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Abstract. Deep learning has achieved a high classification accuracy on
image classification tasks, including emotion categorization. However,
deep learning models are highly vulnerable to adversarial attacks. Even
a small change, imperceptible to a human (e.g. one-pixel attack), can
decrease the classification accuracy of deep models. One reason could be
their homogeneous representation of knowledge that considers all pixels
in an image to be equally important is easily fooled. Enabling multiple
representations of the same object, e.g. at the constituent and holis-
tic viewpoints provides robustness against attacking a single view. This
heterogeneity is provided by lateralization in biological systems. Lateral
asymmetry of biological intelligence suggests heterogeneous learning of
objects. This heterogeneity allows information to be learned at different
levels of abstraction, i.e. at the constituent and the holistic level, enabling
multiple representations of the same object.
This work aims to create a novel system that can consider heterogeneous
features e.g. mouth, eyes, nose, and jaw in a face image for emotion cat-
egorization. The experimental results show that the lateralized system
successfully considers constituent and holistic features to exhibit robust-
ness to unimportant and irrelevant changes to emotion in an image,
demonstrating performance accuracy better than (or similar) to the deep
learning system (VGG19). Overall, the novel lateralized method shows a
stronger resistance to changes (10.86 − 47.72% decrease) than the deep
model (25.15−83.43% decrease). The advances arise by allowing hetero-
geneous features, which enable constituent and holistic representations
of image components.

Keywords: Adversarial Attacks · CK+ · Emotion categorization · Fa-
cial expression · Lateralization · Learning Classifier Systems (LCS) ·
sUpervised Classifier System (UCS) · VGG19.

1 Introduction
Emotion categorization, based on facial expression, plays an important role in
human-computer interaction [1]. Nowadays, there is a growing demand for robots
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in hotels and retail stores to interact with customers. However, these robots
need to understand human emotions in this close-proximity situation. It helps
to improve their interaction with the customers to achieve an enhanced customer
experience [2]. The term emotion categorization is used here as we contend that
humans can superficially express an emotional state that is different from the
one that they are experiencing internally.

Deep Learning (DL) based systems have widely been used for image classifi-
cation [3], including emotion categorization. These systems have demonstrated
limited competency by achieving high performance on many state-of-the-art
datasets as well as having won many challenges set up by the data science
community such as the ImageNet challenge [4]. However, their homogeneous
representation of knowledge has made them vulnerable to adversarial attacks,
i.e. deliberate changes to the image in an attempt to fool the classifier [5]. For
instance, a small modification made to the test or train data might mislead the
model to misclassify the input object [6].

On the other hand, biological intelligence supports heterogeneity. It has been
hypothesized that lateral asymmetry of the vertebrate brains enables the pro-
cessing of information at different levels of abstraction, i.e. at a constituent level
and holistic level [7]. For instance, the left hemisphere processes sensory input
at the constituent (elementary) level, whereas, the right hemisphere processes
the same signal at a higher level of abstraction, up to the top holistic level. This
heterogeneity concept has recently been shown beneficial at handling noisy data
in artificial visual classification systems [8].

The main goal of this work is to create a lateralized system, inspired by
the lateralization in biological intelligence, for emotion categorization that will
be robust against image changes. As the lateralized approach is considered to
be heterogeneous, we anticipate that the novel system will lead to obtaining a
much higher accuracy than a homogeneous DL based system when obfuscate
changes are made to an image. This is because an emotion, such as happy,
may be visible in individual features (e.g. eyes, mouth, jaw) plus their higher-
order relationships rather than simply pixel colors (e.g. on a cheek or foreground
in an image). Since a constituent or a holistic feature may exhibit robustness
against a specific change, these features could be combined, at different levels
of abstraction, to obtain overall robustness against a variety of changes. One
half of the system will consider the constituent features, whereas, the other
half will handle the higher level holistic features. Subsequently, constituent level
likelihood and holistic level likelihood will be computed by utilizing constituent
and holistic features, respectively. Finally, these likelihoods will be utilized at
different levels of abstraction to predict the emotional category of the given
image.

The holistic level derived its prediction from a deep model whereas the con-
stituent level derived its prediction from a deep model, as well as a sUpervised
learning classifier systems (UCS) to reduce the spread in the average skill of a
predictive model, in order to improve the overall accuracy of the system. We will
compare the performance of the lateralized system with the performance of a
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typical DL algorithm before and after changes are made to the images. VGG19
[9] was chosen as the benchmark approach as it is the latest among other VGG
models and also because it is a well tested standard model.

The rest of the paper is organized as follows: Section 2 provides the required
background knowledge from computer vision and machine learning. It also in-
cludes the state-of-the-art relevant techniques that have been investigated for
emotion categorization. Section 3 presents the lateralized system, its critical
components, and the learning mechanism. The robustness of the developed lat-
eralized approach against attacks is evaluated in Section 4. Section 5 provides a
further explanation of the obtained results. It also explains the decision-making
process of the novel system. Finally, Section 6 concludes the paper and hints at
further studies.

2 Background

The goals of this section are two-fold: first, to review the relevant techniques
that have been investigated for emotion categorization in images; and second, to
provide the required background knowledge from machine learning and computer
vision techniques.

2.1 Computer Vision

This section presents a brief introduction to the attacks that will be applied on
the data set to evaluate the robustness of the categorization techniques. It also
includes the feature extraction techniques that will be utilized in this work.

Modification Attacks An adversarial attack is any change made to an input
image with the intention to mislead a classifier to misclassify the input image.
An adversarial attack can be targeted, which aims to mislead the classifier to
misclassify an input to a specific/target class, or non-targeted, which aims to
fool the classifier to misclassify an input image but does not specify to which
class should the input be misclassified. DeepFool is one of the commonly used
and well-recognized methods to generate adversarial attacks [17]. It is a sim-
ple and accurate perturbation method designed to fool a deep network model.
The algorithm repeatedly applies a small change/perturbation to the original
image until the newly produced image, which is known as the perturbed image,
is predicted incorrectly by the deep model. This work will apply three types of
adversarial attacks, i.e. (i) an enhanced version of DeepFool based adversarial at-
tack (named Distractor Attack), (ii) sunglasses based adversarial attack (named
Wrapper Attack), and a combination of distractor attack and wrapper attack
(named Hybrid Attack) (see Section 4).

Features The histogram oriented gradient (HOG) is one of the commonly used
features in computer vision problems [18]. The HOG descriptor utilizes the occur-
rence of gradient orientation for the detection of complex objects. This utilization
of the local gradient makes the HOG features invariant to light conditions, geo-
metric transformation, and color variation. These features assist the lateralized
system to accurately classify images based on facial expressions.
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2.2 Machine Learning

This section provides an overview of the relevant deep learning and evolutionary
machine learning (i.e. learning classifier systems) techniques.

Deep Learning Inspired by the neural connections that exist in the human
brain, deep learning (DL) is a methodology of extracting higher-level features
from unstructured or raw data [19]. VGG19 is one of the commonly used DL
models for classification problems [20] [21]. According to the VGG paper, rep-
resentation depth is beneficial for classification accuracy. As such, VGG19 is
chosen to be used to obtain the constituent and holistic level prediction in the
novel lateralized system as it has the latest (19) weight layers among other VGG
models such as the VGG16 with 16 weight layers.

Learning Classifier Systems Learning Classifier Systems (LCSs) are a rule-
based learning method developed to solve complex problems. They combine a
learning component with a genetic algorithm (GA) to perform either supervised,
unsupervised, or reinforcement learning. In this research, the sUpervised Classi-
fier System (UCS) [23] is used to predict emotion categories of the constituent
level likelihood in the attention phase. UCS is chosen to be used because we know
the actual label of the constituent parts and also because the representation of
rules in the UCS are straightforward for a human to understand [22].

2.3 Related Work

A large number of techniques have been developed for emotion categorization
from images. Convolutional deep networks based techniques have been commonly
used for emotion categorization. Recently, a convolutional neural network (CNN)
based system is created to classify six basic plus neutral emotions of the facial
action coding system [10]. Initially, a face in an image was detected using the
Viola-Jones algorithm [11]. Subsequently, the face area was cropped to elimi-
nate the surrounding unimportant data. These cropped images were converted
to grayscale and facial features were extracted by using the edge detection tech-
nique. Finally, these extracted features were used as input problem instances for
the CNN model. This system achieved a performance accuracy of 79.8% on the
FER2013 dataset [12]. However, an optimization technique, which might provide
an improvement on the accuracy, had not been applied on the CNN. Therefore,
the achieved accuracy might be improved with the application of an optimization
technique.

Another attempt was made to create a deep CNN based framework for
emotion classification in real-time [13]. The proposed network consisted of four
separate modules, each of which had multiple layers. The generalizability was
achieved by using images from various sources, e.g. a mixture of movie snapshots,
emotion datasets such as JAFFE [14], personal photos, and publicly available
images from the internet. Not only was the developed application fast, but also
the detected emotion per frame in the real-time feed was accurate at almost
96%.

Sokolov et al. [15] proposed a CNN-based system, similar to ResNet [16], to
categorize facial expressions by using cross-platform data in real-time. Emotions
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were estimated in the arousal-valence scale, i.e. how valence or aroused a person
is. The developed system achieved a classification accuracy of 63.01%. Consider-
ing that the system was developed to categorize emotion based on two different
classes (high/low valence or high/low arousal), the achieved accuracy is a lit-
tle bit better than random guessing. As such, questions remain as to whether
it will perform well on the six basic (or the six basic plus neutral) emotional
expressions.

Recently, a lateralized system was created for the classification of cats and
dogs [8]. The developed system considered the constituents and holistic features
of the given image. The lateralized system outperformed other state-of-the-art
deep models by 2.15%−25.84%. The study was conducted based on an artificial
visual recognition system to classify cats and dogs. However, it is unknown if
such lateralized systems can accurately work as an emotion categorization sys-
tem since different facial features might have different contributions to different
emotions, e.g. the importance of mouth shape to happy compared with fear.

Deep learning algorithms have been used to categorize emotion from images
[10], [13], [15]. However, feeding deep models directly with face images considers
the color distribution within pixels by representing all pixels in an image to be
equally important. This is anticipated to make these techniques vulnerable to
even a small change made to the images. Besides, different people might have a
slightly different way of expressing the same emotion depending on their cultural
background. This work will create a lateralized system that will be robust against
changes to the pixels in an image to categorize emotion.

3 Lateralized System

The overall classification scheme of the novel lateralized system, shown in Fig. 1
is similar to a standard supervised learning system except that the prediction can
be generated by two phases, i.e. context phase and attention phase. The context
phase is developed by using deep models, whereas, the attention phase is devel-
oped by using UCSs. Both the phases identify, extract, and utilize constituent
and holistic features to make predictions. These techniques are explained below.

3.1 Context Phase

The context phase consists of six deep models (VGG19). Five deep models are
used to obtain the constituent level predictions, i.e. prediction about the face,
jaw, eyes, mouth, and nose. One reason for doing this is to enable us to move away
from end-to-end learning so as to improve performance by testing important
feature groups as we know that certain emotional features are innately recognized
[24].

The prediction is the probability that a part belongs to a candidate emo-
tion category (class). For this purpose, a face in the given image is initially
detected by utilizing the Haar cascade classifier [25]. Subsequently, the position
of each constituent part is obtained by using dlib (an open-source c++ library
for ML) [26]. These position values are used to segment the respective parts. The
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Algorithm 1 Algorithm adopted by the context phase

1: Initilize
2: Lti ← List of images
3: Predictionlist ← [ ]
4: repeat
5: for Image i in Lti do
6: Imagecopy ← Originalimage

7: Detect Face(Imagecopy) % Detect face in the image.
8: Locate ROI(Imagecopy) % Locate the position of region of interest (ROI)

such as face, jaw, eyes, nose, mouth, in the image
9: Crop ROI(Imagecopy) % Get a cropped copy of each ROI

10: Lroi ← List of ROIs
11: for each ROI in Lroi do
12: Proi = getPrediction(ROI) % Prediction of each constituent part from

its associated Deep Model. Returns probability
13: end for
14: for each CP in all emotion categories do % For each constituent part (CP)
15: for each Pi in Proi do
16: CPcat +=Pi % Overall prediction that a constituent part belongs to

a specific category
17: end for
18: end for
19: CLL = argmax(CPcat) % The category with highest constituent prediction

is considered as a constituent level likelihood (CLL).
20: PredictionHolistic = getPrediction(Originalimage) % get a holistic level pre-

diction from a DL model
21: HLL = argmax(PredictionHolistic) % The category with highest holistic

prediction is considered as a holistic level likelihood (HLL).
22: if (CLL and HLL Predict the Same Category) then
23: Add CLL and HLL
24: MakeFinalPrediction ()
25: GenerateInhibitSignal() % Generate inhibit signal to stop further pro-

cessing at the attention phase.
26: else
27: GenerateExciteSignal() % Generate excite signal to do further processing

at the attention phase.
28: end if
29: end for
30: until i == len(Lti) % all test images are processed
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Fig. 1. Flow chart of the laterized system

segmented images are given to the respective deep models and predictions are
computed for each emotion category. These prediction values of each category
are summed to obtain the vote for that category, e.g. the prediction values of
face, jaw, eyes, mouth, and nose for category anger are added to obtain the anger
vote.

CP =

n∑
i=1

Pi (1)

where CP is the overall prediction that a constituent part belongs to a specific
category, Pi represents the probability of each constituent part for that category,
and n is the number of total constituent parts. Finally, the CP of each category
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are compared and the category with highest vote is considered as a constituent
level likelihood (CLL), as given below.

CLL = max
x∈[1,...,m]

CP (x) (2)

where m is the number of emotion categories.
Moreover, a deep model is used to obtain the holistic level prediction, i.e.

the prediction of the whole image. The resultant highest prediction value for
an emotion category is considered as a holistic level likelihood (HLL), as given
below.

HLL = max
x∈[1,...,m]

P (x) (3)

where P is the prediction value.
The system analyses the feedback received from the context phase. If the

CLL and HLL predict the same category, the system makes the final prediction
with confidence and generates an inhibit signal to the attention phase to stop
processing. However, if the CLL and HLL predict different categories, the system
generates an excite signal to the attention phase to do further analysis. The
pseudo-code of the technique developed for the context phase is presented in
Algorithm 1.

3.2 Attention Phase

The attention phase consists of six UCSs. Five of the UCSs are used to ob-
tain constituent level predictions about the parts, i.e. face, jaw, nose, eyes, and
mouth. This phase utilizes the segmented images generated for each part during
the context phase. The HOG features are computed for the segmented images.
The resultant features are used as input instances for the respective UCS to
obtain the constituent level prediction for each part. Here, the prediction is the
probability that each constituent part belongs to a specific category. It is com-
puted by dividing the votes that favor a specific category by the total votes in the
UCS prediction array. Subsequently, the respective constituent level prediction
values for each category are added to obtain the overall prediction probability
for that category (see equation 1). Moreover, we identify the facial landmark3

using dlib[2] [26]. Subsequently, we compute the distance of each (x, y) landmark
coordinate from the center of the face, assuming the tip of the nose to be the
center. These distances are the holistic level features that represent the relation-
ship between constituents (parts). The sixth UCS is used to obtain the holistic
level prediction by using these distances as an input instance. Subsequently, the
computed UCS-based constituent level and holistic level prediction values are
normalized. These values are added to the corresponding CLL and HLL values
from the context phase to obtain the overall prediction probability for each cat-
egory. Finally, the category with the maximum probability value is predicted.

3 The facial landmark is a set of coordinates that cover the whole face.
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Algorithm 2 Algorithm adopted by the attention phase

Check Inhibit Signal() % Stops if receive inhibit signal
Lroi ← List of ROIs % List of ROI from the Context Phase
for each ROI in Lroi do

HOGROI = Compute HOG() % Compute HOG Feature of each constituent part
ProiUCS = getPredictionFromUCS(HOGROI) % Prediction of each constituent

part from its associated UCS model
end for
for each CP in all emotion categories do % For each constituent part (CP)

for each Pi in ProiUCS do
CPcat +=Pi % Overall prediction that a constituent belongs to a specific cat-

egory
end for

end for
CLLUCS = argmaxCPcat % The category with the highest constituent prediction is
considered as the CLL from UCS.
Face = DetectFace(Imagecopy)
Detect FacialLandmark(Face) % Detect (x, y) landmark coordinates from the face
Dist = ComputeDistance() % Get the distance of each landmark coordinate from the
center(tip of the nose)
PredictionHolistic = getPredictionFromUCS(Dist) % Get holistic level prediction
from UCS
HLLUCS = argmax(PredictionHolistic) % The category with highest holistic predic-
tion is considered as a holistic level likelihood (HLL).
Normalize CLLUCS and HLLUCS

Add (CLLUCS , HLLUCS , CLL, and HLL) % Add all the perceptions from the
context phase and the attention phase.
MakeFinalPrediction ()

The pseudo-code of the technique developed for the attention phase is presented
in Algorithm 2.

4 Experimental Work
4.1 Data Set

This work is designed to evaluate the robustness of the lateralized approach in
emotion categorization. This is achieved by conducting experiments on one of the
commonly used data set, i.e. CK+ [27]. The data set contains facial expressions
of 201 adult participants. Each participant’s posed emotions are recorded in the
form of a video that has a varied number of image frames, i.e. 10 to 60 frames.
This work uses 3368 images of six basic expressions [28] plus neutral expression.
These images are extracted from the last-half frames of the videos by using the
technique developed by Shehu et. al. [29]. The sample expression images are
shown in Fig. 2.

4.2 Experimental Setup

The learning methodology of the context phase is developed by using state-of-
the-art VGG19 deep models. These models are trained for 200 epochs. To avoid
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Fig. 2. Sample of six basic plus neutral expressions extracted from the CK+ database,
the majority of the images are grayscale.

overfitting, the learning rate is reduced by 10% after 80, 100, 120 and 160 epochs,
and 5% after 180 epochs. The learning methodology of the attention phase is
developed by using UCSs. The configuration settings of the UCS are the same
as used by the majority of the researchers [30][31],except for the population size
which is set to 10000 as this has shown to give a high performance result. The
UCS is coded with upper and lower bound representation and configured as fol-
lows: Genetic Algorithm’s (GA) threshold θga = 20; Crossover probability of χ
= 0.8; Crossover type = “two point”; Probability of mutating an allele µ = 0.04;
Deletion threshold θdel = 20; Subsumption threshold θsub = 20, Subsumption
accuracy ε0 = 0.99, Initial fitness fi = 0.01; Fitness reduction α = 0.1; GA parent
selected strategy (s) = tournament; Fraction included in tournament τ = 0.4;
Learning rate β = 0.2; finally, the UCSs is set to run over 500000 iterations to
ensure convergence. The HOG features are computed with the following param-
eters: Window size = (64, 64), block size = (16, 16), cell size = (16, 16), window
sigma = 4, normalization type = 0, L2-normalization threshold = 2.1x10−15,
number of levels = 64, window stride = (8, 8), and location = (10, 20).

4.3 Experiments

For all the experiments, the expression images are randomly divided into 80%
and 20% train and test images, respectively. The novel lateralized system is
trained by using the original train images only. The adversarial attacks are ap-
plied only to the test images. The performance accuracy of the novel system is
evaluated by using the test images, whereas the robustness of the novel lateral-
ized approach is evaluated by using the adversarial images.

Three types of adversarial attacks are applied to the test images, i.e. (i)
Distractor Attack, (ii) Wrapper Attack, and (iii) Hybrid Attack as shown in Fig.
3. The distractor attack is generated by using the DeepFool with the following
settings: overshoot = 0.02, CenterCrop = 224, mean = [0.516, 506, 0.496], std =
[0.375, 0.365, 0.355], max iteration = 1. The wrapper attack is applied by first
detecting the landmark coordinates of the left and right eyes and then adding
sunglasses on top of the eyes. However, the width of the sunglasses is reduced
to 90% so as not to cover the entire face. The Hybrid attack is the combination
of both the distractor attack and the wrapper attack.

Three variants of the lateralized approach are evaluated, i.e. (i) Lateral All,
(ii) Lateral Anecdotal, and (iii) Lateral Sense. Lateral All (LatAll) utilizes the
constituent level and holistic level predictions obtained from all the parts, i.e.
eyes, mouth, nose, jaw, and face. Lateral Anecdotal (LatAne) utilizes the predic-
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(a) Distractor Attack

(b) Wrapper Attack

(c) Hybrid Attack

Fig. 3. Sample original images and the resultant adversarial images after applying
distractor, wrapper, and hybrid attacks.

tions obtained from the top three parts, i.e. mouth, jaw, and face. These three
parts are selected as they anecdotally contribute to emotion. Lateral Sense (Lat-
Sen) utilizes the predictions obtained from three sensing parts, i.e. eyes, nose,
and mouth. These parts are selected as they are believed to be used by humans
for the expression of their emotions [32]. In reporting the statistical test, the
letters a, b, c, and d are used to indicate if the result is significantly different
compared to the VGG19 model. The same letter infers that there is no significant
difference whereas different letters show that there is a significant difference.

The experimental results show that all the variants of the lateralized ap-
proach obtained a performance accuracy better than or equal to the conven-
tional DL model (VGG19), see Table 1. For original test images (none attack),
LatSen obtained a classification accuracy of 99.14%, whereas the VGG19 model
obtained an accuracy of 98.86%. The lateralized systems outperformed the con-
ventional DL model as they consider the image at different levels of abstraction.
For distractor adversarial images, two of the lateralized systems outperformed
the VGG19 model. The LatAll system exhibited strong robustness against the
distractor attack and achieved an accuracy of 88%, whereas VGG19 obtained an
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Table 1. Classification Accuracy(Highest Accuracy is in bold).

Atttack VGG19 LatAll LatAne LatSen
ANOVA
F p

None 98.86± 0.2∗a 98.86± 1.9∗a 98.86± 0.1∗a 99.14±2.3∗a 30.03 < .001

Distractor 73.71± 0.2∗a 88.0±6.6∗b 86.86± 3.8∗c 73.71± 6.7∗a 2.04 x 1029 < .001

Wrapper 36.57± 0.2∗a 75.43± 13.0∗b 87.43±11.3∗c 59.71± 16.1∗d 2.39 x 1030 < .001

Hybrid 15.43± 0.2∗a 49.28± 8.6∗b 51.14±9.8∗c 47.14±10.2∗d 5.20 x 1030 < .001

accuracy of 73.71%. Similarly, LatAne exhibited robustness and achieved a clas-
sification accuracy of 86.86%. For wrapper adversarial images, all the lateralized
system shows better robustness to the attack than the VGG19 model. The lat-
eralized systems have achieved an accuracy of 87.43%, 75.43%, and 59.71% for
LatAne, LatAll, and LatSen respectively, compared to the VGG19 model that
achieved an accuracy of 36.43%. As the hybrid attack is the strongest attack, the
lateralized systems could only achieve an accuracy of 51.14% (LatAne), 49.14%
(LatAll), and 34.29% (LatSen). Yet, the achieved accuracy is higher when com-
pared to the VGG19 model that achieved an accuracy of only 15.43%.

The statistical significance of the novel lateralized system is determined by
applying one-way ANOVA and post hoc comparison tests (see Table 1). Initially,
a one-way ANOVA was conducted to determine the significance of interaction
between the groups. Here, we have three groups, i.e. (i) VGG19-LatAll, (ii)
VGG19-LatAne, (iii) VGG19-LatSen); and four scenarios, i.e. None (original
images), distractor, wrapper, and hybrid. A significant interaction was found
between these groups (all p < .001).

Similarly, a post hoc comparison of a two-sample t-test with Bonferroni cor-
rection was performed on the obtained experimental results and no significant
difference found for the original images. However, the experimental results for all
the lateralized systems after the attack (except the LatSen system for distractor
images) were found to be significantly higher than for VGG19 at the α = .017.

4.4 Interpretation of Decisions

The decision-making process of the novel lateralized system is interpretable as we
can read the rules generated by the LCS. The analysis of predictions obtained for
original and adversarial images reveals the reasons behind the robustness against
adversarial attacks. The constituent and holistic models at the context phase may
generate wrong predictions for adversarial images. In the majority of such cases,
the constituent and holistic models predict different classes. Consequently, the
system considers that it is not confident to predict the class of the given image
and generates an excite signal to the attention phase to do further analysis.
After receiving the feedback from the attention phase, the system combines all
the predictions and confidently predicts the class of the given adversarial image.

For example, during the classification process of an original image ‘Img-org ’
(see Fig. 4a)), the holistic level deep model predicted its class as 100% happy.
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The constituents level deep models predicted the mouth as 99.99% happy and
0.01% anger, the nose as 99.99% happy and 0.01% disgust, and the eyes as
99.61% happy and 0.39% surprise. Since all the holistic and constituents level
models were predicting the same class (see Eq. 2 and 3), the lateralized system
predicted the class of the given original image as happy and generated an inhibit
signal to the attention phase to stop further processing of the image.

The image ‘Img-adv ’ was generated by applying a hybrid adversarial attack
to the Img-org, see Fig. 4b). The holistic level deep model predicted its class
as 99.90% disgust and 0.10 sad. However, the constituents level deep models
predicted the mouth of the image as 99.68% happy and 0.32% anger, the nose as
99.99% disgust and 0.01% fear, and the eyes as 49.91% sad, 44.68% happy, and
5.41% disgust. In this case, the holistic and constituents level deep models were
at odd with each-others. Consequently, the system generated an excite signal to
the attention phase for further analysis. Subsequently, the CLL (144.36 happy)
was computed by using the equations 2 and the HLL value (99.90% disgust) was
computed by using equation 3.

At the attention phase, the holistic level UCS models predicted the class of
the given image as 72.73% disgust and 27.27% anger. Similarly, the constituent
level UCS model predicted it as a 100% happy mouth. All the other constituent
level UCS models were not able to predict their respective parts (could not find
a matching rule). These prediction values were normalized and the winner class
prediction probability was shared with the system. Subsequently, the returned
value was added with the CLL and HLL values computed at the context phase.
Finally, the lateralized system predicted the given image class as a happy class
with a likelihood of 169.36.

Fig. 4. a) Happy expression, original image(Img-org). b) Happy expression, adversarial
image after hybrid attack (‘Img-adv)

5 Discussion

This work is designed to provide robust solutions for emotion categorization
against adversarial images. The novel lateralized system considers the given im-
age instance at the constituents level and the holistic level simultaneously. This
empowers the novel system to effectively counter the disruptive patterns gen-
erated by the adversarial attacks. An adversarial attack needs to successfully
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challenge all the constituents and holistic patterns to fool the novel lateralized
system.

The classification accuracy achieved by all the variants of the lateralized
systems is better than or equal to the state-of-the-art VGG19 model. The ex-
perimental results demonstrated that the novel system successfully exhibited
robustness against the majority of the adversarial attacks. In worse case, the
classification accuracy of the novel system (LatAne) was 51.14% against the
hybrid attack. It is understandable because hybrid is such a strong adversarial
attack that the VGG19 model could not resist it and obtained a very low classi-
fication accuracy, i.e. 15.43% (close to random guess). Moreover, the statistical
tests show that the improvement in the performance accuracy of the lateralized
system is statistically significant.

The decision-making process of the novel lateralized system is interpretable.
During the analysis of the results, it is revealed that the lateralized system may
wrongly predict some of the constituents or holistic parts but the overall pre-
diction made by the novel system is correct. Moreover, the utilization of inhibit
and excite signal assists the novel system to achieve performance efficiency and
makes it a more lateralized system rather than an ensemble system. All this
suggests that it is worthy to create lateralized classification systems to achieve
robustness against noisy and irrelevant real-world data.

In-spite of that, it is also important to keep in mind that these improvements
have the negative consequences of increasing the computational costs. While it
took an average of 2 hours/run for the VGG19 model in the holistic level to
train on an 8GB Graphical Processing Unit (GPU) device GeForce RTX 2080ti
with CUDA version 10.2, an average of 2 hours is required to train each of the
five deep models in the context phase, i.e. an approximate 10 hours on a single
machine (GPU slot). The UCS at the attention phase was run on grid computing,
so there is no accurate estimate of time. However, on average, it took about 4-5
hours for each UCS model to run completely. It is noted that this work did not
optimize for time.

6 Conclusion

The novel system successfully exhibited robustness against adversarial attacks
by applying lateralization. The ability to simultaneously consider the parts of
the face (constituents level) and the whole face (holistic level) empowers the
lateralized system to correctly classify emotions. The utilization of inhibit and
excite signals enable the novel system to efficiently classify original images and
pay more attention to the noisy and corrupt images. Consequently, the novel
system made correct decisions for badly corrupt images and exhibited robustness
against strong adversarial attacks. The novel lateralized system outperformed
the state-of-the-art VGG19 model by 15− 36% point.

Even though the novel lateralized system achieved a significantly better clas-
sification accuracy as compared to VGG19, it could not resist the strong adver-
sarial attack (classification accuracy 51.14%). The future work will improve the
lateralized method to exhibit robustness against such strong adversarial attacks.
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