, did not
face this problem because such non-optimal combinations do not achieve
higher CF-fitness than the lower-level CFs.

4.2.5.5 Layered Learning in the Multiplexer Domain

The learning stages designed for XOF started from the 20-bit Multiplexer
problem to progressively larger scales problems. The learning stages of
XCSCFC were the same as the stages used in the original implementation
of XCSCFC [63], which included all scales of the Multiplexer domain from
6 bits to 70 bits. The population sizes of both systems were set equal in
corresponding stages (at the same scales): N = 2000 for the 20-bit scale,
N = 5000 for the 37-bit scale, and N = 20000 for the 70-bit scale.

Figure 4.13 shows performance comparisons between XOF and XCSCFC
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Table 4.4: A few sample CFs with their CF-fitness in the OLs of XOF-SCFF,
XOF-GCFF, and XOF-GCFF-NCF after 150,000 instances of learning the 18-
bit Hierarchical Multiplexer problem. These samples were CFs related to a
chunk that optimal CFs have not yet constructed. To be as fair as possible,
these samples were chosen from runs with “generality rates” in the small
range from 0.0075 to 0.0080.

XOF-SCFF XOF-GCFF XOF-GCFF-NCF
(!((!D14) × D13)) ∧ D12

(0.157)
(!D9) ∧ (!D11) (0.058)

(!D8) × (!D7)

(0.071)

(!((!D14) × D13)) ∨ D12

(0.157)

(D9 ∧ D11) × (!D10)

(0.056)
(!D8)×D7 (0.061)

!((!D14)×D13) (0.121) D10 (0.057) D6 (0.071)

D12 (0.121) D11 (0.054) n/a
n/a D9 (0.054) n/a

with layered learning in the Multiplexer domain at the 37-bit, and 70-bit
scales. XCSCFC performed better than XOF in traditional learning without
layers. With layered learning, XOF learned slightly faster than XCSCFC in
the 37-bit scale, and remarkably faster than XCSCFC in the 70-bit scale.
The learning performances of XOF and XCSCFC are both improved with
the layered learning approach.

The layered learning approach bootstrapped both XCSCFC and XOF with
starting points closer to the underlying patterns of the Multiplexer do-
main. The transferring criteria in layered learning filtered out some or all
of the base CFs representing the data bits. The transferred data bits were
also initialised with a lower starting CF-fitness. The reason was that the
contributions of data bits in large-scales Multiplexer problems were gen-
erally less than 10% of the contributions of the address bits. These results
describe correctly the characteristics, including epistasis where data bits
must be linked to address bits, of the Multiplexer domains.
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Figure 4.13: Layered Learning in the Multiplexer domain.

4.2.5.6 Analysis of the Evolution of CFs

This section investigates the importance of the CF evolution along with its
influence when the evolving pace is varied. Two benchmarks on 15-bit Hi-
erarchical Majority-on and 37-bit Multiplexer were used for this analysis
as they are either hierarchical or relatively large in scale. In these two prob-
lems, different learning rates of CF-fitness βcf ∈ {0.1, 0.01, 0.001, 0.0001}
were used to demonstrate the varied paces of the CF evolution. Addi-
tionally, another experiment of XOF without constructing new CFs was
executed to investigate the importance of the process in XOF. Figure 4.14
showed the results with βcf = 0.001 having the best performance in both
problems.

In 15-bit Hierarchical Majority-on, the construction of new CFs has an im-
portant role in this problem as the performance of XOF without it was
much worse than standard XOF. This is explainable as this problem can be
solved with much fewer rules when complex CFs are created to capture
the underlying Even-parity patterns of the lower level. The construction of
new CFs had a much less contribution to the learning performance of XOF
in 37-bit Multiplexer as XOF without it learned slightly slower than XOF
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Figure 4.14: Analysis on the evolution of CFs.

with βcf = 0.001. This result also shows that the construction of new CFs
did contribute to the learning process of the Multiplexer domain, although
this domain does not require complex patterns. The possible reason was
that the creation of new CF based on the CFs in the OL encouraged creat-
ing more CFs involving address bits, which are more frequently required
to solve the Multiplexer domain.

All tested values of βcf yielded relatively equal performance in the 15-bit
Hierarchical Majority-on. In the 37-bit Multiplexer problem, the perfor-
mances were more varying as XOF with higher βcf struggled to converge
in the final learning phase. The high βcf pushed XOF to create more new
CFs that confused the rule evolution of this problem domain, which does
not require complex CFs. This also happened in the 15-bit Hierarchical
Majority-on problem but not substantially noticeable. XOF with the low-
est βcf learned only slightly slower than the XOF with βcf = 0.001.

4.2.6 Further Discussions

XOF is equivalent to genetic programming [74] in terms of evolving tree-
based programs to address problem patterns. The evolution of CFs has an



106 CHAPTER 4. ONLINE FEATURE-GENERATION

essential contribution to the learning performance of XOF in hierarchical
problems as it progressively produces complex CFs to capture the com-
plex patterns of such problems. Unlike genetic programming, XOF has an
intermediate level of symbolic rules between trees and the target task. The
inclusion of trees in rules enables evaluating trees even though trees have
not been evolved to the point they can be complete solutions.

Although transfer learning and layered learning are not required to achieve
a good performance on complex problems, these approaches can help
XOF to learn better. However, designing transferring criteria and layers
of learning is dependent on source and target tasks. This task is challeng-
ing for both XOF and XCSCFC.

On the 11-bit Even-parity problem, the pure pressure on combining CFs
and shortening rule conditions of SCFF has slightly better learning per-
formance than the generalising pressure of GCFF. This can be explained
as this CF-fitness estimation awards higher CF-fitness on combined CFs,
which pushes the generalisation process faster. However, GCFF has a bet-
ter performance on the Hierarchical Majority-on problem because it does
not push the system towards rules with shorter conditions, which can eas-
ily become over-general rules in problems with overlapping niches.

The niching method for CFs improves the structural efficiency of CFs in
XOF significantly, as shown by its superior average generality rate. Nich-
ing CFs guides combining optimal CFs to generalise existing patterns.
Therefore, the evolution of CFs with niching CFs is accelerated without
adding the likelihood of being trapped in local optima. This also results
in slightly faster learning performances on the tested Hierarchical prob-
lems.
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4.3 Chapter Summary

This chapter introduces XOF that grows high-level CFs to address com-
plex (high-level) patterns that are relevant to the target problem. This
extension enables CF-based XCS to solve large-scale and complex prob-
lems without the need of a customised sequence of layered learning. An
extra evolution of CFs is connected with the rule evolution by develop-
ing new measures of estimating a parameter called CF-fitness. CF-fitness
enables CF evolution to interact with the environment indirectly through
the rule evolution. Although transfer learning and layered learning are
not required to achieve a good performance on complex problems, these
approaches can help XOF to learn better.

This chapter has also introduced a new method for estimating CF-fitness,
called generalised CF-fitness estimation, that focuses on generalised pat-
terns and avoids naı̈vely combining existing CFs. Accordingly, other pro-
cesses of XOF have been adjusted to select CFs following the new criteria.
The generalised CF-fitness slows down the growth of CF depth but adds
more reliability to the CF construction. Although the structural efficiency
of generated CFs has not been improved, it enables integrating a newly
developed niching method for CFs, which results in accelerating the evo-
lution of CFs without being trapped in local optima.

The niching method for CFs introduces the niching property to CF con-
struction in XCS with the OF module, i.e. XOF. The niching property en-
ables appropriate combinations of CFs to grow optimally complex CFs for
hierarchical problems. This property accelerates the generalisation of XOF
rules. With this new feature, XOF, as an extension of XCS, has the niching
property in both the evolutions of rules and CFs. Regarding the niching
property, a new method for updating the OL that enables collecting the
most applicable CFs from all niches has been developed.

The next chapter considers extending XOF with the new features to a
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multi-XOF system to target multitask learning, unlike the traditional single-
task learning in this chapter. The availability of the OL as the representa-
tive patterns can facilitate comparing the relatedness between problems
and, as a result, dynamically improving the transfer of features among the
multiple tasks.



Chapter 5

Relatedness Measures to Facilitate
Automating the Transfer of
Building Blocks among Multiple
Tasks

Multitask Learning (MTL) is a learning paradigm that deals with multiple
different tasks in parallel and transfers knowledge among them. While
much MTL research in evolutionary computation is dealing with multiple
optimisation tasks, this work is focused on multiple classification tasks.
The previous chapter introduces XOF as a Learning Classifier System us-
ing tree-based programs to encode building blocks (meta-features). XOF
constructs and collects features with the most discriminative information
for classification tasks in an Observed List (OL).

This chapter seeks to facilitate the automation of feature transferring in
MTL by utilising the OL. This list contains the patterns that are validated
to perform the best among all tree features. It is considered that the fea-
tures with the most discriminative information of a classification task carry

109
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the characteristics of the task. Therefore, the relatedness between any two
tasks can be estimated to be correlated with the portion of common pat-
terns between their OLs.

This chapter introduces a multiple-XOF system, called mXOF, that can
dynamically adapt feature transfer among XOFs. mXOF utilises the OL
of each individual system to estimate the task relatedness. This method
enables the automation of transferring features. Experiments of mXOF
include various scenarios, e.g. representative Hierarchical Boolean prob-
lems, classification of distinct classes in the UCI Zoo dataset, and unre-
lated tasks that are not supportive of each other. These experiments are to
analyse mXOF’s abilities of automatic knowledge-transfer and estimating
task relatedness. Results show that mXOF can estimate the relatedness
dynamically between multiple tasks to aid the learning performance with
the dynamic feature transferring.

5.1 Introduction

The ability to reuse knowledge among similar tasks allows humans to
comprehend skills and concepts through a few examples for each new
problem. This motivates the advent of Multitask Learning (MTL), a learn-
ing paradigm where the learning system addresses multiple related tasks
simultaneously with equal task priority [28, 101]. MTL aims to improve
the learning performance of each task by transferring useful knowledge
among related tasks.

However, existing MTL work are generally restricted to related tasks where
the contribution of common knowledge significantly dominates the ad-
verse effect of the harmful signal coming from the unrelatedness of other
tasks. Otherwise, the learning performances can become worse than those
in separated traditional single-task learning. This limitation requires ex-
ternal knowledge on the tasks selected for MTL. On the contrary, humans’



5.1. INTRODUCTION 111

ability to reuse knowledge is not bounded to related tasks. Human in-
telligence can choose to relate a target task with learnt tasks that are sta-
tistically more relevant than randomly choose any learnt tasks1. The hy-
pothesis is that relatedness of any two problems, estimated based on the
overlap of their best-described patterns, can be a guidance to transferring
knowledge among tasks.

Evolutionary Computation learns optimisation tasks through building blocks,
which can be transferred among tasks. Evolutionary MTL has been inves-
tigated with a variety of EC algorithms. Among them, the series of Multi-
factorial Evolutionary Algorithms [8, 48] also offers the ability to prevent
harmful interactions between distinct optimisation tasks using a matrix of
random mating probability. However, MTL in optimisation tasks seeks to
guide search trajectories, while here classification tasks with the transfer
of useful building blocks between systems are considered.

The previous chapter introduces XOF that grows high-level CFs in LCS’s
rule conditions through the concept of the Observed List (OL). This list
includes the most applicable CFs, which contain the most discriminative
information for the target task. In other words, the OL contains the har-
vested information about the task in the form of tree features (CFs). In the
case of online learning, this is also the only information from the task as
a pre-built training set is not available as in supervised learning. In this
work, two tasks are considered highly related if their common underlying
patterns contribute largely to each of the total sets of their patterns. There-
fore, it is hypothesised that leveraging OLs to estimate the task relatedness
can assist in sharing knowledge among tasks within XOF.

In this chapter, a system of multiple XOFs, called mXOF, that can solve
different problems simultaneously is proposed. It needs to automatically
detect the common characteristics of the problems to facilitate transferring

1The amount of existing learnt knowledge is just too large to be queried randomly for
reuse



112 CHAPTER 5. AUTOMATIC TRANSFER WITH RELATEDNESS

features among XOFs. Each XOF in mXOF learns one problem. The com-
parison of two OLs is used to estimate the relatedness of two problems.
The objectives of this chapter are:

1. To introduce an MTL system that automatically shares learnt fea-
tures among related tasks by estimating the asymmetric relatedness
of tasks. The relatednessRelSSa,b of a task a to another task b directly
influences the probability of sharing CFs from task a to task b.

2. To facilitate estimating the relatedness between tasks by using the
similarity of their OLs. A similarity metric among OLs is the key
factor of this chapter as it will influence the results of all three objec-
tives.

3. To investigate the ability of mXOF to handle arbitrary multiple tasks,
including related and unrelated tasks. This can further validate the
automation of mXOF in sharing features among tasks. If the system
can estimate a low relatedness between two unrelated problems, the
learning signals of these two problems can be prevented from inter-
fering with the learning processes of each other. The ability to han-
dle arbitrary tasks contributes to general AI systems with continual
learning [51, 124].

The specific context of this work is that a learner (robot or computer), is
learning to recognise different objects (classes) in parallel using signals
from the same sensor as the input data. In the very beginning, recognising
all objects starts with the original data features from the sensor, named as
(D0, D1, D2, ...). At this stage, there is no divergence of patterns among
the tasks except for the expected output (1/0) because the learner sees all
objects as the raw input signal. The progressive learning grows high-level
building blocks from the original input by feature construction inherent
in CFs. Recognition tasks that have different sets of latent patterns will
require different latent features. The goal of mXOF is to track the relat-
edness among the recognition tasks to automate the transfer of building
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blocks. The automated transfer improves the learning process of each task
and link related tasks together.

The system will be tested on multiple scenarios to validate its capability to
automate sharing features among tasks. First, multiple hierarchical prob-
lems [23], which share the equivalent base-level patterns, will validate the
ability to transfer CFs among highly related tasks. Also, a scenario of two
relatively unrelated tasks, i.e. 11-bit Even Parity problem and 10-bit Carry
problem, will test the ability of mXOF to transfer features among unrelated
tasks selectively. Finally, a practical multi-class classification problem will
be used to evaluate mXOF as a multi-class classifier.

Learning benchmark datasets have been constructed for independent (non-
transfer) tasks. They are often unrelated and recorded in different settings.
Thus, the UCI Zoo dataset has been repurposed by converting to multiple
binary classifications to test whether mXOF can discover possible relat-
edness among seven classes in this dataset. This also test the abilities of
mXOF without a priori knowledge, to autonomously discover the related-
ness among classes.

5.2 Multitask Learning with mXOF

This section provides detailed description of an mXOF system where each
XOF learns one of the multiple tasks. Figure 5.1 illustrates a case of mXOF
with three systems and three tasks. The sharing of CFs and the related-
ness measurement among systems mutually support each other during
the learning processes of the multiple systems. In this chapter, the identi-
fication for a system is the same with its corresponding task because each
system works on one task.

All systems utilise a common CF population. The CF population here
serves similar purposes as the CF population does in a single-population
system of XOF. The common population enables tracking generated CFs
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Figure 5.1: An illustration of mXOF solving three tasks. A large inter-
section between two OLs indicates a high relatedness between two tasks,
which is the guidance used for automatic CF transfer.

among systems. The population links equal CFs (same genotype) among
single-XOF systems, which enables comparing the OLs and thereby the
estimation of task relatedness among systems.

5.2.1 Asymmetric Fitness-weighted Relatedness

The commonality of CFs between the OLs of two tasks is hypothesised to
indicate the relatedness between the tasks. Specifically, CFs in the OL of
a system are the most discriminative patterns among generated features,
which are useful in constructing accurate and generalised rules, i.e. high-
fitness rules. Therefore, two tasks with common discriminative patterns
in the intersection of two OLs are considered related tasks. Intuitively,
two OLs with more similarity correspond to systems/tasks that are more
related.

In accordance with the above intuition, the relatedness of a system a to
another system b is to estimate the general applicability of CFs produced
in the system a to system b (see Chapter 4 for the applicability of CFs). The
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fitness-weighted relatedness of system a to system b corresponds to the
CF-fitness portion of sharing CFs between a and b in the total CF-fitness of
CFs in the OL of system a:

RelSS(a, b) =

∑
cfi2OLa^OLb

cfi.f(a)∑
cfj2OLa

cfj.f(a)
, (5.1)

whereOLa andOLb are two OLs of system a and b respectively, and cf.f(a)

is the CF-fitness of cf in system a. This asymmetric definition of task re-
latedness is a statistical estimation of the applicability of any CF from the
OL of system a to system b. The maximum relatedness is 1 when all CFs in
the OL of the source task are applicable to the target task, and is 0 when no
CFs in the OL of the source task is relevant to the target task. The asym-
metric property is desirable because the applicability of features between
two tasks is generally not symmetric. For example, when a task can be a
subset of another task, almost all the features from one task is applicable
to the other task while the applicability in the opposite direction can be
minimal.

5.2.2 Automatic Transfer of CFs

The CF transfer among tasks is automatically driven by their relatedness.
This mechanism benefits the learning processes of the involved systems in
multiple ways. First, there is no need for human intervention as in transfer
learning or layered learning, such as selecting a sequence of highly related
tasks and criteria of features for transferring. Second, on the contrary, this
enables the dynamic criteria of transferring features among tasks. This
property is desirable because, when the learning process of XOF evolves
CFs, the applicability of CFs from one task to another and the relatedness
of tasks usually change dynamically. For example, two tasks may only
share common patterns at certain levels, which are only present at some
points of evolving CFs. Lastly, the transfer of features provides individual
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systems during evolving with external knowledge that can be a force to
escape local optima.

In mXOF, a system uses transferred CFs as well as existing CFs in its OL
when selecting CFs for covering new rules or mutating a rule condition.
Algorithm 5.1 illustrates how the selection procedure works. Whenever
a target system a queries an existing CF, it will select from its OL plus at
most one external CF from other systems.

The external CF is selected from a set Secf of all CFs in the OLs of other
systems that satisfy two relatedness criteria. The first criterion is that the
source system providing external CFs must be more related to the target
system a than a threshold r thres. This threshold is drawn from a uniform
distribution (step 2, discussed later). Second, these CFs themselves have
to be potentially applicable to the target task a. This quantity is estimated
by a statistical expectation of relatedness from external CFs to a target task.
The expected relatedness of an external CF cfj is actually the relatedness
of the source task containing cfj adjusted by the rate between CF-fitness of
cfj and the average CF-fitness of the common (shared) CFs (between the
source task i and the target task a) on the source task i:

RelCfS(cfj, a) =
cfj.f(i)∑

cf2C(i,a) cf.f(i)/len(C(i, a)
×RelSS(i, a), (5.2)

where C(i, a) = OLi ∧ OLa. This check can also be interpreted that the
performance of the candidate cfj should be comparable with the perfor-
mances (on the source task) of shared CFs between the two tasks. If the
relatedness of the external CF satisfies the threshold r thres, Secf will ap-
pend this CF with its adjusted vote (applicability) shown in Step 10. Fi-
nally, a Roulette Wheel selection chooses a CF from Secf using adjusted
votes of external CFs.

The relatedness threshold r thres, drawn from a uniform distribution, rep-
resents the stochastic selectivity of the learner in sharing CFs among tasks.
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Algorithm 5.1 Transferring an external CF cfe from other systems to reuse
it in target system a. cfe with its adjusted vote voteadj(cfe, a) will be another
candidate for system a when selecting existing CFs to construct rules.

1: Collection of external CFs from other systems’ OLs Secf = ∅
2: Draw a relatedness threshold from a uniform distribution r thres =

max(0.1, uniform(0, 1))

3: for system i 6= a do
4: if RelSS(i, a) >= r thres then
5: Common CFs in the OLi and OLa: C(i, a) = OLi ∧OLa
6: for cfj ∈ OLi, the OL of i do
7: if cfj /∈ OLa then
8: Relatedness of cfj to system a:

RelCfS(cfj, a) = RelSS(i, a)× (cfj.f(i)/

(
∑

cf2OLi^OLa
cf.f(a)/len(C(i, a))))

9: if RelCfS(cfj, a) >= r thres then
10: Compute adjusted vote of cfj : voteadj(cfj, a) =

cfj.f(i)×
(
∑

cf∈(OLi∧OLa
cf.f(a)∑

cf∈(OLi∧OLa
cf.f(i)

×RelSS(i, a))

11: Add cfj to external selections Secf .add(cfj) with its
adjusted vote

12: Select an external CF from Secf using roulette wheel selection and their
adjusted votes cfe = RW (Secf )

To simplify the hyper-parameters, one threshold value is used as a com-
mon filter for both external tasks and CFs. Using the uniform distribution
for the sharing selectivity might not filter out all negative transfer. How-
ever, when there are more and more tasks, the most related tasks always
have the highest probability to share with one another.

The vote (applicability) of an external CF, see step 10 of Algorithm 5.1
is adjusted regarding the performance of the shared CFs between the two
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OLs on the source and the target tasks. The adjustment is based on the rate
between the total CF-fitness of shared CFs in the target task and the corre-
sponding amount in the source task. The better performance of shared CFs
on the target task, the higher adjusted vote the external CF can get. This
adjusted applicability is also used for the external CF when competing
with existing CFs in the OL of the target task for constructing rules.

5.2.3 mXOF for Multi-class Classification

Multi-class classification can be converted into multiple binary classifi-
cation problems, where each class corresponds to a binary classifier, i.e.
an XOF. Each binary classifier is responsible for recognising its associated
class (one versus other classes). Subsequently, all the binary classifiers
can work synchronously on each same instance with rewards converted
from the ground truth. That is, while each system receives the same en-
vironment state (instance input) each iteration, only one that works on
the true class of the instance should output 1 to receive maximum reward
(e.g. 1000) and other systems should output 0 for the maximum reward.
mXOF can be considered a multi-class classification system, where each
XOF recognises one class.

When evaluating an instance on the test set, each binary classifier pro-
duces a recognition probability, or a confidence level, that this instance
belongs to the class corresponding to the classifier. The probability is nec-
essary in case multiple binary classifiers output True on an instance in
multi-class classification tasks. The chosen class is simply the class of the
system with the highest probability.

The implementation of the recognition probability is based on the predic-
tion array of XOF. Specifically, the probability of action 1 (True), which
means the corresponding class is detected, is:
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P (1) =

∑
cl2[A]jcl.action=1 cl.prediction× cl.f∑

cl2[A] cl.prediction× cl.f
. (5.3)

This is the rate of the total fitness-weighted prediction of action 1. Thus,
the probability of action 0 is P (0) = 1− P (1). When more than one binary
classifiers produce the same highest probability, mXOF randomly selects
a class from the classes of such binary classifiers.

The possible downside of this strategy of converting multi-class classifi-
cation into multiple binary classification problems is that one balanced
dataset can become multiple imbalanced data. However, it is expected
that this problem does not have much influence on the result because XCS
can manage to balance its niches very well [129]. Conventional approaches
to dividing a multi-class problem into multiple binary problems also suf-
fer as building blocks that describe patterns for more than one class have
to be relearnt in each new binary problem. On the contrary, using mXOF
for multi-class classification provide relatedness among classes. The class
relatedness provides an insight knowledge on the relationships among the
associated classes.

5.3 Experimental Results

The experiments illustrate the benefit of automatic transfer by comparing
mXOF that simultaneously addresses several problems with individual
XOF on the same but separated problems. There are two criteria for com-
parisons: the learning performance as well as the discovery of complexity-
efficient CFs.

All parameters of each system in mXOF were the same as the correspond-
ing ones in single XOF for the same problems. Except for the rule popula-
tion size and stopping iteration, a general configuration of XOF for other
parameters was used in these experiments: the learning rate β = 0.2; the
crossover rate χ = 0.2; the mutation rate µ = 0.9; the experience threshold
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for deletion θdel = 20; the initial fitness of covered classifiers Finit = 0.01;
the probability of specificness pspec = 0.25 with maximum rule-condition
length set at twice the number of original input attributes; and the experi-
ence thresholds for subsumption θsub = 50. The learning performances in
these experiments were the number of exploration trials (instances).

The implementation is in multi-threaded Python with a progress synchro-
niser to assure all systems in mXOF experience the same number of iter-
ations during their learning processes. The purpose of this progress syn-
chronisation is to produce a more stable and reliable evaluation.

To track and evaluate approximately the generality rate of the most complexity-
efficient CFs in an XOF, the most efficient classifiers in action sets of ex-
ploitation, i.e. highest fitness per complexity, that satisfy:

cl.f/cl.complexity >= 0.9× max
cl2[A]

cl.f/cl.complexity. (5.4)

were collected. These classifiers are called exploit classifiers regarding
how they were collected. Exploit classifiers are also the classifiers selected
for collecting the OL. The tracked generality rate is the average generality
rate of the most efficient and accurate classifiers with cl.error = 0. Ex-
periments showed that the threshold of 0.9 in the above equation can be
changed in the range of [0.8, 0.95] without substantial impact on the learn-
ing performance and feature construction in most tested problems. The
generality rates of classifiers are estimated as follows:

cl.generality =
cl.matches

cl.matches+ cl.no matches
, thus (5.5)

cl.generality rate =
cl.generality

cl.complexity
, (5.6)

where cl.matches and cl.no matches respectively track the numbers of times
classifier cl matches and does not match all instances since it was created,
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and therefore the part cl.matches/(cl.matches + cl.no matches) provides
the generality of classifier cl as it tracks the probability that classifier cl
matches any instance.

5.3.1 MTL with Hierarchical Boolean Problems

Hierarchical Boolean problems are problems that combine a Boolean prob-
lem at the top-level with successive sub-problems (e.g. 3-bit Even-parity
problems) at the bottom-level (see Chapter 3). Because of this combi-
nation, hierarchical problems have highly complex underlying patterns.
Even though these problems can be small in scale (number of input bits),
the search spaces in solving them are much higher than other Boolean
problems, such as Multiplexer, at the same scale because they require com-
plex combination of attributes. Discovery of these patterns can simplify
the search of decision boundaries, i.e. the rules of XOF. These experiments
can be considered to involve related problems because at some stage of
learning, XOF can construct CFs covering the bottom-level 3-bit Even-
parity problem, which are common among problems.

mXOF is first evaluated on two set of multiple hierarchical problems. The
first set includes 12-bit Hierarchical Carry-one, 9-bit Hierarchical Multi-
plexer, and 9-bit Hierarchical Majority-on problems. All individual sys-
tems of mXOFs and single XOFs used the same population size of N =

2000 (Figure 5.2). The second experiment has two larger-scale problems in-
cluding 18-bit Hierarchical Carry-one and 18-bit Hierarchical Multiplexer
problems (Figure 5.3). In this experiment, individual systems of mXOF
and single-system XOFs all had the same population size of N = 20000.
These experiments also included mXOF, XCSCFC (with layered learning)
and XCS with the same higher population size of N = 50000. These prob-
lems require constructing relevant and complex patterns to simplify deci-
sion boundaries.

In both experiments, the performances of mXOF for each of these prob-
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Figure 5.2: Learning performance on multiple small-scale hierarchical
problems. The red lines show the average relatedness among tasks. Note:
0 is Hierarchical Carry-one, 1 is Hierarchical Multiplexer, and 2 is Hierar-
chical Majority-on.

lems are superior to those of single-system XOFs on corresponding prob-
lems. The MTL system also achieves higher accuracies compared with
the single-system method except for XCSCFC. This system has a similar
performance with mXOF on the 18-bit Hierarchical Multiplexer problem,
but it has a higher population size and also requires layered learning to
achieve such performance [63].

The average values of the relatedness parameters between 18-bit Hierar-
chical Carry-one problem and 18-bit Hierarchical Multiplexer problem are
illustrated in Figure 5.3. These parameters were averaged across 30 runs.
The relatedness (between two 9-bit problems) values start at high values
(1.0) as both tasks start with the same base CFs. The relatedness param-
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Figure 5.3: Learning performance on multiple 18-bit hierarchical prob-
lems. The red lines records the relatedness between two tasks. Note: 0

is Hierarchical Carry-one, 1 is Hierarchical Multiplexer.

eters declines quickly when the accuracies of these problems progress to
the accuracy of 100% as the OLs of these tasks diverge with their own
patterns (encoded in CFs). After reaching the maximum accuracy, the av-
erage relatedness maintains its value at around 0.8 for the relatedness of
Hierarchical Carry-one to Hierarchical Multiplexer and 0.6 for the oppo-
site relatedness. The difference in these converged values is due to that
the Carry-one layer enables growing CFs further than ones addressing the
lower Even-parity layer (e.g. the CFs in red rectangles in Figure 5.4) while
the Multiplexer layer does not. Thus, the XOF system for 18-bit Hierarchi-
cal Multiplexer problem normally stops growing CFs after discovering the
patterns for the Even-parity layer, which are also useful in 18-bit Hierar-
chical Carry-one problem. In contrast, the higher-level CFs customised for
the higher Carry-one layer in 18-bit Hierarchical Carry-one problem are
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not useful for the other problem.
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Figure 5.4: An optimal rule (prediction 1000) of the 9-bit Hierarchical Mul-
tiplexer problem with its equivalent ternary rules. With the generality
of 0.375 and the complexity of 9, its generality rate is 1/24. The CFs in
red boxes are reusable grown-patterns for any Hierarchical Boolean prob-
lem with parity in the lower layer (addressing the chunks of {D0, D1, D2},
{D3, D4, D5}, and {D6, D7, D8}).

The progress of discovering complexity-efficient CFs for both mXOF and
XOF is shown in Figure 5.5. The generality rate of exploit classifiers evolves
faster in mXOF since the discovery of complex and efficient CFs in all
systems supports each other. Specifically, the optimal set of complexity-
efficient CFs required to solve the 9-bit Hierarchical Multiplexer prob-
lem must include at least three CFs covering the three non-overlapped 3-
successive-bit chunks (see Figure 5.4), which correspond to three underly-
ing bottom-level 3-bit Even-parity problems, or the combinations of these
CFs. Such optimal CFs that can cover a 3-bit Even-parity problem must
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combine 3-bit input using XOR operator (with an arbitrary amount of the
NOT function). These CFs are the reusable grown-patterns among all Hi-
erarchical Boolean problems that involve parity. The sample rule in Figure
5.4 is optimal in terms of the complexity efficiency for the 9-bit Hierarchi-
cal Multiplexer problem. This rule contains various constructed patterns
(in red dashed boxes) that are transferable across the hierarchical prob-
lems. These patterns include the CFs covering the bottom-layer problems
and the CFs constructed intermediately (in three smaller red boxes).
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Figure 5.5: Generality rates on 18-bit hierarchical problems.

These shared patterns enable rules using them to generalise and so cover
a larger set of instances. The sample rule in Figure 5.4 is equivalent to 32

ternary rules. Because the niche of each ternary rule overlaps partly with
another, the coverage of these 32 rules is equivalent to 24 ternary rules.
Therefore, the sample rule in Figure 5.4 covers 24/26 = 3/8 of the instance
space, where 6 is the number of specified bits in these rules. The practi-
cal value of the optimal generality rate of 9-bit Hierarchical Multiplexer
problem is 3/8× 1/9 = 1/24 ≈ 0.0416.
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5.3.2 MTL with Low Relatedness

These experiments was to evaluate mXOF in its ability to prevent nega-
tive interactions among unrelated or slightly related tasks. These experi-
ment included two sets of Boolean problems: (1) 37-bit Multiplexer and 11-
bit Even-parity problems; and (2) 10-bit Carry-one and 11-bit Even-parity
problems. While 37-bit Multiplexer problem does not require complex
patterns, 10-bit Carry-one problem and especially 11-bit Even-parity prob-
lem can benefit from constructing complex CFs. In the second experiment,
some hierarchical patterns from 10-bit Carry-one problem can be useful
for 11-bit Even-parity problem, e.g. D0 × (!D5) and D7 × (!D2). However,
most of the hierarchical patterns from 11-bit Even-parity problem contain
no discriminative information for 10-bit Carry-on problem.

Figure 5.6 shows the learning performances of mXOF on 37-bit Multi-
plexer and 11-bit Even-parity problems together, and XOF on these two
problems separately. The learning curves of mXOF and XOF on corre-
sponding problems have no substantial difference. The learning process
of mXOF on 11-bit Even-parity problem can even converge to 100% faster.
The relatedness of 37-bit Multiplexer task to 11-bit Even-parity starts low
because their OLs start with base CFs encoding original data attributes.
Specifically, the starting OL of 11-bit Even-parity system is (D0, ..., D10),
while (D0, ..., D36) is the one in 37-bit Multiplexer system. Hence, only the
part (D0, ..., D10) in the OL of 37-bit Multiplexer system can be applicable
to the other system. It then increases a little before declining together to
the relatedness of around 0.2.

Two of the 30 runs of the single system on the 11-bit Even-parity problem
were stuck at the accuracy of 50%. In this run, one classifier containing
only one base CF in its condition dominated the rule population with very
high numerosity and fitness. This is because this problem poses a high
chance of local optima for XOF because of the influence of CF-fitness in
genetic operations. The diversity from an external task, the 37-bit Multi-
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plexer problem, helps XOF escape the local optima because solving the 37-
bit Multiplexer problem only requires XOF to use base CFs, which cover
all base CFs that the 11-bit Even-parity problem needs to balance before
generalising.

0 100 200 300 400 500
instances (x1000)

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

re
la

te
dn

es
smXOF 37bit Multiplexer (0)

mXOF 11bit Even-parity (1)
XOF 37bit Multiplexer
XOF 11bit Even-parity
mXOF related(0,1)
mXOF related(1,0)

Figure 5.6: Learning performance on 37-bit Multiplexer and 11-bit Even-
parity problems. It is noted that the relatedness between the two problems
are asymmetric.

Similar trends occur when learning multiple tasks with 10-bit Carry-one
and 11-bit Even-parity problems (see Figure 5.7). The learning perfor-
mances of both tasks in mXOF are not substantially different from learning
them separately with XOF. The relatedness on both two directions stays
relatively high in the beginning but then declines to the values of near 0.5

when 11-bit Even-parity system starts progressing. The fact that these re-
latedness parameters stays high in the early phase of both cases in this
section seems to suggest that this relatedness estimation does not reflect
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the relatedness of these tasks. This will be discussed further in Discussion
Section.
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Figure 5.7: Learning performance on 10-bit Carry-one and 11-bit Even-
parity problems.

5.3.3 Multi-class Classification using Multiple Binary Clas-

sifiers

This section will provide an initial investigation on the performance of
mXOF compared with several popular machine learning algorithms on the
UCI Zoo dataset. All results were evaluated using 10-fold cross-validation
in supervised learning. The baseline algorithms were tested using Weka
[49] mostly with default settings except for Multi-layer Perceptron (MLP)
and Random Forest. Random Forest was set with the batch size of 200,
which was the best result among several tested batch sizes. MLP used two
hidden layers of sizes 15 and 10. mXOF scores 95.83% and 96.25% on av-
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erage with the population size of N = 500 and N = 1000 for each system
respectively (see Table 5.1). These population sizes are considered rela-
tively small for XCSs. These results are competitive compared with other
popular machine learning algorithms in this experiment even though the
differences are not statistically significant based on the Wilcoxon Signed-
Ranks test with p-value < 0.05.

Table 5.1: Results on the UCI Zoo dataset in supervised learning.
Problem UCI Zoo

Naı̈ve Bayes 95.05%

SVM 92.08%

MLP 95.91± 0.42%

C4.5 92.08%

Random Forests 96.07± 0.65%

mXOF (N = 500× 7) 95.83± 1.09%

mXOF (N = 1000× 7) 96.25± 1.30%

Figure 5.8 illustrates the average relatedness of class “reptile” to other
classes. The initial class relatedness starts at near 1.0 because all binary
classifiers start with the OLs of all original data attributes. All the relat-
edness values fell to the converged values equivalent to the final related-
ness in Figure 5.9 as the systems generalise their rules with fewer discrim-
inative features. The class “reptile” has the most interactive relatedness
with four other classes because the optimal rules for “reptile” include the
largest number of data attributes. Therefore, it has a high chance to share
common building blocks with other tasks. On the contrary, class “bird”
needs only attribute “feathers” to be recognised from other classes. Also,
this attribute is only needed for class “bird”. These two factors result in no
link between “bird” and other classes.
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Figure 5.8: The dynamic flow of relatedness of task for class 2 to other
tasks/classes (UCI Zoo dataset). Classes numbers correspond to actual
classes as follows: 0: mammal, 1: bird, 2: reptile, 3: fish, 4: amphibian, 5:
insect, and 6: invertebrate.

5.3.4 Discussions

The above results show that the relatedness among tasks can guide the
sharing of constructed knowledge among tasks in mXOF to improve the
learning performances of related tasks. The learning processes of each
task can benefit from useful CFs found in other tasks. The estimated re-
latedness among tasks can also lower negative interference among rel-
atively unrelated tasks that could reduce the performance of each task.
As a result, the learning performances of these tasks remain unchanged
compared with separate learning. On the other hand, the feature shar-
ing among tasks also reinforces the relatedness when useful CFs become
common among tasks and thereby dynamically change the relatedness pa-
rameters.
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Figure 5.9: The final relatedness of 7 classes in the UCI Zoo dataset. This
result in from one of 30 runs.

The high values of relatedness in the early phase of the two experiments
in Section 5.3.2 do not show that these tasks are highly related. However,
they do share common CFs in the early phase because, in this phase, each
system has not grown complex CFs other than base CFs, the common raw
input signal. This situation is similar to the beginning phase of human
learning to recognise different objects using signals from the same sense.
The decreases of these values happen quickly when the 11-bit Even-parity
system starts generalising by building up complex patterns to replace orig-
inal data attributes. This explains why two relatively unrelated tasks have
such high relatedness in the early learning phase. Similarly, the related-
ness of the 18-bit Hierarchical Carry-one task to the 18-bit Hierarchical
Multiplexer task declines quickly to the relatedness values of around 0.6

because these systems build up complex patterns with a limited diver-
gence. They start to diverge with their own complex-pattern discovery
including patterns specialised for their problems. The contradiction be-
tween the system divergence and feature sharing in mXOF causes the re-
latedness to balance at around 0.6. In short, the relatedness parameter in
our experiments updates itself according to the actual dynamics of con-
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structing tree-based features.

The transferred CFs also provide each system in mXOF external diver-
sity, which can be valuable in escaping local optima. The learning process
of mXOF on 11-bit Even-parity problem when learning with 37-bit Mul-
tiplexer problem can even converge to 100% faster than XOF because of
the small external influence from the task solving 37-bit Multiplexer prob-
lem. In the case of highly related tasks (multiple hierarchical problems),
this influence results in easier accuracy convergence of mXOF on 18-bit
hierarchical problems.

mXOF can also work as a multi-class classifier with competitive results on
the UCI Zoo dataset. The supervised-learning accuracy of mXOF tends
to increase with larger population size. However, the optimal rules for
this dataset mainly use (AND,OR,NOT ) logics with the original data at-
tributes. The transferable building blocks are only the original attributes.
Therefore, the benefits of growing and sharing complex features among
tasks are not applicable. However, the experiments of mXOF on this dataset
are an initial investigation to show its potential in solving multi-class clas-
sification and demonstrating the links among classes. Theoretically, mXOF
could benefit the tasks that require latent features where the improvement
of feature construction can result in higher accuracy.

The idea of automatically adjusting the transfer among tasks in mXOF
fits well for online learning, especially when tasks share common input
signals (original features). For offline tasks with big data, pre-learning
investigation of transfer learning with statistical approaches could be more
efficient.

5.4 Chapter Summary

This chapter has introduced a multitask online-learning system using mul-
tiple XOFs with the ability to automate the feature sharing among tasks
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automatically. By crafting internal parameters of the hypothesised task re-
latedness to guide the automatic feature transfer, mXOF can improve the
learning performances of individual tasks when they are related. It also
reduces transferring harmful signals from other tasks when they are not
supportive of a target task. The relatedness parameter based on the OL
of XOF estimates reasonably the dynamic commonality of patterns among
tasks. The dynamic update of relatedness is essentially useful for learn-
ing systems with feature construction, e.g. mXOF, because the benefit of
sharing features among tasks may only occur at some specific stages of
feature-complexity growth. However, further development and investi-
gation on mXOF is necessary to explore its abilities on a broader range of
problems.

Having the problem relatedness measurements can help create network
links among target objects of the binary classifiers in mXOF. Therefore,
learning more objects/tasks builds up this knowledge network. This net-
work enables links of only specific knowledge that could be useful for a
target task. In an AI system with a high volume of accumulated knowl-
edge, this ability is essential to avoid intractable search spaces when query-
ing all knowledge.

Future research can consider mXOF for the context of continual and mul-
titask learning. The reason is that in mXOF, learning a new class only
requires spawning a new system without remarkable negative impacts on
existing tasks given a proper estimation of relatedness. Learning a new
class could take advantage of the bias of previously learned knowledge
to acquire relevant knowledge within fewer examples. This is equivalent
to human/robot learning to recognise multiple objects using signals from
the same sense/sensor.

Because XCS and the OF module can be considered frameworks to be in-
tegrated with different representations (for its rules), mXOF is not bound
to using only tree-based programs (CFs). Future research could consider
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integrating mXOF with neural networks to learn real-valued data. This
integration could enable combining global optimisation and local optimi-
sation. Furthermore, it could grow complexity-efficient network struc-
tures to address meaningful aspects of target tasks instead of black-box
networks.

The next chapter introduces a further parallel system that uses multiple
CF-based XCSs to learn multiple problems simultaneously and continu-
ously. Instead of transferring features in mXOF, this system accumulates
complex knowledge by reusing ruleset functions [3]. This system is de-
signed to solve hard problems by discovering complex decision bound-
aries instead of complex features. This work develops a parallel system
based on layered-learning, XCSCF* [6], to solve Boolean problems at any
scale.



Chapter 6

ConCS: A Continual Classifier
System for Continual Learning of
Multiple Boolean Problems

Human intelligence can simultaneously process many tasks with the abil-
ities to accumulate and reuse knowledge among tasks. These abilities en-
able solving more complex problems progressively. The recent approach
of Layered Learning provides Artificial Intelligence with such abilities but
requires human guidance for the order of tasks or only targets a specific
problem.

In the previous chapter, a multi-XOF system (mXOF) automates the trans-
fer of CFs and solves multiple problems concurrently. However, mXOF
was suitable for multitask learning with classification tasks only as it is
focused on the relationships among classes.

This chapter aims to develop a system that solves multiple prediction
problems concurrently such that once one is solved, it can contribute to
solving others. The hypothesis is that the Evolutionary Computation ap-
proach of Learning Classifier Systems, due to the nature of its cooperative
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rules, is suitable for this concurrent learning. A system of parallel classi-
fier systems that can solve multiple tasks cooperatively and continually is
proposed. Each agent utilises Code Fragments (CFs) to represent knowl-
edge plus reuses CF-based knowledge from other agents to solve its task.
Distinct Boolean classification problems that are either dependent or in-
dependent are used to test the novel system. Results show that by com-
bining knowledge from simple problems, complex problems including in-
tractable ones for single-agent approaches can be solved at any scale. Not
only is human guidance unnecessary for the learning order, but the system
also produces the curricula for autonomous learning.

6.1 Introduction

Accumulating and transferring/reusing knowledge are inherent abilities
of humans. A human accumulates knowledge through his/her lifetime
from the most intuitive concepts and simple skills to increasingly abstract
and complex knowledge [108]. This increasing order of knowledge diffi-
culty is important for fast learning progress, but humans do not need strict
orders of problems, skills, and lessons to progressively acquire knowl-
edge.

The abilities of knowledge accumulation and reusability are also desir-
able features for Artificial Intelligence (AI) systems [123, 125] as learning
complex problems from scratch faces the challenge of intractable search
spaces. Layered Learning (LL) is a sequential learning paradigm that can
achieve such abilities [119]. LL enables learning complex knowledge, plus
functions to manipulate this knowledge, by incrementally learning a se-
ries of sub-tasks and associated component knowledge, where previous
knowledge, i.e. functions and skills1 can bootstrap later tasks. Similarly,
continual learning is an AI concept that encapsulates the continuity of

1A skill is a function without a returned value, e.g. the loop skill
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the sequential learning process with knowledge reusability [112]. These
mechanisms are analogous to how humans accumulate knowledge, as
mentioned above. LL normally refers to sequential LL by default, which
assimilates knowledge components sequentially. Sequential learning re-
quires human guidance to specify a learning order that allows each learn-
ing stage to obtain its target knowledge. However, this guidance is not
always achievable if the knowledge is new to humans. Also, it limits the
autonomy of the AI system. Automatic discovery of the learning order is
also a desirable ability for an AI system because it provides understand-
ings on the dependencies among knowledge components. This feature
leads to concurrent LL, which is learning all stages of sequential LL in
parallel without the requirement of the learning order [110, 139]. How-
ever, a concurrent LL system targets only a specific problem. This limits
the potential of such systems to be within specific domains.

This work aims to utilise knowledge reusability in a system of multiple
distributed learning agents2 to accumulate knowledge and solve multiple
problems for the following benefits. First, the intractable search space of
a complex problem can be divided amongst agents to ease the task. By
solving more problems, the system can accumulate more knowledge and
maximise its problem-solving capability. Second, having multiple agents
can minimise the complexity of each agent, which arguably encourages
the generality of each agent. Accordingly, the system can flexibly adapt
its complexity during its operation by adding or removing agents. Lastly,
this system can work as a continuous AI system [85] designed for problem-
solving, especially pattern discovery, and state-action-reward/state-class
predictions.

Evolutionary Computation (EC) algorithms can learn optimisation prob-
lems through building blocks that can facilitate sharing knowledge [3, 63].
There are many attempts to exploit this feature of EC to develop EC algo-

2In this chapter, an agent is a complete EC system.
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rithms with the ability to reuse knowledge across multiple tasks.

One of the research directions in EC focused on this ability is evolutionary
multitasking [100]. This research direction is related to this work in terms
of the distribution property but such algorithms are mainly designed for
optimisation, rather than classification tasks here.

The use of Code Fragments (CFs), a form of tree-based programs, in LCSs
has extended their scalability, particularly by enabling knowledge reusabil-
ity. This ability makes CF-based LCSs promising algorithms for imitating
human-learning abilities. Alvarez et al. showed that an LCS-produced
ruleset could be treated as a function, which is reusable in future tasks
[3]. As well as transferring the learnt skill or manipulating knowledge,
relevant building blocks of knowledge can also be transferred in the form
of CFs. He then extended the reusability of ruleset functions to produce
XCSCF* [6] with LL. This system was able to discover the logic for the
Multiplexer problem domain, so can solve the problem at any given scale.
However, these attempts at implementing the ability to reuse knowledge
were limited to sequential learning. This required human interventions
to specify the numbers of transferred CFs and design a curriculum. De-
signing a curriculum is a non-trivial task because it requires deep under-
standing of target problems in advance [11]. Therefore, these systems were
strictly limited in flexibility and not appropriate for an autonomous con-
tinual learning system.

In this study, a novel continual AI system of multiple XCS-based agents,
termed Continual Classifier System (ConCS), is proposed. ConCS is tar-
geted to learn multiple tasks in parallel and continuously. ConCS solves
problems with the ability to accumulate knowledge in a knowledge pool
and reuse it in novel tasks. The research objectives for ConCS are as fol-
lows:

• To develop continual learning in LCSs, which will be tested in com-
plex Boolean problems that are intractable to independent learning.
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• To learn curricula through automatically determining the next prob-
lem that is most appropriate to address, and thereby removing the
requirement of human intervention in layered learning [6, 7].

• To discover knowledge dependencies among problems through learnt
solutions. The representation of CFs in solutions should enable a
clear understanding of learnt problems.

One may relate the learning paradigm of ConCS with Multitask Learn-
ing (MTL) [28]. The general concept of MTL is to learn multiple different
tasks together to improve the learning performance of each task. Techni-
cally the proposed ConCS also learns multiple tasks together, but it differs
from standard MTL in its purpose. ConCS not only improves the perfor-
mances of increasingly more complex tasks (the complexity of tasks is set
a priori, and remains fixed in standard MTL) but also serves as a general
Boolean problem-solving system. This includes being able to handle un-
relatedness among the presented tasks. Furthermore, a general problem-
solving system should also be able to solve problems arriving at any arbi-
trary time, unlike standard MTL where tasks (typically only two) are pre-
sented simultaneously. Furthermore, MTL considers optimisation prob-
lems, whereas ConCS is specialised on classification problems. For these
reasons, the learning paradigm of ConCS incorporates core aspects of LL,
continual learning [112], and multitask learning, where the system learns
multiple problems/tasks incrementally and continually.

There is an important paradigm shift in designing test problems when
switching from learning systems that consider a single problem to contin-
ual learning systems. As a human cannot learn integration without first
knowing addition, the building blocks (both knowledge and skills to ma-
nipulate the knowledge) must be made available. In Genetic Program-
ming (GP), the researcher defines the function and terminal set, while, in
ConCS, it is the problems themselves and the skills/functions they pro-
vide that are paramount, e.g. once the Boolean “AND” problem is learnt,
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the “AND” function can be reused along with its component knowledge.

ConCS will be tested with 19 problem types, including regression and clas-
sification problems, to demonstrate its learning capabilities. Boolean prob-
lems are an appropriate testbed as known solutions exist for comparison,
they can be set at increasingly complex scales and are likely to make vary-
ing dependencies (i.e. certain problems are unrelated, whereas others have
known relationships). The final target problems in this set are four hierar-
chical problems: Hierarchical Carry-one, Hierarchical Even-parity, Hierar-
chical Majority-on, and Hierarchical Multiplexer. They are two-layer prob-
lems with Carry-one, Even-parity, Majority-on, and Multiplexer problems
at the upper layer and a 3-bit Even-parity problem at the bottom layer.
These problems have high epistasis, overlapping niches, and benefit from
a hierarchy of knowledge being learnt (see Chapter 3). Experiments will
run multiple problems at the same time to see whether the system can
learn the logic behind all problems without guidance, pseudo simultane-
ously, i.e. all problems are presented at once where ConCS is to determine
the best sequence to solve them. The results are evaluated using the hier-
archical problems at scales which no other system has been able to solve
without a learning curricula/sequence order provided by humans a pri-
ori.

6.2 ConCS: Continual Classifier System

The section provides description of the Continual Classifier System (ConCS).
ConCS is composed of multiple agents, where each is dedicated to a task
(see Figure 6.1). The target of the whole ConCS is to accumulate knowl-
edge from its agents. This global target is expected to support the problem-
solving capability of the agents of ConCS. Note the global target is not
needed a priori, plus a new one can be given once an old one has been
reached without the need for retraining. The proposed system spawns a
new agent for each task. The objectives of each agent are not only solving
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its problem, but also accumulating knowledge from solving its problem
into the knowledge pool of ConCS, which is the common goal of the whole
ConCS. The problem-solving capability is validated with its ability to scale
and comprehend harder problems with increasing complexity.

ConCS
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Figure 6.1: A simplified illustration of ConCS. Each environment (Env)
represents a task.

Communication among agents in ConCS is indirect and limited to inter-
actions through the knowledge pool. An agent can extract skills and func-
tions from the knowledge pool to reuse after it has learnt a problem, it can
append its completed skill/function to the pool. That is, a skill/function
maps from input to output, which can be learnt through rules mapping
conditions (subsets of input) to actions (output).

Continual multitask learning produces challenges for ConCS. First, ConCS
without the curricula might pick up a complex task by chance and get
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stuck there. The intuitive resolution is that ConCS should focus on the eas-
iest problems, which usually feedback positively with the least effort. This
leads to a need for a priority of agents for access to the CPU. Ultimately,
ConCS will be configured for truly parallel GPU-based cloud computing
but initial development is kept simple to avoid confounding factors. Sec-
ond, the search space becomes larger as more knowledge is available. To
add limits to the search space, the type-fitting XCSCFA introduced in XC-
SCF* [7] is also used as the learning agent in ConCS to learn both subprob-
lems and target problems. XCSCFA with the type-fitting property can di-
vide the search space into smaller sections by compatible types [7]. This
enables accumulating more knowledge without making the search space
of each agent intractable. Therefore, there are three key components of
ConCS to address these issues: stochastic agent preference, type-fitting
XCSCFA, and knowledge management. These components will be de-
scribed in the following subsections. This chapter also provides a brief
explanation of all subproblems designed to bootstrap the system with low-
level knowledge.

6.2.1 Type-fitting XCSCFA

A new implementation of XCSCFA with a type-fitting property in gener-
ating CFs is employed as the common algorithm for the agents of ConCS.
The type-fitting property is a novel CF-generation method (described be-
low in Section 6.2.1.1). This version of XCSCFA generates verifiable CFs as
it enables the type-fitting property in generated CFs. This property guar-
antees connected nodes within generated CFs to be compatible with one
another and the CFs’ input and output to be compatible with the problem
(environment). Although ConCS is not limited to using only XCSCFA, this
algorithm is suitable to learn the high-level logic behind the tested prob-
lems as it can address both regression and classification problems. ConCS
must be able to spawn an agent with a suitable algorithm (or multiple
agents) if no prior experience regarding a new problem is detected.
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The term “base CFs” from XOF is used to indicate pre-provided CFs, which
are all candidates for leaf nodes of CFs. Base CFs contain information for
both input attributes and the constant L to store the length of an input in-
stance in XCSCFA. However, providing a constant L is infeasible because
many problems have variable sizes. Therefore, in addition to base CFs for
attributes, XCSCFA provides a base CF listing all attributes attlst in the or-
der provided by the problem. It is assumed that this is also a more general
way of providing inborn knowledge.

6.2.1.1 Type-fitting Code Fragments

Inspired by Strongly-Typed GP [96], the type-fitting method for generating
CFs, called Typed-CFs (T-CFs), was introduced to reduce the search space
by fitting each node with only compatible inputs and outputs. T-CFs are
designed to create eligible and meaningful CFs. Being meaningful refers
to the compatibility of each function node, where the output type of a
function in the node cfi must be compatible with the input types of the
function in the node cfj that takes cfi as input. Being eligible includes two
conditions: the output type of root node function must be compatible with
at least one of the action types of the problem, and the leaf nodes are CFs
from the set of base CFs. Ultimately, type-fitting method keeps learning
agents from generating unworkable CFs.

Accordingly, generating T-CFs applies a top-down recursive process of
generating tree nodes, i.e. the function genNode illustrated in Algorithm
6.1. In ConCS, the depth limit of CFs is kept as 2 as in the original defi-
nition of CFs [63]. The tree depth is the highest count among all possible
accumulated levels of all function nodes when traversing from root node
to leaf nodes. Most functions have an equal level of 1 including axiomatic
and learnt functions. Only function constant, which output an unchanged
value, is considered to not adding any depth to CFs.

Generating a new CF needs to match with the action types of the problem
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and available output types from the base CFs. First, the top node of a T-CF
must employ a function with output type(s) compatible with the action
type(s) of the problem. Then the process recursively builds lower-level
nodes that satisfy the type-fitting property. At any point when generating
nodes, there is also a fixed probability of 0.5 for generating a leaf node
from base CFs, which stops the CF from going any deeper.

There are four possible types in this implementation: Boolean, integer,
float (real numbers), and list. While Boolean variables are compatible with
integers and floats, and integers are compatible with floats, the compatibil-
ity does not follow the opposite way. Lists are not compatible with other
types. Several improvements for XCSCFA [62] are proposed to process re-
dundant genotypes of functions (function versions). The following section
will describe one problem related to function genotypes. Another case of
processing genotypes is in compacting functions, which will be introduced
in Section 6.2.2.1.

6.2.1.2 CF Equality

Two CFs are equal if they have the same genotype. However, because
there can be distinct versions of the same function, the definition of hav-
ing the same genotype varies case by case. For example, in a problem, if
two CFs have the same genotypes except that two corresponding nodes
have different genotypes of the same reused function, they are considered
unequal in general learning processes. This enables reusing the diversity
caused by function genotypes. This diversity is rational because two geno-
types of a function can behave unevenly in problems other than the one
that produces the function. On the contrary, the inequality caused by func-
tion genotypes is ignored when checking the equality of classifiers during
extracting functions (see Section 6.2.2.1). Even though they have different
versions of functions f , they do not demonstrate any distinction of knowl-
edge. Also, when two classifiers with only such differences are always
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Algorithm 6.1 T-CFs are generated based on a recursive function for gen-
erating nodes. The function is given the set of action types Ta, the type
set of base CFs Tb, the expected output types To, the expected input types
Ti, the intermediate level l (starting from level 2 at the root node with the
maximum depth), and a clustered set of all functions Sf . Each function
has a level (f.level) that adds up the depth of CFs when traversing from
root node to leaf nodes.

1: procedure GENNODE(To, Ti, l)
2: Set an empty set of compatible input types for recursively generat-

ing the input nodes of the returned node (in this function) Ti′ = φ

3: if l = 2 then
4: Output types To = Ta

5: if l = 1 then
6: Output types Ti′ = Tb ∪ {integer}

7: Filter function set Sfiltered from Sf by required output types To and
input types Ti

8: Function f = randomSelect(Sfiltered)

9: for input at position (index) i of all required inputs of f do
10: if l − f.level > 0 and random[0, 1) < 0.5 then
11: input i of f=GENNODE(types of input i of f ,Ti′ , l − f.level)
12: else
13: Set of compatible base CFs SbCF = φ

14: if type integer ∈ types of input i of f then
15: c = randomSelect([1, ..., len(Atts)])

16: for cfbase in all base CFs do
17: if cfbase.out types&typesofinputiof f6= φ

then
18: Add cfbase to SbCF

19: inputiof f= randomSelect(SbCF )
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correct in a target problem, they should behave equally throughout the
course of learning the problem.

Based on the above principles, the comparison of any pair of CFs is a
recursive process as illustrated in Algorithm 6.2. Step 3 is the key step
as the comparison of two corresponding function nodes depends on the
flag ignore func ver. Two nodes are only considered equal if they use
the same function with the same version when the flag ignore func ver is
False, which counts the difference of function versions. Otherwise, they
just need to use the same function to be considered equal. Once the two
current nodes are considered unequal, a comparison value of False will
be recursively returned to the outermost layer of the comparison process.
In the case where the current nodes are considered equal, the process will
ignore them and traverse towards their leaf nodes until finding a returned
False or no unequal result on all corresponding nodes of two CFs, i.e.
equal CFs.

6.2.2 Knowledge Management

The knowledge pool is the collection of built-in and obtained skills/functions/CFs.
In other words, it is the function set listing all available knowledge (how
features through functions/skills are related to higher order features (CFs)
and ultimately to actions). Agents search for solutions by combining func-
tions from this function set and their base CFs. At the beginning, the
knowledge pool has prerequisite knowledge, termed built-in axioms (see
Table 6.1). These built-in axioms must include the building blocks required
to construct solutions for the target problems (see Section 6.2.3), which
is common practice in GP algorithms [74]. In addition to the necessary
building blocks, the knowledge pool also provides general functions for
Boolean problems that might or might not be useful, with the assumption
that ConCS should be able to choose the appropriate functions. While the
majority of these functions are general knowledge that can be reused in
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Algorithm 6.2 Comparing two CFs, cfi and cfj . The parameter
ignore func ver defines whether the difference of function versions in cor-
responding nodes makes the comparison return False. cf.function is the
function in the root node of cf . cfj.func version is the version of the func-
tion in the root node of cf . len() is a function returning the number of
elements in the input.

1: procedure CF EQUALS(cfi, cfj, ignore func ver)
2: if cfi = cfj (check reference/pointer) or both CFs

are constant CFs with equal constants then return True

3: if cfi.function 6= cfj.function ∨ (¬ignore func ver∧
cfi.func version 6= cfj.func version) then return False

4: if len(cfi.branches) 6= len(cfj.branches) then return False

5: if the branches of cfi.function are exchangeable in order then
6: for root-node branch sub cfi of cfi do
7: a match not found yet matched = False

8: duplicate a list of root-node branches of cfj in branchesj
9: for root-node branch sub cfj in branchesj do

10: if CF EQUALS(sub cfi, sub cfj, ignore func ver) then
11: found a match matched = True

12: remove sub cfj from branchesj

13: break out of the most recent loop

14: if ¬matched then return False

15: else
16: for i ∈ [0, ..., len(cfi.branches)− 1] do
17: if¬EQUALS(cfi.condition[i], cfj.condition[j], ignore func ver)

then return False

18: return True

many other problems, some of them are tailored for these problems and
may not be generally applied.
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Table 6.1: Axiomatic skills and functions. The operator x[a, b] is to extract
a list of items of the list x starting from the index a to, but not including,
the end index b. Binary numbers are in the form of list (0, 1). ⊕ and 	 are
binary addition and subtraction respectively.

Skills &
Functions (tag)

No. Inputs
(inputs)

Input
types

Output
type

Operation

AT (@) 2 (x0, x1) list, integer any type x0[x1]

LENGTH (len) 1 (x0) list integer len(x0)

AND (∧) 2 (x0, x1) Boolean Boolean x0 ∧ x1
OR (∨) 2 (x0, x1) Boolean Boolean x0 ∨ x1

XOR (x) 2 (x0, x1) Boolean Boolean x0 xor x1
NOT (¬) 1 (x0) Boolean Boolean ¬x0

FLOOR (floor) 1 (x0) integer, float integer bx0c
CEIL (ceil) 1 (x0) integer, float integer dx0e = bx0 + 1c

SUMMATION of
list items (sum)

1 (x0) list integer, float sum(x0)

ADD (+) 2 (x0, x1) integer, float integer, float x0 + x1

SUBTRACT (subt) 2 (x0, x1) integer, float integer, float x0 − x1
MULTIPLY (mul) 2 (x0, x1) integer, float integer, float x0 × x1

DIVIDE (div) 2 (x0, x1) integer, float integer, float x0/x1

GREATER (isGreater) 2 (x0, x1) integer, float Boolean x0 > x1?

HEAD (head) 2 (x0, x1) list, integer list x0[0 : x1]

TAIL (tail) 2 (x0, x1) list, integer list x0[x1 : len(x0)]

GENERAL LOOP
(loop)

2
(x0, x1, x2)

function,
list, integer

list
convolve x1 by

function x0 with
problems size x2

LOG2 (log2) 1 (x0) integer, float integer, float log2(x0)

BINADD (binadd) 2 (x0, x1) list (of Boolean) list (of Boolean) x0 ⊕ x1
BINSUB (binsub) 2 (x0, x1) list (of Boolean) list (of Boolean) x0 	 x1

BIN2DEC (bin2dec) 1 (x0) list (of Boolean) integer
convert

Binary number
to decimal

MODULO (mod) 1 (x0) integer integer x0%2

CONSTANT (c) 0 () N/A integer
return a

constant number
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The general loop is a general skill that requires a core process, i.e. a function,
given by the input x0 to become a function. General loop iteratively applies
function x0 on input list x1 with a moving starting-point sit (Figure 6.2).
In the first iteration, function x0 processes x1 from the first item. At each
iteration, the starting point on x1 moves x2 steps from the preceding iter-
ation to extract the input for x0. The loop ends when the starting point
moves beyond the end of x1. The output of a loop is the concatenated list
of outputs of x0 in all its iterations.

Yes

No
len

output of loop 

append  to 

Figure 6.2: Flowchart of a function with the loop skill. This function itera-
tively applies another function x0 on x1 with a step size of x2 and concate-
nates the iterative output in Oloop.
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The initial subproblems are not divided any further although it was demon-
strated that CF-base XCSs could learn such functions from even smaller
subproblems [3]. Future work with ConCS will explore the intellectually
interesting question of “what are smallest axioms that can initialise learn-
ing?”

6.2.2.1 Function Post-processing

When an agent solves a problem successfully for more than 500 instances,
it will try to post-process and extract a solution from its population to form
a function for its trained problem. The goal is to provide compact and
readable rulesets for extracted functions that can be efficiently compared
with existing functions and future learnt functions. The compaction step
here is not strict as it allows any two CFs with different genotypes and the
same behaviour (logic) to co-exist [5].

The function extraction is shown in Algorithm 6.3 with four main post-
processing steps. Firstly, the agent selects only experienced (exp ≥ θGA)
and accurate classifiers (err < θ0) from its population. Then, it finds the
highest fitness fmax in its classifier population. If the classifier with the
highest fitness (f = fmax) is a completely general rule (no specified at-
tribute in its condition), then all classifiers having low fitness (i.e. not
comparable to fmax or f < 0.5 × fmax) are filtered out. Otherwise, all
the classifiers after the first step are kept. The third processing step is to
merge all classifiers with the same condition parts and the same action
tree-structures except for having different versions in corresponding func-
tion nodes (same functions with different versions at the same positions of
equal tree structures). The comparison of two classifiers involves compar-
ing two trees, where the difference of function versions are ignored (see
Section 6.2.1.2 for the justification). Next, a subsumption step on the re-
maining classifiers of [P ] is executed to remove all over-specific classifiers
(step 15).
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Algorithm 6.3 Post-processing the rule population [P ] to add new func-
tions to the knowledge pool.

1: remove inexperienced or inaccurate classifiers with cl.exp ≤ θGA or
cl.err > θ0 or cl.prediction < 1000 from [P ]

2: set fmax as the highest fitness of the remaining classifiers
3: if fmax-classifier is general (its condition is empty) then
4: finding a subset of general classifiers general pop = ∅
5: for each cl in [P ] do
6: if len(cl.condition) == 0 ∧ cl.fitness ≥ 0.5× fmax then
7: general pop.add(cl)

8: if general pop 6= ∅ then
9: use the subset of general classifiers instead [P ] = general pop

10: duplicate mirror pop = [P ]

11: for cli in mirror pop do
12: for clj 6= cli in mirror pop do
13: if cli.equals(clj, ignore func ver = True) without considering

function versions in the function nodes then
14: keep one classifier in {cli, clj} with less computation cost

and remove the other from [P ]

15: do subsumption on [P ]

ConCS needs to check the equality of ruleset-functions to avoid adding
the same function more than once to the knowledge pool, which unde-
sirably enlarges the search space of all agents. In this case, two functions
are considered equal if they contain the same ruleset. ConCS confirms the
equality of two ruleset-functions by matching all rules of the ruleset of one
function to all rules in the rulesets of other ruleset-functions.
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6.2.3 Target Problems

Although real-world domains contain reusable patterns, existing bench-
mark datasets are often separate in the patterns they contain, e.g. UCI Zoo,
Wisconsin Breast Cancer, and Sonar datasets, where a discovered sample
distribution is not present in another dataset. Hence, this study needs a set
of problems with feature patterns that are constructed from sub-patterns
to test the scaling capability of ConCS in related problems. There is also a
need of separate problems as continual learning might face independent
problems with distinct patterns. Boolean domains satisfy these criteria be-
cause they have known solutions and are interrogable. Therefore, target
problems are four hierarchical problems and 15 subproblems to be solved
continually and simultaneously with the hierarchical problems. These
subproblems provide knowledge that is potentially prerequisite for the
target problems. In the Multiplexer domain, most of the subproblems are
identical to the subproblems used in XCSCF* [7].

The target problems, including subproblems, were selected with variable
scales, i.e. lengths of input bits. This requires successful solutions, if any,
to be scale invariant. The initial experiments show that, when learning
fixed-scale problems, constants (in the form of CFs) (see Section 6.2.1.1)
can contribute to generating solutions that are only valid at the fixed scale,
which inhibits scaling. Being scale invariant means that successful solu-
tions are capable of solving these problems at any scale. The description
of functions to be learnt alongside their anticipated operations are given
in Table 6.2.

Address Length of Multiplexer given Problem Size is a regression prob-
lem that determines the length of address bits k of a Multiplexer given
the problem size (2k + k) as the input x0. The anticipated operation is
[log2(len(x0))], where b.c is the floor operator (see Table 6.2).

Address Length of Multiplexer given Bitstring also outputs the same
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Table 6.2: To be learnt functions/skills. A few of them are highly reusable
in general cases. len() is a function to return the length of the input with
type list. (x0, x1, ...) are inputs of these functions.

Id
Functions

(abbreviations)
Inputs

Input
types

Output
type

Anticipated operation
to be learnt

0
Address Length
given Mux size

x0 integer integer blog2(x0)c

1
Address Length

given Mux bitstring
x0 list integer blog2(len(x0))c

2 Address Bits x0 list list x0[0 : blog2(len(x0))c]

3
Decimal value
of Address Bits

x0 list integer bin2dec(x0[0 : blog2(len(x0))c])

4 Data Bit Position x0 list integer
blog2(len(x0))c+

bin2dec(x0[0 : blog2(len(x0))c])

5
General Multiplexer

(mux)
x0 list Boolean

x0[blog2(len(x0))c+
bin2dec(x0[0 : blog2(len(x0))c])]

6 Half String Size x0 list integer len(x0)/2

7 First Half x0 list list x0[0 : (len(x0)/2)]

8 Second Half x0 list list x0[(len(x0)/2) : len(x0)]

9
Binary Addition

of 2 halves
x0 list list

x0[0 : (len(x0)/2)]⊕
x0[(len(x0)/2) : l]

10
Length of Binary

Addition
x0 list integer

len(x0[0 : (len(x0)/2)]

⊕x0[(len(x0)/2) : l))

11
General Carry-one

(carr)
x0 list Boolean

len(x0[0 : (len(x0)/2)]⊕
x0[(len(x0)/2) : l]) > len(x0)/2

12 Sum Modulo 2 x0 list Boolean sum(x0)%2

13
General Even-parity

(epar)
x0 list Boolean sum(x0)%2 = 0?

14
General Majority-on

(maj)
x0 list Boolean sum(x0) > len(x0)/2?

15
Hierarchical
Multiplexer

x0 list Boolean mux(loop(epar, x0, 3))

16
Hierarchical
Carry-one

x0 list Boolean carr(loop(epar, x0, 3))

17
Hierarchical
Majority-on

x0 list Boolean maj(loop(epar, x0, 3))

18
Hierarchical
Even-parity

x0 list Boolean epar(loop(epar, x0, 3))
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output with the previous problem but this problem takes in the Multi-
plexer bitstring as the input instead of the problem size.

Address Bits is an aspect of the Multiplexer domain. The output of this
problem is the list of address bits of a Multiplexer given the input bitstring.
The output should the first k bits of the input bitstring of size (2k+k).

Decimal Value of Address is to find the position of the data channel in a
Multiplexer and connect the channel to the Multiplexer output. The ex-
pected position here is the index in the data channels only without taking
into account the address bits. Therefore, the problem output is the deci-
mal value of the address-bit binary number. Thus, this problem considers
converting the address bits to a decimal value given the input bitstring
containing both the address bits and data channels.

Data Bit Position outputs the channel position, which connects to the out-
put of a Multiplexer, in the input bitstring. Thus, the learning agent needs
to take into account the address bits as well. This problem is anticipated
to require a combination of knowledge from the “Decimal Value of Ad-
dress” problem and the “Address Length of Multiplexer given Bitstring”
problem.

Variable-size Multiplexer is equivalent to a general Multiplexer problem
where the input has a varied length. Specifically, this problem samples en-
vironment states from 3-bit, 6-bit, 11-bit, and 20-bit Multiplexer problems.
This problem requires the value at the data channel connecting to the out-
put, i.e. the output of a Multiplexer circuit (see more details in Chapter
3). The final solution of this problem is anticipated to solve Multiplexer
problems at n-bit scales.

Sum Modulo 2 is to determine whether the total number of bits 1 in the in-
put bitstring is even or odd. Its anticipated output is the summation of the
individual bits in the input modulo 2. Variable-size Even-parity requires
True if the number of bits 1 in the input bitstring is even and False oth-
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erwise. It is variable in size (from 1-bit to 11-bit Even-parity problems) to
encourage only general solutions for the Even-parity problem domain. By
being general, the solution can solve the problem at any scale. The Even-
parity problems with relatively small scales (e.g. from 8 bits onwards) are
already intractable to standard XCS using the ternary encoding as XCS
cannot generalise to solve the problem but must form a one-to-one map-
ping of instances to rules.

Half String Size is a regression problem, which requests the learning agent
to predict the half-length of the input bitstring. This problem can sup-
port both the Carry-one problem domain and the Majority-on problem
domain.

First Half of Input requires the learning agent to output the first half of
the input bitstring. The output is considered a binary number represented
by a list of 0s and 1s.

Second Half of Input is similar to the “First Half of Input” problem but
the anticipated output is the latter half of the input bitstring.

Binary Addition of Two Halves requires the learning agent to add the
outputs of the two preceding problems, which are base-2 numbers repre-
sented in the form of binary lists. Outputs are also binary numbers repre-
sented by lists of 0s and 1s.

Length of Binary Sum is based on the output of the preceding problem.
The anticipated output of this problem is the length of the binary addi-
tion. This is to learn to predict the length of the binary number resulted by
adding the binary number of the first half and the binary number of the
second half.

Variable-size Carry-on requires the general logic behind the Carry-one
problem domain. It is to determine whether 1 is carried at the highest bit
when adding the binary number of the first half and the binary number of
the second half. The sizes of this problem vary from 2 bits to 12 bits.
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Variable-size Majority-on is similar to normal Majority-on problems, which
requires True if more than half bits of the input are 1, and False otherwise
as the output. Sizes of the input strings vary from 1 bit to 7 bits.

Hierarchical (variable-size) Multiplexer/Carry-one/Even-parity/Majority-
on are to train ConCS to learn the logic of the four Hierarchical problems
of Multiplexer/Carry-one/Even-parity/Majority-on. However, there are
local solutions that are only valid for fixed scales and not generalisable.
Hence, these subproblems are designed to be variable in size. All these
Hierarchical problems use the same low-layer logic of 3-bit Even-parity to
encode the input to the high-layer component. The scale of Hierarchical
Multiplexer and Carry-one problems is 18 bits, while the other two Hier-
archical problems have the scale of 15 bits.

6.2.4 Stochastic Task Preference

ConCS’ preference is to prioritise agents with higher learning progress.
A simple repeated Roulette Wheel selections based on agents’ learning
progress determines which agent to run at each iteration until there are
no more operating agents. This selection enables stochasticity, where even
agents with temporarily low progress are still run. In this work, the learn-
ing progress is defined as a parameter measured by the absolute accuracy
and the improvement of the accuracy of the agent:

progress = max(0.1× accuracyadj,∆accuracy), (6.1)

where accuracyadj is adjusted to initially start at approximately 0.5 for all
agents and 1.0 when the problem is solved. This leads to an initial progress
value of approximately 0.05 when there is no increase in accuracy. The
adjustment is as follows:

accuracyadj =


accuracy�jactionsj�1

jactionsj�1 × 0.5 + 0.5 if classification,

accuracy/2 + 0.5 if regression
(6.2)
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It can be inferred that the frequency of updating agent progress is equal
to the frequency of updating agent accuracy, which is set to once every
500 iterations (250 explored instances) for all agents. The progress can
be adapted autonomously but this work will investigate a simple estima-
tion.

6.3 Experiments

The proposed ConCS was evaluated by solving 19 different problem types.
Each agent is a type-fitting XCSCFA with a common configuration. The
experiments are also to examine whether the system (without human-
guided customisation) can work on all problems. The population size of
all agents is equal to 1000, which is considered small in the literature of
XCSs. Additionally, the minimum number of actions in the match set θmna
was set to 4 for both classification and regression problems. This value
of θmna encourages each agent to create more genotypes to increase the
chance of obtaining the desired CF-action.

Each experiment was run 30 times with 30 fixed random seeds. The stop-
ping criteria were when the agent consistently maintained 100% accuracy
for at least 50,000 instances, or when it reached the maximum learning in-
stances for each agent, i.e. 2,000,000 instances, which was chosen to be
arbitrarily large.

The first experiment of ConCS was run on 19 problems simultaneously
with 19 agents starting at the same time to show the discovery of the
network of knowledge (corresponding to 19 problems). Then, the per-
formances of ConCS were compared with those of XCSCF* using type-
fitting XCSCFA, on different sets of problems. In these experiments, XC-
SCF* shared the same configuration and the problem sets with agents of
ConCS, except that XCSCF* runs sequentially. ConCS and XCSCF* are also
compared with XCS and XCSCFC in solving target problems at specific
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scales. XCS and XCSCFC are configured with their empirical configura-
tions, which require much larger population sizes. Solutions yielded by
these two approaches are limited to solving the tested problems at fixed
scales. Additionally, another comparison of ConCS with XCSCF* and tra-
ditional GP in terms of accuracy in supervised learning was executed to
assess the generalisation of ConCS’ solutions.

Finally, an extra experiment with random arrivals of the 19 problems was
performed to show the ability of ConCS to learn continually and multiple
tasks in parallel. A problem was randomly chosen as a starting point. The
other 18 problems were initialised at random time from the starting point
using a uniform random generator within the range of 0 to one hour. The
arrival times were generated once and fixed in all 30 runs.

6.3.1 Discovered Knowledge

Experiments on all 19 problems demonstrated the ability of ConCS to
achieve 100% performances on all problems in all 30 runs (see Section 6.3.2
for details on learning performances). Table 6.3 shows the learnt solutions
from the agents. These acquired solutions are interpreted from the actions
of the rules in compacted solutions. It is noted that rule conditions of all
these acquired solutions are composed of only don’t care (all are “#” as
XCSCFA also use the ternary alphabet for rule conditions), i.e. matched
all possible inputs, which is expected as the learnt CFs in rule actions ad-
dress all inputs correctly.

For several problems such as the Even-parity problem, solutions acquired
for the same problem involve distinct genotypes in the CF-action, where
some contain bloat or inefficient solutions (see Table 6.3). However, the
bloat in such solutions is limited. It is trivial to verify that diverse solu-
tions for each problem are equal. Also, as acquired solutions are highly
interpretable, it is straightforward to confirm that these solutions in Table
6.3 are identical to the logic of the 19 given problems in Table 6.2. How-
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Table 6.3: Learned functions/skills. attlst is a based CF representing the
list of all inputs. Other inputs are x0, x1,etc. i, k refer to arbitrary integers
in constants (CFs).

Functions & Skills Function Name Learned Solutions
Address Length

given Multiplexer size
mux addr length floor(log2(x0))

Address Length
given MUX attributes

mux addr length2 mux addr length(len(attlst))

Address Bits mux addrbits head(attlst,mux addr length2(attlst))

Decimal value
of Address Bits

mux gate bin2dec(mux addrbits(attlst))

Data Bit Position mux databit
add(mux gate(attlst),

mux addr length2(attlst))

Variable-size Multiplexer mux @(attlst,mux databit(attlst))

Hierarchical Multiplexer hpar mux(loop(epar, x0, 3))

Sum Modulo 2 epar mod 2 mod(sum(attlst), 2)

Variable-size Even-parity epar

¬(epar mod 2(attlst))

greater(c(1), epar mod 2(attlst))

greater(div(i, k), epar mod 2(attlst)

(i ≤ k)

Hierarchical Even-parity hpar
epar(loop(epar, x0, 3))

epar(loop(epar, x0, 1))

Half String Size half length
div(len(attlst), 2)

mul(len(attlst), div(c(i), c(2i)))

First Half car headstring head(attlst, half length(attlst))

Second Half car tailstring tail(attlst, half length(attlst))

Binary Addition
of two halves

car binadd
binadd(car headstring(attlst),

car tailstring(attlst)))

Length of Binary Sum car lenbinadd len(car binadd(attlst))

Variable-size Carry-one carr
greater(car lenbinadd(attlst),

half length(attlst))

Hierarchical Carry-one hcar carr(loop(epar, x0, 3))

Variable-size Majority-on maj greater(sum(x0), half length(attlst))

Hierarchical Majority-on hmaj maj(loop(epar, x0, 3))
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ever, in certain cases, the evolved solutions deliver new and unexpected
insights into the problems.

The final solutions from Table 6.3 on all problems drew a network of knowl-
edge. This network enables learning about the dependencies of one prob-
lem on others. Figure 6.3 illustrates the learnt network of knowledge. An
arrow directed from a problem A or a pre-provided function f to a prob-
lem B means the solution for B uses the solution (i.e. learnt function) dis-
covered from learning problem A or function f . ConCS found that the Half
String problem is one of the most generally reused as it is used in at least
four other problems (car headstring, car tailstring, carr,maj). For the in-
nately provided skills, general loop loop, constant function c, and length
len are the three most popularly used functions. The constant function c is
the most used one as it creates the based CF attlst for almost all solutions.
On the contrary, others functions, such as binary operators (∧,∨,x) and
binary subtraction, were found redundant as they were never used in any
learnt solution.

6.3.1.1 New Understanding of Hierarchical Even-parity Problem

Table 6.3 lists all discovered solutions for the Hierarchical Even-parity
hpar problem. In addition to the expected first rule on the Table, ConCS
also yields the second strange rule in all 30 runs. This rule proposes a
new understanding of the Hierarchical Even-parity problem that was un-
expected before experiments. Specifically, the lower layer of Even-parity
loop with step 1 (represented by CF c1), is the Even-parity problem on each
bit of the input. The Even-parity problem on one-bit inputs can be inter-
preted as the negation of the only bit in the input. Therefore, the second
rule proposes that the Hierarchical Even-parity problem is equivalent to
a ‘flat’ Even-parity problem on the bitwise negation of the input bitstring.
This rule is validated theoretically below.
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Figure 6.3: The discovered network of knowledge by ConCS. See Table
6.2 and Table 6.3 for the acronyms of the pre-provided functions in green
boxes and the learnt functions (all boxes except green ones) respectively.
These provide curricular to learn the target (top non-green boxes) func-
tions given initial axiomatic skills (green boxes).

Verifying the new Finding of the Hierarchical Even-parity problem

According to the learnt functions in the experiments, the Hierarchical Even-
parity problem with the lower level of 3-bit Even-parity can also be in-
terpreted by an unexpected solution, which is an Even-parity problem
of the bitwise negation of the input bitstring. To verify this finding, let’s
say there is a pair of instance and expected output (X, y) for a Hierarchi-
cal Even-parity problem of size 3k, where k is an integer referring to the
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number of lower-level 3-bit Even-parity clusters. Input X is a bitstring
X = {x0, x1, x2, ...} with length 3k, so the input can be arranged in k non-
overlapped clusters: X = {Cl0, Cl3, , Cl6, ...}, where a cluster contains 3
consecutive bits Clk = {xk, xk+1, xk+2}. If the expected output is True,
y = 1, X satisfies the Hierarchical Even-parity problem:

∑
Cli2X

even parity(Cli)%2 = 0, (6.3)

⇐⇒
∑
Cli2X

even parity(Cli) = 2× l (6.4)

⇐⇒


∑

Cli2X ((
∑

x2Cli x)%2 == 0) = 2× l,∑
Clj2X ((

∑
x2Clj x)%2 == 1) = k − 2× l

(6.5)

⇐⇒


∑

Cli2X ((
∑

x2Cli ¬x)%2 == 1) = 2× l,∑
Clj2X ((

∑
x2Clj ¬x)%2 == 0) = k − 2× l

(6.6)

=⇒

(
∑

x22l clusters ¬x)%2 = 0,

(
∑

x2(k�2l) clusters ¬x)%2 = 0
(6.7)

=⇒
∑
x2X

¬x = 2n, (6.8)

where operator “==” returns 1 if two elements on both sides are equal
and 0 otherwise; l is a non-negative integer. Equation 6.8 infers that the
input X has an even number of bit 0. This is also the expected output of
the Even-parity problem of the bitwise negation of X .

On the other hand, for any instance created by the unexpected solution,
y = 1 leads to

∑
x2X ¬x = 2n (n is an integer). To see whether the Hier-

archical Even-parity rule also yields output 1 or not, let’s apply this rule
on the input of the instance. The even number of bit 0 can only be ar-
ranged in 3-bit clusters as follows: an arbitrary number le of clusters hav-
ing even numbers of bit 0, and an even number lo of clusters having odd
numbers of bit 0. That le clusters have even numbers of 0s means that
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each cluster has an odd number of 1s. The latent features applied to these
clusters will yield all 0s. Similarly, the lo = 2l clusters produce latent fea-
tures of 1s. Therefore, applying Even-parity on latent features, or, in other
words, applying Hierarchical Even-parity rule on the input of the instance
of the unexpected rule, the output is also y = 1. In the case of y = 0,
the proofs are analogous. In conclusion, the newly found unexpected rule
of the Hierarchical Even-parity problem in the experiment of the study is
validated.

6.3.2 Learning Performances

Figure 6.4 illustrates the learning performances of ConCS in the experi-
ment running all 19 problems concurrently. The average line depicts the
average accuracy of all agents regarding the total learning experience of
all agents. Representing the whole system by the line of average accuracy
of all problems is also used to compare the performance with XCSCF* [7].
The accuracies on completed problems in XCSCF* are kept at 1.0, while
ones on untouched problems are equal to the results of random guess-
ing.

The learning performances of agents are separated and concatenated in
the order of increasing indices that follows Table 6.2. The learning process
of an agent only requires knowledge from agents with smaller indices. The
next graph starts at the average number of instances that all agents on the
left side (smaller indices) need to complete solving their problems. This
format of illustration is also used in the next subsections for comparisons
between ConCS and other approaches.

The performance statistics of the whole ConCS as well as its agents are
summarised in Table 6.4. ConCS needs an average of 555,859 instances
in all agents to finish learning all problems. The longest run took up to
2,281,000 instances to complete solving all problems, while the fastest run
took only 148,250 instances. For individual agents, the slowest one, the
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Figure 6.4: Learning performances of ConCS. The average curve depicts
the average accuracy of 19 agents regarding the total experience of ConCS.
Agent performances are the average learning curves of agents (across 30

runs). The agents’ learning curves are ordered with increasing indices (see
Table 6.2) from 0 to 18 - partly labelled for clarity. The agent performances
are plotted with their separated experience (iterations). Starting points of
these curves concatenate with the average completing iterations of all their
previous agents (on the left).

general Hierarchical Carry-one problem, needs an average of 167,142 in-
stances to find its optimal solution. According to Figure 6.4, agents with
high IDs start learning in their early phases even though they require pre-
requisite knowledge from other agents to combine in their optimal solu-
tions. This is plausible because agents having better learning progress are
prioritised to run.

6.3.2.1 Comparison with XCSCF*, XCS, and XCSCFC

In this section, ConCS will be compared with XCSCF* using type-fitting
XCSCFA [7], XCS, and XCSCFC. Because these three approaches were de-
signed to learn a target problem, comparisons with them must be tested
on specific problems instead of 19 problems with unrelatedness. The tests
on XCSCF* and XCSCFC also follow their designed learning paradigms.
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Table 6.4: Performance statistics of ConCS on given problems. All num-
bers are the numbers of explored instances to reach optimal solutions with
100% accuracy.

Problems Average Longest run Fastest run
All 19 problems 555,859 2,281,000 148,250

Multiplexer 18,884 83,250 6500

Carry-one 147,800 913,000 6750

Hierarchical Multiplexer 21,484 83,250 7250

Hierarchical Carry-one 167,142 1,020,250 11,500

Hierarchical Majority-on 49,275 143,500 5000

Hierarchical Even-parity 28,750 6617 2250

For example, to test on Multiplexer problems, while XCS learns a Multi-
plexer problem at a specific scale, XCSCFC reuses CFs from Multiplexer
problems at lower scales. XCSCF* and ConCS both need a set of com-
ponents from subproblems before achieving the solutions for Multiplexer
problems.

The first five problems from Table 6.2 were selected as these are related
to the Multiplexer domain. These problems are used to test ConCS and
XCSCF*. Figure 6.5 shows four learning curves of the four approaches
and the learning curves of ConCS agents in the same manner that Figure
6.4 separates the component learning performances.

XCS and XCSCFC are tested on the Multiplexer at a specific scale of 135

bits. In this experiment, XCSCFC learns 135-bit Multiplexer problem with
the identical configuration of Transfer Learning from 6-, 11-, 20-, 37-, and
70-bit Multiplexer problems in [63]. ConCS and XCSCF* are only com-
pared with XCSCFC in this experiment because it can solve this problem
at large scales (70 and 135 bits) while it cannot completely solve problems
at relatively large scales of later experiments. The experiment on the Hi-
erarchical Even-parity problem did not include XCS because XCS cannot
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Figure 6.5: Learning performances on the variable-scale Multiplexer prob-
lem. Red curves depict the learning performances of agents in ConCS.
These curves are arranged in the same manner with the agent perfor-
mances in Figure 6.4.

scale well to this problem3.

According to Figure 6.5, XCSCF* solves the variable-size Multiplexer prob-
lem most efficiently. ConCS can generate the same solution as XCSCF*
within 150,000 instances. XCSCF* and ConCS both outperform XCS and
XCSCFC. The pattern on performance differences among the tested sys-
tems are analogous to those in other experiments for the sets of general
Hierarchical Multiplexer (Figure 6.6), Carry-one (Figure 6.7), Hierarchical
Carry-one (Figure 6.8), Hierarchical Even-parity (Figure 6.10), and Hierar-
chical Majority-on problems (Figure 6.9).

3Hierarchical Even-parity problem requires a one-to-one mapping of instances to rules
in the solution of standard XCS.
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Figure 6.6: Learning performances on the variable-scale Hierarchical Mul-
tiplexer problem.
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Figure 6.7: Learning performances on the variable-scale Carry-one prob-
lem.
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Figure 6.8: Learning performances on the variable-scale Hierarchical
Carry-one problem.
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Figure 6.9: Learning performances on the variable-scale Hierarchical
Majority-on problem.
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Figure 6.10: Learning performances on the variable-scale Hierarchical
Even-parity problem.

6.3.2.2 Comparison with Other Machine Learning Algorithms

In this section, ConCS and XCSCF* are compared with other graph-based
machine algorithms, i.e. XGBoost and Random Forest, and standard Ge-
netic Programming (GP) on classifying large-scale and complex problems
like Carry-one, Hierarchical Multiplexer, Hierarchical Carry-one, Hierar-
chical Majority-on, and Hierarchical Even-parity problems. It is noted
that, in these experiments, other methods were tasked with solving the
problems directly without the provision of sub-problems. The aim of the
comparisons is to highlight ConCS performance when it is provided with
sub-problems.

Standard GP, XGBoost, and Random Forest are normally used in super-
vised learning with separate training and testing sets. However, because
ConCS can access any instance of the tested problems as its agents are on-
line learning systems, other methods are also experimented with access
to all possible instances. Because both ConCS and XCSCF* can solve the
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Table 6.5: Accuracy comparisons with other machine learning approaches:
standard (naı̈ve) Genetic Programming (GP), XGBoost (XGB), and Ran-
dom Forest (RF). Results of ConCS and XCSCF* are bold when they are
significantly higher than the results of all other tested methods.

Problems ConCS XCSCF* GP XGB RF
16-bit Carry-one (1.0) 1.0 0.959 0.998 0.994

18-bit H. Multiplexer 1.0 1.0 0.805 0.855 0.868
18-bit H. Carry-one 1.0 1.0 0.78 1.0 1.0

15-bit H. Majority-on 1.0 1.0 0.728 0.999 0.992
21-bit H. Majority-on 1.0 1.0 0.687 0.985 0.923
18-bit H. Even-parity 1.0 1.0 0.531 0.854 0.859

tested problems within less than 200,000 instances (one instance per itera-
tion), other methods were presented with the same experience of 200,000

instances4. Grid search was used to tune hyper-parameters of XGBoost
and Random Forest (not standard GP). The results are from the best pa-
rameters for each problem.

Results on Table 6.5 show that ConCS and XCSCF* [7] both achieve 100%

accuracy in all problems. Because of the ability to solve tested problems
at any scale, the accuracies of ConCS and XCSCF* are constantly 100%,
which are significantly higher than the average accuracies of other meth-
ods in most problems (statistical significance based on Wilcoxon signed
rank test with p−value < 0.05). The differences will be rapidly increased
if the scales of the benchmark problems are enlarged.

4For any 18-bit or higher scale Boolean problem, this is smaller than the total possible
number of instances so overfitting is tested.
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6.3.3 Continuous Learning with Randomly Arriving Prob-

lems

This experiment shows the capability of ConCS to learn continually when
the tasks arrive at different points of time. ConCS consistently solved all 19

problems in all 30 runs. ConCS was able to solve hard problems once the
easier problems providing the necessary building blocks were presented
and solved. For clarity, Figure 6.11 depicts only the learning curves of all
agents related to the Hierarchical Multiplexer problems. Problem 0, which
was to find the address length given the Multiplexer problem size (Sec-
tion 6.2.3), was presented later than most of the other problems. ConCS
was gradually able to solve these other problems once the problem 0 was
solved as it provides necessary building blocks to enable learning hard
problems. This figure shows clearly that ConCS can learn continually by
accumulating progressively more complex knowledge.
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Figure 6.11: The learning performance of agents related to the Hierarchical
Multiplexer domain when the problems are presented in a random order.
Agents of ConCS were labelled using the “Id” column in Table 6.2. The
bigger the number, the more complex the problem is.
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6.4 Discussions

ConCS can simultaneously solve a large number (19) of problem types
with a mix of regression and classification problems. ConCS can automat-
ically determine the learning curricula, which was provided externally in
XCSCF*. Also, the system can eliminate the need for customised config-
urations. Ultimately, ConCS yields highly interpretable knowledge be-
hind its solved problems by encoding knowledge using tree-based pro-
grams.

ConCS has slower performances in benchmark problems compared with
XCSCF*. This result is predictable because each learning process in LL
only starts learning when all prerequisite building blocks are available. On
the contrary, ConCS has to determine itself which agents have all neces-
sary building blocks ready. In separate experiments, XCS and XCSCFC (in
Multiplexer domain only) can only solve tested problems at limited scales.
In contrast, both XCSCF* and ConCS produce general solutions, which can
solve tested problems at infinite scales (any scale within the limit of com-
putation hardware) with 100% accuracy. Therefore, if the experimented
problem is at a large enough scale, XCSCF* and ConCS always outper-
form XCS and XCSCFC because prediction performances of XCSCF* and
ConCS are not affected by the problem scale.

Arguably, XCSCF* and ConCS can solve tested problems more effectively
than GP does because these two systems are provided with the design
of problem components. Nevertheless, it is still a difficult task to combine
appropriate building blocks and thereby discover the knowledge relations
among problems. The provision of the problem design is analogous to the
way young children build up their intelligence with sets of lessons that
have been optimised over human civilisation. Optimised lessons can sig-
nificantly bootstrap the learning progress of young humans. Too many
lessons can inhibit the progress, while too few lessons require learners to
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re-discover a lot of knowledge for him/herself. For ConCS, accumulat-
ing too much knowledge may end up with the same effect, although this
implementation of XCSCFA is equipped with the type-fitting property to
reduce search spaces.

6.5 Chapter Summary

In this chapter, ConCS was developed as the first system that can solve
multiple Boolean problems continually without human developed curric-
ula. The minimum human involvement is to provide axiomatic knowl-
edge and useful subproblems, where more than necessary can be provided
- the system learns but does not reuse unrelated problems. ConCS is a
continuous AI system of learning classifier systems with type-fitting tree-
based programs to encode high-level knowledge and a pool storing accu-
mulated knowledge. Type-fitting trees enable ConCS to capture complex
knowledge behind target problems. Moreover, through learning continu-
ally with parallel tasks and subtasks, ConCS can construct novel knowl-
edge by combining flexibly pre-provided functions and constituent pat-
terns in subtasks.

Thanks to the apparent representation of the learnt trees in ruleset so-
lutions, it is simple to formulate a network of knowledge among prob-
lems. The network connections enable effective references to only relevant
knowledge. This promising property is important in an AI system with a
huge volume of accumulated knowledge, where checking all knowledge
is impractical. Moreover, the resulted knowledge network can yield learn-
ing curricula, which was previously guided by humans in layered learning
[6, 7].

In certain cases, learnt knowledge provided by ConCS delivers an unex-
pected understanding of target problems which can be surprisingly sim-
ple. Even with an increasing volume of knowledge that leads to increasing
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search spaces, the problem-solving capability of the system keeps being
built up by acquiring progressively more complex functions.

Future work will continue the long-term development of a continual learn-
ing system through reusing building blocks of knowledge by introduc-
ing real-valued domains. How the incorporation of learnt knowledge into
the knowledge pool complements to Boolean equivalents and how type-
fitting methods incorporate the new types are open questions.

The current implementation of ConCS relies on a single physical computa-
tion unit where prioritisation of agents is necessary. Utilising distributed
hardware could accelerate the learning process by distributing the com-
putation into multiple physical computing units. Paralleling the compu-
tation also enables accumulating a larger volume of knowledge.

In this work, the knowledge pool is limited to store only functions/skills,
and thus the interactions among agents via the knowledge pool are lim-
ited to transferring skills. Nevertheless, extending the knowledge pool to
storing knowledge, such as useful high-level features or building blocks
of solving tasks is possible and promising. Using multiple agents for one
task can extend interactions among agents to cooperation, coordination,
and negotiation [65], which are typical in a multi-agent system [146].



Chapter 7

Conclusions and Future Work

The overall goal of this thesis was to improve the learning capability and,
thus, to enable more autonomy to existing evolutionary machine learning
systems through the novel developed systems based on multitask learning
(and continual learning). This goal was successfully achieved by develop-
ing novel learning classifier systems that can solve hierarchical and large-
scale problems with reduced human guidance. The learning capabilities
of the developed systems were improved by introducing the evolution
of CFs through CF-fitness that identifies the best CFs for symbolic rules,
an online-adapted relatedness parameter to automate transfer features in
multitask learning, and function reuse in continual learning. The results
were compared with the existing code fragment-based learning classifier
systems to show that a set of linked learning classifier systems can learn
efficiently in various challenging learning paradigms.

The achieved ability to grow complex relevant patterns without setting a
pre-defined architecture is a key factor in achieving one aspect of human
intelligence, i.e. compositionality. Relevant composed building blocks in
one task can be reused in other tasks, which benefits multitask learning.
Multitask learning with the relatedness measure can be executed with less

175



176 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

knowledge of the target tasks, e.g. the potential of task solutions to sup-
port one another while being learnt together. The learning curriculum for
the multiple tasks is now a subsequent result of the novel continual clas-
sifier system (ConCS) instead of being supplied in layered learning. This
reduces the need for human knowledge, removes the potential of human
bias, and provides insights into the interrelatedness of tasks.

The remainder of this chapter presents the achieved objectives, main con-
clusions from each contribution chapter, and the promising future direc-
tions that can follow up this research work.

7.1 Achieved Objectives

The following research objectives have been fulfilled in support of this
thesis:

1. An XCS using CF-condition, i.e. XOF, to solve large-scale and hierar-
chical problems, as well as real-world datasets without the require-
ment of a layered learning approach. The learning capability of XOF
was achieved by introducing simplified evolution of CFs to grow rel-
evant complex patterns. The evolution of CFs interacts with the en-
vironment indirectly via the rule evolution and the new parameter
called CF-fitness. These two evolution processes bootstrap the learn-
ing process of XCS and enable an efficient search of high-level use-
ful CF-based features for capturing the complex patterns within the
data. Different measures of CF-fitness to bridge the two evolutions
have been developed and analysed. The conservation of the niching
property for the evolution of CFs produces more complexity-efficient
tree-based features.

2. The first multitask learning system of XCS-based systems, named
mXOF, has the ability to handle a set of arbitrary tasks together and
to adjust the transfer of CFs dynamically among tasks. mXOF in-
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troduced a method of automatically transferring CF-based features
among tasks through a novel parameter called relatedness, which mea-
sures the similarities of data patterns among tasks. The relatedness
enables efficient connections among learnt knowledge as these con-
nections guide feature transfer. This parameter is essential for such
multitask learning systems with tree-growing features. The auto-
matic transfer of features improved the learning performances of
multiple tasks when they are supportive of each other as well as fil-
tering out negative transfer when the tasks are unrelated.

3. A system of multiple type-fitting XCSCFAs, called ConCS, is the
first XCS-based system that can learn continually and simultane-
ously (multitask learning). The distributed system of XCSCFAs can
accumulate progressively more complex knowledge. ConCS removes
the need for providing a learning order in layered learning as the
problems can be presented at the same time or in a random sequence.
On the contrary, the results of the system yielded a network of knowl-
edge, which provides efficient connections among accumulated con-
cepts and also the learning curriculums. ConCS was shown to be
able to solve n-bit Multiplexer, n-bit Carry-one, n-bit Hierarchical
Multiplexer, n-bit Hierarchical Carry-one, n-bit Hierarchical Even-
parity, and n-bit Hierarchical Majority-on problems by capturing their
complex logic in rule actions continually.

The above major achievements improve the learning capabilities of ex-
isting CF-based XCSs. As a result, the developed systems are more au-
tonomous as they can solve large-scale and complex problems with less
human interventions. The developed systems can directly discover high-
level tree features to capture the complex patterns of the tested problems,
which previously required layered learning approaches. Controlling bloat
and improving the structural efficiency of generated CFs were automati-
cally achieved without a limit of tree depth. The tree features stop grow-
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ing once constructed CFs cannot encapsulate the data patterns more effi-
ciently. In addition, mXOF and ConCS’ results offer efficient connections
among learnt knowledge. These connections provide high-level meanings
to tree nodes to address complex tasks from basic building blocks, which
are equivalent to the role of connections in human brains.

7.2 Main Conclusions

This section presents the main conclusions from the three major experi-
mental chapters (Chapter 4 to Chapter 6).

7.2.1 Online Feature-Generation of Code Fragments

An XCS with Code Fragment (CF) conditions, named XOF, can solve large-
scale and hierarchical problems without the need for layered learning or
transfer learning. XOF can discover useful high-level CFs to encapsulate
the complex data patterns, although the search space of useful high-level
CFs is very large. Specifically, the search space of depth-two CFs in a 18-bit
problem has more than 20,000,000 possible CFs1. As XOF enables CFs at
unlimited depths, the number of possible combinations could be infinite if
the computation power allows. Meanwhile, there are only 48 possible op-
timal CFs for capturing a chunk of the low-level 3-bit Even-parity problem
in Hierarchical problems. Although the search space grows exponentially
with the depth, the construction of CFs accelerates the learning process of
XOF by the CF-fitness-driven search of complex patterns. The evolution
of CFs can be considered as the feature construction and extraction, while
the rule evolution learns the decision-making part.

• XOF introduces a simplified evolution of CFs that learns tree features

1A depth-one CF can have L1 = (18 ∗ 17/2) ∗ 3 ∗ 2 ∗ 2 possible combinations. A depth-
two CF can have L2 = (L1∗(L1−1)/2)∗3∗2∗2 combinations, let alone the CFs connecting
base CFs to root nodes.
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and interacts with the rule evolution. The rule evolution supports
the evolution of CFs through the estimation of CF-fitness based on
classifier fitness. On the contrary, the evolution of CFs improves for-
malising rule condition in covering and mutation through CF-fitness
that enhances the selection and construction of CFs. The evolution
of CFs was set at a slower pace than the rule evolution to stabilise
the growth of CFs and avoid developing bloat.

• CF-fitness is a new fitness parameter to support the evolution of CFs.
It enables the CF evolution to interact with the environment through
XCS rules. Different measures of CF-fitness have been developed
and analysed. One of the measures is the generalising CF-fitness
that focuses on more generalised patterns and avoids naı̈vely con-
structing more complex CFs from existing CFs. As a result, XOF
does not need a tree depth limit as the system will not pick up more
complex trees without adding discriminative information. The new
CF-fitness slows down the growth of CF depth but adds more reli-
ability to the CF construction. Although the structural efficiency of
generated CFs has not been improved, it enables integrating a newly
developed niching method for CFs, which results in accelerating the
evolution of CFs without being trapped in local optima.

• The collected CFs with the highest CF-fitness in the Observed List
(OL) encapsulates the data patterns the best among in-use CFs be-
cause these CFs are validated through constructing the highest-fitness
classifiers, which are accurate and the most generalised ones. Thus,
the CFs of the OL are likely to contain the richest data about the task.
The OL can be considered as the harvested information the system
has about the task. This information is important as pre-provided
data, e.g. the data distribution, about the task is usually not avail-
able in online learning.

• The evolution of CFs relies on CF-fitness and the OL. The evolution
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of CFs grows existing tree features by stemming locally from the CFs
in the OL. Since the OL contains the fittest and richest patterns based
on their CF-fitness that the system has about the task, the construc-
tion of CFs is to search for more complex patterns that can generalise
from existing specified accurate patterns (in the OL). Only the pat-
terns that can generalise more efficiently than existing patterns are
selected to be put in the OL and grow more complex patterns.

• The niching method for evolving CFs complements the existing nich-
ing property of XCS to yield a complete divide-and-conquer basis
for XOF. The two evolution processes of rules and CFs are separated
by niches, where the interactions inside niches have no restrictions.
The niching method in evolving CFs enables improved generalisa-
tion with less bloat compared with panmictic approaches. Specifi-
cally, it reduces the frequency of irrelevant combinations of CFs. This
creates a barrier that restricts CFs from crossing niche boundaries. In
the initial implementation of XOF, CFs can be reused among niches
with no restriction.

• XOF simplified the rule conditions of XCS by eliminating the use of
‘don’t care’ CFs and the fixed length of rule conditions in XCSCFC
[63]. Rule conditions are completely decoupled with the original in-
put features as evolved CFs in rule conditions are usually not related
to the original features. Keeping fixed-length rule conditions and
maintaining GA-like evolutionary operators are not beneficial as the
advantage of these operators with corresponding positions in geno-
types is generally not applicable. Additionally, XOF adjusted the
crossover and mutation operations of XCS to enable flexible lengths
for rule conditions. Therefore, there is no need to keep rule condi-
tions at fixed lengths. Having a flexible length enables rule condi-
tions to shrink to one CF when the CF can generalise by encapsulat-
ing the data patterns.
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• Although using the flexible representation with high-level patterns
that requires more computation cost to evaluate at each environment
state, XOF does not necessarily cost more computation and training
time. There are a few implementation factors that yield such an ef-
ficient computation cost. First, the search for high-level CFs only
samples a small portion of the search space among all possible com-
binations. Second, as the same genotypes of CFs are not scattered,
which is required to learn CF-fitness, the evaluation results of sub-
trees can be reused from branches without re-evaluating.

• Although XOF does not need layered learning, it can facilitate fea-
ture transfer in layered learning and transfer learning. Solving the
Multiplexer problem domain can benefit from layered learning as
the selection of CFs was based on classifier fitness and the appear-
ance frequency of CFs. These selection criteria encouraged the CFs
using the address bits to be reused more than the CFs containing the
data bits. These criteria fit well with the distribution of the bits in
the optimal solutions of Multiplexer problems [86]. Both XOF and
XCSCFC can use these selection criteria for transferring features in
layered learning. However, layered learning requires crafting trans-
ferring criteria as well as an ordered sequence of learning stages.

7.2.2 Automatic Transfer in Multitask Learning with Re-

latedness

A system of multiple XOFs (mXOF) is introduced as the first multitask-
learning XCS-based system. mXOF inherits XOF’s ability to solve com-
plex and large-scale problems by constructing useful high-level building
blocks (latent features). With constructed latent features, mXOF can au-
tomate feature sharing among tasks to improve the feature extraction and
construction of each task in multitask learning. The automation of feature
sharing is driven by a new relationship measured in relatedness. The re-
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latedness refers to the relationships among the data patterns of multiple
tasks. mXOF uses the relatedness to adjust the feature sharing automati-
cally during the learning process. This parameter enables mXOF to handle
a set of arbitrary tasks. Specifically, it improves the learning performance
of related tasks that share common constructed features. On the contrary,
mXOF reduces the negative transfer of low related tasks, which maintain
the learning performance of each task when the tasks in multitask learning
do not share many high-level features. The relatedness between any two
tasks is updated dynamically during the learning process based on the ob-
served lists, which contain the richest information about the tasks.

• The dynamic update of relatedness is essential in multitask learn-
ing with tree-feature construction and has been captured in mXOF.
mXOF can adapt relatedness among tasks regarding the common
patterns as features are constructed and tasks may only be highly
related at certain phases of tree construction. A fixed set of transfer-
ring criteria is not required.

• mXOF can improve the learning performance of each task in mul-
titask learning as it promotes transferring CFs among related tasks.
In addition to learning performance, mXOF improves the general-
ity rate of discovered CFs when multiple tasks are related. The in-
creased generality rate is an indicator of improved interpretability
in learnt solutions. mXOF was also experimented to work on mul-
tiple unrelated tasks experiments without negatively affecting the
learning performance of each task due to the online adaptation of
the relatedness among tasks.

• The task relatedness can facilitate creating network links among tar-
get objects addressed by all XOFs in mXOF. Learning more objects/tasks
builds up this knowledge network. This network enables referring
to only specific knowledge that could be relevant for a target task.
This is useful for an AI system with a high volume of accumulated
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knowledge.

• mXOF can be used for multi-class classifications. The system gives
a clear indication of the relationships among classes. In multi-class
classification, mXOF replaces the direct competitions between any
two classes by the competitions between each class with all other
classes. However, mXOF is constrained by the online learning scheme,
which makes it quickly adaptable to data changes but slow for big
datasets.

7.2.3 A Continual Classifier System to Solve Multiple Boolean

Problems

ConCS was the first system that can solve multiple Boolean problems con-
tinuously and simultaneously without the requirement of an externally
designed learning order. The minimal human involvement is to provide
axiomatic knowledge and useful subproblems, where more than neces-
sary can be provided - the system learns but does not reuse knowledge
provided from unrelated problems and non-supportive axiomatic func-
tions. ConCS was able to solve multiple Boolean problems at any scale
that the computation power allows.

• ConCS is a distributed AI system of learning classifier systems with
tree-based programs to encode high-level knowledge, agent priori-
tisation, and a pool storing accumulated knowledge. ConCS repre-
sents the high-level logic behind target problems in the form of trees
with reused functionalities. Thanks to the apparent representation
of the learnt trees in ruleset solutions, it is straightforward to for-
mulate a network of knowledge among problems. As a result, the
system can automatically form learning curricula, which was previ-
ously required for XCSCF* to initialise the learning process. More-
over, ConCS’ network of knowledge also enables efficient connec-
tions among learnt knowledge. The connections could enable effec-
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tive references to only relevant knowledge. This promising property
is important in an AI system with a huge volume of accumulated
knowledge, where checking all knowledge is impossible.

• In certain cases, such as the Hierarchical Even-parity domain, learnt
knowledge provided by ConCS delivers an unexpected understand-
ing of target problems, which can be surprisingly simple. This is the
result of the tree flexibility in code fragments that enables the system
to search for the solutions of diversified structures.

• Even with an increasing volume of knowledge that leads to increas-
ing search spaces, the problem-solving capability of the system keeps
being built up by acquiring progressively more complex functions.
To be able to solve a harder related problem, the system can combine
learnt knowledge and focus on the novel aspects of the new prob-
lem. However, it is highly likely that at some point, the volume of
accumulated knowledge may be excessively large with diversified
unrelated knowledge. This could prevent the system from becom-
ing a general intelligence as search for relevant knowledge from a
lot of fragmented learnt knowledge would be already intractable. In
this case, further advanced findings from cognitive science would be
essential for the development of the system.

• The current implementation of ConCS relies on a single physical
computation unit where prioritisation of agents is necessary. Util-
ising distributed hardware could accelerate the learning process by
distributing the computation into multiple physical computing units.
Also, the use of distributed hardware would fit well with the archi-
tecture of ConCS as a distributed system. Lastly, paralleling the com-
putation also enables accumulating a larger volume of knowledge.
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7.3 Future Work

The achieved objectives show that LCSs are capable of dealing with large-
scale and hierarchical problems without external support in traditional in-
dependent learning as well as multitask learning. The obtained solutions
are readable trees that provide efficient connections among knowledge in
parallel learning. This enables opportunities for further research.

• The evolution of CFs is currently based on random combinations of
the CFs in the OL. The first future research is to guide the construc-
tion of new CFs through Bayesian approaches, such as an adapted
Bayesian optimisation algorithm [102]. The growth of CFs could ob-
tain complicated interactions among original features through stack-
ing one-edge interactions among constructed features. Using statis-
tical information could direct the search of complex feature interac-
tions faster, especially in large datasets.

• XOF is shown to be efficient in problems with binary input features.
However, the obvious gap is that XOF has not been adapted for real-
valued features. The second future research is to develop an XOF-
like system for real-valued features. This work could reuse existing
approaches in the LCS field, such as using interval encoding [143].

• The third future research is to consider mXOF for the context of con-
tinual learning [125] and lifelong learning [85], where the AI system
learns to recognise increasingly complex objects. The reason is that
in mXOF, learning a new class requires only spawning a new sys-
tem without remarkable negative impacts on existing tasks given a
proper estimation of relatedness. Learning a new class could take
advantage of the bias of previously learned knowledge to acquire
relevant knowledge within fewer examples. This is equivalent to hu-
man/robot learning to recognise multiple objects using signals from
the same sense/sensor. mXOF could efficiently connect a perceived
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signal with learnt (complex) concepts and thereby enable recognis-
ing complex objects through their learnt components.

• Because XCS and the online feature-generation module can be con-
sidered frameworks to be integrated with flexible representations
(for its rules), mXOF is not bound to using only tree-based programs
(CFs). Hence, the fourth future research is to consider integrating
mXOF with neural networks to learn real-valued data. This combi-
nation could also be fruitful in producing arbitrary and complexity-
efficient network structures. mXOF would reduce irrelevant and in-
efficient connections among neurons, which encapsulate learnt con-
cepts.

• In ConCS, each problem is assigned to one learning agent. Using
multiple agents for one task can extend interactions among agents to
cooperation, coordination, and negotiation [65], which are typical in
a multi-agent system [146]. Thus, the fifth future work is to extend-
ing the indirect interaction among the learning agents of ConCS to
enable diversified communication as in multi-agent systems.

• The sixth future research could consider the selectivity of functions
in ConCS for accumulation as the search space might become in-
tractable at certain points. An approach is to consider recent findings
in cognitive science to develop a forgetting mechanism. The ability
to forget memory is an essential aspect of human intelligence that
would be desirable for an AI system. Removing outdated knowl-
edge helps the AI system avoid searching through the knowledge
that is no longer useful.

• Although most of the experimented problems are Boolean-input prob-
lems, ConCS could be adapted to real-world problems when the
XCS-based agents apply appropriate encodings for their rules, such
as real-valued intervals and neural networks. Therefore, the last fu-
ture work is to investigate applying ConCS on a broader range of
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problems.

7.4 Closing Remarks

This research work for this thesis has demonstrated that LCSs with great
flexibility can produce efficient learning systems to conquer complex prob-
lems. The ability to integrate a rich encoding, i.e. code fragments, into rule
conditions and actions enables LCSs to capture complex patterns in either
feature construction or decision making. The large search space caused
by the richness of code fragments can be conquered using hierarchical
tree growth approaches. More complex trees are constructed from reliable
simpler trees/functions (tree-based ruleset functions) by either assigning
simpler trees to the leaf nodes or more primitive functions to the inner
nodes. This ability is argued to be a key factor in building human-like ma-
chine intelligence [77]. Thus, the developed systems in this thesis could
be promising frameworks for autonomous learning systems that imitate
aspects of human learning. This work opens a direction to use LCSs with
rich encodings for developing continual learning systems.
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López de Mántaras and Enric Plaza, editors, Machine Learning:
ECML 2000, volume 1810, pages 369–381, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg. doi: 10.1007/3-540-45164-1 38.

[119] Peter H. Stone. Layered learning in multi-agent systems. Technical
report, Carnegie Mellon University, dec 1998.

[120] Richard S. Sutton. Learning to predict by the methods of tempo-
ral differences. Machine learning, 3(1):9–44, 1988. doi: 10.1007/
BF00115009.

[121] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An
introduction. The MIT Press, Cambridge, MA, 2018. ISBN 978-0-
2620-3924-6.

[122] Esther Thelen. Rhythmical stereotypies in normal human infants.
Animal Behaviour, 27:699 – 715, 1979. doi: 10.1016/0003-3472(79)
90006-X.

[123] Sebastian Thrun and Tom M. Mitchell. Learning one more thing.
Technical report, Carnegie Mellon University, September 1994.

[124] Sebastian Thrun and Tom M. Mitchell. Lifelong robot learning.
Robotics and autonomous systems, 15(1-2):25–46, 1995.



BIBLIOGRAPHY 205

[125] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science
& Business Media, 2012. ISBN 978-1-4615-5529-2.

[126] Lisa Torrey and Jude Shavlik. Transfer learning. Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods, and
Techniques, 1:242–264, 2009. doi: 10.4018/978-1-60566-766-9.ch011.

[127] Hau T. Tran, Cédric Sanza, Yves Duthen, and Thuc Dinh Nguyen.
XCSF with computed continuous action. In Proceedings of the 9th An-
nual Conference on Genetic and Evolutionary Computation, GECCO ’07,
pages 1861–1869, New York, NY, USA, 2007. Association for Com-
puting Machinery. doi: 10.1145/1276958.1277327.

[128] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adver-
sarial discriminative domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[129] Ryan J. Urbanowicz and Will N. Browne. Introduction to Learning
Classifier Systems. SpringerBriefs in Intelligent Systems. Springer-
Verlag, Berlin Heidelberg, 2017. doi: 10.1007/978-3-662-55007-6.

[130] Ryan J. Urbanowicz and Jason H. Moore. Learning classifier sys-
tems: A complete introduction, review, and roadmap. Journal of Ar-
tificial Evolution and Applications, 2009:1, 2009. doi: 10.1155/2009/
736398.

[131] Fumito Uwano, Koji Dobashi, Keiki Takadama, and Tim Kovacs.
Generalizing rules by random forest-based learning classifier sys-
tems for high-dimensional data mining. In Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, GECCO
’18, page 1465–1472, New York, NY, USA, 2018. Association for
Computing Machinery. doi: 10.1145/3205651.3208298.

[132] Nguyen Q. Uy, Nguyen T. Hien, Nguyen X. Hoai, and Michael



206 BIBLIOGRAPHY

O’Neill. Improving the generalisation ability of genetic program-
ming with semantic similarity based crossover. In Genetic Program-
ming, pages 184–195, Berlin, Heidelberg, 2010. Springer Berlin Hei-
delberg. ISBN 978-3-642-12148-7.

[133] Leonardo Vanneschi, Mauro Castelli, and Sara Silva. Measuring
bloat, overfitting and functional complexity in genetic program-
ming. In Proceedings of the 12th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO ’10, pages 877–884, New York, NY,
USA, 2010. Association for Computing Machinery. doi: 10.1145/
1830483.1830643.

[134] Leonardo Vanneschi, Sara Silva, Mauro Castelli, and Luca Man-
zoni. Geometric semantic genetic programming for real life applica-
tions. In Genetic Programming Theory and Practice XI, pages 191–209.
Springer, 2014. doi: 10.1007/978-1-4939-0375-7 11.

[135] Gilles Venturini. Apprentissage adaptatif et apprentissage supervise par
algorithme genetique. PhD thesis, Paris 11, 1994.

[136] Ekaterina J. Vladislavleva, Guido F. Smits, and Dick Den Hertog.
Order of nonlinearity as a complexity measure for models gener-
ated by symbolic regression via pareto genetic programming. IEEE
Transactions on Evolutionary Computation, 13(2):333–349, 2009. doi:
10.1109/TEVC.2008.926486.

[137] Chang Wang and Sridhar Mahadevan. Manifold alignment using
procrustes analysis. In Proceedings of the 25th international confer-
ence on Machine learning, ICML ’08, pages 1120–1127. Association for
Computing Machinery, 2008. doi: 10.1145/1390156.1390297.

[138] Shimon Whiteson. Evolutionary computation for reinforcement
learning. In Reinforcement Learning: State-of-the-Art, pages 325–355.
Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-27645-3
10.



BIBLIOGRAPHY 207

[139] Shimon Whiteson and Peter Stone. Concurrent layered learning. In
Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’03, pages 193–200, New
York, NY, USA, 2003. Association for Computing Machinery. doi:
10.1145/860575.860607.

[140] Stewart W Wilson. ZCS: A zeroth level classifier system. Evolution-
ary computation, 2(1):1–18, 1994. doi: 10.1162/evco.1994.2.1.1.

[141] Stewart W. Wilson. Classifier fitness based on accuracy. Evolution-
ary Computation, 3(2):149–175, June 1995. doi: 10.1162/evco.1995.3.
2.149.

[142] Stewart W. Wilson. Generalization in the XCS classifier system. 1998.

[143] Stewart W. Wilson. Get real! XCS with continuous-valued inputs. In
Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, ed-
itors, Learning Classifier Systems, pages 209–219, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg. ISBN 978-3-540-45027-6.

[144] Stewart W. Wilson. Classifiers that approximate functions. Natural
Computing, 1(2-3):211–234, 2002. doi: 10.1023/A:1016535925043.

[145] Stewart W. Wilson. Classifier conditions using gene expression pro-
gramming. In Jaume Bacardit, Ester Bernadó-Mansilla, Martin V.
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