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Abstract

In this paper, the Multi-Objective Time-Dependent Orienteering Problem
(MOTDOP) is investigated. Time-dependent travel time and multiple pref-
erences are two of the most important factors in practice, and have been han-
dled separately in previous work. However, no attempts have been made so
far to consider these two factors together. Handling both multiple preferences
and time-dependent travel time simultaneously poses a challenging optimiza-
tion task in this NP-hard problem. In this study, two meta-heuristic methods
are proposed for solving MOTDOP: a Multi-Objective Memetic Algorithm
(MOMA) and a Multi-objective Ant Colony System (MACS). Two sets of
benchmark instances were generated to evaluate the proposed algorithms.
The experimental studies show that both MOMA and MACS managed to
find better solutions than an existing multi-objective evolutionary algorithm
(FMOEA). Additionally, MOMA achieved better performance than MACS
in a shorter time, and is less sensitive to the parameter setting. Given that
MACS inherits promising features of P-ACO, which is a state-of-the-art al-
gorithm for multi-objective orienteering problem, the advantage of MOMA
over MACS and FMOEA demonstrates the efficacy of adopting the memetic
algorithm framework to solve MOTDOP.
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1. Introduction

The orienteering problem is a significant problem that can be found in
real-world application areas such as the home fuel delivery [1] and tourist
trip design [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Given a set of Points-Of-Interest
(POIs), including the starting and ending POI, each POI has a score that
represents its desirability. The orienteering problem aims to design a tour
leaving from the starting POI, visiting a subset of POIs and finally arriving
at the ending POI. The objective is to maximize the total score of the visited
POIs while the total travel time of the route does not exceed the predefined
time budget.

In practice, the travel time between the POIs is time-dependent. For
example, the peak-hour travel time should be longer than the travel time
during the off-peak period. To better simulate the reality, the orienteering
problem with time-dependent travel cost is considered in this paper. In ad-
dition, each POI may have multiple scores, each representing its desirability
from a different perspective. For example, a POI may have a high score as
an art gallery, but a low score as an architecture. Given multiple scores, one
of the challenges is to obtain a set of Pareto-optimal solutions instead of a
single global optimal solution.

The orienteering problem has been extensively investigated in literature.
Golden et al. [1] proved that even the most basic version of the orienteering
problem is NP-hard. Thus, no polynomial algorithm exists for solving the
problem to optimality. There have been a number of exact methods and
heuristics proposed for solving orienteering problems, such as the branch-and-
bound approach [12, 13] and various heuristics (e.g., [14, 15, 16, 17]). There
have been also investigations on various extension of orienteering problems
that are closer to reality, such as the team orienteering problem [18, 19,
20, 21, 22, 23], the orienteering problem with time windows [24, 25, 26, 27,
28, 29], the multi-objective orienteering problem [30, 31, 5, 10], and the
time-dependent orienteering problem [32, 33, 4, 34, 29, 35, 36, 11]. A more
comprehensive survey can be found in [37]. However, the two aspects of
the problem in this study, i.e., multiple objectives and time-dependent cost
(travel time), have not been tackled together by any algorithm so far. This
paper attempts to solve the Multi-Objective Time-Dependent Orienteering
Problem (MOTDOP) for the first time.
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Handling multiple objectives and time-dependent cost simultaneously
poses a challenging optimization task in MOTDOP, which makes it more dif-
ficult than considering the multiple objectives or time-dependent cost alone.
First, due to the conflict between objectives, it is necessary to explore the
search space more thoroughly, which thus leads to a much higher demand
in computational resource. Second, due to the time-dependent cost, even a
minor change on the solution may lead to a severe difference on the total
cost, making it very difficult to identify promising regions. To tackle these
challenges, two meta-heuristic algorithms are designed for solving MOTDOP.
The first one is the Multi-Objective Memetic Algorithm (MOMA), which has
been demonstrated to be a competitive approach for graph-based optimiza-
tion problems (e.g. shortest path finding) [38, 39, 40, 41]. To solve the
MOTDOP with MOMA, problem-specific crossover and local search opera-
tors are designed to improve the search efficiency and effectiveness in handling
the time-dependent travel time. The second one is the Multi-objective Ant
Colony System (MACS). It is a well-known algorithm for solving graph-based
optimization problems, including the single-objective time-dependent orien-
teering problem [35] and the multi-objective static orienteering problem [30],
which are the two closest models to MOTDOP. MACS adopts most compo-
nents of the Pareto Ant Colony Optimization (P-ACO) [30], whose efficacy
has been demonstrated on the multi-objective static orienteering problem.
The major difference between MACS and P-ACO is the iterative improve-
ment (local search) procedure, where MACS takes the time-dependent travel
time into account.

Since MOTDOP has not been studied before, there is no existing bench-
mark instance for testing the algorithms. Therefore, we generated two sets
of benchmarks to facilitate experimental studies. The first set is extended
from the single-objective time-dependent instances used in [35] by randomly
adding an additional objective. The second one is extended from the multi-
objective static instances used in [30] by applying the time-dependency model
in [35] to transform each static travel time into a time-dependent one. Then,
MOMA and MACS were evaluated on the newly generated benchmark in-
stances, and compared with an existing algorithm called FMOEA [10]. The
experimental results show that both algorithms find better sets of solutions
than FMOEA. In addition, MOMA performs much better than MACS in
terms of both solution quality and speed. Since ant colony system has been
successfully applied to solving orienteering problems, the outperformance of
MOMA over MACS suggests a great potential to use the memetic algorithm

3



framework in solving orienteering problems.
The rest of the paper is organized as follows: Section 2 gives the math-

ematical formulation of MOTDOP. Then, the proposed MOMA and MACS
are described in Section 3. The experimental studies are carried out in Sec-
tion 4 to evaluate MOMA and MACS. Finally, the conclusion and future
work are given in Section 5.

2. Multi-Objective Time-Dependent Orienteering Problem

In MOTDOP, there is a set of vertices V = {v1, . . . , vn} located on a pla-
nar graph, representing the set of POIs on the map. The tourist is assumed
to depart from v1 (the source node) and arrive at vn (the target node). Each
vertex vi has a score list si = (si1, . . . , sim), indicating its degrees of desirabil-
ity of the tourist from different perspectives. For example, a museum can fall
into the categories of art gallery and architecture. Then, it should have two
desirability scores, one as an art gallery, and the other as an architecture.
The time-dependent matrix of travel time is denoted as D(t) = (dij(t))n×n,
where dij(t) stands for the travel time from vi to vj at time t. Given a start-
ing time t0 and the time budget T , the task is to design a tour that starts
from v1 at t0, visits a subset of vertices and finally returns vn no later than
t0 + T , so that the total scores of the visited vertices are maximized.

The mathematical model of MOTDOP can be stated as follows:

max fk =
n−1∑
i=2

sik

(
n∑
j=1

xij

)
, k = 1, . . . ,m, (1)

s.t.:
n∑
j=2

x1j =
n−1∑
i=1

xin = 1, (2)

n∑
j=2

xj1 =
n−1∑
i=1

xni = 0, (3)

n∑
j=1

xij =
n∑
j=1

xji ≤ 1, i = 2, . . . , n− 1, (4)

y1 = t0, (5)

yn ≤ t0 + T, (6)

yj =
n∑
i=1

(yi + dij(yi)) · xij, j = 2, . . . , n, (7)
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xij ∈ {0, 1}, (8)

where the decision variables include xij and yi (i, j = 1, . . . , n). Specifically,
xij = 1 if there is an arc from vi to vj in the tour, and 0 otherwise. yi stands
for the departure (arrival) time of vi in the tour.

Eq. (1) maximizes the m total scores of the solution in terms of the score
list. Eq. (2) indicates that there is exactly one arc leaving the source node
and entering the target node. Eq. (3) means that there is no arc leaving the
target node or entering the source node. Eq. (4) guarantees that there is at
most one arc entering and leaving each intermediate node, and the in-degree
equals the out-degree for each intermediate node. Eqs. (5) and (6) imply
that the tour starts from the source node at t0, and arrives at the target node
no later than t0 +T . Eq. (7) calculates the arrival time for each intermediate
node by its predecessor in the tour. When calculating the arrival time of
vj, it only counts a single term yi + dij(yi), where xij = 1, i.e., vi is the
predecessor of vj in the tour. Note that if vj is not selected in the tour, then
yj = 0, without violating the optimality of the model. Eq. (8) indicates
that the decision variables are binary. Due to Eq. (7), the above model is a
non-linear mixed integer programming model with multiple objectives.

In Eq. (1), there are multiple scores to be maximized, which are usually
in conflict with each other. Therefore, in MOTDOP, there may be multiple
optimal solutions with different trade-offs among the scores, which are called
the Pareto-optimal solutions. In multi-objective optimization, solution a is
said to dominate solution b, if all the objective values of a are no worse than
that of b, and there is at least one objective for which a has a better value
than b. Then, a solution is called to be a Pareto-optimal solution, if it is
dominated by no other solution in the entire solution space.

Fig. 1 shows an example of a solution of MOTDOP. The diamonds indi-
cate the source and destination, and the circle points stand for the interme-
diate POIs, each of which is associated with two scores. The illustrated tour
leaves the source node at 9:00, and arrives at the destination at 16:50. In
order to finish the tour before the deadline (17:00), three POIs are skipped.
The total score list of the tour is (2, 4)+(3, 2)+(4, 2)+(3, 3)+(3, 4) = (15, 15).

It should be noted that the visiting time seems to be omitted in our work.
However, the visiting time can be easily included in the model by defining
the travel time between any two POIs as the sum of the commuting time
(actual travel time) and the visiting time of the target POI. For example, in
Fig. 1, assuming that the tourist departs from the source at 9:00AM and
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Figure 1: An example of a solution of the multi-objective time-dependent orienteering
problem.

arrives at the first POI at 9:50AM, and stays half an hour to enjoy it. Then
the corresponding travel time defined in Fig. 1 is 1 hour 20 minutes (50
minutes for commuting plus 30 minutes for visiting). This way, the visiting
time can be directly addressed by the current model.

3. Meta-heuristics Designed

To facilitate the algorithm description, we first give the basic notations
that will be used in both MOMA and MACS in Table 1. In the table, a
solution Γ is represented as a sequence of POIs, which starts from v1 and
ends at vn.

3.1. Multi-Objective Memetic Algorithm

Memetic algorithm [42] can be seen as a special case of the well-known
evolutionary algorithm, in which the traditional mutation operator is re-
placed by the local search process. Due to the self-learning scheme brought
by the local search, memetic algorithm particularly performs well in solv-
ing combinatorial optimization problems [43, 44, 45], in which the fitness
landscape is rugged and the definition of solution neighborhood is untrivial
because of the complicated solution structure such as permutation.
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Table 1: The notations used in algorithm description.

Notation Description

vi The ith vertex (POI) of the graph
δ(vi, vj) Euclidean distance between vi and vj
Γ A solution to the problem
Γ A population (set of solutions)
Γl the lth ant or individual of Γ
tarr(Γ) the arrival time of the destination vn in Γ
Γ(i) the ith vertex in the tour of Γ
fk The kth objective value defined by Eq. (1) (k = 1, . . . ,m)

As mentioned in [38], when applying memetic algorithm to multi-objective
optimization problems, there are four important issues to be addressed: (1)
fitness assignment; (2) diversity preservation; (3) elitism and (4) solution
evaluation during local search. When considering all the above four issues in
the context of combinatorial optimization, a decomposition-based memetic
algorithm was proposed in [38] for solving the multi-objective capacitated arc
routing problem. Due to its efficacy, the framework of this decomposition-
based memetic algorithm is employed for solving MOTDOP as well. The
pseudo-code of the Multi-Objective Memetic Algorithm (MOMA) is described
in Algorithm 1.

At first, a population with popsize individuals is initialized by the func-
tion initialize(). Then, in each generation, an offspring population is
generated by crossover() and localSearch(), and combined with the cur-
rent population. Then, all the individuals in the combined population are
sorted by the fast non-dominated sorting procedure, and the best popsize
individuals are selected to go to the next generation.

The initialize() function is described in Algorithm 2. Starting from
a tour directly from the source to the destination, all the intermediate POIs
are randomly shuffled and inserted behind v1 one by one, until no more POI
can be inserted. The random shuffle enables the initialization to generate
different initial individuals by allowing the vertices with larger indices to be
inserted before those with smaller indices.

Then, the fast non-dominated sorting procedure [46] nondominatedSort()
is applied to Γ to sort the individuals from best to worst in terms of the
dominance relation and crowding distance. The brief idea of the fast non-
dominated sorting is to rank the individuals based on the dominance relation,
so that the individuals with a higher rank are always dominated by at least
one individual with a lower rank, and the individuals with the same rank
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Algorithm 1: The multi-objective memetic algorithm
Input: popsize
Output: A set of non-dominated solutions Γnd

// Initialize the population

1 Γ← ∅, Γnd ← ∅;
2 for i = 1→ popsize do
3 Γi ← initialize(); // initialize a feasible solution

4 Γ← Γ ∪ Γi, update Γnd with Γi;

5 end
6 Γ← nondominatedSort(Γ);

// Search process
7 while Stopping criteria not met do

// Generate the offspring population

8 Γoff ← ∅; // the offspring population
9 for i = 1→ popsize/2 do

10 (Γpar
1 ,Γpar

2 )← parentSelection(Γ);

11 (Γoff
1 ,Γoff

2 )← crossover(Γpar
1 ,Γpar

2 );

12 Γoff
1 ← localSearch(Γoff

1 );

13 Γoff
2 ← localSearch(Γoff

2 );

14 Γoff ← Γoff ∪ {Γoff
1 ,Γoff

2 };
15 end

16 Γcomb ← Γ ∪ Γoff; // the combination of the two populations

17 Γcomb ← nondominatedSort(Γcomb);

18 Γ← Γcomb(1 : popsize);

19 Update Γnd with Γ;

20 end

21 return Γnd;

Algorithm 2: The solution initialization
1 Γ← (v1, vn), Ω← V \ {v1, vn};
2 Randomly shuffle the vertices in Ω;
3 foreach v ∈ Ω do
4 Γ′ ← Γ;
5 Insert v behind v1 in Γ′;
6 if tarr(Γ′) ≤ t0 + T then Γ← Γ′;

7 end
8 return Γ;

are non-dominated to each other. Then, within the same front (the set of
individuals with the same rank), a crowding distance is calculated for each
individual to reflect the crowdedness around it. The individuals with larger
crowding distance values are considered to be in less crowded areas and thus
have better fitness values. The pseudo-code of the non-dominated sorting
is given in Algorithm 3, where ndom(Γ) and Γdom(Γ) stand for the number
of individuals dominating Γ, and the set of individuals that Γ dominates,
respectively. In Line 19 of Algorithm 3, for all the individuals in the front
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Algorithm 3: The fast non-dominated sorting procedure
Input: A population Γ
Output: A sorted population Γsort

1 Γsort ← ∅;
2 foreach Γ ∈ Γ do ndom(Γ)← 0, Γdom(Γ)← ∅;
3 foreach (Γ1,Γ2) ∈ Γ× Γ and Γ1 6= Γ2 do
4 if Γ1 dominates Γ2 then
5 ndom(Γ2)← ndom(Γ2) + 1, Γdom(Γ1)← Γdom(Γ1) ∪ Γ2;
6 else if Γ2 dominates Γ1 then
7 ndom(Γ1)← ndom(Γ1) + 1, Γdom(Γ2)← Γdom(Γ2) ∪ Γ1;
8 end

9 end
// Obtain the fronts

10 rank ← 0; // initial rank
11 repeat

12 Γfront ← ∅;
13 foreach Γ ∈ Γ do
14 if ndom(Γ) = 0 then

15 rank(Γ)← rank, Γfront ← Γfront ∪ Γ;
16 foreach Γ′ ∈ Γdom(Γ) do ndom(Γ′)← ndom(Γ′)− 1;

17 end

18 end
// Sort the front by crowding distance

19 dcrowd(Γfront)← crowdingDistance(Γfront);

20 Sort Γfront in the decreasing order of dcrowd(·);
21 Γsort ← Γsort ∪ Γfront, Γ← Γ \ Γfront;
22 rank ← rank + 1; // rank increment

23 until Γ = ∅;
24 return Γsort;

Algorithm 4: Crowding distance calculation
1 foreach Γ ∈ Γ do dcrowd(Γ)← 0;
2 for k = 1→ m do
3 Sort Γ in the increasing order of fk(·);
4 d1 ←∞, dn ←∞; // n is the size of Γ
5 for i = 2→ n− 1 do

6 di ←
fk(Γi+1)−fk(Γi−1)

fk(Γn)−fk(Γ1)
; // Γi is the ith individual in Γ

7 end
8 for i = 1→ n do dcrowd(Γi)← dcrowd(Γi) + di;

9 end
10 return dcrowd(·);

Γfront, the calculation of the crowding distance is described in Algorithm 4.
In each generation, two parent individuals are first selected by the func-

tion parentSelection(Γ). Here, the multi-objective binary tournament se-
lection is adopted. When selecting each parent, two individuals are randomly
picked, and the better one is selected to be the parent. After conducting
nondominatedSort() to the population Γ, an individual Γ1 is considered to
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Algorithm 5: Multi-objective binary tournament parent selection
Input: A population Γ
Output: Two parents (Γpar

1 ,Γpar
2 )

// Generate the first parent
1 Randomly select two individuals Γ1 and Γ2 from Γ;
2 if Γ1 is before Γ2 in Γ then Γpar

1 ← Γ1;
3 else Γpar

1 ← Γ2;
// Generate the second parent

4 repeat
5 Randomly select two individuals Γ3 and Γ4 from Γ;
6 if Γ3 is before Γ4 in Γ then Γpar

2 ← Γ3;
7 else Γpar

2 ← Γ4;

8 until Γpar
2 6= Γpar

1 ;
9 return (Γpar

1 ,Γpar
2 );

be better than another individual Γ2 if Γ1 is before Γ2 in Γ. The multi-
objective binary tournament selection is given in Algorithm 5.

The single-point crossover operator is applied to the parent individu-
als Γpar

1 and Γpar
2 to generate two offsprings Γoff

1 and Γoff
2 . The single-point

crossover operator is described in Algorithm 6. At first, two cutting points
r1 and r2 are randomly sampled for Γpar

1 and Γpar
2 . Then, the two offsprings

Γoff
1 and Γoff

2 are generated by swapping two sub-tours Γpar
1 (r1 + 1 : l1) and

Γpar
2 (r2 + 1 : l2). Starting from the tour (v1, vn), the offspring Γoff

1 inserts the
elements from position 2 to r1 of Γpar

1 , and then inserts the elements from
position r2 to l2 − 1 of Γpar

2 . When inserting each element, the feasibility of
the insertion is checked, and the insertion is only implemented if it is feasible.
The same procedure is conducted when generating Γoff

2 .
The generated offsprings Γoff

1 and Γoff
2 then undergo a local search process,

which is described in Algorithm 7. First, the unvisited vertices are randomly
shuffled. Then, the vertices are inserted to the best feasible position which
leads to the minimal additional travel time one by one. If no feasible position
is found for a vertex, it is simply skipped.

3.2. Multi-objective Ant Colony System

Ant colony optimization was proposed by Dorigo [47], which was origi-
nally to find the shortest path by mimicking the behavior of the ant colony
during the foraging process. Ant colony optimization has been demonstrated
to be efficient to solve shortest-path-finding problems such as traveling sales-
man problem [48] due to the similarity between their underlying models.
Generally speaking, ant colony optimization is an iterative search method
where at each iteration, a set of solutions (ants) are generated based on
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Algorithm 6: The single-point crossover
Input: Two parents (Γpar

1 ,Γpar
2 )

Output: Two offsprings (Γoff
1 ,Γoff

2 )
1 Randomly sample r1 ∈ {2, . . . , l1 − 1}; // l1 is the length of Γpar

1
2 Randomly sample r2 ∈ {2, . . . , l2 − 1}; // l2 is the length of Γpar

2

3 Γoff
1 ← (v1, vn), Γoff

2 ← (v1, vn);
// Generate the first offspring

4 for i = 2→ r1 do
5 Γ′ ← Γoff

1 ;
6 Insert Γpar

1 (i) in the second last position of Γ′;

7 if tarr(Γ′) ≤ t0 + T then Γoff
1 ← Γ′;

8 end
9 for i = r2 + 1→ l2 − 1 do

10 Γ′ ← Γoff
1 ;

11 if Γpar
1 (i) is not in Γ′ then

12 Insert Γpar
2 (i) in the second last position of Γ′;

13 if tarr(Γ′) ≤ t0 + T then Γoff
1 ← Γ′;

14 end

15 end
// Generate the second offspring

16 for i = 2→ r2 do
17 Γ′ ← Γoff

2 ;
18 Insert Γpar

2 (i) in the second last position of Γ′;

19 if tarr(Γ′) ≤ t0 + T then Γoff
1 ← Γ′;

20 end
21 for i = r1 + 1→ l1 − 1 do
22 Γ′ ← Γoff

2 ;
23 if Γpar

1 (i) is not in Γ′ then
24 Insert Γpar

1 (i) in the second last position of Γ′;

25 if tarr(Γ′) ≤ t0 + T then Γoff
2 ← Γ′;

26 end

27 end

28 return (Γoff
1 ,Γoff

2 );

Algorithm 7: The local search process
1 Ω← {v ∈ V |v is not in Γ}; // the candidate vertices
2 Randomly shuffle Ω;
3 foreach v ∈ Ω do
4 t∗arr ← t0 + T , i∗ ← −1;
5 for i = 2→ |Γ| − 1 do
6 Γ′ ← Γ;
7 Insert v into position i of Γ′;
8 if tarr(Γ′) < t∗arr then t∗arr ← tarr(Γ′), i∗ ← i;

9 end
10 if i∗ 6= −1 then Insert v into position i∗ of Γ;

11 end

the current pheromone distribution in the network, and then the pheromone
distribution is updated based on the newly generated solutions.
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Algorithm 8: The Multi-objective Ant Colony System
Input: α, β, φ, ρ, q0
Output: A set of non-dominated solutions Γnd

// Initialization

1 Γnd ← ∅;
2 foreach (vi, vj) ∈ V × V do
3 for k = 1→ m do
4 τk(vi, vj)← τinit; // initial pheromone
5 ηk(vi, vj)← sjk/δ(vi, vj); // heuristic information

6 end

7 end
8 Construct nant uniformly distributed m-dimensional weight vectors w1, . . . ,wnant , where nant is

the number of ants;
// Search process

9 while Stopping criteria not met do
10 for l = 1→ nant do

// Generate the solution (tour) Γl for ant l
11 Γl = (v1, vn); // tour from v1 to vn
12 repeat
13 vnext ← nextVertex(Γl, τ ,η,wl);
14 Insert vnext to the second last position of Γl;

15 until vnext = null;
16 Γl ← localSearch(Γl);

17 Update Γnd with Γl;
18 localUpdate(τ ,Γl); // local pheromone update

19 end
20 globalUpdate(τ ); // global pheromone update

21 end

22 return Γnd;

There have been various implementations of ant colony optimization, such
as the ant system [49], ant colony system [48], and MAX-MIN ant system
[50]. They differ from each other in generating the solutions and updating
the pheromone distribution. In this paper, the Ant Colony System (ACS)
framework is adopted due to its demonstrated efficacy on the traveling sales-
man problem. The framework of the proposed Multi-objective Ant Colony
System (MACS) is described in Algorithm 8.

MACS adopts many components of P-ACO [30], which has been demon-
strated to be very effective to solve the multi-objective orienteering problem.
More specifically, the following mechanisms of P-ACO are adopted in MACS:

1. A set of pheromone structures τ = (τ1, . . . , τm) and heuristic informa-
tion η = (η1, . . . , ηm) are maintained, each for an objective;

2. The initialization, local update and global update of the pheromone τ
are the same as that in P-ACO;
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3. The definition of η is the same as that in P-ACO;

4. For each ant Γl, a weight vector wl = (wl1, . . . , wlm) is defined to ag-
gregate the objective vector f(Γl) = (f1(Γl), . . . , fm(Γl)) into a single
value by the weighted sum approach, i.e. fagg(Γl) =

∑m
k=1wlkfk(Γl);

5. The weight vectors of the ants are uniformly distributed;

6. During the solution generation, the Best-or-Roulette-Wheel selection
scheme is adopted. That is, the best feasible vertex is selected with a
probability of q0. Otherwise, the probability of selecting each vertex is
defined in the same way as that in P-ACO.

The only difference between MACS and P-ACO is the iterative improve-
ment procedure. P-ACO uses the 2-opt operator in the local search, which is
effective in reducing the total length of the tour. However, it does not work
well anymore in the time-dependent scenario, since a shorter length does not
necessarily lead to a smaller travel time. To address this issue, MACS em-
ploys the simple insertion-based local search (Algorithm 7), which is much
more effective and faster to handle the time-dependent travel time.

Compared with MOMA, there is not much novelty in MACS besides
the adoption of the new iterative improvement procedure. However, due to
the competitiveness of P-ACO for the multi-objective orienteering problem,
MACS is expected to perform well on MOTDOP, and give a decent baseline
performance for comparison.

3.3. Complexity Analysis

The complexity of MOMA can be calculated as

O(MOMA) = FEmax · (O(XO) +O(LS)) (9)

= FEmax ·
(
O(a) +O

(
(n+ a+ 1)(n− a)

2

))
(10)

= FEmax ·O
(
n2 − a2 + a

)
, (11)

where O(XO) and O(LS) are the complexity of the crossover and local search,
FEmax stand for the maximal number of fitness evaluations, n is the problem
size and a is the number of vertices in the tour.

The computational complexity of MACS can be calculated as

O(MACS) = Nmax(nant(O(SG) +O(LS) +O(LU)) +O(GU)),
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where Nmax is the maximal number of iterations. O(SG), O(LS), O(LU) and
O(GU) stand for the computational complexity of the solution generation,
local search, local and global pheromone update, respectively. It is known
that

O(SG) = O

(
a∑
i=1

i(n− i)

)
= O(a3),

O(LS) = O

(
n∑

i=a+1

i

)
= O

(
(n+ a+ 1)(n− a)

2

)
,

O(LU) = O(GU) = m ·O(n2),

where n is the problem size, i.e., the number of vertices in the graph, and a is
the expected number of vertices in the tour, depending on the time budget.
Therefore,

O(MACS) = Nmax · nant ·O(a3 +mn2) (12)

= FEmax ·O(a3 +mn2). (13)

When comparing the complexity of MOMA (Eq. (11)) and MACS (Eq.
13)), one can see that given the same FEmax value, MOMA has a much lower
complexity than MACS.

3.4. Handling Time-Dependent Travel Time

Note that there are a large number of vertex insertion operations in
MOMA and MACS (e.g. in the crossover and local search of MOMA, and
solution construction and local search in MACS). Before inserting a vertex,
the feasibility of the insertion needs to be checked. In the static scenario,
one can calculate the local change only. However, when the travel time is
time-dependent, an insertion influences the travel time of all the subsequent
vertices, and may dramatically change the final arrival time. It is time-
consuming to calculate for all the subsequent vertices. To address this issue,
we store the latest arrival time τ(Γ(i)) for each vertex in the tour of Γ. It is
initialized as follows:

τ(Γ(L)) = t0 + T, (14)

τ(Γ(i)) = τ(Γ(i+ 1))− d′Γ(i),Γ(i+1)(τ(Γ(i+ 1))), j = L− 1, . . . , 1, (15)
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where d′Γ(i),Γ(i+1)(τ(Γ(i + 1))) is the travel time from Γ(i) to Γ(i + 1) when

arriving at time τ(Γ(i+ 1)).
When inserting a new vertex v between Γ(j − 1) and Γ(j), the feasibility

can be simply checked by examining whether the new arrival time of Γ(j) is
later than τ(Γ(i)). This way, there is no need to calculate the new arrival
time of all the subsequent vertices, and the feasibility check is made much
more efficient.

Once a new vertex is inserted, the latest arrival time of all its precedent
vertices in the tour are updated by Eq. (15) with the index from j − 1 to 1,
where j is the inserted position.

4. Experimental Studies

In this section, two sets of benchmark instances are generated and the
proposed MOMA and MACS are evaluated on them in terms of a number of
multi-objective performance measures.

4.1. Benchmark Generation

Two sets of benchmark instances were generated from existing bench-
marks. The first one was extended from Verbeeck’s single-objective time-
dependent instances, which can be downloaded from the orienteering website
of the Centre for Industrial Management, Katholieke Universiteit Leuven3.
The second one was extended from Schilde’s multi-objective static instances,
which can be downloaded from the Production and Operations Management
homepage4. The piece-wise time-dependent travel speed model proposed in
[35] is adopted here. Specifically, the entire single-day time period from
7AM to 9PM is divided into four period, and the streets are divided into five
categories. The travel speed matrix is given in Table 2.

The first benchmark set is extended from single-objective time-dependent
instances. In this study, two objectives are considered. The second score
vector is obtained by randomly shuffling the first score vector in the original
instance. The second benchmark set is extended from multi-objective static
instances. This is done by applying the time-dependent travel time matrix
to the instances, and assign one of the five street categories to each edge.
To this end, for each edge, the category is first randomly sampled from {1,

3http://www.mech.kuleuven.be/en/cib/op/#section-20
4http://prolog.univie.ac.at/research/OP/
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Table 2: The time-dependent travel speed matrix.

Street Morning Peak Day Normal Evening Peak Evening Normal
Category (7AM–9AM) (9AM–5PM) (5PM–7PM) (7PM–9PM)

1. Always Busy 0.5 0.81 0.5 0.81
2. Morning Peak 0.5 0.7 1.0 1.5

3. Two Peaks 0.5 1.5 0.5 1.5
4. Evening Peak 1.0 1.5 0.5 0.7

5. Seldom Traveled 1.5 1.5 1.5 1.5

Table 3: The features of Verbeeck’s MOTDOP dataset.

Name #Instances #Vertices Time budget

p1 9 32 5, 6, 7, 8, 9, 10, 11, 12, 13
p2 9 21 5, 6, 7, 8, 9, 10, 11, 12, 13
p3 9 33 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5
p4 10 100 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
p5 3 66 5.5, 6, 7
p6 9 64 6.5, 7, 8, 9, 10, 11, 12, 13, 14
p7 10 102 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

. . . , 5}. Then, based on the assumption that adjacent streets are likely to
be in the same category, we repeat the category propagation of each edge
to its neighbors for 50 iterations. For the sake of simplicity, the two gener-
ated benchmark sets will be denoted as Verbeeck’s and Schilde’s MOTDOP
datasets hereafter.

Tables 3 and 4 show the features of the generated Verbeeck’s and Schilde’s
MOTDOP datasets. Both sets include seven groups. The instances within
the same group share the same number of vertices, but with different time
budgets. All the instances have a starting time of 7AM. The generated two
MOTDOP datasets can be downloaded from the author’s homepage5.

4.2. Experiment Settings

MOTDOP is a new problem, and there are no existing methods directly
solving it. However, to show the efficacy of the proposed MOMA and MACS,
it is necessary to still compare them with existing methods on MOTDOP. To
this end, the MOEA proposed by De Falco et al. [10] (denoted as FMOEA)
for solving the static problem model is included in the comparison as well.

5http://homepages.ecs.vuw.ac.nz/~yimei/Research-JP.html
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Table 4: The features of Schilde’s MOTDOP dataset.

Name #Instances #Vertices Time budget

p21 6 21 1.5, 2, 2.5, 3, 3.5, 4
p32 7 32 2, 3, 4, 5, 6, 7, 8
p33 9 33 2, 3, 4, 5, 6, 7, 8, 9, 10
p64 7 64 2, 3, 4, 5, 6, 7, 8
p66 12 66 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
p559 11 559 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
p562 13 562 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

FMOEA adopts a steady-state multi-objective evolutionary algorithm
framework. In each generation, the uniform crossover operator is first applied
to two randomly selected non-dominated solutions in the current population
to generate an offspring. Then, the offspring undergoes the mutation with a
certain probability, with either the exchange or the 2-opt operator. Finally,
the offspring replaces the corresponding individual in the current population
if it dominates that individual, and the search goes to the next generation.

Two modifications were made on FMOEA to adapt to the time-dependent
problem. First, due to the efficacy of local search in solving many combina-
torial optimization problems (e.g. [44, 38]), the local search used in MOMA
and MACS (Algorithm 7) was added after the mutation of FMOEA to fur-
ther improve the solution quality. Second, the parameter values of FMOEA
were changed to make a fair comparison with MOMA and MACS and adapt
to the included local search. Specifically, the population size was changed
from 500 to 30, and the number of fitness evaluations were reduced from
50000 to 3750. Despite the significant computational reduction, the solution
quality can still be guaranteed by the added local search.

The three compared algorithms are characterized as follows:

• FMOEA is the latest algorithm for multi-objective orienteering prob-
lem, which can be seen as the state-of-the-art existing algorithm;

• MACS adopts many promising components of P-ACO [30], which is the
most recent and state-of-the-art ant colony system for multi-objective
orienteering problem. Thus, it can be seen as an extension of P-ACO
from static orienteering problem to the time-dependent variant;

• MOMA is a newly proposed memetic algorithm specifically designed
for MOTDOP. Problem-specific crossover, local search and selection
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operators are designed or employed from relevant work for efficiently
solving MOTDOP.

The parameter settings of MOMA, MACS and FMOEA are given in Table
5, respectively. The maximal number of fitness evaluations is set to 3750 for
all the compared algorithms. For MOMA and FMOEA, the population size is
set to 30, which is the best value found by preliminary study. For MACS, the
parameters of τinit, nant, α, β and φ are set according to the recommendations
in the ACS for solving single-objective time-dependent orienteering problem
[35]. After comparing different ρ and q0 values in preliminary study, we chose
ρ = 0.005 and q0 = 0.25. which yielded the best results among a wide range
of values. The crossover, exchange and 2-opt probabilities for FMOEA are set
to 0.4, 0.8 and 1.0, following the suggestions in [10]. For all the algorithms,
the local search is always applied to the generated offsprings.

Table 5: Parameter settings of MOMA and MACS.

Parameter Description Value

FEmax (All) Maximal fitness evaluations 3750

popsize (MOMA&FMOEA) Population size 30

τinit (MACS) Initial pheromone value 1
nant (MACS) Number of ants 75
α (MACS) Relative influence factor of the pheromone values 4
β (MACS) Relative influence factor of the heuristic information 0.07 · n
φ (MACS) Local pheromone evaporation rate 0.01
ρ (MACS) Global pheromone evaporation rate 0.005
q0 (MACS) Probability of selecting the best vertex 0.25

(CR, EM, FV ) (FMOEA) Crossover, exchange and 2-opt probabilities (0.4, 0.8, 1.0)

Note that MOMA has fewer parameters than MACS and FMOEA. In
fact, given the computational budget (maximal number of fitness evalua-
tions), there is only one parameter, i.e. the population size6, that affects
the search behaviour of MOMA. This makes MOMA less sensitive to the
parameter settings than MACS and FMOEA.

For each parameter setting, 30 independent runs of each compared algo-
rithm were conducted on all the test instances. The algorithms were pro-

6The number of generations, which is the other intertwined parameter, is set accordingly
to the number of fitness evaluations over the population size.
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grammed in Java, compiled in JRE 1.8.0 40 and run in a platform with Intel
Core i5 CPU, 8 GB DDR3 memory and OS X Yosemite.

4.3. Performance Metrics
The hypervolume, unary epsilon, spacing and range cover indicators are

used to evaluate the proposed algorithms from different aspects. All these
metrics have been adopted in the experimental studies for the multi-objective
static orienteering problem [30], reflecting different aspects of the evaluated
set of solutions. They are described as follows:

4.3.1. Hypervolume Indicator (IH)

The hypervolume indicator implies the area in the objective space that
is dominated by the given set of solutions X . For maximizing the scores in
MOTDOP, the nadir point is set to 0. For the bi-objective problems, given a
set of non-dominated solutions X , the two-dimensional hypervolume IH(X )
can be calculated as in Algorithm 9. A larger IH value indicates that the set
dominates a larger area, and thus is better.

Algorithm 9: Calculation of two-dimensional hypervolume

1 Sort the solutions x ∈ X in the increasing order of f1;
2 IH(X )← f1(x1)f2(x1); // calculate the first area

3 for i = 2→ |X | do
4 IH(X )← IH(X ) + (f1(xi)− f1(xi−1)) · f2(xi);
5 end
6 return IH(X );

4.3.2. Unary Epsilon Indicator (Iε)

This indicator is based on the ε-dominance relation (�ε). In a maxi-
mization problem, a solution x1 is said to ε-dominate another solution x2

(x1 �ε x2), if

• ∀ i ∈ {1, . . . ,m}, ε · fi(x1) ≥ fi(x2), and

• ∃ i ∈ {1, . . . ,m}, ε · fi(x1) > fi(x2).

Then, the Iε value of a set of solutions X with respective to an approximated
Pareto-optimal set R is defined as follows:

Iε(X ,R) = inf
ε∈R
{∀ x2 ∈ R, ∃ x1 ∈ X , x1 �ε x2}. (16)

A smaller Iε value implies a closer set to the Pareto front.

19



4.3.3. Spacing Indicator (IS)

The spacing indicator evaluates how uniformly the solutions in the given
set X are distributed in the objective space. It is defined as follows:

IS(X ) =

√
1

|X | − 1

∑
x∈X

(D(x)−D), (17)

where D(x) stands for the Euclidean distance between x and its nearest
neighbor in X in the objective space. A smaller value indicates a more
uniformly distributed set. This indicator requires at least two solutions in
X .

4.3.4. Range Cover Indicator (IR)

The range cover indicator reflects the spread of the set X in the objective
space. It is simply calculated as follows:

IR(X ) =
1

m

m∑
i=1

(
max
x∈X

fi(x)−min
x∈X

fi(x)

)
. (18)

A larger IR value implies a wider spread of the set. If there is only one
solution in the set, IR will be zero.

4.3.5. Normalization and Pareto Front Approximation

All the above indicators were calculated after the normalization for the
objective values. Each objective is normalized between 1 and 2, where 1
and 2 stand for the worst and best values obtained by all the runs of all
the algorithms. Since the true Pareto front is unknown, we combined the
solutions obtained by all the runs of all the algorithms together, and extracted
the non-dominated solutions out of them to be the approximated Pareto-
optimal set R. This will be used for calculating the Iε value.

4.4. Results and Discussions

Due to the space limit, we only provide the summary of the comparisons,
which does not affect our discussion and analysis. The full details of the re-
sults are given in the Appendix. For each dataset, the summary was obtained
in the following steps:

1. For each algorithm and each instance, we calculated the mean value of
the performance metrics over the 30 independent runs;
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2. For each group, we calculated the overall mean value of the performance
metrics by averaging the corresponding mean values of all the instances
in that group;

3. For each instance and each performance metric, we conducted the
Wilcoxon’s rank sum test [51] between the 30 results of FMOEA, MACS
and MOMA under the significance level of 0.05.

4. For each group, each performance metric and each algorithm, we count
the number of instances on which the algorithm obtained significantly
better results than the other compared algorithms.

Table 6 gives the summary of the comparison between MOMA, MACS
and FMOEA on the groups of Verbeeck’s MOTDOP dataset. It is clear
that MOMA significantly outperforms FMOEA and MACS in terms of IH
and Iε on most of Verbeeck’s MOTDOP instances. In summary, MOMA
obtains significantly better results on 51/59 instances in terms of IH and
56/59 instances in terms of Iε. MACS performs worse than MOMA, obtaining
slightly smaller IH value and larger Iε value. FMOEA performs the worst in
terms of IH and Iε.

In terms of IS, FMOEA fails to found trade-off solutions in many cases,
resulting in many invalid IS values (shown as “-” in the table). MACS and
MOMA perform better than FMOEA and achieve trade-off solutions on more
instances. In terms of IR, MACS performs better than MOMA and FMOEA
on more instances, indicating that the extreme points of MACS are more
distant from each other than that of MOMA and FMOEA.

Then, we compare FMOEA, MACS and MOMA on Schilde’s MOTDOP
dataset. The summary of the results are given in Table 7. From the table,
one can see that the relative performances of the compared algorithms are
similar to that in Table 6. MOMA significantly outperforms MACS and
FMOEA on 62/65 instances in both IH and Iε. MACS performs better than
FMOEA when the problem size is not large. However, for the p559 and
p562 large-scale groups, FMOEA outperforms MACS. In terms of IS and IR,
the relative performances of the compared algorithms are mixed. MOMA
performs slightly better in terms of uniformity and spread.

In summary, we can conclude that for the tested MOTDOP benchmarks,
MOMA manages to achieve solutions that are closer to the Pareto front and
more uniformly distributed. However, the solutions obtained by MOMA may
spread more narrowly than that of MACS. This may be due to the nature
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Table 6: The summary of the performance of FMOEA, MACS and MOMA on the seven
groups of Verbeeck’s MOTDOP dataset in terms of the four selected performance metrics.

Group IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p1
Mean 3.14 3.67 3.77 1.20 1.10 1.06 - 0.04 0.04 0.13 0.22 0.16
#S.B. 0/9 2/9 7/9 0/9 0/9 9/9 0/9 0/9 0/9 1/9 6/9 0/9

p2
Mean 3.54 3.35 3.71 1.11 1.20 1.05 0.06 0.05 0.09 0.36 0.40 0.44
#S.B. 0/9 1/9 8/9 0/9 1/9 8/9 1/9 2/9 0/9 0/9 4/9 4/9

p3
Mean 2.94 3.20 3.72 1.25 1.19 1.07 - - 0.08 0.15 0.14 0.18
#S.B. 0/9 0/9 9/9 0/9 0/9 9/9 0/9 0/9 0/9 0/9 1/9 4/9

p4
Mean 2.07 3.34 3.53 1.46 1.14 1.09 - 0.03 0.02 0.13 0.36 0.20
#S.B. 0/10 0/10 10/10 0/10 0/10 10/10 0/10 0/10 0/10 0/10 10/10 0/10

p5
Mean 2.83 3.26 3.56 1.23 1.14 1.08 - 0.05 0.02 0.15 0.19 0.19
#S.B. 0/3 0/3 3/3 0/3 0/3 3/3 0/3 0/3 0/3 0/3 0/3 1/3

p6
Mean 2.35 3.35 3.71 1.39 1.13 1.06 0.04 0.03 0.03 0.16 0.20 0.18
#S.B. 0/9 0/9 9/9 0/9 0/9 9/9 0/9 0/9 1/9 2/9 5/9 0/9

p7
Mean 1.97 3.39 3.40 1.49 1.13 1.11 0.02 0.03 0.03 0.13 0.34 0.21
#S.B. 0/10 5/10 5/10 0/10 2/10 8/10 0/10 0/10 0/10 0/10 10/10 0/10

· “Mean” stands for the overall mean value of each algorithm on each group of instances;
· “#S.B.” indicates the fraction of instances in each group on which one algorithm performed significantly
better than the other under the significance level of 0.05;
· For each group and each performance metric, the result of the better algorithm is marked in bold.

of the true Pareto front, which may be narrowly distributed itself. MACS
performs better than FMOEA when the problem size is not large. However,
its performance deteriorates with the increase of the problem size.

Note that FMOEA can be seen as an existing state-of-the-art algorithm
for multi-objective orienteering problems. MACS can be considered as an
extension of P-ACO [30] from the static problem to the time-dependent one.
Then, the outperformance of MOMA over FMOEA and MACS, especially in
terms of IH and Iε, indicates that MOMA performs significantly better than
the state-of-the-art algorithms for MOTDOP.

Figs. 2 and 3 show the objectives of all the solutions obtained by the
30 runs of FMOEA, MACS and MOMA on the representative Verbeeck’s
and Schilde’s instances. For Verbeeck’s dataset, the two largest groups (p4
and p7) are selected, and the instances with the shortest and longest time
budgets were selected. For Schilde’s dataset, four groups with problem size
from medium to large were selected. For each group, the instance with a
medium time budget was selected. From the figures, one can see that MOMA
managed to find better sets of solutions than MACS and FMOEA. This is
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Table 7: The summary of the performance of FMOEA, MACS and MOMA on the seven
groups of Schilde’s MOTDOP dataset in terms of the four selected performance metrics.

Group IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p21
Mean 3.40 2.95 3.61 1.17 1.33 1.10 - - - 0.03 0.15 0.17
#S.B. 1/6 0/6 4/6 0/6 0/6 4/6 0/6 0/6 0/6 0/6 2/6 3/6

p32
Mean 2.74 3.33 3.42 1.32 1.15 1.14 0.31 0.07 0.12 0.24 0.38 0.43
#S.B. 0/7 1/7 6/7 0/7 1/7 6/7 0/7 1/7 0/7 0/7 1/7 6/7

p33
Mean 3.15 3.42 3.77 1.20 1.15 1.05 0.08 0.13 0.05 0.19 0.39 0.37
#S.B. 0/9 0/9 9/9 0/9 0/9 9/9 1/9 0/9 1/9 0/9 4/9 4/9

p64
Mean 2.57 3.28 3.62 1.33 1.15 1.07 0.05 0.05 0.04 0.19 0.36 0.33
#S.B. 0/7 0/7 7/7 0/7 0/7 7/7 0/7 0/7 2/7 0/7 4/7 2/7

p66
Mean 2.69 3.38 3.63 1.32 1.15 1.07 0.05 0.05 0.03 0.18 0.46 0.32
#S.B. 0/12 0/12 12/12 0/12 0/12 12/12 0/12 0/12 3/12 2/12 9/12 1/12

p559
Mean 2.68 1.51 3.41 1.30 1.73 1.12 - 0.02 0.03 0.07 0.06 0.17
#S.B. 0/11 0/11 11/11 0/11 0/11 11/11 0/11 0/11 0/11 0/11 0/11 10/11

p562
Mean 2.48 2.35 3.33 1.38 1.42 1.14 - 0.05 0.05 0.13 0.20 0.26
#S.B. 0/13 0/13 13/13 0/13 0/13 13/13 0/13 0/13 0/13 0/13 4/13 9/13

· “Mean” stands for the overall mean value of each algorithm on each group of instances;
· “#S.B.” indicates the fraction of instances in each group on which one algorithm performed significantly
better than the other under the significance level of 0.05;
· For each group and each performance metric, the result of the better algorithm is marked in bold.

consistent with the superior performance metric values of MOMA over both
MACS and FMOEA in Table 7. In some figures, (e.g. Figs. 2b and 2d), it
is shown that the front obtained by MOMA tends to be narrower than the
front obtained by MACS. This might be due to the non-dominated sorting
procedure adopted by MOMA, which tends to focus the search in the middle
of the Pareto front.

In addition, it can be seen that the sets of solutions showed a better
distribution on the smaller instances (p64 and p66). However, the distribu-
tions for p559 and p562 were either too narrow (p559) or with a poor shape
(MOMA in p562). This implies that 3750 fitness evaluations might not be
sufficient for the algorithms to converge to a good-shaped front for the large
instances.

Fig. 4 shows the problem size (number of POIs) versus computational
time (in seconds) of the compared algorithms. From the figure, it is clear
that both MOMA and FMOEA have a much better scalability than MACS.
When the problem size is more than 500, the computational time of MACS
increases to over 2000 seconds, while that of MOMA and FMOEA are still
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Figure 2: Objective values of all the solutions obtained by the 30 runs of FMOEA, MACS
and MOMA on some representative Verbeeck’s MOTDOP instances.

less than one minute. This is consistent with the complexity analysis, which
shows that MOMA has a much less computational complexity than MACS
(Eq. (11) versus Eq. (13)). FMOEA has a similar complexity as MOMA, as
they adopt similar frameworks and search operators.

To further verify the efficacy of MOMA, it is compared with the state-
of-the-art ACS [35] on single-objective time-dependent benchmark instances.
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Figure 3: Objective values of all the solutions obtained by the 30 runs of FMOEA, MACS
and MOMA on some representative Schilde’s MOTDOP instances.

For MOMA, 30 independent runs were conducted with the parameter settings
given in Table 5. The results of ACS were directly obtained from [35]. It
is important to note that MOMA was specifically designed for MOTDOP,
and may not be perfectly suitable for the single-objective problem (e.g. the
selection scheme becomes the truncation selection, which might make the
algorithm too greedy). The results are shown in Table 8. It can be seen that
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Figure 4: The number of POIs versus computational time of the compared algorithms.

MOMA still performs similarly to ACS. It manages to achieve the optimal
solution for all the instances, which is better than ACS, although its mean and
worst-case performances are slightly worse. This demonstrates the efficacy
of MOMA, not to mention its advantage over single-objective-based methods
in obtaining a set of trade-off solutions in a single run.

In summary, the following conclusions can be drawn from the experimen-
tal studies:

• Both MACS and MOMA performed much better than FMOEA. This
demonstrates the efficacy of the problem-specific search framework of
MACS (ant colony system) and MOMA (non-dominated sorting);

• MOMA achieved better results than MACS in most cases. More impor-
tantly, MOMA is much more efficient than MACS. This is due to the
advantageous framework MOMA employs, which replaces the compu-
tationally expensive solution generation procedure with a more efficient
local modification (crossover). This demonstrates the efficacy of using
the memetic algorithm framework to solve MOTDOP.

5. Conclusion

In this paper, the multi-objective time-dependent orienteering problem is
investigated, and two meta-heuristic algorithms are designed for solving this
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Table 8: The best, mean and worst gap % of ACS and MOMA to the optimal value on
the single-objective time-dependent benchmark instances.

Instance Best Gap % Mean Gap % Worst Gap %

ACS MOMA ACS MOMA ACS MOMA

p1.1.a 0.0 0.0 0.0 1.4 0.0 4.3
p1.1.b 0.0 0.0 0.0 0.1 0.0 3.7
p1.1.c 0.0 0.0 0.0 0.1 0.0 3.1
p1.1.d 0.0 0.0 2.2 2.6 5.4 5.4
p1.1.e 0.0 0.0 0.5 1.5 2.4 7.1
p1.1.f 0.0 0.0 0.4 0.1 2.2 2.2
p1.1.g 0.0 0.0 0.0 0.7 0.0 4.0
p1.1.h 1.9 0.0 1.9 2.1 1.9 5.6
p2.1.a 0.0 0.0 0.0 0.0 0.0 0.0
p2.1.b 0.0 0.0 0.0 0.0 0.0 0.0
p2.1.c 0.0 0.0 0.0 0.0 0.0 0.0
p2.1.d 0.0 0.0 0.0 0.0 0.0 0.0
p2.1.e 0.0 0.0 0.0 0.5 0.0 3.8
p2.1.f 0.0 0.0 0.0 0.2 0.0 4.8
p2.1.g 0.0 0.0 0.0 1.2 0.0 5.9
p2.1.h 0.0 0.0 0.0 1.3 0.0 9.3
p2.1.i 0.0 0.0 0.0 0.1 0.0 3.5
p3.1.a 0.0 0.0 4.3 2.1 5.4 8.1
p3.1.b 0.0 0.0 0.0 0.1 0.0 2.4
p3.1.c 4.0 0.0 4.0 2.1 4.0 6.0
p3.1.d 0.0 0.0 2.9 1.9 3.6 5.4
p3.1.e 0.0 0.0 1.9 2.0 4.8 6.5
p3.1.f 0.0 0.0 0.3 0.7 1.5 6.2
p3.1.g 0.0 0.0 1.2 2.3 2.9 8.7

complex problem. Although the features of multi-objective optimization and
time-dependent travel time have been considered separately, they have not
been included in the problem simultaneously before. In this work, they are
considered together for the first time. Specifically, we addressed the issues
of multi-objective local search and rugged fitness landscape caused by the
time-dependent travel time. Then, a Multi-Objective Memetic Algorithm
(MOMA) and a Multi-objective Ant Colony System (MACS) are proposed.

To evaluate the proposed algorithms, two sets of MOTDOP benchmark
instances with two objectives were generated from the single-objective time-
dependent orienteering problem [35] benchmark instances and the multi-
objective static orienteering problem benchmark instances [30]. MACS and
MOMA were compared with each other, and with another latest multi-
objective evolutionary algorithm (FMOEA) for orienteering problem. The
experimental results show that both MACS and MOMA can find better sets
of solutions than FMOEA. In addition, MOMA performed much better than
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MACS in terms of both solution quality and speed. Due to the better scalabil-
ity, MOMA can obtain a set of better solutions than MACS in a much shorter
time. Also, MOMA is much less sensitive to the parameter setting, due to the
small number of parameters. Since MACS adopts many promising features
of the state-of-the-art ant colony system (P-ACO) for the multi-objective
orienteering problem, it can be considered as a baseline and state-of-the-art
algorithm for MOTDOP. Therefore, the advantage of MOMA over MACS
demonstrates the efficacy of MOMA in solving MOTDOP, and suggests a
great potential of using the memetic algorithm framework for solving this
challenging problem efficiently.

In the future, more realistic factors such as time windows, lunch time and
real-time tour changing will be considered in our model, allowing represen-
tation of more realistic orienteering problem scenarios.
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Appendix

Table 9: The mean metric values of FMOEA, MACS and MOMA on Verbeeck’s MOTDOP
group p1. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p1.1.a 3.30 3.73 3.68 1.17 1.16 1.08 - - - 0.25 0.48 0.41
p1.1.b 3.68 3.98 3.95 1.10 1.03 1.01 - - - 0.18 0.11 0.01
p1.1.c 3.30 3.64 3.78 1.17 1.10 1.06 - - - 0.10 0.22 0.07
p1.1.d 3.12 3.59 3.68 1.19 1.10 1.08 - - - 0.11 0.19 0.17
p1.1.e 2.98 3.46 3.57 1.22 1.12 1.09 - - - 0.10 0.17 0.09
p1.1.f 2.90 3.67 3.82 1.24 1.09 1.06 - - - 0.11 0.21 0.17
p1.1.g 3.04 3.62 3.76 1.19 1.11 1.06 - 0.04 0.04 0.10 0.33 0.30
p1.1.h 2.84 3.55 3.72 1.28 1.12 1.07 - - - 0.10 0.18 0.13
p1.1.i 3.12 3.81 3.96 1.22 1.07 1.04 - - - 0.09 0.08 0.07

Table 10: The mean metric values of FMOEA, MACS and MOMA on Verbeeck’s MOT-
DOP group p2. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p2.1.a 3.53 3.70 3.60 1.10 1.00 1.05 - 0.00 - 0.33 0.62 0.45
p2.1.b 3.36 3.20 3.69 1.15 1.20 1.01 0.10 0.11 0.14 0.56 0.57 0.72
p2.1.c 3.60 3.10 3.62 1.05 1.24 1.03 0.12 0.03 0.11 0.68 0.47 0.70
p2.1.d 3.94 3.93 3.97 1.01 1.01 1.00 0.01 0.01 0.02 0.22 0.18 0.25
p2.1.e 3.21 2.28 3.23 1.25 1.79 1.21 - - - 0.37 0.24 0.33
p2.1.f 3.42 3.24 3.77 1.15 1.22 1.04 - 0.04 0.12 0.37 0.35 0.56
p2.1.g 3.51 3.39 3.89 1.12 1.18 1.00 - 0.09 0.12 0.32 0.57 0.45
p2.1.h 3.40 3.56 3.72 1.14 1.10 1.07 - - - 0.27 0.40 0.36
p2.1.i 3.86 3.77 3.91 1.04 1.06 1.02 0.01 0.05 0.01 0.15 0.20 0.14
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Table 11: The mean metric values of FMOEA, MACS and MOMA on Verbeeck’s MOT-
DOP group p3. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p3.1.a 3.42 3.20 3.63 1.12 1.20 1.09 - - 0.08 0.34 0.32 0.42
p3.1.b 3.39 3.33 3.83 1.16 1.16 1.05 - - 0.08 0.26 0.32 0.37
p3.1.c 3.03 3.11 3.63 1.19 1.20 1.07 - - - 0.22 0.22 0.28
p3.1.d 3.08 3.38 3.73 1.21 1.14 1.07 - - - 0.14 0.08 0.13
p3.1.e 3.06 3.05 3.46 1.23 1.24 1.12 - - - 0.13 0.06 0.15
p3.1.f 2.73 2.92 3.72 1.38 1.31 1.09 - - - 0.11 0.08 0.09
p3.1.g 2.57 3.01 3.63 1.35 1.20 1.08 - - - 0.04 0.12 0.07
p3.1.h 2.49 3.43 3.93 1.36 1.12 1.02 - - - 0.05 0.06 0.03
p3.1.i 2.67 3.35 3.92 1.29 1.13 1.04 - - - 0.03 0.04 0.12

Table 12: The mean metric values of FMOEA, MACS and MOMA on Verbeeck’s MOT-
DOP group p4. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p4.1.a 2.68 3.31 3.52 1.27 1.13 1.10 - 0.04 0.04 0.20 0.31 0.28
p4.1.b 2.37 3.35 3.50 1.35 1.11 1.10 - 0.04 0.03 0.14 0.30 0.27
p4.1.c 2.00 3.18 3.44 1.49 1.16 1.11 - 0.04 0.02 0.18 0.38 0.24
p4.1.d 2.14 3.26 3.42 1.42 1.15 1.10 - 0.03 0.02 0.13 0.39 0.20
p4.1.e 1.91 3.32 3.47 1.52 1.16 1.10 - 0.04 0.02 0.14 0.42 0.23
p4.1.f 2.04 3.39 3.60 1.47 1.15 1.08 - 0.03 0.02 0.10 0.38 0.20
p4.1.g 2.00 3.41 3.62 1.47 1.14 1.07 - 0.02 0.01 0.11 0.35 0.15
p4.1.h 1.87 3.41 3.62 1.54 1.14 1.07 - 0.03 0.02 0.10 0.37 0.17
p4.1.i 1.90 3.39 3.53 1.51 1.15 1.08 - 0.04 0.02 0.09 0.37 0.15
p4.1.j 1.76 3.39 3.62 1.58 1.14 1.07 - 0.03 0.02 0.11 0.32 0.13

Table 13: The mean metric values of FMOEA, MACS and MOMA on Verbeeck’s MOT-
DOP group p5. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p5.1.a 3.08 3.42 3.67 1.18 1.12 1.06 - - - 0.14 0.19 0.23
p5.1.b 2.92 3.25 3.56 1.21 1.14 1.08 - 0.05 - 0.15 0.22 0.15
p5.1.c 2.51 3.12 3.45 1.30 1.16 1.10 - - 0.02 0.15 0.17 0.19
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Table 14: The mean metric values of FMOEA, MACS and MOMA on Verbeeck’s MOT-
DOP group p6. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p6.1.a 2.42 3.12 3.51 1.35 1.19 1.09 - 0.04 0.02 0.21 0.32 0.31
p6.1.b 2.48 3.25 3.61 1.32 1.16 1.07 - 0.03 0.02 0.19 0.35 0.32
p6.1.c 2.19 3.16 3.59 1.43 1.18 1.08 0.04 - 0.02 0.19 0.36 0.25
p6.1.d 2.34 3.22 3.62 1.36 1.15 1.07 - 0.03 0.03 0.15 0.25 0.25
p6.1.e 2.11 3.23 3.63 1.46 1.15 1.07 - - - 0.16 0.18 0.19
p6.1.f 2.18 3.38 3.71 1.45 1.13 1.06 - 0.03 0.03 0.16 0.22 0.21
p6.1.g 2.34 3.30 3.69 1.41 1.14 1.07 - - - 0.14 0.09 0.10
p6.1.h 2.30 3.65 4.00 1.43 1.07 1.00 - - - 0.13 0.04 0.00
p6.1.i 2.82 3.86 4.00 1.27 1.03 1.00 - - - 0.10 0.01 0.00

Table 15: The mean metric values of FMOEA, MACS and MOMA on Verbeeck’s MOT-
DOP group p7. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p7.1.a 2.36 3.09 3.35 1.37 1.19 1.13 - 0.05 0.03 0.18 0.39 0.33
p7.1.b 2.10 3.14 3.33 1.45 1.19 1.13 - 0.04 0.03 0.19 0.37 0.27
p7.1.c 2.22 3.39 3.52 1.42 1.15 1.09 - 0.03 0.03 0.16 0.34 0.23
p7.1.d 1.82 3.37 3.38 1.55 1.14 1.12 0.02 0.03 0.03 0.15 0.33 0.25
p7.1.e 1.98 3.49 3.40 1.47 1.11 1.11 - 0.02 0.03 0.11 0.32 0.21
p7.1.f 1.92 3.52 3.39 1.50 1.10 1.11 - 0.02 0.02 0.10 0.34 0.19
p7.1.g 1.85 3.43 3.38 1.51 1.11 1.11 - 0.02 0.02 0.10 0.31 0.19
p7.1.h 1.88 3.53 3.37 1.53 1.12 1.11 - 0.02 0.02 0.12 0.32 0.16
p7.1.i 1.88 3.53 3.43 1.55 1.11 1.10 - 0.02 0.03 0.09 0.35 0.16
p7.1.j 1.67 3.45 3.49 1.60 1.11 1.09 - 0.02 0.02 0.08 0.32 0.15

Table 16: The mean metric values of FMOEA, MACS and MOMA on Schilde’s MOTDOP
group p21. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p21 t1.5 4.00 3.89 4.00 1.00 1.07 1.00 - - - 0.00 0.04 0.00
p21 t2.0 3.00 2.76 2.98 1.33 1.40 1.29 - - - 0.00 0.07 0.24
p21 t2.5 3.32 3.14 3.68 1.21 1.35 1.06 - - - 0.03 0.26 0.34
p21 t3.0 3.35 2.88 3.60 1.15 1.32 1.11 - - - 0.04 0.31 0.19
p21 t3.5 3.38 2.42 3.69 1.17 1.50 1.10 - - - 0.06 0.13 0.26
p21 t4.0 3.32 2.65 3.71 1.16 1.36 1.06 - - - 0.02 0.10 0.00
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Table 17: The mean metric values of FMOEA, MACS and MOMA on Schilde’s MOTDOP
group p32. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p32 t2.0 2.72 3.30 2.81 1.37 1.13 1.33 0.31 0.08 0.31 0.81 0.80 0.82
p32 t3.0 2.81 3.12 3.48 1.31 1.18 1.09 - 0.06 0.10 0.28 0.45 0.64
p32 t4.0 3.01 3.58 3.75 1.25 1.15 1.09 - 0.09 0.03 0.18 0.51 0.53
p32 t5.0 2.75 3.37 3.47 1.28 1.12 1.09 - 0.03 0.03 0.13 0.30 0.32
p32 t6.0 2.75 3.33 3.44 1.33 1.16 1.15 - - - 0.14 0.22 0.27
p32 t7.0 2.70 3.30 3.46 1.32 1.19 1.14 - - - 0.10 0.29 0.27
p32 t8.0 2.48 3.30 3.53 1.37 1.15 1.11 - - - 0.04 0.12 0.16

Table 18: The mean metric values of FMOEA, MACS and MOMA on Schilde’s MOTDOP
group p33. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p33 t2.0 3.60 3.34 3.89 1.11 1.18 1.00 - 0.18 0.00 0.05 0.68 0.36
p33 t3.0 3.11 3.28 3.66 1.19 1.16 1.04 0.08 0.16 0.09 0.42 0.54 0.70
p33 t4.0 2.96 3.27 3.70 1.22 1.23 1.04 0.07 0.09 0.05 0.39 0.70 0.60
p33 t5.0 3.00 3.32 3.66 1.23 1.17 1.07 - 0.07 0.05 0.35 0.54 0.51
p33 t6.0 3.17 3.52 3.77 1.16 1.11 1.05 - - 0.06 0.11 0.36 0.35
p33 t7.0 3.08 3.47 3.71 1.17 1.11 1.06 - - - 0.09 0.27 0.28
p33 t8.0 3.00 3.32 3.71 1.23 1.16 1.06 - - - 0.13 0.29 0.31
p33 t9.0 2.97 3.48 3.83 1.30 1.16 1.10 - - - 0.10 0.12 0.25
p33 t10.0 3.46 3.78 4.00 1.19 1.08 1.00 - - - 0.06 0.05 0.00

Table 19: The mean metric values of FMOEA, MACS and MOMA on Schilde’s MOTDOP
group p64. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p64 t2.0 2.88 3.13 3.46 1.27 1.17 1.13 0.06 0.08 0.08 0.33 0.47 0.51
p64 t3.0 2.55 3.04 3.39 1.34 1.19 1.11 0.06 0.05 0.03 0.25 0.51 0.51
p64 t4.0 2.35 3.03 3.45 1.36 1.20 1.09 0.04 0.04 0.03 0.18 0.47 0.50
p64 t5.0 2.23 3.10 3.50 1.38 1.19 1.09 0.03 0.03 0.02 0.17 0.48 0.43
p64 t6.0 2.19 3.12 3.58 1.41 1.20 1.08 0.04 0.03 0.03 0.19 0.42 0.32
p64 t7.0 2.45 3.62 3.97 1.36 1.09 1.01 - 0.03 - 0.16 0.19 0.02
p64 t8.0 3.36 3.95 4.00 1.18 1.01 1.00 - - - 0.09 0.01 0.00
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Table 20: The mean metric values of FMOEA, MACS and MOMA on Schilde’s MOTDOP
group p66. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p66 t2.0 3.07 3.07 3.43 1.21 1.25 1.12 0.06 0.10 0.05 0.37 0.54 0.54
p66 t3.0 2.61 2.99 3.32 1.31 1.20 1.12 0.05 0.05 0.04 0.25 0.59 0.54
p66 t4.0 2.54 3.10 3.30 1.36 1.19 1.13 0.04 0.04 0.04 0.22 0.64 0.48
p66 t5.0 2.52 3.30 3.52 1.36 1.19 1.10 0.05 0.05 0.03 0.24 0.70 0.53
p66 t6.0 2.54 3.28 3.51 1.35 1.18 1.09 0.04 0.04 0.03 0.18 0.65 0.43
p66 t7.0 2.58 3.30 3.53 1.34 1.18 1.09 - 0.03 0.02 0.15 0.61 0.35
p66 t8.0 2.57 3.36 3.65 1.35 1.17 1.08 - 0.04 0.02 0.16 0.58 0.36
p66 t9.0 2.67 3.34 3.68 1.30 1.16 1.07 - 0.04 0.03 0.15 0.49 0.30
p66 t10.0 2.53 3.41 3.77 1.44 1.14 1.06 - 0.03 - 0.12 0.34 0.15
p66 t11.0 2.64 3.60 3.90 1.35 1.11 1.03 - 0.05 - 0.13 0.24 0.11
p66 t12.0 2.62 3.86 4.00 1.33 1.03 1.00 - - - 0.14 0.12 0.00
p66 t13.0 3.36 3.99 4.00 1.18 1.00 1.00 - - - 0.11 0.00 0.00

Table 21: The mean metric values of FMOEA, MACS and MOMA on Schilde’s MOTDOP
group p559. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p559 t4.0 3.57 1.11 3.77 1.13 1.98 1.05 - - - 0.08 0.02 0.50
p559 t5.0 3.41 1.92 3.71 1.12 1.52 1.06 - - 0.04 0.14 0.08 0.20
p559 t6.0 3.15 1.50 3.61 1.22 1.73 1.09 - - - 0.09 0.02 0.19
p559 t7.0 2.66 1.59 3.20 1.31 1.67 1.17 - - - 0.07 0.06 0.16
p559 t8.0 2.41 1.51 3.05 1.34 1.67 1.18 - - - 0.09 0.09 0.13
p559 t9.0 2.62 1.47 3.56 1.30 1.74 1.09 - - - 0.06 0.07 0.14
p559 t10.0 2.45 1.47 3.23 1.36 1.71 1.16 - - 0.03 0.06 0.07 0.15
p559 t11.0 2.14 1.40 3.10 1.47 1.81 1.19 - - 0.02 0.06 0.05 0.12
p559 t12.0 2.32 1.49 3.41 1.38 1.81 1.12 - - - 0.07 0.06 0.12
p559 t13.0 2.35 1.58 3.44 1.35 1.66 1.10 - - 0.02 0.05 0.05 0.10
p559 t14.0 2.41 1.55 3.44 1.32 1.69 1.10 - 0.02 0.01 0.05 0.07 0.09

38



Table 22: The mean metric values of FMOEA, MACS and MOMA on Schilde’s MOTDOP
group p562. The significantly better values are marked in bold.

Instance IH Iε IS IR

FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA FMOEA MACS MOMA

p562 t2.0 2.78 2.91 3.63 1.44 1.28 1.10 - - 0.12 0.38 0.23 0.64
p562 t3.0 3.26 2.98 3.63 1.13 1.22 1.08 - - - 0.13 0.24 0.31
p562 t4.0 2.83 2.26 3.30 1.24 1.40 1.14 - - - 0.08 0.18 0.17
p562 t5.0 2.80 2.31 3.43 1.24 1.38 1.10 - - 0.04 0.17 0.19 0.26
p562 t6.0 2.60 2.51 3.41 1.30 1.37 1.12 - - 0.04 0.17 0.28 0.30
p562 t7.0 2.84 2.73 3.53 1.22 1.31 1.09 - - 0.04 0.10 0.24 0.23
p562 t8.0 2.40 1.83 3.33 1.39 1.64 1.13 - 0.04 - 0.10 0.18 0.23
p562 t9.0 2.44 2.03 3.47 1.40 1.61 1.11 - 0.07 0.04 0.10 0.26 0.25
p562 t10.0 2.20 2.40 3.15 1.50 1.40 1.20 - - 0.04 0.08 0.19 0.24
p562 t11.0 2.12 2.24 3.13 1.46 1.38 1.20 - - 0.04 0.09 0.19 0.20
p562 t12.0 1.96 2.07 2.87 1.56 1.51 1.24 - - 0.03 0.10 0.11 0.18
p562 t13.0 1.96 2.08 3.07 1.52 1.50 1.20 - - - 0.07 0.14 0.14
p562 t14.0 1.99 2.18 3.37 1.53 1.50 1.14 - - 0.03 0.05 0.16 0.15
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