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Abstract
The central theme of this thesis is the study and analysis of black hole
mimickers. The concept of a black hole mimicker is introduced, and var-
ious mimicker spacetime models are examined within the framework of
classical general relativity. The mimickers examined fall into the classes
of regular black holes and traversable wormholes under spherical sym-
metry. The regular black holes examined can be further categorised as
static spacetimes, however the traversable wormhole is allowed to have
a dynamic (non-static) throat. Astrophysical observables are calculated
for a recently proposed regular black hole model containing an exponen-
tial suppression of the Misner–Sharp quasi-local mass. This same regu-
lar black hole model is then used to construct a wormhole via the “cut-
and-paste” technique. The resulting wormhole is then analysed within
the Darmois-Israel thin-shell formalism, and a linearised stability analy-
sis of the (dynamic) wormhole throat is undertaken. Yet another regular
black hole model spacetime is proposed, extending a previous work which
attempted to construct a regular black hole through a quantum “deforma-
tion” of the Schwarzschild spacetime. The resulting spacetime is again
analysed within the framework of classical general relativity.

In addition to the study of black hole mimickers, I start with a brief
overview of the theory of special relativity where a new and novel result
is presented for the combination of relativistic velocities in general direc-
tions using quaternions. This is succeed by an introduction to concepts
in differential geometry needed for the successive introduction to the the-
ory of general relativity. A thorough discussion of the concept of space-
time singularities is then provided, before analysing the specific black hole
mimickers discussed above.
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Chapter 1

Introduction

General relativity is currently our best theoretical model for gravity and
has made many predications that have been verified by astronomical ob-
servations. Perhaps one of the best well-known predictions made by the
theory is that of black holes. However, within the framework of classical
general relativity, black holes contain a spacetime singularity at their core.
As shown by the Penrose singularity theorems, under suitable physically-
reasonable assumptions these singularities are unavoidable consequences
of theory once a trapped surface forms. These singularities present a host
of issues from a physical standpoint. Critically, the theory of general rela-
tivity ceases to be predictive at the singularity. This is clearly an issue, as
one of the most important properties of any physical theory is that it can
make accurate predictions about the universe we live in.

In spite of this, in many cases singularities are not an issue for every-
day physics as they are hidden by an event horizon, and as such physics
outside of the black hole is often unaffected. However, there are regimes
where the presence of a singularity could be detected (at least, in theory).
Examples of such are the information loss paradox, or during the very last
stages of a black hole’s evaporation.

Although the issues surrounding singularities have not been resolved,
there is convincing astronomical data which suggests that general relativ-

1



2 CHAPTER 1. INTRODUCTION

ity is extremely accurate in its description of black holes. Thus, we either
have to accept the reality of spacetime singularities at the centre of black
holes, thereby accepting that some of out most basic notions of physics no
longer hold, or we have to accept that physical black holes are different to
their mathematical counterparts. A proposed solution to this issue is the
concept of black hole ‘mimickers’. These are objects that are sufficiently
similar to black holes so that they agree with astronomical observations
but, crucially, do not contain singularities at their cores.

It is commonly believed that singularities will not be present in a con-
sistent theory of quantum gravity. However, it is unlikely that such a the-
ory will be achieved any time in the near future, and so black hole mim-
ickers provide an effective, classical approach to the resolution of singu-
larities in general relativity. In this thesis, I investigate a variety of black
hole mimickers within the scope of classical general relativity and discuss
their validity as real, physical alternatives to black holes as predicted by
classical general relativity.

In chapter 2, the reader is reminded about some of the main results of
the theory of special relativity, providing a starting point for discussing
the more general theory in later chapters. Familiarity with the theory of
special relativity is assumed herein.

Chapter 3 then studies the special-relativistic combination of velocities
using the quaternion number system. A new and novel result for combin-
ing relativistic velocities is proposed and thoroughly investigated within
the framework of the theory of special relativity.

In chapter 4, we move on to discuss the theory of general relativity.
The mathematical framework needed to understand the results in later
chapters is provided and discussed alongside the key postulates which
lead Einstein to the development of the theory1. This chapter is intended
as a review of classical general relativity, and as such no new results will

1The term “postulate” is often used to simply mean a collection of very good experi-
mental evidence. Einstein’s postulates have a very solid experimental foundation.
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be presented.
Chapter 5 discusses, in detail, singularities in general relativity. This

includes a rigorous definition of a singularity, as well as a general discus-
sion of the Penrose singularity theorems. This is then used to introduce the
idea of black hole mimickers, including regular black hole and traversable
wormhole spacetimes.

In chapter 6, a specific regular black hole model is analysed within the
context of classical general relativity. Specifically, the location of timelike
and null circular geodesics are investigated in detail, the spin-dependent
Regge-Wheeler potential is calculated, and a first-order WKB approxima-
tion of the quasi normal modes is completed. The novel regular black hole
under investigation results in a far richer phenomenology than standard
(non-regular) black holes.

In chapter 7, the same regular black hole spacetime is used to construct
a thin-shell traversable wormhole via the “cut-and-paste” technique, there-
by constructing yet another black hole mimicker. A linearised stability
analysis is conducted for the wormhole throat and a series of specific ex-
amples are investigated wherein the spacetime parameters are changed
(and allowed to be different) between the two manifolds used in the cut-
and-paste thin-shell construction. Again, the novelty of the spacetime re-
sults in a rich phenomenology of potential interest to observational as-
tronomers and astrophysicists.

Chapter 8 introduces a family of regular black hole spacetimes, which
is analysed within the framework of classical general relativity. The fam-
ily of regular black hole spacetimes were inspired by a (non-regular) black
hole spacetime which arises as a quantum modification to the Schwarzschild
black hole.

Finally, in chapter 9 we provide a brief summary of the main results in
this thesis and provide an outlook on the future of the field and avenues
of potential future research.
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Chapter 2

Special relativity

Before we introduce Einsteins theory of general relativity, we will provide
a brief overview of his theory of Special relativity, and provide some new
results on the combination of relativistic velocities. Note that this is not
intended to be a complete overview of the theory, and many results will
be assumed to be prior knowledge to the reader.

Special relativity is where one typically first encounters the notion of
spacetime: one time dimension t, and three space dimensions (x, y, z) com-
bined into one four-dimensional space representing the collective set of
points {(t, x, y, z)}. In Newtonian mechanics, there is no limit on how fast
an object may move through space, and notions such as ‘the length of an
object’, or ‘how fast a clock ticks’ are the same no matter who makes the
measurements. In special relativity, however, the situation is much differ-
ent – the ‘length of an object’ or ‘how fast a clock ticks’ is dependent on
the relative speed of the observer making the measurements.

The theory of special relativity is built from two ingredients:

(1) Minkowski space: the mathematical ‘space’ representing spacetime
in which all observers move along their ‘worldlines’.

(2) Einstein’s postulates: the ‘laws’ of physics, or mathematical ‘axioms’
(i.e. summary of experimental evidence) which we use to derive

5



6 CHAPTER 2. SPECIAL RELATIVITY

equations of motion governing how objects move throughout Mink-
owski space.

With these two ingredients, we can completely describe the kinematics of
an object, no matter how fast it is travelling, so long as we do not consider
the effects of gravity. Bringing gravity into the picture induces many ad-
ditional complications which will be captured by the full theory of general
relativity discussed in chapter 4. That is not to say that special relativity
is not a good, or useful theory. In many cases, one can ignore the effects
of gravity and work completely inside the framework of special relativity.
In fact, this is built into general relativity at a fundamental level: so long
as you are working in sufficiently small areas of spacetime, you need not
worry about any gravitational effects. Thus, for now, let us assume that
we are working only within the framework of special relativity and worry
about gravitational effects in later chapters.

2.1 Minkowski space and Einstein’s postulates

Special relativity is a theory of how objects move throughout spacetime.
Thus, first of all, we need to define a notion of what we mean by ‘space-
time’.

Definition 1. Minkowski spacetime is the pair (R4, η), where η is the quadratic
form given in matrix representation by

η =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.1)

As one would expect, Minkowski spacetime is four-dimensional, and
so we can use it to construct a theory of spacetime. At this point, we need
introduce our laws of physics from which we can deduce equations of
motion. These laws are given by Einstein’s postulates:
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Postulate 1 (Principle of relativity1). The laws of physics are the same in
all inertial frames of reference.

Postulate 2 (Invariance of c). The speed of light has the same value in all
inertial frames of reference.

Like all laws of physics, these postulates have been rigorously experi-
mentally tested, and so far have proven to be an accurate reflection of how
the universe works. Details of the experimental verification of special rel-
ativity can be found in Ref. [96].

We first define a four-vector X which has components Xµ = (x0, ~x) =

(ct, x, y, z) (note the components have dimension length). The four-vector
X represents an event in spacetime (i.e. a point in Minkowski space). Sup-
pose now that we have two events X1 and X2 such that a light ray passes
from event 1 to event 2. From postulate 2, the difference between these
two events is ∆X = X2 −X1 = (c∆t,∆~x)T . Since a light ray connects the
two events, we have that |∆~x|/|∆t| = c. That is, |∆~x|2 − (x0)2 = 0. We
can write this as matrix multiplication in terms of the quadratic form η as
η(∆X,∆X) ≡ (∆X)Tη∆X = 0.

This is our first notion of the idea of causality: as nothing can travel
faster than a light signal, event 1 can only cause event 2 if at least a light
signal can join the two points in spacetime (i.e. if η(∆X,∆X) = 0). Note
also that if η(∆X,∆X) = 0, then we also have η(∆(−X),∆(−X)) = 0, and
so (at least in this purely mathematical framework) if event 1 can cause
event 2, so too can event 2 cause event 1. In most physical situations, how-
ever, we will require that time flows in the positive direction. Then we will
have a well-defined time-ordering of events 1 and 2, thereby removing any
ambiguity about which event ‘caused’ the other. The set of points

C(X1) = {X2 | η(∆X,∆X) = 0}, (2.2)

1It is worth noting that postulate 1 holds for mechanical processes even in Galilean
relativity. It is postulate 2 which is unique to special relativity.
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Figure 2.1: The light cone of an event in spacetime. Time runs vertically
up the page.

forms the surface of a double-cone with apex at X1, called the “light-cone”
of X1 (see figure 2.1). Any event X2 that can be reached from X1 by a
signal travelling slower than the speed of light will lie inside the surface
of the light-cone. That is X2 is in the future of X1. (Note, ifX2 is in the past
of X1, it will lie in its past light-cone). Conversely, any event that cannot
be reached by X1 without travelling faster than the speed of light will lie
outside of the light-cone of event 1. That is, event 2 is not in the future of
event 1.

We can place the separation of two events into three distinct classes:

(1) Timelike separated: event 1 can reach event 2 by slower-than-light
travel; η(∆X,∆X) < 0.

(2) Lightlike (null) separated: event 1 can only reach event 2 by speed of
light travel; η(∆X,∆X) = 0.

(3) Spacelike separated: event 1 cannot reach event 2 without travelling
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Figure 2.2: Two observers travelling towards each other in the non-
relativistic case. Each observer sees the other travelling towards them at
speed 2v.

faster than the speed of light; η(∆X,∆X) > 0.

2.2 Lorentz transformations

Postulate 2 leads to some interesting results that disagree with Newtonian
kinematics. Consider, for example, what happens if two observers A and
B are travelling toward each other, each with a speed v as measured by
some third observer (see figure 2.2). According to A, they will see B mov-
ing toward them at a speed v + v = 2v; and vice versa for B. This is a
perfectly acceptable scenario within the framework of Newtonian kine-
matics. Now suppose that the velocities v approach a reasonable fraction
of the speed of light, say v = 0.75c. We know from postulate 2 that noth-
ing can travel faster than v = c, and so A cannot possibly see B travelling
toward them at a speed 0.75c + 0.75c = 1.5c. This suggests that the sim-
ple non-relativistic Galilean transformations of Newtonian kinematics no
longer work at relativistic speeds, and that we need a new set of transfor-
mations which incorporate postulate 2 in a fundamental way. These are
known as the Lorentz transformations.

One of the biggest differences between Lorentz transformations and
the Galilean transformations of Newtonian kinematics is that the Lorentz
transformations also transform the time coordinate between the two ref-
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erence frames. For the case of co-linear velocities (along the x-axis), they
take the particularly simple form2

ct′ = γ(ct− βx),

x′ = γ(x− βct),

y′ = y,

z′ = z; (2.3)

where β = v/c, γ = 1/
√

1− β2, and the primed and un-primed coordi-
nates represent the coordinates in the different frames. Note that so long
as we are only working with two coordinate frames, we can always de-
fine the coordinate axes in such a way as to ensure that they are co-linear,
and so equations (2.3) hold. This does become an issue, however, if one
is dealing with more than two coordinate systems. In such a case, a more
complicated form of the Lorentz transformations are needed:

ct′ = γ
(
ct− ~β · ~r‖

)
,

~r′‖ = γ(~r‖ − ~βct),

~r′⊥ = ~r⊥, (2.4)

where ~r = ~r‖ + ~r⊥ is the position vector connecting the two frames, de-
composed into its components parallel and perpendicular to the relative
velocity ~β = ~v/c. The Lorentz transformations (2.4) are known as Lorentz
boosts, or pure Lorentz transformations, and form a subset of the group of
all Lorentz transformations, the Lorentz group.

Mathematically, the Lorentz group is isomorphic to O(1, 3), the orthog-
onal group of one time and three space dimensions that preserves the
space-time interval

η(∆X,∆X) = −t2 + x2 + y2 + z2. (2.5)

2Derivations can be found in any of the standard introductory textbooks on special
relativity.
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Note that, here and hereafter, we adopt units where the speed of light is
set to unity. It is clear from this description that rotations of space-time
are included in the Lorentz group, as well as the more familiar Lorentz
boosts (2.4). In fact, the pure Lorentz transformations do not even form
a subgroup of the Lorentz group as, in general, the composition of two
boosts B1 and B2 is not another boost but in fact a boost and a rotation
B12R12 = B1B2; whilstB21R21 = B2B1. This rotation, known as the Wigner
rotation, was first discovered by Llewellyn Thomas in 1926 whilst trying
to describe the Zeeman effect from a relativistic view-point [139], and was
more fully analysed by Eugene Wigner in 1939 [165]. (For more recent
discussions see [54, 55, 92, 109, 116].)

It is well–known that the composition of Lorentz transformations is
non-commutative. That is, applying two successive boosts B1 and B2 in
different orders results in the same final boost, B12 = B21, but different
rotations, R12 6= R21. In the context of the combination of two velocities ~v1

and ~v2, this means that the final speed is the same no matter the order we
combine the velocities, ‖~v1 ⊕ ~v2‖ = ‖~v2 ⊕ ~v1‖, but the final directions they
point in are different v̂1⊕2 6= v̂2⊕1. Although not immediately obvious, the
angle between ~v1 ⊕ ~v2 and ~v2 ⊕ ~v1 is in fact the Wigner angle Ω [109].

In the following chapter, we will provide a way of using Lorentz trans-
formations to derive results for the combination of relativistic velocities
using a very special representation of the Lorentz group: the quaternions.
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Chapter 3

Combination of velocities using
quaternions

Hamilton first described the quaternions in the mid-1800s, primarily with
a view to finding algebraically simple ways to handle 3-dimensional rota-
tions. With the advent of special relativity in 1905, and noting the mani-
festly 4-dimensional nature of quaternions once one adds a real part, mul-
tiple authors have tried to interpret special relativity in an intrinsically
quaternionic fashion [49, 64, 100, 113, 125, 126, 140].

Despite technical success in applying quaternions to special relativ-
ity, the use of quaternions in this subject has never really gained all that
much traction in the physics community. Perhaps one of the reasons for
this is that there are a number of sub-optimal notational choices in Sil-
berstein’s original work [125, 126], and the fact that there is no generally
accepted way of using quaternions to represent Lorentz transformations,
with many different authors employing their own quite distinct methods
[48, 49, 64, 100, 113, 125, 126, 140]. Even in more recent, post-millennial,
articles on “quaternionic special relativity” there is considerable disagree-
ment on notational choices [60, 61, 68, 168].

In this chapter, we shall introduce what we feel is a particularly sim-
ple and straightforward method for combining relativistic 3-velocities us-

13
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ing quaternions. All of the interesting features due to non-commutativity
properties of non-collinear boosts are implicitly and rather efficiently dealt
with by the non-commutative algebra of quaternions. The method is based
on an extension of an analysis by Giust, Vigoureux, and Lages [65, 85],
who (because they were working with the usual complex numbers) were
essentially limited to motion in 2-space; their formalism is not really well-
adapted to general motions in 3-space. Related constructions can also be
found in references [60, 61].

One could instead try to deal with the non-commutativity of the Lore-
ntz transformations by adapting the general formalism of the Baker–Camp-
bell–Hausdorff (BCH) theorem [2, 66, 145, 146, 147]. Unfortunately, the
general BCH formalism applied to this problem very quickly becomes in-
tractable, and we have found that the specifics of the quaternion formalism
yield much more useful and tractable results. Similarly, since the full sym-
metry group of the Maxwell equations is the conformal extension of the
Poincare group, it is sometimes useful, (when looking at pure electromag-
netic effects), to work with this conformal extension. However physical
observers, (physical clocks and physical rulers), break the conformal in-
variance, and to even meaningfully define 3-velocities one needs to restrict
attention to the Poincare group. We shall go even further and take transla-
tion invariance (spatial and temporal homogeneity) for granted, and focus
more specifically on the Lorentz group.

3.1 Quaternions

The quaternions are numbers that can be written in the form a+b i+c j+dk,
where a, b, c, and d are real numbers; and i, j, and k are the quaternion
units which satisfy the famous relation

i2 = j2 = k2 = ijk = −1. (3.1)
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They form a four–dimensional number system that is generally treated
as an extension of the complex numbers. We shall define the quaternion
conjugate of the quaternion q = a+b i+c j+dk to be q? = a−b i−c j−dk,
and define the norm of q to be qq? = |q|2 = a2 + b2 + c2 + d2 ∈ R. This
allows us to evaluate the quaternion inverse as q−1 = q?/|q|2.

Trying to define a “norm” as q2 = a2 − b2 − c2 − d2, while superficially
more “relativistic”, violates the usual mathematical definition of “norm”,
and furthermore is not useful when it comes to evaluating the quaternion
inverse q−1.

For current purposes we focus our attention on pure quaternions. That
is, quaternions of the form a i + b j + ck. Many quaternion operations
become much simpler when we are dealing with pure quaternions. For
example, the product of two pure quaternions p and q is given by pq =

−~p ·~q+ (~p×~q) · (i, j,k), where, in general, we shall set v = ~v · (i, j,k). From
this, we obtain the useful relations

[p,q] = 2(~p× ~q) · (i, j,k), and {p,q} = −2 ~p · ~q. (3.2)

A notable consequence of (3.2) is q2 = −~q · ~q = −q2 = −|q|2. There is a
natural isomorphism between the space of pure quaternions and R3 given
by

i 7→ x̂, j 7→ ŷ, k 7→ ẑ; (3.3)

where x̂, ŷ, and ẑ are the standard unit vectors in R3.
One of the most common uses for quaternions today (2021) is in the

computer graphics community, where they are used to compactly and ef-
ficiently generate rotations in 3-space. Indeed, if q = cos(θ/2) + û sin(θ/2)

is an arbitrary unit quaternion and v is the image of a vector in R3 under
the isomorphism (3.3), then the mapping v 7→ qvq−1 rotates v through an
angle θ about the axis defined by û. The mapping v 7→ qvq−1 is called
quaternion conjugation by q. Furthermore, an extension of the quaternions,
the dual quaternions, are used in the field of theoretical robot kinemat-
ics, due to their ability to efficiently handle rotations and translations of
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vectors [14].

3.2 Combining two 3-velocities

In the paper by Giust, Vigoureux, and Lages [65], see also [85], (and the
somewhat related discussion in reference [60]), a method is developed to
compactly combine relativistic velocities in two space dimensions, and
by extension, coplanar relativistic velocities in 3 space dimensions. In
the following subsection, we first provide a short summary of their ap-
proach, and then in the next subsection extend their method to general
non-coplanar 3-velocities.

3.2.1 Velocities in the (x,y)-plane

The success of this Giust, Vigoureux, and Lages approach relies on the
angle addition formula for the hyperbolic tangent function,

tanh(ξ1 + ξ2) =
tanh ξ1 + tanh ξ2

1 + tanh ξ1 tanh ξ2

. (3.4)

The tanh function is a natural choice for combining relativistic velocities
since it is limited to the interval [−1, 1]. Indeed, using the rapidity ξ de-
fined by v = tanh(ξ), we can easily combine collinear relativistic speeds
using equation (3.4). In order to use this for the combination of non-
collinear relativistic 2-velocities, we replace each 2-velocity ~v by the com-
plex number

V = tanh(ξ/2) eiϕ. (3.5)

Here ξ is the rapidity of the velocity ~v, and ϕ gives the orientation of
~v according to some observer in the plane defined by ~v1 and ~v2. Giust,
Vigoureux, and Lages then define the composition law ⊕ for coplanar ve-
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locities ~v1 and ~v2 by

W = tanh
ξ

2
eiϕ1⊕2 = V1 ⊕ V2 =

V1 + V2

1 + V2 V1

=
tanh ξ1

2
eiϕ1 + tanh ξ2

2
eiϕ2

1 + tanh ξ2
2

e−iϕ2 tanh ξ1
2

eiϕ1
,

(3.6)
where V is the standard complex conjugate of V . By using ξ/2 instead of
ξ in equations (3.5) and (3.6), we are actually dealing with the “relativistic
half–velocities”, tanh(ξ/2), (sometimes called the “symmetric velocities”),
where

w = tanh(ξ/2); v = tanh(ξ) =
2w

1 + w2
. (3.7)

That is:

w = tanh

(
1

2
tanh−1(v)

)
=

v

1 +
√

1− v2
. (3.8)

Using equations (3.4) and (3.6) we can easily retrieve the real velocity from
the half-velocity by using ⊕ operator: v = tanh ξ = tanh ξ/2 ⊕ tanh ξ/2 =

w ⊕ w.

As an aside, it is worth noting that these half-velocities are often first
encountered when working with Loedel diagrams [1]. Standard spacetime
diagrams (often called Minkowski diagrams) have orthogonal spacetime
axes in a given rest frame. As such, the axes of other reference frames
(moving with a relative velocity to the rest frame) form an acute angle.
This asymmetry between reference frames in a Minkowski diagram is of-
ten misleading, as postulate 1 enforces the equivalence of any two frames
of reference. Loedel diagrams are constructed in a third reference frame
travelling at the relative half-velocity of the two initial frames, and so the
symmetry between the two frames of reference is manifest.

In terms of the half velocities, we can write the combined velocity as

w1⊕2 eiϕ1⊕2 =
w1 eiϕ1 + w2 eiϕ2

1 + w1w2 ei(ϕ1−ϕ2)
. (3.9)

The ⊕ addition law is non-commutative, which is most easily seen by
first setting θ = ϕ2 − ϕ1, then Ω = ϕ1⊕2 − ϕ2⊕1, and finally observing that
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the ratio

eiΩ/2 =
1 + tanh ξ1

2
tanh ξ2

2
eiθ

1 + tanh ξ1
2

tanh ξ2
2

e−iθ
=

1 + w1w2eiθ

1 + w1w2e−iθ
(3.10)

is not equal to unity for non–zero θ, meaning that Ω = ϕ1⊕2 − ϕ2⊕1 is non-
zero.

The angle Ω = ϕ1⊕2−ϕ2⊕1 is in fact the Wigner angle Ω, so an expression
for this angle can be obtained by taking the real and imaginary parts of
equation (3.10):

tan
Ω

2
=

tanh ξ1
2

tanh ξ2
2

sin θ

1 + tanh ξ1
2

tanh ξ2
2

cos θ
=

w1w2 sin θ

1 + w1w2 cos θ
. (3.11)

This expression does not explicitly appear in reference [65] though some-
thing functionally equivalent, in the form Ω = 2 arg(1 + w1w2eiθ), appears
in reference [85].

The ⊕ law can be applied to any number of coplanar velocities by iter-
ation:

W = (((V1 ⊕ V2)⊕ · · · ⊕ Vn−1)⊕ Vn). (3.12)

Thus, it would be desirable to cleanly extend this formalism to general
three-dimensional velocities. Note that the order of composition is impor-
tant, as we shall see in more detail below, the ⊕ operation is in general not
associative.

3.2.2 General 3-velocities

We now extend the result of Giust, Vigoureux, and Lages to arbitrary 3-
velocities in three dimensions.

Algorithm

Suppose we have a velocity ~vi in the (x, y)-plane, represented by the pure
quaternion wi = tanh(ξi/2)n̂i = tanh(ξi/2) (i cos θi + j sin θi). Using the
rules for quaternion multiplication, we can write this as

wi = tanh(ξi/2) (cos θi + k sin θi)i. (3.13)



3.2. COMBINING TWO 3-VELOCITIES 19

The term inside the brackets now looks very similar to what would be
a natural extension of the exponential function to the quaternions, ekθ =

cos θ + k sin θ. To formalise this, we define the exponential of a quaternion
q by the power series

eq =
∞∑
k=0

qk

k!
. (3.14)

To calculate an explicit formula for equation (3.14), we first consider the
case of a pure quaternion u. We know from section 3.1 that for a pure
quaternion we have u2 = −|u|2, and so we find u3 = −|u|2u, u4 = |u|4,
and so on. Thus, we can compute directly from the definition (3.14):

eu =

(
1− 1

2!
|u|2 +

1

4!
|u|4 − . . .

)
+

u

|u|

(
|u| − 1

3!
|u|3 +

1

5!
|u|5 − . . .

)
= cos |u|+ û sin |u|. (3.15)

Following the same procedure above, we find the exponential of a pure
unit quaternion û and real number φ to be

eûφ = cosφ+ û sinφ. (3.16)

This nice result reflects the expression for the exponential of a complex
number.

We can now extend this result to any arbitrary quaternion q = a+ u by
noting that the real number a commutes with all the terms in u, thereby
allowing us to write eq = eaeu, where eu has the same form as equation
(3.15). Explicitly,

eq = ea(cos |u|+ û sin |u|). (3.17)

The exponential of a quaternion possesses many of the same properties
as the exponential of a complex number. Two particularly useful ones we
use below are(

eûφ
)?

= e−ûφ = cosφ− û sinφ, and
∣∣eûφ

∣∣ = 1. (3.18)
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Using these results, we are now justified in writing

wi = tanh(ξi/2) ekθi i = wi e
kθi i (3.19)

for our velocity in the (x, y)-plane.
Building on this result, we now find it appropriate to define the ⊕ op-

erator for general 3-velocities, w1 = w1n̂1 and w2 = w2n̂2, by:

w1⊕2 = w1 ⊕w2 = (1−w1w2)−1(w1 + w2). (3.20)

The usefulness of this definition is best understood by looking at a few
examples.

Example: Parallel velocities

We consider two parallel velocities ~v1 and ~v2 represented by the quater-
nions

w1 = tanh
ξ1

2
n̂ and w2 = tanh

ξ2

2
n̂, (3.21)

respectively. Our composition law (3.20) then gives

w1⊕2 =

(
1 + tanh

ξ1

2
tanh

ξ2

2

)−1(
tanh

ξ1

2
n̂ + tanh

ξ2

2
n̂

)
=

tanh ξ1
2

+ tanh ξ2
2

1 + tanh ξ1
2

tanh ξ2
2

n̂

= tanh

(
ξ1 + ξ2

2

)
n̂, (3.22)

which is equivalent to

w1⊕2 =
w1 + w2

1 + w1w2

n̂, (3.23)

and hence, also equivalent to the well–known result for the relativistic
composition of two parallel velocities,

~v1 ⊕ ~v2 =
v1 + v2

1 + v1v2

n̂. (3.24)
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Example: Perpendicular velocities in the x–y plane

We now consider two perpendicular velocities in the x–y plane. By rotat-
ing around the z axis, without loss of generality they can be taken to be
given by

w1 = w1i, w2 = w2 j, (3.25)

where we have written tanh(ξ1/2) = w1 and tanh(ξ2/2) = w2 for brevity.
Our composition law then gives a combined velocity of

w1⊕2 = (1− w1w2ij)
−1(w1i + w2j) =

w1(1− w2
2)i + w2(1 + w2

1)j

1 + w2
1w

2
2

, (3.26)

which is definitely not commutative. In contrast the norm is symmetric:

|w1⊕2|2 =
w2

1(1− w2
2)2 + w2

2(1 + w2
1)2

(1 + w2
1w

2
2)2

=
w2

1 + w2
2

1 + w2
1w

2
2

. (3.27)

Here the wi are the “relativistic half–velocities” wi = tanh(ξi/2), so the full
velocities are

|vi|2 = |wi ⊕wi|2 =
4w2

i

(1 + w2
i )

2
, (3.28)

and so give a final speed of

|v1⊕2|2 =
4 (w2

1 + w2
2)(

1 + w2
1w

2
2

) [
1 +

w2
1+w2

2

1+w2
1w

2
2

]2 =
4
(
w2

1 + w2
2

)(
1 + w2

1w
2
2

)[(
1 + w2

1

)(
1 + w2

2

)]2 . (3.29)

The non-quaternionic result for the composition of two perpendicular ve-
locities is [109]

‖~v1⊕2‖2 = v2
1 + v2

2 − v2
1v

2
2 = 1−

(
1− v2

1

)(
1− v2

2

)
. (3.30)

Thus, we find

‖~v1⊕2‖2 =
4w2

1

(1 + w2
1)2

+
4w2

2

(1 + w2
2)2
− 16w2

1w
2
2

(1 + w2
1)2(1 + w2

2)2

=
4(w2

1 + w2
2)(1 + w2

1w
2
2)

[(1 + w2
1)(1 + w2

2)]
2 . (3.31)

And so our composition law ⊕ gives the standard result for the composi-
tion of two perpendicular velocities in the x–y plane.
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Example: Perpendicular velocities in general

For general perpendicular velocities ~v1 and ~v2 the easiest way of proceed-
ing is to simply rotate to point ~v1 along the x-axis and ~v2 along the y-axis,
and just copy the argument above. If one wishes to be more direct then
simply define

w1 = w1 ŵ1, w2 = w2 ŵ2; ŵ3 = ŵ1 ŵ2. (3.32)

In view of the mutual orthogonality of the vectors ŵ1, ŵ2, and ŵ3, the unit
quaternions (ŵ1, ŵ2, ŵ3) obey exactly the same commutation relations as
(i, j,k). Thence

w1⊕2 = (1−w1w2ŵ1ŵ2)−1(w1ŵ1 +w2ŵ2) =
w1(1− w2

2)ŵ1 + w2(1 + w2
1)ŵ2

1 + w2
1w

2
2

.

(3.33)
This now leads to exactly the same results as above; there was no loss of
generality inherent in working in the x–y plane.

Example: Reduction to Giust–Vigoureux–Lages result in the x–y plane

It is important to note that our composition law ⊕ reduces to the com-
position law of Giust, Vigoureux, and Lages when dealing with planar
velocities in the x–y plane. As above, we define general velocities in the
(i, j)-plane by w1 = tanh(ξ1/2)ekφ1i, and w2 = tanh(ξ2/2)ekφ2i, then, using
our composition law (3.20), we find

w1⊕2 =

(
1− tanh

ξ1

2
ekφ1i tanh

ξ2

2
ekφ2i

)−1(
tanh

ξ1

2
ekφ1i + tanh

ξ2

2
ekφ2i

)
.

(3.34)
But, noting that tanh(ξ2/2)ekφ2i = tanh(ξ2/2)i e−kφ2 and i2 = −1, we can
re-write this as

w1⊕2 =

(
1 + tanh

ξ1

2
ekφ1 tanh

ξ2

2
e−kφ2

)−1(
tanh

ξ1

2
ekφ1 + tanh

ξ2

2
ekφ2

)
i.

(3.35)
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Now, writing

w1⊕2 = tanh(ξ1⊕2/2) ekφ1⊕2 i (3.36)

we can cancel out the trailing i, to obtain

tanh
ξ1⊕2

2
ekφ1⊕2 =

(
1 + tanh

ξ1

2
ekφ1 tanh

ξ2

2
e−kφ2

)−1

×(
tanh

ξ1

2
ekφ1 + tanh

ξ2

2
ekφ2

)
. (3.37)

This expression now only contains k, so everything commutes, and we can
write

w1⊕2 ekφ1⊕2 =
w1 ekφ1 + w2 ekφ2

1 + w1 ekφ1 w2 e−kφ2
(3.38)

which is equivalent to the result of Giust, Vigoureux, and Lages.

Example: Composition in general directions

For general velocities ~v1 and ~v2 the easiest way of proceeding is to sim-
ply rotate to put ~v1 and ~v2 in the the x–y plane, and just copy the Giust–
Vigoureux–Lages argument [65] above. If one wishes to be more direct,
then simply define

w1 = w1 ŵ1, w2 = w2 ŵ2; ŵ3 =
[ŵ1, ŵ2]

| [ŵ1, ŵ2] |
. (3.39)

If ŵ1 is not parallel to ŵ2, then ŵ3 is well defined and perpendicular to
both ŵ1 and ŵ2. With these definitions one can now write

ŵ2 = exp(φŵ3) ŵ1. (3.40)

Then, following the discussion above, we see

w1⊕2 = (1 + w1w2 e−ŵ3φ)−1(w1 ŵ1 + w2 ŵ2)

= (1 + w1w2 e−ŵ3φ)−1(w1 + w2 eŵ3φ)ŵ1. (3.41)
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From this we can extract

w1⊕2 eŵ3φ1⊕2 = (1 + w1w2 e−ŵ3φ)−1(w1 + w2 eŵ3φ) =
(w1 + w2 eŵ3φ)

(1 + w1w2 e−ŵ3φ)
.

(3.42)
Finally,

w1⊕2 eŵ3φ1⊕2 =
(w1 + w2 eŵ3φ)

(1 + w1w2 e−ŵ3φ)
. (3.43)

This finally is a fully explicit result for general velocities ~v1 and ~v2, which
is manifestly in agreement with the Giust–Vigoureux–Lages results [65].

Uniqueness of the composition law

Finally, we might note that the expression for the composition law (3.20) is
not unique. For example, by considering the power-series of (1−w1w2)−1,
we can re-write equation (3.20) as

w1⊕2 = (1−w1w2)−1(w1 + w2) =
∞∑
n=0

(w1w2)n(w1 + w2). (3.44)

But, as w1 and w2 are pure quaternions, both w2
1 and w2

2 are real numbers,
and so commute with w1 and w2. Thus,

w1⊕2 =
∞∑
n=0

(w1w2)nw1 +
∞∑
n=0

(w1w2)nw2 = w1

∞∑
n=0

(w2w1)n+w2

∞∑
n=0

(w2w1)n.

(3.45)
Consequently we find that our composition law can also be written as

w1⊕2 = (w1 + w2)
∞∑
n=0

(w2w1)n = (w1 + w2)(1−w2w1)−1. (3.46)

Indeed, one could use either equation (3.20) or equation (3.46) as the defi-
nition of the composition law ⊕. Nonetheless, we will stick with the con-
vention given in (3.20).
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3.2.3 Calculating the Wigner angle

In this section we obtain an expression for the Wigner angle for general 3-
velocities using our composition law (3.20). Our calculations are obtained
using the result that the Wigner angle is the angle between the velocities
w1⊕2 and w2⊕1.

We first note

|w1⊕2| = |w2⊕1| = |1−w1w2|−1|w1 + w2| =
|w1n̂1 + w2n̂2|
|1− w1w2 n̂1n̂2|

. (3.47)

Thus, setting cos θ = ~n1 · ~n2 we explicitly verify

|w1⊕2| = |w2⊕1| =

√
w2

1 + w2
2 + 2w1w2 cos θ

1 + w2
1w

2
2 + 2w1w2 cos θ

. (3.48)

Now note that because |w1⊕2| = |w2⊕1| it follows that (w1⊕2) (w2⊕1)−1 is a
unit norm quaternion. In fact, defining

eΩ = (w1⊕2) (w2⊕1)−1 , (3.49)

we will soon see that the norm of Ω is the Wigner angle. Explicitly,

eΩ =
(
(1−w1w2)−1(w1 + w2)

) (
(1−w2w1)−1(w2 + w1)

)−1
. (3.50)

But for a product of quaternions we have (q1q2)−1 = q−1
2 q−1

1 , and so this
reduces to

eΩ = (1−w1w2)−1(1−w2w1). (3.51)

Now
w1w2 = −w1w2 cos θ + (~w1 × ~w2) · (i, j,k). (3.52)

Let us define

Ω̂ =
(~w1 × ~w2)

|~w1 × ~w2|
; so ŵ1 × ŵ2 = sin θ Ω̂. (3.53)

Then setting Ω̂ = Ω̂ · (i, j,k) so that Ω = Ω Ω̂, we have:

w1w2 = −w1w2(cos θ − sin θ Ω̂) = −w1w2 e−θΩ̂. (3.54)
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Consequently the Wigner angle satisfies

eΩ = eΩ Ω̂ =
(

1 + w1w2 e−θΩ̂
)−1 (

1 + w1w2 eθΩ̂
)

=
1 + w1w2 eθΩ̂

1 + w1w2 e−θΩ̂
. (3.55)

Equivalently,

eΩΩ̂/2 =
1 + w1w2 eθΩ̂∣∣1 + w1w2 eθΩ̂

∣∣ . (3.56)

Taking the scalar and vectorial parts of equation (3.56), we finally obtain

tan
Ω

2
=

w1w2 sin θ

1 + w1w2 cos θ
=
|~w1 × ~w2|
1 + ~w1 · ~w2

, (3.57)

as an explicit expression for the Wigner angle Ω.
The simplicity of equation (3.57) compared to exisiting formulae for Ω

in the literature, shows how the composition law (3.20) can lead to much
tidier and simpler formulae than other methods allowed for. This can be
seen as the extension of the result (3.11) to more general velocities.

We can write equation (3.57) in a perhaps more familiar (though possi-
bly more tedious) form by first noting that from equation (3.28) we have

wi =
1−

√
1− v2

i

vi
=

γi − 1√
γ2
i − 1

=

√
γi − 1

γi + 1
=

√
γ2
i − 1

γi + 1
=

viγi
γi + 1

, (3.58)

and so
tan

Ω

2
=

v1v2γ1γ2 sin θ

(1 + γ1)(1 + γ2) + v1v2γ1γ2 cos θ
. (3.59)

We can check two interesting cases of equation (3.57) for when θ = 0

(parallel velocities) and when θ = π/2 (perpendicular velocities). We
can see directly that, for parallel velocities, the associated Wigner angle
is given by tan(Ω/2) = 0, so that Ω = nπ for n ∈ Z; whilst for perpendic-
ular velocities, the associated Wigner angle is simply given by tan(Ω/2) =

w1w2.
It is easiest to check our results against the literature using the some-

what messier equation (3.59), in which case parallel velocities again give
tan(Ω/2) = 0, whilst perpendicular velocities give

tan(Ω/2) =
v1v2γ1γ2

(1 + γ1)(1 + γ2)
, (3.60)
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which agrees with the results given in [109].

3.3 Combining three 3-velocities

Let us now see what happens when we relativistically combine 3 half-
velocities.
We shall calculate, compare, and contrast w(1⊕2)⊕3 with w1⊕(2⊕3).

3.3.1 Combining 3 half-velocities: w(1⊕2)⊕3

Start from our key result

w1⊕2 = w1 ⊕w2 = (1−w1w2)−1(w1 + w2), (3.61)

and iterate it to yield

w(1⊕2)⊕3 = {1−(1−w1w2)−1(w1 +w2)w3}−1{(1−w1w2)−1(w1 +w2)+w3}.
(3.62)

It is now a matter of straightforward quaternionic algebra to check that

w(1⊕2)⊕3 = {(1−w1w2)−1(1−w1w2 − (w1 + w2)w3)}−1×

{(1−w1w2)−1(w1 + w2) + w3}

= (1−w1w2 − (w1 + w2)w3)−1(1−w1w2)×

{(1−w1w2)−1(w1 + w2) + w3}

= (1−w1w2 − (w1 + w2)w3)−1{(w1 + w2) + (1−w1w2)w3}.
(3.63)

Ultimately,

w(1⊕2)⊕3 = {1−w1w2−w1w3−w2w3}−1{w1 +w2 +w3−w1w2w3}. (3.64)

An alternative formulation starts from

w1⊕2 = w1 ⊕w2 = (w1 + w2)(1−w2w1)−1, (3.65)
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which when iterated yields

w(1⊕2)⊕3 = {(w1 +w2)(1−w2w1)−1 +w3}{1−w3(w1 +w2)(1−w2w1)−1}−1.

(3.66)
Thus, a little straightforward quaternionic algebra verifies that

w(1⊕2)⊕3 = {(w1 + w2) + w3(1−w2w1)}(1−w2w1)−1×

{1−w3(w1 + w2)(1−w2w1)−1}−1

= {(w1 + w2) + w3(1−w2w1)}{(1−w2w1)−w3(w1 + w2)}−1.

(3.67)

Ultimately,

w(1⊕2)⊕3 = {w1 +w2 +w3−w3w2w1}{1−w2w1−w3w1−w3w2}−1. (3.68)

So we have found two equivalent formulae for w(1⊕2)⊕3, equations (3.64)
and (3.68).

3.3.2 Combining 3 half-velocities: w1⊕(2⊕3)

In contrast, the situation for w1⊕(2⊕3) is considerably more subtle. Start
from the key result that

w2⊕3 = w2 ⊕w3 = (1−w2w3)−1(w2 + w3), (3.69)

and iterate it to yield

w1⊕(2⊕3) = {1−w1(1−w2w3)−1(w2 +w3)}−1{w1 +(1−w2w3)−1(w2 +w3)}.
(3.70)

The relevant quaternionic algebra is now a little trickier

w1⊕(2⊕3) = {1−w1(1−w2w3)−1(w2 + w3)}−1(1−w2w3)−1 ×

{(1−w2w3)w1 + (w2 + w3)}

= {(1−w2w3)(1−w1(1−w2w3)−1(w2 + w3)}−1 ×

{(1−w2w3)w1 + (w2 + w3)}

= {1−w2w3 − (1−w2w3)w1(1−w2w3)−1(w2 + w3)}−1 ×

{w1 + w2 + w3 −w2w3w1}. (3.71)
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To proceed we note that

(1−w2w3)w1(1−w2w3)−1 =

(
1−w2w3

|1−w2w3|

)
w1

(
1−w2w3

|1−w2w3|

)−1

= e−Ω2⊕3/2 w1 e
+Ω2⊕3/2. (3.72)

Thus,

w1⊕(2⊕3) = {1−w2w3 − (e−Ω2⊕3/2w1e
+Ω2⊕3/2)(w2 + w3)}−1×

{w1 + w2 + w3 −w2w3w1}. (3.73)

While structurally similar to the formulae (3.64) and (3.68) for w(1⊕2)⊕3 the
present result (3.73) for w1⊕(2⊕3) is certainly different — the Wigner angle
Ω2⊕3 now makes an explicit appearance, also the form of the triple-product
w2w3w1 is different.

3.3.3 Combining 3 half-velocities: (Non)-associativity

From (3.64) and (3.68) for w(1⊕2)⊕3, and (3.73) for w1⊕(2⊕3), it is clear that
relativistic composition of velocities is in general not associative. (See
for instance the discussion in references [131, 141], commenting on ref-
erence [130].)

A sufficient condition for associativity, w(1⊕2)⊕3 = w1⊕(2⊕3), is to en-
force

e−Ω2⊕3/2w1e
+Ω2⊕3/2 = w1, and w1w2w3 = w2w3w1. (3.74)

That is, a sufficient condition for associativity is

[Ω2⊕3,w1] = 0, and [w1,w2w3] = 0. (3.75)

But note Ω2⊕3 ∝ [w2,w3] and w2w3 = 1
2
{w2,w3}+1

2
[w2,w3]. Since {w2,w3} ∈

R, we then have [w1,w2w3] = 1
2
[w1, [w2,w3]]. This now implies that these

two sufficiency conditions are in fact identical; so a sufficient condition for
associativity is

[w1, [w2,w3]] = 0. (3.76)
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This sufficient condition for associativity can also be written as the vanish-
ing of the vector triple product

~w1 × (~w2 × ~w3) = 0. (3.77)

Equivalently,
~v1 × (~v2 × ~v3) = 0. (3.78)

3.3.4 Specific non-coplanar example

As a final example of the power of the quaternion formalism, let us con-
sider a specific intrinsically non-coplanar example. Let w1 = w1i, w2 =

w2 j, and w3 = w3k be three mutually perpendicular half-velocities. (So
this configuration does automatically satisfy the associativity condition
discussed above.)

Then we have already seen that

w1 ⊕w2 =
w1(1− w2

2)i + w2(1 + w2
1)j

1 + w2
1w

2
2

, and w2
1⊕2 =

w2
1 + w2

2

1 + w2
1w

2
2

. (3.79)

Furthermore, since w1 ⊕w2 is perpendicular to w3, we have

(w1 ⊕w2)⊕w3 =
w1⊕2(1− w2

3)n̂1⊕2 + w3(1 + w2
1⊕2)k

1 + w2
1⊕2w

2
3

, (3.80)

and

w2
(1⊕2)⊕3 =

w2
(1⊕2) + w2

3

1 + w2
(1⊕2)w

2
3

=
w2

1 + w2
2 + w2

3 + w2
1w

2
2w

2
3

1 + w2
1w

2
2 + w2

2w
2
3 + w2

3w
2
1

. (3.81)

A little algebra now yields the manifestly non-commutative result

(w1 ⊕w2)⊕w3 =
1

1 + w2
1w

2
2 + w2

2w
2
3 + w2

3w
2
1

{
(1− w2

2)(1− w2
3)w1+

+ (1 + w2
1)(1− w2

3)w2 + (1 + w2
1)(1 + w2

2)w3

}
. (3.82)

In this particular case we can also explicitly show that

(w1 ⊕w2)⊕w3 = w1 ⊕ (w2 ⊕w3), (3.83)

though (as discussed above) associativity fails in general.
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3.4 Summary

In this chapter, we analysed a simple, elegant, and novel algebraic method
for combining special relativistic 3-velocities using quaternions:

w1⊕2 = w1⊕w2 = (1−w1w2)−1(w1 +w2) = (w1 +w2)(1−w2w1)−1. (3.84)

The construction also leads to a simple, elegant, and novel formula for the
Wigner angle:

eΩ = eΩ Ω̂ = (1−w1w2)−1(1−w2w1), (3.85)

in terms of which

ŵ1⊕2 = eΩ/2 w1 + w2

|w1 + w2|
; ŵ2⊕1 = e−Ω/2 w1 + w2

|w1 + w2|
.

We saw how all of the non-commutativity associated with non-collinearity
of 3-velocities is automatically and rather efficiently dealt with by the quater-
nion algebra.

This concludes our discussion of the theory of special relativity, and
we will now move onto the theory of general relativity in the following
chapters.
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Chapter 4

General relativity

We now move to the setting of general relativity. As the name suggests,
general relativity is a generalisation of the theory of special relativity. In-
deed, it is a generalisation in the sense that it moves from the “flat space”
of special relativity (Minkowski space) to more general “curved spaces”.
These curved spaces are represented by manifolds, and the mathematical
language used to describe them is differential geometry. In this chapter,
we will present some of the main mathematical tools from differential ge-
ometry used in general relativity and introduce the idea of a spacetime
rigorously. From there, we will discuss Einstein’s equivalence principle
and how it leads to the theory of general relativity. This will then allow
us to analyse specific spacetime models within the framework of general
relativity in the following chapters.

The concept of a spacetime in general relativity is developed by adding
additional mathematical structure to a four-dimensional manifold. Rigor-
ously, we may define a spacetime as follows [70, 156].

Definition 2. A spacetime is a pair (M,g), where M is a connected, four-
dimensional C∞ manifold and g is a metric with Lorentzian signature.

Although most of the terms in this definition have not yet been de-
fined (they will be in the following sections), we can see a familiar theme

33
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with special relativity: spacetime is four-dimensional. As in special rela-
tivity, three of these are spacial dimensions, whilst the fourth is a temporal
dimension. Thus, intuitively, one may think of spacetime in general rela-
tivity as a four-dimensional object that encodes both spatial and temporal
information. However, in order to understand all of the terms in definition
2, we will need the mathematical framework presented in the following
sections.

4.1 Manifolds

Intuitively, a manifold is a space which may be curved on a global scale
(characterised by curvature tensors defined below), yet locally it must re-
semble Euclidean (flat) space. We formalise the notion of ‘resembling flat
space’ with the following definition.

Definition 3. A n-dimensional locally Euclidean space is a set E together with
a Cr atlas {Uα, φα}, i.e. a collection of charts (Uα, φα) where the Uα are subsets
of E and the φα are injective maps from the Uα into open subsets of Rn (endowed
with the standard topology) such that:

(1) the Uα cover E , i.e. E =
⋃
α Uα;

(2) if Uα ∩ Uβ is non-empty, then the map

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ)

is a Cr map from an open subset of Rn to an open subset of Rn.

Here we define a Cr map to be one that is r-times continuously differ-
entiable. We can now define a manifold as follows [148].

Definition 4. A manifoldM is a locally Euclidean space which:

(1) has the same dimension everywhere,
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(2) is Hausdorff,

(3) has at least one countable atlas.

A space is said to be Hausdorff if whenever p and q are distinct points
in M, there exists disjoint open subsets U and V of M such that p ∈ U

and q ∈ V . A topological space is said to be connected if it is not the
union of two disjoint non-empty open sets. Both properties of connect-
edness and Hausdorffness are simply “physically reasonable” constraints
that we place on the manifold in order to ensure that the mathematical
notion of a spacetime resembles as closely as possible the universe we
observe. The canonical example of a two-dimensional manifold is the 2-
sphere, S2. Globally it is a curved surface, yet a small patch on the surface
of the sphere will look like a flat piece of R2 if we ‘zoom in’ close enough.

4.2 The metric tensor

Perhaps the most important mathematical object in classical general rela-
tivity is the metric tensor which one endows on their manifold. In general,
we have the following definition [70].

Definition 5. A metric tensor g (usually just called “the metric”) at a point
p ∈M is a symmetric tensor of type (0, 2) at p.

If a coordinate basis {∂/∂xa} is used, then one can express the metric
in terms of its components as

g = gab dxa ⊗ dxb . (4.1)

The metric is extremely useful as it allows us to define the notion of a path
length between two points along a curve in a manifold. Indeed, suppose
that for two points p, q ∈ M there is a smooth curve γ parametrised by
some parameter λ ∈ R such that p = γ(a) and q = γ(b). Then the path
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length between the points p and q is given by

L =

∫ b

a

√
gab

dxa

dλ

dxb

dλ
dλ . (4.2)

We may express equations (4.1) and (4.2) via one relation as

ds2 = gijdx
idxj, (4.3)

which represents the infinitesimal arc determined by the coordinate dis-
placement xi → xi + dxi. In the context of general relativity, the quantity
ds2 as defined by equation (4.3) is commonly called the “line element” of
the spacetime, and is in direct one-to-one correspondence with the met-
ric endowed on the spacetime manifold. As such, one may see the terms
‘metric’ and ‘line-element’ used interchangeably within the context of a
spacetime.

One of the powerful properties of the metric is that it allows us to inter-
change between contravariant and covariant tensor quantities. We call a
metric non-degenerate at a point p ∈ M if the matrix (gab) of components
of g is non-singular at p (i.e. the matrix is invertible at p). For a non-
degenerate metric g, we can always define a unique non-degenerate sym-
metric tensor of type (2, 0) (sometimes called the “contravariant-metric”)
by the relation

gabgbc = δac . (4.4)

That is, (gab) is the matrix-inverse of (gab). Thus, if Xa are the components
of a contravariant vector, then we can uniquely define a covariant vector
with components given by Xa = gabX

b. Hence, one may also write Xa =

gabXb. Similarly, for a type (0, 2) tensor Xab we may write Xa
b = gacXcb,

X b
a = gbcXac, and Xab = gacgbdXcd.

Using the metric tensor, we can classify non-zero vectors into three dis-
tinct classes:

(i) Timelike: gabXaXb < 0,
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(ii) Null: gabXaXb = 0,

(iii) Spacelike: gabXaXb > 0.

Analogous to special relativity, this corresponds to (i) massive particles,
(ii) massless particles, and (iii) tachyonic particles.

The last term to unpack in our definition of a spacetime (definition 2) is
the concept of the signature of a metric. We have the following definition
[70].

Definition 6. The signature of a metric g at a point p ∈ M is defined as the
number of positive eigenvalues of the matrix (gab) at p, minus the number of
negative ones.

Furthermore, if g is non-degenerate, the signature of g will be constant
onM [70]. Commonly, one may see the signature of a metric presented as
a n-tuple of ‘+′ and ‘−′ signs, representing the positive (+) and negative
(−) eigenvalues of the metric. For example, (−,+,+) or (+,+,+,+,+).
This encodes the signature of the metric, as in definition 6, but is not so
easily adapted to the description of metrics on high-dimensional mani-
folds. However, as a spacetime is restricted to four dimensions, this rep-
resentation of the metric signature is commonly seen in classical general
relativity.

Definition 7. A positive-definite metric (sometimes called a Riemannian met-
ric) on a n-dimensional manifold is a metric with signature n (i.e. all positive
eigenvalues). Contrastingly, a Lorentzian metric on a n-dimensional manifold is
a metric with signature n− 2 (i.e. one negative eigenvalue).

Now that we have all of the framework necessary to understand the
definition of a spacetime (c.f. definition 2), we can begin to investigate
some of the more geometrical properties of manifolds and the associated
spacetimes.
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4.3 Covariant differentiation and connections

In general, the partial derivative of a tensor is not a tensor in of itself.
There are three standard, distinct ways to define a notion of the deriva-
tive of a general tensor quantity which invoke additional complications
in order to bypass this problem. The first of these notions (the exterior
derivative) restricts the class of tensors it operates on so as to ensure that it
produces tensor quantities, whilst the second (the Lie derivative) restricts
the ‘directions’ that you can differentiate tensors in to again ensure that it
produces tensor quantities. Both of these notions of a derivative have a
multitude of uses in classical general relativity, but will not be needed for
any of the analysis presented in this thesis. As such, details of exterior-
and Lie derivatives will not be discussed here for purposes of keeping
this chapter compendious. Thus, we will focus our analysis on the third
way of defining a derivative of a tensor quantity, the covariant deriva-
tive. The covariant derivative solves the issue of differentiating a tensor
by adding additional mathematical structure by way of an “affine con-
nection”1. Various ways of defining or constructing the covariant deriva-
tive can be found in the literature [70, 99, 148, 161]. We define the covari-
ant derivative for vectors axiomatically below, as in [148]. The definition
adopted here greatly simplifies the discussion with regards to covariant
differentiation, but does not provide much insight into the construction of
the affine connection. As such, many authors prefer to start by construct-
ing the affine connection and then go on to use this in their definition of the
covariant derivative. However, as covariant differentiation will be used
explicitly in the following sections, I have used the following construction
to simplify the discussion around it. If the reader would like additional in-
sight into the affine connection and its relationship to the parallel transport
of vectors, these details may be found in any of the standard textbooks on

1Sometimes simply called a “connection”, or the “Christoffel symbols”. However,
as we will soon see, the Christoffel symbols are in fact a very specific, special type of
connection.
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general relativity [35, 69, 70, 99, 161].

Definition 8. Suppose we have two contravariant vector fields ua and va, and
define the vectors u and v to be the directional derivatives u = ua∂a and v = va∂a.
We now define our covariant derivative operator to be the linear operator ∇u =

ua∇a which satisfies

(1) ∇uf = ua∂af ,

(2) ∇fuv = f∇uv,

(3) ∇u(fv) = (∇uf)v + f∇uv,

where f is a scalar function.

Now, note that ∂a is a vector field, and so∇∂a∂b is also a vector field and
can hence be expanded as a linear combination of ∂c’s. That is, in terms
of the expansion coefficients Ca

bc , we have ∇∂a∂b = Ca
bc∂c. We can now

use this result to derive expressions for the covariant derivative of tensor
quantities of general rank. Full details of this process van be found in any
of [70, 161, 148], but here I will just present the main results:

• (1, 0) tensor:

∇aX
b = ∂aX

b + Cb
caX

c, (4.5a)

• (0, 1) tensor:

∇aXb = ∂aXb − Cc
bagc, (4.5b)

• general (r, s) tensor:

∇aX
b1b2...br

c1c2...cs
= ∂aX

b1b2...br
c1c2...cs

+
r∑
i=1

Cbi
maX

b1b2...bi−1mbi+1...br
c1c2...cs

−
s∑
j=1

Cm
cja
Xb1b2...br

c1c2...cj−1mcj+1...cs
. (4.5c)
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The Ca
bc form the components of the affine connection, which plays an

extremely important role in general relativity. In fact, classical general
relativity imposes a geometrical constraint on the connection. This extra
condition is that it is torsion-free. That is, Ca

[bc] ≡
1
2
[Ca

bc − Ca
cb ] = 0. This

extra condition has been experimentally checked, and so far all evidence
seems to suggest that we do indeed live in a torsion-free universe. Fur-
thermore, it has the added benefit that it allows one to use an extremely
natural choice of connection for their spacetime, the Christoffel connec-
tion. This is typically denoted by Γ, and has components defined in terms
of partial derivatives of the metric:

Γabc =
1

2
gad
(
∂bgcd + ∂cgbd − ∂dgbc

)
. (4.6)

In fact, the Christoffel connection is the unique metric-compatible2, torsion-
free affine connection one can construct. It should be noted that there are
alternative theories of gravity that do not impose zero torsion on their
connection (for example, certain string-inspired models, teleparallel grav-
ity, etcetera). However, this thesis is primarily concerned with classical
general relativity, and so we will we use the torsion-free Christoffel con-
nection throughout the rest of the thesis.

We can now start with a metric for a given manifold, use this to con-
struct the Christoffel connection via equation (4.6), and hence define a no-
tion of covariant differentiation for general tensors in our spacetime via
equations (4.5). In the following sections, we will use our covariant deriva-
tive to obtain various notions for the ‘curvature’ of a spacetime, and then
use this to define the concept of the ‘straightest possible path’ in a curved
space by way of the geodesic equation. Finally, we will use these concepts
to construct the theory of general relativity.

2Metric compatible simply means∇agbc = 0.
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4.4 Curvature

In general, covariant derivatives do not commute. As a result of this, if one
starts at a point p ∈M and parallel transports a vector v1 along a curve γ1

that also ends at p, you will obtain a vector v2 which is in general different
to v1. Furthermore, if one parallelly transports along a different curve γ2

that also ends at p, you will in general obtain yet another vector v3 6= v2 6=
v1. This ‘non-integrability’ of parallel transport directly corresponds to
the non-commutativity of the covariant derivative. Thus, we can define
a tensor R which measures the extent of this non-commutativity when
acting on vector fields X, Y, and Z:

R(X, Y )Z = ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z. (4.7)

This tensor is called the Riemann (curvature) tensor, and has components
[99, 161]

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + ΓamcΓ

m
bd − ΓamdΓ

m
bc. (4.8)

As we will soon see, the Riemann tensor plays a central role in the mathe-
matical formulation of general relativity.

Using the Riemann tensor, we can construct a whole host of other ten-
sor quantities. Below, I list some of the more commonly used tensors rele-
vant to general relativity.

Contracting on the first and second indices of the Riemann tensor we
yield another tensor, the Ricci tensor:

Rab ≡ Rc
acb = ∂cΓ

c
ab − ∂bΓcac + ΓcdcΓ

d
ab − ΓcdbΓ

d
ac. (4.9)

We may contract once more to obtain a scalar, the Ricci scalar3:

R ≡ gabRab = gab
(
∂cΓ

c
ab − ∂bΓcac + ΓcdcΓ

d
ab − Γcdb

)
. (4.10)

Note that as this is a scalar quantity it is invariant under changes of coordi-
nates. As the name suggests, another tensor quantity of central importance

3Sometimes called the “scalar curvature”.



42 CHAPTER 4. GENERAL RELATIVITY

in general relativity is the Einstein tensor:

Gab ≡ Rab −
1

2
Rgab. (4.11)

Contacting all indices on the Riemann tensor we obtain the Kretschmann
scalar:

K ≡ RabcdRabcd. (4.12)

By defining the Weyl (conformal) tensor (for a manifold of dimension n ≥
4) as

Cabcd ≡ Rabcd +
1

n− 2

(
gadRbc + gbcRad − gacRbd − gbdRac

)
+

R

(n− 1)(n− 2)

(
gacgbd − gadgbc

)
, (4.13)

we can re-write the Kretschmann scalar as

K = CabcdCabcd +
4

n− 2
RabRab −

2

(n− 1)(n− 2)
R2. (4.14)

All of the tensors presented above give slightly different notions of the
geometrical curvature of a spacetime. As a spacetime is intrinsically four-
dimensional, it is often hard to obtain a mental picture of what this phys-
ically means for a spacetime (how can time be curved?). In section 4.6,
we will provide a way of connecting this mathematical framework back
to physical reality. Before we get to this, however, we still need one more
piece of mathematical machinery: geodesics.

4.5 Geodesics

Intuitively, we want to define a geodesic to be a curve that is “as straight
as possible” in a curved manifold. Building on this intuition, we wish to
require that the tangent vector T a to the curve points in the same direction
as itself when parallel propagated. That is, we require

T a∇aT
b ∝ T b. (4.15)
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With a suitable parameterisation of our curve, we can turn this equation
in to a much simpler condition:

T a∇aT
b = 0. (4.16)

Such a parameterisation is called an “affine” parameterisation, and we will
assume throughout the rest of this thesis that we are using such a parame-
terisation unless otherwise stated. Choosing some affine parameter λ, our
tangent vector is simply T a = dxa/dλ, and so using equation (4.5a) we can
re-write equation (4.16) as

d2xa

dλ2
+ Γabc

dxb

dλ

dxc

dλ
= 0. (4.17)

This equation is commonly referred to as the geodesic equation, and any
curves xa(λ) which satisfy it are called geodesics.

4.6 Einstein’s equivalence principle and field

equations

We now have constructed the mathematical framework necessary to un-
derstand Einstein’s general theory of relativity. However, as with all phys-
ical theories, we have to start with a set of fundamental axioms, or “laws”
of physics, on top of which we can apply our mathematical framework
to obtain the fundamental equations of motion. It is worth noting again
that, as with all “laws” of physics, these axioms are just a summary of very
good experimental evidence. Using the equations of motion, we can then
make predictions about how the universe behaves. In Newtonian mechan-
ics, we have Newton’s three laws; in special relativity, we have Einstein’s
postulates; in general relativity, we have the equivalence principle. In all
cases, laws of physics are just statements which encode and summarise
a lot of rigorous experimental evidence. The situation is no different in
general relativity.
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4.6.1 The equivalence principle

The equivalence principle asserts that all freely falling particles follow the
same trajectories independent of their internal composition [156]. In the
language of Newtonian mechanics, this is equivalent to asserting that an
objects gravitational mass (how the mass responds to-/generates a gravi-
tational field) is identical to its inertial mass (how the mass ‘resists’ changes
to its velocity). The assertion that gravitational mass and inertial mass
are the same quantity is now an extremely accurately tested principle: In
1999 Baessler et al. experimentally verified this to around one part in 1013

[8]. Although this was not so well experimentally verified at the time Ein-
stein developed his theory, it was still commonly believed to be true by the
physicists of the time. Thus, Einstein decided to fundamentally encode the
equivalence principle into his theory with the following postulates, com-
monly called the Einstein equivalence principle.

Postulate 3 (Equivalence principle). Given a spacetime (M,g), the gravi-
tational field is represented by the Christoffel connection and free fall cor-
responds to geodesic motion. Furthermore, in the flat spacetime limit, the
metric must reduce to the Minkowski metric η of special relativity.

The last of these two statements implies, that in suitably small local co-
ordinate patches, we must be able to reproduce the laws of special relativ-
ity from the more general theory. Hence, we have the following hierarchy

General relativity −→
flat space

Special relativity −→
low energy

Newtonian mechanics.

4.6.2 Einstein’s field equations and the stress-energy

tensor

In order for general relativity to be a complete physical theory, we need a
set of equations of motion. Like all field theories, it is desirable to derive
the equations of motion via an action principle. Therefore, consider the
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action
S = − 1

16π

∫
M

√
−g (R− 2Λ) d4x+

∫
M

√
−gLM d4x, (4.18)

where Λ is a constant (usually called the “cosmological” constant), g =

det(gab), and LM is a Lagrangian which is related to the matter-content (or
stress-energy) of the spacetime. Generally, one may write

S = Sgr + SM , (4.19)

highlighting the gravitational and matter-content contributions of a given
spacetime to the general action. The action (4.18) has been accredited to
David Hilbert, who published it less than a week after Einstein published
his own formulation of the field equations [74]. As such, it is typically
referred to as the Einstein-Hilbert action4. Varying the first integral in the
action yields

δS = − 1

16π

∫
M

[
δ
(√
−g
)

(R− 2Λ) +
√
−g δR

]
d4x. (4.20)

The variation of
√
−g is a standard result [70, 161]:∫
M
δ(
√
−g)d4x =

∫
M

−1

2

√
−g gab δgab d4x. (4.21)

However, the variation of the Ricci scalar is a little more subtle:∫
M
δRd4x =

∫
M
δ(gabRab)d

4x =

∫
M

[
δ(gab)Rab + gabδ(Rab)

]
d4x

=

∫
M

[
δ(gab)Rab +∇ava

]
d4x, (4.22)

where va = ∇bδ(gab)− gcd∇aδ(gcd) [161]. Thus, equation (4.20) can be writ-
ten as

δS = − 1

16π

∫
M

√
−g
[
Rab −

1

2
Rgab + gab Λ

]
δ(gab) d4x

− 1

16π

∫
M
∇ava

√
−g d4x. (4.23)

4Traditionally, the Einstein-Hilbert action is only defined to be the (
√
−g R) term in

the action presented above. However, including the other terms allows for the derivation
of the most general form of the Einstein equations.
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But the second integral is just the integral of the divergence ∇ava with re-
spect to the natural volume element (

√
−g d4x), and so by Stokes’ theorem

contributes only a boundary term – the Gibbons–Hawking surface term
[156]:

− 1

16π

∫
M
∇ava

√
−g d4x = δ

(
1

8π

∫
∂M

K
√

3g d3x

)
, (4.24)

where K = Ka
a is the trace of the extrinsic-curvature of the spacetime,

and 3g is the determinant of the induced three-metric. It is standard to
ignore this term in the derivation of the equations of motion, as one can
just simply subtract it from the original action presented in equation (4.18).
Furthermore, it will be identically zero for variations where gab and its
derivatives are held fixed on the boundary [161]. Hence, moving forward,
we will ignore this term in the derivation of the equations of motion.

We have not yet considered the contribution of the matter-content ac-
tion SM . To do this, we simply define a 4× 4 type (0, 2) tensor Tab by

Tab ≡ −
1

8π

1√
−g

δSM
δgab

, (4.25)

where, as above, the action SM represents the matter-content of the space-
time:

SM =

∫
M

√
−gLM d4x. (4.26)

As such, the tensor Tab is referred to as the stress-energy tensor of the
spacetime (sometimes called the ‘stress-energy-momentum’ tensor). Its
components are related to the matter in the spacetime by

Tab =

(
ρ Sj

Si πij

)
, (4.27)

where ρ is the energy density, Si is the energy-flux, and πij is the stress
(i, j ∈ {1, 2, 3}). Typically, Si is considered a generalisation of the Poynt-
ing vector and πij is considered a generalisation of the notion of pressure
[99, 156]. In an orthonormal frame, all of the components have dimension
[energy/volume].
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Finally, requiring that the action (4.18) be stationary under variations
with respect to the metric, δS/δgab = 0, we obtain the equations of motion
for a general spacetime in general relativity (the Einstein equations):

Rab −
1

2
Rgab + gabΛ = 8πTab. (4.28)

In most instances, the cosmological constant is set to zero as the latest
(2021) experimental evidence seems to suggest that it is a very small num-
ber (roughly 10−52 m−2 [110, 132]). In such instances, the Einstein equa-
tions are commonly written in terms of the Einstein tensor Gab as5.

Gab = 8πTab. (4.29)

Even in cases where the cosmological constant is not set to zero, one can
re-define the stress energy tensor as (Tab)new = (Tab)old − Λgab/8π, thereby
writing the full Einstein equations (4.28) in the form of equation (4.29).

Although it may look simple, equation (4.29) actually constitutes a sys-
tem of ten, coupled, non-linear, second order, partial differential equa-
tions. As such, finding exact solutions to the Einstein equations is, in
general, a very hard task. Historically, the Einstein equations have only
been solved in situations involving high degrees of mathematical sym-
metry [84]. For example, the Schwarzschild solution is the unique, non-
rotating (static), time-independent (stationary), spherically symmetric so-
lution; whilst the Kerr solution is a rotating (non-static), time-independent
(stationary), solution with azimuthal symmetry. The Schwarzschild solu-
tion was discovered very shortly after Einstein published his theory6 [122],
whilst the Kerr solution was not discovered until around 50 years later
[81].

5In SI units: Gab = (8πGN/c
2)Tab

6Although, it took another 40 odd years before it was realised that the solution repre-
sented a black hole spacetime (to be defined in chapter 5).
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4.6.3 Energy conditions

In the case of a spherically symmetric spacetime, the stress-energy tensor
of equation (4.27) takes the form [156]

Tâb̂ =


ρ 0 0 0

0 pr 0 0

0 0 pt 0

0 0 0 pt


âb̂

, (4.30)

where ρ is the energy density, pr is radial pressure, pt denotes the trans-
verse pressure, and hats on the indices denote components in an orthonor-
mal basis.

It is commonly believed all physically reasonable classical matter will
satisfy a set of seven equations, known as the energy conditions. These
conditions are: the null, weak, strong, and dominant energy conditions
(NEC, WEC, SEC, DEC); as well as the averaged null, weak, and strong
energy conditions. In this thesis, we will primarily be concerned with the
four non-averaged energy conditions.

Null energy condition

The null energy condition is the statement that

Tabk
akb ≥ 0, (4.31)

for any null vector ka. In terms of the components of the stress-energy
tensor (4.30), this is the statement that

NEC ⇐⇒ ρ+ pr ≥ 0 and ρ+ pt ≥ 0. (4.32)

Weak energy condition

The weak energy condition asserts that

TabV
aV b ≥ 0, (4.33)
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for any timelike vector V a. In terms of the components of the stress-energy
tensor (4.30):

WEC ⇐⇒ ρ ≥ 0 and NEC. (4.34)

Thus, satisfaction of the WEC will imply that the NEC holds also. Equiva-
lently, if the NEC fails to hold, then so will the WEC. Physically, the WEC
is the statement that the local energy density as measured by a timelike
observer must be non-negative.

Strong energy condition

The strong energy condition is the statement that(
Tab −

T

2
gab

)
V aV b ≥ 0, (4.35)

for any timelike vector V a, where T = T aa = −ρ + pr + 2pt is the trace of
the stress-energy tensor. In terms of the components of the stress-energy
tensor (4.30):

SEC ⇐⇒ ρ+ pr + 2pt ≥ 0 and NEC. (4.36)

Thus, satisfaction of the SEC will automatically imply satisfaction of the
NEC, but not necessarily the WEC. Equivalently, if the NEC fails to hold,
then so will the SEC.

Dominant energy condition

The dominant energy condition asserts that for any timelike vector V a,

TabV
aV b ≥ 0, and TabV

a is a non-spacelike vector. (4.37)

In terms of the components of the stress-energy tensor (4.30):

DEC ⇐⇒ ρ ≥ 0 and pr, pt ∈ [−ρ,+ρ]. (4.38)

Physically, this is the statement that the local energy density appears non-
negative and that the energy flux is timelike or null. Note that satisfaction



50 CHAPTER 4. GENERAL RELATIVITY

of the DEC automatically implies satisfaction of the WEC and the NEC,
but not necessarily the SEC. Equivalently, if the NEC or the WEC fails to
hold, then so will the DEC.

The interested reader can find a discussion of how the various energy
conditions are related to the singularity theorems in Ref. [156, pp. 118–
119]. A somewhat non-technical discussion regarding the validity of the
energy conditions outside of general relativity is given in Ref. [11].



Chapter 5

Black hole mimickers: extensions
to Einstein’s theory

In this chapter, we discuss what is considered to be one of the main issues
with classical general relativity – the prediction of spacetime singularities.
We then discuss how black hole mimickers may provide a classical reso-
lution in the specific case of black hole singularities, and then give some
examples of the different types of black hole mimickers commonly studied
in the literature and in this thesis.

5.1 Singularities

As we saw in chapter 4, if we have a spacetime (M,g), we can calcu-
late various curvature tensors which provide insight into the geometrical
nature of the manifold. For example, consider the line element for the
Schwarzschild spacetime in curvature coordinates

ds2 = −
(

1− 2m

r

)
dt2 +

dr2

1− 2m
r

+ r2
(
dθ2 + sin2 θdφ2

)
. (5.1)

The Kretschmann scalar for this spacetime is

K ≡ RabcdRabcd =
48m2

r6
, (5.2)

51
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and soK →∞ as r → 0. That is, the Kretschmann scalar is singular (in the
mathematical sense) at r = 0. In this instance, one would say that there is
a curvature singularity at r = 0 in the Schwarzschild spacetime.

Note, however, that the although the metric presented in equation (5.1)
is singular at r = 2m, this is purely a result of the coordinate system we are
using. That is, a suitable change of coordinate system would remove the
singular nature of the metric components at r = 2m1. Thus, this type of
singular nature of the metric is typically referred to as a “coordinate arte-
fact”, and is not considered to be a true spacetime singularity. That being
said, defining precisely what one means by a ‘true’ spacetime singularity
is in fact a very difficult task.

Naively, one may wish to define a singularity as a point in the space-
time where at least one curvature invariant diverges to infinity. However,
one could simply remove such a point from the spacetime manifold and
then claim that the resulting spacetime is non-singular. Thus, the issue
defining whether or not a spacetime has a singularity has now become a
problem of determining whether or not any singular points have been re-
moved. The notion of whether or not a space has any ‘holes’ in it is easily
formalised for Riemannian manifolds.

Consider a manifold M and take a curve γ : [a, b] ⊂ R → M. Intu-
itively, one can see how the point p = γ(b) could be considered an end-
point of the curve γ, and how in a ‘space without holes’ we would want
any endpoints of a curve to be contained in the space itself. We can for-
malise the notion of the endpoint of a curve γ : I → M for metric spaces
(i.e. Riemannian manifolds) with the following definition [70].

Definition 9. A point p in a manifold M is said to be an endpoint of a curve
γ : I →M if for every neighbourhoodU of p, there is a λ ∈ I such that γ(λ1) ∈ U
for every λ1 ∈ I with λ1 ≥ λ.

This allows us to formalise what we mean by a ‘space without holes’.
1For example, the Painlevé–Gullstrand coordinates (details may be found in refer-

ences [9, 99]. See also reference [161]).
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Definition 10. A Riemannian manifold M is said to be metrically complete if
every C1 curve of finite length has an endpoint. Furthermore, it is said to be
geodesically complete if every geodesic can be extended to arbitrary values in its
affine parameter.

For the case of Lorentzian metrics, one cannot define a metric space,
and so neither a notion of metric completeness. However, as Lorentzian
metrics admit the construction of geodesics, geodesic completeness can
still be defined. Lorentzian metrics further allow the classification of time-
like, null, or spacelike geodesic completeness depending on the sign of the
norm of its tangent vector. If a timelike geodesic is incomplete, this would
imply the possibility of a physical observer whose history does not exist
after, or before, a finite amount of proper time, which is certainly a phys-
ically objectionable property of a (classical) spacetime. Thus, we will say
that if a spacetime is either timelike or null geodesically incomplete, it contains
a singularity. Note that we do not require the converse statement to be
true, as there are examples of spacetimes, such as the one constructed by
Geroch [63], which exhibit singularity-like properties but are still geodesi-
cally complete. As such, some authors now require a more general condi-
tion for a spacetime to be considered singularity-free [70].

Definition 11. A spacetime (M,g) is said to be bundle complete if every affinely-
parameterised C1 curve of finite length has an endpoint.

Definition 12. A spacetime is said to be singularity free, or contain no singular-
ities, if it is bundle complete.

We will adopt definition 12 as our formal definition of a singularity.
However, most of the time geodesic completeness is enough to classify
singularities, and bundle completeness is only needed for very technical
reasons. The interested reader may find more details in any of [63, 70, 161].

Defining singular spacetimes by the presence of incomplete curves of
certain classes is necessary for proving the singularity theorems (discussed
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below), but does not provide us with any information about the location
or type of singularity present in the spacetime. However, all spacetimes
which contain curvature singularities are definitely bundle (and hence
geodesic) incomplete. Thus, in practice, one would usually look for singu-
lar points in the curvature invariants of a particular spacetime of interest.

In the following chapters, we consider a type of singular spacetime
known as a black hole spacetime. In these spacetimes it will be clear where
the singularity is located by analysing the curvature invariants. In fact, if
we know we have a black hole spacetime, or the weaker condition of a
trapped surface, then in classical general relativity we can prove that such
a spacetime must necessarily contain a singularity. This is known as the
Penrose singularity theorem. We only present a simplified version of the
theorem below, as the full details are not directly relevant to the main work
in this thesis.

Theorem 1. A spacetime (M,g) cannot be null geodesically complete if

(1) Rabk
akb ≥ 0 for any null vector ka;

(2) there is a Cauchy surface H inM;

(3) M contains a closed trapped surface T .

Condition (1) is known as the null convergence condition, and is implied
by the weak energy condition. Thus, a sufficient condition for it to hold
is that the energy density of the spacetime is positive for any observer (a
physically reasonable assumption for macroscopic spacetimes).

A Cauchy surface H is a subset of the manifoldMwhich is intersected
exactly once by every differentiable timelike curve inM. There are space-
times which satisfy conditions (1) and (3) which do not contain singulari-
ties, and as such condition (2) must be included. The technical reasons for
as to why the spacetime must contain a Cauchy surface are not germane to
the theme of this thesis, and are best understood by completing the proof
of the theorem. Details of the proof may be found in [70, pp. 263–265].
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Formally, a closed trapped surface is a closed, compact, spacelike two-
surface without boundary, such that the two families of null geodesics or-
thogonal to T are converging at T [70, 99, 161]. Intuitively, one may view
T as being the surface at which even outgoing null geodesics are dragged
back inwards and forced to converge. As nothing physical can travel faster
than light, any matter inside T will be trapped inside a succession of two-
surfaces of ever decreasing area. Eventually, we will get to a situation
where we a forcing a massive object into a region so small that it can no
longer be considered physically reasonable. This apparent breakdown of
the theory is neatly captured by Penrose’s singularity theorem. Note that
theorem 1 implicitly assumes that the spacetime metric g is an exact solu-
tion to the Einstein equations (4.28), and so is strictly a theorem within the
framework of classical general relativity.

Perhaps the most important class of spacetimes containing trapped
surfaces is the black hole spacetimes. The formal definition of a black
hole spacetime is very technical, and will not be necessary for the work
in this thesis. As such, we will use a simplified definition of a black hole
spacetime which contains all of the ingredients necessary for the work in
the following chapters. The definition used here follows that of [156].

Definition 13. For each asymptotically flat region, the associated future/past
event horizon is defined as the boundary of the region from which causal curves
can reach asymptotic future/past null infinity. Furthermore, we define a black
hole to be the region contained inside an event horizon, and say that a spacetime
containing a black hole is a black hole spacetime.

Note the important fact: an event horizon is a trapped surface. As such,
any black hole spacetime satisfying conditions (1) and (2) in theorem 1 will
necessarily contain a singularity.

From a purely mathematical point of view, the fact the black holes con-
tain singularities causes no issues. However, as black holes are valid so-
lutions to the Einstein equations, and furthermore they can be shown to
form by real, physical stellar collapse models, this presents a real issue
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Figure 5.1: A black hole spacetime embedded as a two-surface in four-
dimensional spacetime. The black hole contains a curvature singularity at
its core.

from a physical standpoint. In spite of this, most of the time singular-
ities are not an issue for every-day physics as they are ‘hidden’ behind
an event horizon, and so physics outside of the black hole is unaffected.
However, there are cases where singularities do become an issue, such as
during the very last stages of a black hole’s evaporation – a time that plays
an important role in determining the compatibility of quantum mechan-
ics and general relativity. Many researchers now believe that a consistent
theory of quantum gravity will invoke sufficient changes to black holes
at the Planck scale, which will stop singularities forming [30, 31, 32, 33].
However, it is unlikely that such a theory will be achieved any time in
the near future, and as such it is useful to consider classical modifications
to black hole spacetimes which remove any singularities which may be
present. If such a modified spacetime mimics the observable qualities of
the singular black holes of classical general relativity, we will call it a black
hole mimicker. Note that as black hole mimickers are non-singular geome-
tries, by Penrose’s theorem they can not be exact solutions to the vacuum
Einstein equations. However, we can always assume that they satisfy the
non-vacuum equations, and then calculate what the required stress-energy
tensor will be for the non-singular spacetime.
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We will now move on to discuss various types of black hole mimickers,
specific models of which will be analysed in subsequent chapters. Note
that this is not intended to be an exhaustive list; there are types of black
hole mimickers that we will not discuss in this thesis (for example, the
Mazur–Mottola gravastars [98, 97] and subsequent refinements [37, 87, 89,
93, 166]). We will, however, discuss in some detail regular black holes and
traversable wormholes.

5.2 Regular black holes

The first class of black hole mimickers we will discuss is the so-called reg-
ular black holes. A regular black hole is a black hole (in that it has a well-
defined event horizon) that does not contain a singularity at its core. In
this sense, one may say that the singularity has been “regularised”.

Regular black holes were first suggested as alternatives to black holes
by Bardeen in 1968, where he advocated the metric (now known as the
Bardeen regular black hole) [13]

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2 , f(r) = 1− 2mr2(

r2 + q2
)3/2

. (5.3)

Here dΩ2 = dθ2 + sin2 θ dφ2 is the infinitesimal solid angle in spherical
symmetry, and q = (2ml2)1/3 where l is a length scale typically associated
with the Planck length. As l is such a small number, l ≈ 1.616 × 10−35m

[132], the Bardeen spacetime was devised to be a regular spacetime which
differs only minimally from the Schwarzschild spacetime (c.f. equation
(5.1)). A simple (but tedious) calculation verifies that this is indeed a black
hole spacetime in the sense of definition 13, with a horizon characterised
by the location at which gab∇ar∇br = grr = f(r) changes sign.

One can easily check that all curvature invariants remain finite every-
where in the spacetime2, but we will only present the calculation of the

2This is best done with computer algebra software packages. Commonly used pack-
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Ricci scalar for purposes of brevity:

R =
6mq2(4q2 − r2)

(r2 + q2)7/2
. (5.4)

Note that as r → 0 we have R → 24m/q3 = 12/l2, and so the spacetime
is indeed regular. Also worthy of note is that in the r → 0 limit we have
R → O(l−2), that is, the regular corrections are on order of magnitude of
the Planck scale.

Since this is a black hole spacetime without a singularity, it must have
a non-zero stress-energy tensor (this can easily be seen by that fact that
R 6= 0). Indeed, the stress-energy tensor is found by the non-vacuum
Einstein equations (4.29) to have components

T tt = T rr = − 6mq2

8π(r2 + q2)5/2
, (5.5a)

T θθ = T φφ =
3mq2(3r2 − 2q2)

8π(r2 + q2)7/2
. (5.5b)

As we are working in spherical symmetry, the stress-energy tensor has
the form of equation (4.30), and we can write T ab = diag(−ρ, pr, pt, pt)ab.
Note that inside the horizon, ρ and pr switch places, and so the stress-
energy tensor has the form T ab = diag(pr, −ρ, pt, pt)ab. Thus, outside the
horizon, we have

ρ = −pr =
6mq2

8π(r2 + q2)5/2
, (5.6a)

whilst

pt =
3mq2(3r2 − 2q2)

8π(r2 + q2)7/2
. (5.6b)

This then implies that ρ+ pr = 0, whilst

ρ+ pt =
6mq2

8π(r2 + q2)5/2
+

3mq2(3r2 − 2q2)

8π(r2 + q2)7/2
=

15mq2r2

8π(r2 + q2)7/2
≥ 0. (5.7)

ages include Maple, Mathematica, and Sage Math.
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Thus, we can conclude from equation (4.32) that the NEC is satisfied for
the Bardeen regular black hole. Similarly, since ρ ≥ 0, we can conclude that
the WEC is globally satisfied (i.e. the local energy density as measured by
a timelike observer will be non-negative). The SEC, however, is a little
more subtle. We have that

ρ+ pr + 2pt =
3mq2(3r2 − 2q2)

4π(r2 + q2)7/2
, (5.8)

and so from equation (4.36), we can conclude that the SEC will only be
satisfied in the region

r ≥ 2

3
q =

2

3
(2ml2)1/3. (5.9)

This is a common theme that we will see with black hole mimickers:
we can force a regular black hole metric to satisfy the Einstein equations by
constructing the relevant stress-energy tensor, however said stress-energy ten-
sor does not globally satisfy all of the classical energy conditions. This has lead
to much discussion regarding the physical viability of black hole mimick-
ers [15, 16, 30, 31, 32, 33]. All black hole mimickers studied in this thesis
will fail to globally satisfy at least one of the classical energy conditions.
This is not necessarily an issue, however, as there are a number of phys-
ical systems from a wide range of areas of physics which violate one or
more of the energy conditions. Perhaps the best well-known instance of
this is the Casimir effect, in which a physical system is shown to have neg-
ative energy density, thereby violating the WEC and DEC. That being said,
the scales at which the Casimir effect is detectable induces a negative en-
ergy density orders of magnitude smaller than what would be necessary
to form, or stop the collapse of, most black hole mimickers. The interested
reader can find a discussion of the Casimir effect and its relation to the
energy conditions in Ref. [156, pp. 121–126] (see also the original paper by
Casimir [36], and the technical references [17, 18]).
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5.3 Wormholes

The next class of black hole mimicker we will introduce is the (traversable)
wormhole. Wormholes have a long history in general relativity: within
only a year of Einstein finalising his formulation of the field equations,
Flamm published an article hinting of possible spacetime “shortcuts” [58].
From here, wormholes were then investigated as solutions to the Einstein
equations by Weyl in the 1920s [163], Einstein and Rosen in the 1930s
[51], and by Wheeler in the 1950s [164]. After this, though, the field lay
relatively dormant for close to 30 yers until the wormhole ‘renaissance’
in the late 1980s with the seminal papers by Morris, Thorne, and Yurt-
sever [103, 104]. This lead to rapid investigation into wormhole physics
with many metrics of interest being investigated [151, 152], and new ways
of ‘constructing’ wormholes being discovered [111, 150]. Since then, the
amount of research into wormholes has slowed, but there is still a con-
sistent and significant flow of wormhole physics papers being published
[15, 20, 47, 91, 128, 160].

A particularly lucid definition of a traversable wormhole spacetime is
provided by Morris and Thorne3 [103].

Definition 14. A spacetime is said to contain a traversable wormhole if it satisfies
the following four conditions:

(1) The metric must satisfy the Einstein field equations (4.28) for some non-
zero stress-energy tensor.

(2) The spacetime must contain a region known as the ‘throat’. The throat
region must satisfy two conditions:

(i) it must connect two asymptotically flat regions of spacetime;

3Morris and Thorne actually provide many more conditions than just the ones pre-
sented in definition 14. However, the extra conditions they provide are primarily con-
cerned with making the wormhole physically traversable for a real, living human being
– something we will not worry about in this thesis.
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Figure 5.2: An inter-universe wormhole embedded as a two-surface in
four-dimensional spacetime.

(ii) it must satisfy the ‘flare-out’ condition: the areas of the induced spatial
hypersurfaces on either side of the throat must be strictly increasing
functions of the distance from the throat.

(3) The spacetime cannot contain any horizons.

(4) The spacetime cannot contain any singularities.

Condition (1) simply ensures that we stick to the confines of classical
general relativity. As with regular black holes, in practice one will typi-
cally specify a metric that satisfies conditions (2)–(4) then use the Einstein
equations (4.28) or (4.29) to calculate the necessary stress-energy tensor
required to support such a geometry. Condition (2) specifies the geome-
try of the wormhole spacetime. This agrees with our intuitive notion of
a wormhole as a “tunnel” between two regions of spacetime (c.f. figure
5.2). Conditions (3) and (4) enforce the ‘traversability’ of the spacetime.
If the spacetime contained a horizon, only one-way propagation of time-
like observer would be allowed (anytime timelike or null geodesic would
be dragged back inwards towards the wormhole throat). If the spacetime
contained a singularity, the immense tidal forces it would produce would
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be sure to destroy anything physical. Furthermore, the singularity would
cause the throat to be highly unstable and collapse in on itself in a very
short amount of time [103]. Note that in spherical symmetry, conditions
(2) and (3) imply condition (4).

Although traversable wormholes do not contain horizons, we will still
consider them to be black hole mimickers. The reason for this is two-fold:

(1) By definition, wormhole geometries do not contain singularities. As
a result, they rectify the physical concerns that result from singular
black hole spacetimes.

(2) We can construct the spacetime so that the wormhole throat lies ar-
bitrarily close to any would-be horizons in a corresponding black
hole geometry (see chapter 7). Thus, it would be hard for any as-
tronomical observations to distinguish between the two objects (the
wormhole is “mimicking” the black hole in an observational sense).

The canonical example of a wormhole spacetime is the Morris-Thorne
traversable wormhole [103, 104]. In curvature coordinates, this spacetime
has line element

ds2 = −dt2 + dr2 + (r2 + b2)(dθ2 + sin2 θdφ2), (5.10)

where b is a constant with dimensions of length. One can easily check that
this spacetime satisfies conditions (2)–(4) in definition 14, and represents a
static, spherically symmetric spacetime. Requiring that it be a traversable
wormhole solution to the Einstein field equations with Λ = 0 (i.e. condi-
tion (1)), forces the stress-energy tensor to have components

ρ = pr = −pt = − b2

8π(r2 + b2)2
. (5.11)

Thus,

ρ+ pr = − b2

4π(r2 + b2)2
< 0, (5.12)
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and so the NEC is violated globally in the Morris-Thorne wormhole space-
time. This guarantees that the WEC, SEC, and the DEC will also be sim-
ilarly violated globally. Violation of the energy conditions is a common
theme amongst wormhole geometries, and is one of the reasons why physi-
cists question their physical validity [78, 156, 160].

Wormholes also bring to light many questions regarding causality and
time travel [72, 104, 152, 154]. If one were to construct (or discover) a
traversable intra-universe wormhole (i.e. connecting two regions of the
same universe), they could travel through the throat, along a specially cho-
sen timelike geodesic, and arrive back before they ever left. Many other
paradoxes arise when one considers using wormholes as time travel ma-
chines [72, 88, 86, 103, 156], which is yet another reason why some physi-
cists believe that they cannot possibly exist in nature. This is perhaps best
summarised by Hawking’s chronology protection conjecture, which as-
serts that the laws of physics will conspire in such a way as to prevent us-
ing wormholes for time travel, except for perhaps on microscopic or quan-
tum scales. This is elegantly encapsulated by Hawking’s famous quote
[72]: “It seems there is a chronology protection agency, which prevents the ap-
pearance of closed timelike curves and so makes the universe safe for historians.”

Of course, there are other avenues of thought on the physical reality of
wormholes/time travel. One such example is Novikov’s self-consistency
conjecture. This states that if time travel via wormholes is possible, then
the laws of physics describing it will be such that the overall result is al-
ways consistent. In their 1990 paper, Novikov et al. state [59]: “...the only
solutions to the laws of physics that can occur locally in the real Universe are those
which are globally self-consistent.” This is particularly nice, as it does not
conjecture any new law of physics that we have no experimental evidence
for. Instead, it simply claims that the universe will continue to behave in
the same way that we have observed it to so far; we have no evidence that
the universe is in any way internally inconsistent. Novikov’s conjecture
also agrees with Hawking’s (pseudo)-experiment [72]: “we have not been
invaded by hordes of tourists from the future.”
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Chapter 6

Regular black hole with
asymptotically Minkowski core

In this chapter, we analyse a specific example of a regular black hole space-
time with an asymptotically Minkowski core. We calculate the radius of
the photon sphere and the extremal stable timelike circular orbit (ESCO),
which are (at least, in theory) physically observable quantities. The man-
ner in which the photon sphere and ESCO relate to the presence (or ab-
sence) of horizons is much more complex than for the Schwarzschild black
hole. We find situations in which photon spheres can approach arbitrar-
ily close to (near extremal) horizons, situations in which some photon
spheres become stable, and situations in which the locations of both pho-
ton spheres and ESCOs become multi-valued, with both ISCOs (innermost
stable circular orbits) and OSCOs (outermost stable circular orbits). This
provides an extremely rich phenomenology of potential astrophysical in-
terest.

65
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6.1 Introducing the spacetime

Without any loss of generality, any static spherically symmetric spacetime
can be described by a metric of the form

ds2 = −e−2Φ(r)

(
1− 2m(r)

r

)
dt2 +

dr2

1− 2m(r)
r

+ r2
(
dθ2 + sin2 θ dφ2

)
. (6.1)

For the standard Schwarzschild metric (equation (5.1)) one sets Φ(r) = 0

andm(r) = m0. Over the past century, a vast host of black hole spacetimes,
qualitatively distinct from that of Schwarzschild, have been investigated
by multiple researchers [9, 10, 80, 82, 105, 106, 115, 142, 143, 144, 149, 162,
167].

Furthermore, the field has now grown to not only include classical
black holes, but also quantum-modified black holes [4, 28, 29, 79], reg-
ular black holes [6, 13, 30, 62, 73], and various other exotic spherically
symmetric spacetimes that are fundamentally different from black holes
but mimic many of their observable phenomena (e.g. traversable worm-
holes [20, 39, 47, 78, 91, 103, 104, 111, 127, 128, 150, 151, 152, 154, 156,
160], gravastars [37, 87, 89, 93, 97, 98, 166], ultracompact objects [45, 46],
etcetera [33, 157, 159]; see [31] for an in-depth discussion).

The model spacetime investigated in this work is a regular black hole
with an asymptotically Minkowski core, as discussed in [15, 129]. This
is an example of a metric with an exponential mass suppression, and is
described by the line element

ds2 = −
(

1− 2m e−a/r

r

)
dt2 +

dr2

1− 2m e−a/r

r

+ r2
(
dθ2 + sin2 θ dφ2

)
. (6.2)

A rather different (extremal) version of this model spacetime, based on
nonlinear electrodynamics, has been previously discussed by Culetu [41],
with follow-up on some aspects of the non-extremal case in references [42,
43, 44]. See also [77, 117].

Most regular black holes have a core that is asymptotically de Sitter
(with constant positive curvature) [6, 13, 62, 73]. However, the regular
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black hole described by the metric (6.2) has an asymptotically Minkowski
core (in the sense that the stress-energy tensor asymptotes to zero). This
model has some attractive features compared to the more common de Sit-
ter core regular black holes: the stress-energy tensor vanishes at the core,
greatly simplifying the physics in this region; and many messy algebraic
expressions are replaced by simpler expressions involving the exponential
and Lambert W functions, whilst still allowing for explicit closed form ex-
pressions for quantities of physical interest [129]. Additionally, the results
obtained in this work reproduce the standard results for the Schwarzschild
metric by letting the parameter a → 0. Thus, the value of the parameter
a determines the extent of the “deviation” from the Schwarzschild space-
time.

If 0 < a < 2m/e then the spacetime described by the metric (6.2) has
two horizons located at

rH− = 2m eW−1(− a
2m), and rH+ = 2m eW0(− a

2m). (6.3)

Here W−1(x) and W0(x) are the real-valued branches of Lambert W func-
tion. We could also write

rH− =
a

|W−1

(
− a

2m

)
|
, and rH+ =

a

|W0

(
− a

2m

)
|
. (6.4)

Perturbatively, for small a we have

rH+ = 2m− a+O(a2), (6.5)

nicely reproducing Schwarzschild in the a → 0 limit. For the inner hori-
zon, since rH− < 2m then

rH− =
a

ln
(
2m/rH−

) (6.6)

implies rH− < a, whence we have a strict upper bound given by the simple
analytic expression:

rH− <
a

ln(2m/a)
. (6.7)
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Certainly lima→0 rH−(m, a) = 0 as we would expect to recover Schwarz-
schild; but the form of rH−(m, a) is not analytic. This bound can also be
viewed as the first term in an asymptotic expansion [38] based on (as x→
0+)

W−1(−x) = ln(x) +O(ln(− ln(x))) = − ln(1/x) +O(ln(ln(1/x))). (6.8)

This leads to

rH− =
a

ln(2m/a) +O(ln(ln(2m/a)))
=

a

ln(2m/a)
+O

(
a ln(ln(2m/a))

(ln(2m/a))2

)
.

(6.9)
More specifically (as a/m→ 0 or m/a→∞)

rH−

a
=

1

ln(2m/a)
+O

(
ln(ln(2m/a))

(ln(2m/a))2

)
. (6.10)

If a = 2m/e then the two horizons merge at rH = 2m/e = a and one has
an extremal black hole. If a > 2m/e then there are no horizons, and one
is dealing with a regular horizonless, extended but highly localised object,
(the energy density peaks at r = a/4).

This object could either be extended all the way down to r = 0, or
alternatively be truncated at some finite value of r, to be used as the ex-
terior geometry for some static and spherically symmetric mass source
that isn’t a black hole. This is potentially useful as a model for planets,
stars, etc. Consequently, we will also incorporate aspects of the analysis
for a > 2m/e as and when required to generate astrophysical observables
in the case when equation (6.2) is modelling a compact object other than a
black hole.

6.2 Geodesics and the effective potential

Continuing the analysis of [129], we will now calculate the location of the
photon sphere and extremal stable circular orbit (ESCO) for the regular
black hole with line element given by equation (6.2). Photon spheres, (or



6.2. GEODESICS AND THE EFFECTIVE POTENTIAL 69

more precisely the closely related black hole silhouettes), have been re-
cently observed for the massive objects M87 and Sgr A* [133, 134, 135, 136,
137, 138]. As such they are, along with the closely related ESCOs, practical
and useful quantities to calculate for black hole mimickers.

We begin by considering the affinely parameterised tangent vector to
the worldline of a massive or massless particle in our spacetime (6.2):

gµν
dxµ

dλ

dxν

dλ
= −

(
1− 2m e−a/r

r

)(
dt

dλ

)2

+

(
1

1− 2m e−a/r

r

)(
dr

dλ

)2

+ r2

[(
dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
]

= ε, (6.11)

where ε ∈ {−1, 0}; with −1 corresponding to a massive (timelike) parti-
cle and 0 corresponding to a massless (null) particle. (The case ε = +1

would correspond to tachyonic particles following spacelike geodesics, a
situation of no known physical applicability.) Since we are working with
a spherically symmetric spacetime, we can set θ = π/2 without any loss of
generality and reduce equation (6.11) to

−
(

1− 2m e−a/r

r

)(
dt

dλ

)2

+

(
1

1− 2m e−a/r

r

)(
dr

dλ

)2

+r2

(
dφ

dλ

)2

= ε. (6.12)

Due to the presence of time-translation and angular Killing vectors, we
can now define the conserved quantities

E =

(
1− 2m e−a/r

r

)(
dt

dλ

)
and L = r2

(
dφ

dλ

)
, (6.13)

corresponding to the energy and angular momentum of the particle, re-
spectively. Thus, equation (6.12) implies

E2 =

(
dr

dλ

)2

+

(
1− 2m e−a/r

r

)(
L2

r2
− ε
)
. (6.14)

This defines an “effective potential” for geodesic orbits

Vε(r) =

(
1− 2m e−a/r

r

)(
L2

r2
− ε
)
, (6.15)

with the circular orbits corresponding to extrema of this potential.
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6.3 Photon spheres

We subdivide the discussion into two topics: First the existence of circular
photon orbits (photon spheres) and then the stability of circular photon
orbits. The discussion is considerably more complex than for the Schwarz-
schild spacetime, where there is only one circular photon orbit, at r = 3m,
and that circular photon orbit is unstable. Once the extra parameter a
is nonzero, and in particular sufficiently large, the set of photon orbits
exhibits more diversity.

6.3.1 Existence of photon spheres

For null trajectories we have

V0(r) =

(
1− 2m e−a/r

r

)
L2

r2
. (6.16)

So for circular photon orbits

V ′0(rc) =
2L2

r5
c

[
m e−a/rc(3rc − a)− r2

c

]
= 0. (6.17)

To be explicit about this, the location of a circular photon orbit, rc, is
given implicitly by the equation

r2
c = m e−a/rc(3rc − a), (6.18)

where a and m are fixed by the geometry of the spacetime.1 The curve
described by the loci of these circular photon orbits has been plotted in
two distinct ways in figure 6.1.

For clarity, defining w = rc/a and z = m/a, we can re-write the condi-
tion for circular photon orbits as

w2 = z e−1/w(3w − 1); =⇒ z =
w2 e1/w

3w − 1
. (6.19)

1As a→ 0 we have rc → 3m, as expected for Schwarzschild spacetime.
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In figure 6.1 we also plot the locations of both inner and outer horizons.
The inner and outer horizons merge at a/m = 2/e = 0.7357588824...;

that is, atm/a = e/2 = 1.359140914.... For a/m > 2/e; that is form/a < e/2;
one is dealing with a horizonless compact object and we see that there is
a region where there are two circular photon orbits. Note that the curve
described by the loci of circular photon orbits terminates once one hits a
horizon, that is, at w = 1. Sub-horizon curves of constant r are spacelike
(tachyonic), and cannot be lightlike, so they are explicitly excluded. That
is, photon spheres can only exist in the region w ∈ (1,∞).

Can we be more explicit about the key qualitative and quantitative fea-
tures of this plot? Specifically, let us now analyze stability versus instabil-
ity, and find the exact location of the various turning points.

6.3.2 Stability versus instability for circular photon orbits

To check the stability of these circular photon orbits we now need to inves-
tigate

V ′′0 (rc) =
2L2

r7
c

[
3r3

c −m e−a/rc(6rc − a)(2rc − a)
]
. (6.20)

Perturbative analysis (small a)

We note that determining rc(m, a) from equation (6.18) is not analytically
feasible, but rc(m, a) can certainly be estimated perturbatively for small a.
We have

rc(m, a) = 3m− 4ma

rc
+O(a2) =⇒ rc(m, a) = 3m− 4

3
a+O(a2). (6.21)

So, for small values of a, we recover the standard result for the location of
the photon sphere in Schwarzschild spacetime.

Estimating V ′′0 (rc) by now substituting the approximate location of the
photon sphere as rc(m, a) = 3m− 4a/3 +O(a2), we find

V ′′0 (rc(m, a)) = − 2L2

81m4

(
1 +

4

3

a

m
+O(a2)

)
. (6.22)
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Figure 6.1: Location of the photon sphere, inner horizon, and outer hori-
zon as a function of the parameters a and m. The dashed blue line repre-
sents the extension of the photon sphere to horizonless compact massive
objects (CMOs), whilst the dashed red line is the asymptotic solution for
small values of the parameter a. (Equation (6.21).) The dashed grey line is
the asymptotic solution to the outer horizon for small values of a. (Equa-
tion (6.5).) The dashed green line is the simple analytic bound and asymp-
totic estimate for the location of the inner horizon. (Equations (6.7) and
(6.10).)

This quantity is manifestly negative for small a. That is, (within the limits
of the current small-a approximation), photons are in an unstable orbit at
the small-a photon sphere.

Non-perturbative analysis

However, if we rephrase the problem then we can make some much more
explicit exact statements that are no longer perturbative in small a: Whereas
determining rc(m, a) is analytically infeasible it should be noted that in
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contrast both a(m, rc) and m(rc, a) are easily determined analytically:

a(m, rc) = rc(3−W (rce
3/m)); m(rc, a) =

r2
c ea/rc

(3rc − a)
. (6.23)

Consequently, at the peak we can write

V0(rc,m) =
L2

r2
c

(
1− 2

W (rce3/m)

)
; V0(rc, a) =

L2

r2
c

rc − a
3rc − a

. (6.24)

Regarding stability, in the first case, substituting (6.23 a) into (6.20), we
have

V ′′0 (rc,m) = −2L2 (W (rce
3/m)2 −W (rce

3/m)− 3)

r4
cW (rce3/m)

. (6.25)

Using properties of the Lambert W function, we quickly see that this is
negative for rc/m > 1

2
(1 +

√
13) e−5/2+

√
13/2 = 1.146702958..., implying

instability of the circular photon orbits in this region, (and stability outside
this region).

That is, on the curve of circular photon orbits, V ′′(rc) = 0 at the point

(rc/m, a/m)∗ = (1.146702958..., 0.7995092385...). (6.26)

In the second case, substituting (6.23 b) into (6.20), we have

V ′′0 (rc, a) = −2L2

r5
c

3r2
c − 5arc + a2

3rc − a
. (6.27)

This will certainly be negative for rc/a > (5 +
√

13)/6 = 1.434258546..., im-
plying instability of the circular photon orbits in this region, (and stability
outside this region).

That is, on the curve of circular photon orbits, V ′′(rc) = 0 at the point

(rc/a,m/a)∗ = (1.434258546..., 1.250767286...). (6.28)

Consequently, on the curve of circular photon orbits we have existence
and stability in the region w ∈ (1, 1.434258546...); and existence and insta-
bility in the region w ∈ (1.434258546...,∞). Precisely at the point w =

1.434258546... the photon sphere exhibits neutral stability.
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6.3.3 Turning points

To evaluate the exact location of the turning points on the curve described
by the loci of circular photon orbits, recall that usingw = rc/a and z = m/a

we can write this curve as

w2 = z e−1/w(3w − 1) =⇒ z =
w2e1/w

(3w − 1)
. (6.29)

This allows us to calculate
dz

dw
= e1/w 3w2 − 5w + 1

(3w − 1)2
, (6.30)

which has a zero located at w = (5 +
√

13)/6, where we have already seen
that V ′′0 (rc, a) = V ′′0 (w) = 0.

At this point z takes on its maximum value

z = e6/(5+
√

13) (5 +
√

13)2

18(3 +
√

13)
= e(5−

√
13)/2 (2 +

√
13)

9
. (6.31)

Consequently, no photon sphere can exist if
a

m
> e−(5−

√
13)/2 (

√
13− 2) = 0.7995092385...; (6.32)

or equivalently

m

a
< e(5−

√
13)/2 (2 +

√
13)

9
= 1.250767286.... (6.33)

Note that this happens when

rc
m
>

1

2
(1 +

√
13)e−(5−

√
13)/2;

rc
a
>

5 +
√

13

6
, (6.34)

which was where, as we have already seen, V ′′0 (rc,m) = 0.
As can be seen, originally from figure 6.1, and now in more detail in

the zoomed-in plot in figure 6.2, for horizonless compact massive objects
there is a region where there are two possible locations for the photon
sphere for fixed values of m and a. Furthermore when this happens it is
the upper branch that corresponds to an unstable photon orbit, while the
lower branch is a stable photon orbit.
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Figure 6.2: Zoomed in plots of the location of the photon sphere, inner
horizon, and outer horizon as a function of the parameters a and m, fo-
cussing on the extremal and merger regions. The dashed blue line repre-
sents the extension of the photon sphere to horizonless compact massive
objects (CMOs). Whenever the location of the photon sphere is double-
valued the upper branch corresponds to an unstable photon orbit while
the lower branch corresponds to a stable photon orbit.

6.4 Timelike circular orbits

Let us first check the existence, and then the stability, of timelike circular
orbits. Even in Schwarzschild spacetime (a→ 0) this is not entirely trivial:
Timelike circular orbits exist for all rc ∈ (3m,∞); they are unstable for
rc ∈ (3m, 6m), exhibit neutral stability at rc = 6m, and are stable for rc ∈
(6m,∞). Once the parameter a is non-zero the situation is much more
complex.
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6.4.1 Existence of circular timelike orbits

For timelike trajectories, the effective potential is given by

V−1(r) =

(
1− 2m e−a/r

r

)(
1 +

L2

r2

)
, (6.35)

and so the locations of the circular orbits can be found from

V ′−1(rc) = − 2

r5
c

{
L2r2

c +m e−a/rc [a(L2 + r2
c )− rc(3L2 + r2

c )]
}

= 0. (6.36)

That is, all timelike circular orbits (there will be infinitely many of them)
must satisfy

L2r2
c +m e−a/rc [a(L2 + r2

c )− rc(3L2 + r2
c )] = 0. (6.37)

This is not analytically solvable for rc(L,m, a), however we can solve
for the required angular momentum Lc(rc,m, a) of these circular orbits:

Lc(rc,m, a)2 =
r2
c m(rc − a)

ma− 3mrc + r2
c ea/rc

. (6.38)

Physically we must demand 0 ≤ L2
c < ∞, so the boundaries for the exis-

tence region of circular orbits (whether stable or unstable) are given by

rc = a; ma− 3mrc + r2
c ea/rc = 0. (6.39)

The first of these conditions rc = a, comes from the fact that in this space-
time gravity is effectively repulsive for r < a. Remember that gtt = −(1−
2me−a/r/r), and that the pseudo-force due to gravity depends on ∂rgtt.
Specifically

∂rgtt = −2m

r2
e−a/r

(
1− a

r

)
, (6.40)

and this changes sign at r = a. So for r > a gravity attracts you to the
centre, but for r < a gravity repels you from the centre.

And if gravity repels you, there is no way to counter-balance it with a
centrifugal pseudo-force, and so there is simply no way to get a circular



6.4. TIMELIKE CIRCULAR ORBITS 77

orbit, regardless of whether it be stable or unstable. Precisely at r = a

there are stable “orbits” where the test particle just sits there, with zero
angular momentum, no sideways motion required. Since by construction
rc > rH+ ≥ a, this constraint is relevant only for horizonless CMOs.

The second of these conditions is exactly the location of the photon
orbits considered in the previous sub-section. (Physically what is going
on is this: At large distances it is easy to put a massive particle into a
circular orbit with Lc ∝

√
mrc. As one moves inwards and approaches the

photon orbit, the massive particle must move more and more rapidly, and
the angular momentum per unit mass must diverge when a particle with
nonzero invariant mass tries to orbit at the photon orbit.)

Thus the existence region (rather than just its boundary) for timelike
circular orbits is therefore:

rc > a; ma− 3mrc + r2
c ea/rc > 0. (6.41)

See figure 6.3.

6.4.2 Stability versus instability for circular timelike orbits

Now consider the general expression

V ′′−1(r) =
6L2r3 − 2m(2r4 − 4ar3 + (12L2 + a2)r2 − 8L2ar + L2a2)e−a/r

r7
,

(6.42)
and substitute the known value of L→ Lc(rc) for circular orbits, see (6.38).
Then

V ′′−1(rc) = −2me−a/rc(2m(3r2
c − 3arc + a2)e−a/rc − rc(r2

c + arc − a2))

(r2
c −m(3rc − a)e−a/rc)r4

.

(6.43)
Note that V ′′−1(rc) → ∞ at the photon orbit, (where the denominator has a
zero).

To locate the boundary of the region of stable circular orbits, the ESCO
(extremal stable circular orbit), we now need to set V ′′−1(rc) = 0, leading to
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(a) (b)

Figure 6.3: Locations of the existence region for timelike circular orbits in
terms of the circular null geodesics, outer horizon, and inner horizon for
various values of the parameters a and m.

the equation

2m(3r2
c − 3arc + a2)e−a/rc = rc(r

2
c + arc − a2). (6.44)

We note that locating this boundary is equivalent to extremizing Lc(rc). To
see this, consider the quantity [V ′−1(L(r), r)] = 0 and differentiate:

d [V ′−1(L(r), r)]

dr
=
∂V ′−1(L, r)

∂L

∣∣∣∣
L=L(r)

× dL(r)

dr
+ V ′′−1(L, r)

∣∣
L=L(r)

. (6.45)

This implies

0 =
∂V ′−1(L, r)

∂L

∣∣∣∣
L=L(r)

× dL(r)

dr
+ V ′′−1(L, r)

∣∣
L=L(r)

, (6.46)

and so

V ′′−1(L, r)
∣∣
L=L(r)

= −
∂V ′−1(L, r)

∂L

∣∣∣∣
L=L(r)

× dL(r)

dr
. (6.47)
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But it is easily checked that ∂V ′−1(L, r)/∂L is non-zero outside the pho-
ton sphere, (that is, in the existence region for circular timelike geodesics).
Thus,

V ′′−1(L, r)
∣∣
L=L(r)

= 0 ⇐⇒ dL(r)

dr
= 0. (6.48)

So one might a well extremize L2
c(rc), as in equation (6.38), and one again

finds equation (6.44).
Defining w = rc/a and z = m/a the curve describing the boundary of

the region of stable timelike circular orbits can be rewritten as

2z(3w2 − 3w + 1)e−1/w = w(w2 + w − 1). (6.49)

Plots of the boundary implied by equation (6.44), or equivalently (6.49),
can be seen in figure 6.4. As for the photon sphere, we have the interest-
ing result that the extension of the ESCO to horizonless compact massive
objects results in up to two possible ESCO locations for fixed values of a
and m. Perhaps unexpectedly, the curve of ESCOs does not terminate at
the horizon — it terminates once it hits the curve of circular photon or-
bits at a very special point. Let us now turn to the detailed analysis of
both the qualitative behaviour and the various turning points presented
in figures 6.4 and 6.5. Note that where the ESCO is single-valued it is an
ISCO (innermost stable circular orbit). Where the ESCO is double-valued
the upper branch is an ISCO and the lower branch is an OSCO (outermost
stable circular orbit) [22].

Perturbative analysis (small a)

Let us first investigate the existence region perturbatively for small a. We
have

Lc(rc,m, a)2 =
mr2

c

rc − 3m
− 2mrc(rc −m)

(rc − 3m)2
a+O(a2). (6.50)

Note that this approximation diverges at the Schwarzschild photon sphere
r = 3m. So for small a the boundary for the region of existence of timelike
circular orbits is still r = 3m.
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Figure 6.4: Locations of the ESCO, photon sphere, outer horizon, and inner
horizon for various values of the parameters a andm. The dashed blue line
represents the extension of the ESCO to CMOs. The dashed red curves
in sub-figure (a) and (b) is the asymptotic location of the ISCO for small
values of a (approaching the Schwarzschild solution).

Now investigate the stability region perturbatively for small a. Rear-
ranging equation (6.44) we see

rc =
6m(r2

c − arc + a2/3)e−a/rc

r2
c + arc − a2

= 6m

(
1− 3a

rc
+O(a2)

)
, (6.51)

and so
rc = 6m− 3a+O(a2). (6.52)

Which sensibly reproduces the Schwarzschild ISCO to lowest order in a,
and explains the asymptote in figure 6.4 (b).

Furthermore, for small a, substituting Lc(rc) into V ′′−1(L, rc) and ex-
panding

V ′′−1(rc) =
2m(rc − 6m)

r3
c (rc − 3m)

+
4m2(7rc − 15m)

r4(rc − 3m)2
a+O(a2) (6.53)
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(a) (b)

Figure 6.5: Locations of the ESCO, photon sphere, outer horizon, and in-
ner horizon for various values of the parameters a andm. The dashed blue
line represents the extension of the ESCO to CMOs. The dashed red line
represents the extension of the photon sphere to CMOs. The blue region
denotes stable timelike circular orbits, while the red region denotes unsta-
ble timelike circular orbits, and the green region denotes the non-existence
of timelike circular orbits. Where the ESCO is single-valued it is an ISCO.
Where the ESCO is double-valued the upper branch is an ISCO and the
lower branch is an OSCO (outermost stable circular orbit).

Demanding that this quantity be zero self-consistently yields rc = 6m −
3a+O(a2).

Non-perturbative analysis

We have already seen that, defining w = rc/a and z = m/a, the curve
describing the boundary of the region of stable timelike circular orbits can
be rewritten as

2z(3w2 − 3w + 1)e−1/w = w(w2 + w − 1). (6.54)
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That is,

z =
w(w2 + w − 1)e1/w

2(3w2 − 3w + 1)
. (6.55)

Let us look for the turning points of z(w). The derivative is

dz

dw
=

(w − 1)(3w4 − 6w3 − 3w2 + 4w − 1)e1/w

2w(3w2 − 3w + 1)2
. (6.56)

There is one obvious local extremum at w = 1, corresponding to z = e/2.
Physically this corresponds to the point where inner and outer horizon
merge and become extremal — but from inspection of figure 6.4, the de-
scriptive plots of figure 6.5, and the zoomed-in plots of figure 6.6, we see
that the curve of ESCOs hits the photon orbit (and becomes unphysical)
before getting to this point. In terms of the variables used when plotting
figures 6.4–6.6 this unphysical (from the point of view of ESCOs) point
corresponds to

(rc/a,m/a)∗ = (1, e/2) (rc/m, a/m)∗ = (2/e, 2/e). (6.57)

The other local extremum is located at the only physical root of the
quartic polynomial

3w4 − 6w3 − 3w2 + 4w − 1 = 0. (6.58)

While this can be solved analytically, the results are too messy to be en-
lightening and so we resort to numerics. Two roots are complex, one is
negative, the only physical root is w = 2.210375896..., corresponding to
z = 1.173459017.... Physically this implies that the ESCO curve should
exhibit a non-trivial local extremum — and from inspection of figure 6.4
we see that the curve of ESCOs does indeed have a local extremum at this
point. In terms of the variables used when plotting figure 6.4 this extremal
point corresponds to

(rc/a,m/a)∗ = (2.210375896, 1.173459017), (6.59)

and
(rc/m, a/m)∗ = (1.883641323, 0.8521814444). (6.60)
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6.4.3 Intersection of ESCO and photon sphere

We can rewrite the curve for the loci of the photon spheres (6.19) as

e−1/wz =
w2

(3w − 1)
. (6.61)

Similarly, for the loci of ESCOs rewrite (6.55) as

e−1/wz =
w(w2 + w − 1)

2(3w2 − 3w + 1)
. (6.62)

These curves cross at

w

(3w − 1)
=

(w2 + w − 1)

2(3w2 − 3w + 1)
. (6.63)

That is, at
(w − 1)(3w2 − 5w + 1) = 0, (6.64)

with explicit roots at

1,
5±
√

13

6
. (6.65)

The physically relevant root is w = 5+
√

13
6

= 1.434258546..., which was
where we previously determined that the photon sphere became stable,
and at the point where the curve of photon spheres maximised the value
of z = m/a.

6.4.4 Explicit result for the angular momentum

We can rewrite the curve for the angular momentum (6.38) as

L2
c = a2

(
e−1/wz w2(w − 1)

w2 − e−1/wz(3w − 1)

)
. (6.66)

Similarly, for the loci of ESCOs we can rewrite (6.55) as

e−1/wz =
w(w2 + w − 1)

2(3w2 − 3w + 1)
. (6.67)
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Figure 6.6: Zoomed in plot of the locations of the ESCO, outer horizon,
and inner horizon for various values of the parameters a and m, focussing
on the turning points. The dashed blue line represents the extension of the
ESCO to CMOs. Where the ESCO is single-valued it is an ISCO. Where the
ESCO is double-valued the upper branch is an ISCO and the lower branch
is an OSCO.

We then substitute this into back into Lc:

L2
c = a2 w

2(w2 + w − 1)

3w2 − 5w + 1
. (6.68)

This has a pole at w = 5+
√

13
6

= 1.434258546..., and is then positive and
finite for all w > 5+

√
13

6
. (Of course the point w = 5+

√
13

6
on the ESCO

curve is exactly where the ESCO curve hits the photon curve, so we would
expect the angular momentum to go to infinity there.) Asymptotically for
large r (large w = rc/a) we have L2

c ∼ a2w2/3 and m/a = z ∼ w/6, so
L2
c ∼ 2mrc as expected from the large-distance Newtonian limit.
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6.5 Regge–Wheeler and quasi-normal modes

Up until this point in our analysis, we have allowed for the possibility
of horizonless objects where a ∈ (2m/e,∞). However, in the following
sections, we must strictly enforce the existence of the outer horizon (or at
the very least the extremal horizon) in order to ensure that our problem
has the correct radiative boundary conditions when solving the Regge–
Wheeler equation. Consequently, in the following section we are explicitly
assuming a ∈ [0, 2m/e].

6.5.1 Regge–Wheeler potential

We will now calculate the Regge–Wheeler potential for spin 0 and spin 1
perturbations in our spacetime. The spin 2 perturbations are somewhat
messier, and hence do not lend themselves nicely to the WKB approxima-
tion and subsequent computation of the quasi-normal modes. First, we
implicitly define the tortoise coordinate by

dr∗ =
dr

1− 2m e−a/r

r

. (6.69)

Although this equation is not analytically integrable, we can still conduct
an analysis of the Regge–Wheeler potential through this implicit definition.
The coordinate transformation (6.69) allows us to write the spacetime met-
ric (6.2) in the following “isothermal” form2:

ds2 =

(
1− 2m e−a/r

r

){
− dt2 + dr∗

2

}
+ r2

(
dθ2 + sin2 θ dφ2

)
, (6.70)

which we may re-write as

ds2 = A(r∗)
2
{
− dt2 + dr2

∗
}

+B(r∗)
2
(
dθ2 + sin2 θ dφ2

)
. (6.71)

In Regge and Wheeler’s original work [114], they show for perturba-
tions in a black hole spacetime that assuming a separable wave form of the

2Coordinates of this form are also commonly called Buchdahl coordinates.
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type
Ψ(t, r, θ, φ) = eiωtψ(r)Y (θ, φ), (6.72)

results in the differential equation (now called the Regge–Wheeler equa-
tion):

∂2ψ(r)

∂r2
∗

+
{
ω2 − VS

}
ψ(r) = 0. (6.73)

Here Y (θ, φ) represents the spherical harmonic functions, while ψ(r) is a
propagating field in our spacetime, V is a spin-dependent potential (the
“Regge–Wheeler potential”), and ω is some temporal frequency compo-
nent in the Fourier domain [5, 20, 23, 56, 114, 120, 128].

The method for solving equation (6.73) is dependent on the spin of
the perturbations and the background spacetime. For scalar perturbations
(S = 0), one must solve the massless Klein–Gordon equation, �ψ(r) = 0;
whilst for electromagnetic (S = 1) perturbations, one must analyse the
the electromagnetic four-potential subject to Maxwell’s equations. Further
details can be found in references [7, 23, 114, 120]. For spin 0 and spin 1
perturbations, this yields the result [20, 128]:

VS =

{
A2

B2

}
`(`+ 1) + (1− S)

∂2
r∗B

B
. (6.74)

For our spacetime, we have ∂r∗ =
(

1− 2m e−a/r

r

)
∂r and B(r∗) = r.

Hence,

∂2
r∗B

B
=

(
1− 2m e−a/r

r

)
∂r

[
1− 2m e−a/r

r

]
r

=

(
r −m e−a/r

r3

)(
2m e−a/r(r − a)

r2

)
, (6.75)

and so we have the exact result:

VS =

(
r − 2m e−a/r

r3

){
`(`+ 1) + (1− S)

2m e−a/r(r − a)

r2

}
. (6.76)

That is,

VS =

(
1− 2m e−a/r

r

){
`(`+ 1)

r2
+ (1− S)

2m e−a/r(1− a/r)
r3

}
. (6.77)
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Thus, at the horizon, rH = 2m eW(− a
2m), the Regge–Wheeler potential van-

ishes. By taking the limit a → 0 we recover the known Regge–Wheeler
potentials for spin 0 and spin 1 perturbations in the Schwarzschild space-
time:

VSch;S = lim
a→0
V0,1 =

(
1− 2m

r

){
`(`+ 1)

r2
+ (1− S)

2m

r3

}
. (6.78)

Note that as we are only analysing spin 0 and spin 1 perturbations, this
is a different result to the spin 2 case analysed in Regge and Wheeler’s
original work (reference [114]). However, it agrees well with later results
extending the work of Regge and Wheeler to spin 0 and spin 1 perturba-
tions, for example reference [120].

6.5.2 Quasi-normal modes

We now wish to calculate the quasi-normal modes for our spacetime. We
define the quasi-normal modes in the standard way: they are the ω which
are solutions to equation (6.72), and satisfy the “radiation” boundary con-
ditions that Ψ is purely outgoing at spatial infinity and purely ingoing at
the horizon [19, 120]. Due to the inherent difficulty of analytically solving
the Regge–Wheeler equation for the quasi-normal modes, a standard ap-
proach in the literature is to use the WKB approximation. Although the
WKB method was originally constructed to solve Schrödinger-type equa-
tions in quantum mechanics, the close resemblance between the Regge–
Wheeler equation (6.73) and the Schrödinger equation allows for it to be
relatively easily adapted to the general relativistic setting. The WKB ap-
proximation was first applied to the calculation of quasi-normal modes by
Iyer, Schutz, and Will [75, 121]. See also the earlier work on quasi-normal
modes by Blome and Mashhoon which does not use the WKB approxima-
tion [19].

Computing a WKB approximation to first-order yields a simple and
tractable approximation to the spin-dependent quasi-normal modes for a
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black hole spacetime [19, 40, 120]:

ω2
S ≈

[
VS(r) + i

(
n+ 1

2

)√
−2 ∂2

r∗VS(r)

]
r=r0

. (6.79)

Here S ∈ {0, 1}, while n ∈ N is the overtone number, and r = r0 is the
coordinate location which maximises the Regge–Wheeler potential. In-
depth calculations of the WKB approximation up to higher orders in a
general setting can be found in references [19, 40, 120].

Spin 1

For spin 1 particles the V1(r) Regge–Wheeler potential is proportional to
the V0(r) effective potential used for determining the photon sphere for
massless particles. Specifically, we find

∂ V1(r)

∂r
=

2`(`+ 1)

r5

{
m e−a/r(3r − a)− r2

}
, (6.80)

and so by comparison with equation (6.18), we see that the Regge–Wheeler
potential is maximised at the location of the photon sphere. Thus, we
can immediately obtain the spin 1 first-order WKB approximation for the
real part of our quasi-normal modes in terms of the approximate photon
sphere location (6.21):

Re(ω2
1) ≈ V1

(
3m− 4

3
a
)

= 9 `(`+ 1)

(
9m− 4a− 6m e

3a
4a−9m

(9m− 4a)3

)
. (6.81)

Equivalently, using equations (6.23), we can eliminate a or m and express
this analytically (although implicitly) in terms of the exact location of the
photon sphere:

Re(ω2
1) ≈ `(`+ 1)

r2
c

(
1− 2

3rc − a

)
=
`(`+ 1)

r2
c

(
1− 2m

e3r2
c

e
e3rc
m

)
. (6.82)
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We now wish to calculate the imaginary part of the quasi-normal modes.
First, we note that in general

∂2VS
∂r2
∗

∣∣∣∣
r=r0

=

(
1− 2m e−a/r

r

)
×[(

1− 2m e−a/r

r

)
∂2VS
∂r2

+
2m e−a/r(r − a)

r3

∂VS
∂r

] ∣∣∣∣
r=r0

. (6.83)

But ∂VS/∂r
∣∣
r=r0

= 0, and so this reduces to

∂2VS
∂r2
∗

∣∣∣∣
r=r0

=

(
1− 2m e−a/r

r

)2
∂2VS
∂r2

∣∣∣∣∣
r=r0

. (6.84)

Thus, for our spin 1 particle we find

∂2V1

∂r2
∗

∣∣∣∣
r=r0

= `(`+1)

(
1− 2m e−a/rc

rc

)2{
6

r4
c

− (a− 2rc)(a− 6rc)
2m e−a/rc

r7
c

}
.

(6.85)
In terms of m(rc, a) and a(rc,m) from equations (6.23), we have:

Im(ω2
1) ≈

(2n+ 1)
√
`(`+ 1)(rc − a)(3r2

c − 5rca+ a2)

(3rc − a)r
5/2
c

=
(2n+ 1)

r2
cW (e3rc/m)

{
`(`+ 1)

[
2−W (e3rc/m)

]
×

[
W (e3rc/m)2 −W (e3rc/m)− 3

]}1/2

. (6.86)

Alternatively, one could use the approximate photon sphere location (6.21)
and obtain the approximate (although explicit) result:

Im(ω2
1) ≈ 9

√
3 (2n+ 1)

(
1− 6m e

3a
4a−9m

9m− 4a

)
×√√√√`(`+ 1)

(
27m e

3a
4a−9m (18m− 11a)(2m− a)− (9m− 4a)3

(9m− 4a)7

)
. (6.87)
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In summary, our first-order WKB approximation of the spin 1 quasi-
normal modes can be written analytically (but implicitly) as

ω2
1 ≈

`(`+ 1)

r2
c (3rc − a)

{
3rc − a+ 2 + i(2n+ 1)

√
(rc − a)(3r2

c − 5rca+ a2)

l(l + 1)rc

}

=
`(`+ 1)m ee3rc/m

e3r3
c

{
m ee3rc/m

e3rc
− 2

rc
+

i(2n+ 1)

√[
2−W (e3rc/m)

][
W (e3rc/m)2 −W (e3rc/m)− 3

]
`(`+ 1)

 .

(6.88)

Or approximately (but explicitly) as

ω2
1 ≈ 9`(`+ 1)

(
9m− 4a− 6m e

3a
4a−9m

(9m− 4a)3

)
×1 + (2n+ 1)

√
3 i

√
27m e

3a
4a−9m (18m− 11a)(2m− a)− (9m− 4a)3

`(`+ 1)(9m− 4a)3

 .

(6.89)

In either case, the Schwarzschild a→ 0 limit yields

ω2
Sch.,1 ≈

`(`+ 1)

27m2

(
1 +

i(2n+ 1)√
`(`+ 1)

)
, (6.90)

which agrees with existing work in the literature [19, 120].

Note that, although spin 1 perturbations have a direct physical rele-
vance due to their representation of photons and classical electro-magnetic
fields, spin 0 perturbations are not so physically relevant. Additionally,
spin 0 calculations are considerably more algebraically tedious due the ex-
tra term present in the Regge–Wheeler potential (6.77). As such, we will
not endeavour to calculate them in this thesis.
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6.6 Summary

Overall, we see that the boundary of the stability region for timelike circu-
lar orbits is rather complicated. In terms of the variable w = rc/a:

• For w ∈ (5+
√

13
6

,∞) we have an ESCO.

This ESCO then subdivides as follows:

– For w ∈ (2.210375896,∞) we have an ISCO.

– For w ∈ (5+
√

13
6

, 2.210375896) we have an OSCO.

• For w ∈ (1, 5+
√

13
6

) the stability region is bounded by a stable photon
orbit.

• The line w = 1 bounds the stability and existence region for timelike
circular orbits from below.

This is considerably more complicated than might reasonably have been
expected.

The spin-1 quasi-normal modes were found to be fairly tractable in
the first-order WKB approximation. However, higher order calculations
would be algebraically non-trivial. Similarly, the spin 0 quasi-normal-
modes were not calculated due to the intractability of the results and their
lack of physical relevance.
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Chapter 7

From regular black hole to
thin-shell wormhole

Using the regular black hole with asymptotically Minkowski core from
chapter 6 as a template, we will construct a spherically symmetric thin-
shell traversable wormhole using the “cut-and-paste” technique, thereby
constructing yet another black hole mimicker. We calculate the surface
stress-energy at the wormhole throat, and the stability of the wormhole is
analysed. An important result is that, (as compared to their Schwarzschild
thin-shell counterparts), increasing the exponential suppression of the Mis-
ner–Sharp quasi-local mass by increasing the suppression parameter a,
also considerably increases the stability regions for these thin-shell worm-
holes, and furthermore minimises the amount of energy condition violat-
ing exotic matter required to keep the wormhole throat open.

7.1 Thin–shell wormhole framework

7.1.1 Background

After the renaissance of wormhole physics in the late 1980s [103, 104],
there was very rapid progress of investigations into thin-shell wormholes.

93
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See, for instance, references [150, 151] and [156]. A relatively recent gen-
eral analysis and summary can be found in reference [101], whilst a very
recent brief and cogent literature survey can be found in [91].

The central idea behind thin-shell wormholes is to take two bulk space-
times, excise two regions with isometric boundaries, and then identify the
boundaries [150, 151]. This is effectively a modification of the abstract
mathematical notion of the “connected sum” of manifolds, wherein one
uses metrical information, not just topological information (further details
can be found in references [3, 95]). Key ingredients of the analysis are the
two bulk metrics, the (isometric) induced metrics (intrinsic 3-metrics) on
the boundaries (the first fundamental forms), and the extrinsic curvatures
of these boundaries in the two bulk spacetimes (the second fundamental
forms). On the boundary itself, there is a delta-function distribution of
stress-energy that is related to the discontinuity in the extrinsic curvatures
[150, 151] in a very precise and specific manner [156].

We shall now apply this very general and flexible formalism in the spe-
cific case of spherical symmetry, choosing the bulk spacetimes to be the
regular black hole with asymptotically Minkowski core studied in the last
chapter (i.e. metric (6.2)).

7.1.2 Construction

We start with the spacetime of the regular black hole with an asymptoti-
cally Minkowski core, which we will reproduce in this chapter for ease of
reference:

ds2 = −
(

1− 2m e−a/r

r

)
dt2 +

dr2

1− 2m e−a/r

r

+ r2
(
dθ2 + sin2 θ dφ2

)
. (7.1)

Recall that this spacetime possesses horizons located at

rH = 2m eW(− a
2m) =

a

|W
(
− a

2m

)
|
, (7.2)

where W (x) is the real-valued Lambert W function, which is negative for
those negative arguments where it is defined. Equation (7.2) implies that
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an outer horizon and an inner horizon exist, which are obtained by ei-
ther taking the W0 or the W−1 branch of the Lambert W function, respec-
tively. Recall also, that in order for horizons to be present, equation (7.2)
forces the parameter a to lie in the interval a ∈ (0, 2m/e], and in particu-
lar a ≤ 2m/e. For the specific case of a = 2m/e, one has W (−a/2m) →
W (−1/e) = −1. Then the two horizons merge at rH± = a and the regular
black hole is extremal. If a > 2m/e, the horizon locations are undefined
and we are dealing with a horizonless compact object.

For the purposes of thin–shell construction, if horizons are present,
then we shall perform spacetime surgery outside the outer horizons, where
we have good control over the physics, and hence we shall have a thin-
shell located at some r > rH+ > a. If horizons are not present, a > 2m/e,
then we could in principle perform spacetime surgery at any nonzero
value of r.

In the following, we will consider two copies of the regular black hole
spacetime given by the line element (7.1), and subsequently analyse the
manifold formed by surgically removing the regions r ∈ (0, R(τ)), with
the surfaceR(τ) lying outside both outer horizons (if present) of each space-
time, and “gluing” them together along this new boundary.

7.1.3 Energy conditions in the bulk spacetime

The bulk spacetime has the following stress-energy tensor profile:

ρ = −pr =
ma e−a/r

4πr4
, (7.3a)

pt = −ma(a− 2r)e−a/r

8πr5
, (7.3b)

where ρ is the energy density, pr and pt are the pressures in the radial and
tangential directions, respectively (c.f. equation (4.30)).

Recall that in order to satisfy the null energy condition (NEC), we re-
quire ρ + pr ≥ 0 and ρ + pt ≥ 0. Indeed, we have ρ + pr = 0 globally,
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however

ρ+ pt =
r

2
ρ′ =

ma e−a/r

8πr5
(a− 4r), (7.4)

and so the NEC is only satisfied in the region r ≤ a/4. In view of the fact
that the outer horizon (if it exists) is located at rH+ = 2meW0(− a

2m) > a,
corresponding to possible locations rH+ ∈ (a,+∞), and we ‘chop’ the
spacetime outside any horizons that are present, we may conclude that
the transverse NEC is manifestly violated in the bulk regions of the con-
structed spacetime.1

Similarly, we find

ρ+ pr + 2pt =
ma(2r − a)e−a/r

4πr5
, (7.5)

and it can be clearly seen that this is only non-negative in the region r ≥
a/2, and so, (regardless of whether or not horizons are present), there is
no region in which both the NEC and the SEC are simultaneously satis-
fied. However, in the presence of horizons, this aspect of the SEC will be
globally satisfied in the bulk regions.2 This violation of the energy condi-
tions is in-keeping with every example of a black hole mimicker we have
encountered so far in this thesis.

7.1.4 Four-velocity, unit normal, and extrinsic curvature of

the throat

We now allow the boundary surface Σ to be dynamic. For tractability,
we consider dynamic perturbations to the radial location of the wormhole
throat only. It follows that the intrinsic metric on Σ is given by:

ds2
Σ = −dτ 2 +R(τ)2 (dθ2 + sin2 θdφ2), (7.6)

1If horizons are not present, then one might be able to satisfy the NEC for small
enough r.

2If horizons are not present, then one might be able to violate the SEC for small enough
r.
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with coordinate chart xµ(τ, θ, φ) = (t(τ), R(τ), θ, φ), where τ is the proper
time of an observer comoving with Σ. The implied form for the four-
velocity of an observer (or a piece of stress–energy) located on the junction
surface is thus:

Uµ
± =

(
dt

dτ
,

dR

dτ
, 0, 0

)
, (7.7)

and takes the following explicit form

Uµ
± =


√

1− 2m±e−a±/R

R
+ Ṙ2

1− 2m±e−a±/R

R

, Ṙ, 0, 0

 . (7.8)

The hyper-surface Σ is defined by the function f(xµ(ξi)) = r−R(τ) = 0,
and so the unit normals to this surface are defined by

nµ = ±
∣∣∣∣gαβ ∂f∂xα ∂f

∂xβ

∣∣∣∣− 1
2 ∂f

∂xµ
. (7.9)

A trivial but quite lengthy calculation yields the following unit normal
vector to Σ:

nµ = ±

(
Ṙ

1− 2m±e−a±/R

R

,

√
1− 2m±e−a±/R

R
+ Ṙ2, 0, 0

)
. (7.10)

An essential ingredient in the thin-shell formalism is the extrinsic cur-
vature, or second fundamental form, which is defined asKij = n(µ;ν)e

µ
(i)e

ν
(j),

where nµ is the unit normal 4-vector (7.9) to the surface Σ, and eµ(i) are the
components of the holonomic basis of vectors tangent to Σ. Thus, in terms
of the above quantities, the extrinsic curvature can be expressed in the
more tractable form:

K±ij = −nµ
(
∂2xµ

∂ξi∂ξj
+ Γµ±αβ

∂xα

∂ξi
∂xβ

∂ξj

)
. (7.11)

A quick calculation yields the K±θθ component, where the mixed tensor
is given by:

Kθ±
θ = gθθK±θθ = ± 1

R

√
1− 2m±e−a±/R

R
+ Ṙ2. (7.12)
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A lengthy calculation yields the Kτ±
τ component, but we make use of

the formalism discussed in [156], which is rather pedagogical. To this ef-
fect, note that we have

K±ττ = K±µνU
µUν = ∇±(µ nν)U

µUν

=

[
1

2

(
∇±µnν +∇±ν nµ

)]
UµUν = ∇±µnνUµUν . (7.13)

Taking into account Kτ±
τ = −K±ττ , we have the following:

Kτ±
τ = −

(
∇±µnν

)
UµUν = +Uµnν

(
∇±µUν

)
= nν

(
Uµ∇±µUν

)
= nνA

ν
±,

(7.14)
where Aν± is the 4–acceleration of the throat. Spherical symmetry implies
that Aν± ∝ nν , i.e. Aν± = |A±|nν . Therefore:

Kτ±
τ = (nν |A±|)nν = |A±|. (7.15)

That is, Kτ±
τ is simply equal to the magnitude of the 4–acceleration of the

throat.
The underlying bulk geometry possesses a Killing vector kµ = (∂t)

µ =

(1, 0, 0, 0)µ. Lowering the index on this Killing vector, we obtain (calculat-
ing at the throat where r = R(τ))

kµ =

(
−
[
1− 2m e−a/R

R

]
, 0, 0, 0

)
. (7.16)

We now examine the quantity d
dτ

(kµU
µ), which we can compute in two

different ways to obtain the magnitude of the 4–acceleration as a function
of R, its first and second derivatives, a and m:

• First calculation (employing Killing’s equation):

d

dτ
(kµU

µ) = Uν∇ν (kµU
µ) =

(
∇±ν kµ

)
UµUν + kµ

dUµ

dτ

= kµ
dUµ

dτ
= kµA

µ
± = kµ|A±|nµ = |A±| (kµnµ)

= ∓|A± |Ṙ. (7.17)
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• Second calculation:

d

dτ
(kµU

µ) =
d

dτ

(
ktU

t
)

= − d

dτ

[√
1− 2m e−a/R

R
+ Ṙ2

]

= −
Ṙ
[
R̈ + m e−

a
R

R2

(
1− a

R

)]√
1− 2m e−a/R

R
+ Ṙ2

. (7.18)

Comparing equations (7.17) and (7.18), we obtain:

∓ |A±|Ṙ = −
Ṙ
[
R̈ + m e−

a
R

R2

(
1− a

R

)]√
1− 2m e−a/R

R
+ Ṙ2

, (7.19)

and so

Kτ±
τ = |A±| = ±

 R̈ + m±e−
a±
R

R2

(
1− a±

R

)√
1− 2m±e−a±/R

R
+ Ṙ2

 . (7.20)

In summary, the extrinsic curvature components are given by

Kθ ±
θ = Kφ ±

φ = ± 1

R

√
1− 2m±e−a±/R

R
+ Ṙ2, (7.21a)

Kτ ±
τ = ±

m± e−a±/R(R− a±) +R3R̈

R3

√
1− 2m±e−a±/R

R
+ Ṙ2

 , (7.21b)

respectively.

7.1.5 Surface stress–energy

For our thin–shell analysis, the extrinsic curvature need not be continu-
ous across the junction boundary Σ. Thus, we denote the discontinuity
by κij = K+

ij − K−ij . The surface stress–energy tensor on Σ, Sij , can be
calculated via the Lanczos equations:

Sij = − 1

8π

(
κij − δijκkk

)
. (7.22)
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Due to spherical symmetry, the discontinuity can be represented by a di-
agonal matrix: κij = diag(κττ , κ

θ
θ, κ

φ
φ), and so the surface stress–energy

tensor simply reduces to Sij = diag(−σ,P ,P), where σ is the surface en-
ergy density and P is the surface pressure. Thus, with κkk = κττ + 2κθθ,
the Lanczos equations imply:

σ = − 1

4π
κθθ, (7.23a)

P =
1

8π
(κττ + κθθ). (7.23b)

Using the extrinsic curvature components given in equations (7.21a) and
(7.21b), the surface stress–energy at the junction throat Σ is finally found
to be:

σ = − 1

4πR

[√
1− 2m+e−a+/R

R
+ Ṙ2 +

√
1− 2m−e−a−/R

R
+ Ṙ2

]
, (7.24a)

P =
1

8πR

1 + Ṙ2 +RR̈− m+ e−a+/R

R2 (R + a+)√
1− 2m+e−a+/R

R
+ Ṙ2

+

1 + Ṙ2 +RR̈− m− e−a−/R

R2 (R + a−)√
1− 2m−e−a−/R

R
+ Ṙ2

 . (7.24b)

It can be seen from equation (7.24a) that negative energy is needed to keep
the wormhole throat open, implying that exotic matter would be required.
This is in-keeping with every wormhole example we have encountered so
far in this thesis.

An important ingredient explored in recent work [91, 101] is the poten-
tial presence of an additional energy flux term, which arises from the con-
servation identity. This identity is obtained by combining the second con-
tracted Gauss–Codazzi equation (or the “ADM” constraint) Gµν e

µ
(i)n

ν =

Kj
i|j−K,i with the Lanczos equations, and is given by Sij|i = −

[
Tµνe

µ
(j)n

ν
]+

−
.

Here we have adopted the standard notation for the derivatives of tensors



7.1. THIN–SHELL WORMHOLE FRAMEWORK 101

where Xi|j = ∇jXi and Xi , j = ∂jXi. The momentum flux term in the right
hand side corresponds to the net discontinuity in the momentum which
impinges on the shell. Note that for the present geometry, this flux term
vanishes:[

Tµνe
µ
(τ)n

ν
]+

−
= [TµνU

µnν ]+−

=

± (−T tt + T rr
) Ṙ√1− 2m±e−a±/R

R
+ Ṙ2

1− 2m±e−a±/R

R

+

−

= 0, (7.25)

where T tt = −ρ and T rr = pr, and equation (7.3a) yields −T tt + T rr =

ρ + pr = 0. Thus, the conservation identity finally provides Siτ |i = 0 =

−
[
σ̇ + 2ȧ(σ + P)/a

]
. That is:

σ′ = −2

a
(σ + P). (7.26)

7.1.6 Stability analysis

Equation of motion

In order to force stability constraints on the mass of the thin-shell, ms(R),
let us consider the thin–shell equation of motion, and write it in the form
1
2
Ṙ2 + V (R) = 0. To obtain an explicit expression for the potential V (R),

taking into account ms(R) = 4πR2σ(R), we rearrange equation (7.24a) to
derive:

V (R) = −1

2
Ṙ2 =

1

2

{
1 +

∆̄(R)

R
−
[
ms(R)

2R

]2

−
[

∆(R)

ms(R)

]2
}
. (7.27)

Here ∆̄(R) and ∆(R) are defined as:

∆̄(R) = m+e−a+/R+m−e−a−/R , ∆(R) = m+e−a+/R−m−e−a−/R . (7.28)
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Having obtained this explicit form for V (R), we may now recast the sur-
face energy density σ as a function of the effective potential:

σ(R) = − 1

4πR

[√
1− 2m+e−a+/R

R
− 2V (R) +√

1− 2m−e−a−/R

R
− 2V (R)

]
. (7.29)

Linearized equation of motion

Let us assume there exists some static solution at R = R0, and linearise
around it accordingly. The equation of motion is 1

2
Ṙ2 + V (R) = 0, which

also directly yields that R̈ = −V ′(R). A second–order Taylor series expan-
sion of V (R) about R0 yields:

V (R) = V (R0)+V ′(R0) (R−R0)+
1

2
V ′′(R0) (R−R0)2+O[(R−R0)3]. (7.30)

Various simplifications ensue due to our solution being static, namely,
Ṙ0 = R̈0 = 0 and V ′(R0) = −R̈0 = 0. Thus, our Taylor series for V (R)

reduces to:
V (R) =

1

2
V ′′(R0)(R−R0)2 +O[(R−R0)3]. (7.31)

Now, the condition for our solution at R0 to be stable is that V (R0) is a
local minimum; i.e. V ′′(R0) > 0. Given our form for σ as a function
of V (R) in equation (7.29), we may now use this condition, along with
V (R0) = V ′(R0) = 0, to force stability constraints on the mass of the thin–
shell. It is in fact preferable to consider the effect of these constraints on
the dimensionless quantity [ms(R)/R], rather than on ms(R) itself.

In all generality, we have the following:

ms(R)

R
= 4πσ(R)R = −

[√
1− 2m+e−a+/R

R
− 2V (R)+√

1− 2m−e−a−/R

R
− 2V (R)

]
, (7.32a)
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[
ms(R)

R

]′
= −

 m+e−a+/R(R−a+)
R3 − V ′(R)√

1− 2m+e−a+/R

R
− 2V (R)

+
m−e−a−/R(R−a−)

R3 − V ′(R)√
1− 2m−e−a−/R

R
− 2V (R)

 ,
(7.32b)

and[
ms(R)

R

]′′
=

[
m+e−a+/R

R2

(
1− a+

R

)
− V ′(R)

]2

[
1− 2m+e−a+/R

R
− 2V (R)

] 3
2

−
m+a+e−a+/R

R4

(
4− a+

R

)
− V ′′(R)√

1− 2m+e−a+/R

R
− 2V (R)

+

[
m−e−a−/R

R2

(
1− a−

R

)
− V ′(R)

]2

[
1− 2m−e−a−/R

R
− 2V (R)

] 3
2

−
m−a−e−a−/R

R4

(
4− a−

R

)
− V ′′(R)√

1− 2m−e−a−/R

R
− 2V (R)

.

(7.32c)

Master equations

Applying the stability constraints to these equations, we see that in order
to have a stable solution at R0, the thin-shell mass ms(R) must satisfy the
following:

ms(R0)

R0

= −

√1− 2m+e−a+/R0

R0

+

√
1− 2m−e−a−/R0

R0

 , (7.33a)

[
ms(R0)

R0

]′
= −

m+e−a+/R0(R0 − a+)

R3
0

√
1− 2m+e−a+/R0

R0

+
m−e−a−/R0(R0 − a−)

R3
0

√
1− 2m−e−a−/R0

R0

 , (7.33b)

and

[
ms(R0)

R0

]′′
≥

[
m+e−a+/R0

R2
0

(
1− a+

R0

)]2

[
1− 2m+e−a+/R0

R0

] 3
2

−
m+a+e−a+/R0

R4
0

(
4− a+

R0

)
√

1− 2m+e−a+/R0

R0

+

[
m−e−a−/R0

R2
0

(
1− a−

R0

)]2

[
1− 2m−e−a−/R0

R0

] 3
2

−
m−a−e−a−/R0

R4
0

(
4− a−

R0

)
√

1− 2m−e−a−/R0

R0

. (7.33c)
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This final inequality gives us the stability regions for the thin–shell worm-
hole for various cases of the parameters m± and a±.

7.2 Examples

Let us now analyse some of the more interesting specific sub–cases by fix-
ing the parameters a± and m± and examining the corresponding stability
criteria implied by equation (7.33c).

7.2.1 Symmetrically vanishing a parameter; asymmetric

mass m+ 6= m−

In the bulk spacetime, we know that a = 0 corresponds to the usual
Schwarzschild solution. To fix a+ = a− = 0 in the wormhole construction
while allowing asymmetric masses m− 6= m+ is to perform the thin–shell
surgery exterior to two Schwarzschild spacetimes with distinct masses. By
now, this particular thin–shell construction is rather well–known (see [91,
101]). For the purposes of plotting the stability regions we define a di-
mensionless form for the stability constraint as follows. First note that the
equation (7.33c) reduces to:

R2
0

[
ms(R0)

R0

]′′
≥ F1(R0,m±) =

m2
+

R2
0

(
1− 2m+

R0

) 3
2

+
m2
−

R2
0

(
1− 2m−

R0

) 3
2

. (7.34)

Then, for the purposes of plotting the full domain of R0, we shall consider
the dimensionless definitions (x = 2m+

R0
, y = 2m−

R0
), so that the parameters

x and y lie in the ranges 0 < x < 1 and 0 < y < 1, respectively. Hence,

F1(x, y) =
1

4

[
x2

(1− x)
3
2

+
y2

(1− y)
3
2

]
. (7.35)

We see from figure 7.1 that large stability regions exist for low values
of x and y, corresponding to R0 � 2m±, while as R0 → 2m± the size of the
stability regions decreases steeply as we near the respective horizons.
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Figure 7.1: Stability analysis for the a± = 0 case, which reduces to
Schwarzschild surgery. The stability region lies above the surface F1(x, y),
as given explicitly by equation (7.35). The red region indicates where this
function departs the specified range for z, and we can see that F1 is in-
creasing very steeply within this region, as x → 1 and/or y → 1. Note that
we chop off the plot vertically once F1(x, y) = 20.

The special case of equal masses m+ = m− simply corresponds to the
diagonal x = y in figure 7.1. Before proceeding to the next case of interest
it is worth noting that, since our construction is formed from a spacetime
which is strictly Minkowski in the m → 0 limit, the case of symmetrically
vanishing m± = 0 trivially reduces to Minkowski surgery. This corre-
sponds to x = 0 = y and F1(0, 0) = 0. Thence in this specific situation the
stability criterion simply reduces to[

ms(R0)

R0

]′′
≥ 0. (7.36)

Similar logic is applied for asymmetric vanishing of parameters, say (with-
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out loss of generality) m+ > 0 while m− = 0, as we are simply stitching
Schwarzschild with Minkowski. This corresponds to y = 0 but with x > 0,
and is represented by the x-axis in figure 7.1.

7.2.2 Mirror symmetry: Both m+ = m− and a+ = a−

For the specific case of mirror symmetry, let us fix both m+ = m− = m as
well as a+ = a− = a. For this case the stability condition reduces to:

R2
0

[
ms(R0)

R0

]′′
≥ F2(R0,m, a)

= 2


[
m e−a/R0

(
1− a

R0

)]2

R2
0

[
1− 2m e−a/R0

R0

] 3
2

−
ma e−a/R0

(
4− a

R0

)
R2

0

√
1− 2m e−a/R0

R0

 .

(7.37)

In this case, we consider the two dimensionless parameters (x = 2m
R0

e−a/R0 ,
y = a

R0
). Then the dimensionless function F2(x, y) is given by:

F2(x, y) =
x2(1− y)2

2(1− x)3/2
− xy(4− y)

(1− x)1/2
. (7.38)

Notice that x ∈ [0, 1) to keep F2(x, y) real and finite. Furthermore, if the
bulk spacetime contains horizons then y ∈ (0, 1]; whilst if the bulk space-
time is horizonless, we are allowed to enter the region y ∈ (1,∞). It is
worth noting that the parameter x has a natural directly physical interpre-
tation in terms of the gravitational redshift z of the throat as seen from
spatial infinity:

1 + z =
1√

1− x
=

1√
1− 2m

R0
e−a/R0

. (7.39)

The point (x, y) = (1, 1) corresponds to the wormhole throat being lo-
cated exactly at the degenerate horizon of an extremal bulk spacetime. The
region (x, y) ≈ (1, 1) corresponds to the wormhole throat being located
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Figure 7.2: Stability analysis for the case of perfect mirror symmetry; a+ =

a−, and m+ = m−. The stability region lies above the surface F2(x, y),
given explicitly by equation (7.38). The red and purple regions indicates
where this function departs the specified range. Note that we chop the
graph vertically at F2(x, y) = 30 and at F2(x, y) = −10.

near the almost degenerate horizon of a near-extremal bulk spacetime. It
is easy to check that

lim
x→1

F2(x, y 6= 1) = +∞ and lim
x→1

F2(x, y = 1) = −∞. (7.40)

Inspecting figures 7.2 and 7.3, we observe relatively large stability re-
gions. An interesting feature of this plot is the presence of a ‘pit’ in the
behaviour of F2(x, y) where the function is significantly negative in the im-
mediate vicinity of the extremal point (x, y) = (1, 1). This ‘pit’ is a region
which maximises the size of the stability region, and hence implies a pre-
ferred location for R0 as a function of m and a.

The condition F2(x, y) = 0, bounding the region where F2(x, y) changes
sign, implicitly defines the curve

x =
2y(4− y)

1 + 6y − y2
. (7.41)
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Figure 7.3: Contour plot: Stability analysis for the case of perfect mirror
symmetry. The purple region indicates the ‘pit’ where F2(x, y) < −10. The
red region indicates the region of lesser sability where F2(x, y) > 30.

In figure 7.4 we plot the boundary of this region where F2(x, y) changes
sign. Then in figure 7.5 we move deeper into the ‘pit’ and plot the bound-
ary of the region where F2(x, y) < −1.

This ‘pit’ in the stability plot is due to the wormhole throat getting
close to where the extremal horizon would be in the bulk spacetime. It is
well-known that having a wormhole throat get close to where a horizon
would be in the bulk spacetime leads to interesting behaviour [78, 160]. In
particular, we note that in this symmetric situation

ms(R0)

R0

= −2

√
1− 2m e−a/R0

R0

= −2
√

1− x, (7.42)

so that x ≈ 1 corresponds to an arbitrarily small violation of the energy
conditions [78, 160]. In terms of the redshift of the throat,

ms(R0)

R0

= − 2

(1 + z)2
. (7.43)
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Figure 7.4: Region in the (x, y) plane where F2(x, y) flips sign.
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Figure 7.5: Region in the (x, y) plane where F2(x, y) < −1.

7.2.3 Specific asymmetry: m+ 6= m− while a+ = a− = a

Let us suppose m+ 6= m− while a+ = a− = a. Hence we now have the case
of surgery between two asymptotically Minkowski regular black holes
with different masses but identical exponential suppression parameters.
For a tractable analysis, let us define:

m∗ = max{m+,m−}; α =
min{m+,m−}
max{m+,m−}

≤ 1, (7.44)
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We may then re–express the stability condition of equation (7.33c) as:

R2
0

[
ms(R0)

R0

]′′
≥ F3(R0,m∗, a, α)

=

[
αm∗e

−a/R0

(
1− a

R0

)]2

R2
0

[
1− 2αm∗e−a/R0

R0

] 3
2

−
αm∗a e−a/R0

(
4− a

R0

)
R2

0

√
1− 2αm∗e−a/R0

R0

+

[
m∗e

−a/R0

(
1− a

R0

)]2

R2
0

[
1− 2m∗e−a/R0

R0

] 3
2

−
m∗a e−a/R0

(
4− a

R0

)
R2

0

√
1− 2m∗e−a/R0

R0

. (7.45)

Now define the two dimensionless parameters,

x =
2m∗
R0

e−a/R0 , y =
a

R0

, (7.46)

so that the dimensionless function F3(x, y) takes the form

F3(x, y) =
[αx(1− y)]2

4 [1− αx]
3
2

− αxy(4− y)

2
√

1− αx
+

[x(1− y)]2

4 [1− x]
3
2

− xy(4− y)

2
√

1− x
. (7.47)

Note that the argument of the square root on the denominator forces our
x–parameter to be less than unity, otherwise F3(x, y) will become complex.
We therefore have 0 < x < 1, while 0 < y ≤ 1 if the bulk spacetimes have
horizons, and y ∈ (1,∞) is allowed if the bulk spacetimes are horizonless.
By construction α ≤ 1, and so it is easy to check that

lim
x→1

F3(x, y 6= 1) = +∞ and lim
x→1

F3(x, y = 1) = −∞. (7.48)

We have chosen to illustrate two specific sub–cases, namely, α = 0.7

and α = 0.9. These correspond to the left–hand and right–hand plots of
figures 7.6 and 7.7 respectively. We observe that large stability regions
exist, except in the limit x → 1 (with y 6= 1). It appears that the difference
between α = 0.7 and α = 0.9 is qualitatively negligible. However, of
particular interest is the region very close to the asymptote at x = 1, where
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(a) α = 0.7
(b) α = 0.9

Figure 7.6: Stability analysis for the specific asymmetry; a+ = a− = a,
while m+ 6= m−. The stability region lies above the surface F3(x, y). The
red and purple regions indicate where the function departs the specified
range for F3(x, y).

again, we have a ‘pit’. This leads to a preferred choice of the parameters
a,m±, which in turn leads to regions of maximal stability. In this situation,

ms(R0)

R0

= −

√
1− 2αm∗e−a/R0

R0

−

√
1− 2m∗e−a/R0

R0

= −
√

1− αx−
√

1− x = −
√

1− α +O(1− x). (7.49)

Thus, for α < 1, the energy condition violations are minimised (though no
longer arbitrarily small) as the wormhole throat approaches the location
of what would be a horizon in the bulk spacetime [78, 160].

7.2.4 Specific asymmetry: a+ 6= a− while m+ = m−

Let us now suppose a+ 6= a− and m+ = m− = m. Hence, we are now
performing surgery between two asymptotically Minkowski black holes
with identical masses, but different exponential suppression parameters.
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(a) α = 0.7 (b) α = 0.9

Figure 7.7: Contour plots: Stability analysis for the specific asymmetry;
a+ = a− = a, while m+ 6= m−. The purple region indicates ‘pit’ where
F3(x, y) < −10. The red region indicates region of lesser stability where
F3(x, y) is large and positive.

To develop a tractable analysis, define

a∗ = min{a+, a−} and β =
max{a+, a−}
min{a+, a−}

≥ 1. (7.50)

We then have,

R2
0

[
ms(R0)

R0

]′′
≥ F4(R0,m, a−, β), (7.51)

where

F4(R0,m, a−, β) =

[
m e

−βa∗
R0

(
1− βa∗

R0

)]2

R2
0

[
1− 2m e

−βa∗
R0

R0

] 3
2

−
mβa∗e

−βa∗
R0

(
4− βa∗

R0

)
R2

0

√
1− 2m e

−βa∗
R0

R0

+

[
m e

− a∗
R0

(
1− a∗

R0

)]2

R2
0

[
1− 2m e

− a∗
R0

R0

] 3
2

−
ma∗e

− a∗
R0

(
4− a∗

R0

)
R2

0

√
1− 2m e

− a∗
R0

R0

. (7.52)
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The stability analysis may now be simplified by employing the two dimen-
sionless parameters (x = 2m

R0
e−a∗/R0 , y = a∗

R0
), to re-express this stability

condition as a function of these dimensionless parameters. Explicitly,

F4(x, y) =

[
xe(1−β)y (1− βy)

]2
4 (1− xe(1−β)y)

3
2

− βxy e(1−β)y(4− βy)

2
√

1− xe(1−β)y

+
[x(1− y)]2

4 (1− x)
3
2

− xy(4− y)√
1− x

. (7.53)

Notice that the square root in the denominator implies 0 < x < 1. We
may, however, once again assert 0 < y < 1 if the bulk spacetimes contain
horizons, while 1 < y <∞ is permitted if the bulk spacetimes are horizon-
free.

Since by construction β ≥ 1, it is easy to check that

lim
x→1

F4(x, y 6= 1) = +∞ and lim
x→1

F4(x, y = 1) = −∞. (7.54)

For illustrative purposes, we present the specific cases β = 1.2 and β = 1.4.
These correspond to the left–hand and right–hand plots of figure 7.8 and
figure 7.9, respectively. We have large stability regions other than in the
limit x → 1 (with y 6= 1). There is again a ‘pit’ in the vicinity of (x, y) ≈
(1, 1).

We note that, in this situation,

ms(R0)

R0

= −

√
1− 2m e−βa∗/R0

R0

−

√
1− 2m e−a∗/R0

R0

= −
√

1− e(1−β)yx−
√

1− x

= −
√

1− e(1−β)y +O(1− x). (7.55)

Thus, for β > 1, the energy condition violations are minimised (though no
longer arbitrarily small) as the wormhole throat approaches the location
of what would be a horizon in the bulk spacetime [78, 160].



114 CHAPTER 7. REGULAR BLACK HOLE TO THIN-SHELL WORMHOLE

(a) β = 1.2
(b) β = 1.4

Figure 7.8: Stability analysis for the asymmetry max{a+, a−} =

βmin{a+, a−} = βa∗, with β > 1, and m+ = m− = m. The stability re-
gion lies above the surface F4(x, y). The red and purple regions indicate
where the function F4(x, y) departs the range (−20,+30).

7.3 Summary

We have used a novel regular black hole model based on exponential
mass suppression to construct a thin-shell wormhole using the cut-and-
paste technique. The construction under consideration provides an exam-
ple of a black hole mimicker (the smaller the value of the mass suppres-
sion parameter a and the closer the location of the wormhole throat to the
Schwarzschild radius, the better this this model is to mimicking a standard
Schwarzschild black hole). For suitable choices of parameters, the worm-
hole under consideration was found to violate the null energy condition
in the bulk spacetime, whereas the strong energy condition is satisfied in
this region. The wormhole construction was analysed via the thin-shell
formalism, allowing the four-velocity of the wormhole throat to be cal-
culated along with the junction surface unit normal vectors, the extrinsic
curvature, and the junction surface stress-energy. The surface energy at
the wormhole junction throat was found to be negative, and so, much like
other traversable wormholes, exotic matter would be needed to keep the
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(a) β = 1.2 (b) β = 1.4

Figure 7.9: Contour plots: Stability analysis for the specific asymmetry
max{a+, a−} = βmin{a+, a−} = βa∗, with β > 1, and m+ = m− = m.
These are contour plots for the function F4(x, y). The purple region in-
dicates the ‘pit’ where the function function F4(x, y) is strongly negative.
The red region indicates the region of decreased stability where the func-
tion function F4(x, y) is strongly positive.

wormhole throat open.
We found that this class of wormholes permits a clean and quite gen-

eral stability analysis, with wide swathes of stable behaviour. Furthermore
the stability plateau exhibits a ‘pit’ of enhanced stability when the worm-
hole throat is close to where a near-extremal horizon would have existed
in the bulk spacetime before applying ‘cut-and-paste’ surgery. Finally, we
found that the quantity of exotic matter needed to support the wormhole
throat could be minimised (and in some cases made arbitrarily small) by
suitable choice of parameters.
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Chapter 8

General class of “quantum
deformed” regular black holes

In this chapter, we discuss the “quantum deformed Schwarzschild space-
time” as originally introduced by Kazakov and Solodukhin in 1993, and
investigate the precise sense in which it does and does not satisfy the
desiderata for being a “regular black hole”. We shall carefully distinguish
(i) regularity of the metric components, (ii) regularity of the Christoffel
components, and (iii) regularity of the curvature. We shall then embed
the Kazakov–Solodukhin spacetime in a more general framework where
these notions are clearly and cleanly separated. Finally we analyze as-
pects of the classical physics of these “quantum deformed Schwarzschild
spacetimes”. We shall discuss the surface gravity, the classical energy con-
ditions, null and timelike geodesics, and the appropriate variant of Regge–
Wheeler equation.

8.1 Introducing the spacetime

The unification of general relativity and quantum mechanics is of the ut-
most importance in reconciling many open problems in theoretical physics
today. One avenue of exploration towards a fully quantised theory of

117
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gravity is to, on a case–by–case basis, apply various quantum corrections
to existing black hole solutions to the Einstein equations, and thoroughly
analyse the resulting geometries through the lens of standard general rel-
ativity. As with the majority of theoretical analysis, to make progress
one begins by applying quantum–corrections to the simplest case; the
Schwarzschild solution [79].

Historically, various treatments of a quantum–corrected Schwarzschild
metric have been performed in multiple different settings [4, 29, 52, 67, 107,
108, 112, 123, 124]. A specific example of such a metric is the “quantum
deformed Schwarzschild metric” derived by Kazakov and Solodukhin in
reference [79]. Much of the literature sees the original metric exported
from the context of static, spherical symmetry into something dynamical,
or else it invokes a different treatment of the quantum–correcting process
to that performed in [79] (see, e.g., reference [27]).

The metric derived in reference [79] invokes the following change to
the line element for Schwarzschild spacetime in standard curvature coor-
dinates:

1− 2m

r
−→

√
1− a2

r2
− 2m

r
, (8.1)

so that

ds2 = −

(√
1− a2

r2
− 2m

r

)
dt2 +

dr2√
1− a2

r2
− 2m

r

+ r2 dΩ2
2. (8.2)

To keep the metric components real, the r coordinate must be restricted to
the range r ∈ [a,∞). So the “centre” of the spacetime at r → a is now a
2-sphere of finite area A = 4πa2. The fact that the “centre” has now been
“smeared out” to finite r was originally hoped to render the spacetime
regular.

This metric was originally derived via an action principle which has
its roots in the 2-D, (more precisely (1+1)-D), dilaton theory of gravity [79,
119]:

S = −1

8

∫
d2z
√
−g
[
r2R(2) − 2(∇r)2 +

2

κ
U(r)

]
. (8.3)
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Here R(2) is the two–dimensional Ricci scalar, κ is a constant with dimen-
sions of length, and U(r) is the “dilaton potential”.

The action (8.3) yields two equations of motion, one of which is then
used to derive the general form of the metric:

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

2, f(r) = −2m

r
+

1

r

∫ r

U(ρ) dρ. (8.4)

The dilaton potential U(r) is quantised within the context of the D = 2 σ-
model [79, 119], resulting in the specific metric (8.2). Specifically, Kazakov
and Solodukhin choose

U(r) =
r√

r2 − a2
. (8.5)

Note that generic metrics of the form

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

2, (8.6)

where one does not necessarily make further assumptions about the func-
tion f(r), have a long and complex history [21, 76, 83, 158].

In Kazakov and Solodukhin’s original work [79], they claim the metric
(8.2) is “regular”. However, by this they just mean “regular” in the sense
of the metric components (in this specific coordinate chart) being finite for
all r ∈ [a,∞). This is not the meaning of the word “regular” that is usually
adopted in the GR community. We find it useful to carefully distinguish (i)
regularity of the metric components, (ii) regularity of the Christoffel com-
ponents, and (iii) regularity of the curvature. Indeed, within the GR com-
munity, the term “regular” means that the spacetime entirely is free of cur-
vature singularities [6, 12, 13, 24, 25, 26, 30, 31, 32, 33, 34, 62, 73, 102, 118],
with infinities in the curvature invariants being used as the typical diag-
nostic1. While the metric (8.2) is regular in terms of the metric components,
it fails to be regular in terms of the Christoffel components, and has a Ricci

1Our technical definition of spacetime singularities from chapter 5 is not very practical
in most instances.
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scalar which is manifestly singular at r = a:

R =
2

r2
− 2r2 − 3a2

r(r2 − a2)
3
2

=
a

(2a)
3
2 (r − a)

3
2

− 23

4 (2a)
3
2 (r − a)

1
2

+O(1). (8.7)

The specific metric (8.2) derived by Kazakov and Solodukhin falls in to
a more general class of metrics given by

ds2
n = −fn(r)dt2 +

dr2

fn(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
, (8.8)

where now we take

fn(r) =

(
1− a2

r2

)n
2

− 2m

r
. (8.9)

Here n ∈ {0} ∪ {1, 3, 5, . . . }, r ∈ [a,∞), and a ∈ (0,∞). (Note, we in-
clude n = 0 as a special case since this reduces the metric to the Schwarz-
schild metric in standard curvature coordinates, which is useful for con-
sistency checks). We only consider odd values for n (excluding the n =

0 Schwarzschild solution) as any even value of n will allow for the r-
coordinate to continue down to r = 0, and so produce a black-hole space-
time which is not regular at its core and hence not of interest in this work.

The class of metrics described by equations (8.8)–(8.9) has the following
regularity structure:

• n = 0 (Schwarzschild): Not regular;

• n ≥ 1: Metric–regular;

• n ≥ 3: Christoffel–symbol–regular;

• n ≥ 5: Curvature–regular.

We wish to stress that, unlike reference [79], we make no attempt to de-
rive the class of metrics described by equations (8.8)–(8.9) from a modified
action principle in this current work. We feel that there are a number of
technical issues requiring clarification in the derivation presented in refer-
ence [79], so instead, we shall simply use the results of Kazakov and Solo-
dukhin’s work as inspiration and motivation for the analysis of our gen-
eral class of metrics. As such, our extended class of Kazakov–Solodukhin



8.2. GEOMETRIC ANALYSIS 121

models can be viewed as another set of black hole mimickers, arbitrarily
closely approximating standard Schwarzschild black holes, and so poten-
tially of interest to observational astronomers [50].

8.2 Geometric analysis

In this section, we shall analyse the metric (8.8), its associated Christoffel
symbols, and the various curvature tensor quantities derived therefrom.

8.2.1 Metric components

We immediately enforce a 6= 0 since a = 0 is trivially the Schwarzschild
spacetime, and in fact we shall specify a > 0 since a is typically to be
identified with the Planck scale. At large r and/or small a we have:

fn(r) =

(
1− a2

r2

)n
2

− 2m

r
= 1− 2m

r
− na2

2r2
+O

(
a4

r4

)
. (8.10)

So the spacetime is asymptotically flat with mass m for any fixed finite
value of n. As r → a, we note that for n ≥ 1 we have the finite limit

lim
r→a

fn(r) = −2m

a
. (8.11)

This is enough to imply metric–regularity. Note however that for the ra-
dial derivative we have

f ′n(r) =
na2

r3

(
1− a2

r2

)n
2
−1

+
2m

r2
, (8.12)

and that only for n ≥ 3 do we have a finite limit

lim
r→a

f ′n(r) =
2m

a2
. (8.13)

Similarly for the second radial derivative

f ′′n(r) =
na2(na2 + a2 − 3r2)

r6

(
1− a2

r2

)n
2
−2

− 4m

r3
, (8.14)
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and only for n ≥ 5 do we have a finite limit

lim
r→a

f ′′n(r) = −4m

a3
. (8.15)

This ultimately is why we need n ≥ 3 to make the Christoffel symbols
regular, and n ≥ 5 to make the curvature tensors regular.

8.2.2 Event horizons

Event horizons may be located by solving gtt(r) = fn(r) = 0, and so are
implicitly characterized by

rH = 2m

(
1− a2

r2
H

)−n
2

. (8.16)

This is not algebraically solvable for general n, though we do have the
obvious bounds that rH > 2m and rH > a.

Furthermore, for small a we can use (8.16) to find an approximate
horizon location by iterating the lowest-order approximation rH = 2m +

O(a2/m) to yield

rH = 2m

{
1 +

na2

8m2
+O

(
a4

m4

)}
. (8.17)

Iterating a second time

rH = 2m

{
1 +

na2

8m2
− n(3n− 2)a4

128m4
+O

(
a6

m6

)}
. (8.18)

We shall soon find that taking this second iteration is useful when estimat-
ing the surface gravity. As usual, while event horizons are mathematically
easy to work with, one should bear in mind that they are impractical for
observational astronomers to deal with — any physical observer limited to
working in a finite region of space+time can at best detect apparent hori-
zons or trapping horizons [157], see also reference [71]. In view of this
intrinsic limitation, approximately locating the position of the horizon is
good enough for all practical purposes.
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8.2.3 Christoffel symbols of the second kind

Up to the usual symmetries, the non-trivial non-zero coordinate compo-
nents of the Christoffel connection in this coordinate system are:

Γttr = −Γrrr =
2m/r + n(a2/r2)(1− a2/r2)

n
2
−1

2r{(1− a2/r2)
n
2 − 2m/r}

;

Γrtt =
{2m/r + n(a2/r2)(1− a2/r2)

n
2
−1}{(1− a2/r2)

n
2 − 2m/r}

2r
;

Γrθθ =
Γrφφ
sin2 θ

= 2m− r(1− a2/r2)
n
2 . (8.19)

The trivial non-zero components are

Γθrθ = Γφrφ =
1

r
;

Γθφφ = − sin θ cos θ;

Γφθφ = cot θ. (8.20)

Inspection of the numerators of Γttr, Γrrr, and Γrθθ shows that (in this
coordinate system) the Christoffel symbols are finite at r = a so long as
n ≥ 3. Indeed as r → a we see

Γttr = −Γrrr → −
1

2a
; Γrtt → −

2m2

a3
;

Γrθθ =
Γrφφ
sin2 θ

→ 2m; Γθrθ → Γφrφ =
1

a
. (8.21)

8.2.4 Orthonormal components

When a metric gab is diagonal then the quickest way of calculating the
orthonormal components of the Riemann and Weyl tensors is to simply
set

Râb̂ĉd̂ =
Rabcd

|gac| |gbd|
; Câb̂ĉd̂ =

Cabcd
|gac| |gbd|

. (8.22)

When a metric gab is diagonal and a tensor Xab is diagonal then the quick-
est way of calculating the orthonormal components is to simply set

Xâb̂ =
Xab

|gab|
. (8.23)
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In both situations some delicacy is called for when crossing any horizon
that might be present. Let us (using − + ++ signature and assuming a
diagonal metric) define

S = sign(−gtt) = sign(grr). (8.24)

Then S = +1 in the domain of outer communication (above the horizon)
and S = −1 below the horizon.

8.2.5 Riemann tensor

We shall now analyse what values of n result in non-singular components
of various curvature tensors in an orthonormal basis (t̂, r̂, θ̂, φ̂). First, the
non-zero orthonormal components of the Riemann tensor are:

Rr̂t̂r̂t̂ = −2m

r3
−
na2
[
3− (n+ 1)a2/r2

]
(1− a2/r2)

n
2
−2

2r4
,

Rr̂θ̂r̂θ̂ = Rr̂φ̂r̂φ̂ = −Rθ̂t̂θ̂t̂ = −Rφ̂t̂φ̂t̂ = −S
{
m

r3
+
na2(1− a2/r2)

n
2
−1

2r4

}
,

Rθ̂φ̂θ̂φ̂ =
2m

r3
+

1− (1− a2/r2)
n
2

r2
. (8.25)

Analysis of the numerator of Rr̂t̂r̂t̂ shows that all of the orthonormal
components of the Riemann tensor remain finite at r = a if and only if
n ≥ 5. Indeed as r → a (where S → −1) we see

Rr̂t̂r̂t̂ → −
2m

a3
; Rθ̂φ̂θ̂φ̂ →

1

a2
+

2m

a3
.

Rr̂θ̂r̂θ̂ = Rr̂φ̂r̂φ̂ = −Rθ̂t̂θ̂t̂ = −Rφ̂t̂φ̂t̂ → +
m

a3
. (8.26)

Conversely at large r (where S → +1) we see

Rr̂t̂r̂t̂ = −2m

r3
+O(a2/r4),

Rr̂θ̂r̂θ̂ = Rr̂φ̂r̂φ̂ = −Rθ̂t̂θ̂t̂ = −Rφ̂t̂φ̂t̂ = −m
r3

+O(a2/r4),

Rθ̂φ̂θ̂φ̂ =
2m

r3
+O(a2/r4). (8.27)

So, as it should, the spacetime curvature asymptotically approaches that
of Schwarzschild.
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8.2.6 Ricci tensor

The non-zero orthonormal components of the Ricci tensor are:

Rt̂t̂ = −Rr̂r̂ = −S na2

2r4

[
1− (n− 1)a2/r2

]
(1− a2/r2)

n
2
−2,

Rθ̂θ̂ = Rφ̂φ̂ =
1

r2
− 1

r2

[
1 + (n− 1)a2/r2

]
(1− a2/r2)

n
2
−1. (8.28)

Analysis of the Rr̂r̂ component shows that all of the components of the
Ricci tensor remain finite at r = a so long as n ≥ 5. Indeed as r → a we see

Rt̂t̂ = −Rr̂r̂ → 0, Rθ̂θ̂ = Rφ̂φ̂ →
1

a2
. (8.29)

Conversely at large r we have

Rt̂t̂ = −Rr̂r̂ = Rθ̂θ̂ = Rφ̂φ̂ = −na
2

2r4
+O(a4/r6). (8.30)

8.2.7 Ricci scalar

As stated in Section 8.1, our class of metrics is only curvature regular for
n ≥ 5, where n is an odd integer. Indeed, in general we have

R =
2

r2
− (1− a2/r2)

n
2
−2

{
2 + (n− 4)a2/r2 + (n− 2)(n− 1)a4/r4

r2

}
, (8.31)

and so the spacetime is non-singular at r = a if and only if n ≥ 5. Further-
more, any n ≥ 5 spacetime has positive scalar curvature at r = a, where
R→ 2

a2
.

As an explicit example,

Rn=5 =
2

r2
−
√
r2 − a2

{
2r4 + a2r2 + 12a4

r7

}
, (8.32)

which is indeed singularity–free in the region r ∈ [a,∞) and positive at
r = a.
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8.2.8 Einstein tensor

The non-zero components of the Einstein tensor are

Gt̂t̂ = −Gr̂r̂ =
S

r2

{
1−

[
1 + (n− 1)

a2

r2

](
1− a2

r2

)(n−2)/2
}
,

Gθ̂θ̂ = Gφ̂φ̂ = −na
2

2r4

[
1− (n− 1)

a2

r2

](
1− a2

r2

)(n−4)/2

. (8.33)

Analysis of the Gθ̂θ̂ component reveals that the Einstein tensor remains
finite in all of its orthonormal components if and only if n ≥ 5. Indeed as
r → a (where S → −1) we see

Gt̂t̂ = −Gr̂r̂ → −
1

a2
, Gθ̂θ̂ = Gφ̂φ̂ → 0. (8.34)

At large r (where S → +1) we have

Gt̂t̂ = −Gr̂r̂ = Gθ̂θ̂ = Gφ̂φ̂ = −na
2

2r4
+O(a4/r6). (8.35)

8.2.9 Weyl tensor

The non-zero components of the Weyl tensor are

Cr̂t̂r̂t̂ = 2S Cr̂θ̂r̂θ̂ = 2S Cr̂φ̂r̂φ̂ = −2S Cθ̂t̂θ̂t̂ = −2S Cφ̂t̂φ̂t̂ = −Cθ̂φ̂θ̂φ̂

= −2m

r3
+

(1− a2/r2)
n
2
−2 − 1

3r2

− a2(1− a2/r2)
n
2
−2

{
(5n+ 4)− (n+ 2)(n+ 1)a2/r2

6r4

}
. (8.36)

Thus, the components of the Weyl tensor remain finite at r = a so long as
n ≥ 5.

Indeed as r → a (where S → −1) we see

Cr̂t̂r̂t̂ = −2Cr̂θ̂r̂θ̂ = −2Cr̂φ̂r̂φ̂ = +2Cθ̂t̂θ̂t̂ = +2Cφ̂t̂φ̂t̂ = −Cθ̂φ̂θ̂φ̂ → −
1

3a2
− 2m

a3
.

(8.37)
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At large r (where S → +1) we find

Cr̂t̂r̂t̂ = 2Cr̂θ̂r̂θ̂ = 2Cr̂φ̂r̂φ̂ = −2Cθ̂t̂θ̂t̂ = −2Cφ̂t̂φ̂t̂ = −Cθ̂φ̂θ̂φ̂

= −2m

r3
− na2

r4
+O(a4/r6). (8.38)

8.2.10 Weyl scalar

The Weyl scalar is defined by CabcdCabcd. In view of all the symmetries of
the spacetime one can show that CabcdCabcd = 12(Cr̂t̂r̂t̂)

2, so one gains no
additional behaviour beyond looking at the Weyl tensor itself. Thus, for
purposes of tractability we will only display the result for n = 5 at r = a

in order to show that the n = 5 spacetime is indeed regular at r = a:

(CabcdC
abcd)n=5

∣∣
r=a

=
4(6m+ a)2

3a6
. (8.39)

8.2.11 Kretschmann scalar

The Kretschmann scalar is given by

K = RabcdR
abcd = CabcdC

abcd + 2RabR
ab − 1

3
R2. (8.40)

The general result is rather messy and does not provide much additional
insight into the spacetime. Thus, for purposes of tractability we will only
display the result for n = 5 at r = a in order to show that the n = 5

spacetime is indeed regular at r = a:

Kn=5|r=a =
4

a6

(
a2 + 4am+ 12m2

)
. (8.41)

The fact that the Kretschmann scalar is positive definite, and can be written
as a sum of squares, is ultimately a due to spherical symmetry and the
existence of a hypersurface orthogonal Killing vector [90].
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8.3 Surface gravity and Hawking temperature

Let us calculate the surface gravity at the event horizon for the generalised
QMS spacetime. Because we are working in curvature coordinates we al-
ways have [153]

κH = lim
r→rH

1

2

∂rgtt√
gtt grr

. (8.42)

For our general class of spacetimes,

κH =
1

2
∂rfn(r)

∣∣∣∣
rH

=
m

r2
H

+
na2

2r3
H

(
1− a2

r2
H

)n
2
−1

. (8.43)

Using equation (8.16) we can also rewrite this as

κH =
m

r2
H

{
1 +

na2

r2
H − a2

}
. (8.44)

This result is, so far, exact. Given that the horizon location is not ana-
lytically known for general n, we shall use the asymptotic result rH =

2m
{

1 + na2

8m2 − n(3n−2)a4

128m4 +O( a
6

m6 )
}

. This yields,

κH =
1

4m

{
1− n(n− 1)a4

32m4
+O(a6/m6)

}
. (8.45)

Note the potential O(a2/m2) term vanishes (which is why we estimated
rH up to O(a4)). As usual the Hawking temperature is simply kBTH =
1

2π
~κH .

8.4 Stress-energy tensor

Let us examine the Einstein field equations for this spacetime. Above the
horizon, for r > rH , we have

8π ρ = Gt̂t̂; 8π pr = Gr̂r̂. (8.46)

Below the horizon, for r < rH , we have

8π ρ = Gr̂r̂; 8π pr = Gt̂t̂. (8.47)
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But then regardless of whether one is above or below the horizon one has

ρ = −pr =
1

8πr2

{
1−

[
1 + (n− 1)

a2

r2

](
1− a2

r2

)(n−2)/2
}
,

p⊥ = − na2

16πr4

[
1− (n− 1)

a2

r2

](
1− a2

r2

)(n−4)/2

. (8.48)

By inspection, for n > 1 we see that p⊥(r) = 0 at r =
√
n− 1 a. Indeed

we see that p⊥(r) > 0 for r <
√
n− 1 a and p⊥(r) < 0 for r >

√
n− 1 a. The

analagous result for ρ(r) is not analytically tractable (though it presents no
numerical difficulty) as by inspection it amounts to finding the roots of

(r2 − a2)rn − (r2 − a2)
n
2 (r2 + (n− 1)a2) = 0. (8.49)

We note that asymptotically

ρ = − na2

16πr4
+O(a4/r6), (8.50)

and
p⊥ = − na2

16πr4
+O(a4/r6). (8.51)

An initially surprising result is that the stress-energy tensor has no de-
pendence on the mass m of the spacetime. To see what is going on here,
consider the Misner–Sharp quasi-local mass

1− 2m(r)

r
= fn(r) =⇒ m(r) = m+

r

2

{
1−

(
1− a2

r2

)n
2

}
. (8.52)

Then, noting that m = m(r) + 4π
∫∞
r
ρ(r̄)r̄2dr̄ above the horizon, we see

4π

∫ ∞
r

ρ(r̄)r̄2dr̄ = −r
2

{
1−

(
1− a2

r2

)n
2

}
. (8.53)

Here the right hand side of the equation is manifestly independent of m.
Consequently, without need of any detailed calculation, ρ(r) is manifestly
independent of m. As an aside note that m(rH) = rH

2
, so we could also

write m(r) = rH
2

+ 4π
∫ r
rH
ρ(r̄)r̄2dr̄.
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8.5 Energy conditions

We will now analyse the classical energy conditions (as discussed in sec-
tion 4.6.3) for our general class of spacetimes. While it can be argued that
the classical energy conditions are not truly fundamental [11, 94, 155], of-
ten being violated by semi-classical quantum effects, they are nevertheless
extremely useful indicative probes, well worth the effort required to anal-
yse them.

8.5.1 Null energy condition

A necessary and sufficient condition for the null energy condition (NEC)
to hold is that both ρ+ pr ≥ 0 and ρ+ p⊥ ≥ 0 for all r, a, m. Since ρ = −pr,
the former inequality is trivially satisfied, and for all r ≥ a we may simply
consider

ρ+ p⊥ =
1

8πr2

{
1− (1− a2/r2)

n
2
−2

2
×[

2 + (3n− 4)a2/r2 − (n+ 2)(n− 1)a4/r4

]}
. (8.54)

Whether or not this satisfies the NEC depends on the value for n. Further-
more, for no value of n is the NEC globally satisfied.

Provided n ≥ 5, so that the limits exist, we have

lim
r→a

(ρ+ p⊥) = +
1

8πa2
. (8.55)

So the NEC is definitely satisfied deep in the core of the system. Note that
at asymptotically large distances

ρ+ pt = − na2

8πr4
+O(a4/r6). (8.56)

So the NEC (and consequently all the other classical point-wise energy
conditions) are always violated at asymptotically large distances. How-
ever, for some values of n, there are bounded regions of the spacetime in
which the NEC is satisfied. See figure 8.1.
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Figure 8.1: Plots of the NEC for several values of n. Here the y-axis de-
picts 8πr2(ρ + p⊥), plotting against r/a on the x-axis. Of particular inter-
est are the qualitative differences in behaviour as r/a → 1; we see diver-
gent behaviour for the n = 1 and n = 3 cases, whilst for n ≥ 5 we see
8πr2(ρ+ p⊥)→ 1 as r → a. This is ultimately due to the fact that the n ≥ 5

cases are curvature regular, with globally finite stress-energy components.

8.5.2 Weak energy condition

In order to satisfy the weak energy condition (WEC) we require the NEC
be satisfied, and in addition ρ ≥ 0. But in view of the asymptotic estimate
(8.50) for ρ we see that the WEC is always violated at large distances. Fur-
thermore, it can be seen from table 8.1 that the region in which the NEC
is satisfied is always larger than that in which ρ is positive (this would be
as good as impossible to prove analytically for general n). Thus, we can
conclude (see table 8.2) that the WEC is satisfied for smaller regions than
the NEC for all values of n.
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8.5.3 Strong energy condition

In order to satisfy the strong energy condition (SEC) we require the NEC
to be satisfied, and in addition ρ + pr + 2p⊥ = 2p⊥ ≥ 0. But regardless of
whether one is above or below the horizon, the second of these conditions
p⊥ ≥ 0 amounts to

0 < a < r ≤ a
√
n− 1. (8.57)

However, it can be seen from table 8.1 that the region in which the NEC is
satisfied is always smaller than that in which p⊥ is positive (this would be
as good as impossible to prove analytically for general n). Thus, we can
conclude (see table 8.2) that the SEC is satisfied in the same region as the
NEC for all values of n.

8.5.4 Dominant energy condition

The dominant energy condition is the strongest of the standard classical
energy conditions. Perhaps the best physical interpretation of the DEC
is that for any observer with timelike 4-velocity V a the flux vector F a =

T ab Vb is non-spacelike (timelike or null). It is a standard result that in
spherical symmetry (in fact for any type I stress-energy tensor) this re-
duces to positivity of the energy density ρ > 0 combined with the con-
dition |pi| ≤ ρ. Since in the current framework for the radial pressure
we always have pr = −ρ, the only real constraint comes from demanding
|p⊥| ≤ ρ. But this means we want both ρ+ p⊥ ≥ 0 and ρ− p⊥ ≥ 0. The first
of these conditions is just the NEC, so the only new constraint comes from
the second condition. By inspection, it can be seen from table 8.1 that the
region in which the NEC is satisfied is always larger than that in which
ρ − p⊥ is positive (this would be as good as impossible to prove analyti-
cally for general n). Thus, we can conclude (see table 8.2) that the DEC is
satisfied for smaller regions than the NEC for all values of n.
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Table 8.1: Regions of the spacetime where the orthonormal components of
the stress-energy tensor satisfy certain inequalities.

n ρ+ p⊥ ≥ 0 ρ ≥ 0 p⊥ ≥ 0 ρ− p⊥ ≥ 0

0 a < r <∞ a < r <∞ a < r <∞ a < r <∞
1 globally violated globally violated globally violated globally violated

3 a < r / 1.26595a a < r / 1.07457a a < r / 1.41421a globally violated

5 a < r / 1.70468a a < r / 1.37005a a < r ≤ 2a a < r / 1.00961a

7 a < r / 2.05561a a < r / 1.62933a a < r / 2.44949a a < r / 1.11129a

9 a < r / 2.35559a a < r / 1.85537a a < r / 2.82843 a < r / 1.23076a

11 a < r / 2.62173a a < r / 2.05757a a < r / 3.16228a a < r / 1.34552a

...
...

...
...

...

Table 8.2: Regions of the spacetime where the energy conditions are satis-
fied.

n NEC WEC SEC DEC

0 a < r <∞ a < r <∞ a < r <∞ a < r <∞
1 globally violated globally violated globally violated globally violated

3 a < r / 1.26595a a < r / 1.07457a same as NEC globally violated

5 a < r / 1.70468a a < r / 1.37005a same as NEC a < r / 1.00961a

7 a < r / 2.05561a a < r / 1.62933a same as NEC a < r / 1.11129a

9 a < r / 2.35559a a < r / 1.85537a same as NEC a < r / 1.23076a

11 a < r / 2.62173a a < r / 2.05757a same as NEC a < r / 1.34552a

...
...

...
...

...
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8.6 ISCO and photon sphere analysis

We have the generalised quantum modified Schwarzschild metric

ds2 = −

{(
1− a2

r2

)n
2

− 2m

r

}
dt2 +

dr2(
1− a2

r2

)n
2 − 2m

r

+ r2 dΩ2
2.(8.58)

Let us now find the location of both the photon sphere for massless
particles, and the ISCO for massive particles, as functions of the parame-
ters m, n, and a. Consider the tangent vector to the worldline of a massive
or massless particle, parameterized by some arbitrary affine parameter, λ:

gab
dxa

dλ

dxb

dλ
= −gtt

(
dt

dλ

)2

+ grr

(
dr

dλ

)2

+ r2

{(
dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
}
.

(8.59)
As was done for the spacetime in chapter 6, we may without loss of gen-
erality separate the two physically interesting cases (timelike and null) by
defining:

ε =

{
−1 massive particle, i.e. timelike worldline

0 massless particle, i.e. null worldline.
(8.60)

That is, ds2/dλ2 = ε. Due to the metric being spherically symmetric we
may fix θ = π

2
arbitrarily and view the reduced equatorial problem:

gab
dxa

dλ

dxb

dλ
= −gtt

(
dt

dλ

)2

+ grr

(
dr

dλ

)2

+ r2

(
dφ

dλ

)2

= ε. (8.61)

The Killing symmetries yield the following expressions for the con-
served energy E and angular momentum L per unit mass:{(

1− a2

r2

)n
2

− 2m

r

}(
dt

dλ

)
= E ; r2

(
dφ

dλ

)
= L. (8.62)

Hence {(
1− a2

r2

)n
2

− 2m

r

}−1{
−E2 +

(
dr

dλ

)2
}

+
L2

r2
= ε, (8.63)
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implying (
dr

dλ

)2

= E2 +

{(
1− a2

r2

)n
2

− 2m

r

}{
ε− L2

r2

}
. (8.64)

This gives “effective potentials” for geodesic orbits as follows:

Vε(r) =

{(
1− a2

r2

)n
2

− 2m

r

}{
−ε+

L2

r2

}
. (8.65)

8.6.1 Photon orbits

For a photon orbit we have the massless particle case ε = 0. Since we are
in a spherically symmetric environment, solving for the locations of such
orbits amounts to finding the coordinate location of the “photon sphere”.
These circular orbits occur at V ′0 (r) = 0. That is:

V0(r) =

{(
1− a2

r2

)n
2

− 2m

r

}{
L2

r2

}
, (8.66)

leading to:

V
′

0 (r) =
L2

r4

{
6m+ r

(
1− a2

r2

)n
2
−1 [

(n+ 2)
a2

r2
− 2

]}
. (8.67)

Solving V
′

0 (r) = 0 analytically is intractable, but we may perform a
Taylor series expansion of the above function about a = 0 for a valid ap-
proximation (recall a is associated with the Planck length).

To fifth-order this yields:

V
′

0 (r) =
2L2

r4
(3m− r) +

2L2na2

r5
− 3na4L2(n− 2)

4r7
+O

(
L2a6/r9

)
. (8.68)

Equating this to zero and solving for r yields:

rc = 3m

{
1 +

a2n

(3m)2
− n(11n− 6)a4

8(3m)4
+O(a6/m6)

}
. (8.69)
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The a = 0, (or n = 0), Schwarzschild sanity check reproduces rc = 3m,
the expected result.

To verify stability, we check the sign of V ′′0 (r):

V
′′

0 (r) = −L
2

r4

{
24m

r
−
(

1− a2

r2

)n
2
−2

×[
6− (7n+ 12)

a2

r2
+ (n+ 2)(n+ 3)

a4

r4

]}
. (8.70)

We now substitute the approximate expression for rc into equation (8.70)
to determine the sign of V ′′0 (rc). We find:

V ′′0 (rc) = − 2L2

81m4

{
1− 3na2

(3m)2
+
n(67n− 6)a4

8(3m)4
+O(a6/m6)

}
. (8.71)

Given that all bracketed terms to the right of the 1 are strictly subdominant
in view of a � m, we may conclude that V ′′0 (rc) < 0, and hence the null
orbits at r = rc are unstable.

Let us now recall the generalised form of equation (8.66), and spe-
cialise to n = 5 (the lowest value for n for which our quantum deformed
Schwarzschild spacetime is regular). We have:

V0(r, n = 5) =
L2

r2

{(
1− a2

r2

) 5
2

− 2m

r

}
; (8.72)

V ′0(r, n = 5) =
L2

r4

{
6m−

√
r2 − a2

(
2− 9a2

r2
+

7a4

r4

)}
. (8.73)

Once again setting this to zero and attempting to solve analytically is an
intractable line of inquiry, and we instead inflict Taylor series expansions
about a = 0. To fifth-order we have the following:

V ′0(r, n = 5) = −2L2

r3

{
1− 3m

r
− 5a2

r2
+

45L2a4

8r4
+O(a6/r6)

}
. (8.74)

Implying,

rc = 3m

{
1 +

5a2

(3m)2
− 245a4

8(3m)4
+O(a6/m6)

}
, (8.75)

which is consistent with the result for general n displayed in equation (8.69).
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8.6.2 ISCOs

For massive particles the geodesic orbit corresponds to a timelike world-
line and we have the case that ε = −1. Therefore:

V−1(r) =

{(
1− a2

r2

)n
2

− 2m

r

}{
1 +

L2

r2

}
, (8.76)

and it is easily verified that this leads to:

V
′

−1(r) =
2m(3L2 + r2)

r4
+

(1− a2/r2)
n
2
−1

r3

[
na2 + L2

(
(n+ 2)

a2

r2
− 2

)]
.

(8.77)
For small a we have

V−1(r) =

{
1 +

L2

r2

}{
1− 2m

r
− na2

2r2
+
n(n− 2)a4

8r4
+O

(
a6

r6

)}
, (8.78)

and

V
′

−1(r) =
2(L2(3m− r) +mr2)

r4
+

(2L2 + r2)na2

r5
−

(3L2 + 2r2)n(n− 2)a4

4r7
+O

(
a6

r7

)
. (8.79)

Equating this to zero and rearranging for r presents an intractable line of
inquiry. Instead it is preferable to assume a fixed circular orbit at some
r = rc, and rearrange the required angular momentum Lc to be a function
of rc, m, and a. It then follows that the innermost circular orbit shall be the
value of rc for which Lc is minimised. It is of course completely equivalent
to perform this procedure for the mathematical object L2

c , and we do so for
tractability. Hence, if V ′−1(rc) = 0, we have:

L2
c =

na2
(

1− a2

r2

)n
2

+ 2mr
(

1− a2

r2

)
(
1− a2

r2

)n
2
[
2− (n+ 2)a

2

r2

]
− 6m

r

(
1− a2

r2

) . (8.80)

For small a we have

L2
c =

mr2

r − 3m
+
nr(r −m)a2

2(r − 3m)2
−

n{(2n+ 4)r2 + (5n− 18)mr − 9(n− 2)m2}a4

8r(r − 3m)3
+O(a6). (8.81)
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As a consistency check, for large rc (i.e. rc � a,m) we observe from
the dominant term of equation (8.81) that Lc ≈

√
mrc, which is consistent

with the expected value when considering circular orbits in weak-field
GR. Indeed it is easy to check that for large r we have L2

c = mrc + O(1).
Recall that in classical physics the angular momentum per unit mass for
a particle with angular velocity ω is Lc ∼ ωr2

c , and Kepler’s third law of
planetary motion implies that r2

cω
2 ∼ GNm/rc. (Here m is the mass of the

central object, as above.) It therefore follows that Lc ∼
√
GNm/rc rc. That

is Lc ∼
√
mrc, as above.

Differentiating equation (8.80) and finding the resulting roots is not
analytically feasible. We instead differentiate equation (8.81), obtaining
a Taylor series for ∂L2

c

∂rc
for small a:

∂L2
c

∂rc
=
mrc(rc − 6m)

(rc − 3m)2
− mn(5rc − 3m)a2

2(rc − 3m)3
−

n{16r3
c + (n− 2)(4r3

c + 21mr2
c − 36m2rc + 27m3)}a4

8r2
c (rc − 3m)4

+O(a6). (8.82)

Solving for the stationary points yields:

rISCO = 6m

{
1 +

na2

8m2
− n(49n− 22)a4

3456m4
+O

(
a6

m6

)}
, (8.83)

and the a = 0 Schwarzschild sanity check reproduces rc = 6m as required.

8.6.3 Summary

Denoting rH as the location of the horizon, rc as the location of the pho-
ton sphere, and rISCO as the location of the ISCO, we have the following
summary:

• rH = 2m×
{

1 + na2

2(2m)2
− n(3n−2)a4

8(2m)4
+O

(
a6

m6

)}
;

• rc = 3m×
{

1 + a2n
(3m)2

− n(11n−6)a4

8(3m)4
+O

(
a6

m6

)}
;

• rISCO = 6m×
{

1 + na2

8m2 − n(49n−22)a4

3456m4 +O
(
a6

m6

)}
.
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8.7 Regge–Wheeler analysis

Now considering the Regge–Wheeler equation, in view of the formalism
developed in section 6.5, (see also references [20, 53, 57]), we may explicitly
evaluate the Regge–Wheeler potentials for particles of spin S ∈ {0, 1} in
our spacetime. Firstly define a tortoise coordinate as follows:

dr∗ =
dr(

1− a2

r2

)n
2 − 2m

r

. (8.84)

This tortoise coordinate is, for general n, not analytically defined. How-
ever, this does not affect our analysis. This coordinate transformation
yields the following expression for the metric:

ds2 =

{(
1− a2

r2

)n
2

− 2m

r

} {
− dt2 + dr2

∗

}
+ r2

(
dθ2 + sin2 θ dφ2

)
. (8.85)

It is convenient to write this as:

ds2 = A(r∗)
2

{
− dt2 + dr2

∗

}
+B(r∗)

2
(
dθ2 + sin2 θ dφ2

)
. (8.86)

The Regge–Wheeler equation is [23, 53, 57]:

∂2
r∗φ̂+ {ω2 − VS}φ̂ = 0, (8.87)

where, as in section 6.5, φ̂ is the scalar or vector field, V is the spin-depen-
dent Regge–Wheeler potential for our particle, and ω is some temporal
frequency component in the Fourier domain. For a scalar field (S = 0)
examination of the d’Alembertian equation quickly yields:

VS=0 =

{
A2

B2

}
`(`+ 1) +

∂2
r∗B

B
. (8.88)

For a massless vector field, (S = 1; e.g. photon), explicit conformal in-
variance in 3+1 dimensions guarantees that the Regge–Wheeler potential
can depend only on the ratio A/B, whence normalising to known results
implies:

VS=1 =

{
A2

B2

}
`(`+ 1). (8.89)
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Collecting results, for S ∈ {0, 1}we have:

VS∈{0,1} =

{
A2

B2

}
`(`+ 1) + (1− S)

∂2
r∗B

B
. (8.90)

The spin 2 axial mode is somewhat messier, and (for the purposes of this
thesis) not of immediate interest.

Noting that for our metric ∂r∗ =

{(
1− a2

r2

)n
2 − 2m

r

}
∂r and B(r) = r, we

have:

∂2
r∗B

B
=

∂r∗

{(
1− a2

r2

)n
2 − 2m

r

}
r

=
1

r2

{(
1− a2

r2

)n
2

− 2m

r

}{
n

(
1− a2

r2

)n
2
−1
a2

r2
+

2m

r

}
. (8.91)

For small a:

∂2
r∗B

B
=

2m(1− 2m/r)

r3
+
n(r − 3m)

r5
a2+

n{5(n− 2)m− 4(n− 1)r}
4r7

a4 +O
(
ma6

r9

)
. (8.92)

Therefore:

VS∈{0,1} =
1

r2

[(
1− a2

r2

)n
2

− 2m

r

]
×{

` (`+ 1) + (1− S)

[
n

(
1− a2

r2

)n
2
−1

a2

r2
+

2m

r

]}
. (8.93)

This has the correct behaviour as a → 0, reducing to the Regge–Wheeler
potential for the Schwarzschild spacetime:

lim
a→0
VS∈{0,1} =

1

r2

[
1− 2m

r

]{
`(`+ 1) + (1− S)

2m

r

}
. (8.94)
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In the small a approximation we have the asymptotic result

VS∈{0,1} =

(
1− 2m

r

)
r2

{
`(`+ 1) + (1− S)

2m

r

}
− na2

2r4

{
`(`+ 1) + 2(1− S)

[
3m

r
− 1

]}
+
na4

2r6

{
(n− 2)

4
[`(`+ 1)]− (1− S)

[
2(n− 1) + 5

(
1− n

2

) m
r

]}
+O

(
a6

r8

)
. (8.95)

As we saw in section 6.5, the Regge–Wheeler equation is fundamental to
exploring the quasi-normal modes of the candidate spacetimes, an integral
part of the “ringdown” phase of the LIGO calculation to detect astrophys-
ical phenomena via gravitational waves. However, exploring the quasi-
normal modes is, for now, relegated to the domain of future research.

8.8 Summary

In this chapter we showed how the original Kazakov–Solodukhin “quan-
tum deformed Schwarzschild spacetime” [79] is slightly more “regular”
than Schwarzschild spacetime, but it is not “regular” in the sense normally
intended in the general relativity community. While the metric compo-
nents are regular, both Christoffel symbols and curvature invariants di-
verge at the “centre” of the spacetime, a 2-sphere where r → a with finite
areaA = 4πa2. The “smearing out” of the “centre” to r → a is not sufficient
to guarantee curvature regularity.

We have generalised the original Kazakov–Solodukhin spacetime to a
two-parameter class compatible with the ideas mooted in reference [79].
Our generalised two-parameter class of “quantum corrected” Schwarz-
schild spacetimes contains exemplars which have much better regularity
properties, and we can distinguish three levels of regularity: metric regu-
larity, Christoffel regularity, and regularity of the curvature invariants.
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Furthermore, our generalised two-parameter class of models distorts
Schwarzschild spacetime in a clear and controlled way — so providing
yet more examples of black-hole “mimickers” potentially of interest for
observational purposes. In this regard we have analysed the geometry,
surface gravity, stress-energy, and classical energy conditions. We have
also perturbatively analysed the locations of ISCOs and photon spheres,
and set up the appropriate Regge–Wheeler formalism for spin-1 and spin-
0 excitations.



Chapter 9

Conclusions

This thesis explored many new and interesting results in the theory of rel-
ativity. The main focus of the work was to highlight the issue of singular-
ities in black hole spacetimes and their classical resolution through black
hole mimickers. Specific models of black hole mimicker spacetimes were
thoroughly examined within the framework of classical general relativity.
Each relevant chapter contains a summary of the results it contains, and
so this chapter will only provide a brief summary of the key points from
the thesis, and a general outlook on the future of the field.

9.1 Combination of relativistic velocities using

quaternions

In chapter 3, a new formula was presented for combining general ve-
locities in special relativity using quaternions. By identifying velocities
~v1, ~v2 ∈ R3 with pure quaternions via a natural isomorphism n̂ 7→ n̂, it was
shown that their combination could be expressed as

w1⊕2 = w1⊕w2 = (1−w1w2)−1(w1 +w2) = (w1 +w2)(1−w2w1)−1, (9.1)

143
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where the “relativistic half-velocities” wi are defined by vi = wi ⊕ wi. In
terms of the rapidity ξ:

w = tanh(ξ/2), v = tanh(ξ) =
2w

1 + w2
. (9.2)

That is,

w = tanh

(
1

2
tanh−1(v)

)
=

v

1 +
√

1− v2
. (9.3)

This result was further extended to obtain novel, elegant and compact
formulae for both the associated Wigner angle Ω and the direction of the
combined velocities:

eΩ = eΩ Ω̂ = (1−w1w2)−1(1−w2w1), ŵ1⊕2 = eΩ/2 w1 + w2

|w1 + w2|
. (9.4)

Finally, the formalism was used discuss the conditions under which
the relativistic composition of 3-velocities is associative.

The central argument of the chapter was that many key results that are
ultimately due to the non-commutativity of non-collinear boosts can be
easily rephrased in terms of the non-commutative algebra of quaternions.

9.2 Regular black hole with asymptotically

Minkowski core: Photon sphere and

timelike circular orbits

Chapter 6 analysed the existence of null and timelike circular orbits for the
regular black hole with line element

ds2 = −
(

1− 2m e−a/r

r

)
dt2 +

dr2

1− 2m e−a/r

r

+ r2
(
dθ2 + sin2 θ dφ2

)
. (9.5)

It was found that the photon spheres exist a locations described by the
implicit equation

r2
c = m e−a/rc(3rc − a). (9.6)
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In contrast, extremal timelike circular orbits (ESCOs) can only exist in the
region described implicitly by

rc > a, ma− 3mrc + r2
c ea/rc > 0. (9.7)

The analysis of the photon sphere and ESCO was extended to horizonless
compact massive objects, leading to the surprising results that for fixed
values of m and a, up to two possible photon sphere and up to two pos-
sible ESCO locations exist in our model spacetime; and that the very exis-
tence of the photon sphere and ESCO depends explicitly on the ratio a/m.
Somewhat unexpectedly, due to the effectively repulsive nature of gravity
in the region near the core, it was found that there are some situations in
which the photon orbits are stable, and some situations where the ESCOs
are outer-most stable circular orbits (OSCOs) rather than the inner-most
stable circular orbits (ISCOs). This provided a rich phenomenology that is
significantly more complex than for the Schwarzschild spacetime.

9.3 From regular black hole to thin-shell

wormhole

In chapter 7, the same regular black hole analysed in chapter 6 was used to
construct a spherically symmetric thin-shell traversable wormhole via the
“cut-and-paste” method, thereby resulting in yet another black hole mim-
icker. The smaller the value of the mass suppression parameter a, and the
closer the location of the wormhole throat is to the Schwarzschild radius,
the better this model mimics a standard Schwarzschild black hole. The
surface energy at the wormhole junction throat was found to be negative,
and so, much like other traversable wormholes, exotic matter would be
needed to keep the wormhole throat open.

This class of wormholes permits a clean and quite general stability
analysis, with wide swathes of stable behaviour. Furthermore, crucial
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to the central theme of this thesis, it was shown the stability plateau ex-
hibits a ‘pit’ of enhanced stability when the wormhole throat is close to
where a near-extremal horizon would have existed in the bulk spacetime
before applying cut- and-paste surgery. Thus, the quantity of exotic matter
needed to support the wormhole throat could be minimised (and in some
cases made arbitrarily small) by suitable choice of parameters. Hence, this
model of traversable wormhole can be considered a potential astrophysi-
cal alternative to classical black holes.

9.4 General class of “quantum deformed”

regular black holes

Chapter 8 analysed a general class of regular black holes inspired by a
(non-regular) metric proposed by Kazakov and Solodukhin in 1993. The
class of spacetimes are described by the line element

ds2
n = −

[(
1− a2

r2

)n
2

− 2m

r

]
dt2 +

dr2(
1− a2

r2

)n
2 − 2m

r

+ r2
(
dθ2 + sin2 θ dφ2

)
,

(9.8)
where n is an odd integer. This general class contains spacetimes which
have different notions of ‘regularity’, dependent on the single parameter
n. We showed that the spacetimes are metric regular for n ≥ 1, Christoffel
regular for n ≥ 3, and curvature regular for n ≥ 5.

The spacetime was found to have an event horizon located implicitly
at

rH = 2m

(
1− a2

r2
H

)−n
2

. (9.9)

For small a, we found an approximate but explicit horizon location given
by

rH = 2m

{
1 +

na2

8m2
− n(3n− 2)a4

128m4
+O

(
a6

m6

)}
. (9.10)
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Locations of circular null and timelike geodesics (the “photon sphere”
and “ISCO”) were calculated. The locations of these orbits could not be
solved analytically and explicitly, however in the small a limit they were
calculated to be located at

rc = 3m

{
1 +

a2n

(3m)2
− n(11n− 6)a4

8(3m)4
+O

(
a6

m6

)}
, (9.11)

and

rISCO = 6m

{
1 +

na2

8m2
− n(49n− 22)a4

3456m4
+O

(
a6

m6

)}
, (9.12)

for the photon sphere and ISCO, respectively.
The surface gravity was calculated to be approximately given by

κH =
1

4m

{
1− n(n− 1)a4

32m4
+O

(
a6

m6

)}
, (9.13)

and the Hawking temperature is simply kBTH = 1
2π

~κH .
The classical energy conditions were analysed, and it was found that

the regions in which these conditions are satisfied is dependent on the
value of the parameter n. It was should that for no value of n (barring the
trivial n = 0 Schwarzschild spacetime) was there satisfaction of any of the
energy conditions globally in the whole of the spacetime.

In addition to these results, the Regge–Wheeler potential was calcu-
lated for spin 0 and spin 1 excitations.

Somewhat importantly, the spacetimes in this general class could be
made arbitrarily close to the Swarzschild spacetime, and so are indeed
able to be classified as “black hole mimickers”.

9.5 Overall summary and outlook

It was the aim of this thesis to show that the issue of black hole singu-
larities may be resolved in a tractable, classical manner by the concept of
black hole mimickers. Indeed, the results presented in this thesis are far
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cleaner and simpler than proposed resolutions of singularities via modi-
fied theories of gravity or quantum gravity candidate theories.

There is still a significant amount of open problems on the subject of
black hole mimickers. A small list of problems are listed below as possible
avenues of future research.

• Construct a regular black hole spacetime model which violates the
classical energy conditions in a ‘minimal’ way.

• Construct a regular black hole spacetime model which is charged
and rotating, but still allows for tractable analysis of key astrophysi-
cal observables (photon spheres, ISCOs, etc.).

• Analyse the possibility of regular black holes as explanation for some
of the currently unexplainable phenomena in the universe (mass-gap
black holes, etc.).

• Analyse specific black hole mimicker spacetime models through the
lens of quantum field theory in curved spacetimes. Specifically, anal-
yse the effect that regularising black hole singularities has on quan-
tum field theoretic phenomena, such as Hawking radiation.

In addition to these problems, there are major un-resolved questions
in physics which relate directly to black hole mimickers and the study of
black hole singularities in general:

• Do traversable wormholes really exist, or are they just mathematical
curiosities?

• Will a consistent theory of quantum gravity regularise the singulari-
ties at the core of black holes?

• Is there any black hole remnant left over when a black hole Hawking
evaporates that could be detected astronomically?
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Of course, there are many more open problems in this field of research,
and this discussion is in no way exhaustive. However, it is hoped that
this thesis has shown the power in the simplicity of black hole mimickers,
and that future research will continue to be directed towards their analy-
sis. I would once again like to thank everyone who has helped me in the
completion of this thesis.
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